xref: /openbmc/linux/kernel/bpf/btf.c (revision 9b68f30b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 
29 #include <net/netfilter/nf_bpf_link.h>
30 
31 #include <net/sock.h>
32 #include "../tools/lib/bpf/relo_core.h"
33 
34 /* BTF (BPF Type Format) is the meta data format which describes
35  * the data types of BPF program/map.  Hence, it basically focus
36  * on the C programming language which the modern BPF is primary
37  * using.
38  *
39  * ELF Section:
40  * ~~~~~~~~~~~
41  * The BTF data is stored under the ".BTF" ELF section
42  *
43  * struct btf_type:
44  * ~~~~~~~~~~~~~~~
45  * Each 'struct btf_type' object describes a C data type.
46  * Depending on the type it is describing, a 'struct btf_type'
47  * object may be followed by more data.  F.e.
48  * To describe an array, 'struct btf_type' is followed by
49  * 'struct btf_array'.
50  *
51  * 'struct btf_type' and any extra data following it are
52  * 4 bytes aligned.
53  *
54  * Type section:
55  * ~~~~~~~~~~~~~
56  * The BTF type section contains a list of 'struct btf_type' objects.
57  * Each one describes a C type.  Recall from the above section
58  * that a 'struct btf_type' object could be immediately followed by extra
59  * data in order to describe some particular C types.
60  *
61  * type_id:
62  * ~~~~~~~
63  * Each btf_type object is identified by a type_id.  The type_id
64  * is implicitly implied by the location of the btf_type object in
65  * the BTF type section.  The first one has type_id 1.  The second
66  * one has type_id 2...etc.  Hence, an earlier btf_type has
67  * a smaller type_id.
68  *
69  * A btf_type object may refer to another btf_type object by using
70  * type_id (i.e. the "type" in the "struct btf_type").
71  *
72  * NOTE that we cannot assume any reference-order.
73  * A btf_type object can refer to an earlier btf_type object
74  * but it can also refer to a later btf_type object.
75  *
76  * For example, to describe "const void *".  A btf_type
77  * object describing "const" may refer to another btf_type
78  * object describing "void *".  This type-reference is done
79  * by specifying type_id:
80  *
81  * [1] CONST (anon) type_id=2
82  * [2] PTR (anon) type_id=0
83  *
84  * The above is the btf_verifier debug log:
85  *   - Each line started with "[?]" is a btf_type object
86  *   - [?] is the type_id of the btf_type object.
87  *   - CONST/PTR is the BTF_KIND_XXX
88  *   - "(anon)" is the name of the type.  It just
89  *     happens that CONST and PTR has no name.
90  *   - type_id=XXX is the 'u32 type' in btf_type
91  *
92  * NOTE: "void" has type_id 0
93  *
94  * String section:
95  * ~~~~~~~~~~~~~~
96  * The BTF string section contains the names used by the type section.
97  * Each string is referred by an "offset" from the beginning of the
98  * string section.
99  *
100  * Each string is '\0' terminated.
101  *
102  * The first character in the string section must be '\0'
103  * which is used to mean 'anonymous'. Some btf_type may not
104  * have a name.
105  */
106 
107 /* BTF verification:
108  *
109  * To verify BTF data, two passes are needed.
110  *
111  * Pass #1
112  * ~~~~~~~
113  * The first pass is to collect all btf_type objects to
114  * an array: "btf->types".
115  *
116  * Depending on the C type that a btf_type is describing,
117  * a btf_type may be followed by extra data.  We don't know
118  * how many btf_type is there, and more importantly we don't
119  * know where each btf_type is located in the type section.
120  *
121  * Without knowing the location of each type_id, most verifications
122  * cannot be done.  e.g. an earlier btf_type may refer to a later
123  * btf_type (recall the "const void *" above), so we cannot
124  * check this type-reference in the first pass.
125  *
126  * In the first pass, it still does some verifications (e.g.
127  * checking the name is a valid offset to the string section).
128  *
129  * Pass #2
130  * ~~~~~~~
131  * The main focus is to resolve a btf_type that is referring
132  * to another type.
133  *
134  * We have to ensure the referring type:
135  * 1) does exist in the BTF (i.e. in btf->types[])
136  * 2) does not cause a loop:
137  *	struct A {
138  *		struct B b;
139  *	};
140  *
141  *	struct B {
142  *		struct A a;
143  *	};
144  *
145  * btf_type_needs_resolve() decides if a btf_type needs
146  * to be resolved.
147  *
148  * The needs_resolve type implements the "resolve()" ops which
149  * essentially does a DFS and detects backedge.
150  *
151  * During resolve (or DFS), different C types have different
152  * "RESOLVED" conditions.
153  *
154  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
155  * members because a member is always referring to another
156  * type.  A struct's member can be treated as "RESOLVED" if
157  * it is referring to a BTF_KIND_PTR.  Otherwise, the
158  * following valid C struct would be rejected:
159  *
160  *	struct A {
161  *		int m;
162  *		struct A *a;
163  *	};
164  *
165  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
166  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
167  * detect a pointer loop, e.g.:
168  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
169  *                        ^                                         |
170  *                        +-----------------------------------------+
171  *
172  */
173 
174 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
175 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
176 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
177 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
178 #define BITS_ROUNDUP_BYTES(bits) \
179 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
180 
181 #define BTF_INFO_MASK 0x9f00ffff
182 #define BTF_INT_MASK 0x0fffffff
183 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
184 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
185 
186 /* 16MB for 64k structs and each has 16 members and
187  * a few MB spaces for the string section.
188  * The hard limit is S32_MAX.
189  */
190 #define BTF_MAX_SIZE (16 * 1024 * 1024)
191 
192 #define for_each_member_from(i, from, struct_type, member)		\
193 	for (i = from, member = btf_type_member(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);				\
195 	     i++, member++)
196 
197 #define for_each_vsi_from(i, from, struct_type, member)				\
198 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
199 	     i < btf_type_vlen(struct_type);					\
200 	     i++, member++)
201 
202 DEFINE_IDR(btf_idr);
203 DEFINE_SPINLOCK(btf_idr_lock);
204 
205 enum btf_kfunc_hook {
206 	BTF_KFUNC_HOOK_COMMON,
207 	BTF_KFUNC_HOOK_XDP,
208 	BTF_KFUNC_HOOK_TC,
209 	BTF_KFUNC_HOOK_STRUCT_OPS,
210 	BTF_KFUNC_HOOK_TRACING,
211 	BTF_KFUNC_HOOK_SYSCALL,
212 	BTF_KFUNC_HOOK_FMODRET,
213 	BTF_KFUNC_HOOK_CGROUP_SKB,
214 	BTF_KFUNC_HOOK_SCHED_ACT,
215 	BTF_KFUNC_HOOK_SK_SKB,
216 	BTF_KFUNC_HOOK_SOCKET_FILTER,
217 	BTF_KFUNC_HOOK_LWT,
218 	BTF_KFUNC_HOOK_NETFILTER,
219 	BTF_KFUNC_HOOK_MAX,
220 };
221 
222 enum {
223 	BTF_KFUNC_SET_MAX_CNT = 256,
224 	BTF_DTOR_KFUNC_MAX_CNT = 256,
225 	BTF_KFUNC_FILTER_MAX_CNT = 16,
226 };
227 
228 struct btf_kfunc_hook_filter {
229 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
230 	u32 nr_filters;
231 };
232 
233 struct btf_kfunc_set_tab {
234 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
235 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
236 };
237 
238 struct btf_id_dtor_kfunc_tab {
239 	u32 cnt;
240 	struct btf_id_dtor_kfunc dtors[];
241 };
242 
243 struct btf {
244 	void *data;
245 	struct btf_type **types;
246 	u32 *resolved_ids;
247 	u32 *resolved_sizes;
248 	const char *strings;
249 	void *nohdr_data;
250 	struct btf_header hdr;
251 	u32 nr_types; /* includes VOID for base BTF */
252 	u32 types_size;
253 	u32 data_size;
254 	refcount_t refcnt;
255 	u32 id;
256 	struct rcu_head rcu;
257 	struct btf_kfunc_set_tab *kfunc_set_tab;
258 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
259 	struct btf_struct_metas *struct_meta_tab;
260 
261 	/* split BTF support */
262 	struct btf *base_btf;
263 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
264 	u32 start_str_off; /* first string offset (0 for base BTF) */
265 	char name[MODULE_NAME_LEN];
266 	bool kernel_btf;
267 };
268 
269 enum verifier_phase {
270 	CHECK_META,
271 	CHECK_TYPE,
272 };
273 
274 struct resolve_vertex {
275 	const struct btf_type *t;
276 	u32 type_id;
277 	u16 next_member;
278 };
279 
280 enum visit_state {
281 	NOT_VISITED,
282 	VISITED,
283 	RESOLVED,
284 };
285 
286 enum resolve_mode {
287 	RESOLVE_TBD,	/* To Be Determined */
288 	RESOLVE_PTR,	/* Resolving for Pointer */
289 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
290 					 * or array
291 					 */
292 };
293 
294 #define MAX_RESOLVE_DEPTH 32
295 
296 struct btf_sec_info {
297 	u32 off;
298 	u32 len;
299 };
300 
301 struct btf_verifier_env {
302 	struct btf *btf;
303 	u8 *visit_states;
304 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
305 	struct bpf_verifier_log log;
306 	u32 log_type_id;
307 	u32 top_stack;
308 	enum verifier_phase phase;
309 	enum resolve_mode resolve_mode;
310 };
311 
312 static const char * const btf_kind_str[NR_BTF_KINDS] = {
313 	[BTF_KIND_UNKN]		= "UNKNOWN",
314 	[BTF_KIND_INT]		= "INT",
315 	[BTF_KIND_PTR]		= "PTR",
316 	[BTF_KIND_ARRAY]	= "ARRAY",
317 	[BTF_KIND_STRUCT]	= "STRUCT",
318 	[BTF_KIND_UNION]	= "UNION",
319 	[BTF_KIND_ENUM]		= "ENUM",
320 	[BTF_KIND_FWD]		= "FWD",
321 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
322 	[BTF_KIND_VOLATILE]	= "VOLATILE",
323 	[BTF_KIND_CONST]	= "CONST",
324 	[BTF_KIND_RESTRICT]	= "RESTRICT",
325 	[BTF_KIND_FUNC]		= "FUNC",
326 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
327 	[BTF_KIND_VAR]		= "VAR",
328 	[BTF_KIND_DATASEC]	= "DATASEC",
329 	[BTF_KIND_FLOAT]	= "FLOAT",
330 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
331 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
332 	[BTF_KIND_ENUM64]	= "ENUM64",
333 };
334 
335 const char *btf_type_str(const struct btf_type *t)
336 {
337 	return btf_kind_str[BTF_INFO_KIND(t->info)];
338 }
339 
340 /* Chunk size we use in safe copy of data to be shown. */
341 #define BTF_SHOW_OBJ_SAFE_SIZE		32
342 
343 /*
344  * This is the maximum size of a base type value (equivalent to a
345  * 128-bit int); if we are at the end of our safe buffer and have
346  * less than 16 bytes space we can't be assured of being able
347  * to copy the next type safely, so in such cases we will initiate
348  * a new copy.
349  */
350 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
351 
352 /* Type name size */
353 #define BTF_SHOW_NAME_SIZE		80
354 
355 /*
356  * The suffix of a type that indicates it cannot alias another type when
357  * comparing BTF IDs for kfunc invocations.
358  */
359 #define NOCAST_ALIAS_SUFFIX		"___init"
360 
361 /*
362  * Common data to all BTF show operations. Private show functions can add
363  * their own data to a structure containing a struct btf_show and consult it
364  * in the show callback.  See btf_type_show() below.
365  *
366  * One challenge with showing nested data is we want to skip 0-valued
367  * data, but in order to figure out whether a nested object is all zeros
368  * we need to walk through it.  As a result, we need to make two passes
369  * when handling structs, unions and arrays; the first path simply looks
370  * for nonzero data, while the second actually does the display.  The first
371  * pass is signalled by show->state.depth_check being set, and if we
372  * encounter a non-zero value we set show->state.depth_to_show to
373  * the depth at which we encountered it.  When we have completed the
374  * first pass, we will know if anything needs to be displayed if
375  * depth_to_show > depth.  See btf_[struct,array]_show() for the
376  * implementation of this.
377  *
378  * Another problem is we want to ensure the data for display is safe to
379  * access.  To support this, the anonymous "struct {} obj" tracks the data
380  * object and our safe copy of it.  We copy portions of the data needed
381  * to the object "copy" buffer, but because its size is limited to
382  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
383  * traverse larger objects for display.
384  *
385  * The various data type show functions all start with a call to
386  * btf_show_start_type() which returns a pointer to the safe copy
387  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
388  * raw data itself).  btf_show_obj_safe() is responsible for
389  * using copy_from_kernel_nofault() to update the safe data if necessary
390  * as we traverse the object's data.  skbuff-like semantics are
391  * used:
392  *
393  * - obj.head points to the start of the toplevel object for display
394  * - obj.size is the size of the toplevel object
395  * - obj.data points to the current point in the original data at
396  *   which our safe data starts.  obj.data will advance as we copy
397  *   portions of the data.
398  *
399  * In most cases a single copy will suffice, but larger data structures
400  * such as "struct task_struct" will require many copies.  The logic in
401  * btf_show_obj_safe() handles the logic that determines if a new
402  * copy_from_kernel_nofault() is needed.
403  */
404 struct btf_show {
405 	u64 flags;
406 	void *target;	/* target of show operation (seq file, buffer) */
407 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
408 	const struct btf *btf;
409 	/* below are used during iteration */
410 	struct {
411 		u8 depth;
412 		u8 depth_to_show;
413 		u8 depth_check;
414 		u8 array_member:1,
415 		   array_terminated:1;
416 		u16 array_encoding;
417 		u32 type_id;
418 		int status;			/* non-zero for error */
419 		const struct btf_type *type;
420 		const struct btf_member *member;
421 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
422 	} state;
423 	struct {
424 		u32 size;
425 		void *head;
426 		void *data;
427 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
428 	} obj;
429 };
430 
431 struct btf_kind_operations {
432 	s32 (*check_meta)(struct btf_verifier_env *env,
433 			  const struct btf_type *t,
434 			  u32 meta_left);
435 	int (*resolve)(struct btf_verifier_env *env,
436 		       const struct resolve_vertex *v);
437 	int (*check_member)(struct btf_verifier_env *env,
438 			    const struct btf_type *struct_type,
439 			    const struct btf_member *member,
440 			    const struct btf_type *member_type);
441 	int (*check_kflag_member)(struct btf_verifier_env *env,
442 				  const struct btf_type *struct_type,
443 				  const struct btf_member *member,
444 				  const struct btf_type *member_type);
445 	void (*log_details)(struct btf_verifier_env *env,
446 			    const struct btf_type *t);
447 	void (*show)(const struct btf *btf, const struct btf_type *t,
448 			 u32 type_id, void *data, u8 bits_offsets,
449 			 struct btf_show *show);
450 };
451 
452 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
453 static struct btf_type btf_void;
454 
455 static int btf_resolve(struct btf_verifier_env *env,
456 		       const struct btf_type *t, u32 type_id);
457 
458 static int btf_func_check(struct btf_verifier_env *env,
459 			  const struct btf_type *t);
460 
461 static bool btf_type_is_modifier(const struct btf_type *t)
462 {
463 	/* Some of them is not strictly a C modifier
464 	 * but they are grouped into the same bucket
465 	 * for BTF concern:
466 	 *   A type (t) that refers to another
467 	 *   type through t->type AND its size cannot
468 	 *   be determined without following the t->type.
469 	 *
470 	 * ptr does not fall into this bucket
471 	 * because its size is always sizeof(void *).
472 	 */
473 	switch (BTF_INFO_KIND(t->info)) {
474 	case BTF_KIND_TYPEDEF:
475 	case BTF_KIND_VOLATILE:
476 	case BTF_KIND_CONST:
477 	case BTF_KIND_RESTRICT:
478 	case BTF_KIND_TYPE_TAG:
479 		return true;
480 	}
481 
482 	return false;
483 }
484 
485 bool btf_type_is_void(const struct btf_type *t)
486 {
487 	return t == &btf_void;
488 }
489 
490 static bool btf_type_is_fwd(const struct btf_type *t)
491 {
492 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
493 }
494 
495 static bool btf_type_is_datasec(const struct btf_type *t)
496 {
497 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
498 }
499 
500 static bool btf_type_is_decl_tag(const struct btf_type *t)
501 {
502 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
503 }
504 
505 static bool btf_type_nosize(const struct btf_type *t)
506 {
507 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
508 	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
509 	       btf_type_is_decl_tag(t);
510 }
511 
512 static bool btf_type_nosize_or_null(const struct btf_type *t)
513 {
514 	return !t || btf_type_nosize(t);
515 }
516 
517 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
518 {
519 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
520 	       btf_type_is_var(t) || btf_type_is_typedef(t);
521 }
522 
523 u32 btf_nr_types(const struct btf *btf)
524 {
525 	u32 total = 0;
526 
527 	while (btf) {
528 		total += btf->nr_types;
529 		btf = btf->base_btf;
530 	}
531 
532 	return total;
533 }
534 
535 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
536 {
537 	const struct btf_type *t;
538 	const char *tname;
539 	u32 i, total;
540 
541 	total = btf_nr_types(btf);
542 	for (i = 1; i < total; i++) {
543 		t = btf_type_by_id(btf, i);
544 		if (BTF_INFO_KIND(t->info) != kind)
545 			continue;
546 
547 		tname = btf_name_by_offset(btf, t->name_off);
548 		if (!strcmp(tname, name))
549 			return i;
550 	}
551 
552 	return -ENOENT;
553 }
554 
555 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
556 {
557 	struct btf *btf;
558 	s32 ret;
559 	int id;
560 
561 	btf = bpf_get_btf_vmlinux();
562 	if (IS_ERR(btf))
563 		return PTR_ERR(btf);
564 	if (!btf)
565 		return -EINVAL;
566 
567 	ret = btf_find_by_name_kind(btf, name, kind);
568 	/* ret is never zero, since btf_find_by_name_kind returns
569 	 * positive btf_id or negative error.
570 	 */
571 	if (ret > 0) {
572 		btf_get(btf);
573 		*btf_p = btf;
574 		return ret;
575 	}
576 
577 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
578 	spin_lock_bh(&btf_idr_lock);
579 	idr_for_each_entry(&btf_idr, btf, id) {
580 		if (!btf_is_module(btf))
581 			continue;
582 		/* linear search could be slow hence unlock/lock
583 		 * the IDR to avoiding holding it for too long
584 		 */
585 		btf_get(btf);
586 		spin_unlock_bh(&btf_idr_lock);
587 		ret = btf_find_by_name_kind(btf, name, kind);
588 		if (ret > 0) {
589 			*btf_p = btf;
590 			return ret;
591 		}
592 		btf_put(btf);
593 		spin_lock_bh(&btf_idr_lock);
594 	}
595 	spin_unlock_bh(&btf_idr_lock);
596 	return ret;
597 }
598 
599 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
600 					       u32 id, u32 *res_id)
601 {
602 	const struct btf_type *t = btf_type_by_id(btf, id);
603 
604 	while (btf_type_is_modifier(t)) {
605 		id = t->type;
606 		t = btf_type_by_id(btf, t->type);
607 	}
608 
609 	if (res_id)
610 		*res_id = id;
611 
612 	return t;
613 }
614 
615 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
616 					    u32 id, u32 *res_id)
617 {
618 	const struct btf_type *t;
619 
620 	t = btf_type_skip_modifiers(btf, id, NULL);
621 	if (!btf_type_is_ptr(t))
622 		return NULL;
623 
624 	return btf_type_skip_modifiers(btf, t->type, res_id);
625 }
626 
627 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
628 						 u32 id, u32 *res_id)
629 {
630 	const struct btf_type *ptype;
631 
632 	ptype = btf_type_resolve_ptr(btf, id, res_id);
633 	if (ptype && btf_type_is_func_proto(ptype))
634 		return ptype;
635 
636 	return NULL;
637 }
638 
639 /* Types that act only as a source, not sink or intermediate
640  * type when resolving.
641  */
642 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
643 {
644 	return btf_type_is_var(t) ||
645 	       btf_type_is_decl_tag(t) ||
646 	       btf_type_is_datasec(t);
647 }
648 
649 /* What types need to be resolved?
650  *
651  * btf_type_is_modifier() is an obvious one.
652  *
653  * btf_type_is_struct() because its member refers to
654  * another type (through member->type).
655  *
656  * btf_type_is_var() because the variable refers to
657  * another type. btf_type_is_datasec() holds multiple
658  * btf_type_is_var() types that need resolving.
659  *
660  * btf_type_is_array() because its element (array->type)
661  * refers to another type.  Array can be thought of a
662  * special case of struct while array just has the same
663  * member-type repeated by array->nelems of times.
664  */
665 static bool btf_type_needs_resolve(const struct btf_type *t)
666 {
667 	return btf_type_is_modifier(t) ||
668 	       btf_type_is_ptr(t) ||
669 	       btf_type_is_struct(t) ||
670 	       btf_type_is_array(t) ||
671 	       btf_type_is_var(t) ||
672 	       btf_type_is_func(t) ||
673 	       btf_type_is_decl_tag(t) ||
674 	       btf_type_is_datasec(t);
675 }
676 
677 /* t->size can be used */
678 static bool btf_type_has_size(const struct btf_type *t)
679 {
680 	switch (BTF_INFO_KIND(t->info)) {
681 	case BTF_KIND_INT:
682 	case BTF_KIND_STRUCT:
683 	case BTF_KIND_UNION:
684 	case BTF_KIND_ENUM:
685 	case BTF_KIND_DATASEC:
686 	case BTF_KIND_FLOAT:
687 	case BTF_KIND_ENUM64:
688 		return true;
689 	}
690 
691 	return false;
692 }
693 
694 static const char *btf_int_encoding_str(u8 encoding)
695 {
696 	if (encoding == 0)
697 		return "(none)";
698 	else if (encoding == BTF_INT_SIGNED)
699 		return "SIGNED";
700 	else if (encoding == BTF_INT_CHAR)
701 		return "CHAR";
702 	else if (encoding == BTF_INT_BOOL)
703 		return "BOOL";
704 	else
705 		return "UNKN";
706 }
707 
708 static u32 btf_type_int(const struct btf_type *t)
709 {
710 	return *(u32 *)(t + 1);
711 }
712 
713 static const struct btf_array *btf_type_array(const struct btf_type *t)
714 {
715 	return (const struct btf_array *)(t + 1);
716 }
717 
718 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
719 {
720 	return (const struct btf_enum *)(t + 1);
721 }
722 
723 static const struct btf_var *btf_type_var(const struct btf_type *t)
724 {
725 	return (const struct btf_var *)(t + 1);
726 }
727 
728 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
729 {
730 	return (const struct btf_decl_tag *)(t + 1);
731 }
732 
733 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
734 {
735 	return (const struct btf_enum64 *)(t + 1);
736 }
737 
738 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
739 {
740 	return kind_ops[BTF_INFO_KIND(t->info)];
741 }
742 
743 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
744 {
745 	if (!BTF_STR_OFFSET_VALID(offset))
746 		return false;
747 
748 	while (offset < btf->start_str_off)
749 		btf = btf->base_btf;
750 
751 	offset -= btf->start_str_off;
752 	return offset < btf->hdr.str_len;
753 }
754 
755 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
756 {
757 	if ((first ? !isalpha(c) :
758 		     !isalnum(c)) &&
759 	    c != '_' &&
760 	    ((c == '.' && !dot_ok) ||
761 	      c != '.'))
762 		return false;
763 	return true;
764 }
765 
766 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
767 {
768 	while (offset < btf->start_str_off)
769 		btf = btf->base_btf;
770 
771 	offset -= btf->start_str_off;
772 	if (offset < btf->hdr.str_len)
773 		return &btf->strings[offset];
774 
775 	return NULL;
776 }
777 
778 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
779 {
780 	/* offset must be valid */
781 	const char *src = btf_str_by_offset(btf, offset);
782 	const char *src_limit;
783 
784 	if (!__btf_name_char_ok(*src, true, dot_ok))
785 		return false;
786 
787 	/* set a limit on identifier length */
788 	src_limit = src + KSYM_NAME_LEN;
789 	src++;
790 	while (*src && src < src_limit) {
791 		if (!__btf_name_char_ok(*src, false, dot_ok))
792 			return false;
793 		src++;
794 	}
795 
796 	return !*src;
797 }
798 
799 /* Only C-style identifier is permitted. This can be relaxed if
800  * necessary.
801  */
802 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
803 {
804 	return __btf_name_valid(btf, offset, false);
805 }
806 
807 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
808 {
809 	return __btf_name_valid(btf, offset, true);
810 }
811 
812 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
813 {
814 	const char *name;
815 
816 	if (!offset)
817 		return "(anon)";
818 
819 	name = btf_str_by_offset(btf, offset);
820 	return name ?: "(invalid-name-offset)";
821 }
822 
823 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
824 {
825 	return btf_str_by_offset(btf, offset);
826 }
827 
828 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
829 {
830 	while (type_id < btf->start_id)
831 		btf = btf->base_btf;
832 
833 	type_id -= btf->start_id;
834 	if (type_id >= btf->nr_types)
835 		return NULL;
836 	return btf->types[type_id];
837 }
838 EXPORT_SYMBOL_GPL(btf_type_by_id);
839 
840 /*
841  * Regular int is not a bit field and it must be either
842  * u8/u16/u32/u64 or __int128.
843  */
844 static bool btf_type_int_is_regular(const struct btf_type *t)
845 {
846 	u8 nr_bits, nr_bytes;
847 	u32 int_data;
848 
849 	int_data = btf_type_int(t);
850 	nr_bits = BTF_INT_BITS(int_data);
851 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
852 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
853 	    BTF_INT_OFFSET(int_data) ||
854 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
855 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
856 	     nr_bytes != (2 * sizeof(u64)))) {
857 		return false;
858 	}
859 
860 	return true;
861 }
862 
863 /*
864  * Check that given struct member is a regular int with expected
865  * offset and size.
866  */
867 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
868 			   const struct btf_member *m,
869 			   u32 expected_offset, u32 expected_size)
870 {
871 	const struct btf_type *t;
872 	u32 id, int_data;
873 	u8 nr_bits;
874 
875 	id = m->type;
876 	t = btf_type_id_size(btf, &id, NULL);
877 	if (!t || !btf_type_is_int(t))
878 		return false;
879 
880 	int_data = btf_type_int(t);
881 	nr_bits = BTF_INT_BITS(int_data);
882 	if (btf_type_kflag(s)) {
883 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
884 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
885 
886 		/* if kflag set, int should be a regular int and
887 		 * bit offset should be at byte boundary.
888 		 */
889 		return !bitfield_size &&
890 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
891 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
892 	}
893 
894 	if (BTF_INT_OFFSET(int_data) ||
895 	    BITS_PER_BYTE_MASKED(m->offset) ||
896 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
897 	    BITS_PER_BYTE_MASKED(nr_bits) ||
898 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
899 		return false;
900 
901 	return true;
902 }
903 
904 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
905 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
906 						       u32 id)
907 {
908 	const struct btf_type *t = btf_type_by_id(btf, id);
909 
910 	while (btf_type_is_modifier(t) &&
911 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
912 		t = btf_type_by_id(btf, t->type);
913 	}
914 
915 	return t;
916 }
917 
918 #define BTF_SHOW_MAX_ITER	10
919 
920 #define BTF_KIND_BIT(kind)	(1ULL << kind)
921 
922 /*
923  * Populate show->state.name with type name information.
924  * Format of type name is
925  *
926  * [.member_name = ] (type_name)
927  */
928 static const char *btf_show_name(struct btf_show *show)
929 {
930 	/* BTF_MAX_ITER array suffixes "[]" */
931 	const char *array_suffixes = "[][][][][][][][][][]";
932 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
933 	/* BTF_MAX_ITER pointer suffixes "*" */
934 	const char *ptr_suffixes = "**********";
935 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
936 	const char *name = NULL, *prefix = "", *parens = "";
937 	const struct btf_member *m = show->state.member;
938 	const struct btf_type *t;
939 	const struct btf_array *array;
940 	u32 id = show->state.type_id;
941 	const char *member = NULL;
942 	bool show_member = false;
943 	u64 kinds = 0;
944 	int i;
945 
946 	show->state.name[0] = '\0';
947 
948 	/*
949 	 * Don't show type name if we're showing an array member;
950 	 * in that case we show the array type so don't need to repeat
951 	 * ourselves for each member.
952 	 */
953 	if (show->state.array_member)
954 		return "";
955 
956 	/* Retrieve member name, if any. */
957 	if (m) {
958 		member = btf_name_by_offset(show->btf, m->name_off);
959 		show_member = strlen(member) > 0;
960 		id = m->type;
961 	}
962 
963 	/*
964 	 * Start with type_id, as we have resolved the struct btf_type *
965 	 * via btf_modifier_show() past the parent typedef to the child
966 	 * struct, int etc it is defined as.  In such cases, the type_id
967 	 * still represents the starting type while the struct btf_type *
968 	 * in our show->state points at the resolved type of the typedef.
969 	 */
970 	t = btf_type_by_id(show->btf, id);
971 	if (!t)
972 		return "";
973 
974 	/*
975 	 * The goal here is to build up the right number of pointer and
976 	 * array suffixes while ensuring the type name for a typedef
977 	 * is represented.  Along the way we accumulate a list of
978 	 * BTF kinds we have encountered, since these will inform later
979 	 * display; for example, pointer types will not require an
980 	 * opening "{" for struct, we will just display the pointer value.
981 	 *
982 	 * We also want to accumulate the right number of pointer or array
983 	 * indices in the format string while iterating until we get to
984 	 * the typedef/pointee/array member target type.
985 	 *
986 	 * We start by pointing at the end of pointer and array suffix
987 	 * strings; as we accumulate pointers and arrays we move the pointer
988 	 * or array string backwards so it will show the expected number of
989 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
990 	 * and/or arrays and typedefs are supported as a precaution.
991 	 *
992 	 * We also want to get typedef name while proceeding to resolve
993 	 * type it points to so that we can add parentheses if it is a
994 	 * "typedef struct" etc.
995 	 */
996 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
997 
998 		switch (BTF_INFO_KIND(t->info)) {
999 		case BTF_KIND_TYPEDEF:
1000 			if (!name)
1001 				name = btf_name_by_offset(show->btf,
1002 							       t->name_off);
1003 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1004 			id = t->type;
1005 			break;
1006 		case BTF_KIND_ARRAY:
1007 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1008 			parens = "[";
1009 			if (!t)
1010 				return "";
1011 			array = btf_type_array(t);
1012 			if (array_suffix > array_suffixes)
1013 				array_suffix -= 2;
1014 			id = array->type;
1015 			break;
1016 		case BTF_KIND_PTR:
1017 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1018 			if (ptr_suffix > ptr_suffixes)
1019 				ptr_suffix -= 1;
1020 			id = t->type;
1021 			break;
1022 		default:
1023 			id = 0;
1024 			break;
1025 		}
1026 		if (!id)
1027 			break;
1028 		t = btf_type_skip_qualifiers(show->btf, id);
1029 	}
1030 	/* We may not be able to represent this type; bail to be safe */
1031 	if (i == BTF_SHOW_MAX_ITER)
1032 		return "";
1033 
1034 	if (!name)
1035 		name = btf_name_by_offset(show->btf, t->name_off);
1036 
1037 	switch (BTF_INFO_KIND(t->info)) {
1038 	case BTF_KIND_STRUCT:
1039 	case BTF_KIND_UNION:
1040 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1041 			 "struct" : "union";
1042 		/* if it's an array of struct/union, parens is already set */
1043 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1044 			parens = "{";
1045 		break;
1046 	case BTF_KIND_ENUM:
1047 	case BTF_KIND_ENUM64:
1048 		prefix = "enum";
1049 		break;
1050 	default:
1051 		break;
1052 	}
1053 
1054 	/* pointer does not require parens */
1055 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1056 		parens = "";
1057 	/* typedef does not require struct/union/enum prefix */
1058 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1059 		prefix = "";
1060 
1061 	if (!name)
1062 		name = "";
1063 
1064 	/* Even if we don't want type name info, we want parentheses etc */
1065 	if (show->flags & BTF_SHOW_NONAME)
1066 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1067 			 parens);
1068 	else
1069 		snprintf(show->state.name, sizeof(show->state.name),
1070 			 "%s%s%s(%s%s%s%s%s%s)%s",
1071 			 /* first 3 strings comprise ".member = " */
1072 			 show_member ? "." : "",
1073 			 show_member ? member : "",
1074 			 show_member ? " = " : "",
1075 			 /* ...next is our prefix (struct, enum, etc) */
1076 			 prefix,
1077 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1078 			 /* ...this is the type name itself */
1079 			 name,
1080 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1081 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1082 			 array_suffix, parens);
1083 
1084 	return show->state.name;
1085 }
1086 
1087 static const char *__btf_show_indent(struct btf_show *show)
1088 {
1089 	const char *indents = "                                ";
1090 	const char *indent = &indents[strlen(indents)];
1091 
1092 	if ((indent - show->state.depth) >= indents)
1093 		return indent - show->state.depth;
1094 	return indents;
1095 }
1096 
1097 static const char *btf_show_indent(struct btf_show *show)
1098 {
1099 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1100 }
1101 
1102 static const char *btf_show_newline(struct btf_show *show)
1103 {
1104 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1105 }
1106 
1107 static const char *btf_show_delim(struct btf_show *show)
1108 {
1109 	if (show->state.depth == 0)
1110 		return "";
1111 
1112 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1113 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1114 		return "|";
1115 
1116 	return ",";
1117 }
1118 
1119 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1120 {
1121 	va_list args;
1122 
1123 	if (!show->state.depth_check) {
1124 		va_start(args, fmt);
1125 		show->showfn(show, fmt, args);
1126 		va_end(args);
1127 	}
1128 }
1129 
1130 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1131  * format specifiers to the format specifier passed in; these do the work of
1132  * adding indentation, delimiters etc while the caller simply has to specify
1133  * the type value(s) in the format specifier + value(s).
1134  */
1135 #define btf_show_type_value(show, fmt, value)				       \
1136 	do {								       \
1137 		if ((value) != (__typeof__(value))0 ||			       \
1138 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1139 		    show->state.depth == 0) {				       \
1140 			btf_show(show, "%s%s" fmt "%s%s",		       \
1141 				 btf_show_indent(show),			       \
1142 				 btf_show_name(show),			       \
1143 				 value, btf_show_delim(show),		       \
1144 				 btf_show_newline(show));		       \
1145 			if (show->state.depth > show->state.depth_to_show)     \
1146 				show->state.depth_to_show = show->state.depth; \
1147 		}							       \
1148 	} while (0)
1149 
1150 #define btf_show_type_values(show, fmt, ...)				       \
1151 	do {								       \
1152 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1153 			 btf_show_name(show),				       \
1154 			 __VA_ARGS__, btf_show_delim(show),		       \
1155 			 btf_show_newline(show));			       \
1156 		if (show->state.depth > show->state.depth_to_show)	       \
1157 			show->state.depth_to_show = show->state.depth;	       \
1158 	} while (0)
1159 
1160 /* How much is left to copy to safe buffer after @data? */
1161 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1162 {
1163 	return show->obj.head + show->obj.size - data;
1164 }
1165 
1166 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1167 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1168 {
1169 	return data >= show->obj.data &&
1170 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1171 }
1172 
1173 /*
1174  * If object pointed to by @data of @size falls within our safe buffer, return
1175  * the equivalent pointer to the same safe data.  Assumes
1176  * copy_from_kernel_nofault() has already happened and our safe buffer is
1177  * populated.
1178  */
1179 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1180 {
1181 	if (btf_show_obj_is_safe(show, data, size))
1182 		return show->obj.safe + (data - show->obj.data);
1183 	return NULL;
1184 }
1185 
1186 /*
1187  * Return a safe-to-access version of data pointed to by @data.
1188  * We do this by copying the relevant amount of information
1189  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1190  *
1191  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1192  * safe copy is needed.
1193  *
1194  * Otherwise we need to determine if we have the required amount
1195  * of data (determined by the @data pointer and the size of the
1196  * largest base type we can encounter (represented by
1197  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1198  * that we will be able to print some of the current object,
1199  * and if more is needed a copy will be triggered.
1200  * Some objects such as structs will not fit into the buffer;
1201  * in such cases additional copies when we iterate over their
1202  * members may be needed.
1203  *
1204  * btf_show_obj_safe() is used to return a safe buffer for
1205  * btf_show_start_type(); this ensures that as we recurse into
1206  * nested types we always have safe data for the given type.
1207  * This approach is somewhat wasteful; it's possible for example
1208  * that when iterating over a large union we'll end up copying the
1209  * same data repeatedly, but the goal is safety not performance.
1210  * We use stack data as opposed to per-CPU buffers because the
1211  * iteration over a type can take some time, and preemption handling
1212  * would greatly complicate use of the safe buffer.
1213  */
1214 static void *btf_show_obj_safe(struct btf_show *show,
1215 			       const struct btf_type *t,
1216 			       void *data)
1217 {
1218 	const struct btf_type *rt;
1219 	int size_left, size;
1220 	void *safe = NULL;
1221 
1222 	if (show->flags & BTF_SHOW_UNSAFE)
1223 		return data;
1224 
1225 	rt = btf_resolve_size(show->btf, t, &size);
1226 	if (IS_ERR(rt)) {
1227 		show->state.status = PTR_ERR(rt);
1228 		return NULL;
1229 	}
1230 
1231 	/*
1232 	 * Is this toplevel object? If so, set total object size and
1233 	 * initialize pointers.  Otherwise check if we still fall within
1234 	 * our safe object data.
1235 	 */
1236 	if (show->state.depth == 0) {
1237 		show->obj.size = size;
1238 		show->obj.head = data;
1239 	} else {
1240 		/*
1241 		 * If the size of the current object is > our remaining
1242 		 * safe buffer we _may_ need to do a new copy.  However
1243 		 * consider the case of a nested struct; it's size pushes
1244 		 * us over the safe buffer limit, but showing any individual
1245 		 * struct members does not.  In such cases, we don't need
1246 		 * to initiate a fresh copy yet; however we definitely need
1247 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1248 		 * in our buffer, regardless of the current object size.
1249 		 * The logic here is that as we resolve types we will
1250 		 * hit a base type at some point, and we need to be sure
1251 		 * the next chunk of data is safely available to display
1252 		 * that type info safely.  We cannot rely on the size of
1253 		 * the current object here because it may be much larger
1254 		 * than our current buffer (e.g. task_struct is 8k).
1255 		 * All we want to do here is ensure that we can print the
1256 		 * next basic type, which we can if either
1257 		 * - the current type size is within the safe buffer; or
1258 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1259 		 *   the safe buffer.
1260 		 */
1261 		safe = __btf_show_obj_safe(show, data,
1262 					   min(size,
1263 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1264 	}
1265 
1266 	/*
1267 	 * We need a new copy to our safe object, either because we haven't
1268 	 * yet copied and are initializing safe data, or because the data
1269 	 * we want falls outside the boundaries of the safe object.
1270 	 */
1271 	if (!safe) {
1272 		size_left = btf_show_obj_size_left(show, data);
1273 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1274 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1275 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1276 							      data, size_left);
1277 		if (!show->state.status) {
1278 			show->obj.data = data;
1279 			safe = show->obj.safe;
1280 		}
1281 	}
1282 
1283 	return safe;
1284 }
1285 
1286 /*
1287  * Set the type we are starting to show and return a safe data pointer
1288  * to be used for showing the associated data.
1289  */
1290 static void *btf_show_start_type(struct btf_show *show,
1291 				 const struct btf_type *t,
1292 				 u32 type_id, void *data)
1293 {
1294 	show->state.type = t;
1295 	show->state.type_id = type_id;
1296 	show->state.name[0] = '\0';
1297 
1298 	return btf_show_obj_safe(show, t, data);
1299 }
1300 
1301 static void btf_show_end_type(struct btf_show *show)
1302 {
1303 	show->state.type = NULL;
1304 	show->state.type_id = 0;
1305 	show->state.name[0] = '\0';
1306 }
1307 
1308 static void *btf_show_start_aggr_type(struct btf_show *show,
1309 				      const struct btf_type *t,
1310 				      u32 type_id, void *data)
1311 {
1312 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1313 
1314 	if (!safe_data)
1315 		return safe_data;
1316 
1317 	btf_show(show, "%s%s%s", btf_show_indent(show),
1318 		 btf_show_name(show),
1319 		 btf_show_newline(show));
1320 	show->state.depth++;
1321 	return safe_data;
1322 }
1323 
1324 static void btf_show_end_aggr_type(struct btf_show *show,
1325 				   const char *suffix)
1326 {
1327 	show->state.depth--;
1328 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1329 		 btf_show_delim(show), btf_show_newline(show));
1330 	btf_show_end_type(show);
1331 }
1332 
1333 static void btf_show_start_member(struct btf_show *show,
1334 				  const struct btf_member *m)
1335 {
1336 	show->state.member = m;
1337 }
1338 
1339 static void btf_show_start_array_member(struct btf_show *show)
1340 {
1341 	show->state.array_member = 1;
1342 	btf_show_start_member(show, NULL);
1343 }
1344 
1345 static void btf_show_end_member(struct btf_show *show)
1346 {
1347 	show->state.member = NULL;
1348 }
1349 
1350 static void btf_show_end_array_member(struct btf_show *show)
1351 {
1352 	show->state.array_member = 0;
1353 	btf_show_end_member(show);
1354 }
1355 
1356 static void *btf_show_start_array_type(struct btf_show *show,
1357 				       const struct btf_type *t,
1358 				       u32 type_id,
1359 				       u16 array_encoding,
1360 				       void *data)
1361 {
1362 	show->state.array_encoding = array_encoding;
1363 	show->state.array_terminated = 0;
1364 	return btf_show_start_aggr_type(show, t, type_id, data);
1365 }
1366 
1367 static void btf_show_end_array_type(struct btf_show *show)
1368 {
1369 	show->state.array_encoding = 0;
1370 	show->state.array_terminated = 0;
1371 	btf_show_end_aggr_type(show, "]");
1372 }
1373 
1374 static void *btf_show_start_struct_type(struct btf_show *show,
1375 					const struct btf_type *t,
1376 					u32 type_id,
1377 					void *data)
1378 {
1379 	return btf_show_start_aggr_type(show, t, type_id, data);
1380 }
1381 
1382 static void btf_show_end_struct_type(struct btf_show *show)
1383 {
1384 	btf_show_end_aggr_type(show, "}");
1385 }
1386 
1387 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1388 					      const char *fmt, ...)
1389 {
1390 	va_list args;
1391 
1392 	va_start(args, fmt);
1393 	bpf_verifier_vlog(log, fmt, args);
1394 	va_end(args);
1395 }
1396 
1397 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1398 					    const char *fmt, ...)
1399 {
1400 	struct bpf_verifier_log *log = &env->log;
1401 	va_list args;
1402 
1403 	if (!bpf_verifier_log_needed(log))
1404 		return;
1405 
1406 	va_start(args, fmt);
1407 	bpf_verifier_vlog(log, fmt, args);
1408 	va_end(args);
1409 }
1410 
1411 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1412 						   const struct btf_type *t,
1413 						   bool log_details,
1414 						   const char *fmt, ...)
1415 {
1416 	struct bpf_verifier_log *log = &env->log;
1417 	struct btf *btf = env->btf;
1418 	va_list args;
1419 
1420 	if (!bpf_verifier_log_needed(log))
1421 		return;
1422 
1423 	if (log->level == BPF_LOG_KERNEL) {
1424 		/* btf verifier prints all types it is processing via
1425 		 * btf_verifier_log_type(..., fmt = NULL).
1426 		 * Skip those prints for in-kernel BTF verification.
1427 		 */
1428 		if (!fmt)
1429 			return;
1430 
1431 		/* Skip logging when loading module BTF with mismatches permitted */
1432 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1433 			return;
1434 	}
1435 
1436 	__btf_verifier_log(log, "[%u] %s %s%s",
1437 			   env->log_type_id,
1438 			   btf_type_str(t),
1439 			   __btf_name_by_offset(btf, t->name_off),
1440 			   log_details ? " " : "");
1441 
1442 	if (log_details)
1443 		btf_type_ops(t)->log_details(env, t);
1444 
1445 	if (fmt && *fmt) {
1446 		__btf_verifier_log(log, " ");
1447 		va_start(args, fmt);
1448 		bpf_verifier_vlog(log, fmt, args);
1449 		va_end(args);
1450 	}
1451 
1452 	__btf_verifier_log(log, "\n");
1453 }
1454 
1455 #define btf_verifier_log_type(env, t, ...) \
1456 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1457 #define btf_verifier_log_basic(env, t, ...) \
1458 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1459 
1460 __printf(4, 5)
1461 static void btf_verifier_log_member(struct btf_verifier_env *env,
1462 				    const struct btf_type *struct_type,
1463 				    const struct btf_member *member,
1464 				    const char *fmt, ...)
1465 {
1466 	struct bpf_verifier_log *log = &env->log;
1467 	struct btf *btf = env->btf;
1468 	va_list args;
1469 
1470 	if (!bpf_verifier_log_needed(log))
1471 		return;
1472 
1473 	if (log->level == BPF_LOG_KERNEL) {
1474 		if (!fmt)
1475 			return;
1476 
1477 		/* Skip logging when loading module BTF with mismatches permitted */
1478 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1479 			return;
1480 	}
1481 
1482 	/* The CHECK_META phase already did a btf dump.
1483 	 *
1484 	 * If member is logged again, it must hit an error in
1485 	 * parsing this member.  It is useful to print out which
1486 	 * struct this member belongs to.
1487 	 */
1488 	if (env->phase != CHECK_META)
1489 		btf_verifier_log_type(env, struct_type, NULL);
1490 
1491 	if (btf_type_kflag(struct_type))
1492 		__btf_verifier_log(log,
1493 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1494 				   __btf_name_by_offset(btf, member->name_off),
1495 				   member->type,
1496 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1497 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1498 	else
1499 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1500 				   __btf_name_by_offset(btf, member->name_off),
1501 				   member->type, member->offset);
1502 
1503 	if (fmt && *fmt) {
1504 		__btf_verifier_log(log, " ");
1505 		va_start(args, fmt);
1506 		bpf_verifier_vlog(log, fmt, args);
1507 		va_end(args);
1508 	}
1509 
1510 	__btf_verifier_log(log, "\n");
1511 }
1512 
1513 __printf(4, 5)
1514 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1515 				 const struct btf_type *datasec_type,
1516 				 const struct btf_var_secinfo *vsi,
1517 				 const char *fmt, ...)
1518 {
1519 	struct bpf_verifier_log *log = &env->log;
1520 	va_list args;
1521 
1522 	if (!bpf_verifier_log_needed(log))
1523 		return;
1524 	if (log->level == BPF_LOG_KERNEL && !fmt)
1525 		return;
1526 	if (env->phase != CHECK_META)
1527 		btf_verifier_log_type(env, datasec_type, NULL);
1528 
1529 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1530 			   vsi->type, vsi->offset, vsi->size);
1531 	if (fmt && *fmt) {
1532 		__btf_verifier_log(log, " ");
1533 		va_start(args, fmt);
1534 		bpf_verifier_vlog(log, fmt, args);
1535 		va_end(args);
1536 	}
1537 
1538 	__btf_verifier_log(log, "\n");
1539 }
1540 
1541 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1542 				 u32 btf_data_size)
1543 {
1544 	struct bpf_verifier_log *log = &env->log;
1545 	const struct btf *btf = env->btf;
1546 	const struct btf_header *hdr;
1547 
1548 	if (!bpf_verifier_log_needed(log))
1549 		return;
1550 
1551 	if (log->level == BPF_LOG_KERNEL)
1552 		return;
1553 	hdr = &btf->hdr;
1554 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1555 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1556 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1557 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1558 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1559 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1560 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1561 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1562 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1563 }
1564 
1565 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1566 {
1567 	struct btf *btf = env->btf;
1568 
1569 	if (btf->types_size == btf->nr_types) {
1570 		/* Expand 'types' array */
1571 
1572 		struct btf_type **new_types;
1573 		u32 expand_by, new_size;
1574 
1575 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1576 			btf_verifier_log(env, "Exceeded max num of types");
1577 			return -E2BIG;
1578 		}
1579 
1580 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1581 		new_size = min_t(u32, BTF_MAX_TYPE,
1582 				 btf->types_size + expand_by);
1583 
1584 		new_types = kvcalloc(new_size, sizeof(*new_types),
1585 				     GFP_KERNEL | __GFP_NOWARN);
1586 		if (!new_types)
1587 			return -ENOMEM;
1588 
1589 		if (btf->nr_types == 0) {
1590 			if (!btf->base_btf) {
1591 				/* lazily init VOID type */
1592 				new_types[0] = &btf_void;
1593 				btf->nr_types++;
1594 			}
1595 		} else {
1596 			memcpy(new_types, btf->types,
1597 			       sizeof(*btf->types) * btf->nr_types);
1598 		}
1599 
1600 		kvfree(btf->types);
1601 		btf->types = new_types;
1602 		btf->types_size = new_size;
1603 	}
1604 
1605 	btf->types[btf->nr_types++] = t;
1606 
1607 	return 0;
1608 }
1609 
1610 static int btf_alloc_id(struct btf *btf)
1611 {
1612 	int id;
1613 
1614 	idr_preload(GFP_KERNEL);
1615 	spin_lock_bh(&btf_idr_lock);
1616 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1617 	if (id > 0)
1618 		btf->id = id;
1619 	spin_unlock_bh(&btf_idr_lock);
1620 	idr_preload_end();
1621 
1622 	if (WARN_ON_ONCE(!id))
1623 		return -ENOSPC;
1624 
1625 	return id > 0 ? 0 : id;
1626 }
1627 
1628 static void btf_free_id(struct btf *btf)
1629 {
1630 	unsigned long flags;
1631 
1632 	/*
1633 	 * In map-in-map, calling map_delete_elem() on outer
1634 	 * map will call bpf_map_put on the inner map.
1635 	 * It will then eventually call btf_free_id()
1636 	 * on the inner map.  Some of the map_delete_elem()
1637 	 * implementation may have irq disabled, so
1638 	 * we need to use the _irqsave() version instead
1639 	 * of the _bh() version.
1640 	 */
1641 	spin_lock_irqsave(&btf_idr_lock, flags);
1642 	idr_remove(&btf_idr, btf->id);
1643 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1644 }
1645 
1646 static void btf_free_kfunc_set_tab(struct btf *btf)
1647 {
1648 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1649 	int hook;
1650 
1651 	if (!tab)
1652 		return;
1653 	/* For module BTF, we directly assign the sets being registered, so
1654 	 * there is nothing to free except kfunc_set_tab.
1655 	 */
1656 	if (btf_is_module(btf))
1657 		goto free_tab;
1658 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1659 		kfree(tab->sets[hook]);
1660 free_tab:
1661 	kfree(tab);
1662 	btf->kfunc_set_tab = NULL;
1663 }
1664 
1665 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1666 {
1667 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1668 
1669 	if (!tab)
1670 		return;
1671 	kfree(tab);
1672 	btf->dtor_kfunc_tab = NULL;
1673 }
1674 
1675 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1676 {
1677 	int i;
1678 
1679 	if (!tab)
1680 		return;
1681 	for (i = 0; i < tab->cnt; i++)
1682 		btf_record_free(tab->types[i].record);
1683 	kfree(tab);
1684 }
1685 
1686 static void btf_free_struct_meta_tab(struct btf *btf)
1687 {
1688 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1689 
1690 	btf_struct_metas_free(tab);
1691 	btf->struct_meta_tab = NULL;
1692 }
1693 
1694 static void btf_free(struct btf *btf)
1695 {
1696 	btf_free_struct_meta_tab(btf);
1697 	btf_free_dtor_kfunc_tab(btf);
1698 	btf_free_kfunc_set_tab(btf);
1699 	kvfree(btf->types);
1700 	kvfree(btf->resolved_sizes);
1701 	kvfree(btf->resolved_ids);
1702 	kvfree(btf->data);
1703 	kfree(btf);
1704 }
1705 
1706 static void btf_free_rcu(struct rcu_head *rcu)
1707 {
1708 	struct btf *btf = container_of(rcu, struct btf, rcu);
1709 
1710 	btf_free(btf);
1711 }
1712 
1713 void btf_get(struct btf *btf)
1714 {
1715 	refcount_inc(&btf->refcnt);
1716 }
1717 
1718 void btf_put(struct btf *btf)
1719 {
1720 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1721 		btf_free_id(btf);
1722 		call_rcu(&btf->rcu, btf_free_rcu);
1723 	}
1724 }
1725 
1726 static int env_resolve_init(struct btf_verifier_env *env)
1727 {
1728 	struct btf *btf = env->btf;
1729 	u32 nr_types = btf->nr_types;
1730 	u32 *resolved_sizes = NULL;
1731 	u32 *resolved_ids = NULL;
1732 	u8 *visit_states = NULL;
1733 
1734 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1735 				  GFP_KERNEL | __GFP_NOWARN);
1736 	if (!resolved_sizes)
1737 		goto nomem;
1738 
1739 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1740 				GFP_KERNEL | __GFP_NOWARN);
1741 	if (!resolved_ids)
1742 		goto nomem;
1743 
1744 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1745 				GFP_KERNEL | __GFP_NOWARN);
1746 	if (!visit_states)
1747 		goto nomem;
1748 
1749 	btf->resolved_sizes = resolved_sizes;
1750 	btf->resolved_ids = resolved_ids;
1751 	env->visit_states = visit_states;
1752 
1753 	return 0;
1754 
1755 nomem:
1756 	kvfree(resolved_sizes);
1757 	kvfree(resolved_ids);
1758 	kvfree(visit_states);
1759 	return -ENOMEM;
1760 }
1761 
1762 static void btf_verifier_env_free(struct btf_verifier_env *env)
1763 {
1764 	kvfree(env->visit_states);
1765 	kfree(env);
1766 }
1767 
1768 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1769 				     const struct btf_type *next_type)
1770 {
1771 	switch (env->resolve_mode) {
1772 	case RESOLVE_TBD:
1773 		/* int, enum or void is a sink */
1774 		return !btf_type_needs_resolve(next_type);
1775 	case RESOLVE_PTR:
1776 		/* int, enum, void, struct, array, func or func_proto is a sink
1777 		 * for ptr
1778 		 */
1779 		return !btf_type_is_modifier(next_type) &&
1780 			!btf_type_is_ptr(next_type);
1781 	case RESOLVE_STRUCT_OR_ARRAY:
1782 		/* int, enum, void, ptr, func or func_proto is a sink
1783 		 * for struct and array
1784 		 */
1785 		return !btf_type_is_modifier(next_type) &&
1786 			!btf_type_is_array(next_type) &&
1787 			!btf_type_is_struct(next_type);
1788 	default:
1789 		BUG();
1790 	}
1791 }
1792 
1793 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1794 				 u32 type_id)
1795 {
1796 	/* base BTF types should be resolved by now */
1797 	if (type_id < env->btf->start_id)
1798 		return true;
1799 
1800 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1801 }
1802 
1803 static int env_stack_push(struct btf_verifier_env *env,
1804 			  const struct btf_type *t, u32 type_id)
1805 {
1806 	const struct btf *btf = env->btf;
1807 	struct resolve_vertex *v;
1808 
1809 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1810 		return -E2BIG;
1811 
1812 	if (type_id < btf->start_id
1813 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1814 		return -EEXIST;
1815 
1816 	env->visit_states[type_id - btf->start_id] = VISITED;
1817 
1818 	v = &env->stack[env->top_stack++];
1819 	v->t = t;
1820 	v->type_id = type_id;
1821 	v->next_member = 0;
1822 
1823 	if (env->resolve_mode == RESOLVE_TBD) {
1824 		if (btf_type_is_ptr(t))
1825 			env->resolve_mode = RESOLVE_PTR;
1826 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1827 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static void env_stack_set_next_member(struct btf_verifier_env *env,
1834 				      u16 next_member)
1835 {
1836 	env->stack[env->top_stack - 1].next_member = next_member;
1837 }
1838 
1839 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1840 				   u32 resolved_type_id,
1841 				   u32 resolved_size)
1842 {
1843 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1844 	struct btf *btf = env->btf;
1845 
1846 	type_id -= btf->start_id; /* adjust to local type id */
1847 	btf->resolved_sizes[type_id] = resolved_size;
1848 	btf->resolved_ids[type_id] = resolved_type_id;
1849 	env->visit_states[type_id] = RESOLVED;
1850 }
1851 
1852 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1853 {
1854 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1855 }
1856 
1857 /* Resolve the size of a passed-in "type"
1858  *
1859  * type: is an array (e.g. u32 array[x][y])
1860  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1861  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1862  *             corresponds to the return type.
1863  * *elem_type: u32
1864  * *elem_id: id of u32
1865  * *total_nelems: (x * y).  Hence, individual elem size is
1866  *                (*type_size / *total_nelems)
1867  * *type_id: id of type if it's changed within the function, 0 if not
1868  *
1869  * type: is not an array (e.g. const struct X)
1870  * return type: type "struct X"
1871  * *type_size: sizeof(struct X)
1872  * *elem_type: same as return type ("struct X")
1873  * *elem_id: 0
1874  * *total_nelems: 1
1875  * *type_id: id of type if it's changed within the function, 0 if not
1876  */
1877 static const struct btf_type *
1878 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1879 		   u32 *type_size, const struct btf_type **elem_type,
1880 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1881 {
1882 	const struct btf_type *array_type = NULL;
1883 	const struct btf_array *array = NULL;
1884 	u32 i, size, nelems = 1, id = 0;
1885 
1886 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1887 		switch (BTF_INFO_KIND(type->info)) {
1888 		/* type->size can be used */
1889 		case BTF_KIND_INT:
1890 		case BTF_KIND_STRUCT:
1891 		case BTF_KIND_UNION:
1892 		case BTF_KIND_ENUM:
1893 		case BTF_KIND_FLOAT:
1894 		case BTF_KIND_ENUM64:
1895 			size = type->size;
1896 			goto resolved;
1897 
1898 		case BTF_KIND_PTR:
1899 			size = sizeof(void *);
1900 			goto resolved;
1901 
1902 		/* Modifiers */
1903 		case BTF_KIND_TYPEDEF:
1904 		case BTF_KIND_VOLATILE:
1905 		case BTF_KIND_CONST:
1906 		case BTF_KIND_RESTRICT:
1907 		case BTF_KIND_TYPE_TAG:
1908 			id = type->type;
1909 			type = btf_type_by_id(btf, type->type);
1910 			break;
1911 
1912 		case BTF_KIND_ARRAY:
1913 			if (!array_type)
1914 				array_type = type;
1915 			array = btf_type_array(type);
1916 			if (nelems && array->nelems > U32_MAX / nelems)
1917 				return ERR_PTR(-EINVAL);
1918 			nelems *= array->nelems;
1919 			type = btf_type_by_id(btf, array->type);
1920 			break;
1921 
1922 		/* type without size */
1923 		default:
1924 			return ERR_PTR(-EINVAL);
1925 		}
1926 	}
1927 
1928 	return ERR_PTR(-EINVAL);
1929 
1930 resolved:
1931 	if (nelems && size > U32_MAX / nelems)
1932 		return ERR_PTR(-EINVAL);
1933 
1934 	*type_size = nelems * size;
1935 	if (total_nelems)
1936 		*total_nelems = nelems;
1937 	if (elem_type)
1938 		*elem_type = type;
1939 	if (elem_id)
1940 		*elem_id = array ? array->type : 0;
1941 	if (type_id && id)
1942 		*type_id = id;
1943 
1944 	return array_type ? : type;
1945 }
1946 
1947 const struct btf_type *
1948 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1949 		 u32 *type_size)
1950 {
1951 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1952 }
1953 
1954 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1955 {
1956 	while (type_id < btf->start_id)
1957 		btf = btf->base_btf;
1958 
1959 	return btf->resolved_ids[type_id - btf->start_id];
1960 }
1961 
1962 /* The input param "type_id" must point to a needs_resolve type */
1963 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1964 						  u32 *type_id)
1965 {
1966 	*type_id = btf_resolved_type_id(btf, *type_id);
1967 	return btf_type_by_id(btf, *type_id);
1968 }
1969 
1970 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1971 {
1972 	while (type_id < btf->start_id)
1973 		btf = btf->base_btf;
1974 
1975 	return btf->resolved_sizes[type_id - btf->start_id];
1976 }
1977 
1978 const struct btf_type *btf_type_id_size(const struct btf *btf,
1979 					u32 *type_id, u32 *ret_size)
1980 {
1981 	const struct btf_type *size_type;
1982 	u32 size_type_id = *type_id;
1983 	u32 size = 0;
1984 
1985 	size_type = btf_type_by_id(btf, size_type_id);
1986 	if (btf_type_nosize_or_null(size_type))
1987 		return NULL;
1988 
1989 	if (btf_type_has_size(size_type)) {
1990 		size = size_type->size;
1991 	} else if (btf_type_is_array(size_type)) {
1992 		size = btf_resolved_type_size(btf, size_type_id);
1993 	} else if (btf_type_is_ptr(size_type)) {
1994 		size = sizeof(void *);
1995 	} else {
1996 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1997 				 !btf_type_is_var(size_type)))
1998 			return NULL;
1999 
2000 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2001 		size_type = btf_type_by_id(btf, size_type_id);
2002 		if (btf_type_nosize_or_null(size_type))
2003 			return NULL;
2004 		else if (btf_type_has_size(size_type))
2005 			size = size_type->size;
2006 		else if (btf_type_is_array(size_type))
2007 			size = btf_resolved_type_size(btf, size_type_id);
2008 		else if (btf_type_is_ptr(size_type))
2009 			size = sizeof(void *);
2010 		else
2011 			return NULL;
2012 	}
2013 
2014 	*type_id = size_type_id;
2015 	if (ret_size)
2016 		*ret_size = size;
2017 
2018 	return size_type;
2019 }
2020 
2021 static int btf_df_check_member(struct btf_verifier_env *env,
2022 			       const struct btf_type *struct_type,
2023 			       const struct btf_member *member,
2024 			       const struct btf_type *member_type)
2025 {
2026 	btf_verifier_log_basic(env, struct_type,
2027 			       "Unsupported check_member");
2028 	return -EINVAL;
2029 }
2030 
2031 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2032 				     const struct btf_type *struct_type,
2033 				     const struct btf_member *member,
2034 				     const struct btf_type *member_type)
2035 {
2036 	btf_verifier_log_basic(env, struct_type,
2037 			       "Unsupported check_kflag_member");
2038 	return -EINVAL;
2039 }
2040 
2041 /* Used for ptr, array struct/union and float type members.
2042  * int, enum and modifier types have their specific callback functions.
2043  */
2044 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2045 					  const struct btf_type *struct_type,
2046 					  const struct btf_member *member,
2047 					  const struct btf_type *member_type)
2048 {
2049 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2050 		btf_verifier_log_member(env, struct_type, member,
2051 					"Invalid member bitfield_size");
2052 		return -EINVAL;
2053 	}
2054 
2055 	/* bitfield size is 0, so member->offset represents bit offset only.
2056 	 * It is safe to call non kflag check_member variants.
2057 	 */
2058 	return btf_type_ops(member_type)->check_member(env, struct_type,
2059 						       member,
2060 						       member_type);
2061 }
2062 
2063 static int btf_df_resolve(struct btf_verifier_env *env,
2064 			  const struct resolve_vertex *v)
2065 {
2066 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2067 	return -EINVAL;
2068 }
2069 
2070 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2071 			u32 type_id, void *data, u8 bits_offsets,
2072 			struct btf_show *show)
2073 {
2074 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2075 }
2076 
2077 static int btf_int_check_member(struct btf_verifier_env *env,
2078 				const struct btf_type *struct_type,
2079 				const struct btf_member *member,
2080 				const struct btf_type *member_type)
2081 {
2082 	u32 int_data = btf_type_int(member_type);
2083 	u32 struct_bits_off = member->offset;
2084 	u32 struct_size = struct_type->size;
2085 	u32 nr_copy_bits;
2086 	u32 bytes_offset;
2087 
2088 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2089 		btf_verifier_log_member(env, struct_type, member,
2090 					"bits_offset exceeds U32_MAX");
2091 		return -EINVAL;
2092 	}
2093 
2094 	struct_bits_off += BTF_INT_OFFSET(int_data);
2095 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2096 	nr_copy_bits = BTF_INT_BITS(int_data) +
2097 		BITS_PER_BYTE_MASKED(struct_bits_off);
2098 
2099 	if (nr_copy_bits > BITS_PER_U128) {
2100 		btf_verifier_log_member(env, struct_type, member,
2101 					"nr_copy_bits exceeds 128");
2102 		return -EINVAL;
2103 	}
2104 
2105 	if (struct_size < bytes_offset ||
2106 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2107 		btf_verifier_log_member(env, struct_type, member,
2108 					"Member exceeds struct_size");
2109 		return -EINVAL;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2116 				      const struct btf_type *struct_type,
2117 				      const struct btf_member *member,
2118 				      const struct btf_type *member_type)
2119 {
2120 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2121 	u32 int_data = btf_type_int(member_type);
2122 	u32 struct_size = struct_type->size;
2123 	u32 nr_copy_bits;
2124 
2125 	/* a regular int type is required for the kflag int member */
2126 	if (!btf_type_int_is_regular(member_type)) {
2127 		btf_verifier_log_member(env, struct_type, member,
2128 					"Invalid member base type");
2129 		return -EINVAL;
2130 	}
2131 
2132 	/* check sanity of bitfield size */
2133 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2134 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2135 	nr_int_data_bits = BTF_INT_BITS(int_data);
2136 	if (!nr_bits) {
2137 		/* Not a bitfield member, member offset must be at byte
2138 		 * boundary.
2139 		 */
2140 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2141 			btf_verifier_log_member(env, struct_type, member,
2142 						"Invalid member offset");
2143 			return -EINVAL;
2144 		}
2145 
2146 		nr_bits = nr_int_data_bits;
2147 	} else if (nr_bits > nr_int_data_bits) {
2148 		btf_verifier_log_member(env, struct_type, member,
2149 					"Invalid member bitfield_size");
2150 		return -EINVAL;
2151 	}
2152 
2153 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2154 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2155 	if (nr_copy_bits > BITS_PER_U128) {
2156 		btf_verifier_log_member(env, struct_type, member,
2157 					"nr_copy_bits exceeds 128");
2158 		return -EINVAL;
2159 	}
2160 
2161 	if (struct_size < bytes_offset ||
2162 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2163 		btf_verifier_log_member(env, struct_type, member,
2164 					"Member exceeds struct_size");
2165 		return -EINVAL;
2166 	}
2167 
2168 	return 0;
2169 }
2170 
2171 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2172 			      const struct btf_type *t,
2173 			      u32 meta_left)
2174 {
2175 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2176 	u16 encoding;
2177 
2178 	if (meta_left < meta_needed) {
2179 		btf_verifier_log_basic(env, t,
2180 				       "meta_left:%u meta_needed:%u",
2181 				       meta_left, meta_needed);
2182 		return -EINVAL;
2183 	}
2184 
2185 	if (btf_type_vlen(t)) {
2186 		btf_verifier_log_type(env, t, "vlen != 0");
2187 		return -EINVAL;
2188 	}
2189 
2190 	if (btf_type_kflag(t)) {
2191 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2192 		return -EINVAL;
2193 	}
2194 
2195 	int_data = btf_type_int(t);
2196 	if (int_data & ~BTF_INT_MASK) {
2197 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2198 				       int_data);
2199 		return -EINVAL;
2200 	}
2201 
2202 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2203 
2204 	if (nr_bits > BITS_PER_U128) {
2205 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2206 				      BITS_PER_U128);
2207 		return -EINVAL;
2208 	}
2209 
2210 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2211 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2212 		return -EINVAL;
2213 	}
2214 
2215 	/*
2216 	 * Only one of the encoding bits is allowed and it
2217 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2218 	 * Multiple bits can be allowed later if it is found
2219 	 * to be insufficient.
2220 	 */
2221 	encoding = BTF_INT_ENCODING(int_data);
2222 	if (encoding &&
2223 	    encoding != BTF_INT_SIGNED &&
2224 	    encoding != BTF_INT_CHAR &&
2225 	    encoding != BTF_INT_BOOL) {
2226 		btf_verifier_log_type(env, t, "Unsupported encoding");
2227 		return -ENOTSUPP;
2228 	}
2229 
2230 	btf_verifier_log_type(env, t, NULL);
2231 
2232 	return meta_needed;
2233 }
2234 
2235 static void btf_int_log(struct btf_verifier_env *env,
2236 			const struct btf_type *t)
2237 {
2238 	int int_data = btf_type_int(t);
2239 
2240 	btf_verifier_log(env,
2241 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2242 			 t->size, BTF_INT_OFFSET(int_data),
2243 			 BTF_INT_BITS(int_data),
2244 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2245 }
2246 
2247 static void btf_int128_print(struct btf_show *show, void *data)
2248 {
2249 	/* data points to a __int128 number.
2250 	 * Suppose
2251 	 *     int128_num = *(__int128 *)data;
2252 	 * The below formulas shows what upper_num and lower_num represents:
2253 	 *     upper_num = int128_num >> 64;
2254 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2255 	 */
2256 	u64 upper_num, lower_num;
2257 
2258 #ifdef __BIG_ENDIAN_BITFIELD
2259 	upper_num = *(u64 *)data;
2260 	lower_num = *(u64 *)(data + 8);
2261 #else
2262 	upper_num = *(u64 *)(data + 8);
2263 	lower_num = *(u64 *)data;
2264 #endif
2265 	if (upper_num == 0)
2266 		btf_show_type_value(show, "0x%llx", lower_num);
2267 	else
2268 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2269 				     lower_num);
2270 }
2271 
2272 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2273 			     u16 right_shift_bits)
2274 {
2275 	u64 upper_num, lower_num;
2276 
2277 #ifdef __BIG_ENDIAN_BITFIELD
2278 	upper_num = print_num[0];
2279 	lower_num = print_num[1];
2280 #else
2281 	upper_num = print_num[1];
2282 	lower_num = print_num[0];
2283 #endif
2284 
2285 	/* shake out un-needed bits by shift/or operations */
2286 	if (left_shift_bits >= 64) {
2287 		upper_num = lower_num << (left_shift_bits - 64);
2288 		lower_num = 0;
2289 	} else {
2290 		upper_num = (upper_num << left_shift_bits) |
2291 			    (lower_num >> (64 - left_shift_bits));
2292 		lower_num = lower_num << left_shift_bits;
2293 	}
2294 
2295 	if (right_shift_bits >= 64) {
2296 		lower_num = upper_num >> (right_shift_bits - 64);
2297 		upper_num = 0;
2298 	} else {
2299 		lower_num = (lower_num >> right_shift_bits) |
2300 			    (upper_num << (64 - right_shift_bits));
2301 		upper_num = upper_num >> right_shift_bits;
2302 	}
2303 
2304 #ifdef __BIG_ENDIAN_BITFIELD
2305 	print_num[0] = upper_num;
2306 	print_num[1] = lower_num;
2307 #else
2308 	print_num[0] = lower_num;
2309 	print_num[1] = upper_num;
2310 #endif
2311 }
2312 
2313 static void btf_bitfield_show(void *data, u8 bits_offset,
2314 			      u8 nr_bits, struct btf_show *show)
2315 {
2316 	u16 left_shift_bits, right_shift_bits;
2317 	u8 nr_copy_bytes;
2318 	u8 nr_copy_bits;
2319 	u64 print_num[2] = {};
2320 
2321 	nr_copy_bits = nr_bits + bits_offset;
2322 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2323 
2324 	memcpy(print_num, data, nr_copy_bytes);
2325 
2326 #ifdef __BIG_ENDIAN_BITFIELD
2327 	left_shift_bits = bits_offset;
2328 #else
2329 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2330 #endif
2331 	right_shift_bits = BITS_PER_U128 - nr_bits;
2332 
2333 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2334 	btf_int128_print(show, print_num);
2335 }
2336 
2337 
2338 static void btf_int_bits_show(const struct btf *btf,
2339 			      const struct btf_type *t,
2340 			      void *data, u8 bits_offset,
2341 			      struct btf_show *show)
2342 {
2343 	u32 int_data = btf_type_int(t);
2344 	u8 nr_bits = BTF_INT_BITS(int_data);
2345 	u8 total_bits_offset;
2346 
2347 	/*
2348 	 * bits_offset is at most 7.
2349 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2350 	 */
2351 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2352 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2353 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2354 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2355 }
2356 
2357 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2358 			 u32 type_id, void *data, u8 bits_offset,
2359 			 struct btf_show *show)
2360 {
2361 	u32 int_data = btf_type_int(t);
2362 	u8 encoding = BTF_INT_ENCODING(int_data);
2363 	bool sign = encoding & BTF_INT_SIGNED;
2364 	u8 nr_bits = BTF_INT_BITS(int_data);
2365 	void *safe_data;
2366 
2367 	safe_data = btf_show_start_type(show, t, type_id, data);
2368 	if (!safe_data)
2369 		return;
2370 
2371 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2372 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2373 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2374 		goto out;
2375 	}
2376 
2377 	switch (nr_bits) {
2378 	case 128:
2379 		btf_int128_print(show, safe_data);
2380 		break;
2381 	case 64:
2382 		if (sign)
2383 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2384 		else
2385 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2386 		break;
2387 	case 32:
2388 		if (sign)
2389 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2390 		else
2391 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2392 		break;
2393 	case 16:
2394 		if (sign)
2395 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2396 		else
2397 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2398 		break;
2399 	case 8:
2400 		if (show->state.array_encoding == BTF_INT_CHAR) {
2401 			/* check for null terminator */
2402 			if (show->state.array_terminated)
2403 				break;
2404 			if (*(char *)data == '\0') {
2405 				show->state.array_terminated = 1;
2406 				break;
2407 			}
2408 			if (isprint(*(char *)data)) {
2409 				btf_show_type_value(show, "'%c'",
2410 						    *(char *)safe_data);
2411 				break;
2412 			}
2413 		}
2414 		if (sign)
2415 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2416 		else
2417 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2418 		break;
2419 	default:
2420 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2421 		break;
2422 	}
2423 out:
2424 	btf_show_end_type(show);
2425 }
2426 
2427 static const struct btf_kind_operations int_ops = {
2428 	.check_meta = btf_int_check_meta,
2429 	.resolve = btf_df_resolve,
2430 	.check_member = btf_int_check_member,
2431 	.check_kflag_member = btf_int_check_kflag_member,
2432 	.log_details = btf_int_log,
2433 	.show = btf_int_show,
2434 };
2435 
2436 static int btf_modifier_check_member(struct btf_verifier_env *env,
2437 				     const struct btf_type *struct_type,
2438 				     const struct btf_member *member,
2439 				     const struct btf_type *member_type)
2440 {
2441 	const struct btf_type *resolved_type;
2442 	u32 resolved_type_id = member->type;
2443 	struct btf_member resolved_member;
2444 	struct btf *btf = env->btf;
2445 
2446 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2447 	if (!resolved_type) {
2448 		btf_verifier_log_member(env, struct_type, member,
2449 					"Invalid member");
2450 		return -EINVAL;
2451 	}
2452 
2453 	resolved_member = *member;
2454 	resolved_member.type = resolved_type_id;
2455 
2456 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2457 							 &resolved_member,
2458 							 resolved_type);
2459 }
2460 
2461 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2462 					   const struct btf_type *struct_type,
2463 					   const struct btf_member *member,
2464 					   const struct btf_type *member_type)
2465 {
2466 	const struct btf_type *resolved_type;
2467 	u32 resolved_type_id = member->type;
2468 	struct btf_member resolved_member;
2469 	struct btf *btf = env->btf;
2470 
2471 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2472 	if (!resolved_type) {
2473 		btf_verifier_log_member(env, struct_type, member,
2474 					"Invalid member");
2475 		return -EINVAL;
2476 	}
2477 
2478 	resolved_member = *member;
2479 	resolved_member.type = resolved_type_id;
2480 
2481 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2482 							       &resolved_member,
2483 							       resolved_type);
2484 }
2485 
2486 static int btf_ptr_check_member(struct btf_verifier_env *env,
2487 				const struct btf_type *struct_type,
2488 				const struct btf_member *member,
2489 				const struct btf_type *member_type)
2490 {
2491 	u32 struct_size, struct_bits_off, bytes_offset;
2492 
2493 	struct_size = struct_type->size;
2494 	struct_bits_off = member->offset;
2495 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2496 
2497 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2498 		btf_verifier_log_member(env, struct_type, member,
2499 					"Member is not byte aligned");
2500 		return -EINVAL;
2501 	}
2502 
2503 	if (struct_size - bytes_offset < sizeof(void *)) {
2504 		btf_verifier_log_member(env, struct_type, member,
2505 					"Member exceeds struct_size");
2506 		return -EINVAL;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2513 				   const struct btf_type *t,
2514 				   u32 meta_left)
2515 {
2516 	const char *value;
2517 
2518 	if (btf_type_vlen(t)) {
2519 		btf_verifier_log_type(env, t, "vlen != 0");
2520 		return -EINVAL;
2521 	}
2522 
2523 	if (btf_type_kflag(t)) {
2524 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2525 		return -EINVAL;
2526 	}
2527 
2528 	if (!BTF_TYPE_ID_VALID(t->type)) {
2529 		btf_verifier_log_type(env, t, "Invalid type_id");
2530 		return -EINVAL;
2531 	}
2532 
2533 	/* typedef/type_tag type must have a valid name, and other ref types,
2534 	 * volatile, const, restrict, should have a null name.
2535 	 */
2536 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2537 		if (!t->name_off ||
2538 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2539 			btf_verifier_log_type(env, t, "Invalid name");
2540 			return -EINVAL;
2541 		}
2542 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2543 		value = btf_name_by_offset(env->btf, t->name_off);
2544 		if (!value || !value[0]) {
2545 			btf_verifier_log_type(env, t, "Invalid name");
2546 			return -EINVAL;
2547 		}
2548 	} else {
2549 		if (t->name_off) {
2550 			btf_verifier_log_type(env, t, "Invalid name");
2551 			return -EINVAL;
2552 		}
2553 	}
2554 
2555 	btf_verifier_log_type(env, t, NULL);
2556 
2557 	return 0;
2558 }
2559 
2560 static int btf_modifier_resolve(struct btf_verifier_env *env,
2561 				const struct resolve_vertex *v)
2562 {
2563 	const struct btf_type *t = v->t;
2564 	const struct btf_type *next_type;
2565 	u32 next_type_id = t->type;
2566 	struct btf *btf = env->btf;
2567 
2568 	next_type = btf_type_by_id(btf, next_type_id);
2569 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2570 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2571 		return -EINVAL;
2572 	}
2573 
2574 	if (!env_type_is_resolve_sink(env, next_type) &&
2575 	    !env_type_is_resolved(env, next_type_id))
2576 		return env_stack_push(env, next_type, next_type_id);
2577 
2578 	/* Figure out the resolved next_type_id with size.
2579 	 * They will be stored in the current modifier's
2580 	 * resolved_ids and resolved_sizes such that it can
2581 	 * save us a few type-following when we use it later (e.g. in
2582 	 * pretty print).
2583 	 */
2584 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2585 		if (env_type_is_resolved(env, next_type_id))
2586 			next_type = btf_type_id_resolve(btf, &next_type_id);
2587 
2588 		/* "typedef void new_void", "const void"...etc */
2589 		if (!btf_type_is_void(next_type) &&
2590 		    !btf_type_is_fwd(next_type) &&
2591 		    !btf_type_is_func_proto(next_type)) {
2592 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2593 			return -EINVAL;
2594 		}
2595 	}
2596 
2597 	env_stack_pop_resolved(env, next_type_id, 0);
2598 
2599 	return 0;
2600 }
2601 
2602 static int btf_var_resolve(struct btf_verifier_env *env,
2603 			   const struct resolve_vertex *v)
2604 {
2605 	const struct btf_type *next_type;
2606 	const struct btf_type *t = v->t;
2607 	u32 next_type_id = t->type;
2608 	struct btf *btf = env->btf;
2609 
2610 	next_type = btf_type_by_id(btf, next_type_id);
2611 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2612 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2613 		return -EINVAL;
2614 	}
2615 
2616 	if (!env_type_is_resolve_sink(env, next_type) &&
2617 	    !env_type_is_resolved(env, next_type_id))
2618 		return env_stack_push(env, next_type, next_type_id);
2619 
2620 	if (btf_type_is_modifier(next_type)) {
2621 		const struct btf_type *resolved_type;
2622 		u32 resolved_type_id;
2623 
2624 		resolved_type_id = next_type_id;
2625 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2626 
2627 		if (btf_type_is_ptr(resolved_type) &&
2628 		    !env_type_is_resolve_sink(env, resolved_type) &&
2629 		    !env_type_is_resolved(env, resolved_type_id))
2630 			return env_stack_push(env, resolved_type,
2631 					      resolved_type_id);
2632 	}
2633 
2634 	/* We must resolve to something concrete at this point, no
2635 	 * forward types or similar that would resolve to size of
2636 	 * zero is allowed.
2637 	 */
2638 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2639 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2640 		return -EINVAL;
2641 	}
2642 
2643 	env_stack_pop_resolved(env, next_type_id, 0);
2644 
2645 	return 0;
2646 }
2647 
2648 static int btf_ptr_resolve(struct btf_verifier_env *env,
2649 			   const struct resolve_vertex *v)
2650 {
2651 	const struct btf_type *next_type;
2652 	const struct btf_type *t = v->t;
2653 	u32 next_type_id = t->type;
2654 	struct btf *btf = env->btf;
2655 
2656 	next_type = btf_type_by_id(btf, next_type_id);
2657 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2658 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2659 		return -EINVAL;
2660 	}
2661 
2662 	if (!env_type_is_resolve_sink(env, next_type) &&
2663 	    !env_type_is_resolved(env, next_type_id))
2664 		return env_stack_push(env, next_type, next_type_id);
2665 
2666 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2667 	 * the modifier may have stopped resolving when it was resolved
2668 	 * to a ptr (last-resolved-ptr).
2669 	 *
2670 	 * We now need to continue from the last-resolved-ptr to
2671 	 * ensure the last-resolved-ptr will not referring back to
2672 	 * the current ptr (t).
2673 	 */
2674 	if (btf_type_is_modifier(next_type)) {
2675 		const struct btf_type *resolved_type;
2676 		u32 resolved_type_id;
2677 
2678 		resolved_type_id = next_type_id;
2679 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2680 
2681 		if (btf_type_is_ptr(resolved_type) &&
2682 		    !env_type_is_resolve_sink(env, resolved_type) &&
2683 		    !env_type_is_resolved(env, resolved_type_id))
2684 			return env_stack_push(env, resolved_type,
2685 					      resolved_type_id);
2686 	}
2687 
2688 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2689 		if (env_type_is_resolved(env, next_type_id))
2690 			next_type = btf_type_id_resolve(btf, &next_type_id);
2691 
2692 		if (!btf_type_is_void(next_type) &&
2693 		    !btf_type_is_fwd(next_type) &&
2694 		    !btf_type_is_func_proto(next_type)) {
2695 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2696 			return -EINVAL;
2697 		}
2698 	}
2699 
2700 	env_stack_pop_resolved(env, next_type_id, 0);
2701 
2702 	return 0;
2703 }
2704 
2705 static void btf_modifier_show(const struct btf *btf,
2706 			      const struct btf_type *t,
2707 			      u32 type_id, void *data,
2708 			      u8 bits_offset, struct btf_show *show)
2709 {
2710 	if (btf->resolved_ids)
2711 		t = btf_type_id_resolve(btf, &type_id);
2712 	else
2713 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2714 
2715 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2716 }
2717 
2718 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2719 			 u32 type_id, void *data, u8 bits_offset,
2720 			 struct btf_show *show)
2721 {
2722 	t = btf_type_id_resolve(btf, &type_id);
2723 
2724 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2725 }
2726 
2727 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2728 			 u32 type_id, void *data, u8 bits_offset,
2729 			 struct btf_show *show)
2730 {
2731 	void *safe_data;
2732 
2733 	safe_data = btf_show_start_type(show, t, type_id, data);
2734 	if (!safe_data)
2735 		return;
2736 
2737 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2738 	if (show->flags & BTF_SHOW_PTR_RAW)
2739 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2740 	else
2741 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2742 	btf_show_end_type(show);
2743 }
2744 
2745 static void btf_ref_type_log(struct btf_verifier_env *env,
2746 			     const struct btf_type *t)
2747 {
2748 	btf_verifier_log(env, "type_id=%u", t->type);
2749 }
2750 
2751 static struct btf_kind_operations modifier_ops = {
2752 	.check_meta = btf_ref_type_check_meta,
2753 	.resolve = btf_modifier_resolve,
2754 	.check_member = btf_modifier_check_member,
2755 	.check_kflag_member = btf_modifier_check_kflag_member,
2756 	.log_details = btf_ref_type_log,
2757 	.show = btf_modifier_show,
2758 };
2759 
2760 static struct btf_kind_operations ptr_ops = {
2761 	.check_meta = btf_ref_type_check_meta,
2762 	.resolve = btf_ptr_resolve,
2763 	.check_member = btf_ptr_check_member,
2764 	.check_kflag_member = btf_generic_check_kflag_member,
2765 	.log_details = btf_ref_type_log,
2766 	.show = btf_ptr_show,
2767 };
2768 
2769 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2770 			      const struct btf_type *t,
2771 			      u32 meta_left)
2772 {
2773 	if (btf_type_vlen(t)) {
2774 		btf_verifier_log_type(env, t, "vlen != 0");
2775 		return -EINVAL;
2776 	}
2777 
2778 	if (t->type) {
2779 		btf_verifier_log_type(env, t, "type != 0");
2780 		return -EINVAL;
2781 	}
2782 
2783 	/* fwd type must have a valid name */
2784 	if (!t->name_off ||
2785 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2786 		btf_verifier_log_type(env, t, "Invalid name");
2787 		return -EINVAL;
2788 	}
2789 
2790 	btf_verifier_log_type(env, t, NULL);
2791 
2792 	return 0;
2793 }
2794 
2795 static void btf_fwd_type_log(struct btf_verifier_env *env,
2796 			     const struct btf_type *t)
2797 {
2798 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2799 }
2800 
2801 static struct btf_kind_operations fwd_ops = {
2802 	.check_meta = btf_fwd_check_meta,
2803 	.resolve = btf_df_resolve,
2804 	.check_member = btf_df_check_member,
2805 	.check_kflag_member = btf_df_check_kflag_member,
2806 	.log_details = btf_fwd_type_log,
2807 	.show = btf_df_show,
2808 };
2809 
2810 static int btf_array_check_member(struct btf_verifier_env *env,
2811 				  const struct btf_type *struct_type,
2812 				  const struct btf_member *member,
2813 				  const struct btf_type *member_type)
2814 {
2815 	u32 struct_bits_off = member->offset;
2816 	u32 struct_size, bytes_offset;
2817 	u32 array_type_id, array_size;
2818 	struct btf *btf = env->btf;
2819 
2820 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2821 		btf_verifier_log_member(env, struct_type, member,
2822 					"Member is not byte aligned");
2823 		return -EINVAL;
2824 	}
2825 
2826 	array_type_id = member->type;
2827 	btf_type_id_size(btf, &array_type_id, &array_size);
2828 	struct_size = struct_type->size;
2829 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2830 	if (struct_size - bytes_offset < array_size) {
2831 		btf_verifier_log_member(env, struct_type, member,
2832 					"Member exceeds struct_size");
2833 		return -EINVAL;
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2840 				const struct btf_type *t,
2841 				u32 meta_left)
2842 {
2843 	const struct btf_array *array = btf_type_array(t);
2844 	u32 meta_needed = sizeof(*array);
2845 
2846 	if (meta_left < meta_needed) {
2847 		btf_verifier_log_basic(env, t,
2848 				       "meta_left:%u meta_needed:%u",
2849 				       meta_left, meta_needed);
2850 		return -EINVAL;
2851 	}
2852 
2853 	/* array type should not have a name */
2854 	if (t->name_off) {
2855 		btf_verifier_log_type(env, t, "Invalid name");
2856 		return -EINVAL;
2857 	}
2858 
2859 	if (btf_type_vlen(t)) {
2860 		btf_verifier_log_type(env, t, "vlen != 0");
2861 		return -EINVAL;
2862 	}
2863 
2864 	if (btf_type_kflag(t)) {
2865 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2866 		return -EINVAL;
2867 	}
2868 
2869 	if (t->size) {
2870 		btf_verifier_log_type(env, t, "size != 0");
2871 		return -EINVAL;
2872 	}
2873 
2874 	/* Array elem type and index type cannot be in type void,
2875 	 * so !array->type and !array->index_type are not allowed.
2876 	 */
2877 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2878 		btf_verifier_log_type(env, t, "Invalid elem");
2879 		return -EINVAL;
2880 	}
2881 
2882 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2883 		btf_verifier_log_type(env, t, "Invalid index");
2884 		return -EINVAL;
2885 	}
2886 
2887 	btf_verifier_log_type(env, t, NULL);
2888 
2889 	return meta_needed;
2890 }
2891 
2892 static int btf_array_resolve(struct btf_verifier_env *env,
2893 			     const struct resolve_vertex *v)
2894 {
2895 	const struct btf_array *array = btf_type_array(v->t);
2896 	const struct btf_type *elem_type, *index_type;
2897 	u32 elem_type_id, index_type_id;
2898 	struct btf *btf = env->btf;
2899 	u32 elem_size;
2900 
2901 	/* Check array->index_type */
2902 	index_type_id = array->index_type;
2903 	index_type = btf_type_by_id(btf, index_type_id);
2904 	if (btf_type_nosize_or_null(index_type) ||
2905 	    btf_type_is_resolve_source_only(index_type)) {
2906 		btf_verifier_log_type(env, v->t, "Invalid index");
2907 		return -EINVAL;
2908 	}
2909 
2910 	if (!env_type_is_resolve_sink(env, index_type) &&
2911 	    !env_type_is_resolved(env, index_type_id))
2912 		return env_stack_push(env, index_type, index_type_id);
2913 
2914 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2915 	if (!index_type || !btf_type_is_int(index_type) ||
2916 	    !btf_type_int_is_regular(index_type)) {
2917 		btf_verifier_log_type(env, v->t, "Invalid index");
2918 		return -EINVAL;
2919 	}
2920 
2921 	/* Check array->type */
2922 	elem_type_id = array->type;
2923 	elem_type = btf_type_by_id(btf, elem_type_id);
2924 	if (btf_type_nosize_or_null(elem_type) ||
2925 	    btf_type_is_resolve_source_only(elem_type)) {
2926 		btf_verifier_log_type(env, v->t,
2927 				      "Invalid elem");
2928 		return -EINVAL;
2929 	}
2930 
2931 	if (!env_type_is_resolve_sink(env, elem_type) &&
2932 	    !env_type_is_resolved(env, elem_type_id))
2933 		return env_stack_push(env, elem_type, elem_type_id);
2934 
2935 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2936 	if (!elem_type) {
2937 		btf_verifier_log_type(env, v->t, "Invalid elem");
2938 		return -EINVAL;
2939 	}
2940 
2941 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2942 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2943 		return -EINVAL;
2944 	}
2945 
2946 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2947 		btf_verifier_log_type(env, v->t,
2948 				      "Array size overflows U32_MAX");
2949 		return -EINVAL;
2950 	}
2951 
2952 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2953 
2954 	return 0;
2955 }
2956 
2957 static void btf_array_log(struct btf_verifier_env *env,
2958 			  const struct btf_type *t)
2959 {
2960 	const struct btf_array *array = btf_type_array(t);
2961 
2962 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2963 			 array->type, array->index_type, array->nelems);
2964 }
2965 
2966 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2967 			     u32 type_id, void *data, u8 bits_offset,
2968 			     struct btf_show *show)
2969 {
2970 	const struct btf_array *array = btf_type_array(t);
2971 	const struct btf_kind_operations *elem_ops;
2972 	const struct btf_type *elem_type;
2973 	u32 i, elem_size = 0, elem_type_id;
2974 	u16 encoding = 0;
2975 
2976 	elem_type_id = array->type;
2977 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2978 	if (elem_type && btf_type_has_size(elem_type))
2979 		elem_size = elem_type->size;
2980 
2981 	if (elem_type && btf_type_is_int(elem_type)) {
2982 		u32 int_type = btf_type_int(elem_type);
2983 
2984 		encoding = BTF_INT_ENCODING(int_type);
2985 
2986 		/*
2987 		 * BTF_INT_CHAR encoding never seems to be set for
2988 		 * char arrays, so if size is 1 and element is
2989 		 * printable as a char, we'll do that.
2990 		 */
2991 		if (elem_size == 1)
2992 			encoding = BTF_INT_CHAR;
2993 	}
2994 
2995 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2996 		return;
2997 
2998 	if (!elem_type)
2999 		goto out;
3000 	elem_ops = btf_type_ops(elem_type);
3001 
3002 	for (i = 0; i < array->nelems; i++) {
3003 
3004 		btf_show_start_array_member(show);
3005 
3006 		elem_ops->show(btf, elem_type, elem_type_id, data,
3007 			       bits_offset, show);
3008 		data += elem_size;
3009 
3010 		btf_show_end_array_member(show);
3011 
3012 		if (show->state.array_terminated)
3013 			break;
3014 	}
3015 out:
3016 	btf_show_end_array_type(show);
3017 }
3018 
3019 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3020 			   u32 type_id, void *data, u8 bits_offset,
3021 			   struct btf_show *show)
3022 {
3023 	const struct btf_member *m = show->state.member;
3024 
3025 	/*
3026 	 * First check if any members would be shown (are non-zero).
3027 	 * See comments above "struct btf_show" definition for more
3028 	 * details on how this works at a high-level.
3029 	 */
3030 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3031 		if (!show->state.depth_check) {
3032 			show->state.depth_check = show->state.depth + 1;
3033 			show->state.depth_to_show = 0;
3034 		}
3035 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3036 		show->state.member = m;
3037 
3038 		if (show->state.depth_check != show->state.depth + 1)
3039 			return;
3040 		show->state.depth_check = 0;
3041 
3042 		if (show->state.depth_to_show <= show->state.depth)
3043 			return;
3044 		/*
3045 		 * Reaching here indicates we have recursed and found
3046 		 * non-zero array member(s).
3047 		 */
3048 	}
3049 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3050 }
3051 
3052 static struct btf_kind_operations array_ops = {
3053 	.check_meta = btf_array_check_meta,
3054 	.resolve = btf_array_resolve,
3055 	.check_member = btf_array_check_member,
3056 	.check_kflag_member = btf_generic_check_kflag_member,
3057 	.log_details = btf_array_log,
3058 	.show = btf_array_show,
3059 };
3060 
3061 static int btf_struct_check_member(struct btf_verifier_env *env,
3062 				   const struct btf_type *struct_type,
3063 				   const struct btf_member *member,
3064 				   const struct btf_type *member_type)
3065 {
3066 	u32 struct_bits_off = member->offset;
3067 	u32 struct_size, bytes_offset;
3068 
3069 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3070 		btf_verifier_log_member(env, struct_type, member,
3071 					"Member is not byte aligned");
3072 		return -EINVAL;
3073 	}
3074 
3075 	struct_size = struct_type->size;
3076 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3077 	if (struct_size - bytes_offset < member_type->size) {
3078 		btf_verifier_log_member(env, struct_type, member,
3079 					"Member exceeds struct_size");
3080 		return -EINVAL;
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3087 				 const struct btf_type *t,
3088 				 u32 meta_left)
3089 {
3090 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3091 	const struct btf_member *member;
3092 	u32 meta_needed, last_offset;
3093 	struct btf *btf = env->btf;
3094 	u32 struct_size = t->size;
3095 	u32 offset;
3096 	u16 i;
3097 
3098 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3099 	if (meta_left < meta_needed) {
3100 		btf_verifier_log_basic(env, t,
3101 				       "meta_left:%u meta_needed:%u",
3102 				       meta_left, meta_needed);
3103 		return -EINVAL;
3104 	}
3105 
3106 	/* struct type either no name or a valid one */
3107 	if (t->name_off &&
3108 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3109 		btf_verifier_log_type(env, t, "Invalid name");
3110 		return -EINVAL;
3111 	}
3112 
3113 	btf_verifier_log_type(env, t, NULL);
3114 
3115 	last_offset = 0;
3116 	for_each_member(i, t, member) {
3117 		if (!btf_name_offset_valid(btf, member->name_off)) {
3118 			btf_verifier_log_member(env, t, member,
3119 						"Invalid member name_offset:%u",
3120 						member->name_off);
3121 			return -EINVAL;
3122 		}
3123 
3124 		/* struct member either no name or a valid one */
3125 		if (member->name_off &&
3126 		    !btf_name_valid_identifier(btf, member->name_off)) {
3127 			btf_verifier_log_member(env, t, member, "Invalid name");
3128 			return -EINVAL;
3129 		}
3130 		/* A member cannot be in type void */
3131 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3132 			btf_verifier_log_member(env, t, member,
3133 						"Invalid type_id");
3134 			return -EINVAL;
3135 		}
3136 
3137 		offset = __btf_member_bit_offset(t, member);
3138 		if (is_union && offset) {
3139 			btf_verifier_log_member(env, t, member,
3140 						"Invalid member bits_offset");
3141 			return -EINVAL;
3142 		}
3143 
3144 		/*
3145 		 * ">" instead of ">=" because the last member could be
3146 		 * "char a[0];"
3147 		 */
3148 		if (last_offset > offset) {
3149 			btf_verifier_log_member(env, t, member,
3150 						"Invalid member bits_offset");
3151 			return -EINVAL;
3152 		}
3153 
3154 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3155 			btf_verifier_log_member(env, t, member,
3156 						"Member bits_offset exceeds its struct size");
3157 			return -EINVAL;
3158 		}
3159 
3160 		btf_verifier_log_member(env, t, member, NULL);
3161 		last_offset = offset;
3162 	}
3163 
3164 	return meta_needed;
3165 }
3166 
3167 static int btf_struct_resolve(struct btf_verifier_env *env,
3168 			      const struct resolve_vertex *v)
3169 {
3170 	const struct btf_member *member;
3171 	int err;
3172 	u16 i;
3173 
3174 	/* Before continue resolving the next_member,
3175 	 * ensure the last member is indeed resolved to a
3176 	 * type with size info.
3177 	 */
3178 	if (v->next_member) {
3179 		const struct btf_type *last_member_type;
3180 		const struct btf_member *last_member;
3181 		u32 last_member_type_id;
3182 
3183 		last_member = btf_type_member(v->t) + v->next_member - 1;
3184 		last_member_type_id = last_member->type;
3185 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3186 						       last_member_type_id)))
3187 			return -EINVAL;
3188 
3189 		last_member_type = btf_type_by_id(env->btf,
3190 						  last_member_type_id);
3191 		if (btf_type_kflag(v->t))
3192 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3193 								last_member,
3194 								last_member_type);
3195 		else
3196 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3197 								last_member,
3198 								last_member_type);
3199 		if (err)
3200 			return err;
3201 	}
3202 
3203 	for_each_member_from(i, v->next_member, v->t, member) {
3204 		u32 member_type_id = member->type;
3205 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3206 								member_type_id);
3207 
3208 		if (btf_type_nosize_or_null(member_type) ||
3209 		    btf_type_is_resolve_source_only(member_type)) {
3210 			btf_verifier_log_member(env, v->t, member,
3211 						"Invalid member");
3212 			return -EINVAL;
3213 		}
3214 
3215 		if (!env_type_is_resolve_sink(env, member_type) &&
3216 		    !env_type_is_resolved(env, member_type_id)) {
3217 			env_stack_set_next_member(env, i + 1);
3218 			return env_stack_push(env, member_type, member_type_id);
3219 		}
3220 
3221 		if (btf_type_kflag(v->t))
3222 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3223 									    member,
3224 									    member_type);
3225 		else
3226 			err = btf_type_ops(member_type)->check_member(env, v->t,
3227 								      member,
3228 								      member_type);
3229 		if (err)
3230 			return err;
3231 	}
3232 
3233 	env_stack_pop_resolved(env, 0, 0);
3234 
3235 	return 0;
3236 }
3237 
3238 static void btf_struct_log(struct btf_verifier_env *env,
3239 			   const struct btf_type *t)
3240 {
3241 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3242 }
3243 
3244 enum {
3245 	BTF_FIELD_IGNORE = 0,
3246 	BTF_FIELD_FOUND  = 1,
3247 };
3248 
3249 struct btf_field_info {
3250 	enum btf_field_type type;
3251 	u32 off;
3252 	union {
3253 		struct {
3254 			u32 type_id;
3255 		} kptr;
3256 		struct {
3257 			const char *node_name;
3258 			u32 value_btf_id;
3259 		} graph_root;
3260 	};
3261 };
3262 
3263 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3264 			   u32 off, int sz, enum btf_field_type field_type,
3265 			   struct btf_field_info *info)
3266 {
3267 	if (!__btf_type_is_struct(t))
3268 		return BTF_FIELD_IGNORE;
3269 	if (t->size != sz)
3270 		return BTF_FIELD_IGNORE;
3271 	info->type = field_type;
3272 	info->off = off;
3273 	return BTF_FIELD_FOUND;
3274 }
3275 
3276 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3277 			 u32 off, int sz, struct btf_field_info *info)
3278 {
3279 	enum btf_field_type type;
3280 	u32 res_id;
3281 
3282 	/* Permit modifiers on the pointer itself */
3283 	if (btf_type_is_volatile(t))
3284 		t = btf_type_by_id(btf, t->type);
3285 	/* For PTR, sz is always == 8 */
3286 	if (!btf_type_is_ptr(t))
3287 		return BTF_FIELD_IGNORE;
3288 	t = btf_type_by_id(btf, t->type);
3289 
3290 	if (!btf_type_is_type_tag(t))
3291 		return BTF_FIELD_IGNORE;
3292 	/* Reject extra tags */
3293 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3294 		return -EINVAL;
3295 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3296 		type = BPF_KPTR_UNREF;
3297 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3298 		type = BPF_KPTR_REF;
3299 	else
3300 		return -EINVAL;
3301 
3302 	/* Get the base type */
3303 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3304 	/* Only pointer to struct is allowed */
3305 	if (!__btf_type_is_struct(t))
3306 		return -EINVAL;
3307 
3308 	info->type = type;
3309 	info->off = off;
3310 	info->kptr.type_id = res_id;
3311 	return BTF_FIELD_FOUND;
3312 }
3313 
3314 static const char *btf_find_decl_tag_value(const struct btf *btf,
3315 					   const struct btf_type *pt,
3316 					   int comp_idx, const char *tag_key)
3317 {
3318 	int i;
3319 
3320 	for (i = 1; i < btf_nr_types(btf); i++) {
3321 		const struct btf_type *t = btf_type_by_id(btf, i);
3322 		int len = strlen(tag_key);
3323 
3324 		if (!btf_type_is_decl_tag(t))
3325 			continue;
3326 		if (pt != btf_type_by_id(btf, t->type) ||
3327 		    btf_type_decl_tag(t)->component_idx != comp_idx)
3328 			continue;
3329 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3330 			continue;
3331 		return __btf_name_by_offset(btf, t->name_off) + len;
3332 	}
3333 	return NULL;
3334 }
3335 
3336 static int
3337 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3338 		    const struct btf_type *t, int comp_idx, u32 off,
3339 		    int sz, struct btf_field_info *info,
3340 		    enum btf_field_type head_type)
3341 {
3342 	const char *node_field_name;
3343 	const char *value_type;
3344 	s32 id;
3345 
3346 	if (!__btf_type_is_struct(t))
3347 		return BTF_FIELD_IGNORE;
3348 	if (t->size != sz)
3349 		return BTF_FIELD_IGNORE;
3350 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3351 	if (!value_type)
3352 		return -EINVAL;
3353 	node_field_name = strstr(value_type, ":");
3354 	if (!node_field_name)
3355 		return -EINVAL;
3356 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3357 	if (!value_type)
3358 		return -ENOMEM;
3359 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3360 	kfree(value_type);
3361 	if (id < 0)
3362 		return id;
3363 	node_field_name++;
3364 	if (str_is_empty(node_field_name))
3365 		return -EINVAL;
3366 	info->type = head_type;
3367 	info->off = off;
3368 	info->graph_root.value_btf_id = id;
3369 	info->graph_root.node_name = node_field_name;
3370 	return BTF_FIELD_FOUND;
3371 }
3372 
3373 #define field_mask_test_name(field_type, field_type_str) \
3374 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3375 		type = field_type;					\
3376 		goto end;						\
3377 	}
3378 
3379 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3380 			      int *align, int *sz)
3381 {
3382 	int type = 0;
3383 
3384 	if (field_mask & BPF_SPIN_LOCK) {
3385 		if (!strcmp(name, "bpf_spin_lock")) {
3386 			if (*seen_mask & BPF_SPIN_LOCK)
3387 				return -E2BIG;
3388 			*seen_mask |= BPF_SPIN_LOCK;
3389 			type = BPF_SPIN_LOCK;
3390 			goto end;
3391 		}
3392 	}
3393 	if (field_mask & BPF_TIMER) {
3394 		if (!strcmp(name, "bpf_timer")) {
3395 			if (*seen_mask & BPF_TIMER)
3396 				return -E2BIG;
3397 			*seen_mask |= BPF_TIMER;
3398 			type = BPF_TIMER;
3399 			goto end;
3400 		}
3401 	}
3402 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3403 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3404 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3405 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3406 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3407 
3408 	/* Only return BPF_KPTR when all other types with matchable names fail */
3409 	if (field_mask & BPF_KPTR) {
3410 		type = BPF_KPTR_REF;
3411 		goto end;
3412 	}
3413 	return 0;
3414 end:
3415 	*sz = btf_field_type_size(type);
3416 	*align = btf_field_type_align(type);
3417 	return type;
3418 }
3419 
3420 #undef field_mask_test_name
3421 
3422 static int btf_find_struct_field(const struct btf *btf,
3423 				 const struct btf_type *t, u32 field_mask,
3424 				 struct btf_field_info *info, int info_cnt)
3425 {
3426 	int ret, idx = 0, align, sz, field_type;
3427 	const struct btf_member *member;
3428 	struct btf_field_info tmp;
3429 	u32 i, off, seen_mask = 0;
3430 
3431 	for_each_member(i, t, member) {
3432 		const struct btf_type *member_type = btf_type_by_id(btf,
3433 								    member->type);
3434 
3435 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3436 						field_mask, &seen_mask, &align, &sz);
3437 		if (field_type == 0)
3438 			continue;
3439 		if (field_type < 0)
3440 			return field_type;
3441 
3442 		off = __btf_member_bit_offset(t, member);
3443 		if (off % 8)
3444 			/* valid C code cannot generate such BTF */
3445 			return -EINVAL;
3446 		off /= 8;
3447 		if (off % align)
3448 			continue;
3449 
3450 		switch (field_type) {
3451 		case BPF_SPIN_LOCK:
3452 		case BPF_TIMER:
3453 		case BPF_LIST_NODE:
3454 		case BPF_RB_NODE:
3455 		case BPF_REFCOUNT:
3456 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3457 					      idx < info_cnt ? &info[idx] : &tmp);
3458 			if (ret < 0)
3459 				return ret;
3460 			break;
3461 		case BPF_KPTR_UNREF:
3462 		case BPF_KPTR_REF:
3463 			ret = btf_find_kptr(btf, member_type, off, sz,
3464 					    idx < info_cnt ? &info[idx] : &tmp);
3465 			if (ret < 0)
3466 				return ret;
3467 			break;
3468 		case BPF_LIST_HEAD:
3469 		case BPF_RB_ROOT:
3470 			ret = btf_find_graph_root(btf, t, member_type,
3471 						  i, off, sz,
3472 						  idx < info_cnt ? &info[idx] : &tmp,
3473 						  field_type);
3474 			if (ret < 0)
3475 				return ret;
3476 			break;
3477 		default:
3478 			return -EFAULT;
3479 		}
3480 
3481 		if (ret == BTF_FIELD_IGNORE)
3482 			continue;
3483 		if (idx >= info_cnt)
3484 			return -E2BIG;
3485 		++idx;
3486 	}
3487 	return idx;
3488 }
3489 
3490 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3491 				u32 field_mask, struct btf_field_info *info,
3492 				int info_cnt)
3493 {
3494 	int ret, idx = 0, align, sz, field_type;
3495 	const struct btf_var_secinfo *vsi;
3496 	struct btf_field_info tmp;
3497 	u32 i, off, seen_mask = 0;
3498 
3499 	for_each_vsi(i, t, vsi) {
3500 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3501 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3502 
3503 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3504 						field_mask, &seen_mask, &align, &sz);
3505 		if (field_type == 0)
3506 			continue;
3507 		if (field_type < 0)
3508 			return field_type;
3509 
3510 		off = vsi->offset;
3511 		if (vsi->size != sz)
3512 			continue;
3513 		if (off % align)
3514 			continue;
3515 
3516 		switch (field_type) {
3517 		case BPF_SPIN_LOCK:
3518 		case BPF_TIMER:
3519 		case BPF_LIST_NODE:
3520 		case BPF_RB_NODE:
3521 		case BPF_REFCOUNT:
3522 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3523 					      idx < info_cnt ? &info[idx] : &tmp);
3524 			if (ret < 0)
3525 				return ret;
3526 			break;
3527 		case BPF_KPTR_UNREF:
3528 		case BPF_KPTR_REF:
3529 			ret = btf_find_kptr(btf, var_type, off, sz,
3530 					    idx < info_cnt ? &info[idx] : &tmp);
3531 			if (ret < 0)
3532 				return ret;
3533 			break;
3534 		case BPF_LIST_HEAD:
3535 		case BPF_RB_ROOT:
3536 			ret = btf_find_graph_root(btf, var, var_type,
3537 						  -1, off, sz,
3538 						  idx < info_cnt ? &info[idx] : &tmp,
3539 						  field_type);
3540 			if (ret < 0)
3541 				return ret;
3542 			break;
3543 		default:
3544 			return -EFAULT;
3545 		}
3546 
3547 		if (ret == BTF_FIELD_IGNORE)
3548 			continue;
3549 		if (idx >= info_cnt)
3550 			return -E2BIG;
3551 		++idx;
3552 	}
3553 	return idx;
3554 }
3555 
3556 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3557 			  u32 field_mask, struct btf_field_info *info,
3558 			  int info_cnt)
3559 {
3560 	if (__btf_type_is_struct(t))
3561 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3562 	else if (btf_type_is_datasec(t))
3563 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3564 	return -EINVAL;
3565 }
3566 
3567 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3568 			  struct btf_field_info *info)
3569 {
3570 	struct module *mod = NULL;
3571 	const struct btf_type *t;
3572 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3573 	 * is that BTF, otherwise it's program BTF
3574 	 */
3575 	struct btf *kptr_btf;
3576 	int ret;
3577 	s32 id;
3578 
3579 	/* Find type in map BTF, and use it to look up the matching type
3580 	 * in vmlinux or module BTFs, by name and kind.
3581 	 */
3582 	t = btf_type_by_id(btf, info->kptr.type_id);
3583 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3584 			     &kptr_btf);
3585 	if (id == -ENOENT) {
3586 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3587 		WARN_ON_ONCE(btf_is_kernel(btf));
3588 
3589 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3590 		 * kptr allocated via bpf_obj_new
3591 		 */
3592 		field->kptr.dtor = NULL;
3593 		id = info->kptr.type_id;
3594 		kptr_btf = (struct btf *)btf;
3595 		btf_get(kptr_btf);
3596 		goto found_dtor;
3597 	}
3598 	if (id < 0)
3599 		return id;
3600 
3601 	/* Find and stash the function pointer for the destruction function that
3602 	 * needs to be eventually invoked from the map free path.
3603 	 */
3604 	if (info->type == BPF_KPTR_REF) {
3605 		const struct btf_type *dtor_func;
3606 		const char *dtor_func_name;
3607 		unsigned long addr;
3608 		s32 dtor_btf_id;
3609 
3610 		/* This call also serves as a whitelist of allowed objects that
3611 		 * can be used as a referenced pointer and be stored in a map at
3612 		 * the same time.
3613 		 */
3614 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3615 		if (dtor_btf_id < 0) {
3616 			ret = dtor_btf_id;
3617 			goto end_btf;
3618 		}
3619 
3620 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3621 		if (!dtor_func) {
3622 			ret = -ENOENT;
3623 			goto end_btf;
3624 		}
3625 
3626 		if (btf_is_module(kptr_btf)) {
3627 			mod = btf_try_get_module(kptr_btf);
3628 			if (!mod) {
3629 				ret = -ENXIO;
3630 				goto end_btf;
3631 			}
3632 		}
3633 
3634 		/* We already verified dtor_func to be btf_type_is_func
3635 		 * in register_btf_id_dtor_kfuncs.
3636 		 */
3637 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3638 		addr = kallsyms_lookup_name(dtor_func_name);
3639 		if (!addr) {
3640 			ret = -EINVAL;
3641 			goto end_mod;
3642 		}
3643 		field->kptr.dtor = (void *)addr;
3644 	}
3645 
3646 found_dtor:
3647 	field->kptr.btf_id = id;
3648 	field->kptr.btf = kptr_btf;
3649 	field->kptr.module = mod;
3650 	return 0;
3651 end_mod:
3652 	module_put(mod);
3653 end_btf:
3654 	btf_put(kptr_btf);
3655 	return ret;
3656 }
3657 
3658 static int btf_parse_graph_root(const struct btf *btf,
3659 				struct btf_field *field,
3660 				struct btf_field_info *info,
3661 				const char *node_type_name,
3662 				size_t node_type_align)
3663 {
3664 	const struct btf_type *t, *n = NULL;
3665 	const struct btf_member *member;
3666 	u32 offset;
3667 	int i;
3668 
3669 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3670 	/* We've already checked that value_btf_id is a struct type. We
3671 	 * just need to figure out the offset of the list_node, and
3672 	 * verify its type.
3673 	 */
3674 	for_each_member(i, t, member) {
3675 		if (strcmp(info->graph_root.node_name,
3676 			   __btf_name_by_offset(btf, member->name_off)))
3677 			continue;
3678 		/* Invalid BTF, two members with same name */
3679 		if (n)
3680 			return -EINVAL;
3681 		n = btf_type_by_id(btf, member->type);
3682 		if (!__btf_type_is_struct(n))
3683 			return -EINVAL;
3684 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3685 			return -EINVAL;
3686 		offset = __btf_member_bit_offset(n, member);
3687 		if (offset % 8)
3688 			return -EINVAL;
3689 		offset /= 8;
3690 		if (offset % node_type_align)
3691 			return -EINVAL;
3692 
3693 		field->graph_root.btf = (struct btf *)btf;
3694 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3695 		field->graph_root.node_offset = offset;
3696 	}
3697 	if (!n)
3698 		return -ENOENT;
3699 	return 0;
3700 }
3701 
3702 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3703 			       struct btf_field_info *info)
3704 {
3705 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3706 					    __alignof__(struct bpf_list_node));
3707 }
3708 
3709 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3710 			     struct btf_field_info *info)
3711 {
3712 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3713 					    __alignof__(struct bpf_rb_node));
3714 }
3715 
3716 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3717 {
3718 	const struct btf_field *a = (const struct btf_field *)_a;
3719 	const struct btf_field *b = (const struct btf_field *)_b;
3720 
3721 	if (a->offset < b->offset)
3722 		return -1;
3723 	else if (a->offset > b->offset)
3724 		return 1;
3725 	return 0;
3726 }
3727 
3728 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3729 				    u32 field_mask, u32 value_size)
3730 {
3731 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3732 	u32 next_off = 0, field_type_size;
3733 	struct btf_record *rec;
3734 	int ret, i, cnt;
3735 
3736 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3737 	if (ret < 0)
3738 		return ERR_PTR(ret);
3739 	if (!ret)
3740 		return NULL;
3741 
3742 	cnt = ret;
3743 	/* This needs to be kzalloc to zero out padding and unused fields, see
3744 	 * comment in btf_record_equal.
3745 	 */
3746 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3747 	if (!rec)
3748 		return ERR_PTR(-ENOMEM);
3749 
3750 	rec->spin_lock_off = -EINVAL;
3751 	rec->timer_off = -EINVAL;
3752 	rec->refcount_off = -EINVAL;
3753 	for (i = 0; i < cnt; i++) {
3754 		field_type_size = btf_field_type_size(info_arr[i].type);
3755 		if (info_arr[i].off + field_type_size > value_size) {
3756 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3757 			ret = -EFAULT;
3758 			goto end;
3759 		}
3760 		if (info_arr[i].off < next_off) {
3761 			ret = -EEXIST;
3762 			goto end;
3763 		}
3764 		next_off = info_arr[i].off + field_type_size;
3765 
3766 		rec->field_mask |= info_arr[i].type;
3767 		rec->fields[i].offset = info_arr[i].off;
3768 		rec->fields[i].type = info_arr[i].type;
3769 		rec->fields[i].size = field_type_size;
3770 
3771 		switch (info_arr[i].type) {
3772 		case BPF_SPIN_LOCK:
3773 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3774 			/* Cache offset for faster lookup at runtime */
3775 			rec->spin_lock_off = rec->fields[i].offset;
3776 			break;
3777 		case BPF_TIMER:
3778 			WARN_ON_ONCE(rec->timer_off >= 0);
3779 			/* Cache offset for faster lookup at runtime */
3780 			rec->timer_off = rec->fields[i].offset;
3781 			break;
3782 		case BPF_REFCOUNT:
3783 			WARN_ON_ONCE(rec->refcount_off >= 0);
3784 			/* Cache offset for faster lookup at runtime */
3785 			rec->refcount_off = rec->fields[i].offset;
3786 			break;
3787 		case BPF_KPTR_UNREF:
3788 		case BPF_KPTR_REF:
3789 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3790 			if (ret < 0)
3791 				goto end;
3792 			break;
3793 		case BPF_LIST_HEAD:
3794 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3795 			if (ret < 0)
3796 				goto end;
3797 			break;
3798 		case BPF_RB_ROOT:
3799 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3800 			if (ret < 0)
3801 				goto end;
3802 			break;
3803 		case BPF_LIST_NODE:
3804 		case BPF_RB_NODE:
3805 			break;
3806 		default:
3807 			ret = -EFAULT;
3808 			goto end;
3809 		}
3810 		rec->cnt++;
3811 	}
3812 
3813 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3814 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3815 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3816 		ret = -EINVAL;
3817 		goto end;
3818 	}
3819 
3820 	if (rec->refcount_off < 0 &&
3821 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3822 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3823 		ret = -EINVAL;
3824 		goto end;
3825 	}
3826 
3827 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3828 	       NULL, rec);
3829 
3830 	return rec;
3831 end:
3832 	btf_record_free(rec);
3833 	return ERR_PTR(ret);
3834 }
3835 
3836 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3837 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3838 
3839 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3840 {
3841 	int i;
3842 
3843 	/* There are three types that signify ownership of some other type:
3844 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3845 	 * kptr_ref only supports storing kernel types, which can't store
3846 	 * references to program allocated local types.
3847 	 *
3848 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3849 	 * does not form cycles.
3850 	 */
3851 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3852 		return 0;
3853 	for (i = 0; i < rec->cnt; i++) {
3854 		struct btf_struct_meta *meta;
3855 		u32 btf_id;
3856 
3857 		if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3858 			continue;
3859 		btf_id = rec->fields[i].graph_root.value_btf_id;
3860 		meta = btf_find_struct_meta(btf, btf_id);
3861 		if (!meta)
3862 			return -EFAULT;
3863 		rec->fields[i].graph_root.value_rec = meta->record;
3864 
3865 		/* We need to set value_rec for all root types, but no need
3866 		 * to check ownership cycle for a type unless it's also a
3867 		 * node type.
3868 		 */
3869 		if (!(rec->field_mask & GRAPH_NODE_MASK))
3870 			continue;
3871 
3872 		/* We need to ensure ownership acyclicity among all types. The
3873 		 * proper way to do it would be to topologically sort all BTF
3874 		 * IDs based on the ownership edges, since there can be multiple
3875 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3876 		 * following resaoning:
3877 		 *
3878 		 * - A type can only be owned by another type in user BTF if it
3879 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3880 		 * - A type can only _own_ another type in user BTF if it has a
3881 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3882 		 *
3883 		 * We ensure that if a type is both a root and node, its
3884 		 * element types cannot be root types.
3885 		 *
3886 		 * To ensure acyclicity:
3887 		 *
3888 		 * When A is an root type but not a node, its ownership
3889 		 * chain can be:
3890 		 *	A -> B -> C
3891 		 * Where:
3892 		 * - A is an root, e.g. has bpf_rb_root.
3893 		 * - B is both a root and node, e.g. has bpf_rb_node and
3894 		 *   bpf_list_head.
3895 		 * - C is only an root, e.g. has bpf_list_node
3896 		 *
3897 		 * When A is both a root and node, some other type already
3898 		 * owns it in the BTF domain, hence it can not own
3899 		 * another root type through any of the ownership edges.
3900 		 *	A -> B
3901 		 * Where:
3902 		 * - A is both an root and node.
3903 		 * - B is only an node.
3904 		 */
3905 		if (meta->record->field_mask & GRAPH_ROOT_MASK)
3906 			return -ELOOP;
3907 	}
3908 	return 0;
3909 }
3910 
3911 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3912 			      u32 type_id, void *data, u8 bits_offset,
3913 			      struct btf_show *show)
3914 {
3915 	const struct btf_member *member;
3916 	void *safe_data;
3917 	u32 i;
3918 
3919 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3920 	if (!safe_data)
3921 		return;
3922 
3923 	for_each_member(i, t, member) {
3924 		const struct btf_type *member_type = btf_type_by_id(btf,
3925 								member->type);
3926 		const struct btf_kind_operations *ops;
3927 		u32 member_offset, bitfield_size;
3928 		u32 bytes_offset;
3929 		u8 bits8_offset;
3930 
3931 		btf_show_start_member(show, member);
3932 
3933 		member_offset = __btf_member_bit_offset(t, member);
3934 		bitfield_size = __btf_member_bitfield_size(t, member);
3935 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3936 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3937 		if (bitfield_size) {
3938 			safe_data = btf_show_start_type(show, member_type,
3939 							member->type,
3940 							data + bytes_offset);
3941 			if (safe_data)
3942 				btf_bitfield_show(safe_data,
3943 						  bits8_offset,
3944 						  bitfield_size, show);
3945 			btf_show_end_type(show);
3946 		} else {
3947 			ops = btf_type_ops(member_type);
3948 			ops->show(btf, member_type, member->type,
3949 				  data + bytes_offset, bits8_offset, show);
3950 		}
3951 
3952 		btf_show_end_member(show);
3953 	}
3954 
3955 	btf_show_end_struct_type(show);
3956 }
3957 
3958 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3959 			    u32 type_id, void *data, u8 bits_offset,
3960 			    struct btf_show *show)
3961 {
3962 	const struct btf_member *m = show->state.member;
3963 
3964 	/*
3965 	 * First check if any members would be shown (are non-zero).
3966 	 * See comments above "struct btf_show" definition for more
3967 	 * details on how this works at a high-level.
3968 	 */
3969 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3970 		if (!show->state.depth_check) {
3971 			show->state.depth_check = show->state.depth + 1;
3972 			show->state.depth_to_show = 0;
3973 		}
3974 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3975 		/* Restore saved member data here */
3976 		show->state.member = m;
3977 		if (show->state.depth_check != show->state.depth + 1)
3978 			return;
3979 		show->state.depth_check = 0;
3980 
3981 		if (show->state.depth_to_show <= show->state.depth)
3982 			return;
3983 		/*
3984 		 * Reaching here indicates we have recursed and found
3985 		 * non-zero child values.
3986 		 */
3987 	}
3988 
3989 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3990 }
3991 
3992 static struct btf_kind_operations struct_ops = {
3993 	.check_meta = btf_struct_check_meta,
3994 	.resolve = btf_struct_resolve,
3995 	.check_member = btf_struct_check_member,
3996 	.check_kflag_member = btf_generic_check_kflag_member,
3997 	.log_details = btf_struct_log,
3998 	.show = btf_struct_show,
3999 };
4000 
4001 static int btf_enum_check_member(struct btf_verifier_env *env,
4002 				 const struct btf_type *struct_type,
4003 				 const struct btf_member *member,
4004 				 const struct btf_type *member_type)
4005 {
4006 	u32 struct_bits_off = member->offset;
4007 	u32 struct_size, bytes_offset;
4008 
4009 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4010 		btf_verifier_log_member(env, struct_type, member,
4011 					"Member is not byte aligned");
4012 		return -EINVAL;
4013 	}
4014 
4015 	struct_size = struct_type->size;
4016 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4017 	if (struct_size - bytes_offset < member_type->size) {
4018 		btf_verifier_log_member(env, struct_type, member,
4019 					"Member exceeds struct_size");
4020 		return -EINVAL;
4021 	}
4022 
4023 	return 0;
4024 }
4025 
4026 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4027 				       const struct btf_type *struct_type,
4028 				       const struct btf_member *member,
4029 				       const struct btf_type *member_type)
4030 {
4031 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4032 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4033 
4034 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4035 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4036 	if (!nr_bits) {
4037 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4038 			btf_verifier_log_member(env, struct_type, member,
4039 						"Member is not byte aligned");
4040 			return -EINVAL;
4041 		}
4042 
4043 		nr_bits = int_bitsize;
4044 	} else if (nr_bits > int_bitsize) {
4045 		btf_verifier_log_member(env, struct_type, member,
4046 					"Invalid member bitfield_size");
4047 		return -EINVAL;
4048 	}
4049 
4050 	struct_size = struct_type->size;
4051 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4052 	if (struct_size < bytes_end) {
4053 		btf_verifier_log_member(env, struct_type, member,
4054 					"Member exceeds struct_size");
4055 		return -EINVAL;
4056 	}
4057 
4058 	return 0;
4059 }
4060 
4061 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4062 			       const struct btf_type *t,
4063 			       u32 meta_left)
4064 {
4065 	const struct btf_enum *enums = btf_type_enum(t);
4066 	struct btf *btf = env->btf;
4067 	const char *fmt_str;
4068 	u16 i, nr_enums;
4069 	u32 meta_needed;
4070 
4071 	nr_enums = btf_type_vlen(t);
4072 	meta_needed = nr_enums * sizeof(*enums);
4073 
4074 	if (meta_left < meta_needed) {
4075 		btf_verifier_log_basic(env, t,
4076 				       "meta_left:%u meta_needed:%u",
4077 				       meta_left, meta_needed);
4078 		return -EINVAL;
4079 	}
4080 
4081 	if (t->size > 8 || !is_power_of_2(t->size)) {
4082 		btf_verifier_log_type(env, t, "Unexpected size");
4083 		return -EINVAL;
4084 	}
4085 
4086 	/* enum type either no name or a valid one */
4087 	if (t->name_off &&
4088 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4089 		btf_verifier_log_type(env, t, "Invalid name");
4090 		return -EINVAL;
4091 	}
4092 
4093 	btf_verifier_log_type(env, t, NULL);
4094 
4095 	for (i = 0; i < nr_enums; i++) {
4096 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4097 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4098 					 enums[i].name_off);
4099 			return -EINVAL;
4100 		}
4101 
4102 		/* enum member must have a valid name */
4103 		if (!enums[i].name_off ||
4104 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4105 			btf_verifier_log_type(env, t, "Invalid name");
4106 			return -EINVAL;
4107 		}
4108 
4109 		if (env->log.level == BPF_LOG_KERNEL)
4110 			continue;
4111 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4112 		btf_verifier_log(env, fmt_str,
4113 				 __btf_name_by_offset(btf, enums[i].name_off),
4114 				 enums[i].val);
4115 	}
4116 
4117 	return meta_needed;
4118 }
4119 
4120 static void btf_enum_log(struct btf_verifier_env *env,
4121 			 const struct btf_type *t)
4122 {
4123 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4124 }
4125 
4126 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4127 			  u32 type_id, void *data, u8 bits_offset,
4128 			  struct btf_show *show)
4129 {
4130 	const struct btf_enum *enums = btf_type_enum(t);
4131 	u32 i, nr_enums = btf_type_vlen(t);
4132 	void *safe_data;
4133 	int v;
4134 
4135 	safe_data = btf_show_start_type(show, t, type_id, data);
4136 	if (!safe_data)
4137 		return;
4138 
4139 	v = *(int *)safe_data;
4140 
4141 	for (i = 0; i < nr_enums; i++) {
4142 		if (v != enums[i].val)
4143 			continue;
4144 
4145 		btf_show_type_value(show, "%s",
4146 				    __btf_name_by_offset(btf,
4147 							 enums[i].name_off));
4148 
4149 		btf_show_end_type(show);
4150 		return;
4151 	}
4152 
4153 	if (btf_type_kflag(t))
4154 		btf_show_type_value(show, "%d", v);
4155 	else
4156 		btf_show_type_value(show, "%u", v);
4157 	btf_show_end_type(show);
4158 }
4159 
4160 static struct btf_kind_operations enum_ops = {
4161 	.check_meta = btf_enum_check_meta,
4162 	.resolve = btf_df_resolve,
4163 	.check_member = btf_enum_check_member,
4164 	.check_kflag_member = btf_enum_check_kflag_member,
4165 	.log_details = btf_enum_log,
4166 	.show = btf_enum_show,
4167 };
4168 
4169 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4170 				 const struct btf_type *t,
4171 				 u32 meta_left)
4172 {
4173 	const struct btf_enum64 *enums = btf_type_enum64(t);
4174 	struct btf *btf = env->btf;
4175 	const char *fmt_str;
4176 	u16 i, nr_enums;
4177 	u32 meta_needed;
4178 
4179 	nr_enums = btf_type_vlen(t);
4180 	meta_needed = nr_enums * sizeof(*enums);
4181 
4182 	if (meta_left < meta_needed) {
4183 		btf_verifier_log_basic(env, t,
4184 				       "meta_left:%u meta_needed:%u",
4185 				       meta_left, meta_needed);
4186 		return -EINVAL;
4187 	}
4188 
4189 	if (t->size > 8 || !is_power_of_2(t->size)) {
4190 		btf_verifier_log_type(env, t, "Unexpected size");
4191 		return -EINVAL;
4192 	}
4193 
4194 	/* enum type either no name or a valid one */
4195 	if (t->name_off &&
4196 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4197 		btf_verifier_log_type(env, t, "Invalid name");
4198 		return -EINVAL;
4199 	}
4200 
4201 	btf_verifier_log_type(env, t, NULL);
4202 
4203 	for (i = 0; i < nr_enums; i++) {
4204 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4205 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4206 					 enums[i].name_off);
4207 			return -EINVAL;
4208 		}
4209 
4210 		/* enum member must have a valid name */
4211 		if (!enums[i].name_off ||
4212 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4213 			btf_verifier_log_type(env, t, "Invalid name");
4214 			return -EINVAL;
4215 		}
4216 
4217 		if (env->log.level == BPF_LOG_KERNEL)
4218 			continue;
4219 
4220 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4221 		btf_verifier_log(env, fmt_str,
4222 				 __btf_name_by_offset(btf, enums[i].name_off),
4223 				 btf_enum64_value(enums + i));
4224 	}
4225 
4226 	return meta_needed;
4227 }
4228 
4229 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4230 			    u32 type_id, void *data, u8 bits_offset,
4231 			    struct btf_show *show)
4232 {
4233 	const struct btf_enum64 *enums = btf_type_enum64(t);
4234 	u32 i, nr_enums = btf_type_vlen(t);
4235 	void *safe_data;
4236 	s64 v;
4237 
4238 	safe_data = btf_show_start_type(show, t, type_id, data);
4239 	if (!safe_data)
4240 		return;
4241 
4242 	v = *(u64 *)safe_data;
4243 
4244 	for (i = 0; i < nr_enums; i++) {
4245 		if (v != btf_enum64_value(enums + i))
4246 			continue;
4247 
4248 		btf_show_type_value(show, "%s",
4249 				    __btf_name_by_offset(btf,
4250 							 enums[i].name_off));
4251 
4252 		btf_show_end_type(show);
4253 		return;
4254 	}
4255 
4256 	if (btf_type_kflag(t))
4257 		btf_show_type_value(show, "%lld", v);
4258 	else
4259 		btf_show_type_value(show, "%llu", v);
4260 	btf_show_end_type(show);
4261 }
4262 
4263 static struct btf_kind_operations enum64_ops = {
4264 	.check_meta = btf_enum64_check_meta,
4265 	.resolve = btf_df_resolve,
4266 	.check_member = btf_enum_check_member,
4267 	.check_kflag_member = btf_enum_check_kflag_member,
4268 	.log_details = btf_enum_log,
4269 	.show = btf_enum64_show,
4270 };
4271 
4272 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4273 				     const struct btf_type *t,
4274 				     u32 meta_left)
4275 {
4276 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4277 
4278 	if (meta_left < meta_needed) {
4279 		btf_verifier_log_basic(env, t,
4280 				       "meta_left:%u meta_needed:%u",
4281 				       meta_left, meta_needed);
4282 		return -EINVAL;
4283 	}
4284 
4285 	if (t->name_off) {
4286 		btf_verifier_log_type(env, t, "Invalid name");
4287 		return -EINVAL;
4288 	}
4289 
4290 	if (btf_type_kflag(t)) {
4291 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4292 		return -EINVAL;
4293 	}
4294 
4295 	btf_verifier_log_type(env, t, NULL);
4296 
4297 	return meta_needed;
4298 }
4299 
4300 static void btf_func_proto_log(struct btf_verifier_env *env,
4301 			       const struct btf_type *t)
4302 {
4303 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4304 	u16 nr_args = btf_type_vlen(t), i;
4305 
4306 	btf_verifier_log(env, "return=%u args=(", t->type);
4307 	if (!nr_args) {
4308 		btf_verifier_log(env, "void");
4309 		goto done;
4310 	}
4311 
4312 	if (nr_args == 1 && !args[0].type) {
4313 		/* Only one vararg */
4314 		btf_verifier_log(env, "vararg");
4315 		goto done;
4316 	}
4317 
4318 	btf_verifier_log(env, "%u %s", args[0].type,
4319 			 __btf_name_by_offset(env->btf,
4320 					      args[0].name_off));
4321 	for (i = 1; i < nr_args - 1; i++)
4322 		btf_verifier_log(env, ", %u %s", args[i].type,
4323 				 __btf_name_by_offset(env->btf,
4324 						      args[i].name_off));
4325 
4326 	if (nr_args > 1) {
4327 		const struct btf_param *last_arg = &args[nr_args - 1];
4328 
4329 		if (last_arg->type)
4330 			btf_verifier_log(env, ", %u %s", last_arg->type,
4331 					 __btf_name_by_offset(env->btf,
4332 							      last_arg->name_off));
4333 		else
4334 			btf_verifier_log(env, ", vararg");
4335 	}
4336 
4337 done:
4338 	btf_verifier_log(env, ")");
4339 }
4340 
4341 static struct btf_kind_operations func_proto_ops = {
4342 	.check_meta = btf_func_proto_check_meta,
4343 	.resolve = btf_df_resolve,
4344 	/*
4345 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4346 	 * a struct's member.
4347 	 *
4348 	 * It should be a function pointer instead.
4349 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4350 	 *
4351 	 * Hence, there is no btf_func_check_member().
4352 	 */
4353 	.check_member = btf_df_check_member,
4354 	.check_kflag_member = btf_df_check_kflag_member,
4355 	.log_details = btf_func_proto_log,
4356 	.show = btf_df_show,
4357 };
4358 
4359 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4360 			       const struct btf_type *t,
4361 			       u32 meta_left)
4362 {
4363 	if (!t->name_off ||
4364 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4365 		btf_verifier_log_type(env, t, "Invalid name");
4366 		return -EINVAL;
4367 	}
4368 
4369 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4370 		btf_verifier_log_type(env, t, "Invalid func linkage");
4371 		return -EINVAL;
4372 	}
4373 
4374 	if (btf_type_kflag(t)) {
4375 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4376 		return -EINVAL;
4377 	}
4378 
4379 	btf_verifier_log_type(env, t, NULL);
4380 
4381 	return 0;
4382 }
4383 
4384 static int btf_func_resolve(struct btf_verifier_env *env,
4385 			    const struct resolve_vertex *v)
4386 {
4387 	const struct btf_type *t = v->t;
4388 	u32 next_type_id = t->type;
4389 	int err;
4390 
4391 	err = btf_func_check(env, t);
4392 	if (err)
4393 		return err;
4394 
4395 	env_stack_pop_resolved(env, next_type_id, 0);
4396 	return 0;
4397 }
4398 
4399 static struct btf_kind_operations func_ops = {
4400 	.check_meta = btf_func_check_meta,
4401 	.resolve = btf_func_resolve,
4402 	.check_member = btf_df_check_member,
4403 	.check_kflag_member = btf_df_check_kflag_member,
4404 	.log_details = btf_ref_type_log,
4405 	.show = btf_df_show,
4406 };
4407 
4408 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4409 			      const struct btf_type *t,
4410 			      u32 meta_left)
4411 {
4412 	const struct btf_var *var;
4413 	u32 meta_needed = sizeof(*var);
4414 
4415 	if (meta_left < meta_needed) {
4416 		btf_verifier_log_basic(env, t,
4417 				       "meta_left:%u meta_needed:%u",
4418 				       meta_left, meta_needed);
4419 		return -EINVAL;
4420 	}
4421 
4422 	if (btf_type_vlen(t)) {
4423 		btf_verifier_log_type(env, t, "vlen != 0");
4424 		return -EINVAL;
4425 	}
4426 
4427 	if (btf_type_kflag(t)) {
4428 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4429 		return -EINVAL;
4430 	}
4431 
4432 	if (!t->name_off ||
4433 	    !__btf_name_valid(env->btf, t->name_off, true)) {
4434 		btf_verifier_log_type(env, t, "Invalid name");
4435 		return -EINVAL;
4436 	}
4437 
4438 	/* A var cannot be in type void */
4439 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4440 		btf_verifier_log_type(env, t, "Invalid type_id");
4441 		return -EINVAL;
4442 	}
4443 
4444 	var = btf_type_var(t);
4445 	if (var->linkage != BTF_VAR_STATIC &&
4446 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4447 		btf_verifier_log_type(env, t, "Linkage not supported");
4448 		return -EINVAL;
4449 	}
4450 
4451 	btf_verifier_log_type(env, t, NULL);
4452 
4453 	return meta_needed;
4454 }
4455 
4456 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4457 {
4458 	const struct btf_var *var = btf_type_var(t);
4459 
4460 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4461 }
4462 
4463 static const struct btf_kind_operations var_ops = {
4464 	.check_meta		= btf_var_check_meta,
4465 	.resolve		= btf_var_resolve,
4466 	.check_member		= btf_df_check_member,
4467 	.check_kflag_member	= btf_df_check_kflag_member,
4468 	.log_details		= btf_var_log,
4469 	.show			= btf_var_show,
4470 };
4471 
4472 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4473 				  const struct btf_type *t,
4474 				  u32 meta_left)
4475 {
4476 	const struct btf_var_secinfo *vsi;
4477 	u64 last_vsi_end_off = 0, sum = 0;
4478 	u32 i, meta_needed;
4479 
4480 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4481 	if (meta_left < meta_needed) {
4482 		btf_verifier_log_basic(env, t,
4483 				       "meta_left:%u meta_needed:%u",
4484 				       meta_left, meta_needed);
4485 		return -EINVAL;
4486 	}
4487 
4488 	if (!t->size) {
4489 		btf_verifier_log_type(env, t, "size == 0");
4490 		return -EINVAL;
4491 	}
4492 
4493 	if (btf_type_kflag(t)) {
4494 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4495 		return -EINVAL;
4496 	}
4497 
4498 	if (!t->name_off ||
4499 	    !btf_name_valid_section(env->btf, t->name_off)) {
4500 		btf_verifier_log_type(env, t, "Invalid name");
4501 		return -EINVAL;
4502 	}
4503 
4504 	btf_verifier_log_type(env, t, NULL);
4505 
4506 	for_each_vsi(i, t, vsi) {
4507 		/* A var cannot be in type void */
4508 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4509 			btf_verifier_log_vsi(env, t, vsi,
4510 					     "Invalid type_id");
4511 			return -EINVAL;
4512 		}
4513 
4514 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4515 			btf_verifier_log_vsi(env, t, vsi,
4516 					     "Invalid offset");
4517 			return -EINVAL;
4518 		}
4519 
4520 		if (!vsi->size || vsi->size > t->size) {
4521 			btf_verifier_log_vsi(env, t, vsi,
4522 					     "Invalid size");
4523 			return -EINVAL;
4524 		}
4525 
4526 		last_vsi_end_off = vsi->offset + vsi->size;
4527 		if (last_vsi_end_off > t->size) {
4528 			btf_verifier_log_vsi(env, t, vsi,
4529 					     "Invalid offset+size");
4530 			return -EINVAL;
4531 		}
4532 
4533 		btf_verifier_log_vsi(env, t, vsi, NULL);
4534 		sum += vsi->size;
4535 	}
4536 
4537 	if (t->size < sum) {
4538 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4539 		return -EINVAL;
4540 	}
4541 
4542 	return meta_needed;
4543 }
4544 
4545 static int btf_datasec_resolve(struct btf_verifier_env *env,
4546 			       const struct resolve_vertex *v)
4547 {
4548 	const struct btf_var_secinfo *vsi;
4549 	struct btf *btf = env->btf;
4550 	u16 i;
4551 
4552 	env->resolve_mode = RESOLVE_TBD;
4553 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4554 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4555 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4556 								 var_type_id);
4557 		if (!var_type || !btf_type_is_var(var_type)) {
4558 			btf_verifier_log_vsi(env, v->t, vsi,
4559 					     "Not a VAR kind member");
4560 			return -EINVAL;
4561 		}
4562 
4563 		if (!env_type_is_resolve_sink(env, var_type) &&
4564 		    !env_type_is_resolved(env, var_type_id)) {
4565 			env_stack_set_next_member(env, i + 1);
4566 			return env_stack_push(env, var_type, var_type_id);
4567 		}
4568 
4569 		type_id = var_type->type;
4570 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4571 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4572 			return -EINVAL;
4573 		}
4574 
4575 		if (vsi->size < type_size) {
4576 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4577 			return -EINVAL;
4578 		}
4579 	}
4580 
4581 	env_stack_pop_resolved(env, 0, 0);
4582 	return 0;
4583 }
4584 
4585 static void btf_datasec_log(struct btf_verifier_env *env,
4586 			    const struct btf_type *t)
4587 {
4588 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4589 }
4590 
4591 static void btf_datasec_show(const struct btf *btf,
4592 			     const struct btf_type *t, u32 type_id,
4593 			     void *data, u8 bits_offset,
4594 			     struct btf_show *show)
4595 {
4596 	const struct btf_var_secinfo *vsi;
4597 	const struct btf_type *var;
4598 	u32 i;
4599 
4600 	if (!btf_show_start_type(show, t, type_id, data))
4601 		return;
4602 
4603 	btf_show_type_value(show, "section (\"%s\") = {",
4604 			    __btf_name_by_offset(btf, t->name_off));
4605 	for_each_vsi(i, t, vsi) {
4606 		var = btf_type_by_id(btf, vsi->type);
4607 		if (i)
4608 			btf_show(show, ",");
4609 		btf_type_ops(var)->show(btf, var, vsi->type,
4610 					data + vsi->offset, bits_offset, show);
4611 	}
4612 	btf_show_end_type(show);
4613 }
4614 
4615 static const struct btf_kind_operations datasec_ops = {
4616 	.check_meta		= btf_datasec_check_meta,
4617 	.resolve		= btf_datasec_resolve,
4618 	.check_member		= btf_df_check_member,
4619 	.check_kflag_member	= btf_df_check_kflag_member,
4620 	.log_details		= btf_datasec_log,
4621 	.show			= btf_datasec_show,
4622 };
4623 
4624 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4625 				const struct btf_type *t,
4626 				u32 meta_left)
4627 {
4628 	if (btf_type_vlen(t)) {
4629 		btf_verifier_log_type(env, t, "vlen != 0");
4630 		return -EINVAL;
4631 	}
4632 
4633 	if (btf_type_kflag(t)) {
4634 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4635 		return -EINVAL;
4636 	}
4637 
4638 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4639 	    t->size != 16) {
4640 		btf_verifier_log_type(env, t, "Invalid type_size");
4641 		return -EINVAL;
4642 	}
4643 
4644 	btf_verifier_log_type(env, t, NULL);
4645 
4646 	return 0;
4647 }
4648 
4649 static int btf_float_check_member(struct btf_verifier_env *env,
4650 				  const struct btf_type *struct_type,
4651 				  const struct btf_member *member,
4652 				  const struct btf_type *member_type)
4653 {
4654 	u64 start_offset_bytes;
4655 	u64 end_offset_bytes;
4656 	u64 misalign_bits;
4657 	u64 align_bytes;
4658 	u64 align_bits;
4659 
4660 	/* Different architectures have different alignment requirements, so
4661 	 * here we check only for the reasonable minimum. This way we ensure
4662 	 * that types after CO-RE can pass the kernel BTF verifier.
4663 	 */
4664 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4665 	align_bits = align_bytes * BITS_PER_BYTE;
4666 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4667 	if (misalign_bits) {
4668 		btf_verifier_log_member(env, struct_type, member,
4669 					"Member is not properly aligned");
4670 		return -EINVAL;
4671 	}
4672 
4673 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4674 	end_offset_bytes = start_offset_bytes + member_type->size;
4675 	if (end_offset_bytes > struct_type->size) {
4676 		btf_verifier_log_member(env, struct_type, member,
4677 					"Member exceeds struct_size");
4678 		return -EINVAL;
4679 	}
4680 
4681 	return 0;
4682 }
4683 
4684 static void btf_float_log(struct btf_verifier_env *env,
4685 			  const struct btf_type *t)
4686 {
4687 	btf_verifier_log(env, "size=%u", t->size);
4688 }
4689 
4690 static const struct btf_kind_operations float_ops = {
4691 	.check_meta = btf_float_check_meta,
4692 	.resolve = btf_df_resolve,
4693 	.check_member = btf_float_check_member,
4694 	.check_kflag_member = btf_generic_check_kflag_member,
4695 	.log_details = btf_float_log,
4696 	.show = btf_df_show,
4697 };
4698 
4699 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4700 			      const struct btf_type *t,
4701 			      u32 meta_left)
4702 {
4703 	const struct btf_decl_tag *tag;
4704 	u32 meta_needed = sizeof(*tag);
4705 	s32 component_idx;
4706 	const char *value;
4707 
4708 	if (meta_left < meta_needed) {
4709 		btf_verifier_log_basic(env, t,
4710 				       "meta_left:%u meta_needed:%u",
4711 				       meta_left, meta_needed);
4712 		return -EINVAL;
4713 	}
4714 
4715 	value = btf_name_by_offset(env->btf, t->name_off);
4716 	if (!value || !value[0]) {
4717 		btf_verifier_log_type(env, t, "Invalid value");
4718 		return -EINVAL;
4719 	}
4720 
4721 	if (btf_type_vlen(t)) {
4722 		btf_verifier_log_type(env, t, "vlen != 0");
4723 		return -EINVAL;
4724 	}
4725 
4726 	if (btf_type_kflag(t)) {
4727 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4728 		return -EINVAL;
4729 	}
4730 
4731 	component_idx = btf_type_decl_tag(t)->component_idx;
4732 	if (component_idx < -1) {
4733 		btf_verifier_log_type(env, t, "Invalid component_idx");
4734 		return -EINVAL;
4735 	}
4736 
4737 	btf_verifier_log_type(env, t, NULL);
4738 
4739 	return meta_needed;
4740 }
4741 
4742 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4743 			   const struct resolve_vertex *v)
4744 {
4745 	const struct btf_type *next_type;
4746 	const struct btf_type *t = v->t;
4747 	u32 next_type_id = t->type;
4748 	struct btf *btf = env->btf;
4749 	s32 component_idx;
4750 	u32 vlen;
4751 
4752 	next_type = btf_type_by_id(btf, next_type_id);
4753 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4754 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4755 		return -EINVAL;
4756 	}
4757 
4758 	if (!env_type_is_resolve_sink(env, next_type) &&
4759 	    !env_type_is_resolved(env, next_type_id))
4760 		return env_stack_push(env, next_type, next_type_id);
4761 
4762 	component_idx = btf_type_decl_tag(t)->component_idx;
4763 	if (component_idx != -1) {
4764 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4765 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4766 			return -EINVAL;
4767 		}
4768 
4769 		if (btf_type_is_struct(next_type)) {
4770 			vlen = btf_type_vlen(next_type);
4771 		} else {
4772 			/* next_type should be a function */
4773 			next_type = btf_type_by_id(btf, next_type->type);
4774 			vlen = btf_type_vlen(next_type);
4775 		}
4776 
4777 		if ((u32)component_idx >= vlen) {
4778 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4779 			return -EINVAL;
4780 		}
4781 	}
4782 
4783 	env_stack_pop_resolved(env, next_type_id, 0);
4784 
4785 	return 0;
4786 }
4787 
4788 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4789 {
4790 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4791 			 btf_type_decl_tag(t)->component_idx);
4792 }
4793 
4794 static const struct btf_kind_operations decl_tag_ops = {
4795 	.check_meta = btf_decl_tag_check_meta,
4796 	.resolve = btf_decl_tag_resolve,
4797 	.check_member = btf_df_check_member,
4798 	.check_kflag_member = btf_df_check_kflag_member,
4799 	.log_details = btf_decl_tag_log,
4800 	.show = btf_df_show,
4801 };
4802 
4803 static int btf_func_proto_check(struct btf_verifier_env *env,
4804 				const struct btf_type *t)
4805 {
4806 	const struct btf_type *ret_type;
4807 	const struct btf_param *args;
4808 	const struct btf *btf;
4809 	u16 nr_args, i;
4810 	int err;
4811 
4812 	btf = env->btf;
4813 	args = (const struct btf_param *)(t + 1);
4814 	nr_args = btf_type_vlen(t);
4815 
4816 	/* Check func return type which could be "void" (t->type == 0) */
4817 	if (t->type) {
4818 		u32 ret_type_id = t->type;
4819 
4820 		ret_type = btf_type_by_id(btf, ret_type_id);
4821 		if (!ret_type) {
4822 			btf_verifier_log_type(env, t, "Invalid return type");
4823 			return -EINVAL;
4824 		}
4825 
4826 		if (btf_type_is_resolve_source_only(ret_type)) {
4827 			btf_verifier_log_type(env, t, "Invalid return type");
4828 			return -EINVAL;
4829 		}
4830 
4831 		if (btf_type_needs_resolve(ret_type) &&
4832 		    !env_type_is_resolved(env, ret_type_id)) {
4833 			err = btf_resolve(env, ret_type, ret_type_id);
4834 			if (err)
4835 				return err;
4836 		}
4837 
4838 		/* Ensure the return type is a type that has a size */
4839 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4840 			btf_verifier_log_type(env, t, "Invalid return type");
4841 			return -EINVAL;
4842 		}
4843 	}
4844 
4845 	if (!nr_args)
4846 		return 0;
4847 
4848 	/* Last func arg type_id could be 0 if it is a vararg */
4849 	if (!args[nr_args - 1].type) {
4850 		if (args[nr_args - 1].name_off) {
4851 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4852 					      nr_args);
4853 			return -EINVAL;
4854 		}
4855 		nr_args--;
4856 	}
4857 
4858 	for (i = 0; i < nr_args; i++) {
4859 		const struct btf_type *arg_type;
4860 		u32 arg_type_id;
4861 
4862 		arg_type_id = args[i].type;
4863 		arg_type = btf_type_by_id(btf, arg_type_id);
4864 		if (!arg_type) {
4865 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4866 			return -EINVAL;
4867 		}
4868 
4869 		if (btf_type_is_resolve_source_only(arg_type)) {
4870 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4871 			return -EINVAL;
4872 		}
4873 
4874 		if (args[i].name_off &&
4875 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4876 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4877 			btf_verifier_log_type(env, t,
4878 					      "Invalid arg#%u", i + 1);
4879 			return -EINVAL;
4880 		}
4881 
4882 		if (btf_type_needs_resolve(arg_type) &&
4883 		    !env_type_is_resolved(env, arg_type_id)) {
4884 			err = btf_resolve(env, arg_type, arg_type_id);
4885 			if (err)
4886 				return err;
4887 		}
4888 
4889 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4890 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4891 			return -EINVAL;
4892 		}
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 static int btf_func_check(struct btf_verifier_env *env,
4899 			  const struct btf_type *t)
4900 {
4901 	const struct btf_type *proto_type;
4902 	const struct btf_param *args;
4903 	const struct btf *btf;
4904 	u16 nr_args, i;
4905 
4906 	btf = env->btf;
4907 	proto_type = btf_type_by_id(btf, t->type);
4908 
4909 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4910 		btf_verifier_log_type(env, t, "Invalid type_id");
4911 		return -EINVAL;
4912 	}
4913 
4914 	args = (const struct btf_param *)(proto_type + 1);
4915 	nr_args = btf_type_vlen(proto_type);
4916 	for (i = 0; i < nr_args; i++) {
4917 		if (!args[i].name_off && args[i].type) {
4918 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4919 			return -EINVAL;
4920 		}
4921 	}
4922 
4923 	return 0;
4924 }
4925 
4926 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4927 	[BTF_KIND_INT] = &int_ops,
4928 	[BTF_KIND_PTR] = &ptr_ops,
4929 	[BTF_KIND_ARRAY] = &array_ops,
4930 	[BTF_KIND_STRUCT] = &struct_ops,
4931 	[BTF_KIND_UNION] = &struct_ops,
4932 	[BTF_KIND_ENUM] = &enum_ops,
4933 	[BTF_KIND_FWD] = &fwd_ops,
4934 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4935 	[BTF_KIND_VOLATILE] = &modifier_ops,
4936 	[BTF_KIND_CONST] = &modifier_ops,
4937 	[BTF_KIND_RESTRICT] = &modifier_ops,
4938 	[BTF_KIND_FUNC] = &func_ops,
4939 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4940 	[BTF_KIND_VAR] = &var_ops,
4941 	[BTF_KIND_DATASEC] = &datasec_ops,
4942 	[BTF_KIND_FLOAT] = &float_ops,
4943 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4944 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4945 	[BTF_KIND_ENUM64] = &enum64_ops,
4946 };
4947 
4948 static s32 btf_check_meta(struct btf_verifier_env *env,
4949 			  const struct btf_type *t,
4950 			  u32 meta_left)
4951 {
4952 	u32 saved_meta_left = meta_left;
4953 	s32 var_meta_size;
4954 
4955 	if (meta_left < sizeof(*t)) {
4956 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4957 				 env->log_type_id, meta_left, sizeof(*t));
4958 		return -EINVAL;
4959 	}
4960 	meta_left -= sizeof(*t);
4961 
4962 	if (t->info & ~BTF_INFO_MASK) {
4963 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4964 				 env->log_type_id, t->info);
4965 		return -EINVAL;
4966 	}
4967 
4968 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4969 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4970 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4971 				 env->log_type_id, BTF_INFO_KIND(t->info));
4972 		return -EINVAL;
4973 	}
4974 
4975 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4976 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4977 				 env->log_type_id, t->name_off);
4978 		return -EINVAL;
4979 	}
4980 
4981 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4982 	if (var_meta_size < 0)
4983 		return var_meta_size;
4984 
4985 	meta_left -= var_meta_size;
4986 
4987 	return saved_meta_left - meta_left;
4988 }
4989 
4990 static int btf_check_all_metas(struct btf_verifier_env *env)
4991 {
4992 	struct btf *btf = env->btf;
4993 	struct btf_header *hdr;
4994 	void *cur, *end;
4995 
4996 	hdr = &btf->hdr;
4997 	cur = btf->nohdr_data + hdr->type_off;
4998 	end = cur + hdr->type_len;
4999 
5000 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5001 	while (cur < end) {
5002 		struct btf_type *t = cur;
5003 		s32 meta_size;
5004 
5005 		meta_size = btf_check_meta(env, t, end - cur);
5006 		if (meta_size < 0)
5007 			return meta_size;
5008 
5009 		btf_add_type(env, t);
5010 		cur += meta_size;
5011 		env->log_type_id++;
5012 	}
5013 
5014 	return 0;
5015 }
5016 
5017 static bool btf_resolve_valid(struct btf_verifier_env *env,
5018 			      const struct btf_type *t,
5019 			      u32 type_id)
5020 {
5021 	struct btf *btf = env->btf;
5022 
5023 	if (!env_type_is_resolved(env, type_id))
5024 		return false;
5025 
5026 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5027 		return !btf_resolved_type_id(btf, type_id) &&
5028 		       !btf_resolved_type_size(btf, type_id);
5029 
5030 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5031 		return btf_resolved_type_id(btf, type_id) &&
5032 		       !btf_resolved_type_size(btf, type_id);
5033 
5034 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5035 	    btf_type_is_var(t)) {
5036 		t = btf_type_id_resolve(btf, &type_id);
5037 		return t &&
5038 		       !btf_type_is_modifier(t) &&
5039 		       !btf_type_is_var(t) &&
5040 		       !btf_type_is_datasec(t);
5041 	}
5042 
5043 	if (btf_type_is_array(t)) {
5044 		const struct btf_array *array = btf_type_array(t);
5045 		const struct btf_type *elem_type;
5046 		u32 elem_type_id = array->type;
5047 		u32 elem_size;
5048 
5049 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5050 		return elem_type && !btf_type_is_modifier(elem_type) &&
5051 			(array->nelems * elem_size ==
5052 			 btf_resolved_type_size(btf, type_id));
5053 	}
5054 
5055 	return false;
5056 }
5057 
5058 static int btf_resolve(struct btf_verifier_env *env,
5059 		       const struct btf_type *t, u32 type_id)
5060 {
5061 	u32 save_log_type_id = env->log_type_id;
5062 	const struct resolve_vertex *v;
5063 	int err = 0;
5064 
5065 	env->resolve_mode = RESOLVE_TBD;
5066 	env_stack_push(env, t, type_id);
5067 	while (!err && (v = env_stack_peak(env))) {
5068 		env->log_type_id = v->type_id;
5069 		err = btf_type_ops(v->t)->resolve(env, v);
5070 	}
5071 
5072 	env->log_type_id = type_id;
5073 	if (err == -E2BIG) {
5074 		btf_verifier_log_type(env, t,
5075 				      "Exceeded max resolving depth:%u",
5076 				      MAX_RESOLVE_DEPTH);
5077 	} else if (err == -EEXIST) {
5078 		btf_verifier_log_type(env, t, "Loop detected");
5079 	}
5080 
5081 	/* Final sanity check */
5082 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5083 		btf_verifier_log_type(env, t, "Invalid resolve state");
5084 		err = -EINVAL;
5085 	}
5086 
5087 	env->log_type_id = save_log_type_id;
5088 	return err;
5089 }
5090 
5091 static int btf_check_all_types(struct btf_verifier_env *env)
5092 {
5093 	struct btf *btf = env->btf;
5094 	const struct btf_type *t;
5095 	u32 type_id, i;
5096 	int err;
5097 
5098 	err = env_resolve_init(env);
5099 	if (err)
5100 		return err;
5101 
5102 	env->phase++;
5103 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5104 		type_id = btf->start_id + i;
5105 		t = btf_type_by_id(btf, type_id);
5106 
5107 		env->log_type_id = type_id;
5108 		if (btf_type_needs_resolve(t) &&
5109 		    !env_type_is_resolved(env, type_id)) {
5110 			err = btf_resolve(env, t, type_id);
5111 			if (err)
5112 				return err;
5113 		}
5114 
5115 		if (btf_type_is_func_proto(t)) {
5116 			err = btf_func_proto_check(env, t);
5117 			if (err)
5118 				return err;
5119 		}
5120 	}
5121 
5122 	return 0;
5123 }
5124 
5125 static int btf_parse_type_sec(struct btf_verifier_env *env)
5126 {
5127 	const struct btf_header *hdr = &env->btf->hdr;
5128 	int err;
5129 
5130 	/* Type section must align to 4 bytes */
5131 	if (hdr->type_off & (sizeof(u32) - 1)) {
5132 		btf_verifier_log(env, "Unaligned type_off");
5133 		return -EINVAL;
5134 	}
5135 
5136 	if (!env->btf->base_btf && !hdr->type_len) {
5137 		btf_verifier_log(env, "No type found");
5138 		return -EINVAL;
5139 	}
5140 
5141 	err = btf_check_all_metas(env);
5142 	if (err)
5143 		return err;
5144 
5145 	return btf_check_all_types(env);
5146 }
5147 
5148 static int btf_parse_str_sec(struct btf_verifier_env *env)
5149 {
5150 	const struct btf_header *hdr;
5151 	struct btf *btf = env->btf;
5152 	const char *start, *end;
5153 
5154 	hdr = &btf->hdr;
5155 	start = btf->nohdr_data + hdr->str_off;
5156 	end = start + hdr->str_len;
5157 
5158 	if (end != btf->data + btf->data_size) {
5159 		btf_verifier_log(env, "String section is not at the end");
5160 		return -EINVAL;
5161 	}
5162 
5163 	btf->strings = start;
5164 
5165 	if (btf->base_btf && !hdr->str_len)
5166 		return 0;
5167 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5168 		btf_verifier_log(env, "Invalid string section");
5169 		return -EINVAL;
5170 	}
5171 	if (!btf->base_btf && start[0]) {
5172 		btf_verifier_log(env, "Invalid string section");
5173 		return -EINVAL;
5174 	}
5175 
5176 	return 0;
5177 }
5178 
5179 static const size_t btf_sec_info_offset[] = {
5180 	offsetof(struct btf_header, type_off),
5181 	offsetof(struct btf_header, str_off),
5182 };
5183 
5184 static int btf_sec_info_cmp(const void *a, const void *b)
5185 {
5186 	const struct btf_sec_info *x = a;
5187 	const struct btf_sec_info *y = b;
5188 
5189 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5190 }
5191 
5192 static int btf_check_sec_info(struct btf_verifier_env *env,
5193 			      u32 btf_data_size)
5194 {
5195 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5196 	u32 total, expected_total, i;
5197 	const struct btf_header *hdr;
5198 	const struct btf *btf;
5199 
5200 	btf = env->btf;
5201 	hdr = &btf->hdr;
5202 
5203 	/* Populate the secs from hdr */
5204 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5205 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5206 						   btf_sec_info_offset[i]);
5207 
5208 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5209 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5210 
5211 	/* Check for gaps and overlap among sections */
5212 	total = 0;
5213 	expected_total = btf_data_size - hdr->hdr_len;
5214 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5215 		if (expected_total < secs[i].off) {
5216 			btf_verifier_log(env, "Invalid section offset");
5217 			return -EINVAL;
5218 		}
5219 		if (total < secs[i].off) {
5220 			/* gap */
5221 			btf_verifier_log(env, "Unsupported section found");
5222 			return -EINVAL;
5223 		}
5224 		if (total > secs[i].off) {
5225 			btf_verifier_log(env, "Section overlap found");
5226 			return -EINVAL;
5227 		}
5228 		if (expected_total - total < secs[i].len) {
5229 			btf_verifier_log(env,
5230 					 "Total section length too long");
5231 			return -EINVAL;
5232 		}
5233 		total += secs[i].len;
5234 	}
5235 
5236 	/* There is data other than hdr and known sections */
5237 	if (expected_total != total) {
5238 		btf_verifier_log(env, "Unsupported section found");
5239 		return -EINVAL;
5240 	}
5241 
5242 	return 0;
5243 }
5244 
5245 static int btf_parse_hdr(struct btf_verifier_env *env)
5246 {
5247 	u32 hdr_len, hdr_copy, btf_data_size;
5248 	const struct btf_header *hdr;
5249 	struct btf *btf;
5250 
5251 	btf = env->btf;
5252 	btf_data_size = btf->data_size;
5253 
5254 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5255 		btf_verifier_log(env, "hdr_len not found");
5256 		return -EINVAL;
5257 	}
5258 
5259 	hdr = btf->data;
5260 	hdr_len = hdr->hdr_len;
5261 	if (btf_data_size < hdr_len) {
5262 		btf_verifier_log(env, "btf_header not found");
5263 		return -EINVAL;
5264 	}
5265 
5266 	/* Ensure the unsupported header fields are zero */
5267 	if (hdr_len > sizeof(btf->hdr)) {
5268 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5269 		u8 *end = btf->data + hdr_len;
5270 
5271 		for (; expected_zero < end; expected_zero++) {
5272 			if (*expected_zero) {
5273 				btf_verifier_log(env, "Unsupported btf_header");
5274 				return -E2BIG;
5275 			}
5276 		}
5277 	}
5278 
5279 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5280 	memcpy(&btf->hdr, btf->data, hdr_copy);
5281 
5282 	hdr = &btf->hdr;
5283 
5284 	btf_verifier_log_hdr(env, btf_data_size);
5285 
5286 	if (hdr->magic != BTF_MAGIC) {
5287 		btf_verifier_log(env, "Invalid magic");
5288 		return -EINVAL;
5289 	}
5290 
5291 	if (hdr->version != BTF_VERSION) {
5292 		btf_verifier_log(env, "Unsupported version");
5293 		return -ENOTSUPP;
5294 	}
5295 
5296 	if (hdr->flags) {
5297 		btf_verifier_log(env, "Unsupported flags");
5298 		return -ENOTSUPP;
5299 	}
5300 
5301 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5302 		btf_verifier_log(env, "No data");
5303 		return -EINVAL;
5304 	}
5305 
5306 	return btf_check_sec_info(env, btf_data_size);
5307 }
5308 
5309 static const char *alloc_obj_fields[] = {
5310 	"bpf_spin_lock",
5311 	"bpf_list_head",
5312 	"bpf_list_node",
5313 	"bpf_rb_root",
5314 	"bpf_rb_node",
5315 	"bpf_refcount",
5316 };
5317 
5318 static struct btf_struct_metas *
5319 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5320 {
5321 	union {
5322 		struct btf_id_set set;
5323 		struct {
5324 			u32 _cnt;
5325 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5326 		} _arr;
5327 	} aof;
5328 	struct btf_struct_metas *tab = NULL;
5329 	int i, n, id, ret;
5330 
5331 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5332 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5333 
5334 	memset(&aof, 0, sizeof(aof));
5335 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5336 		/* Try to find whether this special type exists in user BTF, and
5337 		 * if so remember its ID so we can easily find it among members
5338 		 * of structs that we iterate in the next loop.
5339 		 */
5340 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5341 		if (id < 0)
5342 			continue;
5343 		aof.set.ids[aof.set.cnt++] = id;
5344 	}
5345 
5346 	if (!aof.set.cnt)
5347 		return NULL;
5348 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5349 
5350 	n = btf_nr_types(btf);
5351 	for (i = 1; i < n; i++) {
5352 		struct btf_struct_metas *new_tab;
5353 		const struct btf_member *member;
5354 		struct btf_struct_meta *type;
5355 		struct btf_record *record;
5356 		const struct btf_type *t;
5357 		int j, tab_cnt;
5358 
5359 		t = btf_type_by_id(btf, i);
5360 		if (!t) {
5361 			ret = -EINVAL;
5362 			goto free;
5363 		}
5364 		if (!__btf_type_is_struct(t))
5365 			continue;
5366 
5367 		cond_resched();
5368 
5369 		for_each_member(j, t, member) {
5370 			if (btf_id_set_contains(&aof.set, member->type))
5371 				goto parse;
5372 		}
5373 		continue;
5374 	parse:
5375 		tab_cnt = tab ? tab->cnt : 0;
5376 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5377 				   GFP_KERNEL | __GFP_NOWARN);
5378 		if (!new_tab) {
5379 			ret = -ENOMEM;
5380 			goto free;
5381 		}
5382 		if (!tab)
5383 			new_tab->cnt = 0;
5384 		tab = new_tab;
5385 
5386 		type = &tab->types[tab->cnt];
5387 		type->btf_id = i;
5388 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5389 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5390 		/* The record cannot be unset, treat it as an error if so */
5391 		if (IS_ERR_OR_NULL(record)) {
5392 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5393 			goto free;
5394 		}
5395 		type->record = record;
5396 		tab->cnt++;
5397 	}
5398 	return tab;
5399 free:
5400 	btf_struct_metas_free(tab);
5401 	return ERR_PTR(ret);
5402 }
5403 
5404 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5405 {
5406 	struct btf_struct_metas *tab;
5407 
5408 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5409 	tab = btf->struct_meta_tab;
5410 	if (!tab)
5411 		return NULL;
5412 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5413 }
5414 
5415 static int btf_check_type_tags(struct btf_verifier_env *env,
5416 			       struct btf *btf, int start_id)
5417 {
5418 	int i, n, good_id = start_id - 1;
5419 	bool in_tags;
5420 
5421 	n = btf_nr_types(btf);
5422 	for (i = start_id; i < n; i++) {
5423 		const struct btf_type *t;
5424 		int chain_limit = 32;
5425 		u32 cur_id = i;
5426 
5427 		t = btf_type_by_id(btf, i);
5428 		if (!t)
5429 			return -EINVAL;
5430 		if (!btf_type_is_modifier(t))
5431 			continue;
5432 
5433 		cond_resched();
5434 
5435 		in_tags = btf_type_is_type_tag(t);
5436 		while (btf_type_is_modifier(t)) {
5437 			if (!chain_limit--) {
5438 				btf_verifier_log(env, "Max chain length or cycle detected");
5439 				return -ELOOP;
5440 			}
5441 			if (btf_type_is_type_tag(t)) {
5442 				if (!in_tags) {
5443 					btf_verifier_log(env, "Type tags don't precede modifiers");
5444 					return -EINVAL;
5445 				}
5446 			} else if (in_tags) {
5447 				in_tags = false;
5448 			}
5449 			if (cur_id <= good_id)
5450 				break;
5451 			/* Move to next type */
5452 			cur_id = t->type;
5453 			t = btf_type_by_id(btf, cur_id);
5454 			if (!t)
5455 				return -EINVAL;
5456 		}
5457 		good_id = i;
5458 	}
5459 	return 0;
5460 }
5461 
5462 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5463 {
5464 	u32 log_true_size;
5465 	int err;
5466 
5467 	err = bpf_vlog_finalize(log, &log_true_size);
5468 
5469 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5470 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5471 				  &log_true_size, sizeof(log_true_size)))
5472 		err = -EFAULT;
5473 
5474 	return err;
5475 }
5476 
5477 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5478 {
5479 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5480 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5481 	struct btf_struct_metas *struct_meta_tab;
5482 	struct btf_verifier_env *env = NULL;
5483 	struct btf *btf = NULL;
5484 	u8 *data;
5485 	int err, ret;
5486 
5487 	if (attr->btf_size > BTF_MAX_SIZE)
5488 		return ERR_PTR(-E2BIG);
5489 
5490 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5491 	if (!env)
5492 		return ERR_PTR(-ENOMEM);
5493 
5494 	/* user could have requested verbose verifier output
5495 	 * and supplied buffer to store the verification trace
5496 	 */
5497 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5498 			    log_ubuf, attr->btf_log_size);
5499 	if (err)
5500 		goto errout_free;
5501 
5502 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5503 	if (!btf) {
5504 		err = -ENOMEM;
5505 		goto errout;
5506 	}
5507 	env->btf = btf;
5508 
5509 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5510 	if (!data) {
5511 		err = -ENOMEM;
5512 		goto errout;
5513 	}
5514 
5515 	btf->data = data;
5516 	btf->data_size = attr->btf_size;
5517 
5518 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5519 		err = -EFAULT;
5520 		goto errout;
5521 	}
5522 
5523 	err = btf_parse_hdr(env);
5524 	if (err)
5525 		goto errout;
5526 
5527 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5528 
5529 	err = btf_parse_str_sec(env);
5530 	if (err)
5531 		goto errout;
5532 
5533 	err = btf_parse_type_sec(env);
5534 	if (err)
5535 		goto errout;
5536 
5537 	err = btf_check_type_tags(env, btf, 1);
5538 	if (err)
5539 		goto errout;
5540 
5541 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5542 	if (IS_ERR(struct_meta_tab)) {
5543 		err = PTR_ERR(struct_meta_tab);
5544 		goto errout;
5545 	}
5546 	btf->struct_meta_tab = struct_meta_tab;
5547 
5548 	if (struct_meta_tab) {
5549 		int i;
5550 
5551 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5552 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5553 			if (err < 0)
5554 				goto errout_meta;
5555 		}
5556 	}
5557 
5558 	err = finalize_log(&env->log, uattr, uattr_size);
5559 	if (err)
5560 		goto errout_free;
5561 
5562 	btf_verifier_env_free(env);
5563 	refcount_set(&btf->refcnt, 1);
5564 	return btf;
5565 
5566 errout_meta:
5567 	btf_free_struct_meta_tab(btf);
5568 errout:
5569 	/* overwrite err with -ENOSPC or -EFAULT */
5570 	ret = finalize_log(&env->log, uattr, uattr_size);
5571 	if (ret)
5572 		err = ret;
5573 errout_free:
5574 	btf_verifier_env_free(env);
5575 	if (btf)
5576 		btf_free(btf);
5577 	return ERR_PTR(err);
5578 }
5579 
5580 extern char __weak __start_BTF[];
5581 extern char __weak __stop_BTF[];
5582 extern struct btf *btf_vmlinux;
5583 
5584 #define BPF_MAP_TYPE(_id, _ops)
5585 #define BPF_LINK_TYPE(_id, _name)
5586 static union {
5587 	struct bpf_ctx_convert {
5588 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5589 	prog_ctx_type _id##_prog; \
5590 	kern_ctx_type _id##_kern;
5591 #include <linux/bpf_types.h>
5592 #undef BPF_PROG_TYPE
5593 	} *__t;
5594 	/* 't' is written once under lock. Read many times. */
5595 	const struct btf_type *t;
5596 } bpf_ctx_convert;
5597 enum {
5598 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5599 	__ctx_convert##_id,
5600 #include <linux/bpf_types.h>
5601 #undef BPF_PROG_TYPE
5602 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5603 };
5604 static u8 bpf_ctx_convert_map[] = {
5605 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5606 	[_id] = __ctx_convert##_id,
5607 #include <linux/bpf_types.h>
5608 #undef BPF_PROG_TYPE
5609 	0, /* avoid empty array */
5610 };
5611 #undef BPF_MAP_TYPE
5612 #undef BPF_LINK_TYPE
5613 
5614 const struct btf_member *
5615 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5616 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5617 		      int arg)
5618 {
5619 	const struct btf_type *conv_struct;
5620 	const struct btf_type *ctx_struct;
5621 	const struct btf_member *ctx_type;
5622 	const char *tname, *ctx_tname;
5623 
5624 	conv_struct = bpf_ctx_convert.t;
5625 	if (!conv_struct) {
5626 		bpf_log(log, "btf_vmlinux is malformed\n");
5627 		return NULL;
5628 	}
5629 	t = btf_type_by_id(btf, t->type);
5630 	while (btf_type_is_modifier(t))
5631 		t = btf_type_by_id(btf, t->type);
5632 	if (!btf_type_is_struct(t)) {
5633 		/* Only pointer to struct is supported for now.
5634 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5635 		 * is not supported yet.
5636 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5637 		 */
5638 		return NULL;
5639 	}
5640 	tname = btf_name_by_offset(btf, t->name_off);
5641 	if (!tname) {
5642 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5643 		return NULL;
5644 	}
5645 	/* prog_type is valid bpf program type. No need for bounds check. */
5646 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5647 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5648 	 * Like 'struct __sk_buff'
5649 	 */
5650 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5651 	if (!ctx_struct)
5652 		/* should not happen */
5653 		return NULL;
5654 again:
5655 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5656 	if (!ctx_tname) {
5657 		/* should not happen */
5658 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5659 		return NULL;
5660 	}
5661 	/* only compare that prog's ctx type name is the same as
5662 	 * kernel expects. No need to compare field by field.
5663 	 * It's ok for bpf prog to do:
5664 	 * struct __sk_buff {};
5665 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5666 	 * { // no fields of skb are ever used }
5667 	 */
5668 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5669 		return ctx_type;
5670 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5671 		return ctx_type;
5672 	if (strcmp(ctx_tname, tname)) {
5673 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5674 		 * underlying struct and check name again
5675 		 */
5676 		if (!btf_type_is_modifier(ctx_struct))
5677 			return NULL;
5678 		while (btf_type_is_modifier(ctx_struct))
5679 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5680 		goto again;
5681 	}
5682 	return ctx_type;
5683 }
5684 
5685 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5686 				     struct btf *btf,
5687 				     const struct btf_type *t,
5688 				     enum bpf_prog_type prog_type,
5689 				     int arg)
5690 {
5691 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5692 
5693 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5694 	if (!prog_ctx_type)
5695 		return -ENOENT;
5696 	kern_ctx_type = prog_ctx_type + 1;
5697 	return kern_ctx_type->type;
5698 }
5699 
5700 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5701 {
5702 	const struct btf_member *kctx_member;
5703 	const struct btf_type *conv_struct;
5704 	const struct btf_type *kctx_type;
5705 	u32 kctx_type_id;
5706 
5707 	conv_struct = bpf_ctx_convert.t;
5708 	/* get member for kernel ctx type */
5709 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5710 	kctx_type_id = kctx_member->type;
5711 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5712 	if (!btf_type_is_struct(kctx_type)) {
5713 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5714 		return -EINVAL;
5715 	}
5716 
5717 	return kctx_type_id;
5718 }
5719 
5720 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5721 BTF_ID(struct, bpf_ctx_convert)
5722 
5723 struct btf *btf_parse_vmlinux(void)
5724 {
5725 	struct btf_verifier_env *env = NULL;
5726 	struct bpf_verifier_log *log;
5727 	struct btf *btf = NULL;
5728 	int err;
5729 
5730 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5731 	if (!env)
5732 		return ERR_PTR(-ENOMEM);
5733 
5734 	log = &env->log;
5735 	log->level = BPF_LOG_KERNEL;
5736 
5737 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5738 	if (!btf) {
5739 		err = -ENOMEM;
5740 		goto errout;
5741 	}
5742 	env->btf = btf;
5743 
5744 	btf->data = __start_BTF;
5745 	btf->data_size = __stop_BTF - __start_BTF;
5746 	btf->kernel_btf = true;
5747 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5748 
5749 	err = btf_parse_hdr(env);
5750 	if (err)
5751 		goto errout;
5752 
5753 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5754 
5755 	err = btf_parse_str_sec(env);
5756 	if (err)
5757 		goto errout;
5758 
5759 	err = btf_check_all_metas(env);
5760 	if (err)
5761 		goto errout;
5762 
5763 	err = btf_check_type_tags(env, btf, 1);
5764 	if (err)
5765 		goto errout;
5766 
5767 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5768 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5769 
5770 	bpf_struct_ops_init(btf, log);
5771 
5772 	refcount_set(&btf->refcnt, 1);
5773 
5774 	err = btf_alloc_id(btf);
5775 	if (err)
5776 		goto errout;
5777 
5778 	btf_verifier_env_free(env);
5779 	return btf;
5780 
5781 errout:
5782 	btf_verifier_env_free(env);
5783 	if (btf) {
5784 		kvfree(btf->types);
5785 		kfree(btf);
5786 	}
5787 	return ERR_PTR(err);
5788 }
5789 
5790 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5791 
5792 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5793 {
5794 	struct btf_verifier_env *env = NULL;
5795 	struct bpf_verifier_log *log;
5796 	struct btf *btf = NULL, *base_btf;
5797 	int err;
5798 
5799 	base_btf = bpf_get_btf_vmlinux();
5800 	if (IS_ERR(base_btf))
5801 		return base_btf;
5802 	if (!base_btf)
5803 		return ERR_PTR(-EINVAL);
5804 
5805 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5806 	if (!env)
5807 		return ERR_PTR(-ENOMEM);
5808 
5809 	log = &env->log;
5810 	log->level = BPF_LOG_KERNEL;
5811 
5812 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5813 	if (!btf) {
5814 		err = -ENOMEM;
5815 		goto errout;
5816 	}
5817 	env->btf = btf;
5818 
5819 	btf->base_btf = base_btf;
5820 	btf->start_id = base_btf->nr_types;
5821 	btf->start_str_off = base_btf->hdr.str_len;
5822 	btf->kernel_btf = true;
5823 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5824 
5825 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5826 	if (!btf->data) {
5827 		err = -ENOMEM;
5828 		goto errout;
5829 	}
5830 	memcpy(btf->data, data, data_size);
5831 	btf->data_size = data_size;
5832 
5833 	err = btf_parse_hdr(env);
5834 	if (err)
5835 		goto errout;
5836 
5837 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5838 
5839 	err = btf_parse_str_sec(env);
5840 	if (err)
5841 		goto errout;
5842 
5843 	err = btf_check_all_metas(env);
5844 	if (err)
5845 		goto errout;
5846 
5847 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5848 	if (err)
5849 		goto errout;
5850 
5851 	btf_verifier_env_free(env);
5852 	refcount_set(&btf->refcnt, 1);
5853 	return btf;
5854 
5855 errout:
5856 	btf_verifier_env_free(env);
5857 	if (btf) {
5858 		kvfree(btf->data);
5859 		kvfree(btf->types);
5860 		kfree(btf);
5861 	}
5862 	return ERR_PTR(err);
5863 }
5864 
5865 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5866 
5867 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5868 {
5869 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5870 
5871 	if (tgt_prog)
5872 		return tgt_prog->aux->btf;
5873 	else
5874 		return prog->aux->attach_btf;
5875 }
5876 
5877 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5878 {
5879 	/* skip modifiers */
5880 	t = btf_type_skip_modifiers(btf, t->type, NULL);
5881 
5882 	return btf_type_is_int(t);
5883 }
5884 
5885 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5886 			   int off)
5887 {
5888 	const struct btf_param *args;
5889 	const struct btf_type *t;
5890 	u32 offset = 0, nr_args;
5891 	int i;
5892 
5893 	if (!func_proto)
5894 		return off / 8;
5895 
5896 	nr_args = btf_type_vlen(func_proto);
5897 	args = (const struct btf_param *)(func_proto + 1);
5898 	for (i = 0; i < nr_args; i++) {
5899 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5900 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5901 		if (off < offset)
5902 			return i;
5903 	}
5904 
5905 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5906 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5907 	if (off < offset)
5908 		return nr_args;
5909 
5910 	return nr_args + 1;
5911 }
5912 
5913 static bool prog_args_trusted(const struct bpf_prog *prog)
5914 {
5915 	enum bpf_attach_type atype = prog->expected_attach_type;
5916 
5917 	switch (prog->type) {
5918 	case BPF_PROG_TYPE_TRACING:
5919 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5920 	case BPF_PROG_TYPE_LSM:
5921 		return bpf_lsm_is_trusted(prog);
5922 	case BPF_PROG_TYPE_STRUCT_OPS:
5923 		return true;
5924 	default:
5925 		return false;
5926 	}
5927 }
5928 
5929 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5930 		    const struct bpf_prog *prog,
5931 		    struct bpf_insn_access_aux *info)
5932 {
5933 	const struct btf_type *t = prog->aux->attach_func_proto;
5934 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5935 	struct btf *btf = bpf_prog_get_target_btf(prog);
5936 	const char *tname = prog->aux->attach_func_name;
5937 	struct bpf_verifier_log *log = info->log;
5938 	const struct btf_param *args;
5939 	const char *tag_value;
5940 	u32 nr_args, arg;
5941 	int i, ret;
5942 
5943 	if (off % 8) {
5944 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5945 			tname, off);
5946 		return false;
5947 	}
5948 	arg = get_ctx_arg_idx(btf, t, off);
5949 	args = (const struct btf_param *)(t + 1);
5950 	/* if (t == NULL) Fall back to default BPF prog with
5951 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5952 	 */
5953 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5954 	if (prog->aux->attach_btf_trace) {
5955 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5956 		args++;
5957 		nr_args--;
5958 	}
5959 
5960 	if (arg > nr_args) {
5961 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5962 			tname, arg + 1);
5963 		return false;
5964 	}
5965 
5966 	if (arg == nr_args) {
5967 		switch (prog->expected_attach_type) {
5968 		case BPF_LSM_CGROUP:
5969 		case BPF_LSM_MAC:
5970 		case BPF_TRACE_FEXIT:
5971 			/* When LSM programs are attached to void LSM hooks
5972 			 * they use FEXIT trampolines and when attached to
5973 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5974 			 *
5975 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5976 			 * the check:
5977 			 *
5978 			 *	if (ret_type != 'int')
5979 			 *		return -EINVAL;
5980 			 *
5981 			 * is _not_ done here. This is still safe as LSM hooks
5982 			 * have only void and int return types.
5983 			 */
5984 			if (!t)
5985 				return true;
5986 			t = btf_type_by_id(btf, t->type);
5987 			break;
5988 		case BPF_MODIFY_RETURN:
5989 			/* For now the BPF_MODIFY_RETURN can only be attached to
5990 			 * functions that return an int.
5991 			 */
5992 			if (!t)
5993 				return false;
5994 
5995 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5996 			if (!btf_type_is_small_int(t)) {
5997 				bpf_log(log,
5998 					"ret type %s not allowed for fmod_ret\n",
5999 					btf_type_str(t));
6000 				return false;
6001 			}
6002 			break;
6003 		default:
6004 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6005 				tname, arg + 1);
6006 			return false;
6007 		}
6008 	} else {
6009 		if (!t)
6010 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6011 			return true;
6012 		t = btf_type_by_id(btf, args[arg].type);
6013 	}
6014 
6015 	/* skip modifiers */
6016 	while (btf_type_is_modifier(t))
6017 		t = btf_type_by_id(btf, t->type);
6018 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6019 		/* accessing a scalar */
6020 		return true;
6021 	if (!btf_type_is_ptr(t)) {
6022 		bpf_log(log,
6023 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6024 			tname, arg,
6025 			__btf_name_by_offset(btf, t->name_off),
6026 			btf_type_str(t));
6027 		return false;
6028 	}
6029 
6030 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6031 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6032 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6033 		u32 type, flag;
6034 
6035 		type = base_type(ctx_arg_info->reg_type);
6036 		flag = type_flag(ctx_arg_info->reg_type);
6037 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6038 		    (flag & PTR_MAYBE_NULL)) {
6039 			info->reg_type = ctx_arg_info->reg_type;
6040 			return true;
6041 		}
6042 	}
6043 
6044 	if (t->type == 0)
6045 		/* This is a pointer to void.
6046 		 * It is the same as scalar from the verifier safety pov.
6047 		 * No further pointer walking is allowed.
6048 		 */
6049 		return true;
6050 
6051 	if (is_int_ptr(btf, t))
6052 		return true;
6053 
6054 	/* this is a pointer to another type */
6055 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6056 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6057 
6058 		if (ctx_arg_info->offset == off) {
6059 			if (!ctx_arg_info->btf_id) {
6060 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6061 				return false;
6062 			}
6063 
6064 			info->reg_type = ctx_arg_info->reg_type;
6065 			info->btf = btf_vmlinux;
6066 			info->btf_id = ctx_arg_info->btf_id;
6067 			return true;
6068 		}
6069 	}
6070 
6071 	info->reg_type = PTR_TO_BTF_ID;
6072 	if (prog_args_trusted(prog))
6073 		info->reg_type |= PTR_TRUSTED;
6074 
6075 	if (tgt_prog) {
6076 		enum bpf_prog_type tgt_type;
6077 
6078 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6079 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6080 		else
6081 			tgt_type = tgt_prog->type;
6082 
6083 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6084 		if (ret > 0) {
6085 			info->btf = btf_vmlinux;
6086 			info->btf_id = ret;
6087 			return true;
6088 		} else {
6089 			return false;
6090 		}
6091 	}
6092 
6093 	info->btf = btf;
6094 	info->btf_id = t->type;
6095 	t = btf_type_by_id(btf, t->type);
6096 
6097 	if (btf_type_is_type_tag(t)) {
6098 		tag_value = __btf_name_by_offset(btf, t->name_off);
6099 		if (strcmp(tag_value, "user") == 0)
6100 			info->reg_type |= MEM_USER;
6101 		if (strcmp(tag_value, "percpu") == 0)
6102 			info->reg_type |= MEM_PERCPU;
6103 	}
6104 
6105 	/* skip modifiers */
6106 	while (btf_type_is_modifier(t)) {
6107 		info->btf_id = t->type;
6108 		t = btf_type_by_id(btf, t->type);
6109 	}
6110 	if (!btf_type_is_struct(t)) {
6111 		bpf_log(log,
6112 			"func '%s' arg%d type %s is not a struct\n",
6113 			tname, arg, btf_type_str(t));
6114 		return false;
6115 	}
6116 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6117 		tname, arg, info->btf_id, btf_type_str(t),
6118 		__btf_name_by_offset(btf, t->name_off));
6119 	return true;
6120 }
6121 
6122 enum bpf_struct_walk_result {
6123 	/* < 0 error */
6124 	WALK_SCALAR = 0,
6125 	WALK_PTR,
6126 	WALK_STRUCT,
6127 };
6128 
6129 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6130 			   const struct btf_type *t, int off, int size,
6131 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6132 			   const char **field_name)
6133 {
6134 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6135 	const struct btf_type *mtype, *elem_type = NULL;
6136 	const struct btf_member *member;
6137 	const char *tname, *mname, *tag_value;
6138 	u32 vlen, elem_id, mid;
6139 
6140 	*flag = 0;
6141 again:
6142 	tname = __btf_name_by_offset(btf, t->name_off);
6143 	if (!btf_type_is_struct(t)) {
6144 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6145 		return -EINVAL;
6146 	}
6147 
6148 	vlen = btf_type_vlen(t);
6149 	if (off + size > t->size) {
6150 		/* If the last element is a variable size array, we may
6151 		 * need to relax the rule.
6152 		 */
6153 		struct btf_array *array_elem;
6154 
6155 		if (vlen == 0)
6156 			goto error;
6157 
6158 		member = btf_type_member(t) + vlen - 1;
6159 		mtype = btf_type_skip_modifiers(btf, member->type,
6160 						NULL);
6161 		if (!btf_type_is_array(mtype))
6162 			goto error;
6163 
6164 		array_elem = (struct btf_array *)(mtype + 1);
6165 		if (array_elem->nelems != 0)
6166 			goto error;
6167 
6168 		moff = __btf_member_bit_offset(t, member) / 8;
6169 		if (off < moff)
6170 			goto error;
6171 
6172 		/* allow structure and integer */
6173 		t = btf_type_skip_modifiers(btf, array_elem->type,
6174 					    NULL);
6175 
6176 		if (btf_type_is_int(t))
6177 			return WALK_SCALAR;
6178 
6179 		if (!btf_type_is_struct(t))
6180 			goto error;
6181 
6182 		off = (off - moff) % t->size;
6183 		goto again;
6184 
6185 error:
6186 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6187 			tname, off, size);
6188 		return -EACCES;
6189 	}
6190 
6191 	for_each_member(i, t, member) {
6192 		/* offset of the field in bytes */
6193 		moff = __btf_member_bit_offset(t, member) / 8;
6194 		if (off + size <= moff)
6195 			/* won't find anything, field is already too far */
6196 			break;
6197 
6198 		if (__btf_member_bitfield_size(t, member)) {
6199 			u32 end_bit = __btf_member_bit_offset(t, member) +
6200 				__btf_member_bitfield_size(t, member);
6201 
6202 			/* off <= moff instead of off == moff because clang
6203 			 * does not generate a BTF member for anonymous
6204 			 * bitfield like the ":16" here:
6205 			 * struct {
6206 			 *	int :16;
6207 			 *	int x:8;
6208 			 * };
6209 			 */
6210 			if (off <= moff &&
6211 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6212 				return WALK_SCALAR;
6213 
6214 			/* off may be accessing a following member
6215 			 *
6216 			 * or
6217 			 *
6218 			 * Doing partial access at either end of this
6219 			 * bitfield.  Continue on this case also to
6220 			 * treat it as not accessing this bitfield
6221 			 * and eventually error out as field not
6222 			 * found to keep it simple.
6223 			 * It could be relaxed if there was a legit
6224 			 * partial access case later.
6225 			 */
6226 			continue;
6227 		}
6228 
6229 		/* In case of "off" is pointing to holes of a struct */
6230 		if (off < moff)
6231 			break;
6232 
6233 		/* type of the field */
6234 		mid = member->type;
6235 		mtype = btf_type_by_id(btf, member->type);
6236 		mname = __btf_name_by_offset(btf, member->name_off);
6237 
6238 		mtype = __btf_resolve_size(btf, mtype, &msize,
6239 					   &elem_type, &elem_id, &total_nelems,
6240 					   &mid);
6241 		if (IS_ERR(mtype)) {
6242 			bpf_log(log, "field %s doesn't have size\n", mname);
6243 			return -EFAULT;
6244 		}
6245 
6246 		mtrue_end = moff + msize;
6247 		if (off >= mtrue_end)
6248 			/* no overlap with member, keep iterating */
6249 			continue;
6250 
6251 		if (btf_type_is_array(mtype)) {
6252 			u32 elem_idx;
6253 
6254 			/* __btf_resolve_size() above helps to
6255 			 * linearize a multi-dimensional array.
6256 			 *
6257 			 * The logic here is treating an array
6258 			 * in a struct as the following way:
6259 			 *
6260 			 * struct outer {
6261 			 *	struct inner array[2][2];
6262 			 * };
6263 			 *
6264 			 * looks like:
6265 			 *
6266 			 * struct outer {
6267 			 *	struct inner array_elem0;
6268 			 *	struct inner array_elem1;
6269 			 *	struct inner array_elem2;
6270 			 *	struct inner array_elem3;
6271 			 * };
6272 			 *
6273 			 * When accessing outer->array[1][0], it moves
6274 			 * moff to "array_elem2", set mtype to
6275 			 * "struct inner", and msize also becomes
6276 			 * sizeof(struct inner).  Then most of the
6277 			 * remaining logic will fall through without
6278 			 * caring the current member is an array or
6279 			 * not.
6280 			 *
6281 			 * Unlike mtype/msize/moff, mtrue_end does not
6282 			 * change.  The naming difference ("_true") tells
6283 			 * that it is not always corresponding to
6284 			 * the current mtype/msize/moff.
6285 			 * It is the true end of the current
6286 			 * member (i.e. array in this case).  That
6287 			 * will allow an int array to be accessed like
6288 			 * a scratch space,
6289 			 * i.e. allow access beyond the size of
6290 			 *      the array's element as long as it is
6291 			 *      within the mtrue_end boundary.
6292 			 */
6293 
6294 			/* skip empty array */
6295 			if (moff == mtrue_end)
6296 				continue;
6297 
6298 			msize /= total_nelems;
6299 			elem_idx = (off - moff) / msize;
6300 			moff += elem_idx * msize;
6301 			mtype = elem_type;
6302 			mid = elem_id;
6303 		}
6304 
6305 		/* the 'off' we're looking for is either equal to start
6306 		 * of this field or inside of this struct
6307 		 */
6308 		if (btf_type_is_struct(mtype)) {
6309 			if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION &&
6310 			    btf_type_vlen(mtype) != 1)
6311 				/*
6312 				 * walking unions yields untrusted pointers
6313 				 * with exception of __bpf_md_ptr and other
6314 				 * unions with a single member
6315 				 */
6316 				*flag |= PTR_UNTRUSTED;
6317 
6318 			/* our field must be inside that union or struct */
6319 			t = mtype;
6320 
6321 			/* return if the offset matches the member offset */
6322 			if (off == moff) {
6323 				*next_btf_id = mid;
6324 				return WALK_STRUCT;
6325 			}
6326 
6327 			/* adjust offset we're looking for */
6328 			off -= moff;
6329 			goto again;
6330 		}
6331 
6332 		if (btf_type_is_ptr(mtype)) {
6333 			const struct btf_type *stype, *t;
6334 			enum bpf_type_flag tmp_flag = 0;
6335 			u32 id;
6336 
6337 			if (msize != size || off != moff) {
6338 				bpf_log(log,
6339 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6340 					mname, moff, tname, off, size);
6341 				return -EACCES;
6342 			}
6343 
6344 			/* check type tag */
6345 			t = btf_type_by_id(btf, mtype->type);
6346 			if (btf_type_is_type_tag(t)) {
6347 				tag_value = __btf_name_by_offset(btf, t->name_off);
6348 				/* check __user tag */
6349 				if (strcmp(tag_value, "user") == 0)
6350 					tmp_flag = MEM_USER;
6351 				/* check __percpu tag */
6352 				if (strcmp(tag_value, "percpu") == 0)
6353 					tmp_flag = MEM_PERCPU;
6354 				/* check __rcu tag */
6355 				if (strcmp(tag_value, "rcu") == 0)
6356 					tmp_flag = MEM_RCU;
6357 			}
6358 
6359 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6360 			if (btf_type_is_struct(stype)) {
6361 				*next_btf_id = id;
6362 				*flag |= tmp_flag;
6363 				if (field_name)
6364 					*field_name = mname;
6365 				return WALK_PTR;
6366 			}
6367 		}
6368 
6369 		/* Allow more flexible access within an int as long as
6370 		 * it is within mtrue_end.
6371 		 * Since mtrue_end could be the end of an array,
6372 		 * that also allows using an array of int as a scratch
6373 		 * space. e.g. skb->cb[].
6374 		 */
6375 		if (off + size > mtrue_end) {
6376 			bpf_log(log,
6377 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6378 				mname, mtrue_end, tname, off, size);
6379 			return -EACCES;
6380 		}
6381 
6382 		return WALK_SCALAR;
6383 	}
6384 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6385 	return -EINVAL;
6386 }
6387 
6388 int btf_struct_access(struct bpf_verifier_log *log,
6389 		      const struct bpf_reg_state *reg,
6390 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6391 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6392 		      const char **field_name)
6393 {
6394 	const struct btf *btf = reg->btf;
6395 	enum bpf_type_flag tmp_flag = 0;
6396 	const struct btf_type *t;
6397 	u32 id = reg->btf_id;
6398 	int err;
6399 
6400 	while (type_is_alloc(reg->type)) {
6401 		struct btf_struct_meta *meta;
6402 		struct btf_record *rec;
6403 		int i;
6404 
6405 		meta = btf_find_struct_meta(btf, id);
6406 		if (!meta)
6407 			break;
6408 		rec = meta->record;
6409 		for (i = 0; i < rec->cnt; i++) {
6410 			struct btf_field *field = &rec->fields[i];
6411 			u32 offset = field->offset;
6412 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6413 				bpf_log(log,
6414 					"direct access to %s is disallowed\n",
6415 					btf_field_type_name(field->type));
6416 				return -EACCES;
6417 			}
6418 		}
6419 		break;
6420 	}
6421 
6422 	t = btf_type_by_id(btf, id);
6423 	do {
6424 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6425 
6426 		switch (err) {
6427 		case WALK_PTR:
6428 			/* For local types, the destination register cannot
6429 			 * become a pointer again.
6430 			 */
6431 			if (type_is_alloc(reg->type))
6432 				return SCALAR_VALUE;
6433 			/* If we found the pointer or scalar on t+off,
6434 			 * we're done.
6435 			 */
6436 			*next_btf_id = id;
6437 			*flag = tmp_flag;
6438 			return PTR_TO_BTF_ID;
6439 		case WALK_SCALAR:
6440 			return SCALAR_VALUE;
6441 		case WALK_STRUCT:
6442 			/* We found nested struct, so continue the search
6443 			 * by diving in it. At this point the offset is
6444 			 * aligned with the new type, so set it to 0.
6445 			 */
6446 			t = btf_type_by_id(btf, id);
6447 			off = 0;
6448 			break;
6449 		default:
6450 			/* It's either error or unknown return value..
6451 			 * scream and leave.
6452 			 */
6453 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6454 				return -EINVAL;
6455 			return err;
6456 		}
6457 	} while (t);
6458 
6459 	return -EINVAL;
6460 }
6461 
6462 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6463  * the same. Trivial ID check is not enough due to module BTFs, because we can
6464  * end up with two different module BTFs, but IDs point to the common type in
6465  * vmlinux BTF.
6466  */
6467 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6468 			const struct btf *btf2, u32 id2)
6469 {
6470 	if (id1 != id2)
6471 		return false;
6472 	if (btf1 == btf2)
6473 		return true;
6474 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6475 }
6476 
6477 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6478 			  const struct btf *btf, u32 id, int off,
6479 			  const struct btf *need_btf, u32 need_type_id,
6480 			  bool strict)
6481 {
6482 	const struct btf_type *type;
6483 	enum bpf_type_flag flag;
6484 	int err;
6485 
6486 	/* Are we already done? */
6487 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6488 		return true;
6489 	/* In case of strict type match, we do not walk struct, the top level
6490 	 * type match must succeed. When strict is true, off should have already
6491 	 * been 0.
6492 	 */
6493 	if (strict)
6494 		return false;
6495 again:
6496 	type = btf_type_by_id(btf, id);
6497 	if (!type)
6498 		return false;
6499 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6500 	if (err != WALK_STRUCT)
6501 		return false;
6502 
6503 	/* We found nested struct object. If it matches
6504 	 * the requested ID, we're done. Otherwise let's
6505 	 * continue the search with offset 0 in the new
6506 	 * type.
6507 	 */
6508 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6509 		off = 0;
6510 		goto again;
6511 	}
6512 
6513 	return true;
6514 }
6515 
6516 static int __get_type_size(struct btf *btf, u32 btf_id,
6517 			   const struct btf_type **ret_type)
6518 {
6519 	const struct btf_type *t;
6520 
6521 	*ret_type = btf_type_by_id(btf, 0);
6522 	if (!btf_id)
6523 		/* void */
6524 		return 0;
6525 	t = btf_type_by_id(btf, btf_id);
6526 	while (t && btf_type_is_modifier(t))
6527 		t = btf_type_by_id(btf, t->type);
6528 	if (!t)
6529 		return -EINVAL;
6530 	*ret_type = t;
6531 	if (btf_type_is_ptr(t))
6532 		/* kernel size of pointer. Not BPF's size of pointer*/
6533 		return sizeof(void *);
6534 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6535 		return t->size;
6536 	return -EINVAL;
6537 }
6538 
6539 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6540 {
6541 	u8 flags = 0;
6542 
6543 	if (__btf_type_is_struct(t))
6544 		flags |= BTF_FMODEL_STRUCT_ARG;
6545 	if (btf_type_is_signed_int(t))
6546 		flags |= BTF_FMODEL_SIGNED_ARG;
6547 
6548 	return flags;
6549 }
6550 
6551 int btf_distill_func_proto(struct bpf_verifier_log *log,
6552 			   struct btf *btf,
6553 			   const struct btf_type *func,
6554 			   const char *tname,
6555 			   struct btf_func_model *m)
6556 {
6557 	const struct btf_param *args;
6558 	const struct btf_type *t;
6559 	u32 i, nargs;
6560 	int ret;
6561 
6562 	if (!func) {
6563 		/* BTF function prototype doesn't match the verifier types.
6564 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6565 		 */
6566 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6567 			m->arg_size[i] = 8;
6568 			m->arg_flags[i] = 0;
6569 		}
6570 		m->ret_size = 8;
6571 		m->ret_flags = 0;
6572 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6573 		return 0;
6574 	}
6575 	args = (const struct btf_param *)(func + 1);
6576 	nargs = btf_type_vlen(func);
6577 	if (nargs > MAX_BPF_FUNC_ARGS) {
6578 		bpf_log(log,
6579 			"The function %s has %d arguments. Too many.\n",
6580 			tname, nargs);
6581 		return -EINVAL;
6582 	}
6583 	ret = __get_type_size(btf, func->type, &t);
6584 	if (ret < 0 || __btf_type_is_struct(t)) {
6585 		bpf_log(log,
6586 			"The function %s return type %s is unsupported.\n",
6587 			tname, btf_type_str(t));
6588 		return -EINVAL;
6589 	}
6590 	m->ret_size = ret;
6591 	m->ret_flags = __get_type_fmodel_flags(t);
6592 
6593 	for (i = 0; i < nargs; i++) {
6594 		if (i == nargs - 1 && args[i].type == 0) {
6595 			bpf_log(log,
6596 				"The function %s with variable args is unsupported.\n",
6597 				tname);
6598 			return -EINVAL;
6599 		}
6600 		ret = __get_type_size(btf, args[i].type, &t);
6601 
6602 		/* No support of struct argument size greater than 16 bytes */
6603 		if (ret < 0 || ret > 16) {
6604 			bpf_log(log,
6605 				"The function %s arg%d type %s is unsupported.\n",
6606 				tname, i, btf_type_str(t));
6607 			return -EINVAL;
6608 		}
6609 		if (ret == 0) {
6610 			bpf_log(log,
6611 				"The function %s has malformed void argument.\n",
6612 				tname);
6613 			return -EINVAL;
6614 		}
6615 		m->arg_size[i] = ret;
6616 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6617 	}
6618 	m->nr_args = nargs;
6619 	return 0;
6620 }
6621 
6622 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6623  * t1 points to BTF_KIND_FUNC in btf1
6624  * t2 points to BTF_KIND_FUNC in btf2
6625  * Returns:
6626  * EINVAL - function prototype mismatch
6627  * EFAULT - verifier bug
6628  * 0 - 99% match. The last 1% is validated by the verifier.
6629  */
6630 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6631 				     struct btf *btf1, const struct btf_type *t1,
6632 				     struct btf *btf2, const struct btf_type *t2)
6633 {
6634 	const struct btf_param *args1, *args2;
6635 	const char *fn1, *fn2, *s1, *s2;
6636 	u32 nargs1, nargs2, i;
6637 
6638 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6639 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6640 
6641 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6642 		bpf_log(log, "%s() is not a global function\n", fn1);
6643 		return -EINVAL;
6644 	}
6645 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6646 		bpf_log(log, "%s() is not a global function\n", fn2);
6647 		return -EINVAL;
6648 	}
6649 
6650 	t1 = btf_type_by_id(btf1, t1->type);
6651 	if (!t1 || !btf_type_is_func_proto(t1))
6652 		return -EFAULT;
6653 	t2 = btf_type_by_id(btf2, t2->type);
6654 	if (!t2 || !btf_type_is_func_proto(t2))
6655 		return -EFAULT;
6656 
6657 	args1 = (const struct btf_param *)(t1 + 1);
6658 	nargs1 = btf_type_vlen(t1);
6659 	args2 = (const struct btf_param *)(t2 + 1);
6660 	nargs2 = btf_type_vlen(t2);
6661 
6662 	if (nargs1 != nargs2) {
6663 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6664 			fn1, nargs1, fn2, nargs2);
6665 		return -EINVAL;
6666 	}
6667 
6668 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6669 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6670 	if (t1->info != t2->info) {
6671 		bpf_log(log,
6672 			"Return type %s of %s() doesn't match type %s of %s()\n",
6673 			btf_type_str(t1), fn1,
6674 			btf_type_str(t2), fn2);
6675 		return -EINVAL;
6676 	}
6677 
6678 	for (i = 0; i < nargs1; i++) {
6679 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6680 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6681 
6682 		if (t1->info != t2->info) {
6683 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6684 				i, fn1, btf_type_str(t1),
6685 				fn2, btf_type_str(t2));
6686 			return -EINVAL;
6687 		}
6688 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6689 			bpf_log(log,
6690 				"arg%d in %s() has size %d while %s() has %d\n",
6691 				i, fn1, t1->size,
6692 				fn2, t2->size);
6693 			return -EINVAL;
6694 		}
6695 
6696 		/* global functions are validated with scalars and pointers
6697 		 * to context only. And only global functions can be replaced.
6698 		 * Hence type check only those types.
6699 		 */
6700 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6701 			continue;
6702 		if (!btf_type_is_ptr(t1)) {
6703 			bpf_log(log,
6704 				"arg%d in %s() has unrecognized type\n",
6705 				i, fn1);
6706 			return -EINVAL;
6707 		}
6708 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6709 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6710 		if (!btf_type_is_struct(t1)) {
6711 			bpf_log(log,
6712 				"arg%d in %s() is not a pointer to context\n",
6713 				i, fn1);
6714 			return -EINVAL;
6715 		}
6716 		if (!btf_type_is_struct(t2)) {
6717 			bpf_log(log,
6718 				"arg%d in %s() is not a pointer to context\n",
6719 				i, fn2);
6720 			return -EINVAL;
6721 		}
6722 		/* This is an optional check to make program writing easier.
6723 		 * Compare names of structs and report an error to the user.
6724 		 * btf_prepare_func_args() already checked that t2 struct
6725 		 * is a context type. btf_prepare_func_args() will check
6726 		 * later that t1 struct is a context type as well.
6727 		 */
6728 		s1 = btf_name_by_offset(btf1, t1->name_off);
6729 		s2 = btf_name_by_offset(btf2, t2->name_off);
6730 		if (strcmp(s1, s2)) {
6731 			bpf_log(log,
6732 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6733 				i, fn1, s1, fn2, s2);
6734 			return -EINVAL;
6735 		}
6736 	}
6737 	return 0;
6738 }
6739 
6740 /* Compare BTFs of given program with BTF of target program */
6741 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6742 			 struct btf *btf2, const struct btf_type *t2)
6743 {
6744 	struct btf *btf1 = prog->aux->btf;
6745 	const struct btf_type *t1;
6746 	u32 btf_id = 0;
6747 
6748 	if (!prog->aux->func_info) {
6749 		bpf_log(log, "Program extension requires BTF\n");
6750 		return -EINVAL;
6751 	}
6752 
6753 	btf_id = prog->aux->func_info[0].type_id;
6754 	if (!btf_id)
6755 		return -EFAULT;
6756 
6757 	t1 = btf_type_by_id(btf1, btf_id);
6758 	if (!t1 || !btf_type_is_func(t1))
6759 		return -EFAULT;
6760 
6761 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6762 }
6763 
6764 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6765 				    const struct btf *btf, u32 func_id,
6766 				    struct bpf_reg_state *regs,
6767 				    bool ptr_to_mem_ok,
6768 				    bool processing_call)
6769 {
6770 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6771 	struct bpf_verifier_log *log = &env->log;
6772 	const char *func_name, *ref_tname;
6773 	const struct btf_type *t, *ref_t;
6774 	const struct btf_param *args;
6775 	u32 i, nargs, ref_id;
6776 	int ret;
6777 
6778 	t = btf_type_by_id(btf, func_id);
6779 	if (!t || !btf_type_is_func(t)) {
6780 		/* These checks were already done by the verifier while loading
6781 		 * struct bpf_func_info or in add_kfunc_call().
6782 		 */
6783 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6784 			func_id);
6785 		return -EFAULT;
6786 	}
6787 	func_name = btf_name_by_offset(btf, t->name_off);
6788 
6789 	t = btf_type_by_id(btf, t->type);
6790 	if (!t || !btf_type_is_func_proto(t)) {
6791 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6792 		return -EFAULT;
6793 	}
6794 	args = (const struct btf_param *)(t + 1);
6795 	nargs = btf_type_vlen(t);
6796 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6797 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6798 			MAX_BPF_FUNC_REG_ARGS);
6799 		return -EINVAL;
6800 	}
6801 
6802 	/* check that BTF function arguments match actual types that the
6803 	 * verifier sees.
6804 	 */
6805 	for (i = 0; i < nargs; i++) {
6806 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6807 		u32 regno = i + 1;
6808 		struct bpf_reg_state *reg = &regs[regno];
6809 
6810 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6811 		if (btf_type_is_scalar(t)) {
6812 			if (reg->type == SCALAR_VALUE)
6813 				continue;
6814 			bpf_log(log, "R%d is not a scalar\n", regno);
6815 			return -EINVAL;
6816 		}
6817 
6818 		if (!btf_type_is_ptr(t)) {
6819 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6820 				i, btf_type_str(t));
6821 			return -EINVAL;
6822 		}
6823 
6824 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6825 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6826 
6827 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6828 		if (ret < 0)
6829 			return ret;
6830 
6831 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6832 			/* If function expects ctx type in BTF check that caller
6833 			 * is passing PTR_TO_CTX.
6834 			 */
6835 			if (reg->type != PTR_TO_CTX) {
6836 				bpf_log(log,
6837 					"arg#%d expected pointer to ctx, but got %s\n",
6838 					i, btf_type_str(t));
6839 				return -EINVAL;
6840 			}
6841 		} else if (ptr_to_mem_ok && processing_call) {
6842 			const struct btf_type *resolve_ret;
6843 			u32 type_size;
6844 
6845 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6846 			if (IS_ERR(resolve_ret)) {
6847 				bpf_log(log,
6848 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6849 					i, btf_type_str(ref_t), ref_tname,
6850 					PTR_ERR(resolve_ret));
6851 				return -EINVAL;
6852 			}
6853 
6854 			if (check_mem_reg(env, reg, regno, type_size))
6855 				return -EINVAL;
6856 		} else {
6857 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6858 				func_name, func_id);
6859 			return -EINVAL;
6860 		}
6861 	}
6862 
6863 	return 0;
6864 }
6865 
6866 /* Compare BTF of a function declaration with given bpf_reg_state.
6867  * Returns:
6868  * EFAULT - there is a verifier bug. Abort verification.
6869  * EINVAL - there is a type mismatch or BTF is not available.
6870  * 0 - BTF matches with what bpf_reg_state expects.
6871  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6872  */
6873 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6874 				struct bpf_reg_state *regs)
6875 {
6876 	struct bpf_prog *prog = env->prog;
6877 	struct btf *btf = prog->aux->btf;
6878 	bool is_global;
6879 	u32 btf_id;
6880 	int err;
6881 
6882 	if (!prog->aux->func_info)
6883 		return -EINVAL;
6884 
6885 	btf_id = prog->aux->func_info[subprog].type_id;
6886 	if (!btf_id)
6887 		return -EFAULT;
6888 
6889 	if (prog->aux->func_info_aux[subprog].unreliable)
6890 		return -EINVAL;
6891 
6892 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6893 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6894 
6895 	/* Compiler optimizations can remove arguments from static functions
6896 	 * or mismatched type can be passed into a global function.
6897 	 * In such cases mark the function as unreliable from BTF point of view.
6898 	 */
6899 	if (err)
6900 		prog->aux->func_info_aux[subprog].unreliable = true;
6901 	return err;
6902 }
6903 
6904 /* Compare BTF of a function call with given bpf_reg_state.
6905  * Returns:
6906  * EFAULT - there is a verifier bug. Abort verification.
6907  * EINVAL - there is a type mismatch or BTF is not available.
6908  * 0 - BTF matches with what bpf_reg_state expects.
6909  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6910  *
6911  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6912  * because btf_check_func_arg_match() is still doing both. Once that
6913  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6914  * first, and then treat the calling part in a new code path.
6915  */
6916 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6917 			   struct bpf_reg_state *regs)
6918 {
6919 	struct bpf_prog *prog = env->prog;
6920 	struct btf *btf = prog->aux->btf;
6921 	bool is_global;
6922 	u32 btf_id;
6923 	int err;
6924 
6925 	if (!prog->aux->func_info)
6926 		return -EINVAL;
6927 
6928 	btf_id = prog->aux->func_info[subprog].type_id;
6929 	if (!btf_id)
6930 		return -EFAULT;
6931 
6932 	if (prog->aux->func_info_aux[subprog].unreliable)
6933 		return -EINVAL;
6934 
6935 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6936 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6937 
6938 	/* Compiler optimizations can remove arguments from static functions
6939 	 * or mismatched type can be passed into a global function.
6940 	 * In such cases mark the function as unreliable from BTF point of view.
6941 	 */
6942 	if (err)
6943 		prog->aux->func_info_aux[subprog].unreliable = true;
6944 	return err;
6945 }
6946 
6947 /* Convert BTF of a function into bpf_reg_state if possible
6948  * Returns:
6949  * EFAULT - there is a verifier bug. Abort verification.
6950  * EINVAL - cannot convert BTF.
6951  * 0 - Successfully converted BTF into bpf_reg_state
6952  * (either PTR_TO_CTX or SCALAR_VALUE).
6953  */
6954 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6955 			  struct bpf_reg_state *regs)
6956 {
6957 	struct bpf_verifier_log *log = &env->log;
6958 	struct bpf_prog *prog = env->prog;
6959 	enum bpf_prog_type prog_type = prog->type;
6960 	struct btf *btf = prog->aux->btf;
6961 	const struct btf_param *args;
6962 	const struct btf_type *t, *ref_t;
6963 	u32 i, nargs, btf_id;
6964 	const char *tname;
6965 
6966 	if (!prog->aux->func_info ||
6967 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6968 		bpf_log(log, "Verifier bug\n");
6969 		return -EFAULT;
6970 	}
6971 
6972 	btf_id = prog->aux->func_info[subprog].type_id;
6973 	if (!btf_id) {
6974 		bpf_log(log, "Global functions need valid BTF\n");
6975 		return -EFAULT;
6976 	}
6977 
6978 	t = btf_type_by_id(btf, btf_id);
6979 	if (!t || !btf_type_is_func(t)) {
6980 		/* These checks were already done by the verifier while loading
6981 		 * struct bpf_func_info
6982 		 */
6983 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6984 			subprog);
6985 		return -EFAULT;
6986 	}
6987 	tname = btf_name_by_offset(btf, t->name_off);
6988 
6989 	if (log->level & BPF_LOG_LEVEL)
6990 		bpf_log(log, "Validating %s() func#%d...\n",
6991 			tname, subprog);
6992 
6993 	if (prog->aux->func_info_aux[subprog].unreliable) {
6994 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6995 		return -EFAULT;
6996 	}
6997 	if (prog_type == BPF_PROG_TYPE_EXT)
6998 		prog_type = prog->aux->dst_prog->type;
6999 
7000 	t = btf_type_by_id(btf, t->type);
7001 	if (!t || !btf_type_is_func_proto(t)) {
7002 		bpf_log(log, "Invalid type of function %s()\n", tname);
7003 		return -EFAULT;
7004 	}
7005 	args = (const struct btf_param *)(t + 1);
7006 	nargs = btf_type_vlen(t);
7007 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7008 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7009 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7010 		return -EINVAL;
7011 	}
7012 	/* check that function returns int */
7013 	t = btf_type_by_id(btf, t->type);
7014 	while (btf_type_is_modifier(t))
7015 		t = btf_type_by_id(btf, t->type);
7016 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7017 		bpf_log(log,
7018 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7019 			tname);
7020 		return -EINVAL;
7021 	}
7022 	/* Convert BTF function arguments into verifier types.
7023 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7024 	 */
7025 	for (i = 0; i < nargs; i++) {
7026 		struct bpf_reg_state *reg = &regs[i + 1];
7027 
7028 		t = btf_type_by_id(btf, args[i].type);
7029 		while (btf_type_is_modifier(t))
7030 			t = btf_type_by_id(btf, t->type);
7031 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7032 			reg->type = SCALAR_VALUE;
7033 			continue;
7034 		}
7035 		if (btf_type_is_ptr(t)) {
7036 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7037 				reg->type = PTR_TO_CTX;
7038 				continue;
7039 			}
7040 
7041 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7042 
7043 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7044 			if (IS_ERR(ref_t)) {
7045 				bpf_log(log,
7046 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7047 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7048 					PTR_ERR(ref_t));
7049 				return -EINVAL;
7050 			}
7051 
7052 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7053 			reg->id = ++env->id_gen;
7054 
7055 			continue;
7056 		}
7057 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7058 			i, btf_type_str(t), tname);
7059 		return -EINVAL;
7060 	}
7061 	return 0;
7062 }
7063 
7064 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7065 			  struct btf_show *show)
7066 {
7067 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7068 
7069 	show->btf = btf;
7070 	memset(&show->state, 0, sizeof(show->state));
7071 	memset(&show->obj, 0, sizeof(show->obj));
7072 
7073 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7074 }
7075 
7076 static void btf_seq_show(struct btf_show *show, const char *fmt,
7077 			 va_list args)
7078 {
7079 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7080 }
7081 
7082 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7083 			    void *obj, struct seq_file *m, u64 flags)
7084 {
7085 	struct btf_show sseq;
7086 
7087 	sseq.target = m;
7088 	sseq.showfn = btf_seq_show;
7089 	sseq.flags = flags;
7090 
7091 	btf_type_show(btf, type_id, obj, &sseq);
7092 
7093 	return sseq.state.status;
7094 }
7095 
7096 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7097 		       struct seq_file *m)
7098 {
7099 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7100 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7101 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7102 }
7103 
7104 struct btf_show_snprintf {
7105 	struct btf_show show;
7106 	int len_left;		/* space left in string */
7107 	int len;		/* length we would have written */
7108 };
7109 
7110 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7111 			      va_list args)
7112 {
7113 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7114 	int len;
7115 
7116 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7117 
7118 	if (len < 0) {
7119 		ssnprintf->len_left = 0;
7120 		ssnprintf->len = len;
7121 	} else if (len >= ssnprintf->len_left) {
7122 		/* no space, drive on to get length we would have written */
7123 		ssnprintf->len_left = 0;
7124 		ssnprintf->len += len;
7125 	} else {
7126 		ssnprintf->len_left -= len;
7127 		ssnprintf->len += len;
7128 		show->target += len;
7129 	}
7130 }
7131 
7132 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7133 			   char *buf, int len, u64 flags)
7134 {
7135 	struct btf_show_snprintf ssnprintf;
7136 
7137 	ssnprintf.show.target = buf;
7138 	ssnprintf.show.flags = flags;
7139 	ssnprintf.show.showfn = btf_snprintf_show;
7140 	ssnprintf.len_left = len;
7141 	ssnprintf.len = 0;
7142 
7143 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7144 
7145 	/* If we encountered an error, return it. */
7146 	if (ssnprintf.show.state.status)
7147 		return ssnprintf.show.state.status;
7148 
7149 	/* Otherwise return length we would have written */
7150 	return ssnprintf.len;
7151 }
7152 
7153 #ifdef CONFIG_PROC_FS
7154 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7155 {
7156 	const struct btf *btf = filp->private_data;
7157 
7158 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7159 }
7160 #endif
7161 
7162 static int btf_release(struct inode *inode, struct file *filp)
7163 {
7164 	btf_put(filp->private_data);
7165 	return 0;
7166 }
7167 
7168 const struct file_operations btf_fops = {
7169 #ifdef CONFIG_PROC_FS
7170 	.show_fdinfo	= bpf_btf_show_fdinfo,
7171 #endif
7172 	.release	= btf_release,
7173 };
7174 
7175 static int __btf_new_fd(struct btf *btf)
7176 {
7177 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7178 }
7179 
7180 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7181 {
7182 	struct btf *btf;
7183 	int ret;
7184 
7185 	btf = btf_parse(attr, uattr, uattr_size);
7186 	if (IS_ERR(btf))
7187 		return PTR_ERR(btf);
7188 
7189 	ret = btf_alloc_id(btf);
7190 	if (ret) {
7191 		btf_free(btf);
7192 		return ret;
7193 	}
7194 
7195 	/*
7196 	 * The BTF ID is published to the userspace.
7197 	 * All BTF free must go through call_rcu() from
7198 	 * now on (i.e. free by calling btf_put()).
7199 	 */
7200 
7201 	ret = __btf_new_fd(btf);
7202 	if (ret < 0)
7203 		btf_put(btf);
7204 
7205 	return ret;
7206 }
7207 
7208 struct btf *btf_get_by_fd(int fd)
7209 {
7210 	struct btf *btf;
7211 	struct fd f;
7212 
7213 	f = fdget(fd);
7214 
7215 	if (!f.file)
7216 		return ERR_PTR(-EBADF);
7217 
7218 	if (f.file->f_op != &btf_fops) {
7219 		fdput(f);
7220 		return ERR_PTR(-EINVAL);
7221 	}
7222 
7223 	btf = f.file->private_data;
7224 	refcount_inc(&btf->refcnt);
7225 	fdput(f);
7226 
7227 	return btf;
7228 }
7229 
7230 int btf_get_info_by_fd(const struct btf *btf,
7231 		       const union bpf_attr *attr,
7232 		       union bpf_attr __user *uattr)
7233 {
7234 	struct bpf_btf_info __user *uinfo;
7235 	struct bpf_btf_info info;
7236 	u32 info_copy, btf_copy;
7237 	void __user *ubtf;
7238 	char __user *uname;
7239 	u32 uinfo_len, uname_len, name_len;
7240 	int ret = 0;
7241 
7242 	uinfo = u64_to_user_ptr(attr->info.info);
7243 	uinfo_len = attr->info.info_len;
7244 
7245 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7246 	memset(&info, 0, sizeof(info));
7247 	if (copy_from_user(&info, uinfo, info_copy))
7248 		return -EFAULT;
7249 
7250 	info.id = btf->id;
7251 	ubtf = u64_to_user_ptr(info.btf);
7252 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7253 	if (copy_to_user(ubtf, btf->data, btf_copy))
7254 		return -EFAULT;
7255 	info.btf_size = btf->data_size;
7256 
7257 	info.kernel_btf = btf->kernel_btf;
7258 
7259 	uname = u64_to_user_ptr(info.name);
7260 	uname_len = info.name_len;
7261 	if (!uname ^ !uname_len)
7262 		return -EINVAL;
7263 
7264 	name_len = strlen(btf->name);
7265 	info.name_len = name_len;
7266 
7267 	if (uname) {
7268 		if (uname_len >= name_len + 1) {
7269 			if (copy_to_user(uname, btf->name, name_len + 1))
7270 				return -EFAULT;
7271 		} else {
7272 			char zero = '\0';
7273 
7274 			if (copy_to_user(uname, btf->name, uname_len - 1))
7275 				return -EFAULT;
7276 			if (put_user(zero, uname + uname_len - 1))
7277 				return -EFAULT;
7278 			/* let user-space know about too short buffer */
7279 			ret = -ENOSPC;
7280 		}
7281 	}
7282 
7283 	if (copy_to_user(uinfo, &info, info_copy) ||
7284 	    put_user(info_copy, &uattr->info.info_len))
7285 		return -EFAULT;
7286 
7287 	return ret;
7288 }
7289 
7290 int btf_get_fd_by_id(u32 id)
7291 {
7292 	struct btf *btf;
7293 	int fd;
7294 
7295 	rcu_read_lock();
7296 	btf = idr_find(&btf_idr, id);
7297 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7298 		btf = ERR_PTR(-ENOENT);
7299 	rcu_read_unlock();
7300 
7301 	if (IS_ERR(btf))
7302 		return PTR_ERR(btf);
7303 
7304 	fd = __btf_new_fd(btf);
7305 	if (fd < 0)
7306 		btf_put(btf);
7307 
7308 	return fd;
7309 }
7310 
7311 u32 btf_obj_id(const struct btf *btf)
7312 {
7313 	return btf->id;
7314 }
7315 
7316 bool btf_is_kernel(const struct btf *btf)
7317 {
7318 	return btf->kernel_btf;
7319 }
7320 
7321 bool btf_is_module(const struct btf *btf)
7322 {
7323 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7324 }
7325 
7326 enum {
7327 	BTF_MODULE_F_LIVE = (1 << 0),
7328 };
7329 
7330 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7331 struct btf_module {
7332 	struct list_head list;
7333 	struct module *module;
7334 	struct btf *btf;
7335 	struct bin_attribute *sysfs_attr;
7336 	int flags;
7337 };
7338 
7339 static LIST_HEAD(btf_modules);
7340 static DEFINE_MUTEX(btf_module_mutex);
7341 
7342 static ssize_t
7343 btf_module_read(struct file *file, struct kobject *kobj,
7344 		struct bin_attribute *bin_attr,
7345 		char *buf, loff_t off, size_t len)
7346 {
7347 	const struct btf *btf = bin_attr->private;
7348 
7349 	memcpy(buf, btf->data + off, len);
7350 	return len;
7351 }
7352 
7353 static void purge_cand_cache(struct btf *btf);
7354 
7355 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7356 			     void *module)
7357 {
7358 	struct btf_module *btf_mod, *tmp;
7359 	struct module *mod = module;
7360 	struct btf *btf;
7361 	int err = 0;
7362 
7363 	if (mod->btf_data_size == 0 ||
7364 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7365 	     op != MODULE_STATE_GOING))
7366 		goto out;
7367 
7368 	switch (op) {
7369 	case MODULE_STATE_COMING:
7370 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7371 		if (!btf_mod) {
7372 			err = -ENOMEM;
7373 			goto out;
7374 		}
7375 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7376 		if (IS_ERR(btf)) {
7377 			kfree(btf_mod);
7378 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7379 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7380 					mod->name, PTR_ERR(btf));
7381 				err = PTR_ERR(btf);
7382 			} else {
7383 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7384 			}
7385 			goto out;
7386 		}
7387 		err = btf_alloc_id(btf);
7388 		if (err) {
7389 			btf_free(btf);
7390 			kfree(btf_mod);
7391 			goto out;
7392 		}
7393 
7394 		purge_cand_cache(NULL);
7395 		mutex_lock(&btf_module_mutex);
7396 		btf_mod->module = module;
7397 		btf_mod->btf = btf;
7398 		list_add(&btf_mod->list, &btf_modules);
7399 		mutex_unlock(&btf_module_mutex);
7400 
7401 		if (IS_ENABLED(CONFIG_SYSFS)) {
7402 			struct bin_attribute *attr;
7403 
7404 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7405 			if (!attr)
7406 				goto out;
7407 
7408 			sysfs_bin_attr_init(attr);
7409 			attr->attr.name = btf->name;
7410 			attr->attr.mode = 0444;
7411 			attr->size = btf->data_size;
7412 			attr->private = btf;
7413 			attr->read = btf_module_read;
7414 
7415 			err = sysfs_create_bin_file(btf_kobj, attr);
7416 			if (err) {
7417 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7418 					mod->name, err);
7419 				kfree(attr);
7420 				err = 0;
7421 				goto out;
7422 			}
7423 
7424 			btf_mod->sysfs_attr = attr;
7425 		}
7426 
7427 		break;
7428 	case MODULE_STATE_LIVE:
7429 		mutex_lock(&btf_module_mutex);
7430 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7431 			if (btf_mod->module != module)
7432 				continue;
7433 
7434 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7435 			break;
7436 		}
7437 		mutex_unlock(&btf_module_mutex);
7438 		break;
7439 	case MODULE_STATE_GOING:
7440 		mutex_lock(&btf_module_mutex);
7441 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7442 			if (btf_mod->module != module)
7443 				continue;
7444 
7445 			list_del(&btf_mod->list);
7446 			if (btf_mod->sysfs_attr)
7447 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7448 			purge_cand_cache(btf_mod->btf);
7449 			btf_put(btf_mod->btf);
7450 			kfree(btf_mod->sysfs_attr);
7451 			kfree(btf_mod);
7452 			break;
7453 		}
7454 		mutex_unlock(&btf_module_mutex);
7455 		break;
7456 	}
7457 out:
7458 	return notifier_from_errno(err);
7459 }
7460 
7461 static struct notifier_block btf_module_nb = {
7462 	.notifier_call = btf_module_notify,
7463 };
7464 
7465 static int __init btf_module_init(void)
7466 {
7467 	register_module_notifier(&btf_module_nb);
7468 	return 0;
7469 }
7470 
7471 fs_initcall(btf_module_init);
7472 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7473 
7474 struct module *btf_try_get_module(const struct btf *btf)
7475 {
7476 	struct module *res = NULL;
7477 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7478 	struct btf_module *btf_mod, *tmp;
7479 
7480 	mutex_lock(&btf_module_mutex);
7481 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7482 		if (btf_mod->btf != btf)
7483 			continue;
7484 
7485 		/* We must only consider module whose __init routine has
7486 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7487 		 * which is set from the notifier callback for
7488 		 * MODULE_STATE_LIVE.
7489 		 */
7490 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7491 			res = btf_mod->module;
7492 
7493 		break;
7494 	}
7495 	mutex_unlock(&btf_module_mutex);
7496 #endif
7497 
7498 	return res;
7499 }
7500 
7501 /* Returns struct btf corresponding to the struct module.
7502  * This function can return NULL or ERR_PTR.
7503  */
7504 static struct btf *btf_get_module_btf(const struct module *module)
7505 {
7506 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7507 	struct btf_module *btf_mod, *tmp;
7508 #endif
7509 	struct btf *btf = NULL;
7510 
7511 	if (!module) {
7512 		btf = bpf_get_btf_vmlinux();
7513 		if (!IS_ERR_OR_NULL(btf))
7514 			btf_get(btf);
7515 		return btf;
7516 	}
7517 
7518 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7519 	mutex_lock(&btf_module_mutex);
7520 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7521 		if (btf_mod->module != module)
7522 			continue;
7523 
7524 		btf_get(btf_mod->btf);
7525 		btf = btf_mod->btf;
7526 		break;
7527 	}
7528 	mutex_unlock(&btf_module_mutex);
7529 #endif
7530 
7531 	return btf;
7532 }
7533 
7534 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7535 {
7536 	struct btf *btf = NULL;
7537 	int btf_obj_fd = 0;
7538 	long ret;
7539 
7540 	if (flags)
7541 		return -EINVAL;
7542 
7543 	if (name_sz <= 1 || name[name_sz - 1])
7544 		return -EINVAL;
7545 
7546 	ret = bpf_find_btf_id(name, kind, &btf);
7547 	if (ret > 0 && btf_is_module(btf)) {
7548 		btf_obj_fd = __btf_new_fd(btf);
7549 		if (btf_obj_fd < 0) {
7550 			btf_put(btf);
7551 			return btf_obj_fd;
7552 		}
7553 		return ret | (((u64)btf_obj_fd) << 32);
7554 	}
7555 	if (ret > 0)
7556 		btf_put(btf);
7557 	return ret;
7558 }
7559 
7560 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7561 	.func		= bpf_btf_find_by_name_kind,
7562 	.gpl_only	= false,
7563 	.ret_type	= RET_INTEGER,
7564 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7565 	.arg2_type	= ARG_CONST_SIZE,
7566 	.arg3_type	= ARG_ANYTHING,
7567 	.arg4_type	= ARG_ANYTHING,
7568 };
7569 
7570 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7571 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7572 BTF_TRACING_TYPE_xxx
7573 #undef BTF_TRACING_TYPE
7574 
7575 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7576 				 const struct btf_type *func, u32 func_flags)
7577 {
7578 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7579 	const char *name, *sfx, *iter_name;
7580 	const struct btf_param *arg;
7581 	const struct btf_type *t;
7582 	char exp_name[128];
7583 	u32 nr_args;
7584 
7585 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7586 	if (!flags || (flags & (flags - 1)))
7587 		return -EINVAL;
7588 
7589 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7590 	nr_args = btf_type_vlen(func);
7591 	if (nr_args < 1)
7592 		return -EINVAL;
7593 
7594 	arg = &btf_params(func)[0];
7595 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7596 	if (!t || !btf_type_is_ptr(t))
7597 		return -EINVAL;
7598 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7599 	if (!t || !__btf_type_is_struct(t))
7600 		return -EINVAL;
7601 
7602 	name = btf_name_by_offset(btf, t->name_off);
7603 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7604 		return -EINVAL;
7605 
7606 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7607 	 * fit nicely in stack slots
7608 	 */
7609 	if (t->size == 0 || (t->size % 8))
7610 		return -EINVAL;
7611 
7612 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7613 	 * naming pattern
7614 	 */
7615 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7616 	if (flags & KF_ITER_NEW)
7617 		sfx = "new";
7618 	else if (flags & KF_ITER_NEXT)
7619 		sfx = "next";
7620 	else /* (flags & KF_ITER_DESTROY) */
7621 		sfx = "destroy";
7622 
7623 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7624 	if (strcmp(func_name, exp_name))
7625 		return -EINVAL;
7626 
7627 	/* only iter constructor should have extra arguments */
7628 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7629 		return -EINVAL;
7630 
7631 	if (flags & KF_ITER_NEXT) {
7632 		/* bpf_iter_<type>_next() should return pointer */
7633 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7634 		if (!t || !btf_type_is_ptr(t))
7635 			return -EINVAL;
7636 	}
7637 
7638 	if (flags & KF_ITER_DESTROY) {
7639 		/* bpf_iter_<type>_destroy() should return void */
7640 		t = btf_type_by_id(btf, func->type);
7641 		if (!t || !btf_type_is_void(t))
7642 			return -EINVAL;
7643 	}
7644 
7645 	return 0;
7646 }
7647 
7648 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7649 {
7650 	const struct btf_type *func;
7651 	const char *func_name;
7652 	int err;
7653 
7654 	/* any kfunc should be FUNC -> FUNC_PROTO */
7655 	func = btf_type_by_id(btf, func_id);
7656 	if (!func || !btf_type_is_func(func))
7657 		return -EINVAL;
7658 
7659 	/* sanity check kfunc name */
7660 	func_name = btf_name_by_offset(btf, func->name_off);
7661 	if (!func_name || !func_name[0])
7662 		return -EINVAL;
7663 
7664 	func = btf_type_by_id(btf, func->type);
7665 	if (!func || !btf_type_is_func_proto(func))
7666 		return -EINVAL;
7667 
7668 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7669 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7670 		if (err)
7671 			return err;
7672 	}
7673 
7674 	return 0;
7675 }
7676 
7677 /* Kernel Function (kfunc) BTF ID set registration API */
7678 
7679 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7680 				  const struct btf_kfunc_id_set *kset)
7681 {
7682 	struct btf_kfunc_hook_filter *hook_filter;
7683 	struct btf_id_set8 *add_set = kset->set;
7684 	bool vmlinux_set = !btf_is_module(btf);
7685 	bool add_filter = !!kset->filter;
7686 	struct btf_kfunc_set_tab *tab;
7687 	struct btf_id_set8 *set;
7688 	u32 set_cnt;
7689 	int ret;
7690 
7691 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7692 		ret = -EINVAL;
7693 		goto end;
7694 	}
7695 
7696 	if (!add_set->cnt)
7697 		return 0;
7698 
7699 	tab = btf->kfunc_set_tab;
7700 
7701 	if (tab && add_filter) {
7702 		u32 i;
7703 
7704 		hook_filter = &tab->hook_filters[hook];
7705 		for (i = 0; i < hook_filter->nr_filters; i++) {
7706 			if (hook_filter->filters[i] == kset->filter) {
7707 				add_filter = false;
7708 				break;
7709 			}
7710 		}
7711 
7712 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7713 			ret = -E2BIG;
7714 			goto end;
7715 		}
7716 	}
7717 
7718 	if (!tab) {
7719 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7720 		if (!tab)
7721 			return -ENOMEM;
7722 		btf->kfunc_set_tab = tab;
7723 	}
7724 
7725 	set = tab->sets[hook];
7726 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7727 	 * for module sets.
7728 	 */
7729 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7730 		ret = -EINVAL;
7731 		goto end;
7732 	}
7733 
7734 	/* We don't need to allocate, concatenate, and sort module sets, because
7735 	 * only one is allowed per hook. Hence, we can directly assign the
7736 	 * pointer and return.
7737 	 */
7738 	if (!vmlinux_set) {
7739 		tab->sets[hook] = add_set;
7740 		goto do_add_filter;
7741 	}
7742 
7743 	/* In case of vmlinux sets, there may be more than one set being
7744 	 * registered per hook. To create a unified set, we allocate a new set
7745 	 * and concatenate all individual sets being registered. While each set
7746 	 * is individually sorted, they may become unsorted when concatenated,
7747 	 * hence re-sorting the final set again is required to make binary
7748 	 * searching the set using btf_id_set8_contains function work.
7749 	 */
7750 	set_cnt = set ? set->cnt : 0;
7751 
7752 	if (set_cnt > U32_MAX - add_set->cnt) {
7753 		ret = -EOVERFLOW;
7754 		goto end;
7755 	}
7756 
7757 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7758 		ret = -E2BIG;
7759 		goto end;
7760 	}
7761 
7762 	/* Grow set */
7763 	set = krealloc(tab->sets[hook],
7764 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7765 		       GFP_KERNEL | __GFP_NOWARN);
7766 	if (!set) {
7767 		ret = -ENOMEM;
7768 		goto end;
7769 	}
7770 
7771 	/* For newly allocated set, initialize set->cnt to 0 */
7772 	if (!tab->sets[hook])
7773 		set->cnt = 0;
7774 	tab->sets[hook] = set;
7775 
7776 	/* Concatenate the two sets */
7777 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7778 	set->cnt += add_set->cnt;
7779 
7780 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7781 
7782 do_add_filter:
7783 	if (add_filter) {
7784 		hook_filter = &tab->hook_filters[hook];
7785 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7786 	}
7787 	return 0;
7788 end:
7789 	btf_free_kfunc_set_tab(btf);
7790 	return ret;
7791 }
7792 
7793 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7794 					enum btf_kfunc_hook hook,
7795 					u32 kfunc_btf_id,
7796 					const struct bpf_prog *prog)
7797 {
7798 	struct btf_kfunc_hook_filter *hook_filter;
7799 	struct btf_id_set8 *set;
7800 	u32 *id, i;
7801 
7802 	if (hook >= BTF_KFUNC_HOOK_MAX)
7803 		return NULL;
7804 	if (!btf->kfunc_set_tab)
7805 		return NULL;
7806 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7807 	for (i = 0; i < hook_filter->nr_filters; i++) {
7808 		if (hook_filter->filters[i](prog, kfunc_btf_id))
7809 			return NULL;
7810 	}
7811 	set = btf->kfunc_set_tab->sets[hook];
7812 	if (!set)
7813 		return NULL;
7814 	id = btf_id_set8_contains(set, kfunc_btf_id);
7815 	if (!id)
7816 		return NULL;
7817 	/* The flags for BTF ID are located next to it */
7818 	return id + 1;
7819 }
7820 
7821 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7822 {
7823 	switch (prog_type) {
7824 	case BPF_PROG_TYPE_UNSPEC:
7825 		return BTF_KFUNC_HOOK_COMMON;
7826 	case BPF_PROG_TYPE_XDP:
7827 		return BTF_KFUNC_HOOK_XDP;
7828 	case BPF_PROG_TYPE_SCHED_CLS:
7829 		return BTF_KFUNC_HOOK_TC;
7830 	case BPF_PROG_TYPE_STRUCT_OPS:
7831 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7832 	case BPF_PROG_TYPE_TRACING:
7833 	case BPF_PROG_TYPE_LSM:
7834 		return BTF_KFUNC_HOOK_TRACING;
7835 	case BPF_PROG_TYPE_SYSCALL:
7836 		return BTF_KFUNC_HOOK_SYSCALL;
7837 	case BPF_PROG_TYPE_CGROUP_SKB:
7838 		return BTF_KFUNC_HOOK_CGROUP_SKB;
7839 	case BPF_PROG_TYPE_SCHED_ACT:
7840 		return BTF_KFUNC_HOOK_SCHED_ACT;
7841 	case BPF_PROG_TYPE_SK_SKB:
7842 		return BTF_KFUNC_HOOK_SK_SKB;
7843 	case BPF_PROG_TYPE_SOCKET_FILTER:
7844 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
7845 	case BPF_PROG_TYPE_LWT_OUT:
7846 	case BPF_PROG_TYPE_LWT_IN:
7847 	case BPF_PROG_TYPE_LWT_XMIT:
7848 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7849 		return BTF_KFUNC_HOOK_LWT;
7850 	case BPF_PROG_TYPE_NETFILTER:
7851 		return BTF_KFUNC_HOOK_NETFILTER;
7852 	default:
7853 		return BTF_KFUNC_HOOK_MAX;
7854 	}
7855 }
7856 
7857 /* Caution:
7858  * Reference to the module (obtained using btf_try_get_module) corresponding to
7859  * the struct btf *MUST* be held when calling this function from verifier
7860  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7861  * keeping the reference for the duration of the call provides the necessary
7862  * protection for looking up a well-formed btf->kfunc_set_tab.
7863  */
7864 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7865 			       u32 kfunc_btf_id,
7866 			       const struct bpf_prog *prog)
7867 {
7868 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
7869 	enum btf_kfunc_hook hook;
7870 	u32 *kfunc_flags;
7871 
7872 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7873 	if (kfunc_flags)
7874 		return kfunc_flags;
7875 
7876 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7877 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7878 }
7879 
7880 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7881 				const struct bpf_prog *prog)
7882 {
7883 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7884 }
7885 
7886 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7887 				       const struct btf_kfunc_id_set *kset)
7888 {
7889 	struct btf *btf;
7890 	int ret, i;
7891 
7892 	btf = btf_get_module_btf(kset->owner);
7893 	if (!btf) {
7894 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7895 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7896 			return -ENOENT;
7897 		}
7898 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7899 			pr_err("missing module BTF, cannot register kfuncs\n");
7900 			return -ENOENT;
7901 		}
7902 		return 0;
7903 	}
7904 	if (IS_ERR(btf))
7905 		return PTR_ERR(btf);
7906 
7907 	for (i = 0; i < kset->set->cnt; i++) {
7908 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7909 					     kset->set->pairs[i].flags);
7910 		if (ret)
7911 			goto err_out;
7912 	}
7913 
7914 	ret = btf_populate_kfunc_set(btf, hook, kset);
7915 
7916 err_out:
7917 	btf_put(btf);
7918 	return ret;
7919 }
7920 
7921 /* This function must be invoked only from initcalls/module init functions */
7922 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7923 			      const struct btf_kfunc_id_set *kset)
7924 {
7925 	enum btf_kfunc_hook hook;
7926 
7927 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7928 	return __register_btf_kfunc_id_set(hook, kset);
7929 }
7930 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7931 
7932 /* This function must be invoked only from initcalls/module init functions */
7933 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7934 {
7935 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7936 }
7937 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7938 
7939 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7940 {
7941 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7942 	struct btf_id_dtor_kfunc *dtor;
7943 
7944 	if (!tab)
7945 		return -ENOENT;
7946 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7947 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7948 	 */
7949 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7950 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7951 	if (!dtor)
7952 		return -ENOENT;
7953 	return dtor->kfunc_btf_id;
7954 }
7955 
7956 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7957 {
7958 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7959 	const struct btf_param *args;
7960 	s32 dtor_btf_id;
7961 	u32 nr_args, i;
7962 
7963 	for (i = 0; i < cnt; i++) {
7964 		dtor_btf_id = dtors[i].kfunc_btf_id;
7965 
7966 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7967 		if (!dtor_func || !btf_type_is_func(dtor_func))
7968 			return -EINVAL;
7969 
7970 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7971 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7972 			return -EINVAL;
7973 
7974 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7975 		t = btf_type_by_id(btf, dtor_func_proto->type);
7976 		if (!t || !btf_type_is_void(t))
7977 			return -EINVAL;
7978 
7979 		nr_args = btf_type_vlen(dtor_func_proto);
7980 		if (nr_args != 1)
7981 			return -EINVAL;
7982 		args = btf_params(dtor_func_proto);
7983 		t = btf_type_by_id(btf, args[0].type);
7984 		/* Allow any pointer type, as width on targets Linux supports
7985 		 * will be same for all pointer types (i.e. sizeof(void *))
7986 		 */
7987 		if (!t || !btf_type_is_ptr(t))
7988 			return -EINVAL;
7989 	}
7990 	return 0;
7991 }
7992 
7993 /* This function must be invoked only from initcalls/module init functions */
7994 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7995 				struct module *owner)
7996 {
7997 	struct btf_id_dtor_kfunc_tab *tab;
7998 	struct btf *btf;
7999 	u32 tab_cnt;
8000 	int ret;
8001 
8002 	btf = btf_get_module_btf(owner);
8003 	if (!btf) {
8004 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8005 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8006 			return -ENOENT;
8007 		}
8008 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8009 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
8010 			return -ENOENT;
8011 		}
8012 		return 0;
8013 	}
8014 	if (IS_ERR(btf))
8015 		return PTR_ERR(btf);
8016 
8017 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8018 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8019 		ret = -E2BIG;
8020 		goto end;
8021 	}
8022 
8023 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8024 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8025 	if (ret < 0)
8026 		goto end;
8027 
8028 	tab = btf->dtor_kfunc_tab;
8029 	/* Only one call allowed for modules */
8030 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8031 		ret = -EINVAL;
8032 		goto end;
8033 	}
8034 
8035 	tab_cnt = tab ? tab->cnt : 0;
8036 	if (tab_cnt > U32_MAX - add_cnt) {
8037 		ret = -EOVERFLOW;
8038 		goto end;
8039 	}
8040 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8041 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8042 		ret = -E2BIG;
8043 		goto end;
8044 	}
8045 
8046 	tab = krealloc(btf->dtor_kfunc_tab,
8047 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8048 		       GFP_KERNEL | __GFP_NOWARN);
8049 	if (!tab) {
8050 		ret = -ENOMEM;
8051 		goto end;
8052 	}
8053 
8054 	if (!btf->dtor_kfunc_tab)
8055 		tab->cnt = 0;
8056 	btf->dtor_kfunc_tab = tab;
8057 
8058 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8059 	tab->cnt += add_cnt;
8060 
8061 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8062 
8063 end:
8064 	if (ret)
8065 		btf_free_dtor_kfunc_tab(btf);
8066 	btf_put(btf);
8067 	return ret;
8068 }
8069 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8070 
8071 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8072 
8073 /* Check local and target types for compatibility. This check is used for
8074  * type-based CO-RE relocations and follow slightly different rules than
8075  * field-based relocations. This function assumes that root types were already
8076  * checked for name match. Beyond that initial root-level name check, names
8077  * are completely ignored. Compatibility rules are as follows:
8078  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8079  *     kind should match for local and target types (i.e., STRUCT is not
8080  *     compatible with UNION);
8081  *   - for ENUMs/ENUM64s, the size is ignored;
8082  *   - for INT, size and signedness are ignored;
8083  *   - for ARRAY, dimensionality is ignored, element types are checked for
8084  *     compatibility recursively;
8085  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8086  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8087  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8088  *     number of input args and compatible return and argument types.
8089  * These rules are not set in stone and probably will be adjusted as we get
8090  * more experience with using BPF CO-RE relocations.
8091  */
8092 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8093 			      const struct btf *targ_btf, __u32 targ_id)
8094 {
8095 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8096 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8097 }
8098 
8099 #define MAX_TYPES_MATCH_DEPTH 2
8100 
8101 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8102 			 const struct btf *targ_btf, u32 targ_id)
8103 {
8104 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8105 				      MAX_TYPES_MATCH_DEPTH);
8106 }
8107 
8108 static bool bpf_core_is_flavor_sep(const char *s)
8109 {
8110 	/* check X___Y name pattern, where X and Y are not underscores */
8111 	return s[0] != '_' &&				      /* X */
8112 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8113 	       s[4] != '_';				      /* Y */
8114 }
8115 
8116 size_t bpf_core_essential_name_len(const char *name)
8117 {
8118 	size_t n = strlen(name);
8119 	int i;
8120 
8121 	for (i = n - 5; i >= 0; i--) {
8122 		if (bpf_core_is_flavor_sep(name + i))
8123 			return i + 1;
8124 	}
8125 	return n;
8126 }
8127 
8128 struct bpf_cand_cache {
8129 	const char *name;
8130 	u32 name_len;
8131 	u16 kind;
8132 	u16 cnt;
8133 	struct {
8134 		const struct btf *btf;
8135 		u32 id;
8136 	} cands[];
8137 };
8138 
8139 static void bpf_free_cands(struct bpf_cand_cache *cands)
8140 {
8141 	if (!cands->cnt)
8142 		/* empty candidate array was allocated on stack */
8143 		return;
8144 	kfree(cands);
8145 }
8146 
8147 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8148 {
8149 	kfree(cands->name);
8150 	kfree(cands);
8151 }
8152 
8153 #define VMLINUX_CAND_CACHE_SIZE 31
8154 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8155 
8156 #define MODULE_CAND_CACHE_SIZE 31
8157 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8158 
8159 static DEFINE_MUTEX(cand_cache_mutex);
8160 
8161 static void __print_cand_cache(struct bpf_verifier_log *log,
8162 			       struct bpf_cand_cache **cache,
8163 			       int cache_size)
8164 {
8165 	struct bpf_cand_cache *cc;
8166 	int i, j;
8167 
8168 	for (i = 0; i < cache_size; i++) {
8169 		cc = cache[i];
8170 		if (!cc)
8171 			continue;
8172 		bpf_log(log, "[%d]%s(", i, cc->name);
8173 		for (j = 0; j < cc->cnt; j++) {
8174 			bpf_log(log, "%d", cc->cands[j].id);
8175 			if (j < cc->cnt - 1)
8176 				bpf_log(log, " ");
8177 		}
8178 		bpf_log(log, "), ");
8179 	}
8180 }
8181 
8182 static void print_cand_cache(struct bpf_verifier_log *log)
8183 {
8184 	mutex_lock(&cand_cache_mutex);
8185 	bpf_log(log, "vmlinux_cand_cache:");
8186 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8187 	bpf_log(log, "\nmodule_cand_cache:");
8188 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8189 	bpf_log(log, "\n");
8190 	mutex_unlock(&cand_cache_mutex);
8191 }
8192 
8193 static u32 hash_cands(struct bpf_cand_cache *cands)
8194 {
8195 	return jhash(cands->name, cands->name_len, 0);
8196 }
8197 
8198 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8199 					       struct bpf_cand_cache **cache,
8200 					       int cache_size)
8201 {
8202 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8203 
8204 	if (cc && cc->name_len == cands->name_len &&
8205 	    !strncmp(cc->name, cands->name, cands->name_len))
8206 		return cc;
8207 	return NULL;
8208 }
8209 
8210 static size_t sizeof_cands(int cnt)
8211 {
8212 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8213 }
8214 
8215 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8216 						  struct bpf_cand_cache **cache,
8217 						  int cache_size)
8218 {
8219 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8220 
8221 	if (*cc) {
8222 		bpf_free_cands_from_cache(*cc);
8223 		*cc = NULL;
8224 	}
8225 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8226 	if (!new_cands) {
8227 		bpf_free_cands(cands);
8228 		return ERR_PTR(-ENOMEM);
8229 	}
8230 	/* strdup the name, since it will stay in cache.
8231 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8232 	 */
8233 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8234 	bpf_free_cands(cands);
8235 	if (!new_cands->name) {
8236 		kfree(new_cands);
8237 		return ERR_PTR(-ENOMEM);
8238 	}
8239 	*cc = new_cands;
8240 	return new_cands;
8241 }
8242 
8243 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8244 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8245 			       int cache_size)
8246 {
8247 	struct bpf_cand_cache *cc;
8248 	int i, j;
8249 
8250 	for (i = 0; i < cache_size; i++) {
8251 		cc = cache[i];
8252 		if (!cc)
8253 			continue;
8254 		if (!btf) {
8255 			/* when new module is loaded purge all of module_cand_cache,
8256 			 * since new module might have candidates with the name
8257 			 * that matches cached cands.
8258 			 */
8259 			bpf_free_cands_from_cache(cc);
8260 			cache[i] = NULL;
8261 			continue;
8262 		}
8263 		/* when module is unloaded purge cache entries
8264 		 * that match module's btf
8265 		 */
8266 		for (j = 0; j < cc->cnt; j++)
8267 			if (cc->cands[j].btf == btf) {
8268 				bpf_free_cands_from_cache(cc);
8269 				cache[i] = NULL;
8270 				break;
8271 			}
8272 	}
8273 
8274 }
8275 
8276 static void purge_cand_cache(struct btf *btf)
8277 {
8278 	mutex_lock(&cand_cache_mutex);
8279 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8280 	mutex_unlock(&cand_cache_mutex);
8281 }
8282 #endif
8283 
8284 static struct bpf_cand_cache *
8285 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8286 		   int targ_start_id)
8287 {
8288 	struct bpf_cand_cache *new_cands;
8289 	const struct btf_type *t;
8290 	const char *targ_name;
8291 	size_t targ_essent_len;
8292 	int n, i;
8293 
8294 	n = btf_nr_types(targ_btf);
8295 	for (i = targ_start_id; i < n; i++) {
8296 		t = btf_type_by_id(targ_btf, i);
8297 		if (btf_kind(t) != cands->kind)
8298 			continue;
8299 
8300 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8301 		if (!targ_name)
8302 			continue;
8303 
8304 		/* the resched point is before strncmp to make sure that search
8305 		 * for non-existing name will have a chance to schedule().
8306 		 */
8307 		cond_resched();
8308 
8309 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8310 			continue;
8311 
8312 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8313 		if (targ_essent_len != cands->name_len)
8314 			continue;
8315 
8316 		/* most of the time there is only one candidate for a given kind+name pair */
8317 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8318 		if (!new_cands) {
8319 			bpf_free_cands(cands);
8320 			return ERR_PTR(-ENOMEM);
8321 		}
8322 
8323 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8324 		bpf_free_cands(cands);
8325 		cands = new_cands;
8326 		cands->cands[cands->cnt].btf = targ_btf;
8327 		cands->cands[cands->cnt].id = i;
8328 		cands->cnt++;
8329 	}
8330 	return cands;
8331 }
8332 
8333 static struct bpf_cand_cache *
8334 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8335 {
8336 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8337 	const struct btf *local_btf = ctx->btf;
8338 	const struct btf_type *local_type;
8339 	const struct btf *main_btf;
8340 	size_t local_essent_len;
8341 	struct btf *mod_btf;
8342 	const char *name;
8343 	int id;
8344 
8345 	main_btf = bpf_get_btf_vmlinux();
8346 	if (IS_ERR(main_btf))
8347 		return ERR_CAST(main_btf);
8348 	if (!main_btf)
8349 		return ERR_PTR(-EINVAL);
8350 
8351 	local_type = btf_type_by_id(local_btf, local_type_id);
8352 	if (!local_type)
8353 		return ERR_PTR(-EINVAL);
8354 
8355 	name = btf_name_by_offset(local_btf, local_type->name_off);
8356 	if (str_is_empty(name))
8357 		return ERR_PTR(-EINVAL);
8358 	local_essent_len = bpf_core_essential_name_len(name);
8359 
8360 	cands = &local_cand;
8361 	cands->name = name;
8362 	cands->kind = btf_kind(local_type);
8363 	cands->name_len = local_essent_len;
8364 
8365 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8366 	/* cands is a pointer to stack here */
8367 	if (cc) {
8368 		if (cc->cnt)
8369 			return cc;
8370 		goto check_modules;
8371 	}
8372 
8373 	/* Attempt to find target candidates in vmlinux BTF first */
8374 	cands = bpf_core_add_cands(cands, main_btf, 1);
8375 	if (IS_ERR(cands))
8376 		return ERR_CAST(cands);
8377 
8378 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8379 
8380 	/* populate cache even when cands->cnt == 0 */
8381 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8382 	if (IS_ERR(cc))
8383 		return ERR_CAST(cc);
8384 
8385 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8386 	if (cc->cnt)
8387 		return cc;
8388 
8389 check_modules:
8390 	/* cands is a pointer to stack here and cands->cnt == 0 */
8391 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8392 	if (cc)
8393 		/* if cache has it return it even if cc->cnt == 0 */
8394 		return cc;
8395 
8396 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8397 	spin_lock_bh(&btf_idr_lock);
8398 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8399 		if (!btf_is_module(mod_btf))
8400 			continue;
8401 		/* linear search could be slow hence unlock/lock
8402 		 * the IDR to avoiding holding it for too long
8403 		 */
8404 		btf_get(mod_btf);
8405 		spin_unlock_bh(&btf_idr_lock);
8406 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8407 		btf_put(mod_btf);
8408 		if (IS_ERR(cands))
8409 			return ERR_CAST(cands);
8410 		spin_lock_bh(&btf_idr_lock);
8411 	}
8412 	spin_unlock_bh(&btf_idr_lock);
8413 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8414 	 * or pointer to stack if cands->cnd == 0.
8415 	 * Copy it into the cache even when cands->cnt == 0 and
8416 	 * return the result.
8417 	 */
8418 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8419 }
8420 
8421 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8422 		   int relo_idx, void *insn)
8423 {
8424 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8425 	struct bpf_core_cand_list cands = {};
8426 	struct bpf_core_relo_res targ_res;
8427 	struct bpf_core_spec *specs;
8428 	int err;
8429 
8430 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8431 	 * into arrays of btf_ids of struct fields and array indices.
8432 	 */
8433 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8434 	if (!specs)
8435 		return -ENOMEM;
8436 
8437 	if (need_cands) {
8438 		struct bpf_cand_cache *cc;
8439 		int i;
8440 
8441 		mutex_lock(&cand_cache_mutex);
8442 		cc = bpf_core_find_cands(ctx, relo->type_id);
8443 		if (IS_ERR(cc)) {
8444 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8445 				relo->type_id);
8446 			err = PTR_ERR(cc);
8447 			goto out;
8448 		}
8449 		if (cc->cnt) {
8450 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8451 			if (!cands.cands) {
8452 				err = -ENOMEM;
8453 				goto out;
8454 			}
8455 		}
8456 		for (i = 0; i < cc->cnt; i++) {
8457 			bpf_log(ctx->log,
8458 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8459 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8460 			cands.cands[i].btf = cc->cands[i].btf;
8461 			cands.cands[i].id = cc->cands[i].id;
8462 		}
8463 		cands.len = cc->cnt;
8464 		/* cand_cache_mutex needs to span the cache lookup and
8465 		 * copy of btf pointer into bpf_core_cand_list,
8466 		 * since module can be unloaded while bpf_core_calc_relo_insn
8467 		 * is working with module's btf.
8468 		 */
8469 	}
8470 
8471 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8472 				      &targ_res);
8473 	if (err)
8474 		goto out;
8475 
8476 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8477 				  &targ_res);
8478 
8479 out:
8480 	kfree(specs);
8481 	if (need_cands) {
8482 		kfree(cands.cands);
8483 		mutex_unlock(&cand_cache_mutex);
8484 		if (ctx->log->level & BPF_LOG_LEVEL2)
8485 			print_cand_cache(ctx->log);
8486 	}
8487 	return err;
8488 }
8489 
8490 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8491 				const struct bpf_reg_state *reg,
8492 				const char *field_name, u32 btf_id, const char *suffix)
8493 {
8494 	struct btf *btf = reg->btf;
8495 	const struct btf_type *walk_type, *safe_type;
8496 	const char *tname;
8497 	char safe_tname[64];
8498 	long ret, safe_id;
8499 	const struct btf_member *member;
8500 	u32 i;
8501 
8502 	walk_type = btf_type_by_id(btf, reg->btf_id);
8503 	if (!walk_type)
8504 		return false;
8505 
8506 	tname = btf_name_by_offset(btf, walk_type->name_off);
8507 
8508 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8509 	if (ret < 0)
8510 		return false;
8511 
8512 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8513 	if (safe_id < 0)
8514 		return false;
8515 
8516 	safe_type = btf_type_by_id(btf, safe_id);
8517 	if (!safe_type)
8518 		return false;
8519 
8520 	for_each_member(i, safe_type, member) {
8521 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8522 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8523 		u32 id;
8524 
8525 		if (!btf_type_is_ptr(mtype))
8526 			continue;
8527 
8528 		btf_type_skip_modifiers(btf, mtype->type, &id);
8529 		/* If we match on both type and name, the field is considered trusted. */
8530 		if (btf_id == id && !strcmp(field_name, m_name))
8531 			return true;
8532 	}
8533 
8534 	return false;
8535 }
8536 
8537 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8538 			       const struct btf *reg_btf, u32 reg_id,
8539 			       const struct btf *arg_btf, u32 arg_id)
8540 {
8541 	const char *reg_name, *arg_name, *search_needle;
8542 	const struct btf_type *reg_type, *arg_type;
8543 	int reg_len, arg_len, cmp_len;
8544 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8545 
8546 	reg_type = btf_type_by_id(reg_btf, reg_id);
8547 	if (!reg_type)
8548 		return false;
8549 
8550 	arg_type = btf_type_by_id(arg_btf, arg_id);
8551 	if (!arg_type)
8552 		return false;
8553 
8554 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8555 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8556 
8557 	reg_len = strlen(reg_name);
8558 	arg_len = strlen(arg_name);
8559 
8560 	/* Exactly one of the two type names may be suffixed with ___init, so
8561 	 * if the strings are the same size, they can't possibly be no-cast
8562 	 * aliases of one another. If you have two of the same type names, e.g.
8563 	 * they're both nf_conn___init, it would be improper to return true
8564 	 * because they are _not_ no-cast aliases, they are the same type.
8565 	 */
8566 	if (reg_len == arg_len)
8567 		return false;
8568 
8569 	/* Either of the two names must be the other name, suffixed with ___init. */
8570 	if ((reg_len != arg_len + pattern_len) &&
8571 	    (arg_len != reg_len + pattern_len))
8572 		return false;
8573 
8574 	if (reg_len < arg_len) {
8575 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8576 		cmp_len = reg_len;
8577 	} else {
8578 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8579 		cmp_len = arg_len;
8580 	}
8581 
8582 	if (!search_needle)
8583 		return false;
8584 
8585 	/* ___init suffix must come at the end of the name */
8586 	if (*(search_needle + pattern_len) != '\0')
8587 		return false;
8588 
8589 	return !strncmp(reg_name, arg_name, cmp_len);
8590 }
8591