1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/skmsg.h> 22 #include <linux/perf_event.h> 23 #include <net/sock.h> 24 25 /* BTF (BPF Type Format) is the meta data format which describes 26 * the data types of BPF program/map. Hence, it basically focus 27 * on the C programming language which the modern BPF is primary 28 * using. 29 * 30 * ELF Section: 31 * ~~~~~~~~~~~ 32 * The BTF data is stored under the ".BTF" ELF section 33 * 34 * struct btf_type: 35 * ~~~~~~~~~~~~~~~ 36 * Each 'struct btf_type' object describes a C data type. 37 * Depending on the type it is describing, a 'struct btf_type' 38 * object may be followed by more data. F.e. 39 * To describe an array, 'struct btf_type' is followed by 40 * 'struct btf_array'. 41 * 42 * 'struct btf_type' and any extra data following it are 43 * 4 bytes aligned. 44 * 45 * Type section: 46 * ~~~~~~~~~~~~~ 47 * The BTF type section contains a list of 'struct btf_type' objects. 48 * Each one describes a C type. Recall from the above section 49 * that a 'struct btf_type' object could be immediately followed by extra 50 * data in order to desribe some particular C types. 51 * 52 * type_id: 53 * ~~~~~~~ 54 * Each btf_type object is identified by a type_id. The type_id 55 * is implicitly implied by the location of the btf_type object in 56 * the BTF type section. The first one has type_id 1. The second 57 * one has type_id 2...etc. Hence, an earlier btf_type has 58 * a smaller type_id. 59 * 60 * A btf_type object may refer to another btf_type object by using 61 * type_id (i.e. the "type" in the "struct btf_type"). 62 * 63 * NOTE that we cannot assume any reference-order. 64 * A btf_type object can refer to an earlier btf_type object 65 * but it can also refer to a later btf_type object. 66 * 67 * For example, to describe "const void *". A btf_type 68 * object describing "const" may refer to another btf_type 69 * object describing "void *". This type-reference is done 70 * by specifying type_id: 71 * 72 * [1] CONST (anon) type_id=2 73 * [2] PTR (anon) type_id=0 74 * 75 * The above is the btf_verifier debug log: 76 * - Each line started with "[?]" is a btf_type object 77 * - [?] is the type_id of the btf_type object. 78 * - CONST/PTR is the BTF_KIND_XXX 79 * - "(anon)" is the name of the type. It just 80 * happens that CONST and PTR has no name. 81 * - type_id=XXX is the 'u32 type' in btf_type 82 * 83 * NOTE: "void" has type_id 0 84 * 85 * String section: 86 * ~~~~~~~~~~~~~~ 87 * The BTF string section contains the names used by the type section. 88 * Each string is referred by an "offset" from the beginning of the 89 * string section. 90 * 91 * Each string is '\0' terminated. 92 * 93 * The first character in the string section must be '\0' 94 * which is used to mean 'anonymous'. Some btf_type may not 95 * have a name. 96 */ 97 98 /* BTF verification: 99 * 100 * To verify BTF data, two passes are needed. 101 * 102 * Pass #1 103 * ~~~~~~~ 104 * The first pass is to collect all btf_type objects to 105 * an array: "btf->types". 106 * 107 * Depending on the C type that a btf_type is describing, 108 * a btf_type may be followed by extra data. We don't know 109 * how many btf_type is there, and more importantly we don't 110 * know where each btf_type is located in the type section. 111 * 112 * Without knowing the location of each type_id, most verifications 113 * cannot be done. e.g. an earlier btf_type may refer to a later 114 * btf_type (recall the "const void *" above), so we cannot 115 * check this type-reference in the first pass. 116 * 117 * In the first pass, it still does some verifications (e.g. 118 * checking the name is a valid offset to the string section). 119 * 120 * Pass #2 121 * ~~~~~~~ 122 * The main focus is to resolve a btf_type that is referring 123 * to another type. 124 * 125 * We have to ensure the referring type: 126 * 1) does exist in the BTF (i.e. in btf->types[]) 127 * 2) does not cause a loop: 128 * struct A { 129 * struct B b; 130 * }; 131 * 132 * struct B { 133 * struct A a; 134 * }; 135 * 136 * btf_type_needs_resolve() decides if a btf_type needs 137 * to be resolved. 138 * 139 * The needs_resolve type implements the "resolve()" ops which 140 * essentially does a DFS and detects backedge. 141 * 142 * During resolve (or DFS), different C types have different 143 * "RESOLVED" conditions. 144 * 145 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 146 * members because a member is always referring to another 147 * type. A struct's member can be treated as "RESOLVED" if 148 * it is referring to a BTF_KIND_PTR. Otherwise, the 149 * following valid C struct would be rejected: 150 * 151 * struct A { 152 * int m; 153 * struct A *a; 154 * }; 155 * 156 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 157 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 158 * detect a pointer loop, e.g.: 159 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 160 * ^ | 161 * +-----------------------------------------+ 162 * 163 */ 164 165 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 166 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 167 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 168 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 169 #define BITS_ROUNDUP_BYTES(bits) \ 170 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 171 172 #define BTF_INFO_MASK 0x8f00ffff 173 #define BTF_INT_MASK 0x0fffffff 174 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 175 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 176 177 /* 16MB for 64k structs and each has 16 members and 178 * a few MB spaces for the string section. 179 * The hard limit is S32_MAX. 180 */ 181 #define BTF_MAX_SIZE (16 * 1024 * 1024) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 #define for_each_vsi(i, struct_type, member) \ 189 for (i = 0, member = btf_type_var_secinfo(struct_type); \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 DEFINE_IDR(btf_idr); 199 DEFINE_SPINLOCK(btf_idr_lock); 200 201 struct btf { 202 void *data; 203 struct btf_type **types; 204 u32 *resolved_ids; 205 u32 *resolved_sizes; 206 const char *strings; 207 void *nohdr_data; 208 struct btf_header hdr; 209 u32 nr_types; 210 u32 types_size; 211 u32 data_size; 212 refcount_t refcnt; 213 u32 id; 214 struct rcu_head rcu; 215 }; 216 217 enum verifier_phase { 218 CHECK_META, 219 CHECK_TYPE, 220 }; 221 222 struct resolve_vertex { 223 const struct btf_type *t; 224 u32 type_id; 225 u16 next_member; 226 }; 227 228 enum visit_state { 229 NOT_VISITED, 230 VISITED, 231 RESOLVED, 232 }; 233 234 enum resolve_mode { 235 RESOLVE_TBD, /* To Be Determined */ 236 RESOLVE_PTR, /* Resolving for Pointer */ 237 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 238 * or array 239 */ 240 }; 241 242 #define MAX_RESOLVE_DEPTH 32 243 244 struct btf_sec_info { 245 u32 off; 246 u32 len; 247 }; 248 249 struct btf_verifier_env { 250 struct btf *btf; 251 u8 *visit_states; 252 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 253 struct bpf_verifier_log log; 254 u32 log_type_id; 255 u32 top_stack; 256 enum verifier_phase phase; 257 enum resolve_mode resolve_mode; 258 }; 259 260 static const char * const btf_kind_str[NR_BTF_KINDS] = { 261 [BTF_KIND_UNKN] = "UNKNOWN", 262 [BTF_KIND_INT] = "INT", 263 [BTF_KIND_PTR] = "PTR", 264 [BTF_KIND_ARRAY] = "ARRAY", 265 [BTF_KIND_STRUCT] = "STRUCT", 266 [BTF_KIND_UNION] = "UNION", 267 [BTF_KIND_ENUM] = "ENUM", 268 [BTF_KIND_FWD] = "FWD", 269 [BTF_KIND_TYPEDEF] = "TYPEDEF", 270 [BTF_KIND_VOLATILE] = "VOLATILE", 271 [BTF_KIND_CONST] = "CONST", 272 [BTF_KIND_RESTRICT] = "RESTRICT", 273 [BTF_KIND_FUNC] = "FUNC", 274 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 275 [BTF_KIND_VAR] = "VAR", 276 [BTF_KIND_DATASEC] = "DATASEC", 277 }; 278 279 static const char *btf_type_str(const struct btf_type *t) 280 { 281 return btf_kind_str[BTF_INFO_KIND(t->info)]; 282 } 283 284 struct btf_kind_operations { 285 s32 (*check_meta)(struct btf_verifier_env *env, 286 const struct btf_type *t, 287 u32 meta_left); 288 int (*resolve)(struct btf_verifier_env *env, 289 const struct resolve_vertex *v); 290 int (*check_member)(struct btf_verifier_env *env, 291 const struct btf_type *struct_type, 292 const struct btf_member *member, 293 const struct btf_type *member_type); 294 int (*check_kflag_member)(struct btf_verifier_env *env, 295 const struct btf_type *struct_type, 296 const struct btf_member *member, 297 const struct btf_type *member_type); 298 void (*log_details)(struct btf_verifier_env *env, 299 const struct btf_type *t); 300 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 301 u32 type_id, void *data, u8 bits_offsets, 302 struct seq_file *m); 303 }; 304 305 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 306 static struct btf_type btf_void; 307 308 static int btf_resolve(struct btf_verifier_env *env, 309 const struct btf_type *t, u32 type_id); 310 311 static bool btf_type_is_modifier(const struct btf_type *t) 312 { 313 /* Some of them is not strictly a C modifier 314 * but they are grouped into the same bucket 315 * for BTF concern: 316 * A type (t) that refers to another 317 * type through t->type AND its size cannot 318 * be determined without following the t->type. 319 * 320 * ptr does not fall into this bucket 321 * because its size is always sizeof(void *). 322 */ 323 switch (BTF_INFO_KIND(t->info)) { 324 case BTF_KIND_TYPEDEF: 325 case BTF_KIND_VOLATILE: 326 case BTF_KIND_CONST: 327 case BTF_KIND_RESTRICT: 328 return true; 329 } 330 331 return false; 332 } 333 334 bool btf_type_is_void(const struct btf_type *t) 335 { 336 return t == &btf_void; 337 } 338 339 static bool btf_type_is_fwd(const struct btf_type *t) 340 { 341 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 342 } 343 344 static bool btf_type_nosize(const struct btf_type *t) 345 { 346 return btf_type_is_void(t) || btf_type_is_fwd(t) || 347 btf_type_is_func(t) || btf_type_is_func_proto(t); 348 } 349 350 static bool btf_type_nosize_or_null(const struct btf_type *t) 351 { 352 return !t || btf_type_nosize(t); 353 } 354 355 /* union is only a special case of struct: 356 * all its offsetof(member) == 0 357 */ 358 static bool btf_type_is_struct(const struct btf_type *t) 359 { 360 u8 kind = BTF_INFO_KIND(t->info); 361 362 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 363 } 364 365 static bool __btf_type_is_struct(const struct btf_type *t) 366 { 367 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 368 } 369 370 static bool btf_type_is_array(const struct btf_type *t) 371 { 372 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 373 } 374 375 static bool btf_type_is_var(const struct btf_type *t) 376 { 377 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR; 378 } 379 380 static bool btf_type_is_datasec(const struct btf_type *t) 381 { 382 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 383 } 384 385 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 386 { 387 const struct btf_type *t; 388 const char *tname; 389 u32 i; 390 391 for (i = 1; i <= btf->nr_types; i++) { 392 t = btf->types[i]; 393 if (BTF_INFO_KIND(t->info) != kind) 394 continue; 395 396 tname = btf_name_by_offset(btf, t->name_off); 397 if (!strcmp(tname, name)) 398 return i; 399 } 400 401 return -ENOENT; 402 } 403 404 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 405 u32 id, u32 *res_id) 406 { 407 const struct btf_type *t = btf_type_by_id(btf, id); 408 409 while (btf_type_is_modifier(t)) { 410 id = t->type; 411 t = btf_type_by_id(btf, t->type); 412 } 413 414 if (res_id) 415 *res_id = id; 416 417 return t; 418 } 419 420 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 421 u32 id, u32 *res_id) 422 { 423 const struct btf_type *t; 424 425 t = btf_type_skip_modifiers(btf, id, NULL); 426 if (!btf_type_is_ptr(t)) 427 return NULL; 428 429 return btf_type_skip_modifiers(btf, t->type, res_id); 430 } 431 432 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 433 u32 id, u32 *res_id) 434 { 435 const struct btf_type *ptype; 436 437 ptype = btf_type_resolve_ptr(btf, id, res_id); 438 if (ptype && btf_type_is_func_proto(ptype)) 439 return ptype; 440 441 return NULL; 442 } 443 444 /* Types that act only as a source, not sink or intermediate 445 * type when resolving. 446 */ 447 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 448 { 449 return btf_type_is_var(t) || 450 btf_type_is_datasec(t); 451 } 452 453 /* What types need to be resolved? 454 * 455 * btf_type_is_modifier() is an obvious one. 456 * 457 * btf_type_is_struct() because its member refers to 458 * another type (through member->type). 459 * 460 * btf_type_is_var() because the variable refers to 461 * another type. btf_type_is_datasec() holds multiple 462 * btf_type_is_var() types that need resolving. 463 * 464 * btf_type_is_array() because its element (array->type) 465 * refers to another type. Array can be thought of a 466 * special case of struct while array just has the same 467 * member-type repeated by array->nelems of times. 468 */ 469 static bool btf_type_needs_resolve(const struct btf_type *t) 470 { 471 return btf_type_is_modifier(t) || 472 btf_type_is_ptr(t) || 473 btf_type_is_struct(t) || 474 btf_type_is_array(t) || 475 btf_type_is_var(t) || 476 btf_type_is_datasec(t); 477 } 478 479 /* t->size can be used */ 480 static bool btf_type_has_size(const struct btf_type *t) 481 { 482 switch (BTF_INFO_KIND(t->info)) { 483 case BTF_KIND_INT: 484 case BTF_KIND_STRUCT: 485 case BTF_KIND_UNION: 486 case BTF_KIND_ENUM: 487 case BTF_KIND_DATASEC: 488 return true; 489 } 490 491 return false; 492 } 493 494 static const char *btf_int_encoding_str(u8 encoding) 495 { 496 if (encoding == 0) 497 return "(none)"; 498 else if (encoding == BTF_INT_SIGNED) 499 return "SIGNED"; 500 else if (encoding == BTF_INT_CHAR) 501 return "CHAR"; 502 else if (encoding == BTF_INT_BOOL) 503 return "BOOL"; 504 else 505 return "UNKN"; 506 } 507 508 static u32 btf_type_int(const struct btf_type *t) 509 { 510 return *(u32 *)(t + 1); 511 } 512 513 static const struct btf_array *btf_type_array(const struct btf_type *t) 514 { 515 return (const struct btf_array *)(t + 1); 516 } 517 518 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 519 { 520 return (const struct btf_enum *)(t + 1); 521 } 522 523 static const struct btf_var *btf_type_var(const struct btf_type *t) 524 { 525 return (const struct btf_var *)(t + 1); 526 } 527 528 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t) 529 { 530 return (const struct btf_var_secinfo *)(t + 1); 531 } 532 533 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 534 { 535 return kind_ops[BTF_INFO_KIND(t->info)]; 536 } 537 538 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 539 { 540 return BTF_STR_OFFSET_VALID(offset) && 541 offset < btf->hdr.str_len; 542 } 543 544 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 545 { 546 if ((first ? !isalpha(c) : 547 !isalnum(c)) && 548 c != '_' && 549 ((c == '.' && !dot_ok) || 550 c != '.')) 551 return false; 552 return true; 553 } 554 555 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 556 { 557 /* offset must be valid */ 558 const char *src = &btf->strings[offset]; 559 const char *src_limit; 560 561 if (!__btf_name_char_ok(*src, true, dot_ok)) 562 return false; 563 564 /* set a limit on identifier length */ 565 src_limit = src + KSYM_NAME_LEN; 566 src++; 567 while (*src && src < src_limit) { 568 if (!__btf_name_char_ok(*src, false, dot_ok)) 569 return false; 570 src++; 571 } 572 573 return !*src; 574 } 575 576 /* Only C-style identifier is permitted. This can be relaxed if 577 * necessary. 578 */ 579 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 580 { 581 return __btf_name_valid(btf, offset, false); 582 } 583 584 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 585 { 586 return __btf_name_valid(btf, offset, true); 587 } 588 589 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 590 { 591 if (!offset) 592 return "(anon)"; 593 else if (offset < btf->hdr.str_len) 594 return &btf->strings[offset]; 595 else 596 return "(invalid-name-offset)"; 597 } 598 599 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 600 { 601 if (offset < btf->hdr.str_len) 602 return &btf->strings[offset]; 603 604 return NULL; 605 } 606 607 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 608 { 609 if (type_id > btf->nr_types) 610 return NULL; 611 612 return btf->types[type_id]; 613 } 614 615 /* 616 * Regular int is not a bit field and it must be either 617 * u8/u16/u32/u64 or __int128. 618 */ 619 static bool btf_type_int_is_regular(const struct btf_type *t) 620 { 621 u8 nr_bits, nr_bytes; 622 u32 int_data; 623 624 int_data = btf_type_int(t); 625 nr_bits = BTF_INT_BITS(int_data); 626 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 627 if (BITS_PER_BYTE_MASKED(nr_bits) || 628 BTF_INT_OFFSET(int_data) || 629 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 630 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 631 nr_bytes != (2 * sizeof(u64)))) { 632 return false; 633 } 634 635 return true; 636 } 637 638 /* 639 * Check that given struct member is a regular int with expected 640 * offset and size. 641 */ 642 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 643 const struct btf_member *m, 644 u32 expected_offset, u32 expected_size) 645 { 646 const struct btf_type *t; 647 u32 id, int_data; 648 u8 nr_bits; 649 650 id = m->type; 651 t = btf_type_id_size(btf, &id, NULL); 652 if (!t || !btf_type_is_int(t)) 653 return false; 654 655 int_data = btf_type_int(t); 656 nr_bits = BTF_INT_BITS(int_data); 657 if (btf_type_kflag(s)) { 658 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 659 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 660 661 /* if kflag set, int should be a regular int and 662 * bit offset should be at byte boundary. 663 */ 664 return !bitfield_size && 665 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 666 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 667 } 668 669 if (BTF_INT_OFFSET(int_data) || 670 BITS_PER_BYTE_MASKED(m->offset) || 671 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 672 BITS_PER_BYTE_MASKED(nr_bits) || 673 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 674 return false; 675 676 return true; 677 } 678 679 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 680 const char *fmt, ...) 681 { 682 va_list args; 683 684 va_start(args, fmt); 685 bpf_verifier_vlog(log, fmt, args); 686 va_end(args); 687 } 688 689 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 690 const char *fmt, ...) 691 { 692 struct bpf_verifier_log *log = &env->log; 693 va_list args; 694 695 if (!bpf_verifier_log_needed(log)) 696 return; 697 698 va_start(args, fmt); 699 bpf_verifier_vlog(log, fmt, args); 700 va_end(args); 701 } 702 703 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 704 const struct btf_type *t, 705 bool log_details, 706 const char *fmt, ...) 707 { 708 struct bpf_verifier_log *log = &env->log; 709 u8 kind = BTF_INFO_KIND(t->info); 710 struct btf *btf = env->btf; 711 va_list args; 712 713 if (!bpf_verifier_log_needed(log)) 714 return; 715 716 /* btf verifier prints all types it is processing via 717 * btf_verifier_log_type(..., fmt = NULL). 718 * Skip those prints for in-kernel BTF verification. 719 */ 720 if (log->level == BPF_LOG_KERNEL && !fmt) 721 return; 722 723 __btf_verifier_log(log, "[%u] %s %s%s", 724 env->log_type_id, 725 btf_kind_str[kind], 726 __btf_name_by_offset(btf, t->name_off), 727 log_details ? " " : ""); 728 729 if (log_details) 730 btf_type_ops(t)->log_details(env, t); 731 732 if (fmt && *fmt) { 733 __btf_verifier_log(log, " "); 734 va_start(args, fmt); 735 bpf_verifier_vlog(log, fmt, args); 736 va_end(args); 737 } 738 739 __btf_verifier_log(log, "\n"); 740 } 741 742 #define btf_verifier_log_type(env, t, ...) \ 743 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 744 #define btf_verifier_log_basic(env, t, ...) \ 745 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 746 747 __printf(4, 5) 748 static void btf_verifier_log_member(struct btf_verifier_env *env, 749 const struct btf_type *struct_type, 750 const struct btf_member *member, 751 const char *fmt, ...) 752 { 753 struct bpf_verifier_log *log = &env->log; 754 struct btf *btf = env->btf; 755 va_list args; 756 757 if (!bpf_verifier_log_needed(log)) 758 return; 759 760 if (log->level == BPF_LOG_KERNEL && !fmt) 761 return; 762 /* The CHECK_META phase already did a btf dump. 763 * 764 * If member is logged again, it must hit an error in 765 * parsing this member. It is useful to print out which 766 * struct this member belongs to. 767 */ 768 if (env->phase != CHECK_META) 769 btf_verifier_log_type(env, struct_type, NULL); 770 771 if (btf_type_kflag(struct_type)) 772 __btf_verifier_log(log, 773 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 774 __btf_name_by_offset(btf, member->name_off), 775 member->type, 776 BTF_MEMBER_BITFIELD_SIZE(member->offset), 777 BTF_MEMBER_BIT_OFFSET(member->offset)); 778 else 779 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 780 __btf_name_by_offset(btf, member->name_off), 781 member->type, member->offset); 782 783 if (fmt && *fmt) { 784 __btf_verifier_log(log, " "); 785 va_start(args, fmt); 786 bpf_verifier_vlog(log, fmt, args); 787 va_end(args); 788 } 789 790 __btf_verifier_log(log, "\n"); 791 } 792 793 __printf(4, 5) 794 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 795 const struct btf_type *datasec_type, 796 const struct btf_var_secinfo *vsi, 797 const char *fmt, ...) 798 { 799 struct bpf_verifier_log *log = &env->log; 800 va_list args; 801 802 if (!bpf_verifier_log_needed(log)) 803 return; 804 if (log->level == BPF_LOG_KERNEL && !fmt) 805 return; 806 if (env->phase != CHECK_META) 807 btf_verifier_log_type(env, datasec_type, NULL); 808 809 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 810 vsi->type, vsi->offset, vsi->size); 811 if (fmt && *fmt) { 812 __btf_verifier_log(log, " "); 813 va_start(args, fmt); 814 bpf_verifier_vlog(log, fmt, args); 815 va_end(args); 816 } 817 818 __btf_verifier_log(log, "\n"); 819 } 820 821 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 822 u32 btf_data_size) 823 { 824 struct bpf_verifier_log *log = &env->log; 825 const struct btf *btf = env->btf; 826 const struct btf_header *hdr; 827 828 if (!bpf_verifier_log_needed(log)) 829 return; 830 831 if (log->level == BPF_LOG_KERNEL) 832 return; 833 hdr = &btf->hdr; 834 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 835 __btf_verifier_log(log, "version: %u\n", hdr->version); 836 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 837 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 838 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 839 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 840 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 841 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 842 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 843 } 844 845 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 846 { 847 struct btf *btf = env->btf; 848 849 /* < 2 because +1 for btf_void which is always in btf->types[0]. 850 * btf_void is not accounted in btf->nr_types because btf_void 851 * does not come from the BTF file. 852 */ 853 if (btf->types_size - btf->nr_types < 2) { 854 /* Expand 'types' array */ 855 856 struct btf_type **new_types; 857 u32 expand_by, new_size; 858 859 if (btf->types_size == BTF_MAX_TYPE) { 860 btf_verifier_log(env, "Exceeded max num of types"); 861 return -E2BIG; 862 } 863 864 expand_by = max_t(u32, btf->types_size >> 2, 16); 865 new_size = min_t(u32, BTF_MAX_TYPE, 866 btf->types_size + expand_by); 867 868 new_types = kvcalloc(new_size, sizeof(*new_types), 869 GFP_KERNEL | __GFP_NOWARN); 870 if (!new_types) 871 return -ENOMEM; 872 873 if (btf->nr_types == 0) 874 new_types[0] = &btf_void; 875 else 876 memcpy(new_types, btf->types, 877 sizeof(*btf->types) * (btf->nr_types + 1)); 878 879 kvfree(btf->types); 880 btf->types = new_types; 881 btf->types_size = new_size; 882 } 883 884 btf->types[++(btf->nr_types)] = t; 885 886 return 0; 887 } 888 889 static int btf_alloc_id(struct btf *btf) 890 { 891 int id; 892 893 idr_preload(GFP_KERNEL); 894 spin_lock_bh(&btf_idr_lock); 895 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 896 if (id > 0) 897 btf->id = id; 898 spin_unlock_bh(&btf_idr_lock); 899 idr_preload_end(); 900 901 if (WARN_ON_ONCE(!id)) 902 return -ENOSPC; 903 904 return id > 0 ? 0 : id; 905 } 906 907 static void btf_free_id(struct btf *btf) 908 { 909 unsigned long flags; 910 911 /* 912 * In map-in-map, calling map_delete_elem() on outer 913 * map will call bpf_map_put on the inner map. 914 * It will then eventually call btf_free_id() 915 * on the inner map. Some of the map_delete_elem() 916 * implementation may have irq disabled, so 917 * we need to use the _irqsave() version instead 918 * of the _bh() version. 919 */ 920 spin_lock_irqsave(&btf_idr_lock, flags); 921 idr_remove(&btf_idr, btf->id); 922 spin_unlock_irqrestore(&btf_idr_lock, flags); 923 } 924 925 static void btf_free(struct btf *btf) 926 { 927 kvfree(btf->types); 928 kvfree(btf->resolved_sizes); 929 kvfree(btf->resolved_ids); 930 kvfree(btf->data); 931 kfree(btf); 932 } 933 934 static void btf_free_rcu(struct rcu_head *rcu) 935 { 936 struct btf *btf = container_of(rcu, struct btf, rcu); 937 938 btf_free(btf); 939 } 940 941 void btf_put(struct btf *btf) 942 { 943 if (btf && refcount_dec_and_test(&btf->refcnt)) { 944 btf_free_id(btf); 945 call_rcu(&btf->rcu, btf_free_rcu); 946 } 947 } 948 949 static int env_resolve_init(struct btf_verifier_env *env) 950 { 951 struct btf *btf = env->btf; 952 u32 nr_types = btf->nr_types; 953 u32 *resolved_sizes = NULL; 954 u32 *resolved_ids = NULL; 955 u8 *visit_states = NULL; 956 957 /* +1 for btf_void */ 958 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 959 GFP_KERNEL | __GFP_NOWARN); 960 if (!resolved_sizes) 961 goto nomem; 962 963 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 964 GFP_KERNEL | __GFP_NOWARN); 965 if (!resolved_ids) 966 goto nomem; 967 968 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 969 GFP_KERNEL | __GFP_NOWARN); 970 if (!visit_states) 971 goto nomem; 972 973 btf->resolved_sizes = resolved_sizes; 974 btf->resolved_ids = resolved_ids; 975 env->visit_states = visit_states; 976 977 return 0; 978 979 nomem: 980 kvfree(resolved_sizes); 981 kvfree(resolved_ids); 982 kvfree(visit_states); 983 return -ENOMEM; 984 } 985 986 static void btf_verifier_env_free(struct btf_verifier_env *env) 987 { 988 kvfree(env->visit_states); 989 kfree(env); 990 } 991 992 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 993 const struct btf_type *next_type) 994 { 995 switch (env->resolve_mode) { 996 case RESOLVE_TBD: 997 /* int, enum or void is a sink */ 998 return !btf_type_needs_resolve(next_type); 999 case RESOLVE_PTR: 1000 /* int, enum, void, struct, array, func or func_proto is a sink 1001 * for ptr 1002 */ 1003 return !btf_type_is_modifier(next_type) && 1004 !btf_type_is_ptr(next_type); 1005 case RESOLVE_STRUCT_OR_ARRAY: 1006 /* int, enum, void, ptr, func or func_proto is a sink 1007 * for struct and array 1008 */ 1009 return !btf_type_is_modifier(next_type) && 1010 !btf_type_is_array(next_type) && 1011 !btf_type_is_struct(next_type); 1012 default: 1013 BUG(); 1014 } 1015 } 1016 1017 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1018 u32 type_id) 1019 { 1020 return env->visit_states[type_id] == RESOLVED; 1021 } 1022 1023 static int env_stack_push(struct btf_verifier_env *env, 1024 const struct btf_type *t, u32 type_id) 1025 { 1026 struct resolve_vertex *v; 1027 1028 if (env->top_stack == MAX_RESOLVE_DEPTH) 1029 return -E2BIG; 1030 1031 if (env->visit_states[type_id] != NOT_VISITED) 1032 return -EEXIST; 1033 1034 env->visit_states[type_id] = VISITED; 1035 1036 v = &env->stack[env->top_stack++]; 1037 v->t = t; 1038 v->type_id = type_id; 1039 v->next_member = 0; 1040 1041 if (env->resolve_mode == RESOLVE_TBD) { 1042 if (btf_type_is_ptr(t)) 1043 env->resolve_mode = RESOLVE_PTR; 1044 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1045 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1046 } 1047 1048 return 0; 1049 } 1050 1051 static void env_stack_set_next_member(struct btf_verifier_env *env, 1052 u16 next_member) 1053 { 1054 env->stack[env->top_stack - 1].next_member = next_member; 1055 } 1056 1057 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1058 u32 resolved_type_id, 1059 u32 resolved_size) 1060 { 1061 u32 type_id = env->stack[--(env->top_stack)].type_id; 1062 struct btf *btf = env->btf; 1063 1064 btf->resolved_sizes[type_id] = resolved_size; 1065 btf->resolved_ids[type_id] = resolved_type_id; 1066 env->visit_states[type_id] = RESOLVED; 1067 } 1068 1069 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1070 { 1071 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1072 } 1073 1074 /* Resolve the size of a passed-in "type" 1075 * 1076 * type: is an array (e.g. u32 array[x][y]) 1077 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1078 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1079 * corresponds to the return type. 1080 * *elem_type: u32 1081 * *total_nelems: (x * y). Hence, individual elem size is 1082 * (*type_size / *total_nelems) 1083 * 1084 * type: is not an array (e.g. const struct X) 1085 * return type: type "struct X" 1086 * *type_size: sizeof(struct X) 1087 * *elem_type: same as return type ("struct X") 1088 * *total_nelems: 1 1089 */ 1090 const struct btf_type * 1091 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1092 u32 *type_size, const struct btf_type **elem_type, 1093 u32 *total_nelems) 1094 { 1095 const struct btf_type *array_type = NULL; 1096 const struct btf_array *array; 1097 u32 i, size, nelems = 1; 1098 1099 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1100 switch (BTF_INFO_KIND(type->info)) { 1101 /* type->size can be used */ 1102 case BTF_KIND_INT: 1103 case BTF_KIND_STRUCT: 1104 case BTF_KIND_UNION: 1105 case BTF_KIND_ENUM: 1106 size = type->size; 1107 goto resolved; 1108 1109 case BTF_KIND_PTR: 1110 size = sizeof(void *); 1111 goto resolved; 1112 1113 /* Modifiers */ 1114 case BTF_KIND_TYPEDEF: 1115 case BTF_KIND_VOLATILE: 1116 case BTF_KIND_CONST: 1117 case BTF_KIND_RESTRICT: 1118 type = btf_type_by_id(btf, type->type); 1119 break; 1120 1121 case BTF_KIND_ARRAY: 1122 if (!array_type) 1123 array_type = type; 1124 array = btf_type_array(type); 1125 if (nelems && array->nelems > U32_MAX / nelems) 1126 return ERR_PTR(-EINVAL); 1127 nelems *= array->nelems; 1128 type = btf_type_by_id(btf, array->type); 1129 break; 1130 1131 /* type without size */ 1132 default: 1133 return ERR_PTR(-EINVAL); 1134 } 1135 } 1136 1137 return ERR_PTR(-EINVAL); 1138 1139 resolved: 1140 if (nelems && size > U32_MAX / nelems) 1141 return ERR_PTR(-EINVAL); 1142 1143 *type_size = nelems * size; 1144 if (total_nelems) 1145 *total_nelems = nelems; 1146 if (elem_type) 1147 *elem_type = type; 1148 1149 return array_type ? : type; 1150 } 1151 1152 /* The input param "type_id" must point to a needs_resolve type */ 1153 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1154 u32 *type_id) 1155 { 1156 *type_id = btf->resolved_ids[*type_id]; 1157 return btf_type_by_id(btf, *type_id); 1158 } 1159 1160 const struct btf_type *btf_type_id_size(const struct btf *btf, 1161 u32 *type_id, u32 *ret_size) 1162 { 1163 const struct btf_type *size_type; 1164 u32 size_type_id = *type_id; 1165 u32 size = 0; 1166 1167 size_type = btf_type_by_id(btf, size_type_id); 1168 if (btf_type_nosize_or_null(size_type)) 1169 return NULL; 1170 1171 if (btf_type_has_size(size_type)) { 1172 size = size_type->size; 1173 } else if (btf_type_is_array(size_type)) { 1174 size = btf->resolved_sizes[size_type_id]; 1175 } else if (btf_type_is_ptr(size_type)) { 1176 size = sizeof(void *); 1177 } else { 1178 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1179 !btf_type_is_var(size_type))) 1180 return NULL; 1181 1182 size_type_id = btf->resolved_ids[size_type_id]; 1183 size_type = btf_type_by_id(btf, size_type_id); 1184 if (btf_type_nosize_or_null(size_type)) 1185 return NULL; 1186 else if (btf_type_has_size(size_type)) 1187 size = size_type->size; 1188 else if (btf_type_is_array(size_type)) 1189 size = btf->resolved_sizes[size_type_id]; 1190 else if (btf_type_is_ptr(size_type)) 1191 size = sizeof(void *); 1192 else 1193 return NULL; 1194 } 1195 1196 *type_id = size_type_id; 1197 if (ret_size) 1198 *ret_size = size; 1199 1200 return size_type; 1201 } 1202 1203 static int btf_df_check_member(struct btf_verifier_env *env, 1204 const struct btf_type *struct_type, 1205 const struct btf_member *member, 1206 const struct btf_type *member_type) 1207 { 1208 btf_verifier_log_basic(env, struct_type, 1209 "Unsupported check_member"); 1210 return -EINVAL; 1211 } 1212 1213 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1214 const struct btf_type *struct_type, 1215 const struct btf_member *member, 1216 const struct btf_type *member_type) 1217 { 1218 btf_verifier_log_basic(env, struct_type, 1219 "Unsupported check_kflag_member"); 1220 return -EINVAL; 1221 } 1222 1223 /* Used for ptr, array and struct/union type members. 1224 * int, enum and modifier types have their specific callback functions. 1225 */ 1226 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1227 const struct btf_type *struct_type, 1228 const struct btf_member *member, 1229 const struct btf_type *member_type) 1230 { 1231 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1232 btf_verifier_log_member(env, struct_type, member, 1233 "Invalid member bitfield_size"); 1234 return -EINVAL; 1235 } 1236 1237 /* bitfield size is 0, so member->offset represents bit offset only. 1238 * It is safe to call non kflag check_member variants. 1239 */ 1240 return btf_type_ops(member_type)->check_member(env, struct_type, 1241 member, 1242 member_type); 1243 } 1244 1245 static int btf_df_resolve(struct btf_verifier_env *env, 1246 const struct resolve_vertex *v) 1247 { 1248 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1249 return -EINVAL; 1250 } 1251 1252 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 1253 u32 type_id, void *data, u8 bits_offsets, 1254 struct seq_file *m) 1255 { 1256 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1257 } 1258 1259 static int btf_int_check_member(struct btf_verifier_env *env, 1260 const struct btf_type *struct_type, 1261 const struct btf_member *member, 1262 const struct btf_type *member_type) 1263 { 1264 u32 int_data = btf_type_int(member_type); 1265 u32 struct_bits_off = member->offset; 1266 u32 struct_size = struct_type->size; 1267 u32 nr_copy_bits; 1268 u32 bytes_offset; 1269 1270 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1271 btf_verifier_log_member(env, struct_type, member, 1272 "bits_offset exceeds U32_MAX"); 1273 return -EINVAL; 1274 } 1275 1276 struct_bits_off += BTF_INT_OFFSET(int_data); 1277 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1278 nr_copy_bits = BTF_INT_BITS(int_data) + 1279 BITS_PER_BYTE_MASKED(struct_bits_off); 1280 1281 if (nr_copy_bits > BITS_PER_U128) { 1282 btf_verifier_log_member(env, struct_type, member, 1283 "nr_copy_bits exceeds 128"); 1284 return -EINVAL; 1285 } 1286 1287 if (struct_size < bytes_offset || 1288 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1289 btf_verifier_log_member(env, struct_type, member, 1290 "Member exceeds struct_size"); 1291 return -EINVAL; 1292 } 1293 1294 return 0; 1295 } 1296 1297 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1298 const struct btf_type *struct_type, 1299 const struct btf_member *member, 1300 const struct btf_type *member_type) 1301 { 1302 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1303 u32 int_data = btf_type_int(member_type); 1304 u32 struct_size = struct_type->size; 1305 u32 nr_copy_bits; 1306 1307 /* a regular int type is required for the kflag int member */ 1308 if (!btf_type_int_is_regular(member_type)) { 1309 btf_verifier_log_member(env, struct_type, member, 1310 "Invalid member base type"); 1311 return -EINVAL; 1312 } 1313 1314 /* check sanity of bitfield size */ 1315 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1316 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1317 nr_int_data_bits = BTF_INT_BITS(int_data); 1318 if (!nr_bits) { 1319 /* Not a bitfield member, member offset must be at byte 1320 * boundary. 1321 */ 1322 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1323 btf_verifier_log_member(env, struct_type, member, 1324 "Invalid member offset"); 1325 return -EINVAL; 1326 } 1327 1328 nr_bits = nr_int_data_bits; 1329 } else if (nr_bits > nr_int_data_bits) { 1330 btf_verifier_log_member(env, struct_type, member, 1331 "Invalid member bitfield_size"); 1332 return -EINVAL; 1333 } 1334 1335 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1336 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1337 if (nr_copy_bits > BITS_PER_U128) { 1338 btf_verifier_log_member(env, struct_type, member, 1339 "nr_copy_bits exceeds 128"); 1340 return -EINVAL; 1341 } 1342 1343 if (struct_size < bytes_offset || 1344 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1345 btf_verifier_log_member(env, struct_type, member, 1346 "Member exceeds struct_size"); 1347 return -EINVAL; 1348 } 1349 1350 return 0; 1351 } 1352 1353 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1354 const struct btf_type *t, 1355 u32 meta_left) 1356 { 1357 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1358 u16 encoding; 1359 1360 if (meta_left < meta_needed) { 1361 btf_verifier_log_basic(env, t, 1362 "meta_left:%u meta_needed:%u", 1363 meta_left, meta_needed); 1364 return -EINVAL; 1365 } 1366 1367 if (btf_type_vlen(t)) { 1368 btf_verifier_log_type(env, t, "vlen != 0"); 1369 return -EINVAL; 1370 } 1371 1372 if (btf_type_kflag(t)) { 1373 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1374 return -EINVAL; 1375 } 1376 1377 int_data = btf_type_int(t); 1378 if (int_data & ~BTF_INT_MASK) { 1379 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 1380 int_data); 1381 return -EINVAL; 1382 } 1383 1384 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 1385 1386 if (nr_bits > BITS_PER_U128) { 1387 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1388 BITS_PER_U128); 1389 return -EINVAL; 1390 } 1391 1392 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1393 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1394 return -EINVAL; 1395 } 1396 1397 /* 1398 * Only one of the encoding bits is allowed and it 1399 * should be sufficient for the pretty print purpose (i.e. decoding). 1400 * Multiple bits can be allowed later if it is found 1401 * to be insufficient. 1402 */ 1403 encoding = BTF_INT_ENCODING(int_data); 1404 if (encoding && 1405 encoding != BTF_INT_SIGNED && 1406 encoding != BTF_INT_CHAR && 1407 encoding != BTF_INT_BOOL) { 1408 btf_verifier_log_type(env, t, "Unsupported encoding"); 1409 return -ENOTSUPP; 1410 } 1411 1412 btf_verifier_log_type(env, t, NULL); 1413 1414 return meta_needed; 1415 } 1416 1417 static void btf_int_log(struct btf_verifier_env *env, 1418 const struct btf_type *t) 1419 { 1420 int int_data = btf_type_int(t); 1421 1422 btf_verifier_log(env, 1423 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1424 t->size, BTF_INT_OFFSET(int_data), 1425 BTF_INT_BITS(int_data), 1426 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1427 } 1428 1429 static void btf_int128_print(struct seq_file *m, void *data) 1430 { 1431 /* data points to a __int128 number. 1432 * Suppose 1433 * int128_num = *(__int128 *)data; 1434 * The below formulas shows what upper_num and lower_num represents: 1435 * upper_num = int128_num >> 64; 1436 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 1437 */ 1438 u64 upper_num, lower_num; 1439 1440 #ifdef __BIG_ENDIAN_BITFIELD 1441 upper_num = *(u64 *)data; 1442 lower_num = *(u64 *)(data + 8); 1443 #else 1444 upper_num = *(u64 *)(data + 8); 1445 lower_num = *(u64 *)data; 1446 #endif 1447 if (upper_num == 0) 1448 seq_printf(m, "0x%llx", lower_num); 1449 else 1450 seq_printf(m, "0x%llx%016llx", upper_num, lower_num); 1451 } 1452 1453 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 1454 u16 right_shift_bits) 1455 { 1456 u64 upper_num, lower_num; 1457 1458 #ifdef __BIG_ENDIAN_BITFIELD 1459 upper_num = print_num[0]; 1460 lower_num = print_num[1]; 1461 #else 1462 upper_num = print_num[1]; 1463 lower_num = print_num[0]; 1464 #endif 1465 1466 /* shake out un-needed bits by shift/or operations */ 1467 if (left_shift_bits >= 64) { 1468 upper_num = lower_num << (left_shift_bits - 64); 1469 lower_num = 0; 1470 } else { 1471 upper_num = (upper_num << left_shift_bits) | 1472 (lower_num >> (64 - left_shift_bits)); 1473 lower_num = lower_num << left_shift_bits; 1474 } 1475 1476 if (right_shift_bits >= 64) { 1477 lower_num = upper_num >> (right_shift_bits - 64); 1478 upper_num = 0; 1479 } else { 1480 lower_num = (lower_num >> right_shift_bits) | 1481 (upper_num << (64 - right_shift_bits)); 1482 upper_num = upper_num >> right_shift_bits; 1483 } 1484 1485 #ifdef __BIG_ENDIAN_BITFIELD 1486 print_num[0] = upper_num; 1487 print_num[1] = lower_num; 1488 #else 1489 print_num[0] = lower_num; 1490 print_num[1] = upper_num; 1491 #endif 1492 } 1493 1494 static void btf_bitfield_seq_show(void *data, u8 bits_offset, 1495 u8 nr_bits, struct seq_file *m) 1496 { 1497 u16 left_shift_bits, right_shift_bits; 1498 u8 nr_copy_bytes; 1499 u8 nr_copy_bits; 1500 u64 print_num[2] = {}; 1501 1502 nr_copy_bits = nr_bits + bits_offset; 1503 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1504 1505 memcpy(print_num, data, nr_copy_bytes); 1506 1507 #ifdef __BIG_ENDIAN_BITFIELD 1508 left_shift_bits = bits_offset; 1509 #else 1510 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 1511 #endif 1512 right_shift_bits = BITS_PER_U128 - nr_bits; 1513 1514 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 1515 btf_int128_print(m, print_num); 1516 } 1517 1518 1519 static void btf_int_bits_seq_show(const struct btf *btf, 1520 const struct btf_type *t, 1521 void *data, u8 bits_offset, 1522 struct seq_file *m) 1523 { 1524 u32 int_data = btf_type_int(t); 1525 u8 nr_bits = BTF_INT_BITS(int_data); 1526 u8 total_bits_offset; 1527 1528 /* 1529 * bits_offset is at most 7. 1530 * BTF_INT_OFFSET() cannot exceed 128 bits. 1531 */ 1532 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1533 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1534 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1535 btf_bitfield_seq_show(data, bits_offset, nr_bits, m); 1536 } 1537 1538 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1539 u32 type_id, void *data, u8 bits_offset, 1540 struct seq_file *m) 1541 { 1542 u32 int_data = btf_type_int(t); 1543 u8 encoding = BTF_INT_ENCODING(int_data); 1544 bool sign = encoding & BTF_INT_SIGNED; 1545 u8 nr_bits = BTF_INT_BITS(int_data); 1546 1547 if (bits_offset || BTF_INT_OFFSET(int_data) || 1548 BITS_PER_BYTE_MASKED(nr_bits)) { 1549 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1550 return; 1551 } 1552 1553 switch (nr_bits) { 1554 case 128: 1555 btf_int128_print(m, data); 1556 break; 1557 case 64: 1558 if (sign) 1559 seq_printf(m, "%lld", *(s64 *)data); 1560 else 1561 seq_printf(m, "%llu", *(u64 *)data); 1562 break; 1563 case 32: 1564 if (sign) 1565 seq_printf(m, "%d", *(s32 *)data); 1566 else 1567 seq_printf(m, "%u", *(u32 *)data); 1568 break; 1569 case 16: 1570 if (sign) 1571 seq_printf(m, "%d", *(s16 *)data); 1572 else 1573 seq_printf(m, "%u", *(u16 *)data); 1574 break; 1575 case 8: 1576 if (sign) 1577 seq_printf(m, "%d", *(s8 *)data); 1578 else 1579 seq_printf(m, "%u", *(u8 *)data); 1580 break; 1581 default: 1582 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1583 } 1584 } 1585 1586 static const struct btf_kind_operations int_ops = { 1587 .check_meta = btf_int_check_meta, 1588 .resolve = btf_df_resolve, 1589 .check_member = btf_int_check_member, 1590 .check_kflag_member = btf_int_check_kflag_member, 1591 .log_details = btf_int_log, 1592 .seq_show = btf_int_seq_show, 1593 }; 1594 1595 static int btf_modifier_check_member(struct btf_verifier_env *env, 1596 const struct btf_type *struct_type, 1597 const struct btf_member *member, 1598 const struct btf_type *member_type) 1599 { 1600 const struct btf_type *resolved_type; 1601 u32 resolved_type_id = member->type; 1602 struct btf_member resolved_member; 1603 struct btf *btf = env->btf; 1604 1605 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1606 if (!resolved_type) { 1607 btf_verifier_log_member(env, struct_type, member, 1608 "Invalid member"); 1609 return -EINVAL; 1610 } 1611 1612 resolved_member = *member; 1613 resolved_member.type = resolved_type_id; 1614 1615 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1616 &resolved_member, 1617 resolved_type); 1618 } 1619 1620 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 1621 const struct btf_type *struct_type, 1622 const struct btf_member *member, 1623 const struct btf_type *member_type) 1624 { 1625 const struct btf_type *resolved_type; 1626 u32 resolved_type_id = member->type; 1627 struct btf_member resolved_member; 1628 struct btf *btf = env->btf; 1629 1630 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1631 if (!resolved_type) { 1632 btf_verifier_log_member(env, struct_type, member, 1633 "Invalid member"); 1634 return -EINVAL; 1635 } 1636 1637 resolved_member = *member; 1638 resolved_member.type = resolved_type_id; 1639 1640 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 1641 &resolved_member, 1642 resolved_type); 1643 } 1644 1645 static int btf_ptr_check_member(struct btf_verifier_env *env, 1646 const struct btf_type *struct_type, 1647 const struct btf_member *member, 1648 const struct btf_type *member_type) 1649 { 1650 u32 struct_size, struct_bits_off, bytes_offset; 1651 1652 struct_size = struct_type->size; 1653 struct_bits_off = member->offset; 1654 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1655 1656 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1657 btf_verifier_log_member(env, struct_type, member, 1658 "Member is not byte aligned"); 1659 return -EINVAL; 1660 } 1661 1662 if (struct_size - bytes_offset < sizeof(void *)) { 1663 btf_verifier_log_member(env, struct_type, member, 1664 "Member exceeds struct_size"); 1665 return -EINVAL; 1666 } 1667 1668 return 0; 1669 } 1670 1671 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1672 const struct btf_type *t, 1673 u32 meta_left) 1674 { 1675 if (btf_type_vlen(t)) { 1676 btf_verifier_log_type(env, t, "vlen != 0"); 1677 return -EINVAL; 1678 } 1679 1680 if (btf_type_kflag(t)) { 1681 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1682 return -EINVAL; 1683 } 1684 1685 if (!BTF_TYPE_ID_VALID(t->type)) { 1686 btf_verifier_log_type(env, t, "Invalid type_id"); 1687 return -EINVAL; 1688 } 1689 1690 /* typedef type must have a valid name, and other ref types, 1691 * volatile, const, restrict, should have a null name. 1692 */ 1693 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 1694 if (!t->name_off || 1695 !btf_name_valid_identifier(env->btf, t->name_off)) { 1696 btf_verifier_log_type(env, t, "Invalid name"); 1697 return -EINVAL; 1698 } 1699 } else { 1700 if (t->name_off) { 1701 btf_verifier_log_type(env, t, "Invalid name"); 1702 return -EINVAL; 1703 } 1704 } 1705 1706 btf_verifier_log_type(env, t, NULL); 1707 1708 return 0; 1709 } 1710 1711 static int btf_modifier_resolve(struct btf_verifier_env *env, 1712 const struct resolve_vertex *v) 1713 { 1714 const struct btf_type *t = v->t; 1715 const struct btf_type *next_type; 1716 u32 next_type_id = t->type; 1717 struct btf *btf = env->btf; 1718 1719 next_type = btf_type_by_id(btf, next_type_id); 1720 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1721 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1722 return -EINVAL; 1723 } 1724 1725 if (!env_type_is_resolve_sink(env, next_type) && 1726 !env_type_is_resolved(env, next_type_id)) 1727 return env_stack_push(env, next_type, next_type_id); 1728 1729 /* Figure out the resolved next_type_id with size. 1730 * They will be stored in the current modifier's 1731 * resolved_ids and resolved_sizes such that it can 1732 * save us a few type-following when we use it later (e.g. in 1733 * pretty print). 1734 */ 1735 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1736 if (env_type_is_resolved(env, next_type_id)) 1737 next_type = btf_type_id_resolve(btf, &next_type_id); 1738 1739 /* "typedef void new_void", "const void"...etc */ 1740 if (!btf_type_is_void(next_type) && 1741 !btf_type_is_fwd(next_type) && 1742 !btf_type_is_func_proto(next_type)) { 1743 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1744 return -EINVAL; 1745 } 1746 } 1747 1748 env_stack_pop_resolved(env, next_type_id, 0); 1749 1750 return 0; 1751 } 1752 1753 static int btf_var_resolve(struct btf_verifier_env *env, 1754 const struct resolve_vertex *v) 1755 { 1756 const struct btf_type *next_type; 1757 const struct btf_type *t = v->t; 1758 u32 next_type_id = t->type; 1759 struct btf *btf = env->btf; 1760 1761 next_type = btf_type_by_id(btf, next_type_id); 1762 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1763 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1764 return -EINVAL; 1765 } 1766 1767 if (!env_type_is_resolve_sink(env, next_type) && 1768 !env_type_is_resolved(env, next_type_id)) 1769 return env_stack_push(env, next_type, next_type_id); 1770 1771 if (btf_type_is_modifier(next_type)) { 1772 const struct btf_type *resolved_type; 1773 u32 resolved_type_id; 1774 1775 resolved_type_id = next_type_id; 1776 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1777 1778 if (btf_type_is_ptr(resolved_type) && 1779 !env_type_is_resolve_sink(env, resolved_type) && 1780 !env_type_is_resolved(env, resolved_type_id)) 1781 return env_stack_push(env, resolved_type, 1782 resolved_type_id); 1783 } 1784 1785 /* We must resolve to something concrete at this point, no 1786 * forward types or similar that would resolve to size of 1787 * zero is allowed. 1788 */ 1789 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1790 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1791 return -EINVAL; 1792 } 1793 1794 env_stack_pop_resolved(env, next_type_id, 0); 1795 1796 return 0; 1797 } 1798 1799 static int btf_ptr_resolve(struct btf_verifier_env *env, 1800 const struct resolve_vertex *v) 1801 { 1802 const struct btf_type *next_type; 1803 const struct btf_type *t = v->t; 1804 u32 next_type_id = t->type; 1805 struct btf *btf = env->btf; 1806 1807 next_type = btf_type_by_id(btf, next_type_id); 1808 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1809 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1810 return -EINVAL; 1811 } 1812 1813 if (!env_type_is_resolve_sink(env, next_type) && 1814 !env_type_is_resolved(env, next_type_id)) 1815 return env_stack_push(env, next_type, next_type_id); 1816 1817 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1818 * the modifier may have stopped resolving when it was resolved 1819 * to a ptr (last-resolved-ptr). 1820 * 1821 * We now need to continue from the last-resolved-ptr to 1822 * ensure the last-resolved-ptr will not referring back to 1823 * the currenct ptr (t). 1824 */ 1825 if (btf_type_is_modifier(next_type)) { 1826 const struct btf_type *resolved_type; 1827 u32 resolved_type_id; 1828 1829 resolved_type_id = next_type_id; 1830 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1831 1832 if (btf_type_is_ptr(resolved_type) && 1833 !env_type_is_resolve_sink(env, resolved_type) && 1834 !env_type_is_resolved(env, resolved_type_id)) 1835 return env_stack_push(env, resolved_type, 1836 resolved_type_id); 1837 } 1838 1839 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1840 if (env_type_is_resolved(env, next_type_id)) 1841 next_type = btf_type_id_resolve(btf, &next_type_id); 1842 1843 if (!btf_type_is_void(next_type) && 1844 !btf_type_is_fwd(next_type) && 1845 !btf_type_is_func_proto(next_type)) { 1846 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1847 return -EINVAL; 1848 } 1849 } 1850 1851 env_stack_pop_resolved(env, next_type_id, 0); 1852 1853 return 0; 1854 } 1855 1856 static void btf_modifier_seq_show(const struct btf *btf, 1857 const struct btf_type *t, 1858 u32 type_id, void *data, 1859 u8 bits_offset, struct seq_file *m) 1860 { 1861 if (btf->resolved_ids) 1862 t = btf_type_id_resolve(btf, &type_id); 1863 else 1864 t = btf_type_skip_modifiers(btf, type_id, NULL); 1865 1866 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1867 } 1868 1869 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t, 1870 u32 type_id, void *data, u8 bits_offset, 1871 struct seq_file *m) 1872 { 1873 t = btf_type_id_resolve(btf, &type_id); 1874 1875 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1876 } 1877 1878 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1879 u32 type_id, void *data, u8 bits_offset, 1880 struct seq_file *m) 1881 { 1882 /* It is a hashed value */ 1883 seq_printf(m, "%p", *(void **)data); 1884 } 1885 1886 static void btf_ref_type_log(struct btf_verifier_env *env, 1887 const struct btf_type *t) 1888 { 1889 btf_verifier_log(env, "type_id=%u", t->type); 1890 } 1891 1892 static struct btf_kind_operations modifier_ops = { 1893 .check_meta = btf_ref_type_check_meta, 1894 .resolve = btf_modifier_resolve, 1895 .check_member = btf_modifier_check_member, 1896 .check_kflag_member = btf_modifier_check_kflag_member, 1897 .log_details = btf_ref_type_log, 1898 .seq_show = btf_modifier_seq_show, 1899 }; 1900 1901 static struct btf_kind_operations ptr_ops = { 1902 .check_meta = btf_ref_type_check_meta, 1903 .resolve = btf_ptr_resolve, 1904 .check_member = btf_ptr_check_member, 1905 .check_kflag_member = btf_generic_check_kflag_member, 1906 .log_details = btf_ref_type_log, 1907 .seq_show = btf_ptr_seq_show, 1908 }; 1909 1910 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1911 const struct btf_type *t, 1912 u32 meta_left) 1913 { 1914 if (btf_type_vlen(t)) { 1915 btf_verifier_log_type(env, t, "vlen != 0"); 1916 return -EINVAL; 1917 } 1918 1919 if (t->type) { 1920 btf_verifier_log_type(env, t, "type != 0"); 1921 return -EINVAL; 1922 } 1923 1924 /* fwd type must have a valid name */ 1925 if (!t->name_off || 1926 !btf_name_valid_identifier(env->btf, t->name_off)) { 1927 btf_verifier_log_type(env, t, "Invalid name"); 1928 return -EINVAL; 1929 } 1930 1931 btf_verifier_log_type(env, t, NULL); 1932 1933 return 0; 1934 } 1935 1936 static void btf_fwd_type_log(struct btf_verifier_env *env, 1937 const struct btf_type *t) 1938 { 1939 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 1940 } 1941 1942 static struct btf_kind_operations fwd_ops = { 1943 .check_meta = btf_fwd_check_meta, 1944 .resolve = btf_df_resolve, 1945 .check_member = btf_df_check_member, 1946 .check_kflag_member = btf_df_check_kflag_member, 1947 .log_details = btf_fwd_type_log, 1948 .seq_show = btf_df_seq_show, 1949 }; 1950 1951 static int btf_array_check_member(struct btf_verifier_env *env, 1952 const struct btf_type *struct_type, 1953 const struct btf_member *member, 1954 const struct btf_type *member_type) 1955 { 1956 u32 struct_bits_off = member->offset; 1957 u32 struct_size, bytes_offset; 1958 u32 array_type_id, array_size; 1959 struct btf *btf = env->btf; 1960 1961 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1962 btf_verifier_log_member(env, struct_type, member, 1963 "Member is not byte aligned"); 1964 return -EINVAL; 1965 } 1966 1967 array_type_id = member->type; 1968 btf_type_id_size(btf, &array_type_id, &array_size); 1969 struct_size = struct_type->size; 1970 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1971 if (struct_size - bytes_offset < array_size) { 1972 btf_verifier_log_member(env, struct_type, member, 1973 "Member exceeds struct_size"); 1974 return -EINVAL; 1975 } 1976 1977 return 0; 1978 } 1979 1980 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1981 const struct btf_type *t, 1982 u32 meta_left) 1983 { 1984 const struct btf_array *array = btf_type_array(t); 1985 u32 meta_needed = sizeof(*array); 1986 1987 if (meta_left < meta_needed) { 1988 btf_verifier_log_basic(env, t, 1989 "meta_left:%u meta_needed:%u", 1990 meta_left, meta_needed); 1991 return -EINVAL; 1992 } 1993 1994 /* array type should not have a name */ 1995 if (t->name_off) { 1996 btf_verifier_log_type(env, t, "Invalid name"); 1997 return -EINVAL; 1998 } 1999 2000 if (btf_type_vlen(t)) { 2001 btf_verifier_log_type(env, t, "vlen != 0"); 2002 return -EINVAL; 2003 } 2004 2005 if (btf_type_kflag(t)) { 2006 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2007 return -EINVAL; 2008 } 2009 2010 if (t->size) { 2011 btf_verifier_log_type(env, t, "size != 0"); 2012 return -EINVAL; 2013 } 2014 2015 /* Array elem type and index type cannot be in type void, 2016 * so !array->type and !array->index_type are not allowed. 2017 */ 2018 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2019 btf_verifier_log_type(env, t, "Invalid elem"); 2020 return -EINVAL; 2021 } 2022 2023 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2024 btf_verifier_log_type(env, t, "Invalid index"); 2025 return -EINVAL; 2026 } 2027 2028 btf_verifier_log_type(env, t, NULL); 2029 2030 return meta_needed; 2031 } 2032 2033 static int btf_array_resolve(struct btf_verifier_env *env, 2034 const struct resolve_vertex *v) 2035 { 2036 const struct btf_array *array = btf_type_array(v->t); 2037 const struct btf_type *elem_type, *index_type; 2038 u32 elem_type_id, index_type_id; 2039 struct btf *btf = env->btf; 2040 u32 elem_size; 2041 2042 /* Check array->index_type */ 2043 index_type_id = array->index_type; 2044 index_type = btf_type_by_id(btf, index_type_id); 2045 if (btf_type_nosize_or_null(index_type) || 2046 btf_type_is_resolve_source_only(index_type)) { 2047 btf_verifier_log_type(env, v->t, "Invalid index"); 2048 return -EINVAL; 2049 } 2050 2051 if (!env_type_is_resolve_sink(env, index_type) && 2052 !env_type_is_resolved(env, index_type_id)) 2053 return env_stack_push(env, index_type, index_type_id); 2054 2055 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2056 if (!index_type || !btf_type_is_int(index_type) || 2057 !btf_type_int_is_regular(index_type)) { 2058 btf_verifier_log_type(env, v->t, "Invalid index"); 2059 return -EINVAL; 2060 } 2061 2062 /* Check array->type */ 2063 elem_type_id = array->type; 2064 elem_type = btf_type_by_id(btf, elem_type_id); 2065 if (btf_type_nosize_or_null(elem_type) || 2066 btf_type_is_resolve_source_only(elem_type)) { 2067 btf_verifier_log_type(env, v->t, 2068 "Invalid elem"); 2069 return -EINVAL; 2070 } 2071 2072 if (!env_type_is_resolve_sink(env, elem_type) && 2073 !env_type_is_resolved(env, elem_type_id)) 2074 return env_stack_push(env, elem_type, elem_type_id); 2075 2076 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2077 if (!elem_type) { 2078 btf_verifier_log_type(env, v->t, "Invalid elem"); 2079 return -EINVAL; 2080 } 2081 2082 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2083 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2084 return -EINVAL; 2085 } 2086 2087 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2088 btf_verifier_log_type(env, v->t, 2089 "Array size overflows U32_MAX"); 2090 return -EINVAL; 2091 } 2092 2093 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2094 2095 return 0; 2096 } 2097 2098 static void btf_array_log(struct btf_verifier_env *env, 2099 const struct btf_type *t) 2100 { 2101 const struct btf_array *array = btf_type_array(t); 2102 2103 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2104 array->type, array->index_type, array->nelems); 2105 } 2106 2107 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 2108 u32 type_id, void *data, u8 bits_offset, 2109 struct seq_file *m) 2110 { 2111 const struct btf_array *array = btf_type_array(t); 2112 const struct btf_kind_operations *elem_ops; 2113 const struct btf_type *elem_type; 2114 u32 i, elem_size, elem_type_id; 2115 2116 elem_type_id = array->type; 2117 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2118 elem_ops = btf_type_ops(elem_type); 2119 seq_puts(m, "["); 2120 for (i = 0; i < array->nelems; i++) { 2121 if (i) 2122 seq_puts(m, ","); 2123 2124 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 2125 bits_offset, m); 2126 data += elem_size; 2127 } 2128 seq_puts(m, "]"); 2129 } 2130 2131 static struct btf_kind_operations array_ops = { 2132 .check_meta = btf_array_check_meta, 2133 .resolve = btf_array_resolve, 2134 .check_member = btf_array_check_member, 2135 .check_kflag_member = btf_generic_check_kflag_member, 2136 .log_details = btf_array_log, 2137 .seq_show = btf_array_seq_show, 2138 }; 2139 2140 static int btf_struct_check_member(struct btf_verifier_env *env, 2141 const struct btf_type *struct_type, 2142 const struct btf_member *member, 2143 const struct btf_type *member_type) 2144 { 2145 u32 struct_bits_off = member->offset; 2146 u32 struct_size, bytes_offset; 2147 2148 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2149 btf_verifier_log_member(env, struct_type, member, 2150 "Member is not byte aligned"); 2151 return -EINVAL; 2152 } 2153 2154 struct_size = struct_type->size; 2155 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2156 if (struct_size - bytes_offset < member_type->size) { 2157 btf_verifier_log_member(env, struct_type, member, 2158 "Member exceeds struct_size"); 2159 return -EINVAL; 2160 } 2161 2162 return 0; 2163 } 2164 2165 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2166 const struct btf_type *t, 2167 u32 meta_left) 2168 { 2169 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2170 const struct btf_member *member; 2171 u32 meta_needed, last_offset; 2172 struct btf *btf = env->btf; 2173 u32 struct_size = t->size; 2174 u32 offset; 2175 u16 i; 2176 2177 meta_needed = btf_type_vlen(t) * sizeof(*member); 2178 if (meta_left < meta_needed) { 2179 btf_verifier_log_basic(env, t, 2180 "meta_left:%u meta_needed:%u", 2181 meta_left, meta_needed); 2182 return -EINVAL; 2183 } 2184 2185 /* struct type either no name or a valid one */ 2186 if (t->name_off && 2187 !btf_name_valid_identifier(env->btf, t->name_off)) { 2188 btf_verifier_log_type(env, t, "Invalid name"); 2189 return -EINVAL; 2190 } 2191 2192 btf_verifier_log_type(env, t, NULL); 2193 2194 last_offset = 0; 2195 for_each_member(i, t, member) { 2196 if (!btf_name_offset_valid(btf, member->name_off)) { 2197 btf_verifier_log_member(env, t, member, 2198 "Invalid member name_offset:%u", 2199 member->name_off); 2200 return -EINVAL; 2201 } 2202 2203 /* struct member either no name or a valid one */ 2204 if (member->name_off && 2205 !btf_name_valid_identifier(btf, member->name_off)) { 2206 btf_verifier_log_member(env, t, member, "Invalid name"); 2207 return -EINVAL; 2208 } 2209 /* A member cannot be in type void */ 2210 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2211 btf_verifier_log_member(env, t, member, 2212 "Invalid type_id"); 2213 return -EINVAL; 2214 } 2215 2216 offset = btf_member_bit_offset(t, member); 2217 if (is_union && offset) { 2218 btf_verifier_log_member(env, t, member, 2219 "Invalid member bits_offset"); 2220 return -EINVAL; 2221 } 2222 2223 /* 2224 * ">" instead of ">=" because the last member could be 2225 * "char a[0];" 2226 */ 2227 if (last_offset > offset) { 2228 btf_verifier_log_member(env, t, member, 2229 "Invalid member bits_offset"); 2230 return -EINVAL; 2231 } 2232 2233 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2234 btf_verifier_log_member(env, t, member, 2235 "Member bits_offset exceeds its struct size"); 2236 return -EINVAL; 2237 } 2238 2239 btf_verifier_log_member(env, t, member, NULL); 2240 last_offset = offset; 2241 } 2242 2243 return meta_needed; 2244 } 2245 2246 static int btf_struct_resolve(struct btf_verifier_env *env, 2247 const struct resolve_vertex *v) 2248 { 2249 const struct btf_member *member; 2250 int err; 2251 u16 i; 2252 2253 /* Before continue resolving the next_member, 2254 * ensure the last member is indeed resolved to a 2255 * type with size info. 2256 */ 2257 if (v->next_member) { 2258 const struct btf_type *last_member_type; 2259 const struct btf_member *last_member; 2260 u16 last_member_type_id; 2261 2262 last_member = btf_type_member(v->t) + v->next_member - 1; 2263 last_member_type_id = last_member->type; 2264 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2265 last_member_type_id))) 2266 return -EINVAL; 2267 2268 last_member_type = btf_type_by_id(env->btf, 2269 last_member_type_id); 2270 if (btf_type_kflag(v->t)) 2271 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2272 last_member, 2273 last_member_type); 2274 else 2275 err = btf_type_ops(last_member_type)->check_member(env, v->t, 2276 last_member, 2277 last_member_type); 2278 if (err) 2279 return err; 2280 } 2281 2282 for_each_member_from(i, v->next_member, v->t, member) { 2283 u32 member_type_id = member->type; 2284 const struct btf_type *member_type = btf_type_by_id(env->btf, 2285 member_type_id); 2286 2287 if (btf_type_nosize_or_null(member_type) || 2288 btf_type_is_resolve_source_only(member_type)) { 2289 btf_verifier_log_member(env, v->t, member, 2290 "Invalid member"); 2291 return -EINVAL; 2292 } 2293 2294 if (!env_type_is_resolve_sink(env, member_type) && 2295 !env_type_is_resolved(env, member_type_id)) { 2296 env_stack_set_next_member(env, i + 1); 2297 return env_stack_push(env, member_type, member_type_id); 2298 } 2299 2300 if (btf_type_kflag(v->t)) 2301 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 2302 member, 2303 member_type); 2304 else 2305 err = btf_type_ops(member_type)->check_member(env, v->t, 2306 member, 2307 member_type); 2308 if (err) 2309 return err; 2310 } 2311 2312 env_stack_pop_resolved(env, 0, 0); 2313 2314 return 0; 2315 } 2316 2317 static void btf_struct_log(struct btf_verifier_env *env, 2318 const struct btf_type *t) 2319 { 2320 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2321 } 2322 2323 /* find 'struct bpf_spin_lock' in map value. 2324 * return >= 0 offset if found 2325 * and < 0 in case of error 2326 */ 2327 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 2328 { 2329 const struct btf_member *member; 2330 u32 i, off = -ENOENT; 2331 2332 if (!__btf_type_is_struct(t)) 2333 return -EINVAL; 2334 2335 for_each_member(i, t, member) { 2336 const struct btf_type *member_type = btf_type_by_id(btf, 2337 member->type); 2338 if (!__btf_type_is_struct(member_type)) 2339 continue; 2340 if (member_type->size != sizeof(struct bpf_spin_lock)) 2341 continue; 2342 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 2343 "bpf_spin_lock")) 2344 continue; 2345 if (off != -ENOENT) 2346 /* only one 'struct bpf_spin_lock' is allowed */ 2347 return -E2BIG; 2348 off = btf_member_bit_offset(t, member); 2349 if (off % 8) 2350 /* valid C code cannot generate such BTF */ 2351 return -EINVAL; 2352 off /= 8; 2353 if (off % __alignof__(struct bpf_spin_lock)) 2354 /* valid struct bpf_spin_lock will be 4 byte aligned */ 2355 return -EINVAL; 2356 } 2357 return off; 2358 } 2359 2360 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 2361 u32 type_id, void *data, u8 bits_offset, 2362 struct seq_file *m) 2363 { 2364 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 2365 const struct btf_member *member; 2366 u32 i; 2367 2368 seq_puts(m, "{"); 2369 for_each_member(i, t, member) { 2370 const struct btf_type *member_type = btf_type_by_id(btf, 2371 member->type); 2372 const struct btf_kind_operations *ops; 2373 u32 member_offset, bitfield_size; 2374 u32 bytes_offset; 2375 u8 bits8_offset; 2376 2377 if (i) 2378 seq_puts(m, seq); 2379 2380 member_offset = btf_member_bit_offset(t, member); 2381 bitfield_size = btf_member_bitfield_size(t, member); 2382 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 2383 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 2384 if (bitfield_size) { 2385 btf_bitfield_seq_show(data + bytes_offset, bits8_offset, 2386 bitfield_size, m); 2387 } else { 2388 ops = btf_type_ops(member_type); 2389 ops->seq_show(btf, member_type, member->type, 2390 data + bytes_offset, bits8_offset, m); 2391 } 2392 } 2393 seq_puts(m, "}"); 2394 } 2395 2396 static struct btf_kind_operations struct_ops = { 2397 .check_meta = btf_struct_check_meta, 2398 .resolve = btf_struct_resolve, 2399 .check_member = btf_struct_check_member, 2400 .check_kflag_member = btf_generic_check_kflag_member, 2401 .log_details = btf_struct_log, 2402 .seq_show = btf_struct_seq_show, 2403 }; 2404 2405 static int btf_enum_check_member(struct btf_verifier_env *env, 2406 const struct btf_type *struct_type, 2407 const struct btf_member *member, 2408 const struct btf_type *member_type) 2409 { 2410 u32 struct_bits_off = member->offset; 2411 u32 struct_size, bytes_offset; 2412 2413 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2414 btf_verifier_log_member(env, struct_type, member, 2415 "Member is not byte aligned"); 2416 return -EINVAL; 2417 } 2418 2419 struct_size = struct_type->size; 2420 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2421 if (struct_size - bytes_offset < member_type->size) { 2422 btf_verifier_log_member(env, struct_type, member, 2423 "Member exceeds struct_size"); 2424 return -EINVAL; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 2431 const struct btf_type *struct_type, 2432 const struct btf_member *member, 2433 const struct btf_type *member_type) 2434 { 2435 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 2436 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 2437 2438 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2439 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2440 if (!nr_bits) { 2441 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2442 btf_verifier_log_member(env, struct_type, member, 2443 "Member is not byte aligned"); 2444 return -EINVAL; 2445 } 2446 2447 nr_bits = int_bitsize; 2448 } else if (nr_bits > int_bitsize) { 2449 btf_verifier_log_member(env, struct_type, member, 2450 "Invalid member bitfield_size"); 2451 return -EINVAL; 2452 } 2453 2454 struct_size = struct_type->size; 2455 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 2456 if (struct_size < bytes_end) { 2457 btf_verifier_log_member(env, struct_type, member, 2458 "Member exceeds struct_size"); 2459 return -EINVAL; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 2466 const struct btf_type *t, 2467 u32 meta_left) 2468 { 2469 const struct btf_enum *enums = btf_type_enum(t); 2470 struct btf *btf = env->btf; 2471 u16 i, nr_enums; 2472 u32 meta_needed; 2473 2474 nr_enums = btf_type_vlen(t); 2475 meta_needed = nr_enums * sizeof(*enums); 2476 2477 if (meta_left < meta_needed) { 2478 btf_verifier_log_basic(env, t, 2479 "meta_left:%u meta_needed:%u", 2480 meta_left, meta_needed); 2481 return -EINVAL; 2482 } 2483 2484 if (btf_type_kflag(t)) { 2485 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2486 return -EINVAL; 2487 } 2488 2489 if (t->size > 8 || !is_power_of_2(t->size)) { 2490 btf_verifier_log_type(env, t, "Unexpected size"); 2491 return -EINVAL; 2492 } 2493 2494 /* enum type either no name or a valid one */ 2495 if (t->name_off && 2496 !btf_name_valid_identifier(env->btf, t->name_off)) { 2497 btf_verifier_log_type(env, t, "Invalid name"); 2498 return -EINVAL; 2499 } 2500 2501 btf_verifier_log_type(env, t, NULL); 2502 2503 for (i = 0; i < nr_enums; i++) { 2504 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 2505 btf_verifier_log(env, "\tInvalid name_offset:%u", 2506 enums[i].name_off); 2507 return -EINVAL; 2508 } 2509 2510 /* enum member must have a valid name */ 2511 if (!enums[i].name_off || 2512 !btf_name_valid_identifier(btf, enums[i].name_off)) { 2513 btf_verifier_log_type(env, t, "Invalid name"); 2514 return -EINVAL; 2515 } 2516 2517 if (env->log.level == BPF_LOG_KERNEL) 2518 continue; 2519 btf_verifier_log(env, "\t%s val=%d\n", 2520 __btf_name_by_offset(btf, enums[i].name_off), 2521 enums[i].val); 2522 } 2523 2524 return meta_needed; 2525 } 2526 2527 static void btf_enum_log(struct btf_verifier_env *env, 2528 const struct btf_type *t) 2529 { 2530 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2531 } 2532 2533 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 2534 u32 type_id, void *data, u8 bits_offset, 2535 struct seq_file *m) 2536 { 2537 const struct btf_enum *enums = btf_type_enum(t); 2538 u32 i, nr_enums = btf_type_vlen(t); 2539 int v = *(int *)data; 2540 2541 for (i = 0; i < nr_enums; i++) { 2542 if (v == enums[i].val) { 2543 seq_printf(m, "%s", 2544 __btf_name_by_offset(btf, 2545 enums[i].name_off)); 2546 return; 2547 } 2548 } 2549 2550 seq_printf(m, "%d", v); 2551 } 2552 2553 static struct btf_kind_operations enum_ops = { 2554 .check_meta = btf_enum_check_meta, 2555 .resolve = btf_df_resolve, 2556 .check_member = btf_enum_check_member, 2557 .check_kflag_member = btf_enum_check_kflag_member, 2558 .log_details = btf_enum_log, 2559 .seq_show = btf_enum_seq_show, 2560 }; 2561 2562 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 2563 const struct btf_type *t, 2564 u32 meta_left) 2565 { 2566 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 2567 2568 if (meta_left < meta_needed) { 2569 btf_verifier_log_basic(env, t, 2570 "meta_left:%u meta_needed:%u", 2571 meta_left, meta_needed); 2572 return -EINVAL; 2573 } 2574 2575 if (t->name_off) { 2576 btf_verifier_log_type(env, t, "Invalid name"); 2577 return -EINVAL; 2578 } 2579 2580 if (btf_type_kflag(t)) { 2581 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2582 return -EINVAL; 2583 } 2584 2585 btf_verifier_log_type(env, t, NULL); 2586 2587 return meta_needed; 2588 } 2589 2590 static void btf_func_proto_log(struct btf_verifier_env *env, 2591 const struct btf_type *t) 2592 { 2593 const struct btf_param *args = (const struct btf_param *)(t + 1); 2594 u16 nr_args = btf_type_vlen(t), i; 2595 2596 btf_verifier_log(env, "return=%u args=(", t->type); 2597 if (!nr_args) { 2598 btf_verifier_log(env, "void"); 2599 goto done; 2600 } 2601 2602 if (nr_args == 1 && !args[0].type) { 2603 /* Only one vararg */ 2604 btf_verifier_log(env, "vararg"); 2605 goto done; 2606 } 2607 2608 btf_verifier_log(env, "%u %s", args[0].type, 2609 __btf_name_by_offset(env->btf, 2610 args[0].name_off)); 2611 for (i = 1; i < nr_args - 1; i++) 2612 btf_verifier_log(env, ", %u %s", args[i].type, 2613 __btf_name_by_offset(env->btf, 2614 args[i].name_off)); 2615 2616 if (nr_args > 1) { 2617 const struct btf_param *last_arg = &args[nr_args - 1]; 2618 2619 if (last_arg->type) 2620 btf_verifier_log(env, ", %u %s", last_arg->type, 2621 __btf_name_by_offset(env->btf, 2622 last_arg->name_off)); 2623 else 2624 btf_verifier_log(env, ", vararg"); 2625 } 2626 2627 done: 2628 btf_verifier_log(env, ")"); 2629 } 2630 2631 static struct btf_kind_operations func_proto_ops = { 2632 .check_meta = btf_func_proto_check_meta, 2633 .resolve = btf_df_resolve, 2634 /* 2635 * BTF_KIND_FUNC_PROTO cannot be directly referred by 2636 * a struct's member. 2637 * 2638 * It should be a funciton pointer instead. 2639 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 2640 * 2641 * Hence, there is no btf_func_check_member(). 2642 */ 2643 .check_member = btf_df_check_member, 2644 .check_kflag_member = btf_df_check_kflag_member, 2645 .log_details = btf_func_proto_log, 2646 .seq_show = btf_df_seq_show, 2647 }; 2648 2649 static s32 btf_func_check_meta(struct btf_verifier_env *env, 2650 const struct btf_type *t, 2651 u32 meta_left) 2652 { 2653 if (!t->name_off || 2654 !btf_name_valid_identifier(env->btf, t->name_off)) { 2655 btf_verifier_log_type(env, t, "Invalid name"); 2656 return -EINVAL; 2657 } 2658 2659 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 2660 btf_verifier_log_type(env, t, "Invalid func linkage"); 2661 return -EINVAL; 2662 } 2663 2664 if (btf_type_kflag(t)) { 2665 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2666 return -EINVAL; 2667 } 2668 2669 btf_verifier_log_type(env, t, NULL); 2670 2671 return 0; 2672 } 2673 2674 static struct btf_kind_operations func_ops = { 2675 .check_meta = btf_func_check_meta, 2676 .resolve = btf_df_resolve, 2677 .check_member = btf_df_check_member, 2678 .check_kflag_member = btf_df_check_kflag_member, 2679 .log_details = btf_ref_type_log, 2680 .seq_show = btf_df_seq_show, 2681 }; 2682 2683 static s32 btf_var_check_meta(struct btf_verifier_env *env, 2684 const struct btf_type *t, 2685 u32 meta_left) 2686 { 2687 const struct btf_var *var; 2688 u32 meta_needed = sizeof(*var); 2689 2690 if (meta_left < meta_needed) { 2691 btf_verifier_log_basic(env, t, 2692 "meta_left:%u meta_needed:%u", 2693 meta_left, meta_needed); 2694 return -EINVAL; 2695 } 2696 2697 if (btf_type_vlen(t)) { 2698 btf_verifier_log_type(env, t, "vlen != 0"); 2699 return -EINVAL; 2700 } 2701 2702 if (btf_type_kflag(t)) { 2703 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2704 return -EINVAL; 2705 } 2706 2707 if (!t->name_off || 2708 !__btf_name_valid(env->btf, t->name_off, true)) { 2709 btf_verifier_log_type(env, t, "Invalid name"); 2710 return -EINVAL; 2711 } 2712 2713 /* A var cannot be in type void */ 2714 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 2715 btf_verifier_log_type(env, t, "Invalid type_id"); 2716 return -EINVAL; 2717 } 2718 2719 var = btf_type_var(t); 2720 if (var->linkage != BTF_VAR_STATIC && 2721 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2722 btf_verifier_log_type(env, t, "Linkage not supported"); 2723 return -EINVAL; 2724 } 2725 2726 btf_verifier_log_type(env, t, NULL); 2727 2728 return meta_needed; 2729 } 2730 2731 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 2732 { 2733 const struct btf_var *var = btf_type_var(t); 2734 2735 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 2736 } 2737 2738 static const struct btf_kind_operations var_ops = { 2739 .check_meta = btf_var_check_meta, 2740 .resolve = btf_var_resolve, 2741 .check_member = btf_df_check_member, 2742 .check_kflag_member = btf_df_check_kflag_member, 2743 .log_details = btf_var_log, 2744 .seq_show = btf_var_seq_show, 2745 }; 2746 2747 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 2748 const struct btf_type *t, 2749 u32 meta_left) 2750 { 2751 const struct btf_var_secinfo *vsi; 2752 u64 last_vsi_end_off = 0, sum = 0; 2753 u32 i, meta_needed; 2754 2755 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 2756 if (meta_left < meta_needed) { 2757 btf_verifier_log_basic(env, t, 2758 "meta_left:%u meta_needed:%u", 2759 meta_left, meta_needed); 2760 return -EINVAL; 2761 } 2762 2763 if (!btf_type_vlen(t)) { 2764 btf_verifier_log_type(env, t, "vlen == 0"); 2765 return -EINVAL; 2766 } 2767 2768 if (!t->size) { 2769 btf_verifier_log_type(env, t, "size == 0"); 2770 return -EINVAL; 2771 } 2772 2773 if (btf_type_kflag(t)) { 2774 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2775 return -EINVAL; 2776 } 2777 2778 if (!t->name_off || 2779 !btf_name_valid_section(env->btf, t->name_off)) { 2780 btf_verifier_log_type(env, t, "Invalid name"); 2781 return -EINVAL; 2782 } 2783 2784 btf_verifier_log_type(env, t, NULL); 2785 2786 for_each_vsi(i, t, vsi) { 2787 /* A var cannot be in type void */ 2788 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 2789 btf_verifier_log_vsi(env, t, vsi, 2790 "Invalid type_id"); 2791 return -EINVAL; 2792 } 2793 2794 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 2795 btf_verifier_log_vsi(env, t, vsi, 2796 "Invalid offset"); 2797 return -EINVAL; 2798 } 2799 2800 if (!vsi->size || vsi->size > t->size) { 2801 btf_verifier_log_vsi(env, t, vsi, 2802 "Invalid size"); 2803 return -EINVAL; 2804 } 2805 2806 last_vsi_end_off = vsi->offset + vsi->size; 2807 if (last_vsi_end_off > t->size) { 2808 btf_verifier_log_vsi(env, t, vsi, 2809 "Invalid offset+size"); 2810 return -EINVAL; 2811 } 2812 2813 btf_verifier_log_vsi(env, t, vsi, NULL); 2814 sum += vsi->size; 2815 } 2816 2817 if (t->size < sum) { 2818 btf_verifier_log_type(env, t, "Invalid btf_info size"); 2819 return -EINVAL; 2820 } 2821 2822 return meta_needed; 2823 } 2824 2825 static int btf_datasec_resolve(struct btf_verifier_env *env, 2826 const struct resolve_vertex *v) 2827 { 2828 const struct btf_var_secinfo *vsi; 2829 struct btf *btf = env->btf; 2830 u16 i; 2831 2832 for_each_vsi_from(i, v->next_member, v->t, vsi) { 2833 u32 var_type_id = vsi->type, type_id, type_size = 0; 2834 const struct btf_type *var_type = btf_type_by_id(env->btf, 2835 var_type_id); 2836 if (!var_type || !btf_type_is_var(var_type)) { 2837 btf_verifier_log_vsi(env, v->t, vsi, 2838 "Not a VAR kind member"); 2839 return -EINVAL; 2840 } 2841 2842 if (!env_type_is_resolve_sink(env, var_type) && 2843 !env_type_is_resolved(env, var_type_id)) { 2844 env_stack_set_next_member(env, i + 1); 2845 return env_stack_push(env, var_type, var_type_id); 2846 } 2847 2848 type_id = var_type->type; 2849 if (!btf_type_id_size(btf, &type_id, &type_size)) { 2850 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 2851 return -EINVAL; 2852 } 2853 2854 if (vsi->size < type_size) { 2855 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 2856 return -EINVAL; 2857 } 2858 } 2859 2860 env_stack_pop_resolved(env, 0, 0); 2861 return 0; 2862 } 2863 2864 static void btf_datasec_log(struct btf_verifier_env *env, 2865 const struct btf_type *t) 2866 { 2867 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2868 } 2869 2870 static void btf_datasec_seq_show(const struct btf *btf, 2871 const struct btf_type *t, u32 type_id, 2872 void *data, u8 bits_offset, 2873 struct seq_file *m) 2874 { 2875 const struct btf_var_secinfo *vsi; 2876 const struct btf_type *var; 2877 u32 i; 2878 2879 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); 2880 for_each_vsi(i, t, vsi) { 2881 var = btf_type_by_id(btf, vsi->type); 2882 if (i) 2883 seq_puts(m, ","); 2884 btf_type_ops(var)->seq_show(btf, var, vsi->type, 2885 data + vsi->offset, bits_offset, m); 2886 } 2887 seq_puts(m, "}"); 2888 } 2889 2890 static const struct btf_kind_operations datasec_ops = { 2891 .check_meta = btf_datasec_check_meta, 2892 .resolve = btf_datasec_resolve, 2893 .check_member = btf_df_check_member, 2894 .check_kflag_member = btf_df_check_kflag_member, 2895 .log_details = btf_datasec_log, 2896 .seq_show = btf_datasec_seq_show, 2897 }; 2898 2899 static int btf_func_proto_check(struct btf_verifier_env *env, 2900 const struct btf_type *t) 2901 { 2902 const struct btf_type *ret_type; 2903 const struct btf_param *args; 2904 const struct btf *btf; 2905 u16 nr_args, i; 2906 int err; 2907 2908 btf = env->btf; 2909 args = (const struct btf_param *)(t + 1); 2910 nr_args = btf_type_vlen(t); 2911 2912 /* Check func return type which could be "void" (t->type == 0) */ 2913 if (t->type) { 2914 u32 ret_type_id = t->type; 2915 2916 ret_type = btf_type_by_id(btf, ret_type_id); 2917 if (!ret_type) { 2918 btf_verifier_log_type(env, t, "Invalid return type"); 2919 return -EINVAL; 2920 } 2921 2922 if (btf_type_needs_resolve(ret_type) && 2923 !env_type_is_resolved(env, ret_type_id)) { 2924 err = btf_resolve(env, ret_type, ret_type_id); 2925 if (err) 2926 return err; 2927 } 2928 2929 /* Ensure the return type is a type that has a size */ 2930 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 2931 btf_verifier_log_type(env, t, "Invalid return type"); 2932 return -EINVAL; 2933 } 2934 } 2935 2936 if (!nr_args) 2937 return 0; 2938 2939 /* Last func arg type_id could be 0 if it is a vararg */ 2940 if (!args[nr_args - 1].type) { 2941 if (args[nr_args - 1].name_off) { 2942 btf_verifier_log_type(env, t, "Invalid arg#%u", 2943 nr_args); 2944 return -EINVAL; 2945 } 2946 nr_args--; 2947 } 2948 2949 err = 0; 2950 for (i = 0; i < nr_args; i++) { 2951 const struct btf_type *arg_type; 2952 u32 arg_type_id; 2953 2954 arg_type_id = args[i].type; 2955 arg_type = btf_type_by_id(btf, arg_type_id); 2956 if (!arg_type) { 2957 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2958 err = -EINVAL; 2959 break; 2960 } 2961 2962 if (args[i].name_off && 2963 (!btf_name_offset_valid(btf, args[i].name_off) || 2964 !btf_name_valid_identifier(btf, args[i].name_off))) { 2965 btf_verifier_log_type(env, t, 2966 "Invalid arg#%u", i + 1); 2967 err = -EINVAL; 2968 break; 2969 } 2970 2971 if (btf_type_needs_resolve(arg_type) && 2972 !env_type_is_resolved(env, arg_type_id)) { 2973 err = btf_resolve(env, arg_type, arg_type_id); 2974 if (err) 2975 break; 2976 } 2977 2978 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2979 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2980 err = -EINVAL; 2981 break; 2982 } 2983 } 2984 2985 return err; 2986 } 2987 2988 static int btf_func_check(struct btf_verifier_env *env, 2989 const struct btf_type *t) 2990 { 2991 const struct btf_type *proto_type; 2992 const struct btf_param *args; 2993 const struct btf *btf; 2994 u16 nr_args, i; 2995 2996 btf = env->btf; 2997 proto_type = btf_type_by_id(btf, t->type); 2998 2999 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 3000 btf_verifier_log_type(env, t, "Invalid type_id"); 3001 return -EINVAL; 3002 } 3003 3004 args = (const struct btf_param *)(proto_type + 1); 3005 nr_args = btf_type_vlen(proto_type); 3006 for (i = 0; i < nr_args; i++) { 3007 if (!args[i].name_off && args[i].type) { 3008 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3009 return -EINVAL; 3010 } 3011 } 3012 3013 return 0; 3014 } 3015 3016 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 3017 [BTF_KIND_INT] = &int_ops, 3018 [BTF_KIND_PTR] = &ptr_ops, 3019 [BTF_KIND_ARRAY] = &array_ops, 3020 [BTF_KIND_STRUCT] = &struct_ops, 3021 [BTF_KIND_UNION] = &struct_ops, 3022 [BTF_KIND_ENUM] = &enum_ops, 3023 [BTF_KIND_FWD] = &fwd_ops, 3024 [BTF_KIND_TYPEDEF] = &modifier_ops, 3025 [BTF_KIND_VOLATILE] = &modifier_ops, 3026 [BTF_KIND_CONST] = &modifier_ops, 3027 [BTF_KIND_RESTRICT] = &modifier_ops, 3028 [BTF_KIND_FUNC] = &func_ops, 3029 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 3030 [BTF_KIND_VAR] = &var_ops, 3031 [BTF_KIND_DATASEC] = &datasec_ops, 3032 }; 3033 3034 static s32 btf_check_meta(struct btf_verifier_env *env, 3035 const struct btf_type *t, 3036 u32 meta_left) 3037 { 3038 u32 saved_meta_left = meta_left; 3039 s32 var_meta_size; 3040 3041 if (meta_left < sizeof(*t)) { 3042 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 3043 env->log_type_id, meta_left, sizeof(*t)); 3044 return -EINVAL; 3045 } 3046 meta_left -= sizeof(*t); 3047 3048 if (t->info & ~BTF_INFO_MASK) { 3049 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 3050 env->log_type_id, t->info); 3051 return -EINVAL; 3052 } 3053 3054 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 3055 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 3056 btf_verifier_log(env, "[%u] Invalid kind:%u", 3057 env->log_type_id, BTF_INFO_KIND(t->info)); 3058 return -EINVAL; 3059 } 3060 3061 if (!btf_name_offset_valid(env->btf, t->name_off)) { 3062 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 3063 env->log_type_id, t->name_off); 3064 return -EINVAL; 3065 } 3066 3067 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 3068 if (var_meta_size < 0) 3069 return var_meta_size; 3070 3071 meta_left -= var_meta_size; 3072 3073 return saved_meta_left - meta_left; 3074 } 3075 3076 static int btf_check_all_metas(struct btf_verifier_env *env) 3077 { 3078 struct btf *btf = env->btf; 3079 struct btf_header *hdr; 3080 void *cur, *end; 3081 3082 hdr = &btf->hdr; 3083 cur = btf->nohdr_data + hdr->type_off; 3084 end = cur + hdr->type_len; 3085 3086 env->log_type_id = 1; 3087 while (cur < end) { 3088 struct btf_type *t = cur; 3089 s32 meta_size; 3090 3091 meta_size = btf_check_meta(env, t, end - cur); 3092 if (meta_size < 0) 3093 return meta_size; 3094 3095 btf_add_type(env, t); 3096 cur += meta_size; 3097 env->log_type_id++; 3098 } 3099 3100 return 0; 3101 } 3102 3103 static bool btf_resolve_valid(struct btf_verifier_env *env, 3104 const struct btf_type *t, 3105 u32 type_id) 3106 { 3107 struct btf *btf = env->btf; 3108 3109 if (!env_type_is_resolved(env, type_id)) 3110 return false; 3111 3112 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 3113 return !btf->resolved_ids[type_id] && 3114 !btf->resolved_sizes[type_id]; 3115 3116 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3117 btf_type_is_var(t)) { 3118 t = btf_type_id_resolve(btf, &type_id); 3119 return t && 3120 !btf_type_is_modifier(t) && 3121 !btf_type_is_var(t) && 3122 !btf_type_is_datasec(t); 3123 } 3124 3125 if (btf_type_is_array(t)) { 3126 const struct btf_array *array = btf_type_array(t); 3127 const struct btf_type *elem_type; 3128 u32 elem_type_id = array->type; 3129 u32 elem_size; 3130 3131 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3132 return elem_type && !btf_type_is_modifier(elem_type) && 3133 (array->nelems * elem_size == 3134 btf->resolved_sizes[type_id]); 3135 } 3136 3137 return false; 3138 } 3139 3140 static int btf_resolve(struct btf_verifier_env *env, 3141 const struct btf_type *t, u32 type_id) 3142 { 3143 u32 save_log_type_id = env->log_type_id; 3144 const struct resolve_vertex *v; 3145 int err = 0; 3146 3147 env->resolve_mode = RESOLVE_TBD; 3148 env_stack_push(env, t, type_id); 3149 while (!err && (v = env_stack_peak(env))) { 3150 env->log_type_id = v->type_id; 3151 err = btf_type_ops(v->t)->resolve(env, v); 3152 } 3153 3154 env->log_type_id = type_id; 3155 if (err == -E2BIG) { 3156 btf_verifier_log_type(env, t, 3157 "Exceeded max resolving depth:%u", 3158 MAX_RESOLVE_DEPTH); 3159 } else if (err == -EEXIST) { 3160 btf_verifier_log_type(env, t, "Loop detected"); 3161 } 3162 3163 /* Final sanity check */ 3164 if (!err && !btf_resolve_valid(env, t, type_id)) { 3165 btf_verifier_log_type(env, t, "Invalid resolve state"); 3166 err = -EINVAL; 3167 } 3168 3169 env->log_type_id = save_log_type_id; 3170 return err; 3171 } 3172 3173 static int btf_check_all_types(struct btf_verifier_env *env) 3174 { 3175 struct btf *btf = env->btf; 3176 u32 type_id; 3177 int err; 3178 3179 err = env_resolve_init(env); 3180 if (err) 3181 return err; 3182 3183 env->phase++; 3184 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 3185 const struct btf_type *t = btf_type_by_id(btf, type_id); 3186 3187 env->log_type_id = type_id; 3188 if (btf_type_needs_resolve(t) && 3189 !env_type_is_resolved(env, type_id)) { 3190 err = btf_resolve(env, t, type_id); 3191 if (err) 3192 return err; 3193 } 3194 3195 if (btf_type_is_func_proto(t)) { 3196 err = btf_func_proto_check(env, t); 3197 if (err) 3198 return err; 3199 } 3200 3201 if (btf_type_is_func(t)) { 3202 err = btf_func_check(env, t); 3203 if (err) 3204 return err; 3205 } 3206 } 3207 3208 return 0; 3209 } 3210 3211 static int btf_parse_type_sec(struct btf_verifier_env *env) 3212 { 3213 const struct btf_header *hdr = &env->btf->hdr; 3214 int err; 3215 3216 /* Type section must align to 4 bytes */ 3217 if (hdr->type_off & (sizeof(u32) - 1)) { 3218 btf_verifier_log(env, "Unaligned type_off"); 3219 return -EINVAL; 3220 } 3221 3222 if (!hdr->type_len) { 3223 btf_verifier_log(env, "No type found"); 3224 return -EINVAL; 3225 } 3226 3227 err = btf_check_all_metas(env); 3228 if (err) 3229 return err; 3230 3231 return btf_check_all_types(env); 3232 } 3233 3234 static int btf_parse_str_sec(struct btf_verifier_env *env) 3235 { 3236 const struct btf_header *hdr; 3237 struct btf *btf = env->btf; 3238 const char *start, *end; 3239 3240 hdr = &btf->hdr; 3241 start = btf->nohdr_data + hdr->str_off; 3242 end = start + hdr->str_len; 3243 3244 if (end != btf->data + btf->data_size) { 3245 btf_verifier_log(env, "String section is not at the end"); 3246 return -EINVAL; 3247 } 3248 3249 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 3250 start[0] || end[-1]) { 3251 btf_verifier_log(env, "Invalid string section"); 3252 return -EINVAL; 3253 } 3254 3255 btf->strings = start; 3256 3257 return 0; 3258 } 3259 3260 static const size_t btf_sec_info_offset[] = { 3261 offsetof(struct btf_header, type_off), 3262 offsetof(struct btf_header, str_off), 3263 }; 3264 3265 static int btf_sec_info_cmp(const void *a, const void *b) 3266 { 3267 const struct btf_sec_info *x = a; 3268 const struct btf_sec_info *y = b; 3269 3270 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 3271 } 3272 3273 static int btf_check_sec_info(struct btf_verifier_env *env, 3274 u32 btf_data_size) 3275 { 3276 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 3277 u32 total, expected_total, i; 3278 const struct btf_header *hdr; 3279 const struct btf *btf; 3280 3281 btf = env->btf; 3282 hdr = &btf->hdr; 3283 3284 /* Populate the secs from hdr */ 3285 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 3286 secs[i] = *(struct btf_sec_info *)((void *)hdr + 3287 btf_sec_info_offset[i]); 3288 3289 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 3290 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 3291 3292 /* Check for gaps and overlap among sections */ 3293 total = 0; 3294 expected_total = btf_data_size - hdr->hdr_len; 3295 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 3296 if (expected_total < secs[i].off) { 3297 btf_verifier_log(env, "Invalid section offset"); 3298 return -EINVAL; 3299 } 3300 if (total < secs[i].off) { 3301 /* gap */ 3302 btf_verifier_log(env, "Unsupported section found"); 3303 return -EINVAL; 3304 } 3305 if (total > secs[i].off) { 3306 btf_verifier_log(env, "Section overlap found"); 3307 return -EINVAL; 3308 } 3309 if (expected_total - total < secs[i].len) { 3310 btf_verifier_log(env, 3311 "Total section length too long"); 3312 return -EINVAL; 3313 } 3314 total += secs[i].len; 3315 } 3316 3317 /* There is data other than hdr and known sections */ 3318 if (expected_total != total) { 3319 btf_verifier_log(env, "Unsupported section found"); 3320 return -EINVAL; 3321 } 3322 3323 return 0; 3324 } 3325 3326 static int btf_parse_hdr(struct btf_verifier_env *env) 3327 { 3328 u32 hdr_len, hdr_copy, btf_data_size; 3329 const struct btf_header *hdr; 3330 struct btf *btf; 3331 int err; 3332 3333 btf = env->btf; 3334 btf_data_size = btf->data_size; 3335 3336 if (btf_data_size < 3337 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 3338 btf_verifier_log(env, "hdr_len not found"); 3339 return -EINVAL; 3340 } 3341 3342 hdr = btf->data; 3343 hdr_len = hdr->hdr_len; 3344 if (btf_data_size < hdr_len) { 3345 btf_verifier_log(env, "btf_header not found"); 3346 return -EINVAL; 3347 } 3348 3349 /* Ensure the unsupported header fields are zero */ 3350 if (hdr_len > sizeof(btf->hdr)) { 3351 u8 *expected_zero = btf->data + sizeof(btf->hdr); 3352 u8 *end = btf->data + hdr_len; 3353 3354 for (; expected_zero < end; expected_zero++) { 3355 if (*expected_zero) { 3356 btf_verifier_log(env, "Unsupported btf_header"); 3357 return -E2BIG; 3358 } 3359 } 3360 } 3361 3362 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 3363 memcpy(&btf->hdr, btf->data, hdr_copy); 3364 3365 hdr = &btf->hdr; 3366 3367 btf_verifier_log_hdr(env, btf_data_size); 3368 3369 if (hdr->magic != BTF_MAGIC) { 3370 btf_verifier_log(env, "Invalid magic"); 3371 return -EINVAL; 3372 } 3373 3374 if (hdr->version != BTF_VERSION) { 3375 btf_verifier_log(env, "Unsupported version"); 3376 return -ENOTSUPP; 3377 } 3378 3379 if (hdr->flags) { 3380 btf_verifier_log(env, "Unsupported flags"); 3381 return -ENOTSUPP; 3382 } 3383 3384 if (btf_data_size == hdr->hdr_len) { 3385 btf_verifier_log(env, "No data"); 3386 return -EINVAL; 3387 } 3388 3389 err = btf_check_sec_info(env, btf_data_size); 3390 if (err) 3391 return err; 3392 3393 return 0; 3394 } 3395 3396 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 3397 u32 log_level, char __user *log_ubuf, u32 log_size) 3398 { 3399 struct btf_verifier_env *env = NULL; 3400 struct bpf_verifier_log *log; 3401 struct btf *btf = NULL; 3402 u8 *data; 3403 int err; 3404 3405 if (btf_data_size > BTF_MAX_SIZE) 3406 return ERR_PTR(-E2BIG); 3407 3408 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 3409 if (!env) 3410 return ERR_PTR(-ENOMEM); 3411 3412 log = &env->log; 3413 if (log_level || log_ubuf || log_size) { 3414 /* user requested verbose verifier output 3415 * and supplied buffer to store the verification trace 3416 */ 3417 log->level = log_level; 3418 log->ubuf = log_ubuf; 3419 log->len_total = log_size; 3420 3421 /* log attributes have to be sane */ 3422 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 3423 !log->level || !log->ubuf) { 3424 err = -EINVAL; 3425 goto errout; 3426 } 3427 } 3428 3429 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 3430 if (!btf) { 3431 err = -ENOMEM; 3432 goto errout; 3433 } 3434 env->btf = btf; 3435 3436 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 3437 if (!data) { 3438 err = -ENOMEM; 3439 goto errout; 3440 } 3441 3442 btf->data = data; 3443 btf->data_size = btf_data_size; 3444 3445 if (copy_from_user(data, btf_data, btf_data_size)) { 3446 err = -EFAULT; 3447 goto errout; 3448 } 3449 3450 err = btf_parse_hdr(env); 3451 if (err) 3452 goto errout; 3453 3454 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 3455 3456 err = btf_parse_str_sec(env); 3457 if (err) 3458 goto errout; 3459 3460 err = btf_parse_type_sec(env); 3461 if (err) 3462 goto errout; 3463 3464 if (log->level && bpf_verifier_log_full(log)) { 3465 err = -ENOSPC; 3466 goto errout; 3467 } 3468 3469 btf_verifier_env_free(env); 3470 refcount_set(&btf->refcnt, 1); 3471 return btf; 3472 3473 errout: 3474 btf_verifier_env_free(env); 3475 if (btf) 3476 btf_free(btf); 3477 return ERR_PTR(err); 3478 } 3479 3480 extern char __weak __start_BTF[]; 3481 extern char __weak __stop_BTF[]; 3482 extern struct btf *btf_vmlinux; 3483 3484 #define BPF_MAP_TYPE(_id, _ops) 3485 #define BPF_LINK_TYPE(_id, _name) 3486 static union { 3487 struct bpf_ctx_convert { 3488 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 3489 prog_ctx_type _id##_prog; \ 3490 kern_ctx_type _id##_kern; 3491 #include <linux/bpf_types.h> 3492 #undef BPF_PROG_TYPE 3493 } *__t; 3494 /* 't' is written once under lock. Read many times. */ 3495 const struct btf_type *t; 3496 } bpf_ctx_convert; 3497 enum { 3498 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 3499 __ctx_convert##_id, 3500 #include <linux/bpf_types.h> 3501 #undef BPF_PROG_TYPE 3502 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 3503 }; 3504 static u8 bpf_ctx_convert_map[] = { 3505 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 3506 [_id] = __ctx_convert##_id, 3507 #include <linux/bpf_types.h> 3508 #undef BPF_PROG_TYPE 3509 0, /* avoid empty array */ 3510 }; 3511 #undef BPF_MAP_TYPE 3512 #undef BPF_LINK_TYPE 3513 3514 static const struct btf_member * 3515 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf, 3516 const struct btf_type *t, enum bpf_prog_type prog_type, 3517 int arg) 3518 { 3519 const struct btf_type *conv_struct; 3520 const struct btf_type *ctx_struct; 3521 const struct btf_member *ctx_type; 3522 const char *tname, *ctx_tname; 3523 3524 conv_struct = bpf_ctx_convert.t; 3525 if (!conv_struct) { 3526 bpf_log(log, "btf_vmlinux is malformed\n"); 3527 return NULL; 3528 } 3529 t = btf_type_by_id(btf, t->type); 3530 while (btf_type_is_modifier(t)) 3531 t = btf_type_by_id(btf, t->type); 3532 if (!btf_type_is_struct(t)) { 3533 /* Only pointer to struct is supported for now. 3534 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 3535 * is not supported yet. 3536 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 3537 */ 3538 if (log->level & BPF_LOG_LEVEL) 3539 bpf_log(log, "arg#%d type is not a struct\n", arg); 3540 return NULL; 3541 } 3542 tname = btf_name_by_offset(btf, t->name_off); 3543 if (!tname) { 3544 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 3545 return NULL; 3546 } 3547 /* prog_type is valid bpf program type. No need for bounds check. */ 3548 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 3549 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 3550 * Like 'struct __sk_buff' 3551 */ 3552 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 3553 if (!ctx_struct) 3554 /* should not happen */ 3555 return NULL; 3556 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 3557 if (!ctx_tname) { 3558 /* should not happen */ 3559 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 3560 return NULL; 3561 } 3562 /* only compare that prog's ctx type name is the same as 3563 * kernel expects. No need to compare field by field. 3564 * It's ok for bpf prog to do: 3565 * struct __sk_buff {}; 3566 * int socket_filter_bpf_prog(struct __sk_buff *skb) 3567 * { // no fields of skb are ever used } 3568 */ 3569 if (strcmp(ctx_tname, tname)) 3570 return NULL; 3571 return ctx_type; 3572 } 3573 3574 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 3575 struct btf *btf, 3576 const struct btf_type *t, 3577 enum bpf_prog_type prog_type, 3578 int arg) 3579 { 3580 const struct btf_member *prog_ctx_type, *kern_ctx_type; 3581 3582 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 3583 if (!prog_ctx_type) 3584 return -ENOENT; 3585 kern_ctx_type = prog_ctx_type + 1; 3586 return kern_ctx_type->type; 3587 } 3588 3589 struct btf *btf_parse_vmlinux(void) 3590 { 3591 struct btf_verifier_env *env = NULL; 3592 struct bpf_verifier_log *log; 3593 struct btf *btf = NULL; 3594 int err, i; 3595 3596 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 3597 if (!env) 3598 return ERR_PTR(-ENOMEM); 3599 3600 log = &env->log; 3601 log->level = BPF_LOG_KERNEL; 3602 3603 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 3604 if (!btf) { 3605 err = -ENOMEM; 3606 goto errout; 3607 } 3608 env->btf = btf; 3609 3610 btf->data = __start_BTF; 3611 btf->data_size = __stop_BTF - __start_BTF; 3612 3613 err = btf_parse_hdr(env); 3614 if (err) 3615 goto errout; 3616 3617 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 3618 3619 err = btf_parse_str_sec(env); 3620 if (err) 3621 goto errout; 3622 3623 err = btf_check_all_metas(env); 3624 if (err) 3625 goto errout; 3626 3627 /* find struct bpf_ctx_convert for type checking later */ 3628 for (i = 1; i <= btf->nr_types; i++) { 3629 const struct btf_type *t; 3630 const char *tname; 3631 3632 t = btf_type_by_id(btf, i); 3633 if (!__btf_type_is_struct(t)) 3634 continue; 3635 tname = __btf_name_by_offset(btf, t->name_off); 3636 if (!strcmp(tname, "bpf_ctx_convert")) { 3637 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 3638 bpf_ctx_convert.t = t; 3639 break; 3640 } 3641 } 3642 if (i > btf->nr_types) { 3643 err = -ENOENT; 3644 goto errout; 3645 } 3646 3647 bpf_struct_ops_init(btf, log); 3648 3649 btf_verifier_env_free(env); 3650 refcount_set(&btf->refcnt, 1); 3651 return btf; 3652 3653 errout: 3654 btf_verifier_env_free(env); 3655 if (btf) { 3656 kvfree(btf->types); 3657 kfree(btf); 3658 } 3659 return ERR_PTR(err); 3660 } 3661 3662 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 3663 { 3664 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 3665 3666 if (tgt_prog) { 3667 return tgt_prog->aux->btf; 3668 } else { 3669 return btf_vmlinux; 3670 } 3671 } 3672 3673 static bool is_string_ptr(struct btf *btf, const struct btf_type *t) 3674 { 3675 /* t comes in already as a pointer */ 3676 t = btf_type_by_id(btf, t->type); 3677 3678 /* allow const */ 3679 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 3680 t = btf_type_by_id(btf, t->type); 3681 3682 /* char, signed char, unsigned char */ 3683 return btf_type_is_int(t) && t->size == 1; 3684 } 3685 3686 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 3687 const struct bpf_prog *prog, 3688 struct bpf_insn_access_aux *info) 3689 { 3690 const struct btf_type *t = prog->aux->attach_func_proto; 3691 struct bpf_prog *tgt_prog = prog->aux->linked_prog; 3692 struct btf *btf = bpf_prog_get_target_btf(prog); 3693 const char *tname = prog->aux->attach_func_name; 3694 struct bpf_verifier_log *log = info->log; 3695 const struct btf_param *args; 3696 u32 nr_args, arg; 3697 int i, ret; 3698 3699 if (off % 8) { 3700 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 3701 tname, off); 3702 return false; 3703 } 3704 arg = off / 8; 3705 args = (const struct btf_param *)(t + 1); 3706 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */ 3707 nr_args = t ? btf_type_vlen(t) : 5; 3708 if (prog->aux->attach_btf_trace) { 3709 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 3710 args++; 3711 nr_args--; 3712 } 3713 3714 if (arg > nr_args) { 3715 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 3716 tname, arg + 1); 3717 return false; 3718 } 3719 3720 if (arg == nr_args) { 3721 switch (prog->expected_attach_type) { 3722 case BPF_LSM_MAC: 3723 case BPF_TRACE_FEXIT: 3724 /* When LSM programs are attached to void LSM hooks 3725 * they use FEXIT trampolines and when attached to 3726 * int LSM hooks, they use MODIFY_RETURN trampolines. 3727 * 3728 * While the LSM programs are BPF_MODIFY_RETURN-like 3729 * the check: 3730 * 3731 * if (ret_type != 'int') 3732 * return -EINVAL; 3733 * 3734 * is _not_ done here. This is still safe as LSM hooks 3735 * have only void and int return types. 3736 */ 3737 if (!t) 3738 return true; 3739 t = btf_type_by_id(btf, t->type); 3740 break; 3741 case BPF_MODIFY_RETURN: 3742 /* For now the BPF_MODIFY_RETURN can only be attached to 3743 * functions that return an int. 3744 */ 3745 if (!t) 3746 return false; 3747 3748 t = btf_type_skip_modifiers(btf, t->type, NULL); 3749 if (!btf_type_is_int(t)) { 3750 bpf_log(log, 3751 "ret type %s not allowed for fmod_ret\n", 3752 btf_kind_str[BTF_INFO_KIND(t->info)]); 3753 return false; 3754 } 3755 break; 3756 default: 3757 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 3758 tname, arg + 1); 3759 return false; 3760 } 3761 } else { 3762 if (!t) 3763 /* Default prog with 5 args */ 3764 return true; 3765 t = btf_type_by_id(btf, args[arg].type); 3766 } 3767 3768 /* skip modifiers */ 3769 while (btf_type_is_modifier(t)) 3770 t = btf_type_by_id(btf, t->type); 3771 if (btf_type_is_int(t) || btf_type_is_enum(t)) 3772 /* accessing a scalar */ 3773 return true; 3774 if (!btf_type_is_ptr(t)) { 3775 bpf_log(log, 3776 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 3777 tname, arg, 3778 __btf_name_by_offset(btf, t->name_off), 3779 btf_kind_str[BTF_INFO_KIND(t->info)]); 3780 return false; 3781 } 3782 if (t->type == 0) 3783 /* This is a pointer to void. 3784 * It is the same as scalar from the verifier safety pov. 3785 * No further pointer walking is allowed. 3786 */ 3787 return true; 3788 3789 if (is_string_ptr(btf, t)) 3790 return true; 3791 3792 /* this is a pointer to another type */ 3793 info->reg_type = PTR_TO_BTF_ID; 3794 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 3795 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 3796 3797 if (ctx_arg_info->offset == off) { 3798 info->reg_type = ctx_arg_info->reg_type; 3799 break; 3800 } 3801 } 3802 3803 if (tgt_prog) { 3804 ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg); 3805 if (ret > 0) { 3806 info->btf_id = ret; 3807 return true; 3808 } else { 3809 return false; 3810 } 3811 } 3812 3813 info->btf_id = t->type; 3814 t = btf_type_by_id(btf, t->type); 3815 /* skip modifiers */ 3816 while (btf_type_is_modifier(t)) { 3817 info->btf_id = t->type; 3818 t = btf_type_by_id(btf, t->type); 3819 } 3820 if (!btf_type_is_struct(t)) { 3821 bpf_log(log, 3822 "func '%s' arg%d type %s is not a struct\n", 3823 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 3824 return false; 3825 } 3826 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 3827 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 3828 __btf_name_by_offset(btf, t->name_off)); 3829 return true; 3830 } 3831 3832 int btf_struct_access(struct bpf_verifier_log *log, 3833 const struct btf_type *t, int off, int size, 3834 enum bpf_access_type atype, 3835 u32 *next_btf_id) 3836 { 3837 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 3838 const struct btf_type *mtype, *elem_type = NULL; 3839 const struct btf_member *member; 3840 const char *tname, *mname; 3841 u32 vlen; 3842 3843 again: 3844 tname = __btf_name_by_offset(btf_vmlinux, t->name_off); 3845 if (!btf_type_is_struct(t)) { 3846 bpf_log(log, "Type '%s' is not a struct\n", tname); 3847 return -EINVAL; 3848 } 3849 3850 vlen = btf_type_vlen(t); 3851 if (off + size > t->size) { 3852 /* If the last element is a variable size array, we may 3853 * need to relax the rule. 3854 */ 3855 struct btf_array *array_elem; 3856 3857 if (vlen == 0) 3858 goto error; 3859 3860 member = btf_type_member(t) + vlen - 1; 3861 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type, 3862 NULL); 3863 if (!btf_type_is_array(mtype)) 3864 goto error; 3865 3866 array_elem = (struct btf_array *)(mtype + 1); 3867 if (array_elem->nelems != 0) 3868 goto error; 3869 3870 moff = btf_member_bit_offset(t, member) / 8; 3871 if (off < moff) 3872 goto error; 3873 3874 /* Only allow structure for now, can be relaxed for 3875 * other types later. 3876 */ 3877 elem_type = btf_type_skip_modifiers(btf_vmlinux, 3878 array_elem->type, NULL); 3879 if (!btf_type_is_struct(elem_type)) 3880 goto error; 3881 3882 off = (off - moff) % elem_type->size; 3883 return btf_struct_access(log, elem_type, off, size, atype, 3884 next_btf_id); 3885 3886 error: 3887 bpf_log(log, "access beyond struct %s at off %u size %u\n", 3888 tname, off, size); 3889 return -EACCES; 3890 } 3891 3892 for_each_member(i, t, member) { 3893 /* offset of the field in bytes */ 3894 moff = btf_member_bit_offset(t, member) / 8; 3895 if (off + size <= moff) 3896 /* won't find anything, field is already too far */ 3897 break; 3898 3899 if (btf_member_bitfield_size(t, member)) { 3900 u32 end_bit = btf_member_bit_offset(t, member) + 3901 btf_member_bitfield_size(t, member); 3902 3903 /* off <= moff instead of off == moff because clang 3904 * does not generate a BTF member for anonymous 3905 * bitfield like the ":16" here: 3906 * struct { 3907 * int :16; 3908 * int x:8; 3909 * }; 3910 */ 3911 if (off <= moff && 3912 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 3913 return SCALAR_VALUE; 3914 3915 /* off may be accessing a following member 3916 * 3917 * or 3918 * 3919 * Doing partial access at either end of this 3920 * bitfield. Continue on this case also to 3921 * treat it as not accessing this bitfield 3922 * and eventually error out as field not 3923 * found to keep it simple. 3924 * It could be relaxed if there was a legit 3925 * partial access case later. 3926 */ 3927 continue; 3928 } 3929 3930 /* In case of "off" is pointing to holes of a struct */ 3931 if (off < moff) 3932 break; 3933 3934 /* type of the field */ 3935 mtype = btf_type_by_id(btf_vmlinux, member->type); 3936 mname = __btf_name_by_offset(btf_vmlinux, member->name_off); 3937 3938 mtype = btf_resolve_size(btf_vmlinux, mtype, &msize, 3939 &elem_type, &total_nelems); 3940 if (IS_ERR(mtype)) { 3941 bpf_log(log, "field %s doesn't have size\n", mname); 3942 return -EFAULT; 3943 } 3944 3945 mtrue_end = moff + msize; 3946 if (off >= mtrue_end) 3947 /* no overlap with member, keep iterating */ 3948 continue; 3949 3950 if (btf_type_is_array(mtype)) { 3951 u32 elem_idx; 3952 3953 /* btf_resolve_size() above helps to 3954 * linearize a multi-dimensional array. 3955 * 3956 * The logic here is treating an array 3957 * in a struct as the following way: 3958 * 3959 * struct outer { 3960 * struct inner array[2][2]; 3961 * }; 3962 * 3963 * looks like: 3964 * 3965 * struct outer { 3966 * struct inner array_elem0; 3967 * struct inner array_elem1; 3968 * struct inner array_elem2; 3969 * struct inner array_elem3; 3970 * }; 3971 * 3972 * When accessing outer->array[1][0], it moves 3973 * moff to "array_elem2", set mtype to 3974 * "struct inner", and msize also becomes 3975 * sizeof(struct inner). Then most of the 3976 * remaining logic will fall through without 3977 * caring the current member is an array or 3978 * not. 3979 * 3980 * Unlike mtype/msize/moff, mtrue_end does not 3981 * change. The naming difference ("_true") tells 3982 * that it is not always corresponding to 3983 * the current mtype/msize/moff. 3984 * It is the true end of the current 3985 * member (i.e. array in this case). That 3986 * will allow an int array to be accessed like 3987 * a scratch space, 3988 * i.e. allow access beyond the size of 3989 * the array's element as long as it is 3990 * within the mtrue_end boundary. 3991 */ 3992 3993 /* skip empty array */ 3994 if (moff == mtrue_end) 3995 continue; 3996 3997 msize /= total_nelems; 3998 elem_idx = (off - moff) / msize; 3999 moff += elem_idx * msize; 4000 mtype = elem_type; 4001 } 4002 4003 /* the 'off' we're looking for is either equal to start 4004 * of this field or inside of this struct 4005 */ 4006 if (btf_type_is_struct(mtype)) { 4007 /* our field must be inside that union or struct */ 4008 t = mtype; 4009 4010 /* adjust offset we're looking for */ 4011 off -= moff; 4012 goto again; 4013 } 4014 4015 if (btf_type_is_ptr(mtype)) { 4016 const struct btf_type *stype; 4017 u32 id; 4018 4019 if (msize != size || off != moff) { 4020 bpf_log(log, 4021 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 4022 mname, moff, tname, off, size); 4023 return -EACCES; 4024 } 4025 4026 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id); 4027 if (btf_type_is_struct(stype)) { 4028 *next_btf_id = id; 4029 return PTR_TO_BTF_ID; 4030 } 4031 } 4032 4033 /* Allow more flexible access within an int as long as 4034 * it is within mtrue_end. 4035 * Since mtrue_end could be the end of an array, 4036 * that also allows using an array of int as a scratch 4037 * space. e.g. skb->cb[]. 4038 */ 4039 if (off + size > mtrue_end) { 4040 bpf_log(log, 4041 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 4042 mname, mtrue_end, tname, off, size); 4043 return -EACCES; 4044 } 4045 4046 return SCALAR_VALUE; 4047 } 4048 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 4049 return -EINVAL; 4050 } 4051 4052 static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn, 4053 int arg) 4054 { 4055 char fnname[KSYM_SYMBOL_LEN + 4] = "btf_"; 4056 const struct btf_param *args; 4057 const struct btf_type *t; 4058 const char *tname, *sym; 4059 u32 btf_id, i; 4060 4061 if (IS_ERR(btf_vmlinux)) { 4062 bpf_log(log, "btf_vmlinux is malformed\n"); 4063 return -EINVAL; 4064 } 4065 4066 sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4); 4067 if (!sym) { 4068 bpf_log(log, "kernel doesn't have kallsyms\n"); 4069 return -EFAULT; 4070 } 4071 4072 for (i = 1; i <= btf_vmlinux->nr_types; i++) { 4073 t = btf_type_by_id(btf_vmlinux, i); 4074 if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) 4075 continue; 4076 tname = __btf_name_by_offset(btf_vmlinux, t->name_off); 4077 if (!strcmp(tname, fnname)) 4078 break; 4079 } 4080 if (i > btf_vmlinux->nr_types) { 4081 bpf_log(log, "helper %s type is not found\n", fnname); 4082 return -ENOENT; 4083 } 4084 4085 t = btf_type_by_id(btf_vmlinux, t->type); 4086 if (!btf_type_is_ptr(t)) 4087 return -EFAULT; 4088 t = btf_type_by_id(btf_vmlinux, t->type); 4089 if (!btf_type_is_func_proto(t)) 4090 return -EFAULT; 4091 4092 args = (const struct btf_param *)(t + 1); 4093 if (arg >= btf_type_vlen(t)) { 4094 bpf_log(log, "bpf helper %s doesn't have %d-th argument\n", 4095 fnname, arg); 4096 return -EINVAL; 4097 } 4098 4099 t = btf_type_by_id(btf_vmlinux, args[arg].type); 4100 if (!btf_type_is_ptr(t) || !t->type) { 4101 /* anything but the pointer to struct is a helper config bug */ 4102 bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n"); 4103 return -EFAULT; 4104 } 4105 btf_id = t->type; 4106 t = btf_type_by_id(btf_vmlinux, t->type); 4107 /* skip modifiers */ 4108 while (btf_type_is_modifier(t)) { 4109 btf_id = t->type; 4110 t = btf_type_by_id(btf_vmlinux, t->type); 4111 } 4112 if (!btf_type_is_struct(t)) { 4113 bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n"); 4114 return -EFAULT; 4115 } 4116 bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4, 4117 arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off)); 4118 return btf_id; 4119 } 4120 4121 int btf_resolve_helper_id(struct bpf_verifier_log *log, 4122 const struct bpf_func_proto *fn, int arg) 4123 { 4124 int *btf_id = &fn->btf_id[arg]; 4125 int ret; 4126 4127 if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID) 4128 return -EINVAL; 4129 4130 ret = READ_ONCE(*btf_id); 4131 if (ret) 4132 return ret; 4133 /* ok to race the search. The result is the same */ 4134 ret = __btf_resolve_helper_id(log, fn->func, arg); 4135 if (!ret) { 4136 /* Function argument cannot be type 'void' */ 4137 bpf_log(log, "BTF resolution bug\n"); 4138 return -EFAULT; 4139 } 4140 WRITE_ONCE(*btf_id, ret); 4141 return ret; 4142 } 4143 4144 static int __get_type_size(struct btf *btf, u32 btf_id, 4145 const struct btf_type **bad_type) 4146 { 4147 const struct btf_type *t; 4148 4149 if (!btf_id) 4150 /* void */ 4151 return 0; 4152 t = btf_type_by_id(btf, btf_id); 4153 while (t && btf_type_is_modifier(t)) 4154 t = btf_type_by_id(btf, t->type); 4155 if (!t) { 4156 *bad_type = btf->types[0]; 4157 return -EINVAL; 4158 } 4159 if (btf_type_is_ptr(t)) 4160 /* kernel size of pointer. Not BPF's size of pointer*/ 4161 return sizeof(void *); 4162 if (btf_type_is_int(t) || btf_type_is_enum(t)) 4163 return t->size; 4164 *bad_type = t; 4165 return -EINVAL; 4166 } 4167 4168 int btf_distill_func_proto(struct bpf_verifier_log *log, 4169 struct btf *btf, 4170 const struct btf_type *func, 4171 const char *tname, 4172 struct btf_func_model *m) 4173 { 4174 const struct btf_param *args; 4175 const struct btf_type *t; 4176 u32 i, nargs; 4177 int ret; 4178 4179 if (!func) { 4180 /* BTF function prototype doesn't match the verifier types. 4181 * Fall back to 5 u64 args. 4182 */ 4183 for (i = 0; i < 5; i++) 4184 m->arg_size[i] = 8; 4185 m->ret_size = 8; 4186 m->nr_args = 5; 4187 return 0; 4188 } 4189 args = (const struct btf_param *)(func + 1); 4190 nargs = btf_type_vlen(func); 4191 if (nargs >= MAX_BPF_FUNC_ARGS) { 4192 bpf_log(log, 4193 "The function %s has %d arguments. Too many.\n", 4194 tname, nargs); 4195 return -EINVAL; 4196 } 4197 ret = __get_type_size(btf, func->type, &t); 4198 if (ret < 0) { 4199 bpf_log(log, 4200 "The function %s return type %s is unsupported.\n", 4201 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 4202 return -EINVAL; 4203 } 4204 m->ret_size = ret; 4205 4206 for (i = 0; i < nargs; i++) { 4207 ret = __get_type_size(btf, args[i].type, &t); 4208 if (ret < 0) { 4209 bpf_log(log, 4210 "The function %s arg%d type %s is unsupported.\n", 4211 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 4212 return -EINVAL; 4213 } 4214 m->arg_size[i] = ret; 4215 } 4216 m->nr_args = nargs; 4217 return 0; 4218 } 4219 4220 /* Compare BTFs of two functions assuming only scalars and pointers to context. 4221 * t1 points to BTF_KIND_FUNC in btf1 4222 * t2 points to BTF_KIND_FUNC in btf2 4223 * Returns: 4224 * EINVAL - function prototype mismatch 4225 * EFAULT - verifier bug 4226 * 0 - 99% match. The last 1% is validated by the verifier. 4227 */ 4228 static int btf_check_func_type_match(struct bpf_verifier_log *log, 4229 struct btf *btf1, const struct btf_type *t1, 4230 struct btf *btf2, const struct btf_type *t2) 4231 { 4232 const struct btf_param *args1, *args2; 4233 const char *fn1, *fn2, *s1, *s2; 4234 u32 nargs1, nargs2, i; 4235 4236 fn1 = btf_name_by_offset(btf1, t1->name_off); 4237 fn2 = btf_name_by_offset(btf2, t2->name_off); 4238 4239 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 4240 bpf_log(log, "%s() is not a global function\n", fn1); 4241 return -EINVAL; 4242 } 4243 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 4244 bpf_log(log, "%s() is not a global function\n", fn2); 4245 return -EINVAL; 4246 } 4247 4248 t1 = btf_type_by_id(btf1, t1->type); 4249 if (!t1 || !btf_type_is_func_proto(t1)) 4250 return -EFAULT; 4251 t2 = btf_type_by_id(btf2, t2->type); 4252 if (!t2 || !btf_type_is_func_proto(t2)) 4253 return -EFAULT; 4254 4255 args1 = (const struct btf_param *)(t1 + 1); 4256 nargs1 = btf_type_vlen(t1); 4257 args2 = (const struct btf_param *)(t2 + 1); 4258 nargs2 = btf_type_vlen(t2); 4259 4260 if (nargs1 != nargs2) { 4261 bpf_log(log, "%s() has %d args while %s() has %d args\n", 4262 fn1, nargs1, fn2, nargs2); 4263 return -EINVAL; 4264 } 4265 4266 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 4267 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 4268 if (t1->info != t2->info) { 4269 bpf_log(log, 4270 "Return type %s of %s() doesn't match type %s of %s()\n", 4271 btf_type_str(t1), fn1, 4272 btf_type_str(t2), fn2); 4273 return -EINVAL; 4274 } 4275 4276 for (i = 0; i < nargs1; i++) { 4277 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 4278 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 4279 4280 if (t1->info != t2->info) { 4281 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 4282 i, fn1, btf_type_str(t1), 4283 fn2, btf_type_str(t2)); 4284 return -EINVAL; 4285 } 4286 if (btf_type_has_size(t1) && t1->size != t2->size) { 4287 bpf_log(log, 4288 "arg%d in %s() has size %d while %s() has %d\n", 4289 i, fn1, t1->size, 4290 fn2, t2->size); 4291 return -EINVAL; 4292 } 4293 4294 /* global functions are validated with scalars and pointers 4295 * to context only. And only global functions can be replaced. 4296 * Hence type check only those types. 4297 */ 4298 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 4299 continue; 4300 if (!btf_type_is_ptr(t1)) { 4301 bpf_log(log, 4302 "arg%d in %s() has unrecognized type\n", 4303 i, fn1); 4304 return -EINVAL; 4305 } 4306 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 4307 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 4308 if (!btf_type_is_struct(t1)) { 4309 bpf_log(log, 4310 "arg%d in %s() is not a pointer to context\n", 4311 i, fn1); 4312 return -EINVAL; 4313 } 4314 if (!btf_type_is_struct(t2)) { 4315 bpf_log(log, 4316 "arg%d in %s() is not a pointer to context\n", 4317 i, fn2); 4318 return -EINVAL; 4319 } 4320 /* This is an optional check to make program writing easier. 4321 * Compare names of structs and report an error to the user. 4322 * btf_prepare_func_args() already checked that t2 struct 4323 * is a context type. btf_prepare_func_args() will check 4324 * later that t1 struct is a context type as well. 4325 */ 4326 s1 = btf_name_by_offset(btf1, t1->name_off); 4327 s2 = btf_name_by_offset(btf2, t2->name_off); 4328 if (strcmp(s1, s2)) { 4329 bpf_log(log, 4330 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 4331 i, fn1, s1, fn2, s2); 4332 return -EINVAL; 4333 } 4334 } 4335 return 0; 4336 } 4337 4338 /* Compare BTFs of given program with BTF of target program */ 4339 int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog, 4340 struct btf *btf2, const struct btf_type *t2) 4341 { 4342 struct btf *btf1 = prog->aux->btf; 4343 const struct btf_type *t1; 4344 u32 btf_id = 0; 4345 4346 if (!prog->aux->func_info) { 4347 bpf_log(&env->log, "Program extension requires BTF\n"); 4348 return -EINVAL; 4349 } 4350 4351 btf_id = prog->aux->func_info[0].type_id; 4352 if (!btf_id) 4353 return -EFAULT; 4354 4355 t1 = btf_type_by_id(btf1, btf_id); 4356 if (!t1 || !btf_type_is_func(t1)) 4357 return -EFAULT; 4358 4359 return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2); 4360 } 4361 4362 /* Compare BTF of a function with given bpf_reg_state. 4363 * Returns: 4364 * EFAULT - there is a verifier bug. Abort verification. 4365 * EINVAL - there is a type mismatch or BTF is not available. 4366 * 0 - BTF matches with what bpf_reg_state expects. 4367 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 4368 */ 4369 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 4370 struct bpf_reg_state *reg) 4371 { 4372 struct bpf_verifier_log *log = &env->log; 4373 struct bpf_prog *prog = env->prog; 4374 struct btf *btf = prog->aux->btf; 4375 const struct btf_param *args; 4376 const struct btf_type *t; 4377 u32 i, nargs, btf_id; 4378 const char *tname; 4379 4380 if (!prog->aux->func_info) 4381 return -EINVAL; 4382 4383 btf_id = prog->aux->func_info[subprog].type_id; 4384 if (!btf_id) 4385 return -EFAULT; 4386 4387 if (prog->aux->func_info_aux[subprog].unreliable) 4388 return -EINVAL; 4389 4390 t = btf_type_by_id(btf, btf_id); 4391 if (!t || !btf_type_is_func(t)) { 4392 /* These checks were already done by the verifier while loading 4393 * struct bpf_func_info 4394 */ 4395 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 4396 subprog); 4397 return -EFAULT; 4398 } 4399 tname = btf_name_by_offset(btf, t->name_off); 4400 4401 t = btf_type_by_id(btf, t->type); 4402 if (!t || !btf_type_is_func_proto(t)) { 4403 bpf_log(log, "Invalid BTF of func %s\n", tname); 4404 return -EFAULT; 4405 } 4406 args = (const struct btf_param *)(t + 1); 4407 nargs = btf_type_vlen(t); 4408 if (nargs > 5) { 4409 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs); 4410 goto out; 4411 } 4412 /* check that BTF function arguments match actual types that the 4413 * verifier sees. 4414 */ 4415 for (i = 0; i < nargs; i++) { 4416 t = btf_type_by_id(btf, args[i].type); 4417 while (btf_type_is_modifier(t)) 4418 t = btf_type_by_id(btf, t->type); 4419 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 4420 if (reg[i + 1].type == SCALAR_VALUE) 4421 continue; 4422 bpf_log(log, "R%d is not a scalar\n", i + 1); 4423 goto out; 4424 } 4425 if (btf_type_is_ptr(t)) { 4426 if (reg[i + 1].type == SCALAR_VALUE) { 4427 bpf_log(log, "R%d is not a pointer\n", i + 1); 4428 goto out; 4429 } 4430 /* If function expects ctx type in BTF check that caller 4431 * is passing PTR_TO_CTX. 4432 */ 4433 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) { 4434 if (reg[i + 1].type != PTR_TO_CTX) { 4435 bpf_log(log, 4436 "arg#%d expected pointer to ctx, but got %s\n", 4437 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 4438 goto out; 4439 } 4440 if (check_ctx_reg(env, ®[i + 1], i + 1)) 4441 goto out; 4442 continue; 4443 } 4444 } 4445 bpf_log(log, "Unrecognized arg#%d type %s\n", 4446 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 4447 goto out; 4448 } 4449 return 0; 4450 out: 4451 /* Compiler optimizations can remove arguments from static functions 4452 * or mismatched type can be passed into a global function. 4453 * In such cases mark the function as unreliable from BTF point of view. 4454 */ 4455 prog->aux->func_info_aux[subprog].unreliable = true; 4456 return -EINVAL; 4457 } 4458 4459 /* Convert BTF of a function into bpf_reg_state if possible 4460 * Returns: 4461 * EFAULT - there is a verifier bug. Abort verification. 4462 * EINVAL - cannot convert BTF. 4463 * 0 - Successfully converted BTF into bpf_reg_state 4464 * (either PTR_TO_CTX or SCALAR_VALUE). 4465 */ 4466 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 4467 struct bpf_reg_state *reg) 4468 { 4469 struct bpf_verifier_log *log = &env->log; 4470 struct bpf_prog *prog = env->prog; 4471 enum bpf_prog_type prog_type = prog->type; 4472 struct btf *btf = prog->aux->btf; 4473 const struct btf_param *args; 4474 const struct btf_type *t; 4475 u32 i, nargs, btf_id; 4476 const char *tname; 4477 4478 if (!prog->aux->func_info || 4479 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 4480 bpf_log(log, "Verifier bug\n"); 4481 return -EFAULT; 4482 } 4483 4484 btf_id = prog->aux->func_info[subprog].type_id; 4485 if (!btf_id) { 4486 bpf_log(log, "Global functions need valid BTF\n"); 4487 return -EFAULT; 4488 } 4489 4490 t = btf_type_by_id(btf, btf_id); 4491 if (!t || !btf_type_is_func(t)) { 4492 /* These checks were already done by the verifier while loading 4493 * struct bpf_func_info 4494 */ 4495 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 4496 subprog); 4497 return -EFAULT; 4498 } 4499 tname = btf_name_by_offset(btf, t->name_off); 4500 4501 if (log->level & BPF_LOG_LEVEL) 4502 bpf_log(log, "Validating %s() func#%d...\n", 4503 tname, subprog); 4504 4505 if (prog->aux->func_info_aux[subprog].unreliable) { 4506 bpf_log(log, "Verifier bug in function %s()\n", tname); 4507 return -EFAULT; 4508 } 4509 if (prog_type == BPF_PROG_TYPE_EXT) 4510 prog_type = prog->aux->linked_prog->type; 4511 4512 t = btf_type_by_id(btf, t->type); 4513 if (!t || !btf_type_is_func_proto(t)) { 4514 bpf_log(log, "Invalid type of function %s()\n", tname); 4515 return -EFAULT; 4516 } 4517 args = (const struct btf_param *)(t + 1); 4518 nargs = btf_type_vlen(t); 4519 if (nargs > 5) { 4520 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n", 4521 tname, nargs); 4522 return -EINVAL; 4523 } 4524 /* check that function returns int */ 4525 t = btf_type_by_id(btf, t->type); 4526 while (btf_type_is_modifier(t)) 4527 t = btf_type_by_id(btf, t->type); 4528 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 4529 bpf_log(log, 4530 "Global function %s() doesn't return scalar. Only those are supported.\n", 4531 tname); 4532 return -EINVAL; 4533 } 4534 /* Convert BTF function arguments into verifier types. 4535 * Only PTR_TO_CTX and SCALAR are supported atm. 4536 */ 4537 for (i = 0; i < nargs; i++) { 4538 t = btf_type_by_id(btf, args[i].type); 4539 while (btf_type_is_modifier(t)) 4540 t = btf_type_by_id(btf, t->type); 4541 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 4542 reg[i + 1].type = SCALAR_VALUE; 4543 continue; 4544 } 4545 if (btf_type_is_ptr(t) && 4546 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 4547 reg[i + 1].type = PTR_TO_CTX; 4548 continue; 4549 } 4550 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 4551 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 4552 return -EINVAL; 4553 } 4554 return 0; 4555 } 4556 4557 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 4558 struct seq_file *m) 4559 { 4560 const struct btf_type *t = btf_type_by_id(btf, type_id); 4561 4562 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 4563 } 4564 4565 #ifdef CONFIG_PROC_FS 4566 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 4567 { 4568 const struct btf *btf = filp->private_data; 4569 4570 seq_printf(m, "btf_id:\t%u\n", btf->id); 4571 } 4572 #endif 4573 4574 static int btf_release(struct inode *inode, struct file *filp) 4575 { 4576 btf_put(filp->private_data); 4577 return 0; 4578 } 4579 4580 const struct file_operations btf_fops = { 4581 #ifdef CONFIG_PROC_FS 4582 .show_fdinfo = bpf_btf_show_fdinfo, 4583 #endif 4584 .release = btf_release, 4585 }; 4586 4587 static int __btf_new_fd(struct btf *btf) 4588 { 4589 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 4590 } 4591 4592 int btf_new_fd(const union bpf_attr *attr) 4593 { 4594 struct btf *btf; 4595 int ret; 4596 4597 btf = btf_parse(u64_to_user_ptr(attr->btf), 4598 attr->btf_size, attr->btf_log_level, 4599 u64_to_user_ptr(attr->btf_log_buf), 4600 attr->btf_log_size); 4601 if (IS_ERR(btf)) 4602 return PTR_ERR(btf); 4603 4604 ret = btf_alloc_id(btf); 4605 if (ret) { 4606 btf_free(btf); 4607 return ret; 4608 } 4609 4610 /* 4611 * The BTF ID is published to the userspace. 4612 * All BTF free must go through call_rcu() from 4613 * now on (i.e. free by calling btf_put()). 4614 */ 4615 4616 ret = __btf_new_fd(btf); 4617 if (ret < 0) 4618 btf_put(btf); 4619 4620 return ret; 4621 } 4622 4623 struct btf *btf_get_by_fd(int fd) 4624 { 4625 struct btf *btf; 4626 struct fd f; 4627 4628 f = fdget(fd); 4629 4630 if (!f.file) 4631 return ERR_PTR(-EBADF); 4632 4633 if (f.file->f_op != &btf_fops) { 4634 fdput(f); 4635 return ERR_PTR(-EINVAL); 4636 } 4637 4638 btf = f.file->private_data; 4639 refcount_inc(&btf->refcnt); 4640 fdput(f); 4641 4642 return btf; 4643 } 4644 4645 int btf_get_info_by_fd(const struct btf *btf, 4646 const union bpf_attr *attr, 4647 union bpf_attr __user *uattr) 4648 { 4649 struct bpf_btf_info __user *uinfo; 4650 struct bpf_btf_info info; 4651 u32 info_copy, btf_copy; 4652 void __user *ubtf; 4653 u32 uinfo_len; 4654 4655 uinfo = u64_to_user_ptr(attr->info.info); 4656 uinfo_len = attr->info.info_len; 4657 4658 info_copy = min_t(u32, uinfo_len, sizeof(info)); 4659 memset(&info, 0, sizeof(info)); 4660 if (copy_from_user(&info, uinfo, info_copy)) 4661 return -EFAULT; 4662 4663 info.id = btf->id; 4664 ubtf = u64_to_user_ptr(info.btf); 4665 btf_copy = min_t(u32, btf->data_size, info.btf_size); 4666 if (copy_to_user(ubtf, btf->data, btf_copy)) 4667 return -EFAULT; 4668 info.btf_size = btf->data_size; 4669 4670 if (copy_to_user(uinfo, &info, info_copy) || 4671 put_user(info_copy, &uattr->info.info_len)) 4672 return -EFAULT; 4673 4674 return 0; 4675 } 4676 4677 int btf_get_fd_by_id(u32 id) 4678 { 4679 struct btf *btf; 4680 int fd; 4681 4682 rcu_read_lock(); 4683 btf = idr_find(&btf_idr, id); 4684 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 4685 btf = ERR_PTR(-ENOENT); 4686 rcu_read_unlock(); 4687 4688 if (IS_ERR(btf)) 4689 return PTR_ERR(btf); 4690 4691 fd = __btf_new_fd(btf); 4692 if (fd < 0) 4693 btf_put(btf); 4694 4695 return fd; 4696 } 4697 4698 u32 btf_id(const struct btf *btf) 4699 { 4700 return btf->id; 4701 } 4702