xref: /openbmc/linux/kernel/bpf/btf.c (revision 9a5d500c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 
29 #include <net/netfilter/nf_bpf_link.h>
30 
31 #include <net/sock.h>
32 #include "../tools/lib/bpf/relo_core.h"
33 
34 /* BTF (BPF Type Format) is the meta data format which describes
35  * the data types of BPF program/map.  Hence, it basically focus
36  * on the C programming language which the modern BPF is primary
37  * using.
38  *
39  * ELF Section:
40  * ~~~~~~~~~~~
41  * The BTF data is stored under the ".BTF" ELF section
42  *
43  * struct btf_type:
44  * ~~~~~~~~~~~~~~~
45  * Each 'struct btf_type' object describes a C data type.
46  * Depending on the type it is describing, a 'struct btf_type'
47  * object may be followed by more data.  F.e.
48  * To describe an array, 'struct btf_type' is followed by
49  * 'struct btf_array'.
50  *
51  * 'struct btf_type' and any extra data following it are
52  * 4 bytes aligned.
53  *
54  * Type section:
55  * ~~~~~~~~~~~~~
56  * The BTF type section contains a list of 'struct btf_type' objects.
57  * Each one describes a C type.  Recall from the above section
58  * that a 'struct btf_type' object could be immediately followed by extra
59  * data in order to describe some particular C types.
60  *
61  * type_id:
62  * ~~~~~~~
63  * Each btf_type object is identified by a type_id.  The type_id
64  * is implicitly implied by the location of the btf_type object in
65  * the BTF type section.  The first one has type_id 1.  The second
66  * one has type_id 2...etc.  Hence, an earlier btf_type has
67  * a smaller type_id.
68  *
69  * A btf_type object may refer to another btf_type object by using
70  * type_id (i.e. the "type" in the "struct btf_type").
71  *
72  * NOTE that we cannot assume any reference-order.
73  * A btf_type object can refer to an earlier btf_type object
74  * but it can also refer to a later btf_type object.
75  *
76  * For example, to describe "const void *".  A btf_type
77  * object describing "const" may refer to another btf_type
78  * object describing "void *".  This type-reference is done
79  * by specifying type_id:
80  *
81  * [1] CONST (anon) type_id=2
82  * [2] PTR (anon) type_id=0
83  *
84  * The above is the btf_verifier debug log:
85  *   - Each line started with "[?]" is a btf_type object
86  *   - [?] is the type_id of the btf_type object.
87  *   - CONST/PTR is the BTF_KIND_XXX
88  *   - "(anon)" is the name of the type.  It just
89  *     happens that CONST and PTR has no name.
90  *   - type_id=XXX is the 'u32 type' in btf_type
91  *
92  * NOTE: "void" has type_id 0
93  *
94  * String section:
95  * ~~~~~~~~~~~~~~
96  * The BTF string section contains the names used by the type section.
97  * Each string is referred by an "offset" from the beginning of the
98  * string section.
99  *
100  * Each string is '\0' terminated.
101  *
102  * The first character in the string section must be '\0'
103  * which is used to mean 'anonymous'. Some btf_type may not
104  * have a name.
105  */
106 
107 /* BTF verification:
108  *
109  * To verify BTF data, two passes are needed.
110  *
111  * Pass #1
112  * ~~~~~~~
113  * The first pass is to collect all btf_type objects to
114  * an array: "btf->types".
115  *
116  * Depending on the C type that a btf_type is describing,
117  * a btf_type may be followed by extra data.  We don't know
118  * how many btf_type is there, and more importantly we don't
119  * know where each btf_type is located in the type section.
120  *
121  * Without knowing the location of each type_id, most verifications
122  * cannot be done.  e.g. an earlier btf_type may refer to a later
123  * btf_type (recall the "const void *" above), so we cannot
124  * check this type-reference in the first pass.
125  *
126  * In the first pass, it still does some verifications (e.g.
127  * checking the name is a valid offset to the string section).
128  *
129  * Pass #2
130  * ~~~~~~~
131  * The main focus is to resolve a btf_type that is referring
132  * to another type.
133  *
134  * We have to ensure the referring type:
135  * 1) does exist in the BTF (i.e. in btf->types[])
136  * 2) does not cause a loop:
137  *	struct A {
138  *		struct B b;
139  *	};
140  *
141  *	struct B {
142  *		struct A a;
143  *	};
144  *
145  * btf_type_needs_resolve() decides if a btf_type needs
146  * to be resolved.
147  *
148  * The needs_resolve type implements the "resolve()" ops which
149  * essentially does a DFS and detects backedge.
150  *
151  * During resolve (or DFS), different C types have different
152  * "RESOLVED" conditions.
153  *
154  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
155  * members because a member is always referring to another
156  * type.  A struct's member can be treated as "RESOLVED" if
157  * it is referring to a BTF_KIND_PTR.  Otherwise, the
158  * following valid C struct would be rejected:
159  *
160  *	struct A {
161  *		int m;
162  *		struct A *a;
163  *	};
164  *
165  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
166  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
167  * detect a pointer loop, e.g.:
168  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
169  *                        ^                                         |
170  *                        +-----------------------------------------+
171  *
172  */
173 
174 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
175 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
176 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
177 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
178 #define BITS_ROUNDUP_BYTES(bits) \
179 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
180 
181 #define BTF_INFO_MASK 0x9f00ffff
182 #define BTF_INT_MASK 0x0fffffff
183 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
184 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
185 
186 /* 16MB for 64k structs and each has 16 members and
187  * a few MB spaces for the string section.
188  * The hard limit is S32_MAX.
189  */
190 #define BTF_MAX_SIZE (16 * 1024 * 1024)
191 
192 #define for_each_member_from(i, from, struct_type, member)		\
193 	for (i = from, member = btf_type_member(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);				\
195 	     i++, member++)
196 
197 #define for_each_vsi_from(i, from, struct_type, member)				\
198 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
199 	     i < btf_type_vlen(struct_type);					\
200 	     i++, member++)
201 
202 DEFINE_IDR(btf_idr);
203 DEFINE_SPINLOCK(btf_idr_lock);
204 
205 enum btf_kfunc_hook {
206 	BTF_KFUNC_HOOK_COMMON,
207 	BTF_KFUNC_HOOK_XDP,
208 	BTF_KFUNC_HOOK_TC,
209 	BTF_KFUNC_HOOK_STRUCT_OPS,
210 	BTF_KFUNC_HOOK_TRACING,
211 	BTF_KFUNC_HOOK_SYSCALL,
212 	BTF_KFUNC_HOOK_FMODRET,
213 	BTF_KFUNC_HOOK_CGROUP_SKB,
214 	BTF_KFUNC_HOOK_SCHED_ACT,
215 	BTF_KFUNC_HOOK_SK_SKB,
216 	BTF_KFUNC_HOOK_SOCKET_FILTER,
217 	BTF_KFUNC_HOOK_LWT,
218 	BTF_KFUNC_HOOK_NETFILTER,
219 	BTF_KFUNC_HOOK_MAX,
220 };
221 
222 enum {
223 	BTF_KFUNC_SET_MAX_CNT = 256,
224 	BTF_DTOR_KFUNC_MAX_CNT = 256,
225 	BTF_KFUNC_FILTER_MAX_CNT = 16,
226 };
227 
228 struct btf_kfunc_hook_filter {
229 	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
230 	u32 nr_filters;
231 };
232 
233 struct btf_kfunc_set_tab {
234 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
235 	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
236 };
237 
238 struct btf_id_dtor_kfunc_tab {
239 	u32 cnt;
240 	struct btf_id_dtor_kfunc dtors[];
241 };
242 
243 struct btf {
244 	void *data;
245 	struct btf_type **types;
246 	u32 *resolved_ids;
247 	u32 *resolved_sizes;
248 	const char *strings;
249 	void *nohdr_data;
250 	struct btf_header hdr;
251 	u32 nr_types; /* includes VOID for base BTF */
252 	u32 types_size;
253 	u32 data_size;
254 	refcount_t refcnt;
255 	u32 id;
256 	struct rcu_head rcu;
257 	struct btf_kfunc_set_tab *kfunc_set_tab;
258 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
259 	struct btf_struct_metas *struct_meta_tab;
260 
261 	/* split BTF support */
262 	struct btf *base_btf;
263 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
264 	u32 start_str_off; /* first string offset (0 for base BTF) */
265 	char name[MODULE_NAME_LEN];
266 	bool kernel_btf;
267 };
268 
269 enum verifier_phase {
270 	CHECK_META,
271 	CHECK_TYPE,
272 };
273 
274 struct resolve_vertex {
275 	const struct btf_type *t;
276 	u32 type_id;
277 	u16 next_member;
278 };
279 
280 enum visit_state {
281 	NOT_VISITED,
282 	VISITED,
283 	RESOLVED,
284 };
285 
286 enum resolve_mode {
287 	RESOLVE_TBD,	/* To Be Determined */
288 	RESOLVE_PTR,	/* Resolving for Pointer */
289 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
290 					 * or array
291 					 */
292 };
293 
294 #define MAX_RESOLVE_DEPTH 32
295 
296 struct btf_sec_info {
297 	u32 off;
298 	u32 len;
299 };
300 
301 struct btf_verifier_env {
302 	struct btf *btf;
303 	u8 *visit_states;
304 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
305 	struct bpf_verifier_log log;
306 	u32 log_type_id;
307 	u32 top_stack;
308 	enum verifier_phase phase;
309 	enum resolve_mode resolve_mode;
310 };
311 
312 static const char * const btf_kind_str[NR_BTF_KINDS] = {
313 	[BTF_KIND_UNKN]		= "UNKNOWN",
314 	[BTF_KIND_INT]		= "INT",
315 	[BTF_KIND_PTR]		= "PTR",
316 	[BTF_KIND_ARRAY]	= "ARRAY",
317 	[BTF_KIND_STRUCT]	= "STRUCT",
318 	[BTF_KIND_UNION]	= "UNION",
319 	[BTF_KIND_ENUM]		= "ENUM",
320 	[BTF_KIND_FWD]		= "FWD",
321 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
322 	[BTF_KIND_VOLATILE]	= "VOLATILE",
323 	[BTF_KIND_CONST]	= "CONST",
324 	[BTF_KIND_RESTRICT]	= "RESTRICT",
325 	[BTF_KIND_FUNC]		= "FUNC",
326 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
327 	[BTF_KIND_VAR]		= "VAR",
328 	[BTF_KIND_DATASEC]	= "DATASEC",
329 	[BTF_KIND_FLOAT]	= "FLOAT",
330 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
331 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
332 	[BTF_KIND_ENUM64]	= "ENUM64",
333 };
334 
335 const char *btf_type_str(const struct btf_type *t)
336 {
337 	return btf_kind_str[BTF_INFO_KIND(t->info)];
338 }
339 
340 /* Chunk size we use in safe copy of data to be shown. */
341 #define BTF_SHOW_OBJ_SAFE_SIZE		32
342 
343 /*
344  * This is the maximum size of a base type value (equivalent to a
345  * 128-bit int); if we are at the end of our safe buffer and have
346  * less than 16 bytes space we can't be assured of being able
347  * to copy the next type safely, so in such cases we will initiate
348  * a new copy.
349  */
350 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
351 
352 /* Type name size */
353 #define BTF_SHOW_NAME_SIZE		80
354 
355 /*
356  * The suffix of a type that indicates it cannot alias another type when
357  * comparing BTF IDs for kfunc invocations.
358  */
359 #define NOCAST_ALIAS_SUFFIX		"___init"
360 
361 /*
362  * Common data to all BTF show operations. Private show functions can add
363  * their own data to a structure containing a struct btf_show and consult it
364  * in the show callback.  See btf_type_show() below.
365  *
366  * One challenge with showing nested data is we want to skip 0-valued
367  * data, but in order to figure out whether a nested object is all zeros
368  * we need to walk through it.  As a result, we need to make two passes
369  * when handling structs, unions and arrays; the first path simply looks
370  * for nonzero data, while the second actually does the display.  The first
371  * pass is signalled by show->state.depth_check being set, and if we
372  * encounter a non-zero value we set show->state.depth_to_show to
373  * the depth at which we encountered it.  When we have completed the
374  * first pass, we will know if anything needs to be displayed if
375  * depth_to_show > depth.  See btf_[struct,array]_show() for the
376  * implementation of this.
377  *
378  * Another problem is we want to ensure the data for display is safe to
379  * access.  To support this, the anonymous "struct {} obj" tracks the data
380  * object and our safe copy of it.  We copy portions of the data needed
381  * to the object "copy" buffer, but because its size is limited to
382  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
383  * traverse larger objects for display.
384  *
385  * The various data type show functions all start with a call to
386  * btf_show_start_type() which returns a pointer to the safe copy
387  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
388  * raw data itself).  btf_show_obj_safe() is responsible for
389  * using copy_from_kernel_nofault() to update the safe data if necessary
390  * as we traverse the object's data.  skbuff-like semantics are
391  * used:
392  *
393  * - obj.head points to the start of the toplevel object for display
394  * - obj.size is the size of the toplevel object
395  * - obj.data points to the current point in the original data at
396  *   which our safe data starts.  obj.data will advance as we copy
397  *   portions of the data.
398  *
399  * In most cases a single copy will suffice, but larger data structures
400  * such as "struct task_struct" will require many copies.  The logic in
401  * btf_show_obj_safe() handles the logic that determines if a new
402  * copy_from_kernel_nofault() is needed.
403  */
404 struct btf_show {
405 	u64 flags;
406 	void *target;	/* target of show operation (seq file, buffer) */
407 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
408 	const struct btf *btf;
409 	/* below are used during iteration */
410 	struct {
411 		u8 depth;
412 		u8 depth_to_show;
413 		u8 depth_check;
414 		u8 array_member:1,
415 		   array_terminated:1;
416 		u16 array_encoding;
417 		u32 type_id;
418 		int status;			/* non-zero for error */
419 		const struct btf_type *type;
420 		const struct btf_member *member;
421 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
422 	} state;
423 	struct {
424 		u32 size;
425 		void *head;
426 		void *data;
427 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
428 	} obj;
429 };
430 
431 struct btf_kind_operations {
432 	s32 (*check_meta)(struct btf_verifier_env *env,
433 			  const struct btf_type *t,
434 			  u32 meta_left);
435 	int (*resolve)(struct btf_verifier_env *env,
436 		       const struct resolve_vertex *v);
437 	int (*check_member)(struct btf_verifier_env *env,
438 			    const struct btf_type *struct_type,
439 			    const struct btf_member *member,
440 			    const struct btf_type *member_type);
441 	int (*check_kflag_member)(struct btf_verifier_env *env,
442 				  const struct btf_type *struct_type,
443 				  const struct btf_member *member,
444 				  const struct btf_type *member_type);
445 	void (*log_details)(struct btf_verifier_env *env,
446 			    const struct btf_type *t);
447 	void (*show)(const struct btf *btf, const struct btf_type *t,
448 			 u32 type_id, void *data, u8 bits_offsets,
449 			 struct btf_show *show);
450 };
451 
452 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
453 static struct btf_type btf_void;
454 
455 static int btf_resolve(struct btf_verifier_env *env,
456 		       const struct btf_type *t, u32 type_id);
457 
458 static int btf_func_check(struct btf_verifier_env *env,
459 			  const struct btf_type *t);
460 
461 static bool btf_type_is_modifier(const struct btf_type *t)
462 {
463 	/* Some of them is not strictly a C modifier
464 	 * but they are grouped into the same bucket
465 	 * for BTF concern:
466 	 *   A type (t) that refers to another
467 	 *   type through t->type AND its size cannot
468 	 *   be determined without following the t->type.
469 	 *
470 	 * ptr does not fall into this bucket
471 	 * because its size is always sizeof(void *).
472 	 */
473 	switch (BTF_INFO_KIND(t->info)) {
474 	case BTF_KIND_TYPEDEF:
475 	case BTF_KIND_VOLATILE:
476 	case BTF_KIND_CONST:
477 	case BTF_KIND_RESTRICT:
478 	case BTF_KIND_TYPE_TAG:
479 		return true;
480 	}
481 
482 	return false;
483 }
484 
485 bool btf_type_is_void(const struct btf_type *t)
486 {
487 	return t == &btf_void;
488 }
489 
490 static bool btf_type_is_fwd(const struct btf_type *t)
491 {
492 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
493 }
494 
495 static bool btf_type_nosize(const struct btf_type *t)
496 {
497 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
498 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
499 }
500 
501 static bool btf_type_nosize_or_null(const struct btf_type *t)
502 {
503 	return !t || btf_type_nosize(t);
504 }
505 
506 static bool btf_type_is_datasec(const struct btf_type *t)
507 {
508 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
509 }
510 
511 static bool btf_type_is_decl_tag(const struct btf_type *t)
512 {
513 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
514 }
515 
516 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
517 {
518 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
519 	       btf_type_is_var(t) || btf_type_is_typedef(t);
520 }
521 
522 u32 btf_nr_types(const struct btf *btf)
523 {
524 	u32 total = 0;
525 
526 	while (btf) {
527 		total += btf->nr_types;
528 		btf = btf->base_btf;
529 	}
530 
531 	return total;
532 }
533 
534 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
535 {
536 	const struct btf_type *t;
537 	const char *tname;
538 	u32 i, total;
539 
540 	total = btf_nr_types(btf);
541 	for (i = 1; i < total; i++) {
542 		t = btf_type_by_id(btf, i);
543 		if (BTF_INFO_KIND(t->info) != kind)
544 			continue;
545 
546 		tname = btf_name_by_offset(btf, t->name_off);
547 		if (!strcmp(tname, name))
548 			return i;
549 	}
550 
551 	return -ENOENT;
552 }
553 
554 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
555 {
556 	struct btf *btf;
557 	s32 ret;
558 	int id;
559 
560 	btf = bpf_get_btf_vmlinux();
561 	if (IS_ERR(btf))
562 		return PTR_ERR(btf);
563 	if (!btf)
564 		return -EINVAL;
565 
566 	ret = btf_find_by_name_kind(btf, name, kind);
567 	/* ret is never zero, since btf_find_by_name_kind returns
568 	 * positive btf_id or negative error.
569 	 */
570 	if (ret > 0) {
571 		btf_get(btf);
572 		*btf_p = btf;
573 		return ret;
574 	}
575 
576 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
577 	spin_lock_bh(&btf_idr_lock);
578 	idr_for_each_entry(&btf_idr, btf, id) {
579 		if (!btf_is_module(btf))
580 			continue;
581 		/* linear search could be slow hence unlock/lock
582 		 * the IDR to avoiding holding it for too long
583 		 */
584 		btf_get(btf);
585 		spin_unlock_bh(&btf_idr_lock);
586 		ret = btf_find_by_name_kind(btf, name, kind);
587 		if (ret > 0) {
588 			*btf_p = btf;
589 			return ret;
590 		}
591 		btf_put(btf);
592 		spin_lock_bh(&btf_idr_lock);
593 	}
594 	spin_unlock_bh(&btf_idr_lock);
595 	return ret;
596 }
597 
598 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
599 					       u32 id, u32 *res_id)
600 {
601 	const struct btf_type *t = btf_type_by_id(btf, id);
602 
603 	while (btf_type_is_modifier(t)) {
604 		id = t->type;
605 		t = btf_type_by_id(btf, t->type);
606 	}
607 
608 	if (res_id)
609 		*res_id = id;
610 
611 	return t;
612 }
613 
614 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
615 					    u32 id, u32 *res_id)
616 {
617 	const struct btf_type *t;
618 
619 	t = btf_type_skip_modifiers(btf, id, NULL);
620 	if (!btf_type_is_ptr(t))
621 		return NULL;
622 
623 	return btf_type_skip_modifiers(btf, t->type, res_id);
624 }
625 
626 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
627 						 u32 id, u32 *res_id)
628 {
629 	const struct btf_type *ptype;
630 
631 	ptype = btf_type_resolve_ptr(btf, id, res_id);
632 	if (ptype && btf_type_is_func_proto(ptype))
633 		return ptype;
634 
635 	return NULL;
636 }
637 
638 /* Types that act only as a source, not sink or intermediate
639  * type when resolving.
640  */
641 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
642 {
643 	return btf_type_is_var(t) ||
644 	       btf_type_is_decl_tag(t) ||
645 	       btf_type_is_datasec(t);
646 }
647 
648 /* What types need to be resolved?
649  *
650  * btf_type_is_modifier() is an obvious one.
651  *
652  * btf_type_is_struct() because its member refers to
653  * another type (through member->type).
654  *
655  * btf_type_is_var() because the variable refers to
656  * another type. btf_type_is_datasec() holds multiple
657  * btf_type_is_var() types that need resolving.
658  *
659  * btf_type_is_array() because its element (array->type)
660  * refers to another type.  Array can be thought of a
661  * special case of struct while array just has the same
662  * member-type repeated by array->nelems of times.
663  */
664 static bool btf_type_needs_resolve(const struct btf_type *t)
665 {
666 	return btf_type_is_modifier(t) ||
667 	       btf_type_is_ptr(t) ||
668 	       btf_type_is_struct(t) ||
669 	       btf_type_is_array(t) ||
670 	       btf_type_is_var(t) ||
671 	       btf_type_is_func(t) ||
672 	       btf_type_is_decl_tag(t) ||
673 	       btf_type_is_datasec(t);
674 }
675 
676 /* t->size can be used */
677 static bool btf_type_has_size(const struct btf_type *t)
678 {
679 	switch (BTF_INFO_KIND(t->info)) {
680 	case BTF_KIND_INT:
681 	case BTF_KIND_STRUCT:
682 	case BTF_KIND_UNION:
683 	case BTF_KIND_ENUM:
684 	case BTF_KIND_DATASEC:
685 	case BTF_KIND_FLOAT:
686 	case BTF_KIND_ENUM64:
687 		return true;
688 	}
689 
690 	return false;
691 }
692 
693 static const char *btf_int_encoding_str(u8 encoding)
694 {
695 	if (encoding == 0)
696 		return "(none)";
697 	else if (encoding == BTF_INT_SIGNED)
698 		return "SIGNED";
699 	else if (encoding == BTF_INT_CHAR)
700 		return "CHAR";
701 	else if (encoding == BTF_INT_BOOL)
702 		return "BOOL";
703 	else
704 		return "UNKN";
705 }
706 
707 static u32 btf_type_int(const struct btf_type *t)
708 {
709 	return *(u32 *)(t + 1);
710 }
711 
712 static const struct btf_array *btf_type_array(const struct btf_type *t)
713 {
714 	return (const struct btf_array *)(t + 1);
715 }
716 
717 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
718 {
719 	return (const struct btf_enum *)(t + 1);
720 }
721 
722 static const struct btf_var *btf_type_var(const struct btf_type *t)
723 {
724 	return (const struct btf_var *)(t + 1);
725 }
726 
727 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
728 {
729 	return (const struct btf_decl_tag *)(t + 1);
730 }
731 
732 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
733 {
734 	return (const struct btf_enum64 *)(t + 1);
735 }
736 
737 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
738 {
739 	return kind_ops[BTF_INFO_KIND(t->info)];
740 }
741 
742 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
743 {
744 	if (!BTF_STR_OFFSET_VALID(offset))
745 		return false;
746 
747 	while (offset < btf->start_str_off)
748 		btf = btf->base_btf;
749 
750 	offset -= btf->start_str_off;
751 	return offset < btf->hdr.str_len;
752 }
753 
754 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
755 {
756 	if ((first ? !isalpha(c) :
757 		     !isalnum(c)) &&
758 	    c != '_' &&
759 	    ((c == '.' && !dot_ok) ||
760 	      c != '.'))
761 		return false;
762 	return true;
763 }
764 
765 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
766 {
767 	while (offset < btf->start_str_off)
768 		btf = btf->base_btf;
769 
770 	offset -= btf->start_str_off;
771 	if (offset < btf->hdr.str_len)
772 		return &btf->strings[offset];
773 
774 	return NULL;
775 }
776 
777 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
778 {
779 	/* offset must be valid */
780 	const char *src = btf_str_by_offset(btf, offset);
781 	const char *src_limit;
782 
783 	if (!__btf_name_char_ok(*src, true, dot_ok))
784 		return false;
785 
786 	/* set a limit on identifier length */
787 	src_limit = src + KSYM_NAME_LEN;
788 	src++;
789 	while (*src && src < src_limit) {
790 		if (!__btf_name_char_ok(*src, false, dot_ok))
791 			return false;
792 		src++;
793 	}
794 
795 	return !*src;
796 }
797 
798 /* Only C-style identifier is permitted. This can be relaxed if
799  * necessary.
800  */
801 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
802 {
803 	return __btf_name_valid(btf, offset, false);
804 }
805 
806 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
807 {
808 	return __btf_name_valid(btf, offset, true);
809 }
810 
811 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
812 {
813 	const char *name;
814 
815 	if (!offset)
816 		return "(anon)";
817 
818 	name = btf_str_by_offset(btf, offset);
819 	return name ?: "(invalid-name-offset)";
820 }
821 
822 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
823 {
824 	return btf_str_by_offset(btf, offset);
825 }
826 
827 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
828 {
829 	while (type_id < btf->start_id)
830 		btf = btf->base_btf;
831 
832 	type_id -= btf->start_id;
833 	if (type_id >= btf->nr_types)
834 		return NULL;
835 	return btf->types[type_id];
836 }
837 EXPORT_SYMBOL_GPL(btf_type_by_id);
838 
839 /*
840  * Regular int is not a bit field and it must be either
841  * u8/u16/u32/u64 or __int128.
842  */
843 static bool btf_type_int_is_regular(const struct btf_type *t)
844 {
845 	u8 nr_bits, nr_bytes;
846 	u32 int_data;
847 
848 	int_data = btf_type_int(t);
849 	nr_bits = BTF_INT_BITS(int_data);
850 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
851 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
852 	    BTF_INT_OFFSET(int_data) ||
853 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
854 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
855 	     nr_bytes != (2 * sizeof(u64)))) {
856 		return false;
857 	}
858 
859 	return true;
860 }
861 
862 /*
863  * Check that given struct member is a regular int with expected
864  * offset and size.
865  */
866 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
867 			   const struct btf_member *m,
868 			   u32 expected_offset, u32 expected_size)
869 {
870 	const struct btf_type *t;
871 	u32 id, int_data;
872 	u8 nr_bits;
873 
874 	id = m->type;
875 	t = btf_type_id_size(btf, &id, NULL);
876 	if (!t || !btf_type_is_int(t))
877 		return false;
878 
879 	int_data = btf_type_int(t);
880 	nr_bits = BTF_INT_BITS(int_data);
881 	if (btf_type_kflag(s)) {
882 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
883 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
884 
885 		/* if kflag set, int should be a regular int and
886 		 * bit offset should be at byte boundary.
887 		 */
888 		return !bitfield_size &&
889 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
890 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
891 	}
892 
893 	if (BTF_INT_OFFSET(int_data) ||
894 	    BITS_PER_BYTE_MASKED(m->offset) ||
895 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
896 	    BITS_PER_BYTE_MASKED(nr_bits) ||
897 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
898 		return false;
899 
900 	return true;
901 }
902 
903 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
904 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
905 						       u32 id)
906 {
907 	const struct btf_type *t = btf_type_by_id(btf, id);
908 
909 	while (btf_type_is_modifier(t) &&
910 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
911 		t = btf_type_by_id(btf, t->type);
912 	}
913 
914 	return t;
915 }
916 
917 #define BTF_SHOW_MAX_ITER	10
918 
919 #define BTF_KIND_BIT(kind)	(1ULL << kind)
920 
921 /*
922  * Populate show->state.name with type name information.
923  * Format of type name is
924  *
925  * [.member_name = ] (type_name)
926  */
927 static const char *btf_show_name(struct btf_show *show)
928 {
929 	/* BTF_MAX_ITER array suffixes "[]" */
930 	const char *array_suffixes = "[][][][][][][][][][]";
931 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
932 	/* BTF_MAX_ITER pointer suffixes "*" */
933 	const char *ptr_suffixes = "**********";
934 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
935 	const char *name = NULL, *prefix = "", *parens = "";
936 	const struct btf_member *m = show->state.member;
937 	const struct btf_type *t;
938 	const struct btf_array *array;
939 	u32 id = show->state.type_id;
940 	const char *member = NULL;
941 	bool show_member = false;
942 	u64 kinds = 0;
943 	int i;
944 
945 	show->state.name[0] = '\0';
946 
947 	/*
948 	 * Don't show type name if we're showing an array member;
949 	 * in that case we show the array type so don't need to repeat
950 	 * ourselves for each member.
951 	 */
952 	if (show->state.array_member)
953 		return "";
954 
955 	/* Retrieve member name, if any. */
956 	if (m) {
957 		member = btf_name_by_offset(show->btf, m->name_off);
958 		show_member = strlen(member) > 0;
959 		id = m->type;
960 	}
961 
962 	/*
963 	 * Start with type_id, as we have resolved the struct btf_type *
964 	 * via btf_modifier_show() past the parent typedef to the child
965 	 * struct, int etc it is defined as.  In such cases, the type_id
966 	 * still represents the starting type while the struct btf_type *
967 	 * in our show->state points at the resolved type of the typedef.
968 	 */
969 	t = btf_type_by_id(show->btf, id);
970 	if (!t)
971 		return "";
972 
973 	/*
974 	 * The goal here is to build up the right number of pointer and
975 	 * array suffixes while ensuring the type name for a typedef
976 	 * is represented.  Along the way we accumulate a list of
977 	 * BTF kinds we have encountered, since these will inform later
978 	 * display; for example, pointer types will not require an
979 	 * opening "{" for struct, we will just display the pointer value.
980 	 *
981 	 * We also want to accumulate the right number of pointer or array
982 	 * indices in the format string while iterating until we get to
983 	 * the typedef/pointee/array member target type.
984 	 *
985 	 * We start by pointing at the end of pointer and array suffix
986 	 * strings; as we accumulate pointers and arrays we move the pointer
987 	 * or array string backwards so it will show the expected number of
988 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
989 	 * and/or arrays and typedefs are supported as a precaution.
990 	 *
991 	 * We also want to get typedef name while proceeding to resolve
992 	 * type it points to so that we can add parentheses if it is a
993 	 * "typedef struct" etc.
994 	 */
995 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
996 
997 		switch (BTF_INFO_KIND(t->info)) {
998 		case BTF_KIND_TYPEDEF:
999 			if (!name)
1000 				name = btf_name_by_offset(show->btf,
1001 							       t->name_off);
1002 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1003 			id = t->type;
1004 			break;
1005 		case BTF_KIND_ARRAY:
1006 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1007 			parens = "[";
1008 			if (!t)
1009 				return "";
1010 			array = btf_type_array(t);
1011 			if (array_suffix > array_suffixes)
1012 				array_suffix -= 2;
1013 			id = array->type;
1014 			break;
1015 		case BTF_KIND_PTR:
1016 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1017 			if (ptr_suffix > ptr_suffixes)
1018 				ptr_suffix -= 1;
1019 			id = t->type;
1020 			break;
1021 		default:
1022 			id = 0;
1023 			break;
1024 		}
1025 		if (!id)
1026 			break;
1027 		t = btf_type_skip_qualifiers(show->btf, id);
1028 	}
1029 	/* We may not be able to represent this type; bail to be safe */
1030 	if (i == BTF_SHOW_MAX_ITER)
1031 		return "";
1032 
1033 	if (!name)
1034 		name = btf_name_by_offset(show->btf, t->name_off);
1035 
1036 	switch (BTF_INFO_KIND(t->info)) {
1037 	case BTF_KIND_STRUCT:
1038 	case BTF_KIND_UNION:
1039 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1040 			 "struct" : "union";
1041 		/* if it's an array of struct/union, parens is already set */
1042 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1043 			parens = "{";
1044 		break;
1045 	case BTF_KIND_ENUM:
1046 	case BTF_KIND_ENUM64:
1047 		prefix = "enum";
1048 		break;
1049 	default:
1050 		break;
1051 	}
1052 
1053 	/* pointer does not require parens */
1054 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1055 		parens = "";
1056 	/* typedef does not require struct/union/enum prefix */
1057 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1058 		prefix = "";
1059 
1060 	if (!name)
1061 		name = "";
1062 
1063 	/* Even if we don't want type name info, we want parentheses etc */
1064 	if (show->flags & BTF_SHOW_NONAME)
1065 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1066 			 parens);
1067 	else
1068 		snprintf(show->state.name, sizeof(show->state.name),
1069 			 "%s%s%s(%s%s%s%s%s%s)%s",
1070 			 /* first 3 strings comprise ".member = " */
1071 			 show_member ? "." : "",
1072 			 show_member ? member : "",
1073 			 show_member ? " = " : "",
1074 			 /* ...next is our prefix (struct, enum, etc) */
1075 			 prefix,
1076 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1077 			 /* ...this is the type name itself */
1078 			 name,
1079 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1080 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1081 			 array_suffix, parens);
1082 
1083 	return show->state.name;
1084 }
1085 
1086 static const char *__btf_show_indent(struct btf_show *show)
1087 {
1088 	const char *indents = "                                ";
1089 	const char *indent = &indents[strlen(indents)];
1090 
1091 	if ((indent - show->state.depth) >= indents)
1092 		return indent - show->state.depth;
1093 	return indents;
1094 }
1095 
1096 static const char *btf_show_indent(struct btf_show *show)
1097 {
1098 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1099 }
1100 
1101 static const char *btf_show_newline(struct btf_show *show)
1102 {
1103 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1104 }
1105 
1106 static const char *btf_show_delim(struct btf_show *show)
1107 {
1108 	if (show->state.depth == 0)
1109 		return "";
1110 
1111 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1112 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1113 		return "|";
1114 
1115 	return ",";
1116 }
1117 
1118 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1119 {
1120 	va_list args;
1121 
1122 	if (!show->state.depth_check) {
1123 		va_start(args, fmt);
1124 		show->showfn(show, fmt, args);
1125 		va_end(args);
1126 	}
1127 }
1128 
1129 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1130  * format specifiers to the format specifier passed in; these do the work of
1131  * adding indentation, delimiters etc while the caller simply has to specify
1132  * the type value(s) in the format specifier + value(s).
1133  */
1134 #define btf_show_type_value(show, fmt, value)				       \
1135 	do {								       \
1136 		if ((value) != (__typeof__(value))0 ||			       \
1137 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1138 		    show->state.depth == 0) {				       \
1139 			btf_show(show, "%s%s" fmt "%s%s",		       \
1140 				 btf_show_indent(show),			       \
1141 				 btf_show_name(show),			       \
1142 				 value, btf_show_delim(show),		       \
1143 				 btf_show_newline(show));		       \
1144 			if (show->state.depth > show->state.depth_to_show)     \
1145 				show->state.depth_to_show = show->state.depth; \
1146 		}							       \
1147 	} while (0)
1148 
1149 #define btf_show_type_values(show, fmt, ...)				       \
1150 	do {								       \
1151 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1152 			 btf_show_name(show),				       \
1153 			 __VA_ARGS__, btf_show_delim(show),		       \
1154 			 btf_show_newline(show));			       \
1155 		if (show->state.depth > show->state.depth_to_show)	       \
1156 			show->state.depth_to_show = show->state.depth;	       \
1157 	} while (0)
1158 
1159 /* How much is left to copy to safe buffer after @data? */
1160 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1161 {
1162 	return show->obj.head + show->obj.size - data;
1163 }
1164 
1165 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1166 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1167 {
1168 	return data >= show->obj.data &&
1169 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1170 }
1171 
1172 /*
1173  * If object pointed to by @data of @size falls within our safe buffer, return
1174  * the equivalent pointer to the same safe data.  Assumes
1175  * copy_from_kernel_nofault() has already happened and our safe buffer is
1176  * populated.
1177  */
1178 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1179 {
1180 	if (btf_show_obj_is_safe(show, data, size))
1181 		return show->obj.safe + (data - show->obj.data);
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * Return a safe-to-access version of data pointed to by @data.
1187  * We do this by copying the relevant amount of information
1188  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1189  *
1190  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1191  * safe copy is needed.
1192  *
1193  * Otherwise we need to determine if we have the required amount
1194  * of data (determined by the @data pointer and the size of the
1195  * largest base type we can encounter (represented by
1196  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1197  * that we will be able to print some of the current object,
1198  * and if more is needed a copy will be triggered.
1199  * Some objects such as structs will not fit into the buffer;
1200  * in such cases additional copies when we iterate over their
1201  * members may be needed.
1202  *
1203  * btf_show_obj_safe() is used to return a safe buffer for
1204  * btf_show_start_type(); this ensures that as we recurse into
1205  * nested types we always have safe data for the given type.
1206  * This approach is somewhat wasteful; it's possible for example
1207  * that when iterating over a large union we'll end up copying the
1208  * same data repeatedly, but the goal is safety not performance.
1209  * We use stack data as opposed to per-CPU buffers because the
1210  * iteration over a type can take some time, and preemption handling
1211  * would greatly complicate use of the safe buffer.
1212  */
1213 static void *btf_show_obj_safe(struct btf_show *show,
1214 			       const struct btf_type *t,
1215 			       void *data)
1216 {
1217 	const struct btf_type *rt;
1218 	int size_left, size;
1219 	void *safe = NULL;
1220 
1221 	if (show->flags & BTF_SHOW_UNSAFE)
1222 		return data;
1223 
1224 	rt = btf_resolve_size(show->btf, t, &size);
1225 	if (IS_ERR(rt)) {
1226 		show->state.status = PTR_ERR(rt);
1227 		return NULL;
1228 	}
1229 
1230 	/*
1231 	 * Is this toplevel object? If so, set total object size and
1232 	 * initialize pointers.  Otherwise check if we still fall within
1233 	 * our safe object data.
1234 	 */
1235 	if (show->state.depth == 0) {
1236 		show->obj.size = size;
1237 		show->obj.head = data;
1238 	} else {
1239 		/*
1240 		 * If the size of the current object is > our remaining
1241 		 * safe buffer we _may_ need to do a new copy.  However
1242 		 * consider the case of a nested struct; it's size pushes
1243 		 * us over the safe buffer limit, but showing any individual
1244 		 * struct members does not.  In such cases, we don't need
1245 		 * to initiate a fresh copy yet; however we definitely need
1246 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1247 		 * in our buffer, regardless of the current object size.
1248 		 * The logic here is that as we resolve types we will
1249 		 * hit a base type at some point, and we need to be sure
1250 		 * the next chunk of data is safely available to display
1251 		 * that type info safely.  We cannot rely on the size of
1252 		 * the current object here because it may be much larger
1253 		 * than our current buffer (e.g. task_struct is 8k).
1254 		 * All we want to do here is ensure that we can print the
1255 		 * next basic type, which we can if either
1256 		 * - the current type size is within the safe buffer; or
1257 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1258 		 *   the safe buffer.
1259 		 */
1260 		safe = __btf_show_obj_safe(show, data,
1261 					   min(size,
1262 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1263 	}
1264 
1265 	/*
1266 	 * We need a new copy to our safe object, either because we haven't
1267 	 * yet copied and are initializing safe data, or because the data
1268 	 * we want falls outside the boundaries of the safe object.
1269 	 */
1270 	if (!safe) {
1271 		size_left = btf_show_obj_size_left(show, data);
1272 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1273 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1274 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1275 							      data, size_left);
1276 		if (!show->state.status) {
1277 			show->obj.data = data;
1278 			safe = show->obj.safe;
1279 		}
1280 	}
1281 
1282 	return safe;
1283 }
1284 
1285 /*
1286  * Set the type we are starting to show and return a safe data pointer
1287  * to be used for showing the associated data.
1288  */
1289 static void *btf_show_start_type(struct btf_show *show,
1290 				 const struct btf_type *t,
1291 				 u32 type_id, void *data)
1292 {
1293 	show->state.type = t;
1294 	show->state.type_id = type_id;
1295 	show->state.name[0] = '\0';
1296 
1297 	return btf_show_obj_safe(show, t, data);
1298 }
1299 
1300 static void btf_show_end_type(struct btf_show *show)
1301 {
1302 	show->state.type = NULL;
1303 	show->state.type_id = 0;
1304 	show->state.name[0] = '\0';
1305 }
1306 
1307 static void *btf_show_start_aggr_type(struct btf_show *show,
1308 				      const struct btf_type *t,
1309 				      u32 type_id, void *data)
1310 {
1311 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1312 
1313 	if (!safe_data)
1314 		return safe_data;
1315 
1316 	btf_show(show, "%s%s%s", btf_show_indent(show),
1317 		 btf_show_name(show),
1318 		 btf_show_newline(show));
1319 	show->state.depth++;
1320 	return safe_data;
1321 }
1322 
1323 static void btf_show_end_aggr_type(struct btf_show *show,
1324 				   const char *suffix)
1325 {
1326 	show->state.depth--;
1327 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1328 		 btf_show_delim(show), btf_show_newline(show));
1329 	btf_show_end_type(show);
1330 }
1331 
1332 static void btf_show_start_member(struct btf_show *show,
1333 				  const struct btf_member *m)
1334 {
1335 	show->state.member = m;
1336 }
1337 
1338 static void btf_show_start_array_member(struct btf_show *show)
1339 {
1340 	show->state.array_member = 1;
1341 	btf_show_start_member(show, NULL);
1342 }
1343 
1344 static void btf_show_end_member(struct btf_show *show)
1345 {
1346 	show->state.member = NULL;
1347 }
1348 
1349 static void btf_show_end_array_member(struct btf_show *show)
1350 {
1351 	show->state.array_member = 0;
1352 	btf_show_end_member(show);
1353 }
1354 
1355 static void *btf_show_start_array_type(struct btf_show *show,
1356 				       const struct btf_type *t,
1357 				       u32 type_id,
1358 				       u16 array_encoding,
1359 				       void *data)
1360 {
1361 	show->state.array_encoding = array_encoding;
1362 	show->state.array_terminated = 0;
1363 	return btf_show_start_aggr_type(show, t, type_id, data);
1364 }
1365 
1366 static void btf_show_end_array_type(struct btf_show *show)
1367 {
1368 	show->state.array_encoding = 0;
1369 	show->state.array_terminated = 0;
1370 	btf_show_end_aggr_type(show, "]");
1371 }
1372 
1373 static void *btf_show_start_struct_type(struct btf_show *show,
1374 					const struct btf_type *t,
1375 					u32 type_id,
1376 					void *data)
1377 {
1378 	return btf_show_start_aggr_type(show, t, type_id, data);
1379 }
1380 
1381 static void btf_show_end_struct_type(struct btf_show *show)
1382 {
1383 	btf_show_end_aggr_type(show, "}");
1384 }
1385 
1386 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1387 					      const char *fmt, ...)
1388 {
1389 	va_list args;
1390 
1391 	va_start(args, fmt);
1392 	bpf_verifier_vlog(log, fmt, args);
1393 	va_end(args);
1394 }
1395 
1396 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1397 					    const char *fmt, ...)
1398 {
1399 	struct bpf_verifier_log *log = &env->log;
1400 	va_list args;
1401 
1402 	if (!bpf_verifier_log_needed(log))
1403 		return;
1404 
1405 	va_start(args, fmt);
1406 	bpf_verifier_vlog(log, fmt, args);
1407 	va_end(args);
1408 }
1409 
1410 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1411 						   const struct btf_type *t,
1412 						   bool log_details,
1413 						   const char *fmt, ...)
1414 {
1415 	struct bpf_verifier_log *log = &env->log;
1416 	struct btf *btf = env->btf;
1417 	va_list args;
1418 
1419 	if (!bpf_verifier_log_needed(log))
1420 		return;
1421 
1422 	if (log->level == BPF_LOG_KERNEL) {
1423 		/* btf verifier prints all types it is processing via
1424 		 * btf_verifier_log_type(..., fmt = NULL).
1425 		 * Skip those prints for in-kernel BTF verification.
1426 		 */
1427 		if (!fmt)
1428 			return;
1429 
1430 		/* Skip logging when loading module BTF with mismatches permitted */
1431 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1432 			return;
1433 	}
1434 
1435 	__btf_verifier_log(log, "[%u] %s %s%s",
1436 			   env->log_type_id,
1437 			   btf_type_str(t),
1438 			   __btf_name_by_offset(btf, t->name_off),
1439 			   log_details ? " " : "");
1440 
1441 	if (log_details)
1442 		btf_type_ops(t)->log_details(env, t);
1443 
1444 	if (fmt && *fmt) {
1445 		__btf_verifier_log(log, " ");
1446 		va_start(args, fmt);
1447 		bpf_verifier_vlog(log, fmt, args);
1448 		va_end(args);
1449 	}
1450 
1451 	__btf_verifier_log(log, "\n");
1452 }
1453 
1454 #define btf_verifier_log_type(env, t, ...) \
1455 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1456 #define btf_verifier_log_basic(env, t, ...) \
1457 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1458 
1459 __printf(4, 5)
1460 static void btf_verifier_log_member(struct btf_verifier_env *env,
1461 				    const struct btf_type *struct_type,
1462 				    const struct btf_member *member,
1463 				    const char *fmt, ...)
1464 {
1465 	struct bpf_verifier_log *log = &env->log;
1466 	struct btf *btf = env->btf;
1467 	va_list args;
1468 
1469 	if (!bpf_verifier_log_needed(log))
1470 		return;
1471 
1472 	if (log->level == BPF_LOG_KERNEL) {
1473 		if (!fmt)
1474 			return;
1475 
1476 		/* Skip logging when loading module BTF with mismatches permitted */
1477 		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1478 			return;
1479 	}
1480 
1481 	/* The CHECK_META phase already did a btf dump.
1482 	 *
1483 	 * If member is logged again, it must hit an error in
1484 	 * parsing this member.  It is useful to print out which
1485 	 * struct this member belongs to.
1486 	 */
1487 	if (env->phase != CHECK_META)
1488 		btf_verifier_log_type(env, struct_type, NULL);
1489 
1490 	if (btf_type_kflag(struct_type))
1491 		__btf_verifier_log(log,
1492 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1493 				   __btf_name_by_offset(btf, member->name_off),
1494 				   member->type,
1495 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1496 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1497 	else
1498 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1499 				   __btf_name_by_offset(btf, member->name_off),
1500 				   member->type, member->offset);
1501 
1502 	if (fmt && *fmt) {
1503 		__btf_verifier_log(log, " ");
1504 		va_start(args, fmt);
1505 		bpf_verifier_vlog(log, fmt, args);
1506 		va_end(args);
1507 	}
1508 
1509 	__btf_verifier_log(log, "\n");
1510 }
1511 
1512 __printf(4, 5)
1513 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1514 				 const struct btf_type *datasec_type,
1515 				 const struct btf_var_secinfo *vsi,
1516 				 const char *fmt, ...)
1517 {
1518 	struct bpf_verifier_log *log = &env->log;
1519 	va_list args;
1520 
1521 	if (!bpf_verifier_log_needed(log))
1522 		return;
1523 	if (log->level == BPF_LOG_KERNEL && !fmt)
1524 		return;
1525 	if (env->phase != CHECK_META)
1526 		btf_verifier_log_type(env, datasec_type, NULL);
1527 
1528 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1529 			   vsi->type, vsi->offset, vsi->size);
1530 	if (fmt && *fmt) {
1531 		__btf_verifier_log(log, " ");
1532 		va_start(args, fmt);
1533 		bpf_verifier_vlog(log, fmt, args);
1534 		va_end(args);
1535 	}
1536 
1537 	__btf_verifier_log(log, "\n");
1538 }
1539 
1540 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1541 				 u32 btf_data_size)
1542 {
1543 	struct bpf_verifier_log *log = &env->log;
1544 	const struct btf *btf = env->btf;
1545 	const struct btf_header *hdr;
1546 
1547 	if (!bpf_verifier_log_needed(log))
1548 		return;
1549 
1550 	if (log->level == BPF_LOG_KERNEL)
1551 		return;
1552 	hdr = &btf->hdr;
1553 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1554 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1555 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1556 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1557 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1558 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1559 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1560 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1561 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1562 }
1563 
1564 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1565 {
1566 	struct btf *btf = env->btf;
1567 
1568 	if (btf->types_size == btf->nr_types) {
1569 		/* Expand 'types' array */
1570 
1571 		struct btf_type **new_types;
1572 		u32 expand_by, new_size;
1573 
1574 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1575 			btf_verifier_log(env, "Exceeded max num of types");
1576 			return -E2BIG;
1577 		}
1578 
1579 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1580 		new_size = min_t(u32, BTF_MAX_TYPE,
1581 				 btf->types_size + expand_by);
1582 
1583 		new_types = kvcalloc(new_size, sizeof(*new_types),
1584 				     GFP_KERNEL | __GFP_NOWARN);
1585 		if (!new_types)
1586 			return -ENOMEM;
1587 
1588 		if (btf->nr_types == 0) {
1589 			if (!btf->base_btf) {
1590 				/* lazily init VOID type */
1591 				new_types[0] = &btf_void;
1592 				btf->nr_types++;
1593 			}
1594 		} else {
1595 			memcpy(new_types, btf->types,
1596 			       sizeof(*btf->types) * btf->nr_types);
1597 		}
1598 
1599 		kvfree(btf->types);
1600 		btf->types = new_types;
1601 		btf->types_size = new_size;
1602 	}
1603 
1604 	btf->types[btf->nr_types++] = t;
1605 
1606 	return 0;
1607 }
1608 
1609 static int btf_alloc_id(struct btf *btf)
1610 {
1611 	int id;
1612 
1613 	idr_preload(GFP_KERNEL);
1614 	spin_lock_bh(&btf_idr_lock);
1615 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1616 	if (id > 0)
1617 		btf->id = id;
1618 	spin_unlock_bh(&btf_idr_lock);
1619 	idr_preload_end();
1620 
1621 	if (WARN_ON_ONCE(!id))
1622 		return -ENOSPC;
1623 
1624 	return id > 0 ? 0 : id;
1625 }
1626 
1627 static void btf_free_id(struct btf *btf)
1628 {
1629 	unsigned long flags;
1630 
1631 	/*
1632 	 * In map-in-map, calling map_delete_elem() on outer
1633 	 * map will call bpf_map_put on the inner map.
1634 	 * It will then eventually call btf_free_id()
1635 	 * on the inner map.  Some of the map_delete_elem()
1636 	 * implementation may have irq disabled, so
1637 	 * we need to use the _irqsave() version instead
1638 	 * of the _bh() version.
1639 	 */
1640 	spin_lock_irqsave(&btf_idr_lock, flags);
1641 	idr_remove(&btf_idr, btf->id);
1642 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1643 }
1644 
1645 static void btf_free_kfunc_set_tab(struct btf *btf)
1646 {
1647 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1648 	int hook;
1649 
1650 	if (!tab)
1651 		return;
1652 	/* For module BTF, we directly assign the sets being registered, so
1653 	 * there is nothing to free except kfunc_set_tab.
1654 	 */
1655 	if (btf_is_module(btf))
1656 		goto free_tab;
1657 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1658 		kfree(tab->sets[hook]);
1659 free_tab:
1660 	kfree(tab);
1661 	btf->kfunc_set_tab = NULL;
1662 }
1663 
1664 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1665 {
1666 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1667 
1668 	if (!tab)
1669 		return;
1670 	kfree(tab);
1671 	btf->dtor_kfunc_tab = NULL;
1672 }
1673 
1674 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1675 {
1676 	int i;
1677 
1678 	if (!tab)
1679 		return;
1680 	for (i = 0; i < tab->cnt; i++)
1681 		btf_record_free(tab->types[i].record);
1682 	kfree(tab);
1683 }
1684 
1685 static void btf_free_struct_meta_tab(struct btf *btf)
1686 {
1687 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1688 
1689 	btf_struct_metas_free(tab);
1690 	btf->struct_meta_tab = NULL;
1691 }
1692 
1693 static void btf_free(struct btf *btf)
1694 {
1695 	btf_free_struct_meta_tab(btf);
1696 	btf_free_dtor_kfunc_tab(btf);
1697 	btf_free_kfunc_set_tab(btf);
1698 	kvfree(btf->types);
1699 	kvfree(btf->resolved_sizes);
1700 	kvfree(btf->resolved_ids);
1701 	kvfree(btf->data);
1702 	kfree(btf);
1703 }
1704 
1705 static void btf_free_rcu(struct rcu_head *rcu)
1706 {
1707 	struct btf *btf = container_of(rcu, struct btf, rcu);
1708 
1709 	btf_free(btf);
1710 }
1711 
1712 void btf_get(struct btf *btf)
1713 {
1714 	refcount_inc(&btf->refcnt);
1715 }
1716 
1717 void btf_put(struct btf *btf)
1718 {
1719 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1720 		btf_free_id(btf);
1721 		call_rcu(&btf->rcu, btf_free_rcu);
1722 	}
1723 }
1724 
1725 static int env_resolve_init(struct btf_verifier_env *env)
1726 {
1727 	struct btf *btf = env->btf;
1728 	u32 nr_types = btf->nr_types;
1729 	u32 *resolved_sizes = NULL;
1730 	u32 *resolved_ids = NULL;
1731 	u8 *visit_states = NULL;
1732 
1733 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1734 				  GFP_KERNEL | __GFP_NOWARN);
1735 	if (!resolved_sizes)
1736 		goto nomem;
1737 
1738 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1739 				GFP_KERNEL | __GFP_NOWARN);
1740 	if (!resolved_ids)
1741 		goto nomem;
1742 
1743 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1744 				GFP_KERNEL | __GFP_NOWARN);
1745 	if (!visit_states)
1746 		goto nomem;
1747 
1748 	btf->resolved_sizes = resolved_sizes;
1749 	btf->resolved_ids = resolved_ids;
1750 	env->visit_states = visit_states;
1751 
1752 	return 0;
1753 
1754 nomem:
1755 	kvfree(resolved_sizes);
1756 	kvfree(resolved_ids);
1757 	kvfree(visit_states);
1758 	return -ENOMEM;
1759 }
1760 
1761 static void btf_verifier_env_free(struct btf_verifier_env *env)
1762 {
1763 	kvfree(env->visit_states);
1764 	kfree(env);
1765 }
1766 
1767 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1768 				     const struct btf_type *next_type)
1769 {
1770 	switch (env->resolve_mode) {
1771 	case RESOLVE_TBD:
1772 		/* int, enum or void is a sink */
1773 		return !btf_type_needs_resolve(next_type);
1774 	case RESOLVE_PTR:
1775 		/* int, enum, void, struct, array, func or func_proto is a sink
1776 		 * for ptr
1777 		 */
1778 		return !btf_type_is_modifier(next_type) &&
1779 			!btf_type_is_ptr(next_type);
1780 	case RESOLVE_STRUCT_OR_ARRAY:
1781 		/* int, enum, void, ptr, func or func_proto is a sink
1782 		 * for struct and array
1783 		 */
1784 		return !btf_type_is_modifier(next_type) &&
1785 			!btf_type_is_array(next_type) &&
1786 			!btf_type_is_struct(next_type);
1787 	default:
1788 		BUG();
1789 	}
1790 }
1791 
1792 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1793 				 u32 type_id)
1794 {
1795 	/* base BTF types should be resolved by now */
1796 	if (type_id < env->btf->start_id)
1797 		return true;
1798 
1799 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1800 }
1801 
1802 static int env_stack_push(struct btf_verifier_env *env,
1803 			  const struct btf_type *t, u32 type_id)
1804 {
1805 	const struct btf *btf = env->btf;
1806 	struct resolve_vertex *v;
1807 
1808 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1809 		return -E2BIG;
1810 
1811 	if (type_id < btf->start_id
1812 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1813 		return -EEXIST;
1814 
1815 	env->visit_states[type_id - btf->start_id] = VISITED;
1816 
1817 	v = &env->stack[env->top_stack++];
1818 	v->t = t;
1819 	v->type_id = type_id;
1820 	v->next_member = 0;
1821 
1822 	if (env->resolve_mode == RESOLVE_TBD) {
1823 		if (btf_type_is_ptr(t))
1824 			env->resolve_mode = RESOLVE_PTR;
1825 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1826 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static void env_stack_set_next_member(struct btf_verifier_env *env,
1833 				      u16 next_member)
1834 {
1835 	env->stack[env->top_stack - 1].next_member = next_member;
1836 }
1837 
1838 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1839 				   u32 resolved_type_id,
1840 				   u32 resolved_size)
1841 {
1842 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1843 	struct btf *btf = env->btf;
1844 
1845 	type_id -= btf->start_id; /* adjust to local type id */
1846 	btf->resolved_sizes[type_id] = resolved_size;
1847 	btf->resolved_ids[type_id] = resolved_type_id;
1848 	env->visit_states[type_id] = RESOLVED;
1849 }
1850 
1851 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1852 {
1853 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1854 }
1855 
1856 /* Resolve the size of a passed-in "type"
1857  *
1858  * type: is an array (e.g. u32 array[x][y])
1859  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1860  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1861  *             corresponds to the return type.
1862  * *elem_type: u32
1863  * *elem_id: id of u32
1864  * *total_nelems: (x * y).  Hence, individual elem size is
1865  *                (*type_size / *total_nelems)
1866  * *type_id: id of type if it's changed within the function, 0 if not
1867  *
1868  * type: is not an array (e.g. const struct X)
1869  * return type: type "struct X"
1870  * *type_size: sizeof(struct X)
1871  * *elem_type: same as return type ("struct X")
1872  * *elem_id: 0
1873  * *total_nelems: 1
1874  * *type_id: id of type if it's changed within the function, 0 if not
1875  */
1876 static const struct btf_type *
1877 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1878 		   u32 *type_size, const struct btf_type **elem_type,
1879 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1880 {
1881 	const struct btf_type *array_type = NULL;
1882 	const struct btf_array *array = NULL;
1883 	u32 i, size, nelems = 1, id = 0;
1884 
1885 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1886 		switch (BTF_INFO_KIND(type->info)) {
1887 		/* type->size can be used */
1888 		case BTF_KIND_INT:
1889 		case BTF_KIND_STRUCT:
1890 		case BTF_KIND_UNION:
1891 		case BTF_KIND_ENUM:
1892 		case BTF_KIND_FLOAT:
1893 		case BTF_KIND_ENUM64:
1894 			size = type->size;
1895 			goto resolved;
1896 
1897 		case BTF_KIND_PTR:
1898 			size = sizeof(void *);
1899 			goto resolved;
1900 
1901 		/* Modifiers */
1902 		case BTF_KIND_TYPEDEF:
1903 		case BTF_KIND_VOLATILE:
1904 		case BTF_KIND_CONST:
1905 		case BTF_KIND_RESTRICT:
1906 		case BTF_KIND_TYPE_TAG:
1907 			id = type->type;
1908 			type = btf_type_by_id(btf, type->type);
1909 			break;
1910 
1911 		case BTF_KIND_ARRAY:
1912 			if (!array_type)
1913 				array_type = type;
1914 			array = btf_type_array(type);
1915 			if (nelems && array->nelems > U32_MAX / nelems)
1916 				return ERR_PTR(-EINVAL);
1917 			nelems *= array->nelems;
1918 			type = btf_type_by_id(btf, array->type);
1919 			break;
1920 
1921 		/* type without size */
1922 		default:
1923 			return ERR_PTR(-EINVAL);
1924 		}
1925 	}
1926 
1927 	return ERR_PTR(-EINVAL);
1928 
1929 resolved:
1930 	if (nelems && size > U32_MAX / nelems)
1931 		return ERR_PTR(-EINVAL);
1932 
1933 	*type_size = nelems * size;
1934 	if (total_nelems)
1935 		*total_nelems = nelems;
1936 	if (elem_type)
1937 		*elem_type = type;
1938 	if (elem_id)
1939 		*elem_id = array ? array->type : 0;
1940 	if (type_id && id)
1941 		*type_id = id;
1942 
1943 	return array_type ? : type;
1944 }
1945 
1946 const struct btf_type *
1947 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1948 		 u32 *type_size)
1949 {
1950 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1951 }
1952 
1953 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1954 {
1955 	while (type_id < btf->start_id)
1956 		btf = btf->base_btf;
1957 
1958 	return btf->resolved_ids[type_id - btf->start_id];
1959 }
1960 
1961 /* The input param "type_id" must point to a needs_resolve type */
1962 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1963 						  u32 *type_id)
1964 {
1965 	*type_id = btf_resolved_type_id(btf, *type_id);
1966 	return btf_type_by_id(btf, *type_id);
1967 }
1968 
1969 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1970 {
1971 	while (type_id < btf->start_id)
1972 		btf = btf->base_btf;
1973 
1974 	return btf->resolved_sizes[type_id - btf->start_id];
1975 }
1976 
1977 const struct btf_type *btf_type_id_size(const struct btf *btf,
1978 					u32 *type_id, u32 *ret_size)
1979 {
1980 	const struct btf_type *size_type;
1981 	u32 size_type_id = *type_id;
1982 	u32 size = 0;
1983 
1984 	size_type = btf_type_by_id(btf, size_type_id);
1985 	if (btf_type_nosize_or_null(size_type))
1986 		return NULL;
1987 
1988 	if (btf_type_has_size(size_type)) {
1989 		size = size_type->size;
1990 	} else if (btf_type_is_array(size_type)) {
1991 		size = btf_resolved_type_size(btf, size_type_id);
1992 	} else if (btf_type_is_ptr(size_type)) {
1993 		size = sizeof(void *);
1994 	} else {
1995 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1996 				 !btf_type_is_var(size_type)))
1997 			return NULL;
1998 
1999 		size_type_id = btf_resolved_type_id(btf, size_type_id);
2000 		size_type = btf_type_by_id(btf, size_type_id);
2001 		if (btf_type_nosize_or_null(size_type))
2002 			return NULL;
2003 		else if (btf_type_has_size(size_type))
2004 			size = size_type->size;
2005 		else if (btf_type_is_array(size_type))
2006 			size = btf_resolved_type_size(btf, size_type_id);
2007 		else if (btf_type_is_ptr(size_type))
2008 			size = sizeof(void *);
2009 		else
2010 			return NULL;
2011 	}
2012 
2013 	*type_id = size_type_id;
2014 	if (ret_size)
2015 		*ret_size = size;
2016 
2017 	return size_type;
2018 }
2019 
2020 static int btf_df_check_member(struct btf_verifier_env *env,
2021 			       const struct btf_type *struct_type,
2022 			       const struct btf_member *member,
2023 			       const struct btf_type *member_type)
2024 {
2025 	btf_verifier_log_basic(env, struct_type,
2026 			       "Unsupported check_member");
2027 	return -EINVAL;
2028 }
2029 
2030 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2031 				     const struct btf_type *struct_type,
2032 				     const struct btf_member *member,
2033 				     const struct btf_type *member_type)
2034 {
2035 	btf_verifier_log_basic(env, struct_type,
2036 			       "Unsupported check_kflag_member");
2037 	return -EINVAL;
2038 }
2039 
2040 /* Used for ptr, array struct/union and float type members.
2041  * int, enum and modifier types have their specific callback functions.
2042  */
2043 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2044 					  const struct btf_type *struct_type,
2045 					  const struct btf_member *member,
2046 					  const struct btf_type *member_type)
2047 {
2048 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2049 		btf_verifier_log_member(env, struct_type, member,
2050 					"Invalid member bitfield_size");
2051 		return -EINVAL;
2052 	}
2053 
2054 	/* bitfield size is 0, so member->offset represents bit offset only.
2055 	 * It is safe to call non kflag check_member variants.
2056 	 */
2057 	return btf_type_ops(member_type)->check_member(env, struct_type,
2058 						       member,
2059 						       member_type);
2060 }
2061 
2062 static int btf_df_resolve(struct btf_verifier_env *env,
2063 			  const struct resolve_vertex *v)
2064 {
2065 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2066 	return -EINVAL;
2067 }
2068 
2069 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2070 			u32 type_id, void *data, u8 bits_offsets,
2071 			struct btf_show *show)
2072 {
2073 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2074 }
2075 
2076 static int btf_int_check_member(struct btf_verifier_env *env,
2077 				const struct btf_type *struct_type,
2078 				const struct btf_member *member,
2079 				const struct btf_type *member_type)
2080 {
2081 	u32 int_data = btf_type_int(member_type);
2082 	u32 struct_bits_off = member->offset;
2083 	u32 struct_size = struct_type->size;
2084 	u32 nr_copy_bits;
2085 	u32 bytes_offset;
2086 
2087 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2088 		btf_verifier_log_member(env, struct_type, member,
2089 					"bits_offset exceeds U32_MAX");
2090 		return -EINVAL;
2091 	}
2092 
2093 	struct_bits_off += BTF_INT_OFFSET(int_data);
2094 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2095 	nr_copy_bits = BTF_INT_BITS(int_data) +
2096 		BITS_PER_BYTE_MASKED(struct_bits_off);
2097 
2098 	if (nr_copy_bits > BITS_PER_U128) {
2099 		btf_verifier_log_member(env, struct_type, member,
2100 					"nr_copy_bits exceeds 128");
2101 		return -EINVAL;
2102 	}
2103 
2104 	if (struct_size < bytes_offset ||
2105 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2106 		btf_verifier_log_member(env, struct_type, member,
2107 					"Member exceeds struct_size");
2108 		return -EINVAL;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2115 				      const struct btf_type *struct_type,
2116 				      const struct btf_member *member,
2117 				      const struct btf_type *member_type)
2118 {
2119 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2120 	u32 int_data = btf_type_int(member_type);
2121 	u32 struct_size = struct_type->size;
2122 	u32 nr_copy_bits;
2123 
2124 	/* a regular int type is required for the kflag int member */
2125 	if (!btf_type_int_is_regular(member_type)) {
2126 		btf_verifier_log_member(env, struct_type, member,
2127 					"Invalid member base type");
2128 		return -EINVAL;
2129 	}
2130 
2131 	/* check sanity of bitfield size */
2132 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2133 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2134 	nr_int_data_bits = BTF_INT_BITS(int_data);
2135 	if (!nr_bits) {
2136 		/* Not a bitfield member, member offset must be at byte
2137 		 * boundary.
2138 		 */
2139 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2140 			btf_verifier_log_member(env, struct_type, member,
2141 						"Invalid member offset");
2142 			return -EINVAL;
2143 		}
2144 
2145 		nr_bits = nr_int_data_bits;
2146 	} else if (nr_bits > nr_int_data_bits) {
2147 		btf_verifier_log_member(env, struct_type, member,
2148 					"Invalid member bitfield_size");
2149 		return -EINVAL;
2150 	}
2151 
2152 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2153 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2154 	if (nr_copy_bits > BITS_PER_U128) {
2155 		btf_verifier_log_member(env, struct_type, member,
2156 					"nr_copy_bits exceeds 128");
2157 		return -EINVAL;
2158 	}
2159 
2160 	if (struct_size < bytes_offset ||
2161 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2162 		btf_verifier_log_member(env, struct_type, member,
2163 					"Member exceeds struct_size");
2164 		return -EINVAL;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2171 			      const struct btf_type *t,
2172 			      u32 meta_left)
2173 {
2174 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2175 	u16 encoding;
2176 
2177 	if (meta_left < meta_needed) {
2178 		btf_verifier_log_basic(env, t,
2179 				       "meta_left:%u meta_needed:%u",
2180 				       meta_left, meta_needed);
2181 		return -EINVAL;
2182 	}
2183 
2184 	if (btf_type_vlen(t)) {
2185 		btf_verifier_log_type(env, t, "vlen != 0");
2186 		return -EINVAL;
2187 	}
2188 
2189 	if (btf_type_kflag(t)) {
2190 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2191 		return -EINVAL;
2192 	}
2193 
2194 	int_data = btf_type_int(t);
2195 	if (int_data & ~BTF_INT_MASK) {
2196 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2197 				       int_data);
2198 		return -EINVAL;
2199 	}
2200 
2201 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2202 
2203 	if (nr_bits > BITS_PER_U128) {
2204 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2205 				      BITS_PER_U128);
2206 		return -EINVAL;
2207 	}
2208 
2209 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2210 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2211 		return -EINVAL;
2212 	}
2213 
2214 	/*
2215 	 * Only one of the encoding bits is allowed and it
2216 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2217 	 * Multiple bits can be allowed later if it is found
2218 	 * to be insufficient.
2219 	 */
2220 	encoding = BTF_INT_ENCODING(int_data);
2221 	if (encoding &&
2222 	    encoding != BTF_INT_SIGNED &&
2223 	    encoding != BTF_INT_CHAR &&
2224 	    encoding != BTF_INT_BOOL) {
2225 		btf_verifier_log_type(env, t, "Unsupported encoding");
2226 		return -ENOTSUPP;
2227 	}
2228 
2229 	btf_verifier_log_type(env, t, NULL);
2230 
2231 	return meta_needed;
2232 }
2233 
2234 static void btf_int_log(struct btf_verifier_env *env,
2235 			const struct btf_type *t)
2236 {
2237 	int int_data = btf_type_int(t);
2238 
2239 	btf_verifier_log(env,
2240 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2241 			 t->size, BTF_INT_OFFSET(int_data),
2242 			 BTF_INT_BITS(int_data),
2243 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2244 }
2245 
2246 static void btf_int128_print(struct btf_show *show, void *data)
2247 {
2248 	/* data points to a __int128 number.
2249 	 * Suppose
2250 	 *     int128_num = *(__int128 *)data;
2251 	 * The below formulas shows what upper_num and lower_num represents:
2252 	 *     upper_num = int128_num >> 64;
2253 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2254 	 */
2255 	u64 upper_num, lower_num;
2256 
2257 #ifdef __BIG_ENDIAN_BITFIELD
2258 	upper_num = *(u64 *)data;
2259 	lower_num = *(u64 *)(data + 8);
2260 #else
2261 	upper_num = *(u64 *)(data + 8);
2262 	lower_num = *(u64 *)data;
2263 #endif
2264 	if (upper_num == 0)
2265 		btf_show_type_value(show, "0x%llx", lower_num);
2266 	else
2267 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2268 				     lower_num);
2269 }
2270 
2271 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2272 			     u16 right_shift_bits)
2273 {
2274 	u64 upper_num, lower_num;
2275 
2276 #ifdef __BIG_ENDIAN_BITFIELD
2277 	upper_num = print_num[0];
2278 	lower_num = print_num[1];
2279 #else
2280 	upper_num = print_num[1];
2281 	lower_num = print_num[0];
2282 #endif
2283 
2284 	/* shake out un-needed bits by shift/or operations */
2285 	if (left_shift_bits >= 64) {
2286 		upper_num = lower_num << (left_shift_bits - 64);
2287 		lower_num = 0;
2288 	} else {
2289 		upper_num = (upper_num << left_shift_bits) |
2290 			    (lower_num >> (64 - left_shift_bits));
2291 		lower_num = lower_num << left_shift_bits;
2292 	}
2293 
2294 	if (right_shift_bits >= 64) {
2295 		lower_num = upper_num >> (right_shift_bits - 64);
2296 		upper_num = 0;
2297 	} else {
2298 		lower_num = (lower_num >> right_shift_bits) |
2299 			    (upper_num << (64 - right_shift_bits));
2300 		upper_num = upper_num >> right_shift_bits;
2301 	}
2302 
2303 #ifdef __BIG_ENDIAN_BITFIELD
2304 	print_num[0] = upper_num;
2305 	print_num[1] = lower_num;
2306 #else
2307 	print_num[0] = lower_num;
2308 	print_num[1] = upper_num;
2309 #endif
2310 }
2311 
2312 static void btf_bitfield_show(void *data, u8 bits_offset,
2313 			      u8 nr_bits, struct btf_show *show)
2314 {
2315 	u16 left_shift_bits, right_shift_bits;
2316 	u8 nr_copy_bytes;
2317 	u8 nr_copy_bits;
2318 	u64 print_num[2] = {};
2319 
2320 	nr_copy_bits = nr_bits + bits_offset;
2321 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2322 
2323 	memcpy(print_num, data, nr_copy_bytes);
2324 
2325 #ifdef __BIG_ENDIAN_BITFIELD
2326 	left_shift_bits = bits_offset;
2327 #else
2328 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2329 #endif
2330 	right_shift_bits = BITS_PER_U128 - nr_bits;
2331 
2332 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2333 	btf_int128_print(show, print_num);
2334 }
2335 
2336 
2337 static void btf_int_bits_show(const struct btf *btf,
2338 			      const struct btf_type *t,
2339 			      void *data, u8 bits_offset,
2340 			      struct btf_show *show)
2341 {
2342 	u32 int_data = btf_type_int(t);
2343 	u8 nr_bits = BTF_INT_BITS(int_data);
2344 	u8 total_bits_offset;
2345 
2346 	/*
2347 	 * bits_offset is at most 7.
2348 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2349 	 */
2350 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2351 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2352 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2353 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2354 }
2355 
2356 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2357 			 u32 type_id, void *data, u8 bits_offset,
2358 			 struct btf_show *show)
2359 {
2360 	u32 int_data = btf_type_int(t);
2361 	u8 encoding = BTF_INT_ENCODING(int_data);
2362 	bool sign = encoding & BTF_INT_SIGNED;
2363 	u8 nr_bits = BTF_INT_BITS(int_data);
2364 	void *safe_data;
2365 
2366 	safe_data = btf_show_start_type(show, t, type_id, data);
2367 	if (!safe_data)
2368 		return;
2369 
2370 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2371 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2372 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2373 		goto out;
2374 	}
2375 
2376 	switch (nr_bits) {
2377 	case 128:
2378 		btf_int128_print(show, safe_data);
2379 		break;
2380 	case 64:
2381 		if (sign)
2382 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2383 		else
2384 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2385 		break;
2386 	case 32:
2387 		if (sign)
2388 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2389 		else
2390 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2391 		break;
2392 	case 16:
2393 		if (sign)
2394 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2395 		else
2396 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2397 		break;
2398 	case 8:
2399 		if (show->state.array_encoding == BTF_INT_CHAR) {
2400 			/* check for null terminator */
2401 			if (show->state.array_terminated)
2402 				break;
2403 			if (*(char *)data == '\0') {
2404 				show->state.array_terminated = 1;
2405 				break;
2406 			}
2407 			if (isprint(*(char *)data)) {
2408 				btf_show_type_value(show, "'%c'",
2409 						    *(char *)safe_data);
2410 				break;
2411 			}
2412 		}
2413 		if (sign)
2414 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2415 		else
2416 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2417 		break;
2418 	default:
2419 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2420 		break;
2421 	}
2422 out:
2423 	btf_show_end_type(show);
2424 }
2425 
2426 static const struct btf_kind_operations int_ops = {
2427 	.check_meta = btf_int_check_meta,
2428 	.resolve = btf_df_resolve,
2429 	.check_member = btf_int_check_member,
2430 	.check_kflag_member = btf_int_check_kflag_member,
2431 	.log_details = btf_int_log,
2432 	.show = btf_int_show,
2433 };
2434 
2435 static int btf_modifier_check_member(struct btf_verifier_env *env,
2436 				     const struct btf_type *struct_type,
2437 				     const struct btf_member *member,
2438 				     const struct btf_type *member_type)
2439 {
2440 	const struct btf_type *resolved_type;
2441 	u32 resolved_type_id = member->type;
2442 	struct btf_member resolved_member;
2443 	struct btf *btf = env->btf;
2444 
2445 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2446 	if (!resolved_type) {
2447 		btf_verifier_log_member(env, struct_type, member,
2448 					"Invalid member");
2449 		return -EINVAL;
2450 	}
2451 
2452 	resolved_member = *member;
2453 	resolved_member.type = resolved_type_id;
2454 
2455 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2456 							 &resolved_member,
2457 							 resolved_type);
2458 }
2459 
2460 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2461 					   const struct btf_type *struct_type,
2462 					   const struct btf_member *member,
2463 					   const struct btf_type *member_type)
2464 {
2465 	const struct btf_type *resolved_type;
2466 	u32 resolved_type_id = member->type;
2467 	struct btf_member resolved_member;
2468 	struct btf *btf = env->btf;
2469 
2470 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2471 	if (!resolved_type) {
2472 		btf_verifier_log_member(env, struct_type, member,
2473 					"Invalid member");
2474 		return -EINVAL;
2475 	}
2476 
2477 	resolved_member = *member;
2478 	resolved_member.type = resolved_type_id;
2479 
2480 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2481 							       &resolved_member,
2482 							       resolved_type);
2483 }
2484 
2485 static int btf_ptr_check_member(struct btf_verifier_env *env,
2486 				const struct btf_type *struct_type,
2487 				const struct btf_member *member,
2488 				const struct btf_type *member_type)
2489 {
2490 	u32 struct_size, struct_bits_off, bytes_offset;
2491 
2492 	struct_size = struct_type->size;
2493 	struct_bits_off = member->offset;
2494 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2495 
2496 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2497 		btf_verifier_log_member(env, struct_type, member,
2498 					"Member is not byte aligned");
2499 		return -EINVAL;
2500 	}
2501 
2502 	if (struct_size - bytes_offset < sizeof(void *)) {
2503 		btf_verifier_log_member(env, struct_type, member,
2504 					"Member exceeds struct_size");
2505 		return -EINVAL;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2512 				   const struct btf_type *t,
2513 				   u32 meta_left)
2514 {
2515 	const char *value;
2516 
2517 	if (btf_type_vlen(t)) {
2518 		btf_verifier_log_type(env, t, "vlen != 0");
2519 		return -EINVAL;
2520 	}
2521 
2522 	if (btf_type_kflag(t)) {
2523 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2524 		return -EINVAL;
2525 	}
2526 
2527 	if (!BTF_TYPE_ID_VALID(t->type)) {
2528 		btf_verifier_log_type(env, t, "Invalid type_id");
2529 		return -EINVAL;
2530 	}
2531 
2532 	/* typedef/type_tag type must have a valid name, and other ref types,
2533 	 * volatile, const, restrict, should have a null name.
2534 	 */
2535 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2536 		if (!t->name_off ||
2537 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2538 			btf_verifier_log_type(env, t, "Invalid name");
2539 			return -EINVAL;
2540 		}
2541 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2542 		value = btf_name_by_offset(env->btf, t->name_off);
2543 		if (!value || !value[0]) {
2544 			btf_verifier_log_type(env, t, "Invalid name");
2545 			return -EINVAL;
2546 		}
2547 	} else {
2548 		if (t->name_off) {
2549 			btf_verifier_log_type(env, t, "Invalid name");
2550 			return -EINVAL;
2551 		}
2552 	}
2553 
2554 	btf_verifier_log_type(env, t, NULL);
2555 
2556 	return 0;
2557 }
2558 
2559 static int btf_modifier_resolve(struct btf_verifier_env *env,
2560 				const struct resolve_vertex *v)
2561 {
2562 	const struct btf_type *t = v->t;
2563 	const struct btf_type *next_type;
2564 	u32 next_type_id = t->type;
2565 	struct btf *btf = env->btf;
2566 
2567 	next_type = btf_type_by_id(btf, next_type_id);
2568 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2569 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2570 		return -EINVAL;
2571 	}
2572 
2573 	if (!env_type_is_resolve_sink(env, next_type) &&
2574 	    !env_type_is_resolved(env, next_type_id))
2575 		return env_stack_push(env, next_type, next_type_id);
2576 
2577 	/* Figure out the resolved next_type_id with size.
2578 	 * They will be stored in the current modifier's
2579 	 * resolved_ids and resolved_sizes such that it can
2580 	 * save us a few type-following when we use it later (e.g. in
2581 	 * pretty print).
2582 	 */
2583 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2584 		if (env_type_is_resolved(env, next_type_id))
2585 			next_type = btf_type_id_resolve(btf, &next_type_id);
2586 
2587 		/* "typedef void new_void", "const void"...etc */
2588 		if (!btf_type_is_void(next_type) &&
2589 		    !btf_type_is_fwd(next_type) &&
2590 		    !btf_type_is_func_proto(next_type)) {
2591 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2592 			return -EINVAL;
2593 		}
2594 	}
2595 
2596 	env_stack_pop_resolved(env, next_type_id, 0);
2597 
2598 	return 0;
2599 }
2600 
2601 static int btf_var_resolve(struct btf_verifier_env *env,
2602 			   const struct resolve_vertex *v)
2603 {
2604 	const struct btf_type *next_type;
2605 	const struct btf_type *t = v->t;
2606 	u32 next_type_id = t->type;
2607 	struct btf *btf = env->btf;
2608 
2609 	next_type = btf_type_by_id(btf, next_type_id);
2610 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2611 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2612 		return -EINVAL;
2613 	}
2614 
2615 	if (!env_type_is_resolve_sink(env, next_type) &&
2616 	    !env_type_is_resolved(env, next_type_id))
2617 		return env_stack_push(env, next_type, next_type_id);
2618 
2619 	if (btf_type_is_modifier(next_type)) {
2620 		const struct btf_type *resolved_type;
2621 		u32 resolved_type_id;
2622 
2623 		resolved_type_id = next_type_id;
2624 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2625 
2626 		if (btf_type_is_ptr(resolved_type) &&
2627 		    !env_type_is_resolve_sink(env, resolved_type) &&
2628 		    !env_type_is_resolved(env, resolved_type_id))
2629 			return env_stack_push(env, resolved_type,
2630 					      resolved_type_id);
2631 	}
2632 
2633 	/* We must resolve to something concrete at this point, no
2634 	 * forward types or similar that would resolve to size of
2635 	 * zero is allowed.
2636 	 */
2637 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2638 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2639 		return -EINVAL;
2640 	}
2641 
2642 	env_stack_pop_resolved(env, next_type_id, 0);
2643 
2644 	return 0;
2645 }
2646 
2647 static int btf_ptr_resolve(struct btf_verifier_env *env,
2648 			   const struct resolve_vertex *v)
2649 {
2650 	const struct btf_type *next_type;
2651 	const struct btf_type *t = v->t;
2652 	u32 next_type_id = t->type;
2653 	struct btf *btf = env->btf;
2654 
2655 	next_type = btf_type_by_id(btf, next_type_id);
2656 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2657 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2658 		return -EINVAL;
2659 	}
2660 
2661 	if (!env_type_is_resolve_sink(env, next_type) &&
2662 	    !env_type_is_resolved(env, next_type_id))
2663 		return env_stack_push(env, next_type, next_type_id);
2664 
2665 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2666 	 * the modifier may have stopped resolving when it was resolved
2667 	 * to a ptr (last-resolved-ptr).
2668 	 *
2669 	 * We now need to continue from the last-resolved-ptr to
2670 	 * ensure the last-resolved-ptr will not referring back to
2671 	 * the current ptr (t).
2672 	 */
2673 	if (btf_type_is_modifier(next_type)) {
2674 		const struct btf_type *resolved_type;
2675 		u32 resolved_type_id;
2676 
2677 		resolved_type_id = next_type_id;
2678 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2679 
2680 		if (btf_type_is_ptr(resolved_type) &&
2681 		    !env_type_is_resolve_sink(env, resolved_type) &&
2682 		    !env_type_is_resolved(env, resolved_type_id))
2683 			return env_stack_push(env, resolved_type,
2684 					      resolved_type_id);
2685 	}
2686 
2687 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2688 		if (env_type_is_resolved(env, next_type_id))
2689 			next_type = btf_type_id_resolve(btf, &next_type_id);
2690 
2691 		if (!btf_type_is_void(next_type) &&
2692 		    !btf_type_is_fwd(next_type) &&
2693 		    !btf_type_is_func_proto(next_type)) {
2694 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2695 			return -EINVAL;
2696 		}
2697 	}
2698 
2699 	env_stack_pop_resolved(env, next_type_id, 0);
2700 
2701 	return 0;
2702 }
2703 
2704 static void btf_modifier_show(const struct btf *btf,
2705 			      const struct btf_type *t,
2706 			      u32 type_id, void *data,
2707 			      u8 bits_offset, struct btf_show *show)
2708 {
2709 	if (btf->resolved_ids)
2710 		t = btf_type_id_resolve(btf, &type_id);
2711 	else
2712 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2713 
2714 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2715 }
2716 
2717 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2718 			 u32 type_id, void *data, u8 bits_offset,
2719 			 struct btf_show *show)
2720 {
2721 	t = btf_type_id_resolve(btf, &type_id);
2722 
2723 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2724 }
2725 
2726 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2727 			 u32 type_id, void *data, u8 bits_offset,
2728 			 struct btf_show *show)
2729 {
2730 	void *safe_data;
2731 
2732 	safe_data = btf_show_start_type(show, t, type_id, data);
2733 	if (!safe_data)
2734 		return;
2735 
2736 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2737 	if (show->flags & BTF_SHOW_PTR_RAW)
2738 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2739 	else
2740 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2741 	btf_show_end_type(show);
2742 }
2743 
2744 static void btf_ref_type_log(struct btf_verifier_env *env,
2745 			     const struct btf_type *t)
2746 {
2747 	btf_verifier_log(env, "type_id=%u", t->type);
2748 }
2749 
2750 static struct btf_kind_operations modifier_ops = {
2751 	.check_meta = btf_ref_type_check_meta,
2752 	.resolve = btf_modifier_resolve,
2753 	.check_member = btf_modifier_check_member,
2754 	.check_kflag_member = btf_modifier_check_kflag_member,
2755 	.log_details = btf_ref_type_log,
2756 	.show = btf_modifier_show,
2757 };
2758 
2759 static struct btf_kind_operations ptr_ops = {
2760 	.check_meta = btf_ref_type_check_meta,
2761 	.resolve = btf_ptr_resolve,
2762 	.check_member = btf_ptr_check_member,
2763 	.check_kflag_member = btf_generic_check_kflag_member,
2764 	.log_details = btf_ref_type_log,
2765 	.show = btf_ptr_show,
2766 };
2767 
2768 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2769 			      const struct btf_type *t,
2770 			      u32 meta_left)
2771 {
2772 	if (btf_type_vlen(t)) {
2773 		btf_verifier_log_type(env, t, "vlen != 0");
2774 		return -EINVAL;
2775 	}
2776 
2777 	if (t->type) {
2778 		btf_verifier_log_type(env, t, "type != 0");
2779 		return -EINVAL;
2780 	}
2781 
2782 	/* fwd type must have a valid name */
2783 	if (!t->name_off ||
2784 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2785 		btf_verifier_log_type(env, t, "Invalid name");
2786 		return -EINVAL;
2787 	}
2788 
2789 	btf_verifier_log_type(env, t, NULL);
2790 
2791 	return 0;
2792 }
2793 
2794 static void btf_fwd_type_log(struct btf_verifier_env *env,
2795 			     const struct btf_type *t)
2796 {
2797 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2798 }
2799 
2800 static struct btf_kind_operations fwd_ops = {
2801 	.check_meta = btf_fwd_check_meta,
2802 	.resolve = btf_df_resolve,
2803 	.check_member = btf_df_check_member,
2804 	.check_kflag_member = btf_df_check_kflag_member,
2805 	.log_details = btf_fwd_type_log,
2806 	.show = btf_df_show,
2807 };
2808 
2809 static int btf_array_check_member(struct btf_verifier_env *env,
2810 				  const struct btf_type *struct_type,
2811 				  const struct btf_member *member,
2812 				  const struct btf_type *member_type)
2813 {
2814 	u32 struct_bits_off = member->offset;
2815 	u32 struct_size, bytes_offset;
2816 	u32 array_type_id, array_size;
2817 	struct btf *btf = env->btf;
2818 
2819 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2820 		btf_verifier_log_member(env, struct_type, member,
2821 					"Member is not byte aligned");
2822 		return -EINVAL;
2823 	}
2824 
2825 	array_type_id = member->type;
2826 	btf_type_id_size(btf, &array_type_id, &array_size);
2827 	struct_size = struct_type->size;
2828 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2829 	if (struct_size - bytes_offset < array_size) {
2830 		btf_verifier_log_member(env, struct_type, member,
2831 					"Member exceeds struct_size");
2832 		return -EINVAL;
2833 	}
2834 
2835 	return 0;
2836 }
2837 
2838 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2839 				const struct btf_type *t,
2840 				u32 meta_left)
2841 {
2842 	const struct btf_array *array = btf_type_array(t);
2843 	u32 meta_needed = sizeof(*array);
2844 
2845 	if (meta_left < meta_needed) {
2846 		btf_verifier_log_basic(env, t,
2847 				       "meta_left:%u meta_needed:%u",
2848 				       meta_left, meta_needed);
2849 		return -EINVAL;
2850 	}
2851 
2852 	/* array type should not have a name */
2853 	if (t->name_off) {
2854 		btf_verifier_log_type(env, t, "Invalid name");
2855 		return -EINVAL;
2856 	}
2857 
2858 	if (btf_type_vlen(t)) {
2859 		btf_verifier_log_type(env, t, "vlen != 0");
2860 		return -EINVAL;
2861 	}
2862 
2863 	if (btf_type_kflag(t)) {
2864 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2865 		return -EINVAL;
2866 	}
2867 
2868 	if (t->size) {
2869 		btf_verifier_log_type(env, t, "size != 0");
2870 		return -EINVAL;
2871 	}
2872 
2873 	/* Array elem type and index type cannot be in type void,
2874 	 * so !array->type and !array->index_type are not allowed.
2875 	 */
2876 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2877 		btf_verifier_log_type(env, t, "Invalid elem");
2878 		return -EINVAL;
2879 	}
2880 
2881 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2882 		btf_verifier_log_type(env, t, "Invalid index");
2883 		return -EINVAL;
2884 	}
2885 
2886 	btf_verifier_log_type(env, t, NULL);
2887 
2888 	return meta_needed;
2889 }
2890 
2891 static int btf_array_resolve(struct btf_verifier_env *env,
2892 			     const struct resolve_vertex *v)
2893 {
2894 	const struct btf_array *array = btf_type_array(v->t);
2895 	const struct btf_type *elem_type, *index_type;
2896 	u32 elem_type_id, index_type_id;
2897 	struct btf *btf = env->btf;
2898 	u32 elem_size;
2899 
2900 	/* Check array->index_type */
2901 	index_type_id = array->index_type;
2902 	index_type = btf_type_by_id(btf, index_type_id);
2903 	if (btf_type_nosize_or_null(index_type) ||
2904 	    btf_type_is_resolve_source_only(index_type)) {
2905 		btf_verifier_log_type(env, v->t, "Invalid index");
2906 		return -EINVAL;
2907 	}
2908 
2909 	if (!env_type_is_resolve_sink(env, index_type) &&
2910 	    !env_type_is_resolved(env, index_type_id))
2911 		return env_stack_push(env, index_type, index_type_id);
2912 
2913 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2914 	if (!index_type || !btf_type_is_int(index_type) ||
2915 	    !btf_type_int_is_regular(index_type)) {
2916 		btf_verifier_log_type(env, v->t, "Invalid index");
2917 		return -EINVAL;
2918 	}
2919 
2920 	/* Check array->type */
2921 	elem_type_id = array->type;
2922 	elem_type = btf_type_by_id(btf, elem_type_id);
2923 	if (btf_type_nosize_or_null(elem_type) ||
2924 	    btf_type_is_resolve_source_only(elem_type)) {
2925 		btf_verifier_log_type(env, v->t,
2926 				      "Invalid elem");
2927 		return -EINVAL;
2928 	}
2929 
2930 	if (!env_type_is_resolve_sink(env, elem_type) &&
2931 	    !env_type_is_resolved(env, elem_type_id))
2932 		return env_stack_push(env, elem_type, elem_type_id);
2933 
2934 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2935 	if (!elem_type) {
2936 		btf_verifier_log_type(env, v->t, "Invalid elem");
2937 		return -EINVAL;
2938 	}
2939 
2940 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2941 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2942 		return -EINVAL;
2943 	}
2944 
2945 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2946 		btf_verifier_log_type(env, v->t,
2947 				      "Array size overflows U32_MAX");
2948 		return -EINVAL;
2949 	}
2950 
2951 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2952 
2953 	return 0;
2954 }
2955 
2956 static void btf_array_log(struct btf_verifier_env *env,
2957 			  const struct btf_type *t)
2958 {
2959 	const struct btf_array *array = btf_type_array(t);
2960 
2961 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2962 			 array->type, array->index_type, array->nelems);
2963 }
2964 
2965 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2966 			     u32 type_id, void *data, u8 bits_offset,
2967 			     struct btf_show *show)
2968 {
2969 	const struct btf_array *array = btf_type_array(t);
2970 	const struct btf_kind_operations *elem_ops;
2971 	const struct btf_type *elem_type;
2972 	u32 i, elem_size = 0, elem_type_id;
2973 	u16 encoding = 0;
2974 
2975 	elem_type_id = array->type;
2976 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2977 	if (elem_type && btf_type_has_size(elem_type))
2978 		elem_size = elem_type->size;
2979 
2980 	if (elem_type && btf_type_is_int(elem_type)) {
2981 		u32 int_type = btf_type_int(elem_type);
2982 
2983 		encoding = BTF_INT_ENCODING(int_type);
2984 
2985 		/*
2986 		 * BTF_INT_CHAR encoding never seems to be set for
2987 		 * char arrays, so if size is 1 and element is
2988 		 * printable as a char, we'll do that.
2989 		 */
2990 		if (elem_size == 1)
2991 			encoding = BTF_INT_CHAR;
2992 	}
2993 
2994 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2995 		return;
2996 
2997 	if (!elem_type)
2998 		goto out;
2999 	elem_ops = btf_type_ops(elem_type);
3000 
3001 	for (i = 0; i < array->nelems; i++) {
3002 
3003 		btf_show_start_array_member(show);
3004 
3005 		elem_ops->show(btf, elem_type, elem_type_id, data,
3006 			       bits_offset, show);
3007 		data += elem_size;
3008 
3009 		btf_show_end_array_member(show);
3010 
3011 		if (show->state.array_terminated)
3012 			break;
3013 	}
3014 out:
3015 	btf_show_end_array_type(show);
3016 }
3017 
3018 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3019 			   u32 type_id, void *data, u8 bits_offset,
3020 			   struct btf_show *show)
3021 {
3022 	const struct btf_member *m = show->state.member;
3023 
3024 	/*
3025 	 * First check if any members would be shown (are non-zero).
3026 	 * See comments above "struct btf_show" definition for more
3027 	 * details on how this works at a high-level.
3028 	 */
3029 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3030 		if (!show->state.depth_check) {
3031 			show->state.depth_check = show->state.depth + 1;
3032 			show->state.depth_to_show = 0;
3033 		}
3034 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3035 		show->state.member = m;
3036 
3037 		if (show->state.depth_check != show->state.depth + 1)
3038 			return;
3039 		show->state.depth_check = 0;
3040 
3041 		if (show->state.depth_to_show <= show->state.depth)
3042 			return;
3043 		/*
3044 		 * Reaching here indicates we have recursed and found
3045 		 * non-zero array member(s).
3046 		 */
3047 	}
3048 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3049 }
3050 
3051 static struct btf_kind_operations array_ops = {
3052 	.check_meta = btf_array_check_meta,
3053 	.resolve = btf_array_resolve,
3054 	.check_member = btf_array_check_member,
3055 	.check_kflag_member = btf_generic_check_kflag_member,
3056 	.log_details = btf_array_log,
3057 	.show = btf_array_show,
3058 };
3059 
3060 static int btf_struct_check_member(struct btf_verifier_env *env,
3061 				   const struct btf_type *struct_type,
3062 				   const struct btf_member *member,
3063 				   const struct btf_type *member_type)
3064 {
3065 	u32 struct_bits_off = member->offset;
3066 	u32 struct_size, bytes_offset;
3067 
3068 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3069 		btf_verifier_log_member(env, struct_type, member,
3070 					"Member is not byte aligned");
3071 		return -EINVAL;
3072 	}
3073 
3074 	struct_size = struct_type->size;
3075 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3076 	if (struct_size - bytes_offset < member_type->size) {
3077 		btf_verifier_log_member(env, struct_type, member,
3078 					"Member exceeds struct_size");
3079 		return -EINVAL;
3080 	}
3081 
3082 	return 0;
3083 }
3084 
3085 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3086 				 const struct btf_type *t,
3087 				 u32 meta_left)
3088 {
3089 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3090 	const struct btf_member *member;
3091 	u32 meta_needed, last_offset;
3092 	struct btf *btf = env->btf;
3093 	u32 struct_size = t->size;
3094 	u32 offset;
3095 	u16 i;
3096 
3097 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3098 	if (meta_left < meta_needed) {
3099 		btf_verifier_log_basic(env, t,
3100 				       "meta_left:%u meta_needed:%u",
3101 				       meta_left, meta_needed);
3102 		return -EINVAL;
3103 	}
3104 
3105 	/* struct type either no name or a valid one */
3106 	if (t->name_off &&
3107 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3108 		btf_verifier_log_type(env, t, "Invalid name");
3109 		return -EINVAL;
3110 	}
3111 
3112 	btf_verifier_log_type(env, t, NULL);
3113 
3114 	last_offset = 0;
3115 	for_each_member(i, t, member) {
3116 		if (!btf_name_offset_valid(btf, member->name_off)) {
3117 			btf_verifier_log_member(env, t, member,
3118 						"Invalid member name_offset:%u",
3119 						member->name_off);
3120 			return -EINVAL;
3121 		}
3122 
3123 		/* struct member either no name or a valid one */
3124 		if (member->name_off &&
3125 		    !btf_name_valid_identifier(btf, member->name_off)) {
3126 			btf_verifier_log_member(env, t, member, "Invalid name");
3127 			return -EINVAL;
3128 		}
3129 		/* A member cannot be in type void */
3130 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3131 			btf_verifier_log_member(env, t, member,
3132 						"Invalid type_id");
3133 			return -EINVAL;
3134 		}
3135 
3136 		offset = __btf_member_bit_offset(t, member);
3137 		if (is_union && offset) {
3138 			btf_verifier_log_member(env, t, member,
3139 						"Invalid member bits_offset");
3140 			return -EINVAL;
3141 		}
3142 
3143 		/*
3144 		 * ">" instead of ">=" because the last member could be
3145 		 * "char a[0];"
3146 		 */
3147 		if (last_offset > offset) {
3148 			btf_verifier_log_member(env, t, member,
3149 						"Invalid member bits_offset");
3150 			return -EINVAL;
3151 		}
3152 
3153 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3154 			btf_verifier_log_member(env, t, member,
3155 						"Member bits_offset exceeds its struct size");
3156 			return -EINVAL;
3157 		}
3158 
3159 		btf_verifier_log_member(env, t, member, NULL);
3160 		last_offset = offset;
3161 	}
3162 
3163 	return meta_needed;
3164 }
3165 
3166 static int btf_struct_resolve(struct btf_verifier_env *env,
3167 			      const struct resolve_vertex *v)
3168 {
3169 	const struct btf_member *member;
3170 	int err;
3171 	u16 i;
3172 
3173 	/* Before continue resolving the next_member,
3174 	 * ensure the last member is indeed resolved to a
3175 	 * type with size info.
3176 	 */
3177 	if (v->next_member) {
3178 		const struct btf_type *last_member_type;
3179 		const struct btf_member *last_member;
3180 		u32 last_member_type_id;
3181 
3182 		last_member = btf_type_member(v->t) + v->next_member - 1;
3183 		last_member_type_id = last_member->type;
3184 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3185 						       last_member_type_id)))
3186 			return -EINVAL;
3187 
3188 		last_member_type = btf_type_by_id(env->btf,
3189 						  last_member_type_id);
3190 		if (btf_type_kflag(v->t))
3191 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3192 								last_member,
3193 								last_member_type);
3194 		else
3195 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3196 								last_member,
3197 								last_member_type);
3198 		if (err)
3199 			return err;
3200 	}
3201 
3202 	for_each_member_from(i, v->next_member, v->t, member) {
3203 		u32 member_type_id = member->type;
3204 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3205 								member_type_id);
3206 
3207 		if (btf_type_nosize_or_null(member_type) ||
3208 		    btf_type_is_resolve_source_only(member_type)) {
3209 			btf_verifier_log_member(env, v->t, member,
3210 						"Invalid member");
3211 			return -EINVAL;
3212 		}
3213 
3214 		if (!env_type_is_resolve_sink(env, member_type) &&
3215 		    !env_type_is_resolved(env, member_type_id)) {
3216 			env_stack_set_next_member(env, i + 1);
3217 			return env_stack_push(env, member_type, member_type_id);
3218 		}
3219 
3220 		if (btf_type_kflag(v->t))
3221 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3222 									    member,
3223 									    member_type);
3224 		else
3225 			err = btf_type_ops(member_type)->check_member(env, v->t,
3226 								      member,
3227 								      member_type);
3228 		if (err)
3229 			return err;
3230 	}
3231 
3232 	env_stack_pop_resolved(env, 0, 0);
3233 
3234 	return 0;
3235 }
3236 
3237 static void btf_struct_log(struct btf_verifier_env *env,
3238 			   const struct btf_type *t)
3239 {
3240 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3241 }
3242 
3243 enum {
3244 	BTF_FIELD_IGNORE = 0,
3245 	BTF_FIELD_FOUND  = 1,
3246 };
3247 
3248 struct btf_field_info {
3249 	enum btf_field_type type;
3250 	u32 off;
3251 	union {
3252 		struct {
3253 			u32 type_id;
3254 		} kptr;
3255 		struct {
3256 			const char *node_name;
3257 			u32 value_btf_id;
3258 		} graph_root;
3259 	};
3260 };
3261 
3262 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3263 			   u32 off, int sz, enum btf_field_type field_type,
3264 			   struct btf_field_info *info)
3265 {
3266 	if (!__btf_type_is_struct(t))
3267 		return BTF_FIELD_IGNORE;
3268 	if (t->size != sz)
3269 		return BTF_FIELD_IGNORE;
3270 	info->type = field_type;
3271 	info->off = off;
3272 	return BTF_FIELD_FOUND;
3273 }
3274 
3275 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3276 			 u32 off, int sz, struct btf_field_info *info)
3277 {
3278 	enum btf_field_type type;
3279 	u32 res_id;
3280 
3281 	/* Permit modifiers on the pointer itself */
3282 	if (btf_type_is_volatile(t))
3283 		t = btf_type_by_id(btf, t->type);
3284 	/* For PTR, sz is always == 8 */
3285 	if (!btf_type_is_ptr(t))
3286 		return BTF_FIELD_IGNORE;
3287 	t = btf_type_by_id(btf, t->type);
3288 
3289 	if (!btf_type_is_type_tag(t))
3290 		return BTF_FIELD_IGNORE;
3291 	/* Reject extra tags */
3292 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3293 		return -EINVAL;
3294 	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3295 		type = BPF_KPTR_UNREF;
3296 	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3297 		type = BPF_KPTR_REF;
3298 	else
3299 		return -EINVAL;
3300 
3301 	/* Get the base type */
3302 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3303 	/* Only pointer to struct is allowed */
3304 	if (!__btf_type_is_struct(t))
3305 		return -EINVAL;
3306 
3307 	info->type = type;
3308 	info->off = off;
3309 	info->kptr.type_id = res_id;
3310 	return BTF_FIELD_FOUND;
3311 }
3312 
3313 static const char *btf_find_decl_tag_value(const struct btf *btf,
3314 					   const struct btf_type *pt,
3315 					   int comp_idx, const char *tag_key)
3316 {
3317 	int i;
3318 
3319 	for (i = 1; i < btf_nr_types(btf); i++) {
3320 		const struct btf_type *t = btf_type_by_id(btf, i);
3321 		int len = strlen(tag_key);
3322 
3323 		if (!btf_type_is_decl_tag(t))
3324 			continue;
3325 		if (pt != btf_type_by_id(btf, t->type) ||
3326 		    btf_type_decl_tag(t)->component_idx != comp_idx)
3327 			continue;
3328 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3329 			continue;
3330 		return __btf_name_by_offset(btf, t->name_off) + len;
3331 	}
3332 	return NULL;
3333 }
3334 
3335 static int
3336 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3337 		    const struct btf_type *t, int comp_idx, u32 off,
3338 		    int sz, struct btf_field_info *info,
3339 		    enum btf_field_type head_type)
3340 {
3341 	const char *node_field_name;
3342 	const char *value_type;
3343 	s32 id;
3344 
3345 	if (!__btf_type_is_struct(t))
3346 		return BTF_FIELD_IGNORE;
3347 	if (t->size != sz)
3348 		return BTF_FIELD_IGNORE;
3349 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3350 	if (!value_type)
3351 		return -EINVAL;
3352 	node_field_name = strstr(value_type, ":");
3353 	if (!node_field_name)
3354 		return -EINVAL;
3355 	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3356 	if (!value_type)
3357 		return -ENOMEM;
3358 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3359 	kfree(value_type);
3360 	if (id < 0)
3361 		return id;
3362 	node_field_name++;
3363 	if (str_is_empty(node_field_name))
3364 		return -EINVAL;
3365 	info->type = head_type;
3366 	info->off = off;
3367 	info->graph_root.value_btf_id = id;
3368 	info->graph_root.node_name = node_field_name;
3369 	return BTF_FIELD_FOUND;
3370 }
3371 
3372 #define field_mask_test_name(field_type, field_type_str) \
3373 	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3374 		type = field_type;					\
3375 		goto end;						\
3376 	}
3377 
3378 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3379 			      int *align, int *sz)
3380 {
3381 	int type = 0;
3382 
3383 	if (field_mask & BPF_SPIN_LOCK) {
3384 		if (!strcmp(name, "bpf_spin_lock")) {
3385 			if (*seen_mask & BPF_SPIN_LOCK)
3386 				return -E2BIG;
3387 			*seen_mask |= BPF_SPIN_LOCK;
3388 			type = BPF_SPIN_LOCK;
3389 			goto end;
3390 		}
3391 	}
3392 	if (field_mask & BPF_TIMER) {
3393 		if (!strcmp(name, "bpf_timer")) {
3394 			if (*seen_mask & BPF_TIMER)
3395 				return -E2BIG;
3396 			*seen_mask |= BPF_TIMER;
3397 			type = BPF_TIMER;
3398 			goto end;
3399 		}
3400 	}
3401 	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3402 	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3403 	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3404 	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3405 	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3406 
3407 	/* Only return BPF_KPTR when all other types with matchable names fail */
3408 	if (field_mask & BPF_KPTR) {
3409 		type = BPF_KPTR_REF;
3410 		goto end;
3411 	}
3412 	return 0;
3413 end:
3414 	*sz = btf_field_type_size(type);
3415 	*align = btf_field_type_align(type);
3416 	return type;
3417 }
3418 
3419 #undef field_mask_test_name
3420 
3421 static int btf_find_struct_field(const struct btf *btf,
3422 				 const struct btf_type *t, u32 field_mask,
3423 				 struct btf_field_info *info, int info_cnt)
3424 {
3425 	int ret, idx = 0, align, sz, field_type;
3426 	const struct btf_member *member;
3427 	struct btf_field_info tmp;
3428 	u32 i, off, seen_mask = 0;
3429 
3430 	for_each_member(i, t, member) {
3431 		const struct btf_type *member_type = btf_type_by_id(btf,
3432 								    member->type);
3433 
3434 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3435 						field_mask, &seen_mask, &align, &sz);
3436 		if (field_type == 0)
3437 			continue;
3438 		if (field_type < 0)
3439 			return field_type;
3440 
3441 		off = __btf_member_bit_offset(t, member);
3442 		if (off % 8)
3443 			/* valid C code cannot generate such BTF */
3444 			return -EINVAL;
3445 		off /= 8;
3446 		if (off % align)
3447 			continue;
3448 
3449 		switch (field_type) {
3450 		case BPF_SPIN_LOCK:
3451 		case BPF_TIMER:
3452 		case BPF_LIST_NODE:
3453 		case BPF_RB_NODE:
3454 		case BPF_REFCOUNT:
3455 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3456 					      idx < info_cnt ? &info[idx] : &tmp);
3457 			if (ret < 0)
3458 				return ret;
3459 			break;
3460 		case BPF_KPTR_UNREF:
3461 		case BPF_KPTR_REF:
3462 			ret = btf_find_kptr(btf, member_type, off, sz,
3463 					    idx < info_cnt ? &info[idx] : &tmp);
3464 			if (ret < 0)
3465 				return ret;
3466 			break;
3467 		case BPF_LIST_HEAD:
3468 		case BPF_RB_ROOT:
3469 			ret = btf_find_graph_root(btf, t, member_type,
3470 						  i, off, sz,
3471 						  idx < info_cnt ? &info[idx] : &tmp,
3472 						  field_type);
3473 			if (ret < 0)
3474 				return ret;
3475 			break;
3476 		default:
3477 			return -EFAULT;
3478 		}
3479 
3480 		if (ret == BTF_FIELD_IGNORE)
3481 			continue;
3482 		if (idx >= info_cnt)
3483 			return -E2BIG;
3484 		++idx;
3485 	}
3486 	return idx;
3487 }
3488 
3489 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3490 				u32 field_mask, struct btf_field_info *info,
3491 				int info_cnt)
3492 {
3493 	int ret, idx = 0, align, sz, field_type;
3494 	const struct btf_var_secinfo *vsi;
3495 	struct btf_field_info tmp;
3496 	u32 i, off, seen_mask = 0;
3497 
3498 	for_each_vsi(i, t, vsi) {
3499 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3500 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3501 
3502 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3503 						field_mask, &seen_mask, &align, &sz);
3504 		if (field_type == 0)
3505 			continue;
3506 		if (field_type < 0)
3507 			return field_type;
3508 
3509 		off = vsi->offset;
3510 		if (vsi->size != sz)
3511 			continue;
3512 		if (off % align)
3513 			continue;
3514 
3515 		switch (field_type) {
3516 		case BPF_SPIN_LOCK:
3517 		case BPF_TIMER:
3518 		case BPF_LIST_NODE:
3519 		case BPF_RB_NODE:
3520 		case BPF_REFCOUNT:
3521 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3522 					      idx < info_cnt ? &info[idx] : &tmp);
3523 			if (ret < 0)
3524 				return ret;
3525 			break;
3526 		case BPF_KPTR_UNREF:
3527 		case BPF_KPTR_REF:
3528 			ret = btf_find_kptr(btf, var_type, off, sz,
3529 					    idx < info_cnt ? &info[idx] : &tmp);
3530 			if (ret < 0)
3531 				return ret;
3532 			break;
3533 		case BPF_LIST_HEAD:
3534 		case BPF_RB_ROOT:
3535 			ret = btf_find_graph_root(btf, var, var_type,
3536 						  -1, off, sz,
3537 						  idx < info_cnt ? &info[idx] : &tmp,
3538 						  field_type);
3539 			if (ret < 0)
3540 				return ret;
3541 			break;
3542 		default:
3543 			return -EFAULT;
3544 		}
3545 
3546 		if (ret == BTF_FIELD_IGNORE)
3547 			continue;
3548 		if (idx >= info_cnt)
3549 			return -E2BIG;
3550 		++idx;
3551 	}
3552 	return idx;
3553 }
3554 
3555 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3556 			  u32 field_mask, struct btf_field_info *info,
3557 			  int info_cnt)
3558 {
3559 	if (__btf_type_is_struct(t))
3560 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3561 	else if (btf_type_is_datasec(t))
3562 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3563 	return -EINVAL;
3564 }
3565 
3566 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3567 			  struct btf_field_info *info)
3568 {
3569 	struct module *mod = NULL;
3570 	const struct btf_type *t;
3571 	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3572 	 * is that BTF, otherwise it's program BTF
3573 	 */
3574 	struct btf *kptr_btf;
3575 	int ret;
3576 	s32 id;
3577 
3578 	/* Find type in map BTF, and use it to look up the matching type
3579 	 * in vmlinux or module BTFs, by name and kind.
3580 	 */
3581 	t = btf_type_by_id(btf, info->kptr.type_id);
3582 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3583 			     &kptr_btf);
3584 	if (id == -ENOENT) {
3585 		/* btf_parse_kptr should only be called w/ btf = program BTF */
3586 		WARN_ON_ONCE(btf_is_kernel(btf));
3587 
3588 		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3589 		 * kptr allocated via bpf_obj_new
3590 		 */
3591 		field->kptr.dtor = NULL;
3592 		id = info->kptr.type_id;
3593 		kptr_btf = (struct btf *)btf;
3594 		btf_get(kptr_btf);
3595 		goto found_dtor;
3596 	}
3597 	if (id < 0)
3598 		return id;
3599 
3600 	/* Find and stash the function pointer for the destruction function that
3601 	 * needs to be eventually invoked from the map free path.
3602 	 */
3603 	if (info->type == BPF_KPTR_REF) {
3604 		const struct btf_type *dtor_func;
3605 		const char *dtor_func_name;
3606 		unsigned long addr;
3607 		s32 dtor_btf_id;
3608 
3609 		/* This call also serves as a whitelist of allowed objects that
3610 		 * can be used as a referenced pointer and be stored in a map at
3611 		 * the same time.
3612 		 */
3613 		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3614 		if (dtor_btf_id < 0) {
3615 			ret = dtor_btf_id;
3616 			goto end_btf;
3617 		}
3618 
3619 		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3620 		if (!dtor_func) {
3621 			ret = -ENOENT;
3622 			goto end_btf;
3623 		}
3624 
3625 		if (btf_is_module(kptr_btf)) {
3626 			mod = btf_try_get_module(kptr_btf);
3627 			if (!mod) {
3628 				ret = -ENXIO;
3629 				goto end_btf;
3630 			}
3631 		}
3632 
3633 		/* We already verified dtor_func to be btf_type_is_func
3634 		 * in register_btf_id_dtor_kfuncs.
3635 		 */
3636 		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3637 		addr = kallsyms_lookup_name(dtor_func_name);
3638 		if (!addr) {
3639 			ret = -EINVAL;
3640 			goto end_mod;
3641 		}
3642 		field->kptr.dtor = (void *)addr;
3643 	}
3644 
3645 found_dtor:
3646 	field->kptr.btf_id = id;
3647 	field->kptr.btf = kptr_btf;
3648 	field->kptr.module = mod;
3649 	return 0;
3650 end_mod:
3651 	module_put(mod);
3652 end_btf:
3653 	btf_put(kptr_btf);
3654 	return ret;
3655 }
3656 
3657 static int btf_parse_graph_root(const struct btf *btf,
3658 				struct btf_field *field,
3659 				struct btf_field_info *info,
3660 				const char *node_type_name,
3661 				size_t node_type_align)
3662 {
3663 	const struct btf_type *t, *n = NULL;
3664 	const struct btf_member *member;
3665 	u32 offset;
3666 	int i;
3667 
3668 	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3669 	/* We've already checked that value_btf_id is a struct type. We
3670 	 * just need to figure out the offset of the list_node, and
3671 	 * verify its type.
3672 	 */
3673 	for_each_member(i, t, member) {
3674 		if (strcmp(info->graph_root.node_name,
3675 			   __btf_name_by_offset(btf, member->name_off)))
3676 			continue;
3677 		/* Invalid BTF, two members with same name */
3678 		if (n)
3679 			return -EINVAL;
3680 		n = btf_type_by_id(btf, member->type);
3681 		if (!__btf_type_is_struct(n))
3682 			return -EINVAL;
3683 		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3684 			return -EINVAL;
3685 		offset = __btf_member_bit_offset(n, member);
3686 		if (offset % 8)
3687 			return -EINVAL;
3688 		offset /= 8;
3689 		if (offset % node_type_align)
3690 			return -EINVAL;
3691 
3692 		field->graph_root.btf = (struct btf *)btf;
3693 		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3694 		field->graph_root.node_offset = offset;
3695 	}
3696 	if (!n)
3697 		return -ENOENT;
3698 	return 0;
3699 }
3700 
3701 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3702 			       struct btf_field_info *info)
3703 {
3704 	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3705 					    __alignof__(struct bpf_list_node));
3706 }
3707 
3708 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3709 			     struct btf_field_info *info)
3710 {
3711 	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3712 					    __alignof__(struct bpf_rb_node));
3713 }
3714 
3715 static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3716 {
3717 	const struct btf_field *a = (const struct btf_field *)_a;
3718 	const struct btf_field *b = (const struct btf_field *)_b;
3719 
3720 	if (a->offset < b->offset)
3721 		return -1;
3722 	else if (a->offset > b->offset)
3723 		return 1;
3724 	return 0;
3725 }
3726 
3727 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3728 				    u32 field_mask, u32 value_size)
3729 {
3730 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3731 	u32 next_off = 0, field_type_size;
3732 	struct btf_record *rec;
3733 	int ret, i, cnt;
3734 
3735 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3736 	if (ret < 0)
3737 		return ERR_PTR(ret);
3738 	if (!ret)
3739 		return NULL;
3740 
3741 	cnt = ret;
3742 	/* This needs to be kzalloc to zero out padding and unused fields, see
3743 	 * comment in btf_record_equal.
3744 	 */
3745 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3746 	if (!rec)
3747 		return ERR_PTR(-ENOMEM);
3748 
3749 	rec->spin_lock_off = -EINVAL;
3750 	rec->timer_off = -EINVAL;
3751 	rec->refcount_off = -EINVAL;
3752 	for (i = 0; i < cnt; i++) {
3753 		field_type_size = btf_field_type_size(info_arr[i].type);
3754 		if (info_arr[i].off + field_type_size > value_size) {
3755 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3756 			ret = -EFAULT;
3757 			goto end;
3758 		}
3759 		if (info_arr[i].off < next_off) {
3760 			ret = -EEXIST;
3761 			goto end;
3762 		}
3763 		next_off = info_arr[i].off + field_type_size;
3764 
3765 		rec->field_mask |= info_arr[i].type;
3766 		rec->fields[i].offset = info_arr[i].off;
3767 		rec->fields[i].type = info_arr[i].type;
3768 		rec->fields[i].size = field_type_size;
3769 
3770 		switch (info_arr[i].type) {
3771 		case BPF_SPIN_LOCK:
3772 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3773 			/* Cache offset for faster lookup at runtime */
3774 			rec->spin_lock_off = rec->fields[i].offset;
3775 			break;
3776 		case BPF_TIMER:
3777 			WARN_ON_ONCE(rec->timer_off >= 0);
3778 			/* Cache offset for faster lookup at runtime */
3779 			rec->timer_off = rec->fields[i].offset;
3780 			break;
3781 		case BPF_REFCOUNT:
3782 			WARN_ON_ONCE(rec->refcount_off >= 0);
3783 			/* Cache offset for faster lookup at runtime */
3784 			rec->refcount_off = rec->fields[i].offset;
3785 			break;
3786 		case BPF_KPTR_UNREF:
3787 		case BPF_KPTR_REF:
3788 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3789 			if (ret < 0)
3790 				goto end;
3791 			break;
3792 		case BPF_LIST_HEAD:
3793 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3794 			if (ret < 0)
3795 				goto end;
3796 			break;
3797 		case BPF_RB_ROOT:
3798 			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3799 			if (ret < 0)
3800 				goto end;
3801 			break;
3802 		case BPF_LIST_NODE:
3803 		case BPF_RB_NODE:
3804 			break;
3805 		default:
3806 			ret = -EFAULT;
3807 			goto end;
3808 		}
3809 		rec->cnt++;
3810 	}
3811 
3812 	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3813 	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3814 	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3815 		ret = -EINVAL;
3816 		goto end;
3817 	}
3818 
3819 	if (rec->refcount_off < 0 &&
3820 	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3821 	    btf_record_has_field(rec, BPF_RB_NODE)) {
3822 		ret = -EINVAL;
3823 		goto end;
3824 	}
3825 
3826 	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3827 	       NULL, rec);
3828 
3829 	return rec;
3830 end:
3831 	btf_record_free(rec);
3832 	return ERR_PTR(ret);
3833 }
3834 
3835 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3836 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3837 
3838 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3839 {
3840 	int i;
3841 
3842 	/* There are three types that signify ownership of some other type:
3843 	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3844 	 * kptr_ref only supports storing kernel types, which can't store
3845 	 * references to program allocated local types.
3846 	 *
3847 	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3848 	 * does not form cycles.
3849 	 */
3850 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3851 		return 0;
3852 	for (i = 0; i < rec->cnt; i++) {
3853 		struct btf_struct_meta *meta;
3854 		u32 btf_id;
3855 
3856 		if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3857 			continue;
3858 		btf_id = rec->fields[i].graph_root.value_btf_id;
3859 		meta = btf_find_struct_meta(btf, btf_id);
3860 		if (!meta)
3861 			return -EFAULT;
3862 		rec->fields[i].graph_root.value_rec = meta->record;
3863 
3864 		/* We need to set value_rec for all root types, but no need
3865 		 * to check ownership cycle for a type unless it's also a
3866 		 * node type.
3867 		 */
3868 		if (!(rec->field_mask & GRAPH_NODE_MASK))
3869 			continue;
3870 
3871 		/* We need to ensure ownership acyclicity among all types. The
3872 		 * proper way to do it would be to topologically sort all BTF
3873 		 * IDs based on the ownership edges, since there can be multiple
3874 		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3875 		 * following resaoning:
3876 		 *
3877 		 * - A type can only be owned by another type in user BTF if it
3878 		 *   has a bpf_{list,rb}_node. Let's call these node types.
3879 		 * - A type can only _own_ another type in user BTF if it has a
3880 		 *   bpf_{list_head,rb_root}. Let's call these root types.
3881 		 *
3882 		 * We ensure that if a type is both a root and node, its
3883 		 * element types cannot be root types.
3884 		 *
3885 		 * To ensure acyclicity:
3886 		 *
3887 		 * When A is an root type but not a node, its ownership
3888 		 * chain can be:
3889 		 *	A -> B -> C
3890 		 * Where:
3891 		 * - A is an root, e.g. has bpf_rb_root.
3892 		 * - B is both a root and node, e.g. has bpf_rb_node and
3893 		 *   bpf_list_head.
3894 		 * - C is only an root, e.g. has bpf_list_node
3895 		 *
3896 		 * When A is both a root and node, some other type already
3897 		 * owns it in the BTF domain, hence it can not own
3898 		 * another root type through any of the ownership edges.
3899 		 *	A -> B
3900 		 * Where:
3901 		 * - A is both an root and node.
3902 		 * - B is only an node.
3903 		 */
3904 		if (meta->record->field_mask & GRAPH_ROOT_MASK)
3905 			return -ELOOP;
3906 	}
3907 	return 0;
3908 }
3909 
3910 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3911 			      u32 type_id, void *data, u8 bits_offset,
3912 			      struct btf_show *show)
3913 {
3914 	const struct btf_member *member;
3915 	void *safe_data;
3916 	u32 i;
3917 
3918 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3919 	if (!safe_data)
3920 		return;
3921 
3922 	for_each_member(i, t, member) {
3923 		const struct btf_type *member_type = btf_type_by_id(btf,
3924 								member->type);
3925 		const struct btf_kind_operations *ops;
3926 		u32 member_offset, bitfield_size;
3927 		u32 bytes_offset;
3928 		u8 bits8_offset;
3929 
3930 		btf_show_start_member(show, member);
3931 
3932 		member_offset = __btf_member_bit_offset(t, member);
3933 		bitfield_size = __btf_member_bitfield_size(t, member);
3934 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3935 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3936 		if (bitfield_size) {
3937 			safe_data = btf_show_start_type(show, member_type,
3938 							member->type,
3939 							data + bytes_offset);
3940 			if (safe_data)
3941 				btf_bitfield_show(safe_data,
3942 						  bits8_offset,
3943 						  bitfield_size, show);
3944 			btf_show_end_type(show);
3945 		} else {
3946 			ops = btf_type_ops(member_type);
3947 			ops->show(btf, member_type, member->type,
3948 				  data + bytes_offset, bits8_offset, show);
3949 		}
3950 
3951 		btf_show_end_member(show);
3952 	}
3953 
3954 	btf_show_end_struct_type(show);
3955 }
3956 
3957 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3958 			    u32 type_id, void *data, u8 bits_offset,
3959 			    struct btf_show *show)
3960 {
3961 	const struct btf_member *m = show->state.member;
3962 
3963 	/*
3964 	 * First check if any members would be shown (are non-zero).
3965 	 * See comments above "struct btf_show" definition for more
3966 	 * details on how this works at a high-level.
3967 	 */
3968 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3969 		if (!show->state.depth_check) {
3970 			show->state.depth_check = show->state.depth + 1;
3971 			show->state.depth_to_show = 0;
3972 		}
3973 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3974 		/* Restore saved member data here */
3975 		show->state.member = m;
3976 		if (show->state.depth_check != show->state.depth + 1)
3977 			return;
3978 		show->state.depth_check = 0;
3979 
3980 		if (show->state.depth_to_show <= show->state.depth)
3981 			return;
3982 		/*
3983 		 * Reaching here indicates we have recursed and found
3984 		 * non-zero child values.
3985 		 */
3986 	}
3987 
3988 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3989 }
3990 
3991 static struct btf_kind_operations struct_ops = {
3992 	.check_meta = btf_struct_check_meta,
3993 	.resolve = btf_struct_resolve,
3994 	.check_member = btf_struct_check_member,
3995 	.check_kflag_member = btf_generic_check_kflag_member,
3996 	.log_details = btf_struct_log,
3997 	.show = btf_struct_show,
3998 };
3999 
4000 static int btf_enum_check_member(struct btf_verifier_env *env,
4001 				 const struct btf_type *struct_type,
4002 				 const struct btf_member *member,
4003 				 const struct btf_type *member_type)
4004 {
4005 	u32 struct_bits_off = member->offset;
4006 	u32 struct_size, bytes_offset;
4007 
4008 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4009 		btf_verifier_log_member(env, struct_type, member,
4010 					"Member is not byte aligned");
4011 		return -EINVAL;
4012 	}
4013 
4014 	struct_size = struct_type->size;
4015 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4016 	if (struct_size - bytes_offset < member_type->size) {
4017 		btf_verifier_log_member(env, struct_type, member,
4018 					"Member exceeds struct_size");
4019 		return -EINVAL;
4020 	}
4021 
4022 	return 0;
4023 }
4024 
4025 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4026 				       const struct btf_type *struct_type,
4027 				       const struct btf_member *member,
4028 				       const struct btf_type *member_type)
4029 {
4030 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4031 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4032 
4033 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4034 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4035 	if (!nr_bits) {
4036 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4037 			btf_verifier_log_member(env, struct_type, member,
4038 						"Member is not byte aligned");
4039 			return -EINVAL;
4040 		}
4041 
4042 		nr_bits = int_bitsize;
4043 	} else if (nr_bits > int_bitsize) {
4044 		btf_verifier_log_member(env, struct_type, member,
4045 					"Invalid member bitfield_size");
4046 		return -EINVAL;
4047 	}
4048 
4049 	struct_size = struct_type->size;
4050 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4051 	if (struct_size < bytes_end) {
4052 		btf_verifier_log_member(env, struct_type, member,
4053 					"Member exceeds struct_size");
4054 		return -EINVAL;
4055 	}
4056 
4057 	return 0;
4058 }
4059 
4060 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4061 			       const struct btf_type *t,
4062 			       u32 meta_left)
4063 {
4064 	const struct btf_enum *enums = btf_type_enum(t);
4065 	struct btf *btf = env->btf;
4066 	const char *fmt_str;
4067 	u16 i, nr_enums;
4068 	u32 meta_needed;
4069 
4070 	nr_enums = btf_type_vlen(t);
4071 	meta_needed = nr_enums * sizeof(*enums);
4072 
4073 	if (meta_left < meta_needed) {
4074 		btf_verifier_log_basic(env, t,
4075 				       "meta_left:%u meta_needed:%u",
4076 				       meta_left, meta_needed);
4077 		return -EINVAL;
4078 	}
4079 
4080 	if (t->size > 8 || !is_power_of_2(t->size)) {
4081 		btf_verifier_log_type(env, t, "Unexpected size");
4082 		return -EINVAL;
4083 	}
4084 
4085 	/* enum type either no name or a valid one */
4086 	if (t->name_off &&
4087 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4088 		btf_verifier_log_type(env, t, "Invalid name");
4089 		return -EINVAL;
4090 	}
4091 
4092 	btf_verifier_log_type(env, t, NULL);
4093 
4094 	for (i = 0; i < nr_enums; i++) {
4095 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4096 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4097 					 enums[i].name_off);
4098 			return -EINVAL;
4099 		}
4100 
4101 		/* enum member must have a valid name */
4102 		if (!enums[i].name_off ||
4103 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4104 			btf_verifier_log_type(env, t, "Invalid name");
4105 			return -EINVAL;
4106 		}
4107 
4108 		if (env->log.level == BPF_LOG_KERNEL)
4109 			continue;
4110 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4111 		btf_verifier_log(env, fmt_str,
4112 				 __btf_name_by_offset(btf, enums[i].name_off),
4113 				 enums[i].val);
4114 	}
4115 
4116 	return meta_needed;
4117 }
4118 
4119 static void btf_enum_log(struct btf_verifier_env *env,
4120 			 const struct btf_type *t)
4121 {
4122 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4123 }
4124 
4125 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4126 			  u32 type_id, void *data, u8 bits_offset,
4127 			  struct btf_show *show)
4128 {
4129 	const struct btf_enum *enums = btf_type_enum(t);
4130 	u32 i, nr_enums = btf_type_vlen(t);
4131 	void *safe_data;
4132 	int v;
4133 
4134 	safe_data = btf_show_start_type(show, t, type_id, data);
4135 	if (!safe_data)
4136 		return;
4137 
4138 	v = *(int *)safe_data;
4139 
4140 	for (i = 0; i < nr_enums; i++) {
4141 		if (v != enums[i].val)
4142 			continue;
4143 
4144 		btf_show_type_value(show, "%s",
4145 				    __btf_name_by_offset(btf,
4146 							 enums[i].name_off));
4147 
4148 		btf_show_end_type(show);
4149 		return;
4150 	}
4151 
4152 	if (btf_type_kflag(t))
4153 		btf_show_type_value(show, "%d", v);
4154 	else
4155 		btf_show_type_value(show, "%u", v);
4156 	btf_show_end_type(show);
4157 }
4158 
4159 static struct btf_kind_operations enum_ops = {
4160 	.check_meta = btf_enum_check_meta,
4161 	.resolve = btf_df_resolve,
4162 	.check_member = btf_enum_check_member,
4163 	.check_kflag_member = btf_enum_check_kflag_member,
4164 	.log_details = btf_enum_log,
4165 	.show = btf_enum_show,
4166 };
4167 
4168 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4169 				 const struct btf_type *t,
4170 				 u32 meta_left)
4171 {
4172 	const struct btf_enum64 *enums = btf_type_enum64(t);
4173 	struct btf *btf = env->btf;
4174 	const char *fmt_str;
4175 	u16 i, nr_enums;
4176 	u32 meta_needed;
4177 
4178 	nr_enums = btf_type_vlen(t);
4179 	meta_needed = nr_enums * sizeof(*enums);
4180 
4181 	if (meta_left < meta_needed) {
4182 		btf_verifier_log_basic(env, t,
4183 				       "meta_left:%u meta_needed:%u",
4184 				       meta_left, meta_needed);
4185 		return -EINVAL;
4186 	}
4187 
4188 	if (t->size > 8 || !is_power_of_2(t->size)) {
4189 		btf_verifier_log_type(env, t, "Unexpected size");
4190 		return -EINVAL;
4191 	}
4192 
4193 	/* enum type either no name or a valid one */
4194 	if (t->name_off &&
4195 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4196 		btf_verifier_log_type(env, t, "Invalid name");
4197 		return -EINVAL;
4198 	}
4199 
4200 	btf_verifier_log_type(env, t, NULL);
4201 
4202 	for (i = 0; i < nr_enums; i++) {
4203 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4204 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4205 					 enums[i].name_off);
4206 			return -EINVAL;
4207 		}
4208 
4209 		/* enum member must have a valid name */
4210 		if (!enums[i].name_off ||
4211 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4212 			btf_verifier_log_type(env, t, "Invalid name");
4213 			return -EINVAL;
4214 		}
4215 
4216 		if (env->log.level == BPF_LOG_KERNEL)
4217 			continue;
4218 
4219 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4220 		btf_verifier_log(env, fmt_str,
4221 				 __btf_name_by_offset(btf, enums[i].name_off),
4222 				 btf_enum64_value(enums + i));
4223 	}
4224 
4225 	return meta_needed;
4226 }
4227 
4228 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4229 			    u32 type_id, void *data, u8 bits_offset,
4230 			    struct btf_show *show)
4231 {
4232 	const struct btf_enum64 *enums = btf_type_enum64(t);
4233 	u32 i, nr_enums = btf_type_vlen(t);
4234 	void *safe_data;
4235 	s64 v;
4236 
4237 	safe_data = btf_show_start_type(show, t, type_id, data);
4238 	if (!safe_data)
4239 		return;
4240 
4241 	v = *(u64 *)safe_data;
4242 
4243 	for (i = 0; i < nr_enums; i++) {
4244 		if (v != btf_enum64_value(enums + i))
4245 			continue;
4246 
4247 		btf_show_type_value(show, "%s",
4248 				    __btf_name_by_offset(btf,
4249 							 enums[i].name_off));
4250 
4251 		btf_show_end_type(show);
4252 		return;
4253 	}
4254 
4255 	if (btf_type_kflag(t))
4256 		btf_show_type_value(show, "%lld", v);
4257 	else
4258 		btf_show_type_value(show, "%llu", v);
4259 	btf_show_end_type(show);
4260 }
4261 
4262 static struct btf_kind_operations enum64_ops = {
4263 	.check_meta = btf_enum64_check_meta,
4264 	.resolve = btf_df_resolve,
4265 	.check_member = btf_enum_check_member,
4266 	.check_kflag_member = btf_enum_check_kflag_member,
4267 	.log_details = btf_enum_log,
4268 	.show = btf_enum64_show,
4269 };
4270 
4271 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4272 				     const struct btf_type *t,
4273 				     u32 meta_left)
4274 {
4275 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4276 
4277 	if (meta_left < meta_needed) {
4278 		btf_verifier_log_basic(env, t,
4279 				       "meta_left:%u meta_needed:%u",
4280 				       meta_left, meta_needed);
4281 		return -EINVAL;
4282 	}
4283 
4284 	if (t->name_off) {
4285 		btf_verifier_log_type(env, t, "Invalid name");
4286 		return -EINVAL;
4287 	}
4288 
4289 	if (btf_type_kflag(t)) {
4290 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4291 		return -EINVAL;
4292 	}
4293 
4294 	btf_verifier_log_type(env, t, NULL);
4295 
4296 	return meta_needed;
4297 }
4298 
4299 static void btf_func_proto_log(struct btf_verifier_env *env,
4300 			       const struct btf_type *t)
4301 {
4302 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4303 	u16 nr_args = btf_type_vlen(t), i;
4304 
4305 	btf_verifier_log(env, "return=%u args=(", t->type);
4306 	if (!nr_args) {
4307 		btf_verifier_log(env, "void");
4308 		goto done;
4309 	}
4310 
4311 	if (nr_args == 1 && !args[0].type) {
4312 		/* Only one vararg */
4313 		btf_verifier_log(env, "vararg");
4314 		goto done;
4315 	}
4316 
4317 	btf_verifier_log(env, "%u %s", args[0].type,
4318 			 __btf_name_by_offset(env->btf,
4319 					      args[0].name_off));
4320 	for (i = 1; i < nr_args - 1; i++)
4321 		btf_verifier_log(env, ", %u %s", args[i].type,
4322 				 __btf_name_by_offset(env->btf,
4323 						      args[i].name_off));
4324 
4325 	if (nr_args > 1) {
4326 		const struct btf_param *last_arg = &args[nr_args - 1];
4327 
4328 		if (last_arg->type)
4329 			btf_verifier_log(env, ", %u %s", last_arg->type,
4330 					 __btf_name_by_offset(env->btf,
4331 							      last_arg->name_off));
4332 		else
4333 			btf_verifier_log(env, ", vararg");
4334 	}
4335 
4336 done:
4337 	btf_verifier_log(env, ")");
4338 }
4339 
4340 static struct btf_kind_operations func_proto_ops = {
4341 	.check_meta = btf_func_proto_check_meta,
4342 	.resolve = btf_df_resolve,
4343 	/*
4344 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4345 	 * a struct's member.
4346 	 *
4347 	 * It should be a function pointer instead.
4348 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4349 	 *
4350 	 * Hence, there is no btf_func_check_member().
4351 	 */
4352 	.check_member = btf_df_check_member,
4353 	.check_kflag_member = btf_df_check_kflag_member,
4354 	.log_details = btf_func_proto_log,
4355 	.show = btf_df_show,
4356 };
4357 
4358 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4359 			       const struct btf_type *t,
4360 			       u32 meta_left)
4361 {
4362 	if (!t->name_off ||
4363 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4364 		btf_verifier_log_type(env, t, "Invalid name");
4365 		return -EINVAL;
4366 	}
4367 
4368 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4369 		btf_verifier_log_type(env, t, "Invalid func linkage");
4370 		return -EINVAL;
4371 	}
4372 
4373 	if (btf_type_kflag(t)) {
4374 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4375 		return -EINVAL;
4376 	}
4377 
4378 	btf_verifier_log_type(env, t, NULL);
4379 
4380 	return 0;
4381 }
4382 
4383 static int btf_func_resolve(struct btf_verifier_env *env,
4384 			    const struct resolve_vertex *v)
4385 {
4386 	const struct btf_type *t = v->t;
4387 	u32 next_type_id = t->type;
4388 	int err;
4389 
4390 	err = btf_func_check(env, t);
4391 	if (err)
4392 		return err;
4393 
4394 	env_stack_pop_resolved(env, next_type_id, 0);
4395 	return 0;
4396 }
4397 
4398 static struct btf_kind_operations func_ops = {
4399 	.check_meta = btf_func_check_meta,
4400 	.resolve = btf_func_resolve,
4401 	.check_member = btf_df_check_member,
4402 	.check_kflag_member = btf_df_check_kflag_member,
4403 	.log_details = btf_ref_type_log,
4404 	.show = btf_df_show,
4405 };
4406 
4407 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4408 			      const struct btf_type *t,
4409 			      u32 meta_left)
4410 {
4411 	const struct btf_var *var;
4412 	u32 meta_needed = sizeof(*var);
4413 
4414 	if (meta_left < meta_needed) {
4415 		btf_verifier_log_basic(env, t,
4416 				       "meta_left:%u meta_needed:%u",
4417 				       meta_left, meta_needed);
4418 		return -EINVAL;
4419 	}
4420 
4421 	if (btf_type_vlen(t)) {
4422 		btf_verifier_log_type(env, t, "vlen != 0");
4423 		return -EINVAL;
4424 	}
4425 
4426 	if (btf_type_kflag(t)) {
4427 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4428 		return -EINVAL;
4429 	}
4430 
4431 	if (!t->name_off ||
4432 	    !__btf_name_valid(env->btf, t->name_off, true)) {
4433 		btf_verifier_log_type(env, t, "Invalid name");
4434 		return -EINVAL;
4435 	}
4436 
4437 	/* A var cannot be in type void */
4438 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4439 		btf_verifier_log_type(env, t, "Invalid type_id");
4440 		return -EINVAL;
4441 	}
4442 
4443 	var = btf_type_var(t);
4444 	if (var->linkage != BTF_VAR_STATIC &&
4445 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4446 		btf_verifier_log_type(env, t, "Linkage not supported");
4447 		return -EINVAL;
4448 	}
4449 
4450 	btf_verifier_log_type(env, t, NULL);
4451 
4452 	return meta_needed;
4453 }
4454 
4455 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4456 {
4457 	const struct btf_var *var = btf_type_var(t);
4458 
4459 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4460 }
4461 
4462 static const struct btf_kind_operations var_ops = {
4463 	.check_meta		= btf_var_check_meta,
4464 	.resolve		= btf_var_resolve,
4465 	.check_member		= btf_df_check_member,
4466 	.check_kflag_member	= btf_df_check_kflag_member,
4467 	.log_details		= btf_var_log,
4468 	.show			= btf_var_show,
4469 };
4470 
4471 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4472 				  const struct btf_type *t,
4473 				  u32 meta_left)
4474 {
4475 	const struct btf_var_secinfo *vsi;
4476 	u64 last_vsi_end_off = 0, sum = 0;
4477 	u32 i, meta_needed;
4478 
4479 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4480 	if (meta_left < meta_needed) {
4481 		btf_verifier_log_basic(env, t,
4482 				       "meta_left:%u meta_needed:%u",
4483 				       meta_left, meta_needed);
4484 		return -EINVAL;
4485 	}
4486 
4487 	if (!t->size) {
4488 		btf_verifier_log_type(env, t, "size == 0");
4489 		return -EINVAL;
4490 	}
4491 
4492 	if (btf_type_kflag(t)) {
4493 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4494 		return -EINVAL;
4495 	}
4496 
4497 	if (!t->name_off ||
4498 	    !btf_name_valid_section(env->btf, t->name_off)) {
4499 		btf_verifier_log_type(env, t, "Invalid name");
4500 		return -EINVAL;
4501 	}
4502 
4503 	btf_verifier_log_type(env, t, NULL);
4504 
4505 	for_each_vsi(i, t, vsi) {
4506 		/* A var cannot be in type void */
4507 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4508 			btf_verifier_log_vsi(env, t, vsi,
4509 					     "Invalid type_id");
4510 			return -EINVAL;
4511 		}
4512 
4513 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4514 			btf_verifier_log_vsi(env, t, vsi,
4515 					     "Invalid offset");
4516 			return -EINVAL;
4517 		}
4518 
4519 		if (!vsi->size || vsi->size > t->size) {
4520 			btf_verifier_log_vsi(env, t, vsi,
4521 					     "Invalid size");
4522 			return -EINVAL;
4523 		}
4524 
4525 		last_vsi_end_off = vsi->offset + vsi->size;
4526 		if (last_vsi_end_off > t->size) {
4527 			btf_verifier_log_vsi(env, t, vsi,
4528 					     "Invalid offset+size");
4529 			return -EINVAL;
4530 		}
4531 
4532 		btf_verifier_log_vsi(env, t, vsi, NULL);
4533 		sum += vsi->size;
4534 	}
4535 
4536 	if (t->size < sum) {
4537 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4538 		return -EINVAL;
4539 	}
4540 
4541 	return meta_needed;
4542 }
4543 
4544 static int btf_datasec_resolve(struct btf_verifier_env *env,
4545 			       const struct resolve_vertex *v)
4546 {
4547 	const struct btf_var_secinfo *vsi;
4548 	struct btf *btf = env->btf;
4549 	u16 i;
4550 
4551 	env->resolve_mode = RESOLVE_TBD;
4552 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4553 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4554 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4555 								 var_type_id);
4556 		if (!var_type || !btf_type_is_var(var_type)) {
4557 			btf_verifier_log_vsi(env, v->t, vsi,
4558 					     "Not a VAR kind member");
4559 			return -EINVAL;
4560 		}
4561 
4562 		if (!env_type_is_resolve_sink(env, var_type) &&
4563 		    !env_type_is_resolved(env, var_type_id)) {
4564 			env_stack_set_next_member(env, i + 1);
4565 			return env_stack_push(env, var_type, var_type_id);
4566 		}
4567 
4568 		type_id = var_type->type;
4569 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4570 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4571 			return -EINVAL;
4572 		}
4573 
4574 		if (vsi->size < type_size) {
4575 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4576 			return -EINVAL;
4577 		}
4578 	}
4579 
4580 	env_stack_pop_resolved(env, 0, 0);
4581 	return 0;
4582 }
4583 
4584 static void btf_datasec_log(struct btf_verifier_env *env,
4585 			    const struct btf_type *t)
4586 {
4587 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4588 }
4589 
4590 static void btf_datasec_show(const struct btf *btf,
4591 			     const struct btf_type *t, u32 type_id,
4592 			     void *data, u8 bits_offset,
4593 			     struct btf_show *show)
4594 {
4595 	const struct btf_var_secinfo *vsi;
4596 	const struct btf_type *var;
4597 	u32 i;
4598 
4599 	if (!btf_show_start_type(show, t, type_id, data))
4600 		return;
4601 
4602 	btf_show_type_value(show, "section (\"%s\") = {",
4603 			    __btf_name_by_offset(btf, t->name_off));
4604 	for_each_vsi(i, t, vsi) {
4605 		var = btf_type_by_id(btf, vsi->type);
4606 		if (i)
4607 			btf_show(show, ",");
4608 		btf_type_ops(var)->show(btf, var, vsi->type,
4609 					data + vsi->offset, bits_offset, show);
4610 	}
4611 	btf_show_end_type(show);
4612 }
4613 
4614 static const struct btf_kind_operations datasec_ops = {
4615 	.check_meta		= btf_datasec_check_meta,
4616 	.resolve		= btf_datasec_resolve,
4617 	.check_member		= btf_df_check_member,
4618 	.check_kflag_member	= btf_df_check_kflag_member,
4619 	.log_details		= btf_datasec_log,
4620 	.show			= btf_datasec_show,
4621 };
4622 
4623 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4624 				const struct btf_type *t,
4625 				u32 meta_left)
4626 {
4627 	if (btf_type_vlen(t)) {
4628 		btf_verifier_log_type(env, t, "vlen != 0");
4629 		return -EINVAL;
4630 	}
4631 
4632 	if (btf_type_kflag(t)) {
4633 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4634 		return -EINVAL;
4635 	}
4636 
4637 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4638 	    t->size != 16) {
4639 		btf_verifier_log_type(env, t, "Invalid type_size");
4640 		return -EINVAL;
4641 	}
4642 
4643 	btf_verifier_log_type(env, t, NULL);
4644 
4645 	return 0;
4646 }
4647 
4648 static int btf_float_check_member(struct btf_verifier_env *env,
4649 				  const struct btf_type *struct_type,
4650 				  const struct btf_member *member,
4651 				  const struct btf_type *member_type)
4652 {
4653 	u64 start_offset_bytes;
4654 	u64 end_offset_bytes;
4655 	u64 misalign_bits;
4656 	u64 align_bytes;
4657 	u64 align_bits;
4658 
4659 	/* Different architectures have different alignment requirements, so
4660 	 * here we check only for the reasonable minimum. This way we ensure
4661 	 * that types after CO-RE can pass the kernel BTF verifier.
4662 	 */
4663 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4664 	align_bits = align_bytes * BITS_PER_BYTE;
4665 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4666 	if (misalign_bits) {
4667 		btf_verifier_log_member(env, struct_type, member,
4668 					"Member is not properly aligned");
4669 		return -EINVAL;
4670 	}
4671 
4672 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4673 	end_offset_bytes = start_offset_bytes + member_type->size;
4674 	if (end_offset_bytes > struct_type->size) {
4675 		btf_verifier_log_member(env, struct_type, member,
4676 					"Member exceeds struct_size");
4677 		return -EINVAL;
4678 	}
4679 
4680 	return 0;
4681 }
4682 
4683 static void btf_float_log(struct btf_verifier_env *env,
4684 			  const struct btf_type *t)
4685 {
4686 	btf_verifier_log(env, "size=%u", t->size);
4687 }
4688 
4689 static const struct btf_kind_operations float_ops = {
4690 	.check_meta = btf_float_check_meta,
4691 	.resolve = btf_df_resolve,
4692 	.check_member = btf_float_check_member,
4693 	.check_kflag_member = btf_generic_check_kflag_member,
4694 	.log_details = btf_float_log,
4695 	.show = btf_df_show,
4696 };
4697 
4698 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4699 			      const struct btf_type *t,
4700 			      u32 meta_left)
4701 {
4702 	const struct btf_decl_tag *tag;
4703 	u32 meta_needed = sizeof(*tag);
4704 	s32 component_idx;
4705 	const char *value;
4706 
4707 	if (meta_left < meta_needed) {
4708 		btf_verifier_log_basic(env, t,
4709 				       "meta_left:%u meta_needed:%u",
4710 				       meta_left, meta_needed);
4711 		return -EINVAL;
4712 	}
4713 
4714 	value = btf_name_by_offset(env->btf, t->name_off);
4715 	if (!value || !value[0]) {
4716 		btf_verifier_log_type(env, t, "Invalid value");
4717 		return -EINVAL;
4718 	}
4719 
4720 	if (btf_type_vlen(t)) {
4721 		btf_verifier_log_type(env, t, "vlen != 0");
4722 		return -EINVAL;
4723 	}
4724 
4725 	if (btf_type_kflag(t)) {
4726 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4727 		return -EINVAL;
4728 	}
4729 
4730 	component_idx = btf_type_decl_tag(t)->component_idx;
4731 	if (component_idx < -1) {
4732 		btf_verifier_log_type(env, t, "Invalid component_idx");
4733 		return -EINVAL;
4734 	}
4735 
4736 	btf_verifier_log_type(env, t, NULL);
4737 
4738 	return meta_needed;
4739 }
4740 
4741 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4742 			   const struct resolve_vertex *v)
4743 {
4744 	const struct btf_type *next_type;
4745 	const struct btf_type *t = v->t;
4746 	u32 next_type_id = t->type;
4747 	struct btf *btf = env->btf;
4748 	s32 component_idx;
4749 	u32 vlen;
4750 
4751 	next_type = btf_type_by_id(btf, next_type_id);
4752 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4753 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4754 		return -EINVAL;
4755 	}
4756 
4757 	if (!env_type_is_resolve_sink(env, next_type) &&
4758 	    !env_type_is_resolved(env, next_type_id))
4759 		return env_stack_push(env, next_type, next_type_id);
4760 
4761 	component_idx = btf_type_decl_tag(t)->component_idx;
4762 	if (component_idx != -1) {
4763 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4764 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4765 			return -EINVAL;
4766 		}
4767 
4768 		if (btf_type_is_struct(next_type)) {
4769 			vlen = btf_type_vlen(next_type);
4770 		} else {
4771 			/* next_type should be a function */
4772 			next_type = btf_type_by_id(btf, next_type->type);
4773 			vlen = btf_type_vlen(next_type);
4774 		}
4775 
4776 		if ((u32)component_idx >= vlen) {
4777 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4778 			return -EINVAL;
4779 		}
4780 	}
4781 
4782 	env_stack_pop_resolved(env, next_type_id, 0);
4783 
4784 	return 0;
4785 }
4786 
4787 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4788 {
4789 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4790 			 btf_type_decl_tag(t)->component_idx);
4791 }
4792 
4793 static const struct btf_kind_operations decl_tag_ops = {
4794 	.check_meta = btf_decl_tag_check_meta,
4795 	.resolve = btf_decl_tag_resolve,
4796 	.check_member = btf_df_check_member,
4797 	.check_kflag_member = btf_df_check_kflag_member,
4798 	.log_details = btf_decl_tag_log,
4799 	.show = btf_df_show,
4800 };
4801 
4802 static int btf_func_proto_check(struct btf_verifier_env *env,
4803 				const struct btf_type *t)
4804 {
4805 	const struct btf_type *ret_type;
4806 	const struct btf_param *args;
4807 	const struct btf *btf;
4808 	u16 nr_args, i;
4809 	int err;
4810 
4811 	btf = env->btf;
4812 	args = (const struct btf_param *)(t + 1);
4813 	nr_args = btf_type_vlen(t);
4814 
4815 	/* Check func return type which could be "void" (t->type == 0) */
4816 	if (t->type) {
4817 		u32 ret_type_id = t->type;
4818 
4819 		ret_type = btf_type_by_id(btf, ret_type_id);
4820 		if (!ret_type) {
4821 			btf_verifier_log_type(env, t, "Invalid return type");
4822 			return -EINVAL;
4823 		}
4824 
4825 		if (btf_type_is_resolve_source_only(ret_type)) {
4826 			btf_verifier_log_type(env, t, "Invalid return type");
4827 			return -EINVAL;
4828 		}
4829 
4830 		if (btf_type_needs_resolve(ret_type) &&
4831 		    !env_type_is_resolved(env, ret_type_id)) {
4832 			err = btf_resolve(env, ret_type, ret_type_id);
4833 			if (err)
4834 				return err;
4835 		}
4836 
4837 		/* Ensure the return type is a type that has a size */
4838 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4839 			btf_verifier_log_type(env, t, "Invalid return type");
4840 			return -EINVAL;
4841 		}
4842 	}
4843 
4844 	if (!nr_args)
4845 		return 0;
4846 
4847 	/* Last func arg type_id could be 0 if it is a vararg */
4848 	if (!args[nr_args - 1].type) {
4849 		if (args[nr_args - 1].name_off) {
4850 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4851 					      nr_args);
4852 			return -EINVAL;
4853 		}
4854 		nr_args--;
4855 	}
4856 
4857 	for (i = 0; i < nr_args; i++) {
4858 		const struct btf_type *arg_type;
4859 		u32 arg_type_id;
4860 
4861 		arg_type_id = args[i].type;
4862 		arg_type = btf_type_by_id(btf, arg_type_id);
4863 		if (!arg_type) {
4864 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4865 			return -EINVAL;
4866 		}
4867 
4868 		if (btf_type_is_resolve_source_only(arg_type)) {
4869 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4870 			return -EINVAL;
4871 		}
4872 
4873 		if (args[i].name_off &&
4874 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4875 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4876 			btf_verifier_log_type(env, t,
4877 					      "Invalid arg#%u", i + 1);
4878 			return -EINVAL;
4879 		}
4880 
4881 		if (btf_type_needs_resolve(arg_type) &&
4882 		    !env_type_is_resolved(env, arg_type_id)) {
4883 			err = btf_resolve(env, arg_type, arg_type_id);
4884 			if (err)
4885 				return err;
4886 		}
4887 
4888 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4889 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4890 			return -EINVAL;
4891 		}
4892 	}
4893 
4894 	return 0;
4895 }
4896 
4897 static int btf_func_check(struct btf_verifier_env *env,
4898 			  const struct btf_type *t)
4899 {
4900 	const struct btf_type *proto_type;
4901 	const struct btf_param *args;
4902 	const struct btf *btf;
4903 	u16 nr_args, i;
4904 
4905 	btf = env->btf;
4906 	proto_type = btf_type_by_id(btf, t->type);
4907 
4908 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4909 		btf_verifier_log_type(env, t, "Invalid type_id");
4910 		return -EINVAL;
4911 	}
4912 
4913 	args = (const struct btf_param *)(proto_type + 1);
4914 	nr_args = btf_type_vlen(proto_type);
4915 	for (i = 0; i < nr_args; i++) {
4916 		if (!args[i].name_off && args[i].type) {
4917 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4918 			return -EINVAL;
4919 		}
4920 	}
4921 
4922 	return 0;
4923 }
4924 
4925 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4926 	[BTF_KIND_INT] = &int_ops,
4927 	[BTF_KIND_PTR] = &ptr_ops,
4928 	[BTF_KIND_ARRAY] = &array_ops,
4929 	[BTF_KIND_STRUCT] = &struct_ops,
4930 	[BTF_KIND_UNION] = &struct_ops,
4931 	[BTF_KIND_ENUM] = &enum_ops,
4932 	[BTF_KIND_FWD] = &fwd_ops,
4933 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4934 	[BTF_KIND_VOLATILE] = &modifier_ops,
4935 	[BTF_KIND_CONST] = &modifier_ops,
4936 	[BTF_KIND_RESTRICT] = &modifier_ops,
4937 	[BTF_KIND_FUNC] = &func_ops,
4938 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4939 	[BTF_KIND_VAR] = &var_ops,
4940 	[BTF_KIND_DATASEC] = &datasec_ops,
4941 	[BTF_KIND_FLOAT] = &float_ops,
4942 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4943 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4944 	[BTF_KIND_ENUM64] = &enum64_ops,
4945 };
4946 
4947 static s32 btf_check_meta(struct btf_verifier_env *env,
4948 			  const struct btf_type *t,
4949 			  u32 meta_left)
4950 {
4951 	u32 saved_meta_left = meta_left;
4952 	s32 var_meta_size;
4953 
4954 	if (meta_left < sizeof(*t)) {
4955 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4956 				 env->log_type_id, meta_left, sizeof(*t));
4957 		return -EINVAL;
4958 	}
4959 	meta_left -= sizeof(*t);
4960 
4961 	if (t->info & ~BTF_INFO_MASK) {
4962 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4963 				 env->log_type_id, t->info);
4964 		return -EINVAL;
4965 	}
4966 
4967 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4968 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4969 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4970 				 env->log_type_id, BTF_INFO_KIND(t->info));
4971 		return -EINVAL;
4972 	}
4973 
4974 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4975 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4976 				 env->log_type_id, t->name_off);
4977 		return -EINVAL;
4978 	}
4979 
4980 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4981 	if (var_meta_size < 0)
4982 		return var_meta_size;
4983 
4984 	meta_left -= var_meta_size;
4985 
4986 	return saved_meta_left - meta_left;
4987 }
4988 
4989 static int btf_check_all_metas(struct btf_verifier_env *env)
4990 {
4991 	struct btf *btf = env->btf;
4992 	struct btf_header *hdr;
4993 	void *cur, *end;
4994 
4995 	hdr = &btf->hdr;
4996 	cur = btf->nohdr_data + hdr->type_off;
4997 	end = cur + hdr->type_len;
4998 
4999 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5000 	while (cur < end) {
5001 		struct btf_type *t = cur;
5002 		s32 meta_size;
5003 
5004 		meta_size = btf_check_meta(env, t, end - cur);
5005 		if (meta_size < 0)
5006 			return meta_size;
5007 
5008 		btf_add_type(env, t);
5009 		cur += meta_size;
5010 		env->log_type_id++;
5011 	}
5012 
5013 	return 0;
5014 }
5015 
5016 static bool btf_resolve_valid(struct btf_verifier_env *env,
5017 			      const struct btf_type *t,
5018 			      u32 type_id)
5019 {
5020 	struct btf *btf = env->btf;
5021 
5022 	if (!env_type_is_resolved(env, type_id))
5023 		return false;
5024 
5025 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5026 		return !btf_resolved_type_id(btf, type_id) &&
5027 		       !btf_resolved_type_size(btf, type_id);
5028 
5029 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5030 		return btf_resolved_type_id(btf, type_id) &&
5031 		       !btf_resolved_type_size(btf, type_id);
5032 
5033 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5034 	    btf_type_is_var(t)) {
5035 		t = btf_type_id_resolve(btf, &type_id);
5036 		return t &&
5037 		       !btf_type_is_modifier(t) &&
5038 		       !btf_type_is_var(t) &&
5039 		       !btf_type_is_datasec(t);
5040 	}
5041 
5042 	if (btf_type_is_array(t)) {
5043 		const struct btf_array *array = btf_type_array(t);
5044 		const struct btf_type *elem_type;
5045 		u32 elem_type_id = array->type;
5046 		u32 elem_size;
5047 
5048 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5049 		return elem_type && !btf_type_is_modifier(elem_type) &&
5050 			(array->nelems * elem_size ==
5051 			 btf_resolved_type_size(btf, type_id));
5052 	}
5053 
5054 	return false;
5055 }
5056 
5057 static int btf_resolve(struct btf_verifier_env *env,
5058 		       const struct btf_type *t, u32 type_id)
5059 {
5060 	u32 save_log_type_id = env->log_type_id;
5061 	const struct resolve_vertex *v;
5062 	int err = 0;
5063 
5064 	env->resolve_mode = RESOLVE_TBD;
5065 	env_stack_push(env, t, type_id);
5066 	while (!err && (v = env_stack_peak(env))) {
5067 		env->log_type_id = v->type_id;
5068 		err = btf_type_ops(v->t)->resolve(env, v);
5069 	}
5070 
5071 	env->log_type_id = type_id;
5072 	if (err == -E2BIG) {
5073 		btf_verifier_log_type(env, t,
5074 				      "Exceeded max resolving depth:%u",
5075 				      MAX_RESOLVE_DEPTH);
5076 	} else if (err == -EEXIST) {
5077 		btf_verifier_log_type(env, t, "Loop detected");
5078 	}
5079 
5080 	/* Final sanity check */
5081 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5082 		btf_verifier_log_type(env, t, "Invalid resolve state");
5083 		err = -EINVAL;
5084 	}
5085 
5086 	env->log_type_id = save_log_type_id;
5087 	return err;
5088 }
5089 
5090 static int btf_check_all_types(struct btf_verifier_env *env)
5091 {
5092 	struct btf *btf = env->btf;
5093 	const struct btf_type *t;
5094 	u32 type_id, i;
5095 	int err;
5096 
5097 	err = env_resolve_init(env);
5098 	if (err)
5099 		return err;
5100 
5101 	env->phase++;
5102 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5103 		type_id = btf->start_id + i;
5104 		t = btf_type_by_id(btf, type_id);
5105 
5106 		env->log_type_id = type_id;
5107 		if (btf_type_needs_resolve(t) &&
5108 		    !env_type_is_resolved(env, type_id)) {
5109 			err = btf_resolve(env, t, type_id);
5110 			if (err)
5111 				return err;
5112 		}
5113 
5114 		if (btf_type_is_func_proto(t)) {
5115 			err = btf_func_proto_check(env, t);
5116 			if (err)
5117 				return err;
5118 		}
5119 	}
5120 
5121 	return 0;
5122 }
5123 
5124 static int btf_parse_type_sec(struct btf_verifier_env *env)
5125 {
5126 	const struct btf_header *hdr = &env->btf->hdr;
5127 	int err;
5128 
5129 	/* Type section must align to 4 bytes */
5130 	if (hdr->type_off & (sizeof(u32) - 1)) {
5131 		btf_verifier_log(env, "Unaligned type_off");
5132 		return -EINVAL;
5133 	}
5134 
5135 	if (!env->btf->base_btf && !hdr->type_len) {
5136 		btf_verifier_log(env, "No type found");
5137 		return -EINVAL;
5138 	}
5139 
5140 	err = btf_check_all_metas(env);
5141 	if (err)
5142 		return err;
5143 
5144 	return btf_check_all_types(env);
5145 }
5146 
5147 static int btf_parse_str_sec(struct btf_verifier_env *env)
5148 {
5149 	const struct btf_header *hdr;
5150 	struct btf *btf = env->btf;
5151 	const char *start, *end;
5152 
5153 	hdr = &btf->hdr;
5154 	start = btf->nohdr_data + hdr->str_off;
5155 	end = start + hdr->str_len;
5156 
5157 	if (end != btf->data + btf->data_size) {
5158 		btf_verifier_log(env, "String section is not at the end");
5159 		return -EINVAL;
5160 	}
5161 
5162 	btf->strings = start;
5163 
5164 	if (btf->base_btf && !hdr->str_len)
5165 		return 0;
5166 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5167 		btf_verifier_log(env, "Invalid string section");
5168 		return -EINVAL;
5169 	}
5170 	if (!btf->base_btf && start[0]) {
5171 		btf_verifier_log(env, "Invalid string section");
5172 		return -EINVAL;
5173 	}
5174 
5175 	return 0;
5176 }
5177 
5178 static const size_t btf_sec_info_offset[] = {
5179 	offsetof(struct btf_header, type_off),
5180 	offsetof(struct btf_header, str_off),
5181 };
5182 
5183 static int btf_sec_info_cmp(const void *a, const void *b)
5184 {
5185 	const struct btf_sec_info *x = a;
5186 	const struct btf_sec_info *y = b;
5187 
5188 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5189 }
5190 
5191 static int btf_check_sec_info(struct btf_verifier_env *env,
5192 			      u32 btf_data_size)
5193 {
5194 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5195 	u32 total, expected_total, i;
5196 	const struct btf_header *hdr;
5197 	const struct btf *btf;
5198 
5199 	btf = env->btf;
5200 	hdr = &btf->hdr;
5201 
5202 	/* Populate the secs from hdr */
5203 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5204 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5205 						   btf_sec_info_offset[i]);
5206 
5207 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5208 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5209 
5210 	/* Check for gaps and overlap among sections */
5211 	total = 0;
5212 	expected_total = btf_data_size - hdr->hdr_len;
5213 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5214 		if (expected_total < secs[i].off) {
5215 			btf_verifier_log(env, "Invalid section offset");
5216 			return -EINVAL;
5217 		}
5218 		if (total < secs[i].off) {
5219 			/* gap */
5220 			btf_verifier_log(env, "Unsupported section found");
5221 			return -EINVAL;
5222 		}
5223 		if (total > secs[i].off) {
5224 			btf_verifier_log(env, "Section overlap found");
5225 			return -EINVAL;
5226 		}
5227 		if (expected_total - total < secs[i].len) {
5228 			btf_verifier_log(env,
5229 					 "Total section length too long");
5230 			return -EINVAL;
5231 		}
5232 		total += secs[i].len;
5233 	}
5234 
5235 	/* There is data other than hdr and known sections */
5236 	if (expected_total != total) {
5237 		btf_verifier_log(env, "Unsupported section found");
5238 		return -EINVAL;
5239 	}
5240 
5241 	return 0;
5242 }
5243 
5244 static int btf_parse_hdr(struct btf_verifier_env *env)
5245 {
5246 	u32 hdr_len, hdr_copy, btf_data_size;
5247 	const struct btf_header *hdr;
5248 	struct btf *btf;
5249 
5250 	btf = env->btf;
5251 	btf_data_size = btf->data_size;
5252 
5253 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5254 		btf_verifier_log(env, "hdr_len not found");
5255 		return -EINVAL;
5256 	}
5257 
5258 	hdr = btf->data;
5259 	hdr_len = hdr->hdr_len;
5260 	if (btf_data_size < hdr_len) {
5261 		btf_verifier_log(env, "btf_header not found");
5262 		return -EINVAL;
5263 	}
5264 
5265 	/* Ensure the unsupported header fields are zero */
5266 	if (hdr_len > sizeof(btf->hdr)) {
5267 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5268 		u8 *end = btf->data + hdr_len;
5269 
5270 		for (; expected_zero < end; expected_zero++) {
5271 			if (*expected_zero) {
5272 				btf_verifier_log(env, "Unsupported btf_header");
5273 				return -E2BIG;
5274 			}
5275 		}
5276 	}
5277 
5278 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5279 	memcpy(&btf->hdr, btf->data, hdr_copy);
5280 
5281 	hdr = &btf->hdr;
5282 
5283 	btf_verifier_log_hdr(env, btf_data_size);
5284 
5285 	if (hdr->magic != BTF_MAGIC) {
5286 		btf_verifier_log(env, "Invalid magic");
5287 		return -EINVAL;
5288 	}
5289 
5290 	if (hdr->version != BTF_VERSION) {
5291 		btf_verifier_log(env, "Unsupported version");
5292 		return -ENOTSUPP;
5293 	}
5294 
5295 	if (hdr->flags) {
5296 		btf_verifier_log(env, "Unsupported flags");
5297 		return -ENOTSUPP;
5298 	}
5299 
5300 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5301 		btf_verifier_log(env, "No data");
5302 		return -EINVAL;
5303 	}
5304 
5305 	return btf_check_sec_info(env, btf_data_size);
5306 }
5307 
5308 static const char *alloc_obj_fields[] = {
5309 	"bpf_spin_lock",
5310 	"bpf_list_head",
5311 	"bpf_list_node",
5312 	"bpf_rb_root",
5313 	"bpf_rb_node",
5314 	"bpf_refcount",
5315 };
5316 
5317 static struct btf_struct_metas *
5318 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5319 {
5320 	union {
5321 		struct btf_id_set set;
5322 		struct {
5323 			u32 _cnt;
5324 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5325 		} _arr;
5326 	} aof;
5327 	struct btf_struct_metas *tab = NULL;
5328 	int i, n, id, ret;
5329 
5330 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5331 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5332 
5333 	memset(&aof, 0, sizeof(aof));
5334 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5335 		/* Try to find whether this special type exists in user BTF, and
5336 		 * if so remember its ID so we can easily find it among members
5337 		 * of structs that we iterate in the next loop.
5338 		 */
5339 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5340 		if (id < 0)
5341 			continue;
5342 		aof.set.ids[aof.set.cnt++] = id;
5343 	}
5344 
5345 	if (!aof.set.cnt)
5346 		return NULL;
5347 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5348 
5349 	n = btf_nr_types(btf);
5350 	for (i = 1; i < n; i++) {
5351 		struct btf_struct_metas *new_tab;
5352 		const struct btf_member *member;
5353 		struct btf_struct_meta *type;
5354 		struct btf_record *record;
5355 		const struct btf_type *t;
5356 		int j, tab_cnt;
5357 
5358 		t = btf_type_by_id(btf, i);
5359 		if (!t) {
5360 			ret = -EINVAL;
5361 			goto free;
5362 		}
5363 		if (!__btf_type_is_struct(t))
5364 			continue;
5365 
5366 		cond_resched();
5367 
5368 		for_each_member(j, t, member) {
5369 			if (btf_id_set_contains(&aof.set, member->type))
5370 				goto parse;
5371 		}
5372 		continue;
5373 	parse:
5374 		tab_cnt = tab ? tab->cnt : 0;
5375 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5376 				   GFP_KERNEL | __GFP_NOWARN);
5377 		if (!new_tab) {
5378 			ret = -ENOMEM;
5379 			goto free;
5380 		}
5381 		if (!tab)
5382 			new_tab->cnt = 0;
5383 		tab = new_tab;
5384 
5385 		type = &tab->types[tab->cnt];
5386 		type->btf_id = i;
5387 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5388 						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5389 		/* The record cannot be unset, treat it as an error if so */
5390 		if (IS_ERR_OR_NULL(record)) {
5391 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5392 			goto free;
5393 		}
5394 		type->record = record;
5395 		tab->cnt++;
5396 	}
5397 	return tab;
5398 free:
5399 	btf_struct_metas_free(tab);
5400 	return ERR_PTR(ret);
5401 }
5402 
5403 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5404 {
5405 	struct btf_struct_metas *tab;
5406 
5407 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5408 	tab = btf->struct_meta_tab;
5409 	if (!tab)
5410 		return NULL;
5411 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5412 }
5413 
5414 static int btf_check_type_tags(struct btf_verifier_env *env,
5415 			       struct btf *btf, int start_id)
5416 {
5417 	int i, n, good_id = start_id - 1;
5418 	bool in_tags;
5419 
5420 	n = btf_nr_types(btf);
5421 	for (i = start_id; i < n; i++) {
5422 		const struct btf_type *t;
5423 		int chain_limit = 32;
5424 		u32 cur_id = i;
5425 
5426 		t = btf_type_by_id(btf, i);
5427 		if (!t)
5428 			return -EINVAL;
5429 		if (!btf_type_is_modifier(t))
5430 			continue;
5431 
5432 		cond_resched();
5433 
5434 		in_tags = btf_type_is_type_tag(t);
5435 		while (btf_type_is_modifier(t)) {
5436 			if (!chain_limit--) {
5437 				btf_verifier_log(env, "Max chain length or cycle detected");
5438 				return -ELOOP;
5439 			}
5440 			if (btf_type_is_type_tag(t)) {
5441 				if (!in_tags) {
5442 					btf_verifier_log(env, "Type tags don't precede modifiers");
5443 					return -EINVAL;
5444 				}
5445 			} else if (in_tags) {
5446 				in_tags = false;
5447 			}
5448 			if (cur_id <= good_id)
5449 				break;
5450 			/* Move to next type */
5451 			cur_id = t->type;
5452 			t = btf_type_by_id(btf, cur_id);
5453 			if (!t)
5454 				return -EINVAL;
5455 		}
5456 		good_id = i;
5457 	}
5458 	return 0;
5459 }
5460 
5461 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5462 {
5463 	u32 log_true_size;
5464 	int err;
5465 
5466 	err = bpf_vlog_finalize(log, &log_true_size);
5467 
5468 	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5469 	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5470 				  &log_true_size, sizeof(log_true_size)))
5471 		err = -EFAULT;
5472 
5473 	return err;
5474 }
5475 
5476 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5477 {
5478 	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5479 	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5480 	struct btf_struct_metas *struct_meta_tab;
5481 	struct btf_verifier_env *env = NULL;
5482 	struct btf *btf = NULL;
5483 	u8 *data;
5484 	int err, ret;
5485 
5486 	if (attr->btf_size > BTF_MAX_SIZE)
5487 		return ERR_PTR(-E2BIG);
5488 
5489 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5490 	if (!env)
5491 		return ERR_PTR(-ENOMEM);
5492 
5493 	/* user could have requested verbose verifier output
5494 	 * and supplied buffer to store the verification trace
5495 	 */
5496 	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5497 			    log_ubuf, attr->btf_log_size);
5498 	if (err)
5499 		goto errout_free;
5500 
5501 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5502 	if (!btf) {
5503 		err = -ENOMEM;
5504 		goto errout;
5505 	}
5506 	env->btf = btf;
5507 
5508 	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5509 	if (!data) {
5510 		err = -ENOMEM;
5511 		goto errout;
5512 	}
5513 
5514 	btf->data = data;
5515 	btf->data_size = attr->btf_size;
5516 
5517 	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5518 		err = -EFAULT;
5519 		goto errout;
5520 	}
5521 
5522 	err = btf_parse_hdr(env);
5523 	if (err)
5524 		goto errout;
5525 
5526 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5527 
5528 	err = btf_parse_str_sec(env);
5529 	if (err)
5530 		goto errout;
5531 
5532 	err = btf_parse_type_sec(env);
5533 	if (err)
5534 		goto errout;
5535 
5536 	err = btf_check_type_tags(env, btf, 1);
5537 	if (err)
5538 		goto errout;
5539 
5540 	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5541 	if (IS_ERR(struct_meta_tab)) {
5542 		err = PTR_ERR(struct_meta_tab);
5543 		goto errout;
5544 	}
5545 	btf->struct_meta_tab = struct_meta_tab;
5546 
5547 	if (struct_meta_tab) {
5548 		int i;
5549 
5550 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5551 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5552 			if (err < 0)
5553 				goto errout_meta;
5554 		}
5555 	}
5556 
5557 	err = finalize_log(&env->log, uattr, uattr_size);
5558 	if (err)
5559 		goto errout_free;
5560 
5561 	btf_verifier_env_free(env);
5562 	refcount_set(&btf->refcnt, 1);
5563 	return btf;
5564 
5565 errout_meta:
5566 	btf_free_struct_meta_tab(btf);
5567 errout:
5568 	/* overwrite err with -ENOSPC or -EFAULT */
5569 	ret = finalize_log(&env->log, uattr, uattr_size);
5570 	if (ret)
5571 		err = ret;
5572 errout_free:
5573 	btf_verifier_env_free(env);
5574 	if (btf)
5575 		btf_free(btf);
5576 	return ERR_PTR(err);
5577 }
5578 
5579 extern char __weak __start_BTF[];
5580 extern char __weak __stop_BTF[];
5581 extern struct btf *btf_vmlinux;
5582 
5583 #define BPF_MAP_TYPE(_id, _ops)
5584 #define BPF_LINK_TYPE(_id, _name)
5585 static union {
5586 	struct bpf_ctx_convert {
5587 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5588 	prog_ctx_type _id##_prog; \
5589 	kern_ctx_type _id##_kern;
5590 #include <linux/bpf_types.h>
5591 #undef BPF_PROG_TYPE
5592 	} *__t;
5593 	/* 't' is written once under lock. Read many times. */
5594 	const struct btf_type *t;
5595 } bpf_ctx_convert;
5596 enum {
5597 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5598 	__ctx_convert##_id,
5599 #include <linux/bpf_types.h>
5600 #undef BPF_PROG_TYPE
5601 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5602 };
5603 static u8 bpf_ctx_convert_map[] = {
5604 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5605 	[_id] = __ctx_convert##_id,
5606 #include <linux/bpf_types.h>
5607 #undef BPF_PROG_TYPE
5608 	0, /* avoid empty array */
5609 };
5610 #undef BPF_MAP_TYPE
5611 #undef BPF_LINK_TYPE
5612 
5613 const struct btf_member *
5614 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5615 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5616 		      int arg)
5617 {
5618 	const struct btf_type *conv_struct;
5619 	const struct btf_type *ctx_struct;
5620 	const struct btf_member *ctx_type;
5621 	const char *tname, *ctx_tname;
5622 
5623 	conv_struct = bpf_ctx_convert.t;
5624 	if (!conv_struct) {
5625 		bpf_log(log, "btf_vmlinux is malformed\n");
5626 		return NULL;
5627 	}
5628 	t = btf_type_by_id(btf, t->type);
5629 	while (btf_type_is_modifier(t))
5630 		t = btf_type_by_id(btf, t->type);
5631 	if (!btf_type_is_struct(t)) {
5632 		/* Only pointer to struct is supported for now.
5633 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5634 		 * is not supported yet.
5635 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5636 		 */
5637 		return NULL;
5638 	}
5639 	tname = btf_name_by_offset(btf, t->name_off);
5640 	if (!tname) {
5641 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5642 		return NULL;
5643 	}
5644 	/* prog_type is valid bpf program type. No need for bounds check. */
5645 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5646 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5647 	 * Like 'struct __sk_buff'
5648 	 */
5649 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5650 	if (!ctx_struct)
5651 		/* should not happen */
5652 		return NULL;
5653 again:
5654 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5655 	if (!ctx_tname) {
5656 		/* should not happen */
5657 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5658 		return NULL;
5659 	}
5660 	/* only compare that prog's ctx type name is the same as
5661 	 * kernel expects. No need to compare field by field.
5662 	 * It's ok for bpf prog to do:
5663 	 * struct __sk_buff {};
5664 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5665 	 * { // no fields of skb are ever used }
5666 	 */
5667 	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5668 		return ctx_type;
5669 	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5670 		return ctx_type;
5671 	if (strcmp(ctx_tname, tname)) {
5672 		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5673 		 * underlying struct and check name again
5674 		 */
5675 		if (!btf_type_is_modifier(ctx_struct))
5676 			return NULL;
5677 		while (btf_type_is_modifier(ctx_struct))
5678 			ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5679 		goto again;
5680 	}
5681 	return ctx_type;
5682 }
5683 
5684 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5685 				     struct btf *btf,
5686 				     const struct btf_type *t,
5687 				     enum bpf_prog_type prog_type,
5688 				     int arg)
5689 {
5690 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5691 
5692 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5693 	if (!prog_ctx_type)
5694 		return -ENOENT;
5695 	kern_ctx_type = prog_ctx_type + 1;
5696 	return kern_ctx_type->type;
5697 }
5698 
5699 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5700 {
5701 	const struct btf_member *kctx_member;
5702 	const struct btf_type *conv_struct;
5703 	const struct btf_type *kctx_type;
5704 	u32 kctx_type_id;
5705 
5706 	conv_struct = bpf_ctx_convert.t;
5707 	/* get member for kernel ctx type */
5708 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5709 	kctx_type_id = kctx_member->type;
5710 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5711 	if (!btf_type_is_struct(kctx_type)) {
5712 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5713 		return -EINVAL;
5714 	}
5715 
5716 	return kctx_type_id;
5717 }
5718 
5719 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5720 BTF_ID(struct, bpf_ctx_convert)
5721 
5722 struct btf *btf_parse_vmlinux(void)
5723 {
5724 	struct btf_verifier_env *env = NULL;
5725 	struct bpf_verifier_log *log;
5726 	struct btf *btf = NULL;
5727 	int err;
5728 
5729 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5730 	if (!env)
5731 		return ERR_PTR(-ENOMEM);
5732 
5733 	log = &env->log;
5734 	log->level = BPF_LOG_KERNEL;
5735 
5736 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5737 	if (!btf) {
5738 		err = -ENOMEM;
5739 		goto errout;
5740 	}
5741 	env->btf = btf;
5742 
5743 	btf->data = __start_BTF;
5744 	btf->data_size = __stop_BTF - __start_BTF;
5745 	btf->kernel_btf = true;
5746 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5747 
5748 	err = btf_parse_hdr(env);
5749 	if (err)
5750 		goto errout;
5751 
5752 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5753 
5754 	err = btf_parse_str_sec(env);
5755 	if (err)
5756 		goto errout;
5757 
5758 	err = btf_check_all_metas(env);
5759 	if (err)
5760 		goto errout;
5761 
5762 	err = btf_check_type_tags(env, btf, 1);
5763 	if (err)
5764 		goto errout;
5765 
5766 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5767 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5768 
5769 	bpf_struct_ops_init(btf, log);
5770 
5771 	refcount_set(&btf->refcnt, 1);
5772 
5773 	err = btf_alloc_id(btf);
5774 	if (err)
5775 		goto errout;
5776 
5777 	btf_verifier_env_free(env);
5778 	return btf;
5779 
5780 errout:
5781 	btf_verifier_env_free(env);
5782 	if (btf) {
5783 		kvfree(btf->types);
5784 		kfree(btf);
5785 	}
5786 	return ERR_PTR(err);
5787 }
5788 
5789 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5790 
5791 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5792 {
5793 	struct btf_verifier_env *env = NULL;
5794 	struct bpf_verifier_log *log;
5795 	struct btf *btf = NULL, *base_btf;
5796 	int err;
5797 
5798 	base_btf = bpf_get_btf_vmlinux();
5799 	if (IS_ERR(base_btf))
5800 		return base_btf;
5801 	if (!base_btf)
5802 		return ERR_PTR(-EINVAL);
5803 
5804 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5805 	if (!env)
5806 		return ERR_PTR(-ENOMEM);
5807 
5808 	log = &env->log;
5809 	log->level = BPF_LOG_KERNEL;
5810 
5811 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5812 	if (!btf) {
5813 		err = -ENOMEM;
5814 		goto errout;
5815 	}
5816 	env->btf = btf;
5817 
5818 	btf->base_btf = base_btf;
5819 	btf->start_id = base_btf->nr_types;
5820 	btf->start_str_off = base_btf->hdr.str_len;
5821 	btf->kernel_btf = true;
5822 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5823 
5824 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5825 	if (!btf->data) {
5826 		err = -ENOMEM;
5827 		goto errout;
5828 	}
5829 	memcpy(btf->data, data, data_size);
5830 	btf->data_size = data_size;
5831 
5832 	err = btf_parse_hdr(env);
5833 	if (err)
5834 		goto errout;
5835 
5836 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5837 
5838 	err = btf_parse_str_sec(env);
5839 	if (err)
5840 		goto errout;
5841 
5842 	err = btf_check_all_metas(env);
5843 	if (err)
5844 		goto errout;
5845 
5846 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5847 	if (err)
5848 		goto errout;
5849 
5850 	btf_verifier_env_free(env);
5851 	refcount_set(&btf->refcnt, 1);
5852 	return btf;
5853 
5854 errout:
5855 	btf_verifier_env_free(env);
5856 	if (btf) {
5857 		kvfree(btf->data);
5858 		kvfree(btf->types);
5859 		kfree(btf);
5860 	}
5861 	return ERR_PTR(err);
5862 }
5863 
5864 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5865 
5866 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5867 {
5868 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5869 
5870 	if (tgt_prog)
5871 		return tgt_prog->aux->btf;
5872 	else
5873 		return prog->aux->attach_btf;
5874 }
5875 
5876 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5877 {
5878 	/* skip modifiers */
5879 	t = btf_type_skip_modifiers(btf, t->type, NULL);
5880 
5881 	return btf_type_is_int(t);
5882 }
5883 
5884 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5885 			   int off)
5886 {
5887 	const struct btf_param *args;
5888 	const struct btf_type *t;
5889 	u32 offset = 0, nr_args;
5890 	int i;
5891 
5892 	if (!func_proto)
5893 		return off / 8;
5894 
5895 	nr_args = btf_type_vlen(func_proto);
5896 	args = (const struct btf_param *)(func_proto + 1);
5897 	for (i = 0; i < nr_args; i++) {
5898 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5899 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5900 		if (off < offset)
5901 			return i;
5902 	}
5903 
5904 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5905 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5906 	if (off < offset)
5907 		return nr_args;
5908 
5909 	return nr_args + 1;
5910 }
5911 
5912 static bool prog_args_trusted(const struct bpf_prog *prog)
5913 {
5914 	enum bpf_attach_type atype = prog->expected_attach_type;
5915 
5916 	switch (prog->type) {
5917 	case BPF_PROG_TYPE_TRACING:
5918 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5919 	case BPF_PROG_TYPE_LSM:
5920 		return bpf_lsm_is_trusted(prog);
5921 	case BPF_PROG_TYPE_STRUCT_OPS:
5922 		return true;
5923 	default:
5924 		return false;
5925 	}
5926 }
5927 
5928 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5929 		    const struct bpf_prog *prog,
5930 		    struct bpf_insn_access_aux *info)
5931 {
5932 	const struct btf_type *t = prog->aux->attach_func_proto;
5933 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5934 	struct btf *btf = bpf_prog_get_target_btf(prog);
5935 	const char *tname = prog->aux->attach_func_name;
5936 	struct bpf_verifier_log *log = info->log;
5937 	const struct btf_param *args;
5938 	const char *tag_value;
5939 	u32 nr_args, arg;
5940 	int i, ret;
5941 
5942 	if (off % 8) {
5943 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5944 			tname, off);
5945 		return false;
5946 	}
5947 	arg = get_ctx_arg_idx(btf, t, off);
5948 	args = (const struct btf_param *)(t + 1);
5949 	/* if (t == NULL) Fall back to default BPF prog with
5950 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5951 	 */
5952 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5953 	if (prog->aux->attach_btf_trace) {
5954 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5955 		args++;
5956 		nr_args--;
5957 	}
5958 
5959 	if (arg > nr_args) {
5960 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5961 			tname, arg + 1);
5962 		return false;
5963 	}
5964 
5965 	if (arg == nr_args) {
5966 		switch (prog->expected_attach_type) {
5967 		case BPF_LSM_CGROUP:
5968 		case BPF_LSM_MAC:
5969 		case BPF_TRACE_FEXIT:
5970 			/* When LSM programs are attached to void LSM hooks
5971 			 * they use FEXIT trampolines and when attached to
5972 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5973 			 *
5974 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5975 			 * the check:
5976 			 *
5977 			 *	if (ret_type != 'int')
5978 			 *		return -EINVAL;
5979 			 *
5980 			 * is _not_ done here. This is still safe as LSM hooks
5981 			 * have only void and int return types.
5982 			 */
5983 			if (!t)
5984 				return true;
5985 			t = btf_type_by_id(btf, t->type);
5986 			break;
5987 		case BPF_MODIFY_RETURN:
5988 			/* For now the BPF_MODIFY_RETURN can only be attached to
5989 			 * functions that return an int.
5990 			 */
5991 			if (!t)
5992 				return false;
5993 
5994 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5995 			if (!btf_type_is_small_int(t)) {
5996 				bpf_log(log,
5997 					"ret type %s not allowed for fmod_ret\n",
5998 					btf_type_str(t));
5999 				return false;
6000 			}
6001 			break;
6002 		default:
6003 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6004 				tname, arg + 1);
6005 			return false;
6006 		}
6007 	} else {
6008 		if (!t)
6009 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6010 			return true;
6011 		t = btf_type_by_id(btf, args[arg].type);
6012 	}
6013 
6014 	/* skip modifiers */
6015 	while (btf_type_is_modifier(t))
6016 		t = btf_type_by_id(btf, t->type);
6017 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6018 		/* accessing a scalar */
6019 		return true;
6020 	if (!btf_type_is_ptr(t)) {
6021 		bpf_log(log,
6022 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6023 			tname, arg,
6024 			__btf_name_by_offset(btf, t->name_off),
6025 			btf_type_str(t));
6026 		return false;
6027 	}
6028 
6029 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6030 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6031 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6032 		u32 type, flag;
6033 
6034 		type = base_type(ctx_arg_info->reg_type);
6035 		flag = type_flag(ctx_arg_info->reg_type);
6036 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6037 		    (flag & PTR_MAYBE_NULL)) {
6038 			info->reg_type = ctx_arg_info->reg_type;
6039 			return true;
6040 		}
6041 	}
6042 
6043 	if (t->type == 0)
6044 		/* This is a pointer to void.
6045 		 * It is the same as scalar from the verifier safety pov.
6046 		 * No further pointer walking is allowed.
6047 		 */
6048 		return true;
6049 
6050 	if (is_int_ptr(btf, t))
6051 		return true;
6052 
6053 	/* this is a pointer to another type */
6054 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6055 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6056 
6057 		if (ctx_arg_info->offset == off) {
6058 			if (!ctx_arg_info->btf_id) {
6059 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6060 				return false;
6061 			}
6062 
6063 			info->reg_type = ctx_arg_info->reg_type;
6064 			info->btf = btf_vmlinux;
6065 			info->btf_id = ctx_arg_info->btf_id;
6066 			return true;
6067 		}
6068 	}
6069 
6070 	info->reg_type = PTR_TO_BTF_ID;
6071 	if (prog_args_trusted(prog))
6072 		info->reg_type |= PTR_TRUSTED;
6073 
6074 	if (tgt_prog) {
6075 		enum bpf_prog_type tgt_type;
6076 
6077 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6078 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6079 		else
6080 			tgt_type = tgt_prog->type;
6081 
6082 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6083 		if (ret > 0) {
6084 			info->btf = btf_vmlinux;
6085 			info->btf_id = ret;
6086 			return true;
6087 		} else {
6088 			return false;
6089 		}
6090 	}
6091 
6092 	info->btf = btf;
6093 	info->btf_id = t->type;
6094 	t = btf_type_by_id(btf, t->type);
6095 
6096 	if (btf_type_is_type_tag(t)) {
6097 		tag_value = __btf_name_by_offset(btf, t->name_off);
6098 		if (strcmp(tag_value, "user") == 0)
6099 			info->reg_type |= MEM_USER;
6100 		if (strcmp(tag_value, "percpu") == 0)
6101 			info->reg_type |= MEM_PERCPU;
6102 	}
6103 
6104 	/* skip modifiers */
6105 	while (btf_type_is_modifier(t)) {
6106 		info->btf_id = t->type;
6107 		t = btf_type_by_id(btf, t->type);
6108 	}
6109 	if (!btf_type_is_struct(t)) {
6110 		bpf_log(log,
6111 			"func '%s' arg%d type %s is not a struct\n",
6112 			tname, arg, btf_type_str(t));
6113 		return false;
6114 	}
6115 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6116 		tname, arg, info->btf_id, btf_type_str(t),
6117 		__btf_name_by_offset(btf, t->name_off));
6118 	return true;
6119 }
6120 
6121 enum bpf_struct_walk_result {
6122 	/* < 0 error */
6123 	WALK_SCALAR = 0,
6124 	WALK_PTR,
6125 	WALK_STRUCT,
6126 };
6127 
6128 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6129 			   const struct btf_type *t, int off, int size,
6130 			   u32 *next_btf_id, enum bpf_type_flag *flag,
6131 			   const char **field_name)
6132 {
6133 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6134 	const struct btf_type *mtype, *elem_type = NULL;
6135 	const struct btf_member *member;
6136 	const char *tname, *mname, *tag_value;
6137 	u32 vlen, elem_id, mid;
6138 
6139 	*flag = 0;
6140 again:
6141 	tname = __btf_name_by_offset(btf, t->name_off);
6142 	if (!btf_type_is_struct(t)) {
6143 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6144 		return -EINVAL;
6145 	}
6146 
6147 	vlen = btf_type_vlen(t);
6148 	if (off + size > t->size) {
6149 		/* If the last element is a variable size array, we may
6150 		 * need to relax the rule.
6151 		 */
6152 		struct btf_array *array_elem;
6153 
6154 		if (vlen == 0)
6155 			goto error;
6156 
6157 		member = btf_type_member(t) + vlen - 1;
6158 		mtype = btf_type_skip_modifiers(btf, member->type,
6159 						NULL);
6160 		if (!btf_type_is_array(mtype))
6161 			goto error;
6162 
6163 		array_elem = (struct btf_array *)(mtype + 1);
6164 		if (array_elem->nelems != 0)
6165 			goto error;
6166 
6167 		moff = __btf_member_bit_offset(t, member) / 8;
6168 		if (off < moff)
6169 			goto error;
6170 
6171 		/* allow structure and integer */
6172 		t = btf_type_skip_modifiers(btf, array_elem->type,
6173 					    NULL);
6174 
6175 		if (btf_type_is_int(t))
6176 			return WALK_SCALAR;
6177 
6178 		if (!btf_type_is_struct(t))
6179 			goto error;
6180 
6181 		off = (off - moff) % t->size;
6182 		goto again;
6183 
6184 error:
6185 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6186 			tname, off, size);
6187 		return -EACCES;
6188 	}
6189 
6190 	for_each_member(i, t, member) {
6191 		/* offset of the field in bytes */
6192 		moff = __btf_member_bit_offset(t, member) / 8;
6193 		if (off + size <= moff)
6194 			/* won't find anything, field is already too far */
6195 			break;
6196 
6197 		if (__btf_member_bitfield_size(t, member)) {
6198 			u32 end_bit = __btf_member_bit_offset(t, member) +
6199 				__btf_member_bitfield_size(t, member);
6200 
6201 			/* off <= moff instead of off == moff because clang
6202 			 * does not generate a BTF member for anonymous
6203 			 * bitfield like the ":16" here:
6204 			 * struct {
6205 			 *	int :16;
6206 			 *	int x:8;
6207 			 * };
6208 			 */
6209 			if (off <= moff &&
6210 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6211 				return WALK_SCALAR;
6212 
6213 			/* off may be accessing a following member
6214 			 *
6215 			 * or
6216 			 *
6217 			 * Doing partial access at either end of this
6218 			 * bitfield.  Continue on this case also to
6219 			 * treat it as not accessing this bitfield
6220 			 * and eventually error out as field not
6221 			 * found to keep it simple.
6222 			 * It could be relaxed if there was a legit
6223 			 * partial access case later.
6224 			 */
6225 			continue;
6226 		}
6227 
6228 		/* In case of "off" is pointing to holes of a struct */
6229 		if (off < moff)
6230 			break;
6231 
6232 		/* type of the field */
6233 		mid = member->type;
6234 		mtype = btf_type_by_id(btf, member->type);
6235 		mname = __btf_name_by_offset(btf, member->name_off);
6236 
6237 		mtype = __btf_resolve_size(btf, mtype, &msize,
6238 					   &elem_type, &elem_id, &total_nelems,
6239 					   &mid);
6240 		if (IS_ERR(mtype)) {
6241 			bpf_log(log, "field %s doesn't have size\n", mname);
6242 			return -EFAULT;
6243 		}
6244 
6245 		mtrue_end = moff + msize;
6246 		if (off >= mtrue_end)
6247 			/* no overlap with member, keep iterating */
6248 			continue;
6249 
6250 		if (btf_type_is_array(mtype)) {
6251 			u32 elem_idx;
6252 
6253 			/* __btf_resolve_size() above helps to
6254 			 * linearize a multi-dimensional array.
6255 			 *
6256 			 * The logic here is treating an array
6257 			 * in a struct as the following way:
6258 			 *
6259 			 * struct outer {
6260 			 *	struct inner array[2][2];
6261 			 * };
6262 			 *
6263 			 * looks like:
6264 			 *
6265 			 * struct outer {
6266 			 *	struct inner array_elem0;
6267 			 *	struct inner array_elem1;
6268 			 *	struct inner array_elem2;
6269 			 *	struct inner array_elem3;
6270 			 * };
6271 			 *
6272 			 * When accessing outer->array[1][0], it moves
6273 			 * moff to "array_elem2", set mtype to
6274 			 * "struct inner", and msize also becomes
6275 			 * sizeof(struct inner).  Then most of the
6276 			 * remaining logic will fall through without
6277 			 * caring the current member is an array or
6278 			 * not.
6279 			 *
6280 			 * Unlike mtype/msize/moff, mtrue_end does not
6281 			 * change.  The naming difference ("_true") tells
6282 			 * that it is not always corresponding to
6283 			 * the current mtype/msize/moff.
6284 			 * It is the true end of the current
6285 			 * member (i.e. array in this case).  That
6286 			 * will allow an int array to be accessed like
6287 			 * a scratch space,
6288 			 * i.e. allow access beyond the size of
6289 			 *      the array's element as long as it is
6290 			 *      within the mtrue_end boundary.
6291 			 */
6292 
6293 			/* skip empty array */
6294 			if (moff == mtrue_end)
6295 				continue;
6296 
6297 			msize /= total_nelems;
6298 			elem_idx = (off - moff) / msize;
6299 			moff += elem_idx * msize;
6300 			mtype = elem_type;
6301 			mid = elem_id;
6302 		}
6303 
6304 		/* the 'off' we're looking for is either equal to start
6305 		 * of this field or inside of this struct
6306 		 */
6307 		if (btf_type_is_struct(mtype)) {
6308 			if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION &&
6309 			    btf_type_vlen(mtype) != 1)
6310 				/*
6311 				 * walking unions yields untrusted pointers
6312 				 * with exception of __bpf_md_ptr and other
6313 				 * unions with a single member
6314 				 */
6315 				*flag |= PTR_UNTRUSTED;
6316 
6317 			/* our field must be inside that union or struct */
6318 			t = mtype;
6319 
6320 			/* return if the offset matches the member offset */
6321 			if (off == moff) {
6322 				*next_btf_id = mid;
6323 				return WALK_STRUCT;
6324 			}
6325 
6326 			/* adjust offset we're looking for */
6327 			off -= moff;
6328 			goto again;
6329 		}
6330 
6331 		if (btf_type_is_ptr(mtype)) {
6332 			const struct btf_type *stype, *t;
6333 			enum bpf_type_flag tmp_flag = 0;
6334 			u32 id;
6335 
6336 			if (msize != size || off != moff) {
6337 				bpf_log(log,
6338 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6339 					mname, moff, tname, off, size);
6340 				return -EACCES;
6341 			}
6342 
6343 			/* check type tag */
6344 			t = btf_type_by_id(btf, mtype->type);
6345 			if (btf_type_is_type_tag(t)) {
6346 				tag_value = __btf_name_by_offset(btf, t->name_off);
6347 				/* check __user tag */
6348 				if (strcmp(tag_value, "user") == 0)
6349 					tmp_flag = MEM_USER;
6350 				/* check __percpu tag */
6351 				if (strcmp(tag_value, "percpu") == 0)
6352 					tmp_flag = MEM_PERCPU;
6353 				/* check __rcu tag */
6354 				if (strcmp(tag_value, "rcu") == 0)
6355 					tmp_flag = MEM_RCU;
6356 			}
6357 
6358 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6359 			if (btf_type_is_struct(stype)) {
6360 				*next_btf_id = id;
6361 				*flag |= tmp_flag;
6362 				if (field_name)
6363 					*field_name = mname;
6364 				return WALK_PTR;
6365 			}
6366 		}
6367 
6368 		/* Allow more flexible access within an int as long as
6369 		 * it is within mtrue_end.
6370 		 * Since mtrue_end could be the end of an array,
6371 		 * that also allows using an array of int as a scratch
6372 		 * space. e.g. skb->cb[].
6373 		 */
6374 		if (off + size > mtrue_end) {
6375 			bpf_log(log,
6376 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6377 				mname, mtrue_end, tname, off, size);
6378 			return -EACCES;
6379 		}
6380 
6381 		return WALK_SCALAR;
6382 	}
6383 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6384 	return -EINVAL;
6385 }
6386 
6387 int btf_struct_access(struct bpf_verifier_log *log,
6388 		      const struct bpf_reg_state *reg,
6389 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6390 		      u32 *next_btf_id, enum bpf_type_flag *flag,
6391 		      const char **field_name)
6392 {
6393 	const struct btf *btf = reg->btf;
6394 	enum bpf_type_flag tmp_flag = 0;
6395 	const struct btf_type *t;
6396 	u32 id = reg->btf_id;
6397 	int err;
6398 
6399 	while (type_is_alloc(reg->type)) {
6400 		struct btf_struct_meta *meta;
6401 		struct btf_record *rec;
6402 		int i;
6403 
6404 		meta = btf_find_struct_meta(btf, id);
6405 		if (!meta)
6406 			break;
6407 		rec = meta->record;
6408 		for (i = 0; i < rec->cnt; i++) {
6409 			struct btf_field *field = &rec->fields[i];
6410 			u32 offset = field->offset;
6411 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6412 				bpf_log(log,
6413 					"direct access to %s is disallowed\n",
6414 					btf_field_type_name(field->type));
6415 				return -EACCES;
6416 			}
6417 		}
6418 		break;
6419 	}
6420 
6421 	t = btf_type_by_id(btf, id);
6422 	do {
6423 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6424 
6425 		switch (err) {
6426 		case WALK_PTR:
6427 			/* For local types, the destination register cannot
6428 			 * become a pointer again.
6429 			 */
6430 			if (type_is_alloc(reg->type))
6431 				return SCALAR_VALUE;
6432 			/* If we found the pointer or scalar on t+off,
6433 			 * we're done.
6434 			 */
6435 			*next_btf_id = id;
6436 			*flag = tmp_flag;
6437 			return PTR_TO_BTF_ID;
6438 		case WALK_SCALAR:
6439 			return SCALAR_VALUE;
6440 		case WALK_STRUCT:
6441 			/* We found nested struct, so continue the search
6442 			 * by diving in it. At this point the offset is
6443 			 * aligned with the new type, so set it to 0.
6444 			 */
6445 			t = btf_type_by_id(btf, id);
6446 			off = 0;
6447 			break;
6448 		default:
6449 			/* It's either error or unknown return value..
6450 			 * scream and leave.
6451 			 */
6452 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6453 				return -EINVAL;
6454 			return err;
6455 		}
6456 	} while (t);
6457 
6458 	return -EINVAL;
6459 }
6460 
6461 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6462  * the same. Trivial ID check is not enough due to module BTFs, because we can
6463  * end up with two different module BTFs, but IDs point to the common type in
6464  * vmlinux BTF.
6465  */
6466 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6467 			const struct btf *btf2, u32 id2)
6468 {
6469 	if (id1 != id2)
6470 		return false;
6471 	if (btf1 == btf2)
6472 		return true;
6473 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6474 }
6475 
6476 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6477 			  const struct btf *btf, u32 id, int off,
6478 			  const struct btf *need_btf, u32 need_type_id,
6479 			  bool strict)
6480 {
6481 	const struct btf_type *type;
6482 	enum bpf_type_flag flag;
6483 	int err;
6484 
6485 	/* Are we already done? */
6486 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6487 		return true;
6488 	/* In case of strict type match, we do not walk struct, the top level
6489 	 * type match must succeed. When strict is true, off should have already
6490 	 * been 0.
6491 	 */
6492 	if (strict)
6493 		return false;
6494 again:
6495 	type = btf_type_by_id(btf, id);
6496 	if (!type)
6497 		return false;
6498 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6499 	if (err != WALK_STRUCT)
6500 		return false;
6501 
6502 	/* We found nested struct object. If it matches
6503 	 * the requested ID, we're done. Otherwise let's
6504 	 * continue the search with offset 0 in the new
6505 	 * type.
6506 	 */
6507 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6508 		off = 0;
6509 		goto again;
6510 	}
6511 
6512 	return true;
6513 }
6514 
6515 static int __get_type_size(struct btf *btf, u32 btf_id,
6516 			   const struct btf_type **ret_type)
6517 {
6518 	const struct btf_type *t;
6519 
6520 	*ret_type = btf_type_by_id(btf, 0);
6521 	if (!btf_id)
6522 		/* void */
6523 		return 0;
6524 	t = btf_type_by_id(btf, btf_id);
6525 	while (t && btf_type_is_modifier(t))
6526 		t = btf_type_by_id(btf, t->type);
6527 	if (!t)
6528 		return -EINVAL;
6529 	*ret_type = t;
6530 	if (btf_type_is_ptr(t))
6531 		/* kernel size of pointer. Not BPF's size of pointer*/
6532 		return sizeof(void *);
6533 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6534 		return t->size;
6535 	return -EINVAL;
6536 }
6537 
6538 static u8 __get_type_fmodel_flags(const struct btf_type *t)
6539 {
6540 	u8 flags = 0;
6541 
6542 	if (__btf_type_is_struct(t))
6543 		flags |= BTF_FMODEL_STRUCT_ARG;
6544 	if (btf_type_is_signed_int(t))
6545 		flags |= BTF_FMODEL_SIGNED_ARG;
6546 
6547 	return flags;
6548 }
6549 
6550 int btf_distill_func_proto(struct bpf_verifier_log *log,
6551 			   struct btf *btf,
6552 			   const struct btf_type *func,
6553 			   const char *tname,
6554 			   struct btf_func_model *m)
6555 {
6556 	const struct btf_param *args;
6557 	const struct btf_type *t;
6558 	u32 i, nargs;
6559 	int ret;
6560 
6561 	if (!func) {
6562 		/* BTF function prototype doesn't match the verifier types.
6563 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6564 		 */
6565 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6566 			m->arg_size[i] = 8;
6567 			m->arg_flags[i] = 0;
6568 		}
6569 		m->ret_size = 8;
6570 		m->ret_flags = 0;
6571 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6572 		return 0;
6573 	}
6574 	args = (const struct btf_param *)(func + 1);
6575 	nargs = btf_type_vlen(func);
6576 	if (nargs > MAX_BPF_FUNC_ARGS) {
6577 		bpf_log(log,
6578 			"The function %s has %d arguments. Too many.\n",
6579 			tname, nargs);
6580 		return -EINVAL;
6581 	}
6582 	ret = __get_type_size(btf, func->type, &t);
6583 	if (ret < 0 || __btf_type_is_struct(t)) {
6584 		bpf_log(log,
6585 			"The function %s return type %s is unsupported.\n",
6586 			tname, btf_type_str(t));
6587 		return -EINVAL;
6588 	}
6589 	m->ret_size = ret;
6590 	m->ret_flags = __get_type_fmodel_flags(t);
6591 
6592 	for (i = 0; i < nargs; i++) {
6593 		if (i == nargs - 1 && args[i].type == 0) {
6594 			bpf_log(log,
6595 				"The function %s with variable args is unsupported.\n",
6596 				tname);
6597 			return -EINVAL;
6598 		}
6599 		ret = __get_type_size(btf, args[i].type, &t);
6600 
6601 		/* No support of struct argument size greater than 16 bytes */
6602 		if (ret < 0 || ret > 16) {
6603 			bpf_log(log,
6604 				"The function %s arg%d type %s is unsupported.\n",
6605 				tname, i, btf_type_str(t));
6606 			return -EINVAL;
6607 		}
6608 		if (ret == 0) {
6609 			bpf_log(log,
6610 				"The function %s has malformed void argument.\n",
6611 				tname);
6612 			return -EINVAL;
6613 		}
6614 		m->arg_size[i] = ret;
6615 		m->arg_flags[i] = __get_type_fmodel_flags(t);
6616 	}
6617 	m->nr_args = nargs;
6618 	return 0;
6619 }
6620 
6621 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6622  * t1 points to BTF_KIND_FUNC in btf1
6623  * t2 points to BTF_KIND_FUNC in btf2
6624  * Returns:
6625  * EINVAL - function prototype mismatch
6626  * EFAULT - verifier bug
6627  * 0 - 99% match. The last 1% is validated by the verifier.
6628  */
6629 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6630 				     struct btf *btf1, const struct btf_type *t1,
6631 				     struct btf *btf2, const struct btf_type *t2)
6632 {
6633 	const struct btf_param *args1, *args2;
6634 	const char *fn1, *fn2, *s1, *s2;
6635 	u32 nargs1, nargs2, i;
6636 
6637 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6638 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6639 
6640 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6641 		bpf_log(log, "%s() is not a global function\n", fn1);
6642 		return -EINVAL;
6643 	}
6644 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6645 		bpf_log(log, "%s() is not a global function\n", fn2);
6646 		return -EINVAL;
6647 	}
6648 
6649 	t1 = btf_type_by_id(btf1, t1->type);
6650 	if (!t1 || !btf_type_is_func_proto(t1))
6651 		return -EFAULT;
6652 	t2 = btf_type_by_id(btf2, t2->type);
6653 	if (!t2 || !btf_type_is_func_proto(t2))
6654 		return -EFAULT;
6655 
6656 	args1 = (const struct btf_param *)(t1 + 1);
6657 	nargs1 = btf_type_vlen(t1);
6658 	args2 = (const struct btf_param *)(t2 + 1);
6659 	nargs2 = btf_type_vlen(t2);
6660 
6661 	if (nargs1 != nargs2) {
6662 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6663 			fn1, nargs1, fn2, nargs2);
6664 		return -EINVAL;
6665 	}
6666 
6667 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6668 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6669 	if (t1->info != t2->info) {
6670 		bpf_log(log,
6671 			"Return type %s of %s() doesn't match type %s of %s()\n",
6672 			btf_type_str(t1), fn1,
6673 			btf_type_str(t2), fn2);
6674 		return -EINVAL;
6675 	}
6676 
6677 	for (i = 0; i < nargs1; i++) {
6678 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6679 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6680 
6681 		if (t1->info != t2->info) {
6682 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6683 				i, fn1, btf_type_str(t1),
6684 				fn2, btf_type_str(t2));
6685 			return -EINVAL;
6686 		}
6687 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6688 			bpf_log(log,
6689 				"arg%d in %s() has size %d while %s() has %d\n",
6690 				i, fn1, t1->size,
6691 				fn2, t2->size);
6692 			return -EINVAL;
6693 		}
6694 
6695 		/* global functions are validated with scalars and pointers
6696 		 * to context only. And only global functions can be replaced.
6697 		 * Hence type check only those types.
6698 		 */
6699 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6700 			continue;
6701 		if (!btf_type_is_ptr(t1)) {
6702 			bpf_log(log,
6703 				"arg%d in %s() has unrecognized type\n",
6704 				i, fn1);
6705 			return -EINVAL;
6706 		}
6707 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6708 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6709 		if (!btf_type_is_struct(t1)) {
6710 			bpf_log(log,
6711 				"arg%d in %s() is not a pointer to context\n",
6712 				i, fn1);
6713 			return -EINVAL;
6714 		}
6715 		if (!btf_type_is_struct(t2)) {
6716 			bpf_log(log,
6717 				"arg%d in %s() is not a pointer to context\n",
6718 				i, fn2);
6719 			return -EINVAL;
6720 		}
6721 		/* This is an optional check to make program writing easier.
6722 		 * Compare names of structs and report an error to the user.
6723 		 * btf_prepare_func_args() already checked that t2 struct
6724 		 * is a context type. btf_prepare_func_args() will check
6725 		 * later that t1 struct is a context type as well.
6726 		 */
6727 		s1 = btf_name_by_offset(btf1, t1->name_off);
6728 		s2 = btf_name_by_offset(btf2, t2->name_off);
6729 		if (strcmp(s1, s2)) {
6730 			bpf_log(log,
6731 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6732 				i, fn1, s1, fn2, s2);
6733 			return -EINVAL;
6734 		}
6735 	}
6736 	return 0;
6737 }
6738 
6739 /* Compare BTFs of given program with BTF of target program */
6740 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6741 			 struct btf *btf2, const struct btf_type *t2)
6742 {
6743 	struct btf *btf1 = prog->aux->btf;
6744 	const struct btf_type *t1;
6745 	u32 btf_id = 0;
6746 
6747 	if (!prog->aux->func_info) {
6748 		bpf_log(log, "Program extension requires BTF\n");
6749 		return -EINVAL;
6750 	}
6751 
6752 	btf_id = prog->aux->func_info[0].type_id;
6753 	if (!btf_id)
6754 		return -EFAULT;
6755 
6756 	t1 = btf_type_by_id(btf1, btf_id);
6757 	if (!t1 || !btf_type_is_func(t1))
6758 		return -EFAULT;
6759 
6760 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6761 }
6762 
6763 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6764 				    const struct btf *btf, u32 func_id,
6765 				    struct bpf_reg_state *regs,
6766 				    bool ptr_to_mem_ok,
6767 				    bool processing_call)
6768 {
6769 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6770 	struct bpf_verifier_log *log = &env->log;
6771 	const char *func_name, *ref_tname;
6772 	const struct btf_type *t, *ref_t;
6773 	const struct btf_param *args;
6774 	u32 i, nargs, ref_id;
6775 	int ret;
6776 
6777 	t = btf_type_by_id(btf, func_id);
6778 	if (!t || !btf_type_is_func(t)) {
6779 		/* These checks were already done by the verifier while loading
6780 		 * struct bpf_func_info or in add_kfunc_call().
6781 		 */
6782 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6783 			func_id);
6784 		return -EFAULT;
6785 	}
6786 	func_name = btf_name_by_offset(btf, t->name_off);
6787 
6788 	t = btf_type_by_id(btf, t->type);
6789 	if (!t || !btf_type_is_func_proto(t)) {
6790 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6791 		return -EFAULT;
6792 	}
6793 	args = (const struct btf_param *)(t + 1);
6794 	nargs = btf_type_vlen(t);
6795 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6796 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6797 			MAX_BPF_FUNC_REG_ARGS);
6798 		return -EINVAL;
6799 	}
6800 
6801 	/* check that BTF function arguments match actual types that the
6802 	 * verifier sees.
6803 	 */
6804 	for (i = 0; i < nargs; i++) {
6805 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6806 		u32 regno = i + 1;
6807 		struct bpf_reg_state *reg = &regs[regno];
6808 
6809 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6810 		if (btf_type_is_scalar(t)) {
6811 			if (reg->type == SCALAR_VALUE)
6812 				continue;
6813 			bpf_log(log, "R%d is not a scalar\n", regno);
6814 			return -EINVAL;
6815 		}
6816 
6817 		if (!btf_type_is_ptr(t)) {
6818 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6819 				i, btf_type_str(t));
6820 			return -EINVAL;
6821 		}
6822 
6823 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6824 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6825 
6826 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6827 		if (ret < 0)
6828 			return ret;
6829 
6830 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6831 			/* If function expects ctx type in BTF check that caller
6832 			 * is passing PTR_TO_CTX.
6833 			 */
6834 			if (reg->type != PTR_TO_CTX) {
6835 				bpf_log(log,
6836 					"arg#%d expected pointer to ctx, but got %s\n",
6837 					i, btf_type_str(t));
6838 				return -EINVAL;
6839 			}
6840 		} else if (ptr_to_mem_ok && processing_call) {
6841 			const struct btf_type *resolve_ret;
6842 			u32 type_size;
6843 
6844 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6845 			if (IS_ERR(resolve_ret)) {
6846 				bpf_log(log,
6847 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6848 					i, btf_type_str(ref_t), ref_tname,
6849 					PTR_ERR(resolve_ret));
6850 				return -EINVAL;
6851 			}
6852 
6853 			if (check_mem_reg(env, reg, regno, type_size))
6854 				return -EINVAL;
6855 		} else {
6856 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6857 				func_name, func_id);
6858 			return -EINVAL;
6859 		}
6860 	}
6861 
6862 	return 0;
6863 }
6864 
6865 /* Compare BTF of a function declaration with given bpf_reg_state.
6866  * Returns:
6867  * EFAULT - there is a verifier bug. Abort verification.
6868  * EINVAL - there is a type mismatch or BTF is not available.
6869  * 0 - BTF matches with what bpf_reg_state expects.
6870  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6871  */
6872 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6873 				struct bpf_reg_state *regs)
6874 {
6875 	struct bpf_prog *prog = env->prog;
6876 	struct btf *btf = prog->aux->btf;
6877 	bool is_global;
6878 	u32 btf_id;
6879 	int err;
6880 
6881 	if (!prog->aux->func_info)
6882 		return -EINVAL;
6883 
6884 	btf_id = prog->aux->func_info[subprog].type_id;
6885 	if (!btf_id)
6886 		return -EFAULT;
6887 
6888 	if (prog->aux->func_info_aux[subprog].unreliable)
6889 		return -EINVAL;
6890 
6891 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6892 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6893 
6894 	/* Compiler optimizations can remove arguments from static functions
6895 	 * or mismatched type can be passed into a global function.
6896 	 * In such cases mark the function as unreliable from BTF point of view.
6897 	 */
6898 	if (err)
6899 		prog->aux->func_info_aux[subprog].unreliable = true;
6900 	return err;
6901 }
6902 
6903 /* Compare BTF of a function call with given bpf_reg_state.
6904  * Returns:
6905  * EFAULT - there is a verifier bug. Abort verification.
6906  * EINVAL - there is a type mismatch or BTF is not available.
6907  * 0 - BTF matches with what bpf_reg_state expects.
6908  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6909  *
6910  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6911  * because btf_check_func_arg_match() is still doing both. Once that
6912  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6913  * first, and then treat the calling part in a new code path.
6914  */
6915 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6916 			   struct bpf_reg_state *regs)
6917 {
6918 	struct bpf_prog *prog = env->prog;
6919 	struct btf *btf = prog->aux->btf;
6920 	bool is_global;
6921 	u32 btf_id;
6922 	int err;
6923 
6924 	if (!prog->aux->func_info)
6925 		return -EINVAL;
6926 
6927 	btf_id = prog->aux->func_info[subprog].type_id;
6928 	if (!btf_id)
6929 		return -EFAULT;
6930 
6931 	if (prog->aux->func_info_aux[subprog].unreliable)
6932 		return -EINVAL;
6933 
6934 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6935 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6936 
6937 	/* Compiler optimizations can remove arguments from static functions
6938 	 * or mismatched type can be passed into a global function.
6939 	 * In such cases mark the function as unreliable from BTF point of view.
6940 	 */
6941 	if (err)
6942 		prog->aux->func_info_aux[subprog].unreliable = true;
6943 	return err;
6944 }
6945 
6946 /* Convert BTF of a function into bpf_reg_state if possible
6947  * Returns:
6948  * EFAULT - there is a verifier bug. Abort verification.
6949  * EINVAL - cannot convert BTF.
6950  * 0 - Successfully converted BTF into bpf_reg_state
6951  * (either PTR_TO_CTX or SCALAR_VALUE).
6952  */
6953 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6954 			  struct bpf_reg_state *regs)
6955 {
6956 	struct bpf_verifier_log *log = &env->log;
6957 	struct bpf_prog *prog = env->prog;
6958 	enum bpf_prog_type prog_type = prog->type;
6959 	struct btf *btf = prog->aux->btf;
6960 	const struct btf_param *args;
6961 	const struct btf_type *t, *ref_t;
6962 	u32 i, nargs, btf_id;
6963 	const char *tname;
6964 
6965 	if (!prog->aux->func_info ||
6966 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6967 		bpf_log(log, "Verifier bug\n");
6968 		return -EFAULT;
6969 	}
6970 
6971 	btf_id = prog->aux->func_info[subprog].type_id;
6972 	if (!btf_id) {
6973 		bpf_log(log, "Global functions need valid BTF\n");
6974 		return -EFAULT;
6975 	}
6976 
6977 	t = btf_type_by_id(btf, btf_id);
6978 	if (!t || !btf_type_is_func(t)) {
6979 		/* These checks were already done by the verifier while loading
6980 		 * struct bpf_func_info
6981 		 */
6982 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6983 			subprog);
6984 		return -EFAULT;
6985 	}
6986 	tname = btf_name_by_offset(btf, t->name_off);
6987 
6988 	if (log->level & BPF_LOG_LEVEL)
6989 		bpf_log(log, "Validating %s() func#%d...\n",
6990 			tname, subprog);
6991 
6992 	if (prog->aux->func_info_aux[subprog].unreliable) {
6993 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6994 		return -EFAULT;
6995 	}
6996 	if (prog_type == BPF_PROG_TYPE_EXT)
6997 		prog_type = prog->aux->dst_prog->type;
6998 
6999 	t = btf_type_by_id(btf, t->type);
7000 	if (!t || !btf_type_is_func_proto(t)) {
7001 		bpf_log(log, "Invalid type of function %s()\n", tname);
7002 		return -EFAULT;
7003 	}
7004 	args = (const struct btf_param *)(t + 1);
7005 	nargs = btf_type_vlen(t);
7006 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7007 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7008 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7009 		return -EINVAL;
7010 	}
7011 	/* check that function returns int */
7012 	t = btf_type_by_id(btf, t->type);
7013 	while (btf_type_is_modifier(t))
7014 		t = btf_type_by_id(btf, t->type);
7015 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7016 		bpf_log(log,
7017 			"Global function %s() doesn't return scalar. Only those are supported.\n",
7018 			tname);
7019 		return -EINVAL;
7020 	}
7021 	/* Convert BTF function arguments into verifier types.
7022 	 * Only PTR_TO_CTX and SCALAR are supported atm.
7023 	 */
7024 	for (i = 0; i < nargs; i++) {
7025 		struct bpf_reg_state *reg = &regs[i + 1];
7026 
7027 		t = btf_type_by_id(btf, args[i].type);
7028 		while (btf_type_is_modifier(t))
7029 			t = btf_type_by_id(btf, t->type);
7030 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7031 			reg->type = SCALAR_VALUE;
7032 			continue;
7033 		}
7034 		if (btf_type_is_ptr(t)) {
7035 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
7036 				reg->type = PTR_TO_CTX;
7037 				continue;
7038 			}
7039 
7040 			t = btf_type_skip_modifiers(btf, t->type, NULL);
7041 
7042 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
7043 			if (IS_ERR(ref_t)) {
7044 				bpf_log(log,
7045 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7046 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
7047 					PTR_ERR(ref_t));
7048 				return -EINVAL;
7049 			}
7050 
7051 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7052 			reg->id = ++env->id_gen;
7053 
7054 			continue;
7055 		}
7056 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7057 			i, btf_type_str(t), tname);
7058 		return -EINVAL;
7059 	}
7060 	return 0;
7061 }
7062 
7063 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7064 			  struct btf_show *show)
7065 {
7066 	const struct btf_type *t = btf_type_by_id(btf, type_id);
7067 
7068 	show->btf = btf;
7069 	memset(&show->state, 0, sizeof(show->state));
7070 	memset(&show->obj, 0, sizeof(show->obj));
7071 
7072 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7073 }
7074 
7075 static void btf_seq_show(struct btf_show *show, const char *fmt,
7076 			 va_list args)
7077 {
7078 	seq_vprintf((struct seq_file *)show->target, fmt, args);
7079 }
7080 
7081 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7082 			    void *obj, struct seq_file *m, u64 flags)
7083 {
7084 	struct btf_show sseq;
7085 
7086 	sseq.target = m;
7087 	sseq.showfn = btf_seq_show;
7088 	sseq.flags = flags;
7089 
7090 	btf_type_show(btf, type_id, obj, &sseq);
7091 
7092 	return sseq.state.status;
7093 }
7094 
7095 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7096 		       struct seq_file *m)
7097 {
7098 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7099 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7100 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7101 }
7102 
7103 struct btf_show_snprintf {
7104 	struct btf_show show;
7105 	int len_left;		/* space left in string */
7106 	int len;		/* length we would have written */
7107 };
7108 
7109 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7110 			      va_list args)
7111 {
7112 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7113 	int len;
7114 
7115 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7116 
7117 	if (len < 0) {
7118 		ssnprintf->len_left = 0;
7119 		ssnprintf->len = len;
7120 	} else if (len >= ssnprintf->len_left) {
7121 		/* no space, drive on to get length we would have written */
7122 		ssnprintf->len_left = 0;
7123 		ssnprintf->len += len;
7124 	} else {
7125 		ssnprintf->len_left -= len;
7126 		ssnprintf->len += len;
7127 		show->target += len;
7128 	}
7129 }
7130 
7131 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7132 			   char *buf, int len, u64 flags)
7133 {
7134 	struct btf_show_snprintf ssnprintf;
7135 
7136 	ssnprintf.show.target = buf;
7137 	ssnprintf.show.flags = flags;
7138 	ssnprintf.show.showfn = btf_snprintf_show;
7139 	ssnprintf.len_left = len;
7140 	ssnprintf.len = 0;
7141 
7142 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7143 
7144 	/* If we encountered an error, return it. */
7145 	if (ssnprintf.show.state.status)
7146 		return ssnprintf.show.state.status;
7147 
7148 	/* Otherwise return length we would have written */
7149 	return ssnprintf.len;
7150 }
7151 
7152 #ifdef CONFIG_PROC_FS
7153 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7154 {
7155 	const struct btf *btf = filp->private_data;
7156 
7157 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7158 }
7159 #endif
7160 
7161 static int btf_release(struct inode *inode, struct file *filp)
7162 {
7163 	btf_put(filp->private_data);
7164 	return 0;
7165 }
7166 
7167 const struct file_operations btf_fops = {
7168 #ifdef CONFIG_PROC_FS
7169 	.show_fdinfo	= bpf_btf_show_fdinfo,
7170 #endif
7171 	.release	= btf_release,
7172 };
7173 
7174 static int __btf_new_fd(struct btf *btf)
7175 {
7176 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7177 }
7178 
7179 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7180 {
7181 	struct btf *btf;
7182 	int ret;
7183 
7184 	btf = btf_parse(attr, uattr, uattr_size);
7185 	if (IS_ERR(btf))
7186 		return PTR_ERR(btf);
7187 
7188 	ret = btf_alloc_id(btf);
7189 	if (ret) {
7190 		btf_free(btf);
7191 		return ret;
7192 	}
7193 
7194 	/*
7195 	 * The BTF ID is published to the userspace.
7196 	 * All BTF free must go through call_rcu() from
7197 	 * now on (i.e. free by calling btf_put()).
7198 	 */
7199 
7200 	ret = __btf_new_fd(btf);
7201 	if (ret < 0)
7202 		btf_put(btf);
7203 
7204 	return ret;
7205 }
7206 
7207 struct btf *btf_get_by_fd(int fd)
7208 {
7209 	struct btf *btf;
7210 	struct fd f;
7211 
7212 	f = fdget(fd);
7213 
7214 	if (!f.file)
7215 		return ERR_PTR(-EBADF);
7216 
7217 	if (f.file->f_op != &btf_fops) {
7218 		fdput(f);
7219 		return ERR_PTR(-EINVAL);
7220 	}
7221 
7222 	btf = f.file->private_data;
7223 	refcount_inc(&btf->refcnt);
7224 	fdput(f);
7225 
7226 	return btf;
7227 }
7228 
7229 int btf_get_info_by_fd(const struct btf *btf,
7230 		       const union bpf_attr *attr,
7231 		       union bpf_attr __user *uattr)
7232 {
7233 	struct bpf_btf_info __user *uinfo;
7234 	struct bpf_btf_info info;
7235 	u32 info_copy, btf_copy;
7236 	void __user *ubtf;
7237 	char __user *uname;
7238 	u32 uinfo_len, uname_len, name_len;
7239 	int ret = 0;
7240 
7241 	uinfo = u64_to_user_ptr(attr->info.info);
7242 	uinfo_len = attr->info.info_len;
7243 
7244 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7245 	memset(&info, 0, sizeof(info));
7246 	if (copy_from_user(&info, uinfo, info_copy))
7247 		return -EFAULT;
7248 
7249 	info.id = btf->id;
7250 	ubtf = u64_to_user_ptr(info.btf);
7251 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7252 	if (copy_to_user(ubtf, btf->data, btf_copy))
7253 		return -EFAULT;
7254 	info.btf_size = btf->data_size;
7255 
7256 	info.kernel_btf = btf->kernel_btf;
7257 
7258 	uname = u64_to_user_ptr(info.name);
7259 	uname_len = info.name_len;
7260 	if (!uname ^ !uname_len)
7261 		return -EINVAL;
7262 
7263 	name_len = strlen(btf->name);
7264 	info.name_len = name_len;
7265 
7266 	if (uname) {
7267 		if (uname_len >= name_len + 1) {
7268 			if (copy_to_user(uname, btf->name, name_len + 1))
7269 				return -EFAULT;
7270 		} else {
7271 			char zero = '\0';
7272 
7273 			if (copy_to_user(uname, btf->name, uname_len - 1))
7274 				return -EFAULT;
7275 			if (put_user(zero, uname + uname_len - 1))
7276 				return -EFAULT;
7277 			/* let user-space know about too short buffer */
7278 			ret = -ENOSPC;
7279 		}
7280 	}
7281 
7282 	if (copy_to_user(uinfo, &info, info_copy) ||
7283 	    put_user(info_copy, &uattr->info.info_len))
7284 		return -EFAULT;
7285 
7286 	return ret;
7287 }
7288 
7289 int btf_get_fd_by_id(u32 id)
7290 {
7291 	struct btf *btf;
7292 	int fd;
7293 
7294 	rcu_read_lock();
7295 	btf = idr_find(&btf_idr, id);
7296 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7297 		btf = ERR_PTR(-ENOENT);
7298 	rcu_read_unlock();
7299 
7300 	if (IS_ERR(btf))
7301 		return PTR_ERR(btf);
7302 
7303 	fd = __btf_new_fd(btf);
7304 	if (fd < 0)
7305 		btf_put(btf);
7306 
7307 	return fd;
7308 }
7309 
7310 u32 btf_obj_id(const struct btf *btf)
7311 {
7312 	return btf->id;
7313 }
7314 
7315 bool btf_is_kernel(const struct btf *btf)
7316 {
7317 	return btf->kernel_btf;
7318 }
7319 
7320 bool btf_is_module(const struct btf *btf)
7321 {
7322 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7323 }
7324 
7325 enum {
7326 	BTF_MODULE_F_LIVE = (1 << 0),
7327 };
7328 
7329 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7330 struct btf_module {
7331 	struct list_head list;
7332 	struct module *module;
7333 	struct btf *btf;
7334 	struct bin_attribute *sysfs_attr;
7335 	int flags;
7336 };
7337 
7338 static LIST_HEAD(btf_modules);
7339 static DEFINE_MUTEX(btf_module_mutex);
7340 
7341 static ssize_t
7342 btf_module_read(struct file *file, struct kobject *kobj,
7343 		struct bin_attribute *bin_attr,
7344 		char *buf, loff_t off, size_t len)
7345 {
7346 	const struct btf *btf = bin_attr->private;
7347 
7348 	memcpy(buf, btf->data + off, len);
7349 	return len;
7350 }
7351 
7352 static void purge_cand_cache(struct btf *btf);
7353 
7354 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7355 			     void *module)
7356 {
7357 	struct btf_module *btf_mod, *tmp;
7358 	struct module *mod = module;
7359 	struct btf *btf;
7360 	int err = 0;
7361 
7362 	if (mod->btf_data_size == 0 ||
7363 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7364 	     op != MODULE_STATE_GOING))
7365 		goto out;
7366 
7367 	switch (op) {
7368 	case MODULE_STATE_COMING:
7369 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7370 		if (!btf_mod) {
7371 			err = -ENOMEM;
7372 			goto out;
7373 		}
7374 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7375 		if (IS_ERR(btf)) {
7376 			kfree(btf_mod);
7377 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7378 				pr_warn("failed to validate module [%s] BTF: %ld\n",
7379 					mod->name, PTR_ERR(btf));
7380 				err = PTR_ERR(btf);
7381 			} else {
7382 				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7383 			}
7384 			goto out;
7385 		}
7386 		err = btf_alloc_id(btf);
7387 		if (err) {
7388 			btf_free(btf);
7389 			kfree(btf_mod);
7390 			goto out;
7391 		}
7392 
7393 		purge_cand_cache(NULL);
7394 		mutex_lock(&btf_module_mutex);
7395 		btf_mod->module = module;
7396 		btf_mod->btf = btf;
7397 		list_add(&btf_mod->list, &btf_modules);
7398 		mutex_unlock(&btf_module_mutex);
7399 
7400 		if (IS_ENABLED(CONFIG_SYSFS)) {
7401 			struct bin_attribute *attr;
7402 
7403 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7404 			if (!attr)
7405 				goto out;
7406 
7407 			sysfs_bin_attr_init(attr);
7408 			attr->attr.name = btf->name;
7409 			attr->attr.mode = 0444;
7410 			attr->size = btf->data_size;
7411 			attr->private = btf;
7412 			attr->read = btf_module_read;
7413 
7414 			err = sysfs_create_bin_file(btf_kobj, attr);
7415 			if (err) {
7416 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7417 					mod->name, err);
7418 				kfree(attr);
7419 				err = 0;
7420 				goto out;
7421 			}
7422 
7423 			btf_mod->sysfs_attr = attr;
7424 		}
7425 
7426 		break;
7427 	case MODULE_STATE_LIVE:
7428 		mutex_lock(&btf_module_mutex);
7429 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7430 			if (btf_mod->module != module)
7431 				continue;
7432 
7433 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7434 			break;
7435 		}
7436 		mutex_unlock(&btf_module_mutex);
7437 		break;
7438 	case MODULE_STATE_GOING:
7439 		mutex_lock(&btf_module_mutex);
7440 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7441 			if (btf_mod->module != module)
7442 				continue;
7443 
7444 			list_del(&btf_mod->list);
7445 			if (btf_mod->sysfs_attr)
7446 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7447 			purge_cand_cache(btf_mod->btf);
7448 			btf_put(btf_mod->btf);
7449 			kfree(btf_mod->sysfs_attr);
7450 			kfree(btf_mod);
7451 			break;
7452 		}
7453 		mutex_unlock(&btf_module_mutex);
7454 		break;
7455 	}
7456 out:
7457 	return notifier_from_errno(err);
7458 }
7459 
7460 static struct notifier_block btf_module_nb = {
7461 	.notifier_call = btf_module_notify,
7462 };
7463 
7464 static int __init btf_module_init(void)
7465 {
7466 	register_module_notifier(&btf_module_nb);
7467 	return 0;
7468 }
7469 
7470 fs_initcall(btf_module_init);
7471 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7472 
7473 struct module *btf_try_get_module(const struct btf *btf)
7474 {
7475 	struct module *res = NULL;
7476 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7477 	struct btf_module *btf_mod, *tmp;
7478 
7479 	mutex_lock(&btf_module_mutex);
7480 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7481 		if (btf_mod->btf != btf)
7482 			continue;
7483 
7484 		/* We must only consider module whose __init routine has
7485 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7486 		 * which is set from the notifier callback for
7487 		 * MODULE_STATE_LIVE.
7488 		 */
7489 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7490 			res = btf_mod->module;
7491 
7492 		break;
7493 	}
7494 	mutex_unlock(&btf_module_mutex);
7495 #endif
7496 
7497 	return res;
7498 }
7499 
7500 /* Returns struct btf corresponding to the struct module.
7501  * This function can return NULL or ERR_PTR.
7502  */
7503 static struct btf *btf_get_module_btf(const struct module *module)
7504 {
7505 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7506 	struct btf_module *btf_mod, *tmp;
7507 #endif
7508 	struct btf *btf = NULL;
7509 
7510 	if (!module) {
7511 		btf = bpf_get_btf_vmlinux();
7512 		if (!IS_ERR_OR_NULL(btf))
7513 			btf_get(btf);
7514 		return btf;
7515 	}
7516 
7517 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7518 	mutex_lock(&btf_module_mutex);
7519 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7520 		if (btf_mod->module != module)
7521 			continue;
7522 
7523 		btf_get(btf_mod->btf);
7524 		btf = btf_mod->btf;
7525 		break;
7526 	}
7527 	mutex_unlock(&btf_module_mutex);
7528 #endif
7529 
7530 	return btf;
7531 }
7532 
7533 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7534 {
7535 	struct btf *btf = NULL;
7536 	int btf_obj_fd = 0;
7537 	long ret;
7538 
7539 	if (flags)
7540 		return -EINVAL;
7541 
7542 	if (name_sz <= 1 || name[name_sz - 1])
7543 		return -EINVAL;
7544 
7545 	ret = bpf_find_btf_id(name, kind, &btf);
7546 	if (ret > 0 && btf_is_module(btf)) {
7547 		btf_obj_fd = __btf_new_fd(btf);
7548 		if (btf_obj_fd < 0) {
7549 			btf_put(btf);
7550 			return btf_obj_fd;
7551 		}
7552 		return ret | (((u64)btf_obj_fd) << 32);
7553 	}
7554 	if (ret > 0)
7555 		btf_put(btf);
7556 	return ret;
7557 }
7558 
7559 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7560 	.func		= bpf_btf_find_by_name_kind,
7561 	.gpl_only	= false,
7562 	.ret_type	= RET_INTEGER,
7563 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7564 	.arg2_type	= ARG_CONST_SIZE,
7565 	.arg3_type	= ARG_ANYTHING,
7566 	.arg4_type	= ARG_ANYTHING,
7567 };
7568 
7569 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7570 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7571 BTF_TRACING_TYPE_xxx
7572 #undef BTF_TRACING_TYPE
7573 
7574 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7575 				 const struct btf_type *func, u32 func_flags)
7576 {
7577 	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7578 	const char *name, *sfx, *iter_name;
7579 	const struct btf_param *arg;
7580 	const struct btf_type *t;
7581 	char exp_name[128];
7582 	u32 nr_args;
7583 
7584 	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7585 	if (!flags || (flags & (flags - 1)))
7586 		return -EINVAL;
7587 
7588 	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7589 	nr_args = btf_type_vlen(func);
7590 	if (nr_args < 1)
7591 		return -EINVAL;
7592 
7593 	arg = &btf_params(func)[0];
7594 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7595 	if (!t || !btf_type_is_ptr(t))
7596 		return -EINVAL;
7597 	t = btf_type_skip_modifiers(btf, t->type, NULL);
7598 	if (!t || !__btf_type_is_struct(t))
7599 		return -EINVAL;
7600 
7601 	name = btf_name_by_offset(btf, t->name_off);
7602 	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7603 		return -EINVAL;
7604 
7605 	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7606 	 * fit nicely in stack slots
7607 	 */
7608 	if (t->size == 0 || (t->size % 8))
7609 		return -EINVAL;
7610 
7611 	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7612 	 * naming pattern
7613 	 */
7614 	iter_name = name + sizeof(ITER_PREFIX) - 1;
7615 	if (flags & KF_ITER_NEW)
7616 		sfx = "new";
7617 	else if (flags & KF_ITER_NEXT)
7618 		sfx = "next";
7619 	else /* (flags & KF_ITER_DESTROY) */
7620 		sfx = "destroy";
7621 
7622 	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7623 	if (strcmp(func_name, exp_name))
7624 		return -EINVAL;
7625 
7626 	/* only iter constructor should have extra arguments */
7627 	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7628 		return -EINVAL;
7629 
7630 	if (flags & KF_ITER_NEXT) {
7631 		/* bpf_iter_<type>_next() should return pointer */
7632 		t = btf_type_skip_modifiers(btf, func->type, NULL);
7633 		if (!t || !btf_type_is_ptr(t))
7634 			return -EINVAL;
7635 	}
7636 
7637 	if (flags & KF_ITER_DESTROY) {
7638 		/* bpf_iter_<type>_destroy() should return void */
7639 		t = btf_type_by_id(btf, func->type);
7640 		if (!t || !btf_type_is_void(t))
7641 			return -EINVAL;
7642 	}
7643 
7644 	return 0;
7645 }
7646 
7647 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7648 {
7649 	const struct btf_type *func;
7650 	const char *func_name;
7651 	int err;
7652 
7653 	/* any kfunc should be FUNC -> FUNC_PROTO */
7654 	func = btf_type_by_id(btf, func_id);
7655 	if (!func || !btf_type_is_func(func))
7656 		return -EINVAL;
7657 
7658 	/* sanity check kfunc name */
7659 	func_name = btf_name_by_offset(btf, func->name_off);
7660 	if (!func_name || !func_name[0])
7661 		return -EINVAL;
7662 
7663 	func = btf_type_by_id(btf, func->type);
7664 	if (!func || !btf_type_is_func_proto(func))
7665 		return -EINVAL;
7666 
7667 	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7668 		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7669 		if (err)
7670 			return err;
7671 	}
7672 
7673 	return 0;
7674 }
7675 
7676 /* Kernel Function (kfunc) BTF ID set registration API */
7677 
7678 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7679 				  const struct btf_kfunc_id_set *kset)
7680 {
7681 	struct btf_kfunc_hook_filter *hook_filter;
7682 	struct btf_id_set8 *add_set = kset->set;
7683 	bool vmlinux_set = !btf_is_module(btf);
7684 	bool add_filter = !!kset->filter;
7685 	struct btf_kfunc_set_tab *tab;
7686 	struct btf_id_set8 *set;
7687 	u32 set_cnt;
7688 	int ret;
7689 
7690 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7691 		ret = -EINVAL;
7692 		goto end;
7693 	}
7694 
7695 	if (!add_set->cnt)
7696 		return 0;
7697 
7698 	tab = btf->kfunc_set_tab;
7699 
7700 	if (tab && add_filter) {
7701 		u32 i;
7702 
7703 		hook_filter = &tab->hook_filters[hook];
7704 		for (i = 0; i < hook_filter->nr_filters; i++) {
7705 			if (hook_filter->filters[i] == kset->filter) {
7706 				add_filter = false;
7707 				break;
7708 			}
7709 		}
7710 
7711 		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7712 			ret = -E2BIG;
7713 			goto end;
7714 		}
7715 	}
7716 
7717 	if (!tab) {
7718 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7719 		if (!tab)
7720 			return -ENOMEM;
7721 		btf->kfunc_set_tab = tab;
7722 	}
7723 
7724 	set = tab->sets[hook];
7725 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7726 	 * for module sets.
7727 	 */
7728 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7729 		ret = -EINVAL;
7730 		goto end;
7731 	}
7732 
7733 	/* We don't need to allocate, concatenate, and sort module sets, because
7734 	 * only one is allowed per hook. Hence, we can directly assign the
7735 	 * pointer and return.
7736 	 */
7737 	if (!vmlinux_set) {
7738 		tab->sets[hook] = add_set;
7739 		goto do_add_filter;
7740 	}
7741 
7742 	/* In case of vmlinux sets, there may be more than one set being
7743 	 * registered per hook. To create a unified set, we allocate a new set
7744 	 * and concatenate all individual sets being registered. While each set
7745 	 * is individually sorted, they may become unsorted when concatenated,
7746 	 * hence re-sorting the final set again is required to make binary
7747 	 * searching the set using btf_id_set8_contains function work.
7748 	 */
7749 	set_cnt = set ? set->cnt : 0;
7750 
7751 	if (set_cnt > U32_MAX - add_set->cnt) {
7752 		ret = -EOVERFLOW;
7753 		goto end;
7754 	}
7755 
7756 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7757 		ret = -E2BIG;
7758 		goto end;
7759 	}
7760 
7761 	/* Grow set */
7762 	set = krealloc(tab->sets[hook],
7763 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7764 		       GFP_KERNEL | __GFP_NOWARN);
7765 	if (!set) {
7766 		ret = -ENOMEM;
7767 		goto end;
7768 	}
7769 
7770 	/* For newly allocated set, initialize set->cnt to 0 */
7771 	if (!tab->sets[hook])
7772 		set->cnt = 0;
7773 	tab->sets[hook] = set;
7774 
7775 	/* Concatenate the two sets */
7776 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7777 	set->cnt += add_set->cnt;
7778 
7779 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7780 
7781 do_add_filter:
7782 	if (add_filter) {
7783 		hook_filter = &tab->hook_filters[hook];
7784 		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7785 	}
7786 	return 0;
7787 end:
7788 	btf_free_kfunc_set_tab(btf);
7789 	return ret;
7790 }
7791 
7792 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7793 					enum btf_kfunc_hook hook,
7794 					u32 kfunc_btf_id,
7795 					const struct bpf_prog *prog)
7796 {
7797 	struct btf_kfunc_hook_filter *hook_filter;
7798 	struct btf_id_set8 *set;
7799 	u32 *id, i;
7800 
7801 	if (hook >= BTF_KFUNC_HOOK_MAX)
7802 		return NULL;
7803 	if (!btf->kfunc_set_tab)
7804 		return NULL;
7805 	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7806 	for (i = 0; i < hook_filter->nr_filters; i++) {
7807 		if (hook_filter->filters[i](prog, kfunc_btf_id))
7808 			return NULL;
7809 	}
7810 	set = btf->kfunc_set_tab->sets[hook];
7811 	if (!set)
7812 		return NULL;
7813 	id = btf_id_set8_contains(set, kfunc_btf_id);
7814 	if (!id)
7815 		return NULL;
7816 	/* The flags for BTF ID are located next to it */
7817 	return id + 1;
7818 }
7819 
7820 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7821 {
7822 	switch (prog_type) {
7823 	case BPF_PROG_TYPE_UNSPEC:
7824 		return BTF_KFUNC_HOOK_COMMON;
7825 	case BPF_PROG_TYPE_XDP:
7826 		return BTF_KFUNC_HOOK_XDP;
7827 	case BPF_PROG_TYPE_SCHED_CLS:
7828 		return BTF_KFUNC_HOOK_TC;
7829 	case BPF_PROG_TYPE_STRUCT_OPS:
7830 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7831 	case BPF_PROG_TYPE_TRACING:
7832 	case BPF_PROG_TYPE_LSM:
7833 		return BTF_KFUNC_HOOK_TRACING;
7834 	case BPF_PROG_TYPE_SYSCALL:
7835 		return BTF_KFUNC_HOOK_SYSCALL;
7836 	case BPF_PROG_TYPE_CGROUP_SKB:
7837 		return BTF_KFUNC_HOOK_CGROUP_SKB;
7838 	case BPF_PROG_TYPE_SCHED_ACT:
7839 		return BTF_KFUNC_HOOK_SCHED_ACT;
7840 	case BPF_PROG_TYPE_SK_SKB:
7841 		return BTF_KFUNC_HOOK_SK_SKB;
7842 	case BPF_PROG_TYPE_SOCKET_FILTER:
7843 		return BTF_KFUNC_HOOK_SOCKET_FILTER;
7844 	case BPF_PROG_TYPE_LWT_OUT:
7845 	case BPF_PROG_TYPE_LWT_IN:
7846 	case BPF_PROG_TYPE_LWT_XMIT:
7847 	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7848 		return BTF_KFUNC_HOOK_LWT;
7849 	case BPF_PROG_TYPE_NETFILTER:
7850 		return BTF_KFUNC_HOOK_NETFILTER;
7851 	default:
7852 		return BTF_KFUNC_HOOK_MAX;
7853 	}
7854 }
7855 
7856 /* Caution:
7857  * Reference to the module (obtained using btf_try_get_module) corresponding to
7858  * the struct btf *MUST* be held when calling this function from verifier
7859  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7860  * keeping the reference for the duration of the call provides the necessary
7861  * protection for looking up a well-formed btf->kfunc_set_tab.
7862  */
7863 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7864 			       u32 kfunc_btf_id,
7865 			       const struct bpf_prog *prog)
7866 {
7867 	enum bpf_prog_type prog_type = resolve_prog_type(prog);
7868 	enum btf_kfunc_hook hook;
7869 	u32 *kfunc_flags;
7870 
7871 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7872 	if (kfunc_flags)
7873 		return kfunc_flags;
7874 
7875 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7876 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7877 }
7878 
7879 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7880 				const struct bpf_prog *prog)
7881 {
7882 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7883 }
7884 
7885 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7886 				       const struct btf_kfunc_id_set *kset)
7887 {
7888 	struct btf *btf;
7889 	int ret, i;
7890 
7891 	btf = btf_get_module_btf(kset->owner);
7892 	if (!btf) {
7893 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7894 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7895 			return -ENOENT;
7896 		}
7897 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7898 			pr_err("missing module BTF, cannot register kfuncs\n");
7899 			return -ENOENT;
7900 		}
7901 		return 0;
7902 	}
7903 	if (IS_ERR(btf))
7904 		return PTR_ERR(btf);
7905 
7906 	for (i = 0; i < kset->set->cnt; i++) {
7907 		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
7908 					     kset->set->pairs[i].flags);
7909 		if (ret)
7910 			goto err_out;
7911 	}
7912 
7913 	ret = btf_populate_kfunc_set(btf, hook, kset);
7914 
7915 err_out:
7916 	btf_put(btf);
7917 	return ret;
7918 }
7919 
7920 /* This function must be invoked only from initcalls/module init functions */
7921 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7922 			      const struct btf_kfunc_id_set *kset)
7923 {
7924 	enum btf_kfunc_hook hook;
7925 
7926 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7927 	return __register_btf_kfunc_id_set(hook, kset);
7928 }
7929 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7930 
7931 /* This function must be invoked only from initcalls/module init functions */
7932 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7933 {
7934 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7935 }
7936 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7937 
7938 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7939 {
7940 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7941 	struct btf_id_dtor_kfunc *dtor;
7942 
7943 	if (!tab)
7944 		return -ENOENT;
7945 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7946 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7947 	 */
7948 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7949 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7950 	if (!dtor)
7951 		return -ENOENT;
7952 	return dtor->kfunc_btf_id;
7953 }
7954 
7955 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7956 {
7957 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7958 	const struct btf_param *args;
7959 	s32 dtor_btf_id;
7960 	u32 nr_args, i;
7961 
7962 	for (i = 0; i < cnt; i++) {
7963 		dtor_btf_id = dtors[i].kfunc_btf_id;
7964 
7965 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7966 		if (!dtor_func || !btf_type_is_func(dtor_func))
7967 			return -EINVAL;
7968 
7969 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7970 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7971 			return -EINVAL;
7972 
7973 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7974 		t = btf_type_by_id(btf, dtor_func_proto->type);
7975 		if (!t || !btf_type_is_void(t))
7976 			return -EINVAL;
7977 
7978 		nr_args = btf_type_vlen(dtor_func_proto);
7979 		if (nr_args != 1)
7980 			return -EINVAL;
7981 		args = btf_params(dtor_func_proto);
7982 		t = btf_type_by_id(btf, args[0].type);
7983 		/* Allow any pointer type, as width on targets Linux supports
7984 		 * will be same for all pointer types (i.e. sizeof(void *))
7985 		 */
7986 		if (!t || !btf_type_is_ptr(t))
7987 			return -EINVAL;
7988 	}
7989 	return 0;
7990 }
7991 
7992 /* This function must be invoked only from initcalls/module init functions */
7993 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7994 				struct module *owner)
7995 {
7996 	struct btf_id_dtor_kfunc_tab *tab;
7997 	struct btf *btf;
7998 	u32 tab_cnt;
7999 	int ret;
8000 
8001 	btf = btf_get_module_btf(owner);
8002 	if (!btf) {
8003 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8004 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8005 			return -ENOENT;
8006 		}
8007 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8008 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
8009 			return -ENOENT;
8010 		}
8011 		return 0;
8012 	}
8013 	if (IS_ERR(btf))
8014 		return PTR_ERR(btf);
8015 
8016 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8017 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8018 		ret = -E2BIG;
8019 		goto end;
8020 	}
8021 
8022 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8023 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8024 	if (ret < 0)
8025 		goto end;
8026 
8027 	tab = btf->dtor_kfunc_tab;
8028 	/* Only one call allowed for modules */
8029 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8030 		ret = -EINVAL;
8031 		goto end;
8032 	}
8033 
8034 	tab_cnt = tab ? tab->cnt : 0;
8035 	if (tab_cnt > U32_MAX - add_cnt) {
8036 		ret = -EOVERFLOW;
8037 		goto end;
8038 	}
8039 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8040 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8041 		ret = -E2BIG;
8042 		goto end;
8043 	}
8044 
8045 	tab = krealloc(btf->dtor_kfunc_tab,
8046 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8047 		       GFP_KERNEL | __GFP_NOWARN);
8048 	if (!tab) {
8049 		ret = -ENOMEM;
8050 		goto end;
8051 	}
8052 
8053 	if (!btf->dtor_kfunc_tab)
8054 		tab->cnt = 0;
8055 	btf->dtor_kfunc_tab = tab;
8056 
8057 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8058 	tab->cnt += add_cnt;
8059 
8060 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8061 
8062 end:
8063 	if (ret)
8064 		btf_free_dtor_kfunc_tab(btf);
8065 	btf_put(btf);
8066 	return ret;
8067 }
8068 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8069 
8070 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
8071 
8072 /* Check local and target types for compatibility. This check is used for
8073  * type-based CO-RE relocations and follow slightly different rules than
8074  * field-based relocations. This function assumes that root types were already
8075  * checked for name match. Beyond that initial root-level name check, names
8076  * are completely ignored. Compatibility rules are as follows:
8077  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8078  *     kind should match for local and target types (i.e., STRUCT is not
8079  *     compatible with UNION);
8080  *   - for ENUMs/ENUM64s, the size is ignored;
8081  *   - for INT, size and signedness are ignored;
8082  *   - for ARRAY, dimensionality is ignored, element types are checked for
8083  *     compatibility recursively;
8084  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8085  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8086  *   - FUNC_PROTOs are compatible if they have compatible signature: same
8087  *     number of input args and compatible return and argument types.
8088  * These rules are not set in stone and probably will be adjusted as we get
8089  * more experience with using BPF CO-RE relocations.
8090  */
8091 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8092 			      const struct btf *targ_btf, __u32 targ_id)
8093 {
8094 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8095 					   MAX_TYPES_ARE_COMPAT_DEPTH);
8096 }
8097 
8098 #define MAX_TYPES_MATCH_DEPTH 2
8099 
8100 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8101 			 const struct btf *targ_btf, u32 targ_id)
8102 {
8103 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8104 				      MAX_TYPES_MATCH_DEPTH);
8105 }
8106 
8107 static bool bpf_core_is_flavor_sep(const char *s)
8108 {
8109 	/* check X___Y name pattern, where X and Y are not underscores */
8110 	return s[0] != '_' &&				      /* X */
8111 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8112 	       s[4] != '_';				      /* Y */
8113 }
8114 
8115 size_t bpf_core_essential_name_len(const char *name)
8116 {
8117 	size_t n = strlen(name);
8118 	int i;
8119 
8120 	for (i = n - 5; i >= 0; i--) {
8121 		if (bpf_core_is_flavor_sep(name + i))
8122 			return i + 1;
8123 	}
8124 	return n;
8125 }
8126 
8127 struct bpf_cand_cache {
8128 	const char *name;
8129 	u32 name_len;
8130 	u16 kind;
8131 	u16 cnt;
8132 	struct {
8133 		const struct btf *btf;
8134 		u32 id;
8135 	} cands[];
8136 };
8137 
8138 static void bpf_free_cands(struct bpf_cand_cache *cands)
8139 {
8140 	if (!cands->cnt)
8141 		/* empty candidate array was allocated on stack */
8142 		return;
8143 	kfree(cands);
8144 }
8145 
8146 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8147 {
8148 	kfree(cands->name);
8149 	kfree(cands);
8150 }
8151 
8152 #define VMLINUX_CAND_CACHE_SIZE 31
8153 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8154 
8155 #define MODULE_CAND_CACHE_SIZE 31
8156 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8157 
8158 static DEFINE_MUTEX(cand_cache_mutex);
8159 
8160 static void __print_cand_cache(struct bpf_verifier_log *log,
8161 			       struct bpf_cand_cache **cache,
8162 			       int cache_size)
8163 {
8164 	struct bpf_cand_cache *cc;
8165 	int i, j;
8166 
8167 	for (i = 0; i < cache_size; i++) {
8168 		cc = cache[i];
8169 		if (!cc)
8170 			continue;
8171 		bpf_log(log, "[%d]%s(", i, cc->name);
8172 		for (j = 0; j < cc->cnt; j++) {
8173 			bpf_log(log, "%d", cc->cands[j].id);
8174 			if (j < cc->cnt - 1)
8175 				bpf_log(log, " ");
8176 		}
8177 		bpf_log(log, "), ");
8178 	}
8179 }
8180 
8181 static void print_cand_cache(struct bpf_verifier_log *log)
8182 {
8183 	mutex_lock(&cand_cache_mutex);
8184 	bpf_log(log, "vmlinux_cand_cache:");
8185 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8186 	bpf_log(log, "\nmodule_cand_cache:");
8187 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8188 	bpf_log(log, "\n");
8189 	mutex_unlock(&cand_cache_mutex);
8190 }
8191 
8192 static u32 hash_cands(struct bpf_cand_cache *cands)
8193 {
8194 	return jhash(cands->name, cands->name_len, 0);
8195 }
8196 
8197 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8198 					       struct bpf_cand_cache **cache,
8199 					       int cache_size)
8200 {
8201 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8202 
8203 	if (cc && cc->name_len == cands->name_len &&
8204 	    !strncmp(cc->name, cands->name, cands->name_len))
8205 		return cc;
8206 	return NULL;
8207 }
8208 
8209 static size_t sizeof_cands(int cnt)
8210 {
8211 	return offsetof(struct bpf_cand_cache, cands[cnt]);
8212 }
8213 
8214 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8215 						  struct bpf_cand_cache **cache,
8216 						  int cache_size)
8217 {
8218 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8219 
8220 	if (*cc) {
8221 		bpf_free_cands_from_cache(*cc);
8222 		*cc = NULL;
8223 	}
8224 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8225 	if (!new_cands) {
8226 		bpf_free_cands(cands);
8227 		return ERR_PTR(-ENOMEM);
8228 	}
8229 	/* strdup the name, since it will stay in cache.
8230 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8231 	 */
8232 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8233 	bpf_free_cands(cands);
8234 	if (!new_cands->name) {
8235 		kfree(new_cands);
8236 		return ERR_PTR(-ENOMEM);
8237 	}
8238 	*cc = new_cands;
8239 	return new_cands;
8240 }
8241 
8242 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8243 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8244 			       int cache_size)
8245 {
8246 	struct bpf_cand_cache *cc;
8247 	int i, j;
8248 
8249 	for (i = 0; i < cache_size; i++) {
8250 		cc = cache[i];
8251 		if (!cc)
8252 			continue;
8253 		if (!btf) {
8254 			/* when new module is loaded purge all of module_cand_cache,
8255 			 * since new module might have candidates with the name
8256 			 * that matches cached cands.
8257 			 */
8258 			bpf_free_cands_from_cache(cc);
8259 			cache[i] = NULL;
8260 			continue;
8261 		}
8262 		/* when module is unloaded purge cache entries
8263 		 * that match module's btf
8264 		 */
8265 		for (j = 0; j < cc->cnt; j++)
8266 			if (cc->cands[j].btf == btf) {
8267 				bpf_free_cands_from_cache(cc);
8268 				cache[i] = NULL;
8269 				break;
8270 			}
8271 	}
8272 
8273 }
8274 
8275 static void purge_cand_cache(struct btf *btf)
8276 {
8277 	mutex_lock(&cand_cache_mutex);
8278 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8279 	mutex_unlock(&cand_cache_mutex);
8280 }
8281 #endif
8282 
8283 static struct bpf_cand_cache *
8284 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8285 		   int targ_start_id)
8286 {
8287 	struct bpf_cand_cache *new_cands;
8288 	const struct btf_type *t;
8289 	const char *targ_name;
8290 	size_t targ_essent_len;
8291 	int n, i;
8292 
8293 	n = btf_nr_types(targ_btf);
8294 	for (i = targ_start_id; i < n; i++) {
8295 		t = btf_type_by_id(targ_btf, i);
8296 		if (btf_kind(t) != cands->kind)
8297 			continue;
8298 
8299 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8300 		if (!targ_name)
8301 			continue;
8302 
8303 		/* the resched point is before strncmp to make sure that search
8304 		 * for non-existing name will have a chance to schedule().
8305 		 */
8306 		cond_resched();
8307 
8308 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8309 			continue;
8310 
8311 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8312 		if (targ_essent_len != cands->name_len)
8313 			continue;
8314 
8315 		/* most of the time there is only one candidate for a given kind+name pair */
8316 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8317 		if (!new_cands) {
8318 			bpf_free_cands(cands);
8319 			return ERR_PTR(-ENOMEM);
8320 		}
8321 
8322 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8323 		bpf_free_cands(cands);
8324 		cands = new_cands;
8325 		cands->cands[cands->cnt].btf = targ_btf;
8326 		cands->cands[cands->cnt].id = i;
8327 		cands->cnt++;
8328 	}
8329 	return cands;
8330 }
8331 
8332 static struct bpf_cand_cache *
8333 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8334 {
8335 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8336 	const struct btf *local_btf = ctx->btf;
8337 	const struct btf_type *local_type;
8338 	const struct btf *main_btf;
8339 	size_t local_essent_len;
8340 	struct btf *mod_btf;
8341 	const char *name;
8342 	int id;
8343 
8344 	main_btf = bpf_get_btf_vmlinux();
8345 	if (IS_ERR(main_btf))
8346 		return ERR_CAST(main_btf);
8347 	if (!main_btf)
8348 		return ERR_PTR(-EINVAL);
8349 
8350 	local_type = btf_type_by_id(local_btf, local_type_id);
8351 	if (!local_type)
8352 		return ERR_PTR(-EINVAL);
8353 
8354 	name = btf_name_by_offset(local_btf, local_type->name_off);
8355 	if (str_is_empty(name))
8356 		return ERR_PTR(-EINVAL);
8357 	local_essent_len = bpf_core_essential_name_len(name);
8358 
8359 	cands = &local_cand;
8360 	cands->name = name;
8361 	cands->kind = btf_kind(local_type);
8362 	cands->name_len = local_essent_len;
8363 
8364 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8365 	/* cands is a pointer to stack here */
8366 	if (cc) {
8367 		if (cc->cnt)
8368 			return cc;
8369 		goto check_modules;
8370 	}
8371 
8372 	/* Attempt to find target candidates in vmlinux BTF first */
8373 	cands = bpf_core_add_cands(cands, main_btf, 1);
8374 	if (IS_ERR(cands))
8375 		return ERR_CAST(cands);
8376 
8377 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8378 
8379 	/* populate cache even when cands->cnt == 0 */
8380 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8381 	if (IS_ERR(cc))
8382 		return ERR_CAST(cc);
8383 
8384 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8385 	if (cc->cnt)
8386 		return cc;
8387 
8388 check_modules:
8389 	/* cands is a pointer to stack here and cands->cnt == 0 */
8390 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8391 	if (cc)
8392 		/* if cache has it return it even if cc->cnt == 0 */
8393 		return cc;
8394 
8395 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8396 	spin_lock_bh(&btf_idr_lock);
8397 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8398 		if (!btf_is_module(mod_btf))
8399 			continue;
8400 		/* linear search could be slow hence unlock/lock
8401 		 * the IDR to avoiding holding it for too long
8402 		 */
8403 		btf_get(mod_btf);
8404 		spin_unlock_bh(&btf_idr_lock);
8405 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8406 		btf_put(mod_btf);
8407 		if (IS_ERR(cands))
8408 			return ERR_CAST(cands);
8409 		spin_lock_bh(&btf_idr_lock);
8410 	}
8411 	spin_unlock_bh(&btf_idr_lock);
8412 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8413 	 * or pointer to stack if cands->cnd == 0.
8414 	 * Copy it into the cache even when cands->cnt == 0 and
8415 	 * return the result.
8416 	 */
8417 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8418 }
8419 
8420 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8421 		   int relo_idx, void *insn)
8422 {
8423 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8424 	struct bpf_core_cand_list cands = {};
8425 	struct bpf_core_relo_res targ_res;
8426 	struct bpf_core_spec *specs;
8427 	int err;
8428 
8429 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8430 	 * into arrays of btf_ids of struct fields and array indices.
8431 	 */
8432 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8433 	if (!specs)
8434 		return -ENOMEM;
8435 
8436 	if (need_cands) {
8437 		struct bpf_cand_cache *cc;
8438 		int i;
8439 
8440 		mutex_lock(&cand_cache_mutex);
8441 		cc = bpf_core_find_cands(ctx, relo->type_id);
8442 		if (IS_ERR(cc)) {
8443 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8444 				relo->type_id);
8445 			err = PTR_ERR(cc);
8446 			goto out;
8447 		}
8448 		if (cc->cnt) {
8449 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8450 			if (!cands.cands) {
8451 				err = -ENOMEM;
8452 				goto out;
8453 			}
8454 		}
8455 		for (i = 0; i < cc->cnt; i++) {
8456 			bpf_log(ctx->log,
8457 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8458 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8459 			cands.cands[i].btf = cc->cands[i].btf;
8460 			cands.cands[i].id = cc->cands[i].id;
8461 		}
8462 		cands.len = cc->cnt;
8463 		/* cand_cache_mutex needs to span the cache lookup and
8464 		 * copy of btf pointer into bpf_core_cand_list,
8465 		 * since module can be unloaded while bpf_core_calc_relo_insn
8466 		 * is working with module's btf.
8467 		 */
8468 	}
8469 
8470 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8471 				      &targ_res);
8472 	if (err)
8473 		goto out;
8474 
8475 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8476 				  &targ_res);
8477 
8478 out:
8479 	kfree(specs);
8480 	if (need_cands) {
8481 		kfree(cands.cands);
8482 		mutex_unlock(&cand_cache_mutex);
8483 		if (ctx->log->level & BPF_LOG_LEVEL2)
8484 			print_cand_cache(ctx->log);
8485 	}
8486 	return err;
8487 }
8488 
8489 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8490 				const struct bpf_reg_state *reg,
8491 				const char *field_name, u32 btf_id, const char *suffix)
8492 {
8493 	struct btf *btf = reg->btf;
8494 	const struct btf_type *walk_type, *safe_type;
8495 	const char *tname;
8496 	char safe_tname[64];
8497 	long ret, safe_id;
8498 	const struct btf_member *member;
8499 	u32 i;
8500 
8501 	walk_type = btf_type_by_id(btf, reg->btf_id);
8502 	if (!walk_type)
8503 		return false;
8504 
8505 	tname = btf_name_by_offset(btf, walk_type->name_off);
8506 
8507 	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8508 	if (ret < 0)
8509 		return false;
8510 
8511 	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8512 	if (safe_id < 0)
8513 		return false;
8514 
8515 	safe_type = btf_type_by_id(btf, safe_id);
8516 	if (!safe_type)
8517 		return false;
8518 
8519 	for_each_member(i, safe_type, member) {
8520 		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8521 		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8522 		u32 id;
8523 
8524 		if (!btf_type_is_ptr(mtype))
8525 			continue;
8526 
8527 		btf_type_skip_modifiers(btf, mtype->type, &id);
8528 		/* If we match on both type and name, the field is considered trusted. */
8529 		if (btf_id == id && !strcmp(field_name, m_name))
8530 			return true;
8531 	}
8532 
8533 	return false;
8534 }
8535 
8536 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8537 			       const struct btf *reg_btf, u32 reg_id,
8538 			       const struct btf *arg_btf, u32 arg_id)
8539 {
8540 	const char *reg_name, *arg_name, *search_needle;
8541 	const struct btf_type *reg_type, *arg_type;
8542 	int reg_len, arg_len, cmp_len;
8543 	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8544 
8545 	reg_type = btf_type_by_id(reg_btf, reg_id);
8546 	if (!reg_type)
8547 		return false;
8548 
8549 	arg_type = btf_type_by_id(arg_btf, arg_id);
8550 	if (!arg_type)
8551 		return false;
8552 
8553 	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8554 	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8555 
8556 	reg_len = strlen(reg_name);
8557 	arg_len = strlen(arg_name);
8558 
8559 	/* Exactly one of the two type names may be suffixed with ___init, so
8560 	 * if the strings are the same size, they can't possibly be no-cast
8561 	 * aliases of one another. If you have two of the same type names, e.g.
8562 	 * they're both nf_conn___init, it would be improper to return true
8563 	 * because they are _not_ no-cast aliases, they are the same type.
8564 	 */
8565 	if (reg_len == arg_len)
8566 		return false;
8567 
8568 	/* Either of the two names must be the other name, suffixed with ___init. */
8569 	if ((reg_len != arg_len + pattern_len) &&
8570 	    (arg_len != reg_len + pattern_len))
8571 		return false;
8572 
8573 	if (reg_len < arg_len) {
8574 		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8575 		cmp_len = reg_len;
8576 	} else {
8577 		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8578 		cmp_len = arg_len;
8579 	}
8580 
8581 	if (!search_needle)
8582 		return false;
8583 
8584 	/* ___init suffix must come at the end of the name */
8585 	if (*(search_needle + pattern_len) != '\0')
8586 		return false;
8587 
8588 	return !strncmp(reg_name, arg_name, cmp_len);
8589 }
8590