xref: /openbmc/linux/kernel/bpf/btf.c (revision 9659281c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 
29 /* BTF (BPF Type Format) is the meta data format which describes
30  * the data types of BPF program/map.  Hence, it basically focus
31  * on the C programming language which the modern BPF is primary
32  * using.
33  *
34  * ELF Section:
35  * ~~~~~~~~~~~
36  * The BTF data is stored under the ".BTF" ELF section
37  *
38  * struct btf_type:
39  * ~~~~~~~~~~~~~~~
40  * Each 'struct btf_type' object describes a C data type.
41  * Depending on the type it is describing, a 'struct btf_type'
42  * object may be followed by more data.  F.e.
43  * To describe an array, 'struct btf_type' is followed by
44  * 'struct btf_array'.
45  *
46  * 'struct btf_type' and any extra data following it are
47  * 4 bytes aligned.
48  *
49  * Type section:
50  * ~~~~~~~~~~~~~
51  * The BTF type section contains a list of 'struct btf_type' objects.
52  * Each one describes a C type.  Recall from the above section
53  * that a 'struct btf_type' object could be immediately followed by extra
54  * data in order to describe some particular C types.
55  *
56  * type_id:
57  * ~~~~~~~
58  * Each btf_type object is identified by a type_id.  The type_id
59  * is implicitly implied by the location of the btf_type object in
60  * the BTF type section.  The first one has type_id 1.  The second
61  * one has type_id 2...etc.  Hence, an earlier btf_type has
62  * a smaller type_id.
63  *
64  * A btf_type object may refer to another btf_type object by using
65  * type_id (i.e. the "type" in the "struct btf_type").
66  *
67  * NOTE that we cannot assume any reference-order.
68  * A btf_type object can refer to an earlier btf_type object
69  * but it can also refer to a later btf_type object.
70  *
71  * For example, to describe "const void *".  A btf_type
72  * object describing "const" may refer to another btf_type
73  * object describing "void *".  This type-reference is done
74  * by specifying type_id:
75  *
76  * [1] CONST (anon) type_id=2
77  * [2] PTR (anon) type_id=0
78  *
79  * The above is the btf_verifier debug log:
80  *   - Each line started with "[?]" is a btf_type object
81  *   - [?] is the type_id of the btf_type object.
82  *   - CONST/PTR is the BTF_KIND_XXX
83  *   - "(anon)" is the name of the type.  It just
84  *     happens that CONST and PTR has no name.
85  *   - type_id=XXX is the 'u32 type' in btf_type
86  *
87  * NOTE: "void" has type_id 0
88  *
89  * String section:
90  * ~~~~~~~~~~~~~~
91  * The BTF string section contains the names used by the type section.
92  * Each string is referred by an "offset" from the beginning of the
93  * string section.
94  *
95  * Each string is '\0' terminated.
96  *
97  * The first character in the string section must be '\0'
98  * which is used to mean 'anonymous'. Some btf_type may not
99  * have a name.
100  */
101 
102 /* BTF verification:
103  *
104  * To verify BTF data, two passes are needed.
105  *
106  * Pass #1
107  * ~~~~~~~
108  * The first pass is to collect all btf_type objects to
109  * an array: "btf->types".
110  *
111  * Depending on the C type that a btf_type is describing,
112  * a btf_type may be followed by extra data.  We don't know
113  * how many btf_type is there, and more importantly we don't
114  * know where each btf_type is located in the type section.
115  *
116  * Without knowing the location of each type_id, most verifications
117  * cannot be done.  e.g. an earlier btf_type may refer to a later
118  * btf_type (recall the "const void *" above), so we cannot
119  * check this type-reference in the first pass.
120  *
121  * In the first pass, it still does some verifications (e.g.
122  * checking the name is a valid offset to the string section).
123  *
124  * Pass #2
125  * ~~~~~~~
126  * The main focus is to resolve a btf_type that is referring
127  * to another type.
128  *
129  * We have to ensure the referring type:
130  * 1) does exist in the BTF (i.e. in btf->types[])
131  * 2) does not cause a loop:
132  *	struct A {
133  *		struct B b;
134  *	};
135  *
136  *	struct B {
137  *		struct A a;
138  *	};
139  *
140  * btf_type_needs_resolve() decides if a btf_type needs
141  * to be resolved.
142  *
143  * The needs_resolve type implements the "resolve()" ops which
144  * essentially does a DFS and detects backedge.
145  *
146  * During resolve (or DFS), different C types have different
147  * "RESOLVED" conditions.
148  *
149  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150  * members because a member is always referring to another
151  * type.  A struct's member can be treated as "RESOLVED" if
152  * it is referring to a BTF_KIND_PTR.  Otherwise, the
153  * following valid C struct would be rejected:
154  *
155  *	struct A {
156  *		int m;
157  *		struct A *a;
158  *	};
159  *
160  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
162  * detect a pointer loop, e.g.:
163  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164  *                        ^                                         |
165  *                        +-----------------------------------------+
166  *
167  */
168 
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175 
176 #define BTF_INFO_MASK 0x9f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180 
181 /* 16MB for 64k structs and each has 16 members and
182  * a few MB spaces for the string section.
183  * The hard limit is S32_MAX.
184  */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186 
187 #define for_each_member_from(i, from, struct_type, member)		\
188 	for (i = from, member = btf_type_member(struct_type) + from;	\
189 	     i < btf_type_vlen(struct_type);				\
190 	     i++, member++)
191 
192 #define for_each_vsi_from(i, from, struct_type, member)				\
193 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
194 	     i < btf_type_vlen(struct_type);					\
195 	     i++, member++)
196 
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199 
200 struct btf {
201 	void *data;
202 	struct btf_type **types;
203 	u32 *resolved_ids;
204 	u32 *resolved_sizes;
205 	const char *strings;
206 	void *nohdr_data;
207 	struct btf_header hdr;
208 	u32 nr_types; /* includes VOID for base BTF */
209 	u32 types_size;
210 	u32 data_size;
211 	refcount_t refcnt;
212 	u32 id;
213 	struct rcu_head rcu;
214 
215 	/* split BTF support */
216 	struct btf *base_btf;
217 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 	u32 start_str_off; /* first string offset (0 for base BTF) */
219 	char name[MODULE_NAME_LEN];
220 	bool kernel_btf;
221 };
222 
223 enum verifier_phase {
224 	CHECK_META,
225 	CHECK_TYPE,
226 };
227 
228 struct resolve_vertex {
229 	const struct btf_type *t;
230 	u32 type_id;
231 	u16 next_member;
232 };
233 
234 enum visit_state {
235 	NOT_VISITED,
236 	VISITED,
237 	RESOLVED,
238 };
239 
240 enum resolve_mode {
241 	RESOLVE_TBD,	/* To Be Determined */
242 	RESOLVE_PTR,	/* Resolving for Pointer */
243 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
244 					 * or array
245 					 */
246 };
247 
248 #define MAX_RESOLVE_DEPTH 32
249 
250 struct btf_sec_info {
251 	u32 off;
252 	u32 len;
253 };
254 
255 struct btf_verifier_env {
256 	struct btf *btf;
257 	u8 *visit_states;
258 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259 	struct bpf_verifier_log log;
260 	u32 log_type_id;
261 	u32 top_stack;
262 	enum verifier_phase phase;
263 	enum resolve_mode resolve_mode;
264 };
265 
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 	[BTF_KIND_UNKN]		= "UNKNOWN",
268 	[BTF_KIND_INT]		= "INT",
269 	[BTF_KIND_PTR]		= "PTR",
270 	[BTF_KIND_ARRAY]	= "ARRAY",
271 	[BTF_KIND_STRUCT]	= "STRUCT",
272 	[BTF_KIND_UNION]	= "UNION",
273 	[BTF_KIND_ENUM]		= "ENUM",
274 	[BTF_KIND_FWD]		= "FWD",
275 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
276 	[BTF_KIND_VOLATILE]	= "VOLATILE",
277 	[BTF_KIND_CONST]	= "CONST",
278 	[BTF_KIND_RESTRICT]	= "RESTRICT",
279 	[BTF_KIND_FUNC]		= "FUNC",
280 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
281 	[BTF_KIND_VAR]		= "VAR",
282 	[BTF_KIND_DATASEC]	= "DATASEC",
283 	[BTF_KIND_FLOAT]	= "FLOAT",
284 };
285 
286 const char *btf_type_str(const struct btf_type *t)
287 {
288 	return btf_kind_str[BTF_INFO_KIND(t->info)];
289 }
290 
291 /* Chunk size we use in safe copy of data to be shown. */
292 #define BTF_SHOW_OBJ_SAFE_SIZE		32
293 
294 /*
295  * This is the maximum size of a base type value (equivalent to a
296  * 128-bit int); if we are at the end of our safe buffer and have
297  * less than 16 bytes space we can't be assured of being able
298  * to copy the next type safely, so in such cases we will initiate
299  * a new copy.
300  */
301 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
302 
303 /* Type name size */
304 #define BTF_SHOW_NAME_SIZE		80
305 
306 /*
307  * Common data to all BTF show operations. Private show functions can add
308  * their own data to a structure containing a struct btf_show and consult it
309  * in the show callback.  See btf_type_show() below.
310  *
311  * One challenge with showing nested data is we want to skip 0-valued
312  * data, but in order to figure out whether a nested object is all zeros
313  * we need to walk through it.  As a result, we need to make two passes
314  * when handling structs, unions and arrays; the first path simply looks
315  * for nonzero data, while the second actually does the display.  The first
316  * pass is signalled by show->state.depth_check being set, and if we
317  * encounter a non-zero value we set show->state.depth_to_show to
318  * the depth at which we encountered it.  When we have completed the
319  * first pass, we will know if anything needs to be displayed if
320  * depth_to_show > depth.  See btf_[struct,array]_show() for the
321  * implementation of this.
322  *
323  * Another problem is we want to ensure the data for display is safe to
324  * access.  To support this, the anonymous "struct {} obj" tracks the data
325  * object and our safe copy of it.  We copy portions of the data needed
326  * to the object "copy" buffer, but because its size is limited to
327  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
328  * traverse larger objects for display.
329  *
330  * The various data type show functions all start with a call to
331  * btf_show_start_type() which returns a pointer to the safe copy
332  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
333  * raw data itself).  btf_show_obj_safe() is responsible for
334  * using copy_from_kernel_nofault() to update the safe data if necessary
335  * as we traverse the object's data.  skbuff-like semantics are
336  * used:
337  *
338  * - obj.head points to the start of the toplevel object for display
339  * - obj.size is the size of the toplevel object
340  * - obj.data points to the current point in the original data at
341  *   which our safe data starts.  obj.data will advance as we copy
342  *   portions of the data.
343  *
344  * In most cases a single copy will suffice, but larger data structures
345  * such as "struct task_struct" will require many copies.  The logic in
346  * btf_show_obj_safe() handles the logic that determines if a new
347  * copy_from_kernel_nofault() is needed.
348  */
349 struct btf_show {
350 	u64 flags;
351 	void *target;	/* target of show operation (seq file, buffer) */
352 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
353 	const struct btf *btf;
354 	/* below are used during iteration */
355 	struct {
356 		u8 depth;
357 		u8 depth_to_show;
358 		u8 depth_check;
359 		u8 array_member:1,
360 		   array_terminated:1;
361 		u16 array_encoding;
362 		u32 type_id;
363 		int status;			/* non-zero for error */
364 		const struct btf_type *type;
365 		const struct btf_member *member;
366 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
367 	} state;
368 	struct {
369 		u32 size;
370 		void *head;
371 		void *data;
372 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
373 	} obj;
374 };
375 
376 struct btf_kind_operations {
377 	s32 (*check_meta)(struct btf_verifier_env *env,
378 			  const struct btf_type *t,
379 			  u32 meta_left);
380 	int (*resolve)(struct btf_verifier_env *env,
381 		       const struct resolve_vertex *v);
382 	int (*check_member)(struct btf_verifier_env *env,
383 			    const struct btf_type *struct_type,
384 			    const struct btf_member *member,
385 			    const struct btf_type *member_type);
386 	int (*check_kflag_member)(struct btf_verifier_env *env,
387 				  const struct btf_type *struct_type,
388 				  const struct btf_member *member,
389 				  const struct btf_type *member_type);
390 	void (*log_details)(struct btf_verifier_env *env,
391 			    const struct btf_type *t);
392 	void (*show)(const struct btf *btf, const struct btf_type *t,
393 			 u32 type_id, void *data, u8 bits_offsets,
394 			 struct btf_show *show);
395 };
396 
397 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
398 static struct btf_type btf_void;
399 
400 static int btf_resolve(struct btf_verifier_env *env,
401 		       const struct btf_type *t, u32 type_id);
402 
403 static bool btf_type_is_modifier(const struct btf_type *t)
404 {
405 	/* Some of them is not strictly a C modifier
406 	 * but they are grouped into the same bucket
407 	 * for BTF concern:
408 	 *   A type (t) that refers to another
409 	 *   type through t->type AND its size cannot
410 	 *   be determined without following the t->type.
411 	 *
412 	 * ptr does not fall into this bucket
413 	 * because its size is always sizeof(void *).
414 	 */
415 	switch (BTF_INFO_KIND(t->info)) {
416 	case BTF_KIND_TYPEDEF:
417 	case BTF_KIND_VOLATILE:
418 	case BTF_KIND_CONST:
419 	case BTF_KIND_RESTRICT:
420 		return true;
421 	}
422 
423 	return false;
424 }
425 
426 bool btf_type_is_void(const struct btf_type *t)
427 {
428 	return t == &btf_void;
429 }
430 
431 static bool btf_type_is_fwd(const struct btf_type *t)
432 {
433 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
434 }
435 
436 static bool btf_type_nosize(const struct btf_type *t)
437 {
438 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
439 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
440 }
441 
442 static bool btf_type_nosize_or_null(const struct btf_type *t)
443 {
444 	return !t || btf_type_nosize(t);
445 }
446 
447 static bool __btf_type_is_struct(const struct btf_type *t)
448 {
449 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
450 }
451 
452 static bool btf_type_is_array(const struct btf_type *t)
453 {
454 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
455 }
456 
457 static bool btf_type_is_datasec(const struct btf_type *t)
458 {
459 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
460 }
461 
462 u32 btf_nr_types(const struct btf *btf)
463 {
464 	u32 total = 0;
465 
466 	while (btf) {
467 		total += btf->nr_types;
468 		btf = btf->base_btf;
469 	}
470 
471 	return total;
472 }
473 
474 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
475 {
476 	const struct btf_type *t;
477 	const char *tname;
478 	u32 i, total;
479 
480 	total = btf_nr_types(btf);
481 	for (i = 1; i < total; i++) {
482 		t = btf_type_by_id(btf, i);
483 		if (BTF_INFO_KIND(t->info) != kind)
484 			continue;
485 
486 		tname = btf_name_by_offset(btf, t->name_off);
487 		if (!strcmp(tname, name))
488 			return i;
489 	}
490 
491 	return -ENOENT;
492 }
493 
494 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
495 					       u32 id, u32 *res_id)
496 {
497 	const struct btf_type *t = btf_type_by_id(btf, id);
498 
499 	while (btf_type_is_modifier(t)) {
500 		id = t->type;
501 		t = btf_type_by_id(btf, t->type);
502 	}
503 
504 	if (res_id)
505 		*res_id = id;
506 
507 	return t;
508 }
509 
510 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
511 					    u32 id, u32 *res_id)
512 {
513 	const struct btf_type *t;
514 
515 	t = btf_type_skip_modifiers(btf, id, NULL);
516 	if (!btf_type_is_ptr(t))
517 		return NULL;
518 
519 	return btf_type_skip_modifiers(btf, t->type, res_id);
520 }
521 
522 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
523 						 u32 id, u32 *res_id)
524 {
525 	const struct btf_type *ptype;
526 
527 	ptype = btf_type_resolve_ptr(btf, id, res_id);
528 	if (ptype && btf_type_is_func_proto(ptype))
529 		return ptype;
530 
531 	return NULL;
532 }
533 
534 /* Types that act only as a source, not sink or intermediate
535  * type when resolving.
536  */
537 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
538 {
539 	return btf_type_is_var(t) ||
540 	       btf_type_is_datasec(t);
541 }
542 
543 /* What types need to be resolved?
544  *
545  * btf_type_is_modifier() is an obvious one.
546  *
547  * btf_type_is_struct() because its member refers to
548  * another type (through member->type).
549  *
550  * btf_type_is_var() because the variable refers to
551  * another type. btf_type_is_datasec() holds multiple
552  * btf_type_is_var() types that need resolving.
553  *
554  * btf_type_is_array() because its element (array->type)
555  * refers to another type.  Array can be thought of a
556  * special case of struct while array just has the same
557  * member-type repeated by array->nelems of times.
558  */
559 static bool btf_type_needs_resolve(const struct btf_type *t)
560 {
561 	return btf_type_is_modifier(t) ||
562 	       btf_type_is_ptr(t) ||
563 	       btf_type_is_struct(t) ||
564 	       btf_type_is_array(t) ||
565 	       btf_type_is_var(t) ||
566 	       btf_type_is_datasec(t);
567 }
568 
569 /* t->size can be used */
570 static bool btf_type_has_size(const struct btf_type *t)
571 {
572 	switch (BTF_INFO_KIND(t->info)) {
573 	case BTF_KIND_INT:
574 	case BTF_KIND_STRUCT:
575 	case BTF_KIND_UNION:
576 	case BTF_KIND_ENUM:
577 	case BTF_KIND_DATASEC:
578 	case BTF_KIND_FLOAT:
579 		return true;
580 	}
581 
582 	return false;
583 }
584 
585 static const char *btf_int_encoding_str(u8 encoding)
586 {
587 	if (encoding == 0)
588 		return "(none)";
589 	else if (encoding == BTF_INT_SIGNED)
590 		return "SIGNED";
591 	else if (encoding == BTF_INT_CHAR)
592 		return "CHAR";
593 	else if (encoding == BTF_INT_BOOL)
594 		return "BOOL";
595 	else
596 		return "UNKN";
597 }
598 
599 static u32 btf_type_int(const struct btf_type *t)
600 {
601 	return *(u32 *)(t + 1);
602 }
603 
604 static const struct btf_array *btf_type_array(const struct btf_type *t)
605 {
606 	return (const struct btf_array *)(t + 1);
607 }
608 
609 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
610 {
611 	return (const struct btf_enum *)(t + 1);
612 }
613 
614 static const struct btf_var *btf_type_var(const struct btf_type *t)
615 {
616 	return (const struct btf_var *)(t + 1);
617 }
618 
619 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
620 {
621 	return kind_ops[BTF_INFO_KIND(t->info)];
622 }
623 
624 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
625 {
626 	if (!BTF_STR_OFFSET_VALID(offset))
627 		return false;
628 
629 	while (offset < btf->start_str_off)
630 		btf = btf->base_btf;
631 
632 	offset -= btf->start_str_off;
633 	return offset < btf->hdr.str_len;
634 }
635 
636 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
637 {
638 	if ((first ? !isalpha(c) :
639 		     !isalnum(c)) &&
640 	    c != '_' &&
641 	    ((c == '.' && !dot_ok) ||
642 	      c != '.'))
643 		return false;
644 	return true;
645 }
646 
647 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
648 {
649 	while (offset < btf->start_str_off)
650 		btf = btf->base_btf;
651 
652 	offset -= btf->start_str_off;
653 	if (offset < btf->hdr.str_len)
654 		return &btf->strings[offset];
655 
656 	return NULL;
657 }
658 
659 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
660 {
661 	/* offset must be valid */
662 	const char *src = btf_str_by_offset(btf, offset);
663 	const char *src_limit;
664 
665 	if (!__btf_name_char_ok(*src, true, dot_ok))
666 		return false;
667 
668 	/* set a limit on identifier length */
669 	src_limit = src + KSYM_NAME_LEN;
670 	src++;
671 	while (*src && src < src_limit) {
672 		if (!__btf_name_char_ok(*src, false, dot_ok))
673 			return false;
674 		src++;
675 	}
676 
677 	return !*src;
678 }
679 
680 /* Only C-style identifier is permitted. This can be relaxed if
681  * necessary.
682  */
683 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
684 {
685 	return __btf_name_valid(btf, offset, false);
686 }
687 
688 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
689 {
690 	return __btf_name_valid(btf, offset, true);
691 }
692 
693 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
694 {
695 	const char *name;
696 
697 	if (!offset)
698 		return "(anon)";
699 
700 	name = btf_str_by_offset(btf, offset);
701 	return name ?: "(invalid-name-offset)";
702 }
703 
704 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
705 {
706 	return btf_str_by_offset(btf, offset);
707 }
708 
709 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
710 {
711 	while (type_id < btf->start_id)
712 		btf = btf->base_btf;
713 
714 	type_id -= btf->start_id;
715 	if (type_id >= btf->nr_types)
716 		return NULL;
717 	return btf->types[type_id];
718 }
719 
720 /*
721  * Regular int is not a bit field and it must be either
722  * u8/u16/u32/u64 or __int128.
723  */
724 static bool btf_type_int_is_regular(const struct btf_type *t)
725 {
726 	u8 nr_bits, nr_bytes;
727 	u32 int_data;
728 
729 	int_data = btf_type_int(t);
730 	nr_bits = BTF_INT_BITS(int_data);
731 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
732 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
733 	    BTF_INT_OFFSET(int_data) ||
734 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
735 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
736 	     nr_bytes != (2 * sizeof(u64)))) {
737 		return false;
738 	}
739 
740 	return true;
741 }
742 
743 /*
744  * Check that given struct member is a regular int with expected
745  * offset and size.
746  */
747 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
748 			   const struct btf_member *m,
749 			   u32 expected_offset, u32 expected_size)
750 {
751 	const struct btf_type *t;
752 	u32 id, int_data;
753 	u8 nr_bits;
754 
755 	id = m->type;
756 	t = btf_type_id_size(btf, &id, NULL);
757 	if (!t || !btf_type_is_int(t))
758 		return false;
759 
760 	int_data = btf_type_int(t);
761 	nr_bits = BTF_INT_BITS(int_data);
762 	if (btf_type_kflag(s)) {
763 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
764 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
765 
766 		/* if kflag set, int should be a regular int and
767 		 * bit offset should be at byte boundary.
768 		 */
769 		return !bitfield_size &&
770 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
771 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
772 	}
773 
774 	if (BTF_INT_OFFSET(int_data) ||
775 	    BITS_PER_BYTE_MASKED(m->offset) ||
776 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
777 	    BITS_PER_BYTE_MASKED(nr_bits) ||
778 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
779 		return false;
780 
781 	return true;
782 }
783 
784 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
785 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
786 						       u32 id)
787 {
788 	const struct btf_type *t = btf_type_by_id(btf, id);
789 
790 	while (btf_type_is_modifier(t) &&
791 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
792 		t = btf_type_by_id(btf, t->type);
793 	}
794 
795 	return t;
796 }
797 
798 #define BTF_SHOW_MAX_ITER	10
799 
800 #define BTF_KIND_BIT(kind)	(1ULL << kind)
801 
802 /*
803  * Populate show->state.name with type name information.
804  * Format of type name is
805  *
806  * [.member_name = ] (type_name)
807  */
808 static const char *btf_show_name(struct btf_show *show)
809 {
810 	/* BTF_MAX_ITER array suffixes "[]" */
811 	const char *array_suffixes = "[][][][][][][][][][]";
812 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
813 	/* BTF_MAX_ITER pointer suffixes "*" */
814 	const char *ptr_suffixes = "**********";
815 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
816 	const char *name = NULL, *prefix = "", *parens = "";
817 	const struct btf_member *m = show->state.member;
818 	const struct btf_type *t = show->state.type;
819 	const struct btf_array *array;
820 	u32 id = show->state.type_id;
821 	const char *member = NULL;
822 	bool show_member = false;
823 	u64 kinds = 0;
824 	int i;
825 
826 	show->state.name[0] = '\0';
827 
828 	/*
829 	 * Don't show type name if we're showing an array member;
830 	 * in that case we show the array type so don't need to repeat
831 	 * ourselves for each member.
832 	 */
833 	if (show->state.array_member)
834 		return "";
835 
836 	/* Retrieve member name, if any. */
837 	if (m) {
838 		member = btf_name_by_offset(show->btf, m->name_off);
839 		show_member = strlen(member) > 0;
840 		id = m->type;
841 	}
842 
843 	/*
844 	 * Start with type_id, as we have resolved the struct btf_type *
845 	 * via btf_modifier_show() past the parent typedef to the child
846 	 * struct, int etc it is defined as.  In such cases, the type_id
847 	 * still represents the starting type while the struct btf_type *
848 	 * in our show->state points at the resolved type of the typedef.
849 	 */
850 	t = btf_type_by_id(show->btf, id);
851 	if (!t)
852 		return "";
853 
854 	/*
855 	 * The goal here is to build up the right number of pointer and
856 	 * array suffixes while ensuring the type name for a typedef
857 	 * is represented.  Along the way we accumulate a list of
858 	 * BTF kinds we have encountered, since these will inform later
859 	 * display; for example, pointer types will not require an
860 	 * opening "{" for struct, we will just display the pointer value.
861 	 *
862 	 * We also want to accumulate the right number of pointer or array
863 	 * indices in the format string while iterating until we get to
864 	 * the typedef/pointee/array member target type.
865 	 *
866 	 * We start by pointing at the end of pointer and array suffix
867 	 * strings; as we accumulate pointers and arrays we move the pointer
868 	 * or array string backwards so it will show the expected number of
869 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
870 	 * and/or arrays and typedefs are supported as a precaution.
871 	 *
872 	 * We also want to get typedef name while proceeding to resolve
873 	 * type it points to so that we can add parentheses if it is a
874 	 * "typedef struct" etc.
875 	 */
876 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
877 
878 		switch (BTF_INFO_KIND(t->info)) {
879 		case BTF_KIND_TYPEDEF:
880 			if (!name)
881 				name = btf_name_by_offset(show->btf,
882 							       t->name_off);
883 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
884 			id = t->type;
885 			break;
886 		case BTF_KIND_ARRAY:
887 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
888 			parens = "[";
889 			if (!t)
890 				return "";
891 			array = btf_type_array(t);
892 			if (array_suffix > array_suffixes)
893 				array_suffix -= 2;
894 			id = array->type;
895 			break;
896 		case BTF_KIND_PTR:
897 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
898 			if (ptr_suffix > ptr_suffixes)
899 				ptr_suffix -= 1;
900 			id = t->type;
901 			break;
902 		default:
903 			id = 0;
904 			break;
905 		}
906 		if (!id)
907 			break;
908 		t = btf_type_skip_qualifiers(show->btf, id);
909 	}
910 	/* We may not be able to represent this type; bail to be safe */
911 	if (i == BTF_SHOW_MAX_ITER)
912 		return "";
913 
914 	if (!name)
915 		name = btf_name_by_offset(show->btf, t->name_off);
916 
917 	switch (BTF_INFO_KIND(t->info)) {
918 	case BTF_KIND_STRUCT:
919 	case BTF_KIND_UNION:
920 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
921 			 "struct" : "union";
922 		/* if it's an array of struct/union, parens is already set */
923 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
924 			parens = "{";
925 		break;
926 	case BTF_KIND_ENUM:
927 		prefix = "enum";
928 		break;
929 	default:
930 		break;
931 	}
932 
933 	/* pointer does not require parens */
934 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
935 		parens = "";
936 	/* typedef does not require struct/union/enum prefix */
937 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
938 		prefix = "";
939 
940 	if (!name)
941 		name = "";
942 
943 	/* Even if we don't want type name info, we want parentheses etc */
944 	if (show->flags & BTF_SHOW_NONAME)
945 		snprintf(show->state.name, sizeof(show->state.name), "%s",
946 			 parens);
947 	else
948 		snprintf(show->state.name, sizeof(show->state.name),
949 			 "%s%s%s(%s%s%s%s%s%s)%s",
950 			 /* first 3 strings comprise ".member = " */
951 			 show_member ? "." : "",
952 			 show_member ? member : "",
953 			 show_member ? " = " : "",
954 			 /* ...next is our prefix (struct, enum, etc) */
955 			 prefix,
956 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
957 			 /* ...this is the type name itself */
958 			 name,
959 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
960 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
961 			 array_suffix, parens);
962 
963 	return show->state.name;
964 }
965 
966 static const char *__btf_show_indent(struct btf_show *show)
967 {
968 	const char *indents = "                                ";
969 	const char *indent = &indents[strlen(indents)];
970 
971 	if ((indent - show->state.depth) >= indents)
972 		return indent - show->state.depth;
973 	return indents;
974 }
975 
976 static const char *btf_show_indent(struct btf_show *show)
977 {
978 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
979 }
980 
981 static const char *btf_show_newline(struct btf_show *show)
982 {
983 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
984 }
985 
986 static const char *btf_show_delim(struct btf_show *show)
987 {
988 	if (show->state.depth == 0)
989 		return "";
990 
991 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
992 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
993 		return "|";
994 
995 	return ",";
996 }
997 
998 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
999 {
1000 	va_list args;
1001 
1002 	if (!show->state.depth_check) {
1003 		va_start(args, fmt);
1004 		show->showfn(show, fmt, args);
1005 		va_end(args);
1006 	}
1007 }
1008 
1009 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1010  * format specifiers to the format specifier passed in; these do the work of
1011  * adding indentation, delimiters etc while the caller simply has to specify
1012  * the type value(s) in the format specifier + value(s).
1013  */
1014 #define btf_show_type_value(show, fmt, value)				       \
1015 	do {								       \
1016 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1017 		    show->state.depth == 0) {				       \
1018 			btf_show(show, "%s%s" fmt "%s%s",		       \
1019 				 btf_show_indent(show),			       \
1020 				 btf_show_name(show),			       \
1021 				 value, btf_show_delim(show),		       \
1022 				 btf_show_newline(show));		       \
1023 			if (show->state.depth > show->state.depth_to_show)     \
1024 				show->state.depth_to_show = show->state.depth; \
1025 		}							       \
1026 	} while (0)
1027 
1028 #define btf_show_type_values(show, fmt, ...)				       \
1029 	do {								       \
1030 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1031 			 btf_show_name(show),				       \
1032 			 __VA_ARGS__, btf_show_delim(show),		       \
1033 			 btf_show_newline(show));			       \
1034 		if (show->state.depth > show->state.depth_to_show)	       \
1035 			show->state.depth_to_show = show->state.depth;	       \
1036 	} while (0)
1037 
1038 /* How much is left to copy to safe buffer after @data? */
1039 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1040 {
1041 	return show->obj.head + show->obj.size - data;
1042 }
1043 
1044 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1045 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1046 {
1047 	return data >= show->obj.data &&
1048 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1049 }
1050 
1051 /*
1052  * If object pointed to by @data of @size falls within our safe buffer, return
1053  * the equivalent pointer to the same safe data.  Assumes
1054  * copy_from_kernel_nofault() has already happened and our safe buffer is
1055  * populated.
1056  */
1057 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1058 {
1059 	if (btf_show_obj_is_safe(show, data, size))
1060 		return show->obj.safe + (data - show->obj.data);
1061 	return NULL;
1062 }
1063 
1064 /*
1065  * Return a safe-to-access version of data pointed to by @data.
1066  * We do this by copying the relevant amount of information
1067  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1068  *
1069  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1070  * safe copy is needed.
1071  *
1072  * Otherwise we need to determine if we have the required amount
1073  * of data (determined by the @data pointer and the size of the
1074  * largest base type we can encounter (represented by
1075  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1076  * that we will be able to print some of the current object,
1077  * and if more is needed a copy will be triggered.
1078  * Some objects such as structs will not fit into the buffer;
1079  * in such cases additional copies when we iterate over their
1080  * members may be needed.
1081  *
1082  * btf_show_obj_safe() is used to return a safe buffer for
1083  * btf_show_start_type(); this ensures that as we recurse into
1084  * nested types we always have safe data for the given type.
1085  * This approach is somewhat wasteful; it's possible for example
1086  * that when iterating over a large union we'll end up copying the
1087  * same data repeatedly, but the goal is safety not performance.
1088  * We use stack data as opposed to per-CPU buffers because the
1089  * iteration over a type can take some time, and preemption handling
1090  * would greatly complicate use of the safe buffer.
1091  */
1092 static void *btf_show_obj_safe(struct btf_show *show,
1093 			       const struct btf_type *t,
1094 			       void *data)
1095 {
1096 	const struct btf_type *rt;
1097 	int size_left, size;
1098 	void *safe = NULL;
1099 
1100 	if (show->flags & BTF_SHOW_UNSAFE)
1101 		return data;
1102 
1103 	rt = btf_resolve_size(show->btf, t, &size);
1104 	if (IS_ERR(rt)) {
1105 		show->state.status = PTR_ERR(rt);
1106 		return NULL;
1107 	}
1108 
1109 	/*
1110 	 * Is this toplevel object? If so, set total object size and
1111 	 * initialize pointers.  Otherwise check if we still fall within
1112 	 * our safe object data.
1113 	 */
1114 	if (show->state.depth == 0) {
1115 		show->obj.size = size;
1116 		show->obj.head = data;
1117 	} else {
1118 		/*
1119 		 * If the size of the current object is > our remaining
1120 		 * safe buffer we _may_ need to do a new copy.  However
1121 		 * consider the case of a nested struct; it's size pushes
1122 		 * us over the safe buffer limit, but showing any individual
1123 		 * struct members does not.  In such cases, we don't need
1124 		 * to initiate a fresh copy yet; however we definitely need
1125 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1126 		 * in our buffer, regardless of the current object size.
1127 		 * The logic here is that as we resolve types we will
1128 		 * hit a base type at some point, and we need to be sure
1129 		 * the next chunk of data is safely available to display
1130 		 * that type info safely.  We cannot rely on the size of
1131 		 * the current object here because it may be much larger
1132 		 * than our current buffer (e.g. task_struct is 8k).
1133 		 * All we want to do here is ensure that we can print the
1134 		 * next basic type, which we can if either
1135 		 * - the current type size is within the safe buffer; or
1136 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1137 		 *   the safe buffer.
1138 		 */
1139 		safe = __btf_show_obj_safe(show, data,
1140 					   min(size,
1141 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1142 	}
1143 
1144 	/*
1145 	 * We need a new copy to our safe object, either because we haven't
1146 	 * yet copied and are initializing safe data, or because the data
1147 	 * we want falls outside the boundaries of the safe object.
1148 	 */
1149 	if (!safe) {
1150 		size_left = btf_show_obj_size_left(show, data);
1151 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1152 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1153 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1154 							      data, size_left);
1155 		if (!show->state.status) {
1156 			show->obj.data = data;
1157 			safe = show->obj.safe;
1158 		}
1159 	}
1160 
1161 	return safe;
1162 }
1163 
1164 /*
1165  * Set the type we are starting to show and return a safe data pointer
1166  * to be used for showing the associated data.
1167  */
1168 static void *btf_show_start_type(struct btf_show *show,
1169 				 const struct btf_type *t,
1170 				 u32 type_id, void *data)
1171 {
1172 	show->state.type = t;
1173 	show->state.type_id = type_id;
1174 	show->state.name[0] = '\0';
1175 
1176 	return btf_show_obj_safe(show, t, data);
1177 }
1178 
1179 static void btf_show_end_type(struct btf_show *show)
1180 {
1181 	show->state.type = NULL;
1182 	show->state.type_id = 0;
1183 	show->state.name[0] = '\0';
1184 }
1185 
1186 static void *btf_show_start_aggr_type(struct btf_show *show,
1187 				      const struct btf_type *t,
1188 				      u32 type_id, void *data)
1189 {
1190 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1191 
1192 	if (!safe_data)
1193 		return safe_data;
1194 
1195 	btf_show(show, "%s%s%s", btf_show_indent(show),
1196 		 btf_show_name(show),
1197 		 btf_show_newline(show));
1198 	show->state.depth++;
1199 	return safe_data;
1200 }
1201 
1202 static void btf_show_end_aggr_type(struct btf_show *show,
1203 				   const char *suffix)
1204 {
1205 	show->state.depth--;
1206 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1207 		 btf_show_delim(show), btf_show_newline(show));
1208 	btf_show_end_type(show);
1209 }
1210 
1211 static void btf_show_start_member(struct btf_show *show,
1212 				  const struct btf_member *m)
1213 {
1214 	show->state.member = m;
1215 }
1216 
1217 static void btf_show_start_array_member(struct btf_show *show)
1218 {
1219 	show->state.array_member = 1;
1220 	btf_show_start_member(show, NULL);
1221 }
1222 
1223 static void btf_show_end_member(struct btf_show *show)
1224 {
1225 	show->state.member = NULL;
1226 }
1227 
1228 static void btf_show_end_array_member(struct btf_show *show)
1229 {
1230 	show->state.array_member = 0;
1231 	btf_show_end_member(show);
1232 }
1233 
1234 static void *btf_show_start_array_type(struct btf_show *show,
1235 				       const struct btf_type *t,
1236 				       u32 type_id,
1237 				       u16 array_encoding,
1238 				       void *data)
1239 {
1240 	show->state.array_encoding = array_encoding;
1241 	show->state.array_terminated = 0;
1242 	return btf_show_start_aggr_type(show, t, type_id, data);
1243 }
1244 
1245 static void btf_show_end_array_type(struct btf_show *show)
1246 {
1247 	show->state.array_encoding = 0;
1248 	show->state.array_terminated = 0;
1249 	btf_show_end_aggr_type(show, "]");
1250 }
1251 
1252 static void *btf_show_start_struct_type(struct btf_show *show,
1253 					const struct btf_type *t,
1254 					u32 type_id,
1255 					void *data)
1256 {
1257 	return btf_show_start_aggr_type(show, t, type_id, data);
1258 }
1259 
1260 static void btf_show_end_struct_type(struct btf_show *show)
1261 {
1262 	btf_show_end_aggr_type(show, "}");
1263 }
1264 
1265 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1266 					      const char *fmt, ...)
1267 {
1268 	va_list args;
1269 
1270 	va_start(args, fmt);
1271 	bpf_verifier_vlog(log, fmt, args);
1272 	va_end(args);
1273 }
1274 
1275 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1276 					    const char *fmt, ...)
1277 {
1278 	struct bpf_verifier_log *log = &env->log;
1279 	va_list args;
1280 
1281 	if (!bpf_verifier_log_needed(log))
1282 		return;
1283 
1284 	va_start(args, fmt);
1285 	bpf_verifier_vlog(log, fmt, args);
1286 	va_end(args);
1287 }
1288 
1289 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1290 						   const struct btf_type *t,
1291 						   bool log_details,
1292 						   const char *fmt, ...)
1293 {
1294 	struct bpf_verifier_log *log = &env->log;
1295 	u8 kind = BTF_INFO_KIND(t->info);
1296 	struct btf *btf = env->btf;
1297 	va_list args;
1298 
1299 	if (!bpf_verifier_log_needed(log))
1300 		return;
1301 
1302 	/* btf verifier prints all types it is processing via
1303 	 * btf_verifier_log_type(..., fmt = NULL).
1304 	 * Skip those prints for in-kernel BTF verification.
1305 	 */
1306 	if (log->level == BPF_LOG_KERNEL && !fmt)
1307 		return;
1308 
1309 	__btf_verifier_log(log, "[%u] %s %s%s",
1310 			   env->log_type_id,
1311 			   btf_kind_str[kind],
1312 			   __btf_name_by_offset(btf, t->name_off),
1313 			   log_details ? " " : "");
1314 
1315 	if (log_details)
1316 		btf_type_ops(t)->log_details(env, t);
1317 
1318 	if (fmt && *fmt) {
1319 		__btf_verifier_log(log, " ");
1320 		va_start(args, fmt);
1321 		bpf_verifier_vlog(log, fmt, args);
1322 		va_end(args);
1323 	}
1324 
1325 	__btf_verifier_log(log, "\n");
1326 }
1327 
1328 #define btf_verifier_log_type(env, t, ...) \
1329 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1330 #define btf_verifier_log_basic(env, t, ...) \
1331 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1332 
1333 __printf(4, 5)
1334 static void btf_verifier_log_member(struct btf_verifier_env *env,
1335 				    const struct btf_type *struct_type,
1336 				    const struct btf_member *member,
1337 				    const char *fmt, ...)
1338 {
1339 	struct bpf_verifier_log *log = &env->log;
1340 	struct btf *btf = env->btf;
1341 	va_list args;
1342 
1343 	if (!bpf_verifier_log_needed(log))
1344 		return;
1345 
1346 	if (log->level == BPF_LOG_KERNEL && !fmt)
1347 		return;
1348 	/* The CHECK_META phase already did a btf dump.
1349 	 *
1350 	 * If member is logged again, it must hit an error in
1351 	 * parsing this member.  It is useful to print out which
1352 	 * struct this member belongs to.
1353 	 */
1354 	if (env->phase != CHECK_META)
1355 		btf_verifier_log_type(env, struct_type, NULL);
1356 
1357 	if (btf_type_kflag(struct_type))
1358 		__btf_verifier_log(log,
1359 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1360 				   __btf_name_by_offset(btf, member->name_off),
1361 				   member->type,
1362 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1363 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1364 	else
1365 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1366 				   __btf_name_by_offset(btf, member->name_off),
1367 				   member->type, member->offset);
1368 
1369 	if (fmt && *fmt) {
1370 		__btf_verifier_log(log, " ");
1371 		va_start(args, fmt);
1372 		bpf_verifier_vlog(log, fmt, args);
1373 		va_end(args);
1374 	}
1375 
1376 	__btf_verifier_log(log, "\n");
1377 }
1378 
1379 __printf(4, 5)
1380 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1381 				 const struct btf_type *datasec_type,
1382 				 const struct btf_var_secinfo *vsi,
1383 				 const char *fmt, ...)
1384 {
1385 	struct bpf_verifier_log *log = &env->log;
1386 	va_list args;
1387 
1388 	if (!bpf_verifier_log_needed(log))
1389 		return;
1390 	if (log->level == BPF_LOG_KERNEL && !fmt)
1391 		return;
1392 	if (env->phase != CHECK_META)
1393 		btf_verifier_log_type(env, datasec_type, NULL);
1394 
1395 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1396 			   vsi->type, vsi->offset, vsi->size);
1397 	if (fmt && *fmt) {
1398 		__btf_verifier_log(log, " ");
1399 		va_start(args, fmt);
1400 		bpf_verifier_vlog(log, fmt, args);
1401 		va_end(args);
1402 	}
1403 
1404 	__btf_verifier_log(log, "\n");
1405 }
1406 
1407 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1408 				 u32 btf_data_size)
1409 {
1410 	struct bpf_verifier_log *log = &env->log;
1411 	const struct btf *btf = env->btf;
1412 	const struct btf_header *hdr;
1413 
1414 	if (!bpf_verifier_log_needed(log))
1415 		return;
1416 
1417 	if (log->level == BPF_LOG_KERNEL)
1418 		return;
1419 	hdr = &btf->hdr;
1420 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1421 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1422 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1423 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1424 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1425 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1426 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1427 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1428 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1429 }
1430 
1431 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1432 {
1433 	struct btf *btf = env->btf;
1434 
1435 	if (btf->types_size == btf->nr_types) {
1436 		/* Expand 'types' array */
1437 
1438 		struct btf_type **new_types;
1439 		u32 expand_by, new_size;
1440 
1441 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1442 			btf_verifier_log(env, "Exceeded max num of types");
1443 			return -E2BIG;
1444 		}
1445 
1446 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1447 		new_size = min_t(u32, BTF_MAX_TYPE,
1448 				 btf->types_size + expand_by);
1449 
1450 		new_types = kvcalloc(new_size, sizeof(*new_types),
1451 				     GFP_KERNEL | __GFP_NOWARN);
1452 		if (!new_types)
1453 			return -ENOMEM;
1454 
1455 		if (btf->nr_types == 0) {
1456 			if (!btf->base_btf) {
1457 				/* lazily init VOID type */
1458 				new_types[0] = &btf_void;
1459 				btf->nr_types++;
1460 			}
1461 		} else {
1462 			memcpy(new_types, btf->types,
1463 			       sizeof(*btf->types) * btf->nr_types);
1464 		}
1465 
1466 		kvfree(btf->types);
1467 		btf->types = new_types;
1468 		btf->types_size = new_size;
1469 	}
1470 
1471 	btf->types[btf->nr_types++] = t;
1472 
1473 	return 0;
1474 }
1475 
1476 static int btf_alloc_id(struct btf *btf)
1477 {
1478 	int id;
1479 
1480 	idr_preload(GFP_KERNEL);
1481 	spin_lock_bh(&btf_idr_lock);
1482 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1483 	if (id > 0)
1484 		btf->id = id;
1485 	spin_unlock_bh(&btf_idr_lock);
1486 	idr_preload_end();
1487 
1488 	if (WARN_ON_ONCE(!id))
1489 		return -ENOSPC;
1490 
1491 	return id > 0 ? 0 : id;
1492 }
1493 
1494 static void btf_free_id(struct btf *btf)
1495 {
1496 	unsigned long flags;
1497 
1498 	/*
1499 	 * In map-in-map, calling map_delete_elem() on outer
1500 	 * map will call bpf_map_put on the inner map.
1501 	 * It will then eventually call btf_free_id()
1502 	 * on the inner map.  Some of the map_delete_elem()
1503 	 * implementation may have irq disabled, so
1504 	 * we need to use the _irqsave() version instead
1505 	 * of the _bh() version.
1506 	 */
1507 	spin_lock_irqsave(&btf_idr_lock, flags);
1508 	idr_remove(&btf_idr, btf->id);
1509 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1510 }
1511 
1512 static void btf_free(struct btf *btf)
1513 {
1514 	kvfree(btf->types);
1515 	kvfree(btf->resolved_sizes);
1516 	kvfree(btf->resolved_ids);
1517 	kvfree(btf->data);
1518 	kfree(btf);
1519 }
1520 
1521 static void btf_free_rcu(struct rcu_head *rcu)
1522 {
1523 	struct btf *btf = container_of(rcu, struct btf, rcu);
1524 
1525 	btf_free(btf);
1526 }
1527 
1528 void btf_get(struct btf *btf)
1529 {
1530 	refcount_inc(&btf->refcnt);
1531 }
1532 
1533 void btf_put(struct btf *btf)
1534 {
1535 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1536 		btf_free_id(btf);
1537 		call_rcu(&btf->rcu, btf_free_rcu);
1538 	}
1539 }
1540 
1541 static int env_resolve_init(struct btf_verifier_env *env)
1542 {
1543 	struct btf *btf = env->btf;
1544 	u32 nr_types = btf->nr_types;
1545 	u32 *resolved_sizes = NULL;
1546 	u32 *resolved_ids = NULL;
1547 	u8 *visit_states = NULL;
1548 
1549 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1550 				  GFP_KERNEL | __GFP_NOWARN);
1551 	if (!resolved_sizes)
1552 		goto nomem;
1553 
1554 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1555 				GFP_KERNEL | __GFP_NOWARN);
1556 	if (!resolved_ids)
1557 		goto nomem;
1558 
1559 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1560 				GFP_KERNEL | __GFP_NOWARN);
1561 	if (!visit_states)
1562 		goto nomem;
1563 
1564 	btf->resolved_sizes = resolved_sizes;
1565 	btf->resolved_ids = resolved_ids;
1566 	env->visit_states = visit_states;
1567 
1568 	return 0;
1569 
1570 nomem:
1571 	kvfree(resolved_sizes);
1572 	kvfree(resolved_ids);
1573 	kvfree(visit_states);
1574 	return -ENOMEM;
1575 }
1576 
1577 static void btf_verifier_env_free(struct btf_verifier_env *env)
1578 {
1579 	kvfree(env->visit_states);
1580 	kfree(env);
1581 }
1582 
1583 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1584 				     const struct btf_type *next_type)
1585 {
1586 	switch (env->resolve_mode) {
1587 	case RESOLVE_TBD:
1588 		/* int, enum or void is a sink */
1589 		return !btf_type_needs_resolve(next_type);
1590 	case RESOLVE_PTR:
1591 		/* int, enum, void, struct, array, func or func_proto is a sink
1592 		 * for ptr
1593 		 */
1594 		return !btf_type_is_modifier(next_type) &&
1595 			!btf_type_is_ptr(next_type);
1596 	case RESOLVE_STRUCT_OR_ARRAY:
1597 		/* int, enum, void, ptr, func or func_proto is a sink
1598 		 * for struct and array
1599 		 */
1600 		return !btf_type_is_modifier(next_type) &&
1601 			!btf_type_is_array(next_type) &&
1602 			!btf_type_is_struct(next_type);
1603 	default:
1604 		BUG();
1605 	}
1606 }
1607 
1608 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1609 				 u32 type_id)
1610 {
1611 	/* base BTF types should be resolved by now */
1612 	if (type_id < env->btf->start_id)
1613 		return true;
1614 
1615 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1616 }
1617 
1618 static int env_stack_push(struct btf_verifier_env *env,
1619 			  const struct btf_type *t, u32 type_id)
1620 {
1621 	const struct btf *btf = env->btf;
1622 	struct resolve_vertex *v;
1623 
1624 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1625 		return -E2BIG;
1626 
1627 	if (type_id < btf->start_id
1628 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1629 		return -EEXIST;
1630 
1631 	env->visit_states[type_id - btf->start_id] = VISITED;
1632 
1633 	v = &env->stack[env->top_stack++];
1634 	v->t = t;
1635 	v->type_id = type_id;
1636 	v->next_member = 0;
1637 
1638 	if (env->resolve_mode == RESOLVE_TBD) {
1639 		if (btf_type_is_ptr(t))
1640 			env->resolve_mode = RESOLVE_PTR;
1641 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1642 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 static void env_stack_set_next_member(struct btf_verifier_env *env,
1649 				      u16 next_member)
1650 {
1651 	env->stack[env->top_stack - 1].next_member = next_member;
1652 }
1653 
1654 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1655 				   u32 resolved_type_id,
1656 				   u32 resolved_size)
1657 {
1658 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1659 	struct btf *btf = env->btf;
1660 
1661 	type_id -= btf->start_id; /* adjust to local type id */
1662 	btf->resolved_sizes[type_id] = resolved_size;
1663 	btf->resolved_ids[type_id] = resolved_type_id;
1664 	env->visit_states[type_id] = RESOLVED;
1665 }
1666 
1667 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1668 {
1669 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1670 }
1671 
1672 /* Resolve the size of a passed-in "type"
1673  *
1674  * type: is an array (e.g. u32 array[x][y])
1675  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1676  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1677  *             corresponds to the return type.
1678  * *elem_type: u32
1679  * *elem_id: id of u32
1680  * *total_nelems: (x * y).  Hence, individual elem size is
1681  *                (*type_size / *total_nelems)
1682  * *type_id: id of type if it's changed within the function, 0 if not
1683  *
1684  * type: is not an array (e.g. const struct X)
1685  * return type: type "struct X"
1686  * *type_size: sizeof(struct X)
1687  * *elem_type: same as return type ("struct X")
1688  * *elem_id: 0
1689  * *total_nelems: 1
1690  * *type_id: id of type if it's changed within the function, 0 if not
1691  */
1692 static const struct btf_type *
1693 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1694 		   u32 *type_size, const struct btf_type **elem_type,
1695 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1696 {
1697 	const struct btf_type *array_type = NULL;
1698 	const struct btf_array *array = NULL;
1699 	u32 i, size, nelems = 1, id = 0;
1700 
1701 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1702 		switch (BTF_INFO_KIND(type->info)) {
1703 		/* type->size can be used */
1704 		case BTF_KIND_INT:
1705 		case BTF_KIND_STRUCT:
1706 		case BTF_KIND_UNION:
1707 		case BTF_KIND_ENUM:
1708 		case BTF_KIND_FLOAT:
1709 			size = type->size;
1710 			goto resolved;
1711 
1712 		case BTF_KIND_PTR:
1713 			size = sizeof(void *);
1714 			goto resolved;
1715 
1716 		/* Modifiers */
1717 		case BTF_KIND_TYPEDEF:
1718 		case BTF_KIND_VOLATILE:
1719 		case BTF_KIND_CONST:
1720 		case BTF_KIND_RESTRICT:
1721 			id = type->type;
1722 			type = btf_type_by_id(btf, type->type);
1723 			break;
1724 
1725 		case BTF_KIND_ARRAY:
1726 			if (!array_type)
1727 				array_type = type;
1728 			array = btf_type_array(type);
1729 			if (nelems && array->nelems > U32_MAX / nelems)
1730 				return ERR_PTR(-EINVAL);
1731 			nelems *= array->nelems;
1732 			type = btf_type_by_id(btf, array->type);
1733 			break;
1734 
1735 		/* type without size */
1736 		default:
1737 			return ERR_PTR(-EINVAL);
1738 		}
1739 	}
1740 
1741 	return ERR_PTR(-EINVAL);
1742 
1743 resolved:
1744 	if (nelems && size > U32_MAX / nelems)
1745 		return ERR_PTR(-EINVAL);
1746 
1747 	*type_size = nelems * size;
1748 	if (total_nelems)
1749 		*total_nelems = nelems;
1750 	if (elem_type)
1751 		*elem_type = type;
1752 	if (elem_id)
1753 		*elem_id = array ? array->type : 0;
1754 	if (type_id && id)
1755 		*type_id = id;
1756 
1757 	return array_type ? : type;
1758 }
1759 
1760 const struct btf_type *
1761 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1762 		 u32 *type_size)
1763 {
1764 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1765 }
1766 
1767 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1768 {
1769 	while (type_id < btf->start_id)
1770 		btf = btf->base_btf;
1771 
1772 	return btf->resolved_ids[type_id - btf->start_id];
1773 }
1774 
1775 /* The input param "type_id" must point to a needs_resolve type */
1776 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1777 						  u32 *type_id)
1778 {
1779 	*type_id = btf_resolved_type_id(btf, *type_id);
1780 	return btf_type_by_id(btf, *type_id);
1781 }
1782 
1783 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1784 {
1785 	while (type_id < btf->start_id)
1786 		btf = btf->base_btf;
1787 
1788 	return btf->resolved_sizes[type_id - btf->start_id];
1789 }
1790 
1791 const struct btf_type *btf_type_id_size(const struct btf *btf,
1792 					u32 *type_id, u32 *ret_size)
1793 {
1794 	const struct btf_type *size_type;
1795 	u32 size_type_id = *type_id;
1796 	u32 size = 0;
1797 
1798 	size_type = btf_type_by_id(btf, size_type_id);
1799 	if (btf_type_nosize_or_null(size_type))
1800 		return NULL;
1801 
1802 	if (btf_type_has_size(size_type)) {
1803 		size = size_type->size;
1804 	} else if (btf_type_is_array(size_type)) {
1805 		size = btf_resolved_type_size(btf, size_type_id);
1806 	} else if (btf_type_is_ptr(size_type)) {
1807 		size = sizeof(void *);
1808 	} else {
1809 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1810 				 !btf_type_is_var(size_type)))
1811 			return NULL;
1812 
1813 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1814 		size_type = btf_type_by_id(btf, size_type_id);
1815 		if (btf_type_nosize_or_null(size_type))
1816 			return NULL;
1817 		else if (btf_type_has_size(size_type))
1818 			size = size_type->size;
1819 		else if (btf_type_is_array(size_type))
1820 			size = btf_resolved_type_size(btf, size_type_id);
1821 		else if (btf_type_is_ptr(size_type))
1822 			size = sizeof(void *);
1823 		else
1824 			return NULL;
1825 	}
1826 
1827 	*type_id = size_type_id;
1828 	if (ret_size)
1829 		*ret_size = size;
1830 
1831 	return size_type;
1832 }
1833 
1834 static int btf_df_check_member(struct btf_verifier_env *env,
1835 			       const struct btf_type *struct_type,
1836 			       const struct btf_member *member,
1837 			       const struct btf_type *member_type)
1838 {
1839 	btf_verifier_log_basic(env, struct_type,
1840 			       "Unsupported check_member");
1841 	return -EINVAL;
1842 }
1843 
1844 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1845 				     const struct btf_type *struct_type,
1846 				     const struct btf_member *member,
1847 				     const struct btf_type *member_type)
1848 {
1849 	btf_verifier_log_basic(env, struct_type,
1850 			       "Unsupported check_kflag_member");
1851 	return -EINVAL;
1852 }
1853 
1854 /* Used for ptr, array struct/union and float type members.
1855  * int, enum and modifier types have their specific callback functions.
1856  */
1857 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1858 					  const struct btf_type *struct_type,
1859 					  const struct btf_member *member,
1860 					  const struct btf_type *member_type)
1861 {
1862 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1863 		btf_verifier_log_member(env, struct_type, member,
1864 					"Invalid member bitfield_size");
1865 		return -EINVAL;
1866 	}
1867 
1868 	/* bitfield size is 0, so member->offset represents bit offset only.
1869 	 * It is safe to call non kflag check_member variants.
1870 	 */
1871 	return btf_type_ops(member_type)->check_member(env, struct_type,
1872 						       member,
1873 						       member_type);
1874 }
1875 
1876 static int btf_df_resolve(struct btf_verifier_env *env,
1877 			  const struct resolve_vertex *v)
1878 {
1879 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1880 	return -EINVAL;
1881 }
1882 
1883 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1884 			u32 type_id, void *data, u8 bits_offsets,
1885 			struct btf_show *show)
1886 {
1887 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1888 }
1889 
1890 static int btf_int_check_member(struct btf_verifier_env *env,
1891 				const struct btf_type *struct_type,
1892 				const struct btf_member *member,
1893 				const struct btf_type *member_type)
1894 {
1895 	u32 int_data = btf_type_int(member_type);
1896 	u32 struct_bits_off = member->offset;
1897 	u32 struct_size = struct_type->size;
1898 	u32 nr_copy_bits;
1899 	u32 bytes_offset;
1900 
1901 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1902 		btf_verifier_log_member(env, struct_type, member,
1903 					"bits_offset exceeds U32_MAX");
1904 		return -EINVAL;
1905 	}
1906 
1907 	struct_bits_off += BTF_INT_OFFSET(int_data);
1908 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1909 	nr_copy_bits = BTF_INT_BITS(int_data) +
1910 		BITS_PER_BYTE_MASKED(struct_bits_off);
1911 
1912 	if (nr_copy_bits > BITS_PER_U128) {
1913 		btf_verifier_log_member(env, struct_type, member,
1914 					"nr_copy_bits exceeds 128");
1915 		return -EINVAL;
1916 	}
1917 
1918 	if (struct_size < bytes_offset ||
1919 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1920 		btf_verifier_log_member(env, struct_type, member,
1921 					"Member exceeds struct_size");
1922 		return -EINVAL;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1929 				      const struct btf_type *struct_type,
1930 				      const struct btf_member *member,
1931 				      const struct btf_type *member_type)
1932 {
1933 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1934 	u32 int_data = btf_type_int(member_type);
1935 	u32 struct_size = struct_type->size;
1936 	u32 nr_copy_bits;
1937 
1938 	/* a regular int type is required for the kflag int member */
1939 	if (!btf_type_int_is_regular(member_type)) {
1940 		btf_verifier_log_member(env, struct_type, member,
1941 					"Invalid member base type");
1942 		return -EINVAL;
1943 	}
1944 
1945 	/* check sanity of bitfield size */
1946 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1947 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1948 	nr_int_data_bits = BTF_INT_BITS(int_data);
1949 	if (!nr_bits) {
1950 		/* Not a bitfield member, member offset must be at byte
1951 		 * boundary.
1952 		 */
1953 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1954 			btf_verifier_log_member(env, struct_type, member,
1955 						"Invalid member offset");
1956 			return -EINVAL;
1957 		}
1958 
1959 		nr_bits = nr_int_data_bits;
1960 	} else if (nr_bits > nr_int_data_bits) {
1961 		btf_verifier_log_member(env, struct_type, member,
1962 					"Invalid member bitfield_size");
1963 		return -EINVAL;
1964 	}
1965 
1966 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1967 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1968 	if (nr_copy_bits > BITS_PER_U128) {
1969 		btf_verifier_log_member(env, struct_type, member,
1970 					"nr_copy_bits exceeds 128");
1971 		return -EINVAL;
1972 	}
1973 
1974 	if (struct_size < bytes_offset ||
1975 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1976 		btf_verifier_log_member(env, struct_type, member,
1977 					"Member exceeds struct_size");
1978 		return -EINVAL;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1985 			      const struct btf_type *t,
1986 			      u32 meta_left)
1987 {
1988 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1989 	u16 encoding;
1990 
1991 	if (meta_left < meta_needed) {
1992 		btf_verifier_log_basic(env, t,
1993 				       "meta_left:%u meta_needed:%u",
1994 				       meta_left, meta_needed);
1995 		return -EINVAL;
1996 	}
1997 
1998 	if (btf_type_vlen(t)) {
1999 		btf_verifier_log_type(env, t, "vlen != 0");
2000 		return -EINVAL;
2001 	}
2002 
2003 	if (btf_type_kflag(t)) {
2004 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2005 		return -EINVAL;
2006 	}
2007 
2008 	int_data = btf_type_int(t);
2009 	if (int_data & ~BTF_INT_MASK) {
2010 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2011 				       int_data);
2012 		return -EINVAL;
2013 	}
2014 
2015 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2016 
2017 	if (nr_bits > BITS_PER_U128) {
2018 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2019 				      BITS_PER_U128);
2020 		return -EINVAL;
2021 	}
2022 
2023 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2024 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2025 		return -EINVAL;
2026 	}
2027 
2028 	/*
2029 	 * Only one of the encoding bits is allowed and it
2030 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2031 	 * Multiple bits can be allowed later if it is found
2032 	 * to be insufficient.
2033 	 */
2034 	encoding = BTF_INT_ENCODING(int_data);
2035 	if (encoding &&
2036 	    encoding != BTF_INT_SIGNED &&
2037 	    encoding != BTF_INT_CHAR &&
2038 	    encoding != BTF_INT_BOOL) {
2039 		btf_verifier_log_type(env, t, "Unsupported encoding");
2040 		return -ENOTSUPP;
2041 	}
2042 
2043 	btf_verifier_log_type(env, t, NULL);
2044 
2045 	return meta_needed;
2046 }
2047 
2048 static void btf_int_log(struct btf_verifier_env *env,
2049 			const struct btf_type *t)
2050 {
2051 	int int_data = btf_type_int(t);
2052 
2053 	btf_verifier_log(env,
2054 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2055 			 t->size, BTF_INT_OFFSET(int_data),
2056 			 BTF_INT_BITS(int_data),
2057 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2058 }
2059 
2060 static void btf_int128_print(struct btf_show *show, void *data)
2061 {
2062 	/* data points to a __int128 number.
2063 	 * Suppose
2064 	 *     int128_num = *(__int128 *)data;
2065 	 * The below formulas shows what upper_num and lower_num represents:
2066 	 *     upper_num = int128_num >> 64;
2067 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2068 	 */
2069 	u64 upper_num, lower_num;
2070 
2071 #ifdef __BIG_ENDIAN_BITFIELD
2072 	upper_num = *(u64 *)data;
2073 	lower_num = *(u64 *)(data + 8);
2074 #else
2075 	upper_num = *(u64 *)(data + 8);
2076 	lower_num = *(u64 *)data;
2077 #endif
2078 	if (upper_num == 0)
2079 		btf_show_type_value(show, "0x%llx", lower_num);
2080 	else
2081 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2082 				     lower_num);
2083 }
2084 
2085 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2086 			     u16 right_shift_bits)
2087 {
2088 	u64 upper_num, lower_num;
2089 
2090 #ifdef __BIG_ENDIAN_BITFIELD
2091 	upper_num = print_num[0];
2092 	lower_num = print_num[1];
2093 #else
2094 	upper_num = print_num[1];
2095 	lower_num = print_num[0];
2096 #endif
2097 
2098 	/* shake out un-needed bits by shift/or operations */
2099 	if (left_shift_bits >= 64) {
2100 		upper_num = lower_num << (left_shift_bits - 64);
2101 		lower_num = 0;
2102 	} else {
2103 		upper_num = (upper_num << left_shift_bits) |
2104 			    (lower_num >> (64 - left_shift_bits));
2105 		lower_num = lower_num << left_shift_bits;
2106 	}
2107 
2108 	if (right_shift_bits >= 64) {
2109 		lower_num = upper_num >> (right_shift_bits - 64);
2110 		upper_num = 0;
2111 	} else {
2112 		lower_num = (lower_num >> right_shift_bits) |
2113 			    (upper_num << (64 - right_shift_bits));
2114 		upper_num = upper_num >> right_shift_bits;
2115 	}
2116 
2117 #ifdef __BIG_ENDIAN_BITFIELD
2118 	print_num[0] = upper_num;
2119 	print_num[1] = lower_num;
2120 #else
2121 	print_num[0] = lower_num;
2122 	print_num[1] = upper_num;
2123 #endif
2124 }
2125 
2126 static void btf_bitfield_show(void *data, u8 bits_offset,
2127 			      u8 nr_bits, struct btf_show *show)
2128 {
2129 	u16 left_shift_bits, right_shift_bits;
2130 	u8 nr_copy_bytes;
2131 	u8 nr_copy_bits;
2132 	u64 print_num[2] = {};
2133 
2134 	nr_copy_bits = nr_bits + bits_offset;
2135 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2136 
2137 	memcpy(print_num, data, nr_copy_bytes);
2138 
2139 #ifdef __BIG_ENDIAN_BITFIELD
2140 	left_shift_bits = bits_offset;
2141 #else
2142 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2143 #endif
2144 	right_shift_bits = BITS_PER_U128 - nr_bits;
2145 
2146 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2147 	btf_int128_print(show, print_num);
2148 }
2149 
2150 
2151 static void btf_int_bits_show(const struct btf *btf,
2152 			      const struct btf_type *t,
2153 			      void *data, u8 bits_offset,
2154 			      struct btf_show *show)
2155 {
2156 	u32 int_data = btf_type_int(t);
2157 	u8 nr_bits = BTF_INT_BITS(int_data);
2158 	u8 total_bits_offset;
2159 
2160 	/*
2161 	 * bits_offset is at most 7.
2162 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2163 	 */
2164 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2165 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2166 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2167 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2168 }
2169 
2170 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2171 			 u32 type_id, void *data, u8 bits_offset,
2172 			 struct btf_show *show)
2173 {
2174 	u32 int_data = btf_type_int(t);
2175 	u8 encoding = BTF_INT_ENCODING(int_data);
2176 	bool sign = encoding & BTF_INT_SIGNED;
2177 	u8 nr_bits = BTF_INT_BITS(int_data);
2178 	void *safe_data;
2179 
2180 	safe_data = btf_show_start_type(show, t, type_id, data);
2181 	if (!safe_data)
2182 		return;
2183 
2184 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2185 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2186 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2187 		goto out;
2188 	}
2189 
2190 	switch (nr_bits) {
2191 	case 128:
2192 		btf_int128_print(show, safe_data);
2193 		break;
2194 	case 64:
2195 		if (sign)
2196 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2197 		else
2198 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2199 		break;
2200 	case 32:
2201 		if (sign)
2202 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2203 		else
2204 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2205 		break;
2206 	case 16:
2207 		if (sign)
2208 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2209 		else
2210 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2211 		break;
2212 	case 8:
2213 		if (show->state.array_encoding == BTF_INT_CHAR) {
2214 			/* check for null terminator */
2215 			if (show->state.array_terminated)
2216 				break;
2217 			if (*(char *)data == '\0') {
2218 				show->state.array_terminated = 1;
2219 				break;
2220 			}
2221 			if (isprint(*(char *)data)) {
2222 				btf_show_type_value(show, "'%c'",
2223 						    *(char *)safe_data);
2224 				break;
2225 			}
2226 		}
2227 		if (sign)
2228 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2229 		else
2230 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2231 		break;
2232 	default:
2233 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2234 		break;
2235 	}
2236 out:
2237 	btf_show_end_type(show);
2238 }
2239 
2240 static const struct btf_kind_operations int_ops = {
2241 	.check_meta = btf_int_check_meta,
2242 	.resolve = btf_df_resolve,
2243 	.check_member = btf_int_check_member,
2244 	.check_kflag_member = btf_int_check_kflag_member,
2245 	.log_details = btf_int_log,
2246 	.show = btf_int_show,
2247 };
2248 
2249 static int btf_modifier_check_member(struct btf_verifier_env *env,
2250 				     const struct btf_type *struct_type,
2251 				     const struct btf_member *member,
2252 				     const struct btf_type *member_type)
2253 {
2254 	const struct btf_type *resolved_type;
2255 	u32 resolved_type_id = member->type;
2256 	struct btf_member resolved_member;
2257 	struct btf *btf = env->btf;
2258 
2259 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2260 	if (!resolved_type) {
2261 		btf_verifier_log_member(env, struct_type, member,
2262 					"Invalid member");
2263 		return -EINVAL;
2264 	}
2265 
2266 	resolved_member = *member;
2267 	resolved_member.type = resolved_type_id;
2268 
2269 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2270 							 &resolved_member,
2271 							 resolved_type);
2272 }
2273 
2274 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2275 					   const struct btf_type *struct_type,
2276 					   const struct btf_member *member,
2277 					   const struct btf_type *member_type)
2278 {
2279 	const struct btf_type *resolved_type;
2280 	u32 resolved_type_id = member->type;
2281 	struct btf_member resolved_member;
2282 	struct btf *btf = env->btf;
2283 
2284 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2285 	if (!resolved_type) {
2286 		btf_verifier_log_member(env, struct_type, member,
2287 					"Invalid member");
2288 		return -EINVAL;
2289 	}
2290 
2291 	resolved_member = *member;
2292 	resolved_member.type = resolved_type_id;
2293 
2294 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2295 							       &resolved_member,
2296 							       resolved_type);
2297 }
2298 
2299 static int btf_ptr_check_member(struct btf_verifier_env *env,
2300 				const struct btf_type *struct_type,
2301 				const struct btf_member *member,
2302 				const struct btf_type *member_type)
2303 {
2304 	u32 struct_size, struct_bits_off, bytes_offset;
2305 
2306 	struct_size = struct_type->size;
2307 	struct_bits_off = member->offset;
2308 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2309 
2310 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2311 		btf_verifier_log_member(env, struct_type, member,
2312 					"Member is not byte aligned");
2313 		return -EINVAL;
2314 	}
2315 
2316 	if (struct_size - bytes_offset < sizeof(void *)) {
2317 		btf_verifier_log_member(env, struct_type, member,
2318 					"Member exceeds struct_size");
2319 		return -EINVAL;
2320 	}
2321 
2322 	return 0;
2323 }
2324 
2325 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2326 				   const struct btf_type *t,
2327 				   u32 meta_left)
2328 {
2329 	if (btf_type_vlen(t)) {
2330 		btf_verifier_log_type(env, t, "vlen != 0");
2331 		return -EINVAL;
2332 	}
2333 
2334 	if (btf_type_kflag(t)) {
2335 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2336 		return -EINVAL;
2337 	}
2338 
2339 	if (!BTF_TYPE_ID_VALID(t->type)) {
2340 		btf_verifier_log_type(env, t, "Invalid type_id");
2341 		return -EINVAL;
2342 	}
2343 
2344 	/* typedef type must have a valid name, and other ref types,
2345 	 * volatile, const, restrict, should have a null name.
2346 	 */
2347 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2348 		if (!t->name_off ||
2349 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2350 			btf_verifier_log_type(env, t, "Invalid name");
2351 			return -EINVAL;
2352 		}
2353 	} else {
2354 		if (t->name_off) {
2355 			btf_verifier_log_type(env, t, "Invalid name");
2356 			return -EINVAL;
2357 		}
2358 	}
2359 
2360 	btf_verifier_log_type(env, t, NULL);
2361 
2362 	return 0;
2363 }
2364 
2365 static int btf_modifier_resolve(struct btf_verifier_env *env,
2366 				const struct resolve_vertex *v)
2367 {
2368 	const struct btf_type *t = v->t;
2369 	const struct btf_type *next_type;
2370 	u32 next_type_id = t->type;
2371 	struct btf *btf = env->btf;
2372 
2373 	next_type = btf_type_by_id(btf, next_type_id);
2374 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2375 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2376 		return -EINVAL;
2377 	}
2378 
2379 	if (!env_type_is_resolve_sink(env, next_type) &&
2380 	    !env_type_is_resolved(env, next_type_id))
2381 		return env_stack_push(env, next_type, next_type_id);
2382 
2383 	/* Figure out the resolved next_type_id with size.
2384 	 * They will be stored in the current modifier's
2385 	 * resolved_ids and resolved_sizes such that it can
2386 	 * save us a few type-following when we use it later (e.g. in
2387 	 * pretty print).
2388 	 */
2389 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2390 		if (env_type_is_resolved(env, next_type_id))
2391 			next_type = btf_type_id_resolve(btf, &next_type_id);
2392 
2393 		/* "typedef void new_void", "const void"...etc */
2394 		if (!btf_type_is_void(next_type) &&
2395 		    !btf_type_is_fwd(next_type) &&
2396 		    !btf_type_is_func_proto(next_type)) {
2397 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2398 			return -EINVAL;
2399 		}
2400 	}
2401 
2402 	env_stack_pop_resolved(env, next_type_id, 0);
2403 
2404 	return 0;
2405 }
2406 
2407 static int btf_var_resolve(struct btf_verifier_env *env,
2408 			   const struct resolve_vertex *v)
2409 {
2410 	const struct btf_type *next_type;
2411 	const struct btf_type *t = v->t;
2412 	u32 next_type_id = t->type;
2413 	struct btf *btf = env->btf;
2414 
2415 	next_type = btf_type_by_id(btf, next_type_id);
2416 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2417 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2418 		return -EINVAL;
2419 	}
2420 
2421 	if (!env_type_is_resolve_sink(env, next_type) &&
2422 	    !env_type_is_resolved(env, next_type_id))
2423 		return env_stack_push(env, next_type, next_type_id);
2424 
2425 	if (btf_type_is_modifier(next_type)) {
2426 		const struct btf_type *resolved_type;
2427 		u32 resolved_type_id;
2428 
2429 		resolved_type_id = next_type_id;
2430 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2431 
2432 		if (btf_type_is_ptr(resolved_type) &&
2433 		    !env_type_is_resolve_sink(env, resolved_type) &&
2434 		    !env_type_is_resolved(env, resolved_type_id))
2435 			return env_stack_push(env, resolved_type,
2436 					      resolved_type_id);
2437 	}
2438 
2439 	/* We must resolve to something concrete at this point, no
2440 	 * forward types or similar that would resolve to size of
2441 	 * zero is allowed.
2442 	 */
2443 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2444 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2445 		return -EINVAL;
2446 	}
2447 
2448 	env_stack_pop_resolved(env, next_type_id, 0);
2449 
2450 	return 0;
2451 }
2452 
2453 static int btf_ptr_resolve(struct btf_verifier_env *env,
2454 			   const struct resolve_vertex *v)
2455 {
2456 	const struct btf_type *next_type;
2457 	const struct btf_type *t = v->t;
2458 	u32 next_type_id = t->type;
2459 	struct btf *btf = env->btf;
2460 
2461 	next_type = btf_type_by_id(btf, next_type_id);
2462 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2463 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2464 		return -EINVAL;
2465 	}
2466 
2467 	if (!env_type_is_resolve_sink(env, next_type) &&
2468 	    !env_type_is_resolved(env, next_type_id))
2469 		return env_stack_push(env, next_type, next_type_id);
2470 
2471 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2472 	 * the modifier may have stopped resolving when it was resolved
2473 	 * to a ptr (last-resolved-ptr).
2474 	 *
2475 	 * We now need to continue from the last-resolved-ptr to
2476 	 * ensure the last-resolved-ptr will not referring back to
2477 	 * the currenct ptr (t).
2478 	 */
2479 	if (btf_type_is_modifier(next_type)) {
2480 		const struct btf_type *resolved_type;
2481 		u32 resolved_type_id;
2482 
2483 		resolved_type_id = next_type_id;
2484 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2485 
2486 		if (btf_type_is_ptr(resolved_type) &&
2487 		    !env_type_is_resolve_sink(env, resolved_type) &&
2488 		    !env_type_is_resolved(env, resolved_type_id))
2489 			return env_stack_push(env, resolved_type,
2490 					      resolved_type_id);
2491 	}
2492 
2493 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2494 		if (env_type_is_resolved(env, next_type_id))
2495 			next_type = btf_type_id_resolve(btf, &next_type_id);
2496 
2497 		if (!btf_type_is_void(next_type) &&
2498 		    !btf_type_is_fwd(next_type) &&
2499 		    !btf_type_is_func_proto(next_type)) {
2500 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2501 			return -EINVAL;
2502 		}
2503 	}
2504 
2505 	env_stack_pop_resolved(env, next_type_id, 0);
2506 
2507 	return 0;
2508 }
2509 
2510 static void btf_modifier_show(const struct btf *btf,
2511 			      const struct btf_type *t,
2512 			      u32 type_id, void *data,
2513 			      u8 bits_offset, struct btf_show *show)
2514 {
2515 	if (btf->resolved_ids)
2516 		t = btf_type_id_resolve(btf, &type_id);
2517 	else
2518 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2519 
2520 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2521 }
2522 
2523 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2524 			 u32 type_id, void *data, u8 bits_offset,
2525 			 struct btf_show *show)
2526 {
2527 	t = btf_type_id_resolve(btf, &type_id);
2528 
2529 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2530 }
2531 
2532 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2533 			 u32 type_id, void *data, u8 bits_offset,
2534 			 struct btf_show *show)
2535 {
2536 	void *safe_data;
2537 
2538 	safe_data = btf_show_start_type(show, t, type_id, data);
2539 	if (!safe_data)
2540 		return;
2541 
2542 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2543 	if (show->flags & BTF_SHOW_PTR_RAW)
2544 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2545 	else
2546 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2547 	btf_show_end_type(show);
2548 }
2549 
2550 static void btf_ref_type_log(struct btf_verifier_env *env,
2551 			     const struct btf_type *t)
2552 {
2553 	btf_verifier_log(env, "type_id=%u", t->type);
2554 }
2555 
2556 static struct btf_kind_operations modifier_ops = {
2557 	.check_meta = btf_ref_type_check_meta,
2558 	.resolve = btf_modifier_resolve,
2559 	.check_member = btf_modifier_check_member,
2560 	.check_kflag_member = btf_modifier_check_kflag_member,
2561 	.log_details = btf_ref_type_log,
2562 	.show = btf_modifier_show,
2563 };
2564 
2565 static struct btf_kind_operations ptr_ops = {
2566 	.check_meta = btf_ref_type_check_meta,
2567 	.resolve = btf_ptr_resolve,
2568 	.check_member = btf_ptr_check_member,
2569 	.check_kflag_member = btf_generic_check_kflag_member,
2570 	.log_details = btf_ref_type_log,
2571 	.show = btf_ptr_show,
2572 };
2573 
2574 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2575 			      const struct btf_type *t,
2576 			      u32 meta_left)
2577 {
2578 	if (btf_type_vlen(t)) {
2579 		btf_verifier_log_type(env, t, "vlen != 0");
2580 		return -EINVAL;
2581 	}
2582 
2583 	if (t->type) {
2584 		btf_verifier_log_type(env, t, "type != 0");
2585 		return -EINVAL;
2586 	}
2587 
2588 	/* fwd type must have a valid name */
2589 	if (!t->name_off ||
2590 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2591 		btf_verifier_log_type(env, t, "Invalid name");
2592 		return -EINVAL;
2593 	}
2594 
2595 	btf_verifier_log_type(env, t, NULL);
2596 
2597 	return 0;
2598 }
2599 
2600 static void btf_fwd_type_log(struct btf_verifier_env *env,
2601 			     const struct btf_type *t)
2602 {
2603 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2604 }
2605 
2606 static struct btf_kind_operations fwd_ops = {
2607 	.check_meta = btf_fwd_check_meta,
2608 	.resolve = btf_df_resolve,
2609 	.check_member = btf_df_check_member,
2610 	.check_kflag_member = btf_df_check_kflag_member,
2611 	.log_details = btf_fwd_type_log,
2612 	.show = btf_df_show,
2613 };
2614 
2615 static int btf_array_check_member(struct btf_verifier_env *env,
2616 				  const struct btf_type *struct_type,
2617 				  const struct btf_member *member,
2618 				  const struct btf_type *member_type)
2619 {
2620 	u32 struct_bits_off = member->offset;
2621 	u32 struct_size, bytes_offset;
2622 	u32 array_type_id, array_size;
2623 	struct btf *btf = env->btf;
2624 
2625 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2626 		btf_verifier_log_member(env, struct_type, member,
2627 					"Member is not byte aligned");
2628 		return -EINVAL;
2629 	}
2630 
2631 	array_type_id = member->type;
2632 	btf_type_id_size(btf, &array_type_id, &array_size);
2633 	struct_size = struct_type->size;
2634 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2635 	if (struct_size - bytes_offset < array_size) {
2636 		btf_verifier_log_member(env, struct_type, member,
2637 					"Member exceeds struct_size");
2638 		return -EINVAL;
2639 	}
2640 
2641 	return 0;
2642 }
2643 
2644 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2645 				const struct btf_type *t,
2646 				u32 meta_left)
2647 {
2648 	const struct btf_array *array = btf_type_array(t);
2649 	u32 meta_needed = sizeof(*array);
2650 
2651 	if (meta_left < meta_needed) {
2652 		btf_verifier_log_basic(env, t,
2653 				       "meta_left:%u meta_needed:%u",
2654 				       meta_left, meta_needed);
2655 		return -EINVAL;
2656 	}
2657 
2658 	/* array type should not have a name */
2659 	if (t->name_off) {
2660 		btf_verifier_log_type(env, t, "Invalid name");
2661 		return -EINVAL;
2662 	}
2663 
2664 	if (btf_type_vlen(t)) {
2665 		btf_verifier_log_type(env, t, "vlen != 0");
2666 		return -EINVAL;
2667 	}
2668 
2669 	if (btf_type_kflag(t)) {
2670 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2671 		return -EINVAL;
2672 	}
2673 
2674 	if (t->size) {
2675 		btf_verifier_log_type(env, t, "size != 0");
2676 		return -EINVAL;
2677 	}
2678 
2679 	/* Array elem type and index type cannot be in type void,
2680 	 * so !array->type and !array->index_type are not allowed.
2681 	 */
2682 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2683 		btf_verifier_log_type(env, t, "Invalid elem");
2684 		return -EINVAL;
2685 	}
2686 
2687 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2688 		btf_verifier_log_type(env, t, "Invalid index");
2689 		return -EINVAL;
2690 	}
2691 
2692 	btf_verifier_log_type(env, t, NULL);
2693 
2694 	return meta_needed;
2695 }
2696 
2697 static int btf_array_resolve(struct btf_verifier_env *env,
2698 			     const struct resolve_vertex *v)
2699 {
2700 	const struct btf_array *array = btf_type_array(v->t);
2701 	const struct btf_type *elem_type, *index_type;
2702 	u32 elem_type_id, index_type_id;
2703 	struct btf *btf = env->btf;
2704 	u32 elem_size;
2705 
2706 	/* Check array->index_type */
2707 	index_type_id = array->index_type;
2708 	index_type = btf_type_by_id(btf, index_type_id);
2709 	if (btf_type_nosize_or_null(index_type) ||
2710 	    btf_type_is_resolve_source_only(index_type)) {
2711 		btf_verifier_log_type(env, v->t, "Invalid index");
2712 		return -EINVAL;
2713 	}
2714 
2715 	if (!env_type_is_resolve_sink(env, index_type) &&
2716 	    !env_type_is_resolved(env, index_type_id))
2717 		return env_stack_push(env, index_type, index_type_id);
2718 
2719 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2720 	if (!index_type || !btf_type_is_int(index_type) ||
2721 	    !btf_type_int_is_regular(index_type)) {
2722 		btf_verifier_log_type(env, v->t, "Invalid index");
2723 		return -EINVAL;
2724 	}
2725 
2726 	/* Check array->type */
2727 	elem_type_id = array->type;
2728 	elem_type = btf_type_by_id(btf, elem_type_id);
2729 	if (btf_type_nosize_or_null(elem_type) ||
2730 	    btf_type_is_resolve_source_only(elem_type)) {
2731 		btf_verifier_log_type(env, v->t,
2732 				      "Invalid elem");
2733 		return -EINVAL;
2734 	}
2735 
2736 	if (!env_type_is_resolve_sink(env, elem_type) &&
2737 	    !env_type_is_resolved(env, elem_type_id))
2738 		return env_stack_push(env, elem_type, elem_type_id);
2739 
2740 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2741 	if (!elem_type) {
2742 		btf_verifier_log_type(env, v->t, "Invalid elem");
2743 		return -EINVAL;
2744 	}
2745 
2746 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2747 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2748 		return -EINVAL;
2749 	}
2750 
2751 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2752 		btf_verifier_log_type(env, v->t,
2753 				      "Array size overflows U32_MAX");
2754 		return -EINVAL;
2755 	}
2756 
2757 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2758 
2759 	return 0;
2760 }
2761 
2762 static void btf_array_log(struct btf_verifier_env *env,
2763 			  const struct btf_type *t)
2764 {
2765 	const struct btf_array *array = btf_type_array(t);
2766 
2767 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2768 			 array->type, array->index_type, array->nelems);
2769 }
2770 
2771 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2772 			     u32 type_id, void *data, u8 bits_offset,
2773 			     struct btf_show *show)
2774 {
2775 	const struct btf_array *array = btf_type_array(t);
2776 	const struct btf_kind_operations *elem_ops;
2777 	const struct btf_type *elem_type;
2778 	u32 i, elem_size = 0, elem_type_id;
2779 	u16 encoding = 0;
2780 
2781 	elem_type_id = array->type;
2782 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2783 	if (elem_type && btf_type_has_size(elem_type))
2784 		elem_size = elem_type->size;
2785 
2786 	if (elem_type && btf_type_is_int(elem_type)) {
2787 		u32 int_type = btf_type_int(elem_type);
2788 
2789 		encoding = BTF_INT_ENCODING(int_type);
2790 
2791 		/*
2792 		 * BTF_INT_CHAR encoding never seems to be set for
2793 		 * char arrays, so if size is 1 and element is
2794 		 * printable as a char, we'll do that.
2795 		 */
2796 		if (elem_size == 1)
2797 			encoding = BTF_INT_CHAR;
2798 	}
2799 
2800 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2801 		return;
2802 
2803 	if (!elem_type)
2804 		goto out;
2805 	elem_ops = btf_type_ops(elem_type);
2806 
2807 	for (i = 0; i < array->nelems; i++) {
2808 
2809 		btf_show_start_array_member(show);
2810 
2811 		elem_ops->show(btf, elem_type, elem_type_id, data,
2812 			       bits_offset, show);
2813 		data += elem_size;
2814 
2815 		btf_show_end_array_member(show);
2816 
2817 		if (show->state.array_terminated)
2818 			break;
2819 	}
2820 out:
2821 	btf_show_end_array_type(show);
2822 }
2823 
2824 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2825 			   u32 type_id, void *data, u8 bits_offset,
2826 			   struct btf_show *show)
2827 {
2828 	const struct btf_member *m = show->state.member;
2829 
2830 	/*
2831 	 * First check if any members would be shown (are non-zero).
2832 	 * See comments above "struct btf_show" definition for more
2833 	 * details on how this works at a high-level.
2834 	 */
2835 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2836 		if (!show->state.depth_check) {
2837 			show->state.depth_check = show->state.depth + 1;
2838 			show->state.depth_to_show = 0;
2839 		}
2840 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2841 		show->state.member = m;
2842 
2843 		if (show->state.depth_check != show->state.depth + 1)
2844 			return;
2845 		show->state.depth_check = 0;
2846 
2847 		if (show->state.depth_to_show <= show->state.depth)
2848 			return;
2849 		/*
2850 		 * Reaching here indicates we have recursed and found
2851 		 * non-zero array member(s).
2852 		 */
2853 	}
2854 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2855 }
2856 
2857 static struct btf_kind_operations array_ops = {
2858 	.check_meta = btf_array_check_meta,
2859 	.resolve = btf_array_resolve,
2860 	.check_member = btf_array_check_member,
2861 	.check_kflag_member = btf_generic_check_kflag_member,
2862 	.log_details = btf_array_log,
2863 	.show = btf_array_show,
2864 };
2865 
2866 static int btf_struct_check_member(struct btf_verifier_env *env,
2867 				   const struct btf_type *struct_type,
2868 				   const struct btf_member *member,
2869 				   const struct btf_type *member_type)
2870 {
2871 	u32 struct_bits_off = member->offset;
2872 	u32 struct_size, bytes_offset;
2873 
2874 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2875 		btf_verifier_log_member(env, struct_type, member,
2876 					"Member is not byte aligned");
2877 		return -EINVAL;
2878 	}
2879 
2880 	struct_size = struct_type->size;
2881 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2882 	if (struct_size - bytes_offset < member_type->size) {
2883 		btf_verifier_log_member(env, struct_type, member,
2884 					"Member exceeds struct_size");
2885 		return -EINVAL;
2886 	}
2887 
2888 	return 0;
2889 }
2890 
2891 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2892 				 const struct btf_type *t,
2893 				 u32 meta_left)
2894 {
2895 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2896 	const struct btf_member *member;
2897 	u32 meta_needed, last_offset;
2898 	struct btf *btf = env->btf;
2899 	u32 struct_size = t->size;
2900 	u32 offset;
2901 	u16 i;
2902 
2903 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2904 	if (meta_left < meta_needed) {
2905 		btf_verifier_log_basic(env, t,
2906 				       "meta_left:%u meta_needed:%u",
2907 				       meta_left, meta_needed);
2908 		return -EINVAL;
2909 	}
2910 
2911 	/* struct type either no name or a valid one */
2912 	if (t->name_off &&
2913 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2914 		btf_verifier_log_type(env, t, "Invalid name");
2915 		return -EINVAL;
2916 	}
2917 
2918 	btf_verifier_log_type(env, t, NULL);
2919 
2920 	last_offset = 0;
2921 	for_each_member(i, t, member) {
2922 		if (!btf_name_offset_valid(btf, member->name_off)) {
2923 			btf_verifier_log_member(env, t, member,
2924 						"Invalid member name_offset:%u",
2925 						member->name_off);
2926 			return -EINVAL;
2927 		}
2928 
2929 		/* struct member either no name or a valid one */
2930 		if (member->name_off &&
2931 		    !btf_name_valid_identifier(btf, member->name_off)) {
2932 			btf_verifier_log_member(env, t, member, "Invalid name");
2933 			return -EINVAL;
2934 		}
2935 		/* A member cannot be in type void */
2936 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2937 			btf_verifier_log_member(env, t, member,
2938 						"Invalid type_id");
2939 			return -EINVAL;
2940 		}
2941 
2942 		offset = btf_member_bit_offset(t, member);
2943 		if (is_union && offset) {
2944 			btf_verifier_log_member(env, t, member,
2945 						"Invalid member bits_offset");
2946 			return -EINVAL;
2947 		}
2948 
2949 		/*
2950 		 * ">" instead of ">=" because the last member could be
2951 		 * "char a[0];"
2952 		 */
2953 		if (last_offset > offset) {
2954 			btf_verifier_log_member(env, t, member,
2955 						"Invalid member bits_offset");
2956 			return -EINVAL;
2957 		}
2958 
2959 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2960 			btf_verifier_log_member(env, t, member,
2961 						"Member bits_offset exceeds its struct size");
2962 			return -EINVAL;
2963 		}
2964 
2965 		btf_verifier_log_member(env, t, member, NULL);
2966 		last_offset = offset;
2967 	}
2968 
2969 	return meta_needed;
2970 }
2971 
2972 static int btf_struct_resolve(struct btf_verifier_env *env,
2973 			      const struct resolve_vertex *v)
2974 {
2975 	const struct btf_member *member;
2976 	int err;
2977 	u16 i;
2978 
2979 	/* Before continue resolving the next_member,
2980 	 * ensure the last member is indeed resolved to a
2981 	 * type with size info.
2982 	 */
2983 	if (v->next_member) {
2984 		const struct btf_type *last_member_type;
2985 		const struct btf_member *last_member;
2986 		u16 last_member_type_id;
2987 
2988 		last_member = btf_type_member(v->t) + v->next_member - 1;
2989 		last_member_type_id = last_member->type;
2990 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
2991 						       last_member_type_id)))
2992 			return -EINVAL;
2993 
2994 		last_member_type = btf_type_by_id(env->btf,
2995 						  last_member_type_id);
2996 		if (btf_type_kflag(v->t))
2997 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2998 								last_member,
2999 								last_member_type);
3000 		else
3001 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3002 								last_member,
3003 								last_member_type);
3004 		if (err)
3005 			return err;
3006 	}
3007 
3008 	for_each_member_from(i, v->next_member, v->t, member) {
3009 		u32 member_type_id = member->type;
3010 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3011 								member_type_id);
3012 
3013 		if (btf_type_nosize_or_null(member_type) ||
3014 		    btf_type_is_resolve_source_only(member_type)) {
3015 			btf_verifier_log_member(env, v->t, member,
3016 						"Invalid member");
3017 			return -EINVAL;
3018 		}
3019 
3020 		if (!env_type_is_resolve_sink(env, member_type) &&
3021 		    !env_type_is_resolved(env, member_type_id)) {
3022 			env_stack_set_next_member(env, i + 1);
3023 			return env_stack_push(env, member_type, member_type_id);
3024 		}
3025 
3026 		if (btf_type_kflag(v->t))
3027 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3028 									    member,
3029 									    member_type);
3030 		else
3031 			err = btf_type_ops(member_type)->check_member(env, v->t,
3032 								      member,
3033 								      member_type);
3034 		if (err)
3035 			return err;
3036 	}
3037 
3038 	env_stack_pop_resolved(env, 0, 0);
3039 
3040 	return 0;
3041 }
3042 
3043 static void btf_struct_log(struct btf_verifier_env *env,
3044 			   const struct btf_type *t)
3045 {
3046 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3047 }
3048 
3049 /* find 'struct bpf_spin_lock' in map value.
3050  * return >= 0 offset if found
3051  * and < 0 in case of error
3052  */
3053 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3054 {
3055 	const struct btf_member *member;
3056 	u32 i, off = -ENOENT;
3057 
3058 	if (!__btf_type_is_struct(t))
3059 		return -EINVAL;
3060 
3061 	for_each_member(i, t, member) {
3062 		const struct btf_type *member_type = btf_type_by_id(btf,
3063 								    member->type);
3064 		if (!__btf_type_is_struct(member_type))
3065 			continue;
3066 		if (member_type->size != sizeof(struct bpf_spin_lock))
3067 			continue;
3068 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3069 			   "bpf_spin_lock"))
3070 			continue;
3071 		if (off != -ENOENT)
3072 			/* only one 'struct bpf_spin_lock' is allowed */
3073 			return -E2BIG;
3074 		off = btf_member_bit_offset(t, member);
3075 		if (off % 8)
3076 			/* valid C code cannot generate such BTF */
3077 			return -EINVAL;
3078 		off /= 8;
3079 		if (off % __alignof__(struct bpf_spin_lock))
3080 			/* valid struct bpf_spin_lock will be 4 byte aligned */
3081 			return -EINVAL;
3082 	}
3083 	return off;
3084 }
3085 
3086 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3087 			      u32 type_id, void *data, u8 bits_offset,
3088 			      struct btf_show *show)
3089 {
3090 	const struct btf_member *member;
3091 	void *safe_data;
3092 	u32 i;
3093 
3094 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3095 	if (!safe_data)
3096 		return;
3097 
3098 	for_each_member(i, t, member) {
3099 		const struct btf_type *member_type = btf_type_by_id(btf,
3100 								member->type);
3101 		const struct btf_kind_operations *ops;
3102 		u32 member_offset, bitfield_size;
3103 		u32 bytes_offset;
3104 		u8 bits8_offset;
3105 
3106 		btf_show_start_member(show, member);
3107 
3108 		member_offset = btf_member_bit_offset(t, member);
3109 		bitfield_size = btf_member_bitfield_size(t, member);
3110 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3111 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3112 		if (bitfield_size) {
3113 			safe_data = btf_show_start_type(show, member_type,
3114 							member->type,
3115 							data + bytes_offset);
3116 			if (safe_data)
3117 				btf_bitfield_show(safe_data,
3118 						  bits8_offset,
3119 						  bitfield_size, show);
3120 			btf_show_end_type(show);
3121 		} else {
3122 			ops = btf_type_ops(member_type);
3123 			ops->show(btf, member_type, member->type,
3124 				  data + bytes_offset, bits8_offset, show);
3125 		}
3126 
3127 		btf_show_end_member(show);
3128 	}
3129 
3130 	btf_show_end_struct_type(show);
3131 }
3132 
3133 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3134 			    u32 type_id, void *data, u8 bits_offset,
3135 			    struct btf_show *show)
3136 {
3137 	const struct btf_member *m = show->state.member;
3138 
3139 	/*
3140 	 * First check if any members would be shown (are non-zero).
3141 	 * See comments above "struct btf_show" definition for more
3142 	 * details on how this works at a high-level.
3143 	 */
3144 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3145 		if (!show->state.depth_check) {
3146 			show->state.depth_check = show->state.depth + 1;
3147 			show->state.depth_to_show = 0;
3148 		}
3149 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3150 		/* Restore saved member data here */
3151 		show->state.member = m;
3152 		if (show->state.depth_check != show->state.depth + 1)
3153 			return;
3154 		show->state.depth_check = 0;
3155 
3156 		if (show->state.depth_to_show <= show->state.depth)
3157 			return;
3158 		/*
3159 		 * Reaching here indicates we have recursed and found
3160 		 * non-zero child values.
3161 		 */
3162 	}
3163 
3164 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3165 }
3166 
3167 static struct btf_kind_operations struct_ops = {
3168 	.check_meta = btf_struct_check_meta,
3169 	.resolve = btf_struct_resolve,
3170 	.check_member = btf_struct_check_member,
3171 	.check_kflag_member = btf_generic_check_kflag_member,
3172 	.log_details = btf_struct_log,
3173 	.show = btf_struct_show,
3174 };
3175 
3176 static int btf_enum_check_member(struct btf_verifier_env *env,
3177 				 const struct btf_type *struct_type,
3178 				 const struct btf_member *member,
3179 				 const struct btf_type *member_type)
3180 {
3181 	u32 struct_bits_off = member->offset;
3182 	u32 struct_size, bytes_offset;
3183 
3184 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3185 		btf_verifier_log_member(env, struct_type, member,
3186 					"Member is not byte aligned");
3187 		return -EINVAL;
3188 	}
3189 
3190 	struct_size = struct_type->size;
3191 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3192 	if (struct_size - bytes_offset < member_type->size) {
3193 		btf_verifier_log_member(env, struct_type, member,
3194 					"Member exceeds struct_size");
3195 		return -EINVAL;
3196 	}
3197 
3198 	return 0;
3199 }
3200 
3201 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3202 				       const struct btf_type *struct_type,
3203 				       const struct btf_member *member,
3204 				       const struct btf_type *member_type)
3205 {
3206 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3207 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3208 
3209 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3210 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3211 	if (!nr_bits) {
3212 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3213 			btf_verifier_log_member(env, struct_type, member,
3214 						"Member is not byte aligned");
3215 			return -EINVAL;
3216 		}
3217 
3218 		nr_bits = int_bitsize;
3219 	} else if (nr_bits > int_bitsize) {
3220 		btf_verifier_log_member(env, struct_type, member,
3221 					"Invalid member bitfield_size");
3222 		return -EINVAL;
3223 	}
3224 
3225 	struct_size = struct_type->size;
3226 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3227 	if (struct_size < bytes_end) {
3228 		btf_verifier_log_member(env, struct_type, member,
3229 					"Member exceeds struct_size");
3230 		return -EINVAL;
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3237 			       const struct btf_type *t,
3238 			       u32 meta_left)
3239 {
3240 	const struct btf_enum *enums = btf_type_enum(t);
3241 	struct btf *btf = env->btf;
3242 	u16 i, nr_enums;
3243 	u32 meta_needed;
3244 
3245 	nr_enums = btf_type_vlen(t);
3246 	meta_needed = nr_enums * sizeof(*enums);
3247 
3248 	if (meta_left < meta_needed) {
3249 		btf_verifier_log_basic(env, t,
3250 				       "meta_left:%u meta_needed:%u",
3251 				       meta_left, meta_needed);
3252 		return -EINVAL;
3253 	}
3254 
3255 	if (btf_type_kflag(t)) {
3256 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3257 		return -EINVAL;
3258 	}
3259 
3260 	if (t->size > 8 || !is_power_of_2(t->size)) {
3261 		btf_verifier_log_type(env, t, "Unexpected size");
3262 		return -EINVAL;
3263 	}
3264 
3265 	/* enum type either no name or a valid one */
3266 	if (t->name_off &&
3267 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3268 		btf_verifier_log_type(env, t, "Invalid name");
3269 		return -EINVAL;
3270 	}
3271 
3272 	btf_verifier_log_type(env, t, NULL);
3273 
3274 	for (i = 0; i < nr_enums; i++) {
3275 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3276 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3277 					 enums[i].name_off);
3278 			return -EINVAL;
3279 		}
3280 
3281 		/* enum member must have a valid name */
3282 		if (!enums[i].name_off ||
3283 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3284 			btf_verifier_log_type(env, t, "Invalid name");
3285 			return -EINVAL;
3286 		}
3287 
3288 		if (env->log.level == BPF_LOG_KERNEL)
3289 			continue;
3290 		btf_verifier_log(env, "\t%s val=%d\n",
3291 				 __btf_name_by_offset(btf, enums[i].name_off),
3292 				 enums[i].val);
3293 	}
3294 
3295 	return meta_needed;
3296 }
3297 
3298 static void btf_enum_log(struct btf_verifier_env *env,
3299 			 const struct btf_type *t)
3300 {
3301 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3302 }
3303 
3304 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3305 			  u32 type_id, void *data, u8 bits_offset,
3306 			  struct btf_show *show)
3307 {
3308 	const struct btf_enum *enums = btf_type_enum(t);
3309 	u32 i, nr_enums = btf_type_vlen(t);
3310 	void *safe_data;
3311 	int v;
3312 
3313 	safe_data = btf_show_start_type(show, t, type_id, data);
3314 	if (!safe_data)
3315 		return;
3316 
3317 	v = *(int *)safe_data;
3318 
3319 	for (i = 0; i < nr_enums; i++) {
3320 		if (v != enums[i].val)
3321 			continue;
3322 
3323 		btf_show_type_value(show, "%s",
3324 				    __btf_name_by_offset(btf,
3325 							 enums[i].name_off));
3326 
3327 		btf_show_end_type(show);
3328 		return;
3329 	}
3330 
3331 	btf_show_type_value(show, "%d", v);
3332 	btf_show_end_type(show);
3333 }
3334 
3335 static struct btf_kind_operations enum_ops = {
3336 	.check_meta = btf_enum_check_meta,
3337 	.resolve = btf_df_resolve,
3338 	.check_member = btf_enum_check_member,
3339 	.check_kflag_member = btf_enum_check_kflag_member,
3340 	.log_details = btf_enum_log,
3341 	.show = btf_enum_show,
3342 };
3343 
3344 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3345 				     const struct btf_type *t,
3346 				     u32 meta_left)
3347 {
3348 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3349 
3350 	if (meta_left < meta_needed) {
3351 		btf_verifier_log_basic(env, t,
3352 				       "meta_left:%u meta_needed:%u",
3353 				       meta_left, meta_needed);
3354 		return -EINVAL;
3355 	}
3356 
3357 	if (t->name_off) {
3358 		btf_verifier_log_type(env, t, "Invalid name");
3359 		return -EINVAL;
3360 	}
3361 
3362 	if (btf_type_kflag(t)) {
3363 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3364 		return -EINVAL;
3365 	}
3366 
3367 	btf_verifier_log_type(env, t, NULL);
3368 
3369 	return meta_needed;
3370 }
3371 
3372 static void btf_func_proto_log(struct btf_verifier_env *env,
3373 			       const struct btf_type *t)
3374 {
3375 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3376 	u16 nr_args = btf_type_vlen(t), i;
3377 
3378 	btf_verifier_log(env, "return=%u args=(", t->type);
3379 	if (!nr_args) {
3380 		btf_verifier_log(env, "void");
3381 		goto done;
3382 	}
3383 
3384 	if (nr_args == 1 && !args[0].type) {
3385 		/* Only one vararg */
3386 		btf_verifier_log(env, "vararg");
3387 		goto done;
3388 	}
3389 
3390 	btf_verifier_log(env, "%u %s", args[0].type,
3391 			 __btf_name_by_offset(env->btf,
3392 					      args[0].name_off));
3393 	for (i = 1; i < nr_args - 1; i++)
3394 		btf_verifier_log(env, ", %u %s", args[i].type,
3395 				 __btf_name_by_offset(env->btf,
3396 						      args[i].name_off));
3397 
3398 	if (nr_args > 1) {
3399 		const struct btf_param *last_arg = &args[nr_args - 1];
3400 
3401 		if (last_arg->type)
3402 			btf_verifier_log(env, ", %u %s", last_arg->type,
3403 					 __btf_name_by_offset(env->btf,
3404 							      last_arg->name_off));
3405 		else
3406 			btf_verifier_log(env, ", vararg");
3407 	}
3408 
3409 done:
3410 	btf_verifier_log(env, ")");
3411 }
3412 
3413 static struct btf_kind_operations func_proto_ops = {
3414 	.check_meta = btf_func_proto_check_meta,
3415 	.resolve = btf_df_resolve,
3416 	/*
3417 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3418 	 * a struct's member.
3419 	 *
3420 	 * It should be a function pointer instead.
3421 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3422 	 *
3423 	 * Hence, there is no btf_func_check_member().
3424 	 */
3425 	.check_member = btf_df_check_member,
3426 	.check_kflag_member = btf_df_check_kflag_member,
3427 	.log_details = btf_func_proto_log,
3428 	.show = btf_df_show,
3429 };
3430 
3431 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3432 			       const struct btf_type *t,
3433 			       u32 meta_left)
3434 {
3435 	if (!t->name_off ||
3436 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3437 		btf_verifier_log_type(env, t, "Invalid name");
3438 		return -EINVAL;
3439 	}
3440 
3441 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3442 		btf_verifier_log_type(env, t, "Invalid func linkage");
3443 		return -EINVAL;
3444 	}
3445 
3446 	if (btf_type_kflag(t)) {
3447 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3448 		return -EINVAL;
3449 	}
3450 
3451 	btf_verifier_log_type(env, t, NULL);
3452 
3453 	return 0;
3454 }
3455 
3456 static struct btf_kind_operations func_ops = {
3457 	.check_meta = btf_func_check_meta,
3458 	.resolve = btf_df_resolve,
3459 	.check_member = btf_df_check_member,
3460 	.check_kflag_member = btf_df_check_kflag_member,
3461 	.log_details = btf_ref_type_log,
3462 	.show = btf_df_show,
3463 };
3464 
3465 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3466 			      const struct btf_type *t,
3467 			      u32 meta_left)
3468 {
3469 	const struct btf_var *var;
3470 	u32 meta_needed = sizeof(*var);
3471 
3472 	if (meta_left < meta_needed) {
3473 		btf_verifier_log_basic(env, t,
3474 				       "meta_left:%u meta_needed:%u",
3475 				       meta_left, meta_needed);
3476 		return -EINVAL;
3477 	}
3478 
3479 	if (btf_type_vlen(t)) {
3480 		btf_verifier_log_type(env, t, "vlen != 0");
3481 		return -EINVAL;
3482 	}
3483 
3484 	if (btf_type_kflag(t)) {
3485 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3486 		return -EINVAL;
3487 	}
3488 
3489 	if (!t->name_off ||
3490 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3491 		btf_verifier_log_type(env, t, "Invalid name");
3492 		return -EINVAL;
3493 	}
3494 
3495 	/* A var cannot be in type void */
3496 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3497 		btf_verifier_log_type(env, t, "Invalid type_id");
3498 		return -EINVAL;
3499 	}
3500 
3501 	var = btf_type_var(t);
3502 	if (var->linkage != BTF_VAR_STATIC &&
3503 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3504 		btf_verifier_log_type(env, t, "Linkage not supported");
3505 		return -EINVAL;
3506 	}
3507 
3508 	btf_verifier_log_type(env, t, NULL);
3509 
3510 	return meta_needed;
3511 }
3512 
3513 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3514 {
3515 	const struct btf_var *var = btf_type_var(t);
3516 
3517 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3518 }
3519 
3520 static const struct btf_kind_operations var_ops = {
3521 	.check_meta		= btf_var_check_meta,
3522 	.resolve		= btf_var_resolve,
3523 	.check_member		= btf_df_check_member,
3524 	.check_kflag_member	= btf_df_check_kflag_member,
3525 	.log_details		= btf_var_log,
3526 	.show			= btf_var_show,
3527 };
3528 
3529 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3530 				  const struct btf_type *t,
3531 				  u32 meta_left)
3532 {
3533 	const struct btf_var_secinfo *vsi;
3534 	u64 last_vsi_end_off = 0, sum = 0;
3535 	u32 i, meta_needed;
3536 
3537 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3538 	if (meta_left < meta_needed) {
3539 		btf_verifier_log_basic(env, t,
3540 				       "meta_left:%u meta_needed:%u",
3541 				       meta_left, meta_needed);
3542 		return -EINVAL;
3543 	}
3544 
3545 	if (!t->size) {
3546 		btf_verifier_log_type(env, t, "size == 0");
3547 		return -EINVAL;
3548 	}
3549 
3550 	if (btf_type_kflag(t)) {
3551 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3552 		return -EINVAL;
3553 	}
3554 
3555 	if (!t->name_off ||
3556 	    !btf_name_valid_section(env->btf, t->name_off)) {
3557 		btf_verifier_log_type(env, t, "Invalid name");
3558 		return -EINVAL;
3559 	}
3560 
3561 	btf_verifier_log_type(env, t, NULL);
3562 
3563 	for_each_vsi(i, t, vsi) {
3564 		/* A var cannot be in type void */
3565 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3566 			btf_verifier_log_vsi(env, t, vsi,
3567 					     "Invalid type_id");
3568 			return -EINVAL;
3569 		}
3570 
3571 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3572 			btf_verifier_log_vsi(env, t, vsi,
3573 					     "Invalid offset");
3574 			return -EINVAL;
3575 		}
3576 
3577 		if (!vsi->size || vsi->size > t->size) {
3578 			btf_verifier_log_vsi(env, t, vsi,
3579 					     "Invalid size");
3580 			return -EINVAL;
3581 		}
3582 
3583 		last_vsi_end_off = vsi->offset + vsi->size;
3584 		if (last_vsi_end_off > t->size) {
3585 			btf_verifier_log_vsi(env, t, vsi,
3586 					     "Invalid offset+size");
3587 			return -EINVAL;
3588 		}
3589 
3590 		btf_verifier_log_vsi(env, t, vsi, NULL);
3591 		sum += vsi->size;
3592 	}
3593 
3594 	if (t->size < sum) {
3595 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3596 		return -EINVAL;
3597 	}
3598 
3599 	return meta_needed;
3600 }
3601 
3602 static int btf_datasec_resolve(struct btf_verifier_env *env,
3603 			       const struct resolve_vertex *v)
3604 {
3605 	const struct btf_var_secinfo *vsi;
3606 	struct btf *btf = env->btf;
3607 	u16 i;
3608 
3609 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3610 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3611 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3612 								 var_type_id);
3613 		if (!var_type || !btf_type_is_var(var_type)) {
3614 			btf_verifier_log_vsi(env, v->t, vsi,
3615 					     "Not a VAR kind member");
3616 			return -EINVAL;
3617 		}
3618 
3619 		if (!env_type_is_resolve_sink(env, var_type) &&
3620 		    !env_type_is_resolved(env, var_type_id)) {
3621 			env_stack_set_next_member(env, i + 1);
3622 			return env_stack_push(env, var_type, var_type_id);
3623 		}
3624 
3625 		type_id = var_type->type;
3626 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3627 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3628 			return -EINVAL;
3629 		}
3630 
3631 		if (vsi->size < type_size) {
3632 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3633 			return -EINVAL;
3634 		}
3635 	}
3636 
3637 	env_stack_pop_resolved(env, 0, 0);
3638 	return 0;
3639 }
3640 
3641 static void btf_datasec_log(struct btf_verifier_env *env,
3642 			    const struct btf_type *t)
3643 {
3644 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3645 }
3646 
3647 static void btf_datasec_show(const struct btf *btf,
3648 			     const struct btf_type *t, u32 type_id,
3649 			     void *data, u8 bits_offset,
3650 			     struct btf_show *show)
3651 {
3652 	const struct btf_var_secinfo *vsi;
3653 	const struct btf_type *var;
3654 	u32 i;
3655 
3656 	if (!btf_show_start_type(show, t, type_id, data))
3657 		return;
3658 
3659 	btf_show_type_value(show, "section (\"%s\") = {",
3660 			    __btf_name_by_offset(btf, t->name_off));
3661 	for_each_vsi(i, t, vsi) {
3662 		var = btf_type_by_id(btf, vsi->type);
3663 		if (i)
3664 			btf_show(show, ",");
3665 		btf_type_ops(var)->show(btf, var, vsi->type,
3666 					data + vsi->offset, bits_offset, show);
3667 	}
3668 	btf_show_end_type(show);
3669 }
3670 
3671 static const struct btf_kind_operations datasec_ops = {
3672 	.check_meta		= btf_datasec_check_meta,
3673 	.resolve		= btf_datasec_resolve,
3674 	.check_member		= btf_df_check_member,
3675 	.check_kflag_member	= btf_df_check_kflag_member,
3676 	.log_details		= btf_datasec_log,
3677 	.show			= btf_datasec_show,
3678 };
3679 
3680 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3681 				const struct btf_type *t,
3682 				u32 meta_left)
3683 {
3684 	if (btf_type_vlen(t)) {
3685 		btf_verifier_log_type(env, t, "vlen != 0");
3686 		return -EINVAL;
3687 	}
3688 
3689 	if (btf_type_kflag(t)) {
3690 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3691 		return -EINVAL;
3692 	}
3693 
3694 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3695 	    t->size != 16) {
3696 		btf_verifier_log_type(env, t, "Invalid type_size");
3697 		return -EINVAL;
3698 	}
3699 
3700 	btf_verifier_log_type(env, t, NULL);
3701 
3702 	return 0;
3703 }
3704 
3705 static int btf_float_check_member(struct btf_verifier_env *env,
3706 				  const struct btf_type *struct_type,
3707 				  const struct btf_member *member,
3708 				  const struct btf_type *member_type)
3709 {
3710 	u64 start_offset_bytes;
3711 	u64 end_offset_bytes;
3712 	u64 misalign_bits;
3713 	u64 align_bytes;
3714 	u64 align_bits;
3715 
3716 	/* Different architectures have different alignment requirements, so
3717 	 * here we check only for the reasonable minimum. This way we ensure
3718 	 * that types after CO-RE can pass the kernel BTF verifier.
3719 	 */
3720 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3721 	align_bits = align_bytes * BITS_PER_BYTE;
3722 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3723 	if (misalign_bits) {
3724 		btf_verifier_log_member(env, struct_type, member,
3725 					"Member is not properly aligned");
3726 		return -EINVAL;
3727 	}
3728 
3729 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3730 	end_offset_bytes = start_offset_bytes + member_type->size;
3731 	if (end_offset_bytes > struct_type->size) {
3732 		btf_verifier_log_member(env, struct_type, member,
3733 					"Member exceeds struct_size");
3734 		return -EINVAL;
3735 	}
3736 
3737 	return 0;
3738 }
3739 
3740 static void btf_float_log(struct btf_verifier_env *env,
3741 			  const struct btf_type *t)
3742 {
3743 	btf_verifier_log(env, "size=%u", t->size);
3744 }
3745 
3746 static const struct btf_kind_operations float_ops = {
3747 	.check_meta = btf_float_check_meta,
3748 	.resolve = btf_df_resolve,
3749 	.check_member = btf_float_check_member,
3750 	.check_kflag_member = btf_generic_check_kflag_member,
3751 	.log_details = btf_float_log,
3752 	.show = btf_df_show,
3753 };
3754 
3755 static int btf_func_proto_check(struct btf_verifier_env *env,
3756 				const struct btf_type *t)
3757 {
3758 	const struct btf_type *ret_type;
3759 	const struct btf_param *args;
3760 	const struct btf *btf;
3761 	u16 nr_args, i;
3762 	int err;
3763 
3764 	btf = env->btf;
3765 	args = (const struct btf_param *)(t + 1);
3766 	nr_args = btf_type_vlen(t);
3767 
3768 	/* Check func return type which could be "void" (t->type == 0) */
3769 	if (t->type) {
3770 		u32 ret_type_id = t->type;
3771 
3772 		ret_type = btf_type_by_id(btf, ret_type_id);
3773 		if (!ret_type) {
3774 			btf_verifier_log_type(env, t, "Invalid return type");
3775 			return -EINVAL;
3776 		}
3777 
3778 		if (btf_type_needs_resolve(ret_type) &&
3779 		    !env_type_is_resolved(env, ret_type_id)) {
3780 			err = btf_resolve(env, ret_type, ret_type_id);
3781 			if (err)
3782 				return err;
3783 		}
3784 
3785 		/* Ensure the return type is a type that has a size */
3786 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3787 			btf_verifier_log_type(env, t, "Invalid return type");
3788 			return -EINVAL;
3789 		}
3790 	}
3791 
3792 	if (!nr_args)
3793 		return 0;
3794 
3795 	/* Last func arg type_id could be 0 if it is a vararg */
3796 	if (!args[nr_args - 1].type) {
3797 		if (args[nr_args - 1].name_off) {
3798 			btf_verifier_log_type(env, t, "Invalid arg#%u",
3799 					      nr_args);
3800 			return -EINVAL;
3801 		}
3802 		nr_args--;
3803 	}
3804 
3805 	err = 0;
3806 	for (i = 0; i < nr_args; i++) {
3807 		const struct btf_type *arg_type;
3808 		u32 arg_type_id;
3809 
3810 		arg_type_id = args[i].type;
3811 		arg_type = btf_type_by_id(btf, arg_type_id);
3812 		if (!arg_type) {
3813 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3814 			err = -EINVAL;
3815 			break;
3816 		}
3817 
3818 		if (args[i].name_off &&
3819 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
3820 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
3821 			btf_verifier_log_type(env, t,
3822 					      "Invalid arg#%u", i + 1);
3823 			err = -EINVAL;
3824 			break;
3825 		}
3826 
3827 		if (btf_type_needs_resolve(arg_type) &&
3828 		    !env_type_is_resolved(env, arg_type_id)) {
3829 			err = btf_resolve(env, arg_type, arg_type_id);
3830 			if (err)
3831 				break;
3832 		}
3833 
3834 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3835 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3836 			err = -EINVAL;
3837 			break;
3838 		}
3839 	}
3840 
3841 	return err;
3842 }
3843 
3844 static int btf_func_check(struct btf_verifier_env *env,
3845 			  const struct btf_type *t)
3846 {
3847 	const struct btf_type *proto_type;
3848 	const struct btf_param *args;
3849 	const struct btf *btf;
3850 	u16 nr_args, i;
3851 
3852 	btf = env->btf;
3853 	proto_type = btf_type_by_id(btf, t->type);
3854 
3855 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3856 		btf_verifier_log_type(env, t, "Invalid type_id");
3857 		return -EINVAL;
3858 	}
3859 
3860 	args = (const struct btf_param *)(proto_type + 1);
3861 	nr_args = btf_type_vlen(proto_type);
3862 	for (i = 0; i < nr_args; i++) {
3863 		if (!args[i].name_off && args[i].type) {
3864 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3865 			return -EINVAL;
3866 		}
3867 	}
3868 
3869 	return 0;
3870 }
3871 
3872 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3873 	[BTF_KIND_INT] = &int_ops,
3874 	[BTF_KIND_PTR] = &ptr_ops,
3875 	[BTF_KIND_ARRAY] = &array_ops,
3876 	[BTF_KIND_STRUCT] = &struct_ops,
3877 	[BTF_KIND_UNION] = &struct_ops,
3878 	[BTF_KIND_ENUM] = &enum_ops,
3879 	[BTF_KIND_FWD] = &fwd_ops,
3880 	[BTF_KIND_TYPEDEF] = &modifier_ops,
3881 	[BTF_KIND_VOLATILE] = &modifier_ops,
3882 	[BTF_KIND_CONST] = &modifier_ops,
3883 	[BTF_KIND_RESTRICT] = &modifier_ops,
3884 	[BTF_KIND_FUNC] = &func_ops,
3885 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3886 	[BTF_KIND_VAR] = &var_ops,
3887 	[BTF_KIND_DATASEC] = &datasec_ops,
3888 	[BTF_KIND_FLOAT] = &float_ops,
3889 };
3890 
3891 static s32 btf_check_meta(struct btf_verifier_env *env,
3892 			  const struct btf_type *t,
3893 			  u32 meta_left)
3894 {
3895 	u32 saved_meta_left = meta_left;
3896 	s32 var_meta_size;
3897 
3898 	if (meta_left < sizeof(*t)) {
3899 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3900 				 env->log_type_id, meta_left, sizeof(*t));
3901 		return -EINVAL;
3902 	}
3903 	meta_left -= sizeof(*t);
3904 
3905 	if (t->info & ~BTF_INFO_MASK) {
3906 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3907 				 env->log_type_id, t->info);
3908 		return -EINVAL;
3909 	}
3910 
3911 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3912 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3913 		btf_verifier_log(env, "[%u] Invalid kind:%u",
3914 				 env->log_type_id, BTF_INFO_KIND(t->info));
3915 		return -EINVAL;
3916 	}
3917 
3918 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
3919 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3920 				 env->log_type_id, t->name_off);
3921 		return -EINVAL;
3922 	}
3923 
3924 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3925 	if (var_meta_size < 0)
3926 		return var_meta_size;
3927 
3928 	meta_left -= var_meta_size;
3929 
3930 	return saved_meta_left - meta_left;
3931 }
3932 
3933 static int btf_check_all_metas(struct btf_verifier_env *env)
3934 {
3935 	struct btf *btf = env->btf;
3936 	struct btf_header *hdr;
3937 	void *cur, *end;
3938 
3939 	hdr = &btf->hdr;
3940 	cur = btf->nohdr_data + hdr->type_off;
3941 	end = cur + hdr->type_len;
3942 
3943 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
3944 	while (cur < end) {
3945 		struct btf_type *t = cur;
3946 		s32 meta_size;
3947 
3948 		meta_size = btf_check_meta(env, t, end - cur);
3949 		if (meta_size < 0)
3950 			return meta_size;
3951 
3952 		btf_add_type(env, t);
3953 		cur += meta_size;
3954 		env->log_type_id++;
3955 	}
3956 
3957 	return 0;
3958 }
3959 
3960 static bool btf_resolve_valid(struct btf_verifier_env *env,
3961 			      const struct btf_type *t,
3962 			      u32 type_id)
3963 {
3964 	struct btf *btf = env->btf;
3965 
3966 	if (!env_type_is_resolved(env, type_id))
3967 		return false;
3968 
3969 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3970 		return !btf_resolved_type_id(btf, type_id) &&
3971 		       !btf_resolved_type_size(btf, type_id);
3972 
3973 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3974 	    btf_type_is_var(t)) {
3975 		t = btf_type_id_resolve(btf, &type_id);
3976 		return t &&
3977 		       !btf_type_is_modifier(t) &&
3978 		       !btf_type_is_var(t) &&
3979 		       !btf_type_is_datasec(t);
3980 	}
3981 
3982 	if (btf_type_is_array(t)) {
3983 		const struct btf_array *array = btf_type_array(t);
3984 		const struct btf_type *elem_type;
3985 		u32 elem_type_id = array->type;
3986 		u32 elem_size;
3987 
3988 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3989 		return elem_type && !btf_type_is_modifier(elem_type) &&
3990 			(array->nelems * elem_size ==
3991 			 btf_resolved_type_size(btf, type_id));
3992 	}
3993 
3994 	return false;
3995 }
3996 
3997 static int btf_resolve(struct btf_verifier_env *env,
3998 		       const struct btf_type *t, u32 type_id)
3999 {
4000 	u32 save_log_type_id = env->log_type_id;
4001 	const struct resolve_vertex *v;
4002 	int err = 0;
4003 
4004 	env->resolve_mode = RESOLVE_TBD;
4005 	env_stack_push(env, t, type_id);
4006 	while (!err && (v = env_stack_peak(env))) {
4007 		env->log_type_id = v->type_id;
4008 		err = btf_type_ops(v->t)->resolve(env, v);
4009 	}
4010 
4011 	env->log_type_id = type_id;
4012 	if (err == -E2BIG) {
4013 		btf_verifier_log_type(env, t,
4014 				      "Exceeded max resolving depth:%u",
4015 				      MAX_RESOLVE_DEPTH);
4016 	} else if (err == -EEXIST) {
4017 		btf_verifier_log_type(env, t, "Loop detected");
4018 	}
4019 
4020 	/* Final sanity check */
4021 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4022 		btf_verifier_log_type(env, t, "Invalid resolve state");
4023 		err = -EINVAL;
4024 	}
4025 
4026 	env->log_type_id = save_log_type_id;
4027 	return err;
4028 }
4029 
4030 static int btf_check_all_types(struct btf_verifier_env *env)
4031 {
4032 	struct btf *btf = env->btf;
4033 	const struct btf_type *t;
4034 	u32 type_id, i;
4035 	int err;
4036 
4037 	err = env_resolve_init(env);
4038 	if (err)
4039 		return err;
4040 
4041 	env->phase++;
4042 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4043 		type_id = btf->start_id + i;
4044 		t = btf_type_by_id(btf, type_id);
4045 
4046 		env->log_type_id = type_id;
4047 		if (btf_type_needs_resolve(t) &&
4048 		    !env_type_is_resolved(env, type_id)) {
4049 			err = btf_resolve(env, t, type_id);
4050 			if (err)
4051 				return err;
4052 		}
4053 
4054 		if (btf_type_is_func_proto(t)) {
4055 			err = btf_func_proto_check(env, t);
4056 			if (err)
4057 				return err;
4058 		}
4059 
4060 		if (btf_type_is_func(t)) {
4061 			err = btf_func_check(env, t);
4062 			if (err)
4063 				return err;
4064 		}
4065 	}
4066 
4067 	return 0;
4068 }
4069 
4070 static int btf_parse_type_sec(struct btf_verifier_env *env)
4071 {
4072 	const struct btf_header *hdr = &env->btf->hdr;
4073 	int err;
4074 
4075 	/* Type section must align to 4 bytes */
4076 	if (hdr->type_off & (sizeof(u32) - 1)) {
4077 		btf_verifier_log(env, "Unaligned type_off");
4078 		return -EINVAL;
4079 	}
4080 
4081 	if (!env->btf->base_btf && !hdr->type_len) {
4082 		btf_verifier_log(env, "No type found");
4083 		return -EINVAL;
4084 	}
4085 
4086 	err = btf_check_all_metas(env);
4087 	if (err)
4088 		return err;
4089 
4090 	return btf_check_all_types(env);
4091 }
4092 
4093 static int btf_parse_str_sec(struct btf_verifier_env *env)
4094 {
4095 	const struct btf_header *hdr;
4096 	struct btf *btf = env->btf;
4097 	const char *start, *end;
4098 
4099 	hdr = &btf->hdr;
4100 	start = btf->nohdr_data + hdr->str_off;
4101 	end = start + hdr->str_len;
4102 
4103 	if (end != btf->data + btf->data_size) {
4104 		btf_verifier_log(env, "String section is not at the end");
4105 		return -EINVAL;
4106 	}
4107 
4108 	btf->strings = start;
4109 
4110 	if (btf->base_btf && !hdr->str_len)
4111 		return 0;
4112 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4113 		btf_verifier_log(env, "Invalid string section");
4114 		return -EINVAL;
4115 	}
4116 	if (!btf->base_btf && start[0]) {
4117 		btf_verifier_log(env, "Invalid string section");
4118 		return -EINVAL;
4119 	}
4120 
4121 	return 0;
4122 }
4123 
4124 static const size_t btf_sec_info_offset[] = {
4125 	offsetof(struct btf_header, type_off),
4126 	offsetof(struct btf_header, str_off),
4127 };
4128 
4129 static int btf_sec_info_cmp(const void *a, const void *b)
4130 {
4131 	const struct btf_sec_info *x = a;
4132 	const struct btf_sec_info *y = b;
4133 
4134 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4135 }
4136 
4137 static int btf_check_sec_info(struct btf_verifier_env *env,
4138 			      u32 btf_data_size)
4139 {
4140 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4141 	u32 total, expected_total, i;
4142 	const struct btf_header *hdr;
4143 	const struct btf *btf;
4144 
4145 	btf = env->btf;
4146 	hdr = &btf->hdr;
4147 
4148 	/* Populate the secs from hdr */
4149 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4150 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4151 						   btf_sec_info_offset[i]);
4152 
4153 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4154 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4155 
4156 	/* Check for gaps and overlap among sections */
4157 	total = 0;
4158 	expected_total = btf_data_size - hdr->hdr_len;
4159 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4160 		if (expected_total < secs[i].off) {
4161 			btf_verifier_log(env, "Invalid section offset");
4162 			return -EINVAL;
4163 		}
4164 		if (total < secs[i].off) {
4165 			/* gap */
4166 			btf_verifier_log(env, "Unsupported section found");
4167 			return -EINVAL;
4168 		}
4169 		if (total > secs[i].off) {
4170 			btf_verifier_log(env, "Section overlap found");
4171 			return -EINVAL;
4172 		}
4173 		if (expected_total - total < secs[i].len) {
4174 			btf_verifier_log(env,
4175 					 "Total section length too long");
4176 			return -EINVAL;
4177 		}
4178 		total += secs[i].len;
4179 	}
4180 
4181 	/* There is data other than hdr and known sections */
4182 	if (expected_total != total) {
4183 		btf_verifier_log(env, "Unsupported section found");
4184 		return -EINVAL;
4185 	}
4186 
4187 	return 0;
4188 }
4189 
4190 static int btf_parse_hdr(struct btf_verifier_env *env)
4191 {
4192 	u32 hdr_len, hdr_copy, btf_data_size;
4193 	const struct btf_header *hdr;
4194 	struct btf *btf;
4195 	int err;
4196 
4197 	btf = env->btf;
4198 	btf_data_size = btf->data_size;
4199 
4200 	if (btf_data_size <
4201 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4202 		btf_verifier_log(env, "hdr_len not found");
4203 		return -EINVAL;
4204 	}
4205 
4206 	hdr = btf->data;
4207 	hdr_len = hdr->hdr_len;
4208 	if (btf_data_size < hdr_len) {
4209 		btf_verifier_log(env, "btf_header not found");
4210 		return -EINVAL;
4211 	}
4212 
4213 	/* Ensure the unsupported header fields are zero */
4214 	if (hdr_len > sizeof(btf->hdr)) {
4215 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4216 		u8 *end = btf->data + hdr_len;
4217 
4218 		for (; expected_zero < end; expected_zero++) {
4219 			if (*expected_zero) {
4220 				btf_verifier_log(env, "Unsupported btf_header");
4221 				return -E2BIG;
4222 			}
4223 		}
4224 	}
4225 
4226 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4227 	memcpy(&btf->hdr, btf->data, hdr_copy);
4228 
4229 	hdr = &btf->hdr;
4230 
4231 	btf_verifier_log_hdr(env, btf_data_size);
4232 
4233 	if (hdr->magic != BTF_MAGIC) {
4234 		btf_verifier_log(env, "Invalid magic");
4235 		return -EINVAL;
4236 	}
4237 
4238 	if (hdr->version != BTF_VERSION) {
4239 		btf_verifier_log(env, "Unsupported version");
4240 		return -ENOTSUPP;
4241 	}
4242 
4243 	if (hdr->flags) {
4244 		btf_verifier_log(env, "Unsupported flags");
4245 		return -ENOTSUPP;
4246 	}
4247 
4248 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4249 		btf_verifier_log(env, "No data");
4250 		return -EINVAL;
4251 	}
4252 
4253 	err = btf_check_sec_info(env, btf_data_size);
4254 	if (err)
4255 		return err;
4256 
4257 	return 0;
4258 }
4259 
4260 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4261 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4262 {
4263 	struct btf_verifier_env *env = NULL;
4264 	struct bpf_verifier_log *log;
4265 	struct btf *btf = NULL;
4266 	u8 *data;
4267 	int err;
4268 
4269 	if (btf_data_size > BTF_MAX_SIZE)
4270 		return ERR_PTR(-E2BIG);
4271 
4272 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4273 	if (!env)
4274 		return ERR_PTR(-ENOMEM);
4275 
4276 	log = &env->log;
4277 	if (log_level || log_ubuf || log_size) {
4278 		/* user requested verbose verifier output
4279 		 * and supplied buffer to store the verification trace
4280 		 */
4281 		log->level = log_level;
4282 		log->ubuf = log_ubuf;
4283 		log->len_total = log_size;
4284 
4285 		/* log attributes have to be sane */
4286 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4287 		    !log->level || !log->ubuf) {
4288 			err = -EINVAL;
4289 			goto errout;
4290 		}
4291 	}
4292 
4293 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4294 	if (!btf) {
4295 		err = -ENOMEM;
4296 		goto errout;
4297 	}
4298 	env->btf = btf;
4299 
4300 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4301 	if (!data) {
4302 		err = -ENOMEM;
4303 		goto errout;
4304 	}
4305 
4306 	btf->data = data;
4307 	btf->data_size = btf_data_size;
4308 
4309 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4310 		err = -EFAULT;
4311 		goto errout;
4312 	}
4313 
4314 	err = btf_parse_hdr(env);
4315 	if (err)
4316 		goto errout;
4317 
4318 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4319 
4320 	err = btf_parse_str_sec(env);
4321 	if (err)
4322 		goto errout;
4323 
4324 	err = btf_parse_type_sec(env);
4325 	if (err)
4326 		goto errout;
4327 
4328 	if (log->level && bpf_verifier_log_full(log)) {
4329 		err = -ENOSPC;
4330 		goto errout;
4331 	}
4332 
4333 	btf_verifier_env_free(env);
4334 	refcount_set(&btf->refcnt, 1);
4335 	return btf;
4336 
4337 errout:
4338 	btf_verifier_env_free(env);
4339 	if (btf)
4340 		btf_free(btf);
4341 	return ERR_PTR(err);
4342 }
4343 
4344 extern char __weak __start_BTF[];
4345 extern char __weak __stop_BTF[];
4346 extern struct btf *btf_vmlinux;
4347 
4348 #define BPF_MAP_TYPE(_id, _ops)
4349 #define BPF_LINK_TYPE(_id, _name)
4350 static union {
4351 	struct bpf_ctx_convert {
4352 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4353 	prog_ctx_type _id##_prog; \
4354 	kern_ctx_type _id##_kern;
4355 #include <linux/bpf_types.h>
4356 #undef BPF_PROG_TYPE
4357 	} *__t;
4358 	/* 't' is written once under lock. Read many times. */
4359 	const struct btf_type *t;
4360 } bpf_ctx_convert;
4361 enum {
4362 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4363 	__ctx_convert##_id,
4364 #include <linux/bpf_types.h>
4365 #undef BPF_PROG_TYPE
4366 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4367 };
4368 static u8 bpf_ctx_convert_map[] = {
4369 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4370 	[_id] = __ctx_convert##_id,
4371 #include <linux/bpf_types.h>
4372 #undef BPF_PROG_TYPE
4373 	0, /* avoid empty array */
4374 };
4375 #undef BPF_MAP_TYPE
4376 #undef BPF_LINK_TYPE
4377 
4378 static const struct btf_member *
4379 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4380 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4381 		      int arg)
4382 {
4383 	const struct btf_type *conv_struct;
4384 	const struct btf_type *ctx_struct;
4385 	const struct btf_member *ctx_type;
4386 	const char *tname, *ctx_tname;
4387 
4388 	conv_struct = bpf_ctx_convert.t;
4389 	if (!conv_struct) {
4390 		bpf_log(log, "btf_vmlinux is malformed\n");
4391 		return NULL;
4392 	}
4393 	t = btf_type_by_id(btf, t->type);
4394 	while (btf_type_is_modifier(t))
4395 		t = btf_type_by_id(btf, t->type);
4396 	if (!btf_type_is_struct(t)) {
4397 		/* Only pointer to struct is supported for now.
4398 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4399 		 * is not supported yet.
4400 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4401 		 */
4402 		return NULL;
4403 	}
4404 	tname = btf_name_by_offset(btf, t->name_off);
4405 	if (!tname) {
4406 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4407 		return NULL;
4408 	}
4409 	/* prog_type is valid bpf program type. No need for bounds check. */
4410 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4411 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4412 	 * Like 'struct __sk_buff'
4413 	 */
4414 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4415 	if (!ctx_struct)
4416 		/* should not happen */
4417 		return NULL;
4418 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4419 	if (!ctx_tname) {
4420 		/* should not happen */
4421 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4422 		return NULL;
4423 	}
4424 	/* only compare that prog's ctx type name is the same as
4425 	 * kernel expects. No need to compare field by field.
4426 	 * It's ok for bpf prog to do:
4427 	 * struct __sk_buff {};
4428 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4429 	 * { // no fields of skb are ever used }
4430 	 */
4431 	if (strcmp(ctx_tname, tname))
4432 		return NULL;
4433 	return ctx_type;
4434 }
4435 
4436 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4437 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4438 #define BPF_LINK_TYPE(_id, _name)
4439 #define BPF_MAP_TYPE(_id, _ops) \
4440 	[_id] = &_ops,
4441 #include <linux/bpf_types.h>
4442 #undef BPF_PROG_TYPE
4443 #undef BPF_LINK_TYPE
4444 #undef BPF_MAP_TYPE
4445 };
4446 
4447 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4448 				    struct bpf_verifier_log *log)
4449 {
4450 	const struct bpf_map_ops *ops;
4451 	int i, btf_id;
4452 
4453 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4454 		ops = btf_vmlinux_map_ops[i];
4455 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4456 			continue;
4457 		if (!ops->map_btf_name || !ops->map_btf_id) {
4458 			bpf_log(log, "map type %d is misconfigured\n", i);
4459 			return -EINVAL;
4460 		}
4461 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4462 					       BTF_KIND_STRUCT);
4463 		if (btf_id < 0)
4464 			return btf_id;
4465 		*ops->map_btf_id = btf_id;
4466 	}
4467 
4468 	return 0;
4469 }
4470 
4471 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4472 				     struct btf *btf,
4473 				     const struct btf_type *t,
4474 				     enum bpf_prog_type prog_type,
4475 				     int arg)
4476 {
4477 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4478 
4479 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4480 	if (!prog_ctx_type)
4481 		return -ENOENT;
4482 	kern_ctx_type = prog_ctx_type + 1;
4483 	return kern_ctx_type->type;
4484 }
4485 
4486 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4487 BTF_ID(struct, bpf_ctx_convert)
4488 
4489 struct btf *btf_parse_vmlinux(void)
4490 {
4491 	struct btf_verifier_env *env = NULL;
4492 	struct bpf_verifier_log *log;
4493 	struct btf *btf = NULL;
4494 	int err;
4495 
4496 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4497 	if (!env)
4498 		return ERR_PTR(-ENOMEM);
4499 
4500 	log = &env->log;
4501 	log->level = BPF_LOG_KERNEL;
4502 
4503 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4504 	if (!btf) {
4505 		err = -ENOMEM;
4506 		goto errout;
4507 	}
4508 	env->btf = btf;
4509 
4510 	btf->data = __start_BTF;
4511 	btf->data_size = __stop_BTF - __start_BTF;
4512 	btf->kernel_btf = true;
4513 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4514 
4515 	err = btf_parse_hdr(env);
4516 	if (err)
4517 		goto errout;
4518 
4519 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4520 
4521 	err = btf_parse_str_sec(env);
4522 	if (err)
4523 		goto errout;
4524 
4525 	err = btf_check_all_metas(env);
4526 	if (err)
4527 		goto errout;
4528 
4529 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4530 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4531 
4532 	/* find bpf map structs for map_ptr access checking */
4533 	err = btf_vmlinux_map_ids_init(btf, log);
4534 	if (err < 0)
4535 		goto errout;
4536 
4537 	bpf_struct_ops_init(btf, log);
4538 
4539 	refcount_set(&btf->refcnt, 1);
4540 
4541 	err = btf_alloc_id(btf);
4542 	if (err)
4543 		goto errout;
4544 
4545 	btf_verifier_env_free(env);
4546 	return btf;
4547 
4548 errout:
4549 	btf_verifier_env_free(env);
4550 	if (btf) {
4551 		kvfree(btf->types);
4552 		kfree(btf);
4553 	}
4554 	return ERR_PTR(err);
4555 }
4556 
4557 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4558 
4559 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4560 {
4561 	struct btf_verifier_env *env = NULL;
4562 	struct bpf_verifier_log *log;
4563 	struct btf *btf = NULL, *base_btf;
4564 	int err;
4565 
4566 	base_btf = bpf_get_btf_vmlinux();
4567 	if (IS_ERR(base_btf))
4568 		return base_btf;
4569 	if (!base_btf)
4570 		return ERR_PTR(-EINVAL);
4571 
4572 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4573 	if (!env)
4574 		return ERR_PTR(-ENOMEM);
4575 
4576 	log = &env->log;
4577 	log->level = BPF_LOG_KERNEL;
4578 
4579 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4580 	if (!btf) {
4581 		err = -ENOMEM;
4582 		goto errout;
4583 	}
4584 	env->btf = btf;
4585 
4586 	btf->base_btf = base_btf;
4587 	btf->start_id = base_btf->nr_types;
4588 	btf->start_str_off = base_btf->hdr.str_len;
4589 	btf->kernel_btf = true;
4590 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4591 
4592 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4593 	if (!btf->data) {
4594 		err = -ENOMEM;
4595 		goto errout;
4596 	}
4597 	memcpy(btf->data, data, data_size);
4598 	btf->data_size = data_size;
4599 
4600 	err = btf_parse_hdr(env);
4601 	if (err)
4602 		goto errout;
4603 
4604 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4605 
4606 	err = btf_parse_str_sec(env);
4607 	if (err)
4608 		goto errout;
4609 
4610 	err = btf_check_all_metas(env);
4611 	if (err)
4612 		goto errout;
4613 
4614 	btf_verifier_env_free(env);
4615 	refcount_set(&btf->refcnt, 1);
4616 	return btf;
4617 
4618 errout:
4619 	btf_verifier_env_free(env);
4620 	if (btf) {
4621 		kvfree(btf->data);
4622 		kvfree(btf->types);
4623 		kfree(btf);
4624 	}
4625 	return ERR_PTR(err);
4626 }
4627 
4628 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4629 
4630 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4631 {
4632 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4633 
4634 	if (tgt_prog)
4635 		return tgt_prog->aux->btf;
4636 	else
4637 		return prog->aux->attach_btf;
4638 }
4639 
4640 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4641 {
4642 	/* t comes in already as a pointer */
4643 	t = btf_type_by_id(btf, t->type);
4644 
4645 	/* allow const */
4646 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4647 		t = btf_type_by_id(btf, t->type);
4648 
4649 	/* char, signed char, unsigned char */
4650 	return btf_type_is_int(t) && t->size == 1;
4651 }
4652 
4653 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4654 		    const struct bpf_prog *prog,
4655 		    struct bpf_insn_access_aux *info)
4656 {
4657 	const struct btf_type *t = prog->aux->attach_func_proto;
4658 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4659 	struct btf *btf = bpf_prog_get_target_btf(prog);
4660 	const char *tname = prog->aux->attach_func_name;
4661 	struct bpf_verifier_log *log = info->log;
4662 	const struct btf_param *args;
4663 	u32 nr_args, arg;
4664 	int i, ret;
4665 
4666 	if (off % 8) {
4667 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4668 			tname, off);
4669 		return false;
4670 	}
4671 	arg = off / 8;
4672 	args = (const struct btf_param *)(t + 1);
4673 	/* if (t == NULL) Fall back to default BPF prog with
4674 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4675 	 */
4676 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4677 	if (prog->aux->attach_btf_trace) {
4678 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4679 		args++;
4680 		nr_args--;
4681 	}
4682 
4683 	if (arg > nr_args) {
4684 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4685 			tname, arg + 1);
4686 		return false;
4687 	}
4688 
4689 	if (arg == nr_args) {
4690 		switch (prog->expected_attach_type) {
4691 		case BPF_LSM_MAC:
4692 		case BPF_TRACE_FEXIT:
4693 			/* When LSM programs are attached to void LSM hooks
4694 			 * they use FEXIT trampolines and when attached to
4695 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4696 			 *
4697 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4698 			 * the check:
4699 			 *
4700 			 *	if (ret_type != 'int')
4701 			 *		return -EINVAL;
4702 			 *
4703 			 * is _not_ done here. This is still safe as LSM hooks
4704 			 * have only void and int return types.
4705 			 */
4706 			if (!t)
4707 				return true;
4708 			t = btf_type_by_id(btf, t->type);
4709 			break;
4710 		case BPF_MODIFY_RETURN:
4711 			/* For now the BPF_MODIFY_RETURN can only be attached to
4712 			 * functions that return an int.
4713 			 */
4714 			if (!t)
4715 				return false;
4716 
4717 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4718 			if (!btf_type_is_small_int(t)) {
4719 				bpf_log(log,
4720 					"ret type %s not allowed for fmod_ret\n",
4721 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4722 				return false;
4723 			}
4724 			break;
4725 		default:
4726 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4727 				tname, arg + 1);
4728 			return false;
4729 		}
4730 	} else {
4731 		if (!t)
4732 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4733 			return true;
4734 		t = btf_type_by_id(btf, args[arg].type);
4735 	}
4736 
4737 	/* skip modifiers */
4738 	while (btf_type_is_modifier(t))
4739 		t = btf_type_by_id(btf, t->type);
4740 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4741 		/* accessing a scalar */
4742 		return true;
4743 	if (!btf_type_is_ptr(t)) {
4744 		bpf_log(log,
4745 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4746 			tname, arg,
4747 			__btf_name_by_offset(btf, t->name_off),
4748 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4749 		return false;
4750 	}
4751 
4752 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4753 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4754 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4755 
4756 		if (ctx_arg_info->offset == off &&
4757 		    (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4758 		     ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4759 			info->reg_type = ctx_arg_info->reg_type;
4760 			return true;
4761 		}
4762 	}
4763 
4764 	if (t->type == 0)
4765 		/* This is a pointer to void.
4766 		 * It is the same as scalar from the verifier safety pov.
4767 		 * No further pointer walking is allowed.
4768 		 */
4769 		return true;
4770 
4771 	if (is_string_ptr(btf, t))
4772 		return true;
4773 
4774 	/* this is a pointer to another type */
4775 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4776 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4777 
4778 		if (ctx_arg_info->offset == off) {
4779 			info->reg_type = ctx_arg_info->reg_type;
4780 			info->btf = btf_vmlinux;
4781 			info->btf_id = ctx_arg_info->btf_id;
4782 			return true;
4783 		}
4784 	}
4785 
4786 	info->reg_type = PTR_TO_BTF_ID;
4787 	if (tgt_prog) {
4788 		enum bpf_prog_type tgt_type;
4789 
4790 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4791 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
4792 		else
4793 			tgt_type = tgt_prog->type;
4794 
4795 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4796 		if (ret > 0) {
4797 			info->btf = btf_vmlinux;
4798 			info->btf_id = ret;
4799 			return true;
4800 		} else {
4801 			return false;
4802 		}
4803 	}
4804 
4805 	info->btf = btf;
4806 	info->btf_id = t->type;
4807 	t = btf_type_by_id(btf, t->type);
4808 	/* skip modifiers */
4809 	while (btf_type_is_modifier(t)) {
4810 		info->btf_id = t->type;
4811 		t = btf_type_by_id(btf, t->type);
4812 	}
4813 	if (!btf_type_is_struct(t)) {
4814 		bpf_log(log,
4815 			"func '%s' arg%d type %s is not a struct\n",
4816 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4817 		return false;
4818 	}
4819 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4820 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4821 		__btf_name_by_offset(btf, t->name_off));
4822 	return true;
4823 }
4824 
4825 enum bpf_struct_walk_result {
4826 	/* < 0 error */
4827 	WALK_SCALAR = 0,
4828 	WALK_PTR,
4829 	WALK_STRUCT,
4830 };
4831 
4832 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4833 			   const struct btf_type *t, int off, int size,
4834 			   u32 *next_btf_id)
4835 {
4836 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4837 	const struct btf_type *mtype, *elem_type = NULL;
4838 	const struct btf_member *member;
4839 	const char *tname, *mname;
4840 	u32 vlen, elem_id, mid;
4841 
4842 again:
4843 	tname = __btf_name_by_offset(btf, t->name_off);
4844 	if (!btf_type_is_struct(t)) {
4845 		bpf_log(log, "Type '%s' is not a struct\n", tname);
4846 		return -EINVAL;
4847 	}
4848 
4849 	vlen = btf_type_vlen(t);
4850 	if (off + size > t->size) {
4851 		/* If the last element is a variable size array, we may
4852 		 * need to relax the rule.
4853 		 */
4854 		struct btf_array *array_elem;
4855 
4856 		if (vlen == 0)
4857 			goto error;
4858 
4859 		member = btf_type_member(t) + vlen - 1;
4860 		mtype = btf_type_skip_modifiers(btf, member->type,
4861 						NULL);
4862 		if (!btf_type_is_array(mtype))
4863 			goto error;
4864 
4865 		array_elem = (struct btf_array *)(mtype + 1);
4866 		if (array_elem->nelems != 0)
4867 			goto error;
4868 
4869 		moff = btf_member_bit_offset(t, member) / 8;
4870 		if (off < moff)
4871 			goto error;
4872 
4873 		/* Only allow structure for now, can be relaxed for
4874 		 * other types later.
4875 		 */
4876 		t = btf_type_skip_modifiers(btf, array_elem->type,
4877 					    NULL);
4878 		if (!btf_type_is_struct(t))
4879 			goto error;
4880 
4881 		off = (off - moff) % t->size;
4882 		goto again;
4883 
4884 error:
4885 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
4886 			tname, off, size);
4887 		return -EACCES;
4888 	}
4889 
4890 	for_each_member(i, t, member) {
4891 		/* offset of the field in bytes */
4892 		moff = btf_member_bit_offset(t, member) / 8;
4893 		if (off + size <= moff)
4894 			/* won't find anything, field is already too far */
4895 			break;
4896 
4897 		if (btf_member_bitfield_size(t, member)) {
4898 			u32 end_bit = btf_member_bit_offset(t, member) +
4899 				btf_member_bitfield_size(t, member);
4900 
4901 			/* off <= moff instead of off == moff because clang
4902 			 * does not generate a BTF member for anonymous
4903 			 * bitfield like the ":16" here:
4904 			 * struct {
4905 			 *	int :16;
4906 			 *	int x:8;
4907 			 * };
4908 			 */
4909 			if (off <= moff &&
4910 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4911 				return WALK_SCALAR;
4912 
4913 			/* off may be accessing a following member
4914 			 *
4915 			 * or
4916 			 *
4917 			 * Doing partial access at either end of this
4918 			 * bitfield.  Continue on this case also to
4919 			 * treat it as not accessing this bitfield
4920 			 * and eventually error out as field not
4921 			 * found to keep it simple.
4922 			 * It could be relaxed if there was a legit
4923 			 * partial access case later.
4924 			 */
4925 			continue;
4926 		}
4927 
4928 		/* In case of "off" is pointing to holes of a struct */
4929 		if (off < moff)
4930 			break;
4931 
4932 		/* type of the field */
4933 		mid = member->type;
4934 		mtype = btf_type_by_id(btf, member->type);
4935 		mname = __btf_name_by_offset(btf, member->name_off);
4936 
4937 		mtype = __btf_resolve_size(btf, mtype, &msize,
4938 					   &elem_type, &elem_id, &total_nelems,
4939 					   &mid);
4940 		if (IS_ERR(mtype)) {
4941 			bpf_log(log, "field %s doesn't have size\n", mname);
4942 			return -EFAULT;
4943 		}
4944 
4945 		mtrue_end = moff + msize;
4946 		if (off >= mtrue_end)
4947 			/* no overlap with member, keep iterating */
4948 			continue;
4949 
4950 		if (btf_type_is_array(mtype)) {
4951 			u32 elem_idx;
4952 
4953 			/* __btf_resolve_size() above helps to
4954 			 * linearize a multi-dimensional array.
4955 			 *
4956 			 * The logic here is treating an array
4957 			 * in a struct as the following way:
4958 			 *
4959 			 * struct outer {
4960 			 *	struct inner array[2][2];
4961 			 * };
4962 			 *
4963 			 * looks like:
4964 			 *
4965 			 * struct outer {
4966 			 *	struct inner array_elem0;
4967 			 *	struct inner array_elem1;
4968 			 *	struct inner array_elem2;
4969 			 *	struct inner array_elem3;
4970 			 * };
4971 			 *
4972 			 * When accessing outer->array[1][0], it moves
4973 			 * moff to "array_elem2", set mtype to
4974 			 * "struct inner", and msize also becomes
4975 			 * sizeof(struct inner).  Then most of the
4976 			 * remaining logic will fall through without
4977 			 * caring the current member is an array or
4978 			 * not.
4979 			 *
4980 			 * Unlike mtype/msize/moff, mtrue_end does not
4981 			 * change.  The naming difference ("_true") tells
4982 			 * that it is not always corresponding to
4983 			 * the current mtype/msize/moff.
4984 			 * It is the true end of the current
4985 			 * member (i.e. array in this case).  That
4986 			 * will allow an int array to be accessed like
4987 			 * a scratch space,
4988 			 * i.e. allow access beyond the size of
4989 			 *      the array's element as long as it is
4990 			 *      within the mtrue_end boundary.
4991 			 */
4992 
4993 			/* skip empty array */
4994 			if (moff == mtrue_end)
4995 				continue;
4996 
4997 			msize /= total_nelems;
4998 			elem_idx = (off - moff) / msize;
4999 			moff += elem_idx * msize;
5000 			mtype = elem_type;
5001 			mid = elem_id;
5002 		}
5003 
5004 		/* the 'off' we're looking for is either equal to start
5005 		 * of this field or inside of this struct
5006 		 */
5007 		if (btf_type_is_struct(mtype)) {
5008 			/* our field must be inside that union or struct */
5009 			t = mtype;
5010 
5011 			/* return if the offset matches the member offset */
5012 			if (off == moff) {
5013 				*next_btf_id = mid;
5014 				return WALK_STRUCT;
5015 			}
5016 
5017 			/* adjust offset we're looking for */
5018 			off -= moff;
5019 			goto again;
5020 		}
5021 
5022 		if (btf_type_is_ptr(mtype)) {
5023 			const struct btf_type *stype;
5024 			u32 id;
5025 
5026 			if (msize != size || off != moff) {
5027 				bpf_log(log,
5028 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5029 					mname, moff, tname, off, size);
5030 				return -EACCES;
5031 			}
5032 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5033 			if (btf_type_is_struct(stype)) {
5034 				*next_btf_id = id;
5035 				return WALK_PTR;
5036 			}
5037 		}
5038 
5039 		/* Allow more flexible access within an int as long as
5040 		 * it is within mtrue_end.
5041 		 * Since mtrue_end could be the end of an array,
5042 		 * that also allows using an array of int as a scratch
5043 		 * space. e.g. skb->cb[].
5044 		 */
5045 		if (off + size > mtrue_end) {
5046 			bpf_log(log,
5047 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5048 				mname, mtrue_end, tname, off, size);
5049 			return -EACCES;
5050 		}
5051 
5052 		return WALK_SCALAR;
5053 	}
5054 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5055 	return -EINVAL;
5056 }
5057 
5058 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5059 		      const struct btf_type *t, int off, int size,
5060 		      enum bpf_access_type atype __maybe_unused,
5061 		      u32 *next_btf_id)
5062 {
5063 	int err;
5064 	u32 id;
5065 
5066 	do {
5067 		err = btf_struct_walk(log, btf, t, off, size, &id);
5068 
5069 		switch (err) {
5070 		case WALK_PTR:
5071 			/* If we found the pointer or scalar on t+off,
5072 			 * we're done.
5073 			 */
5074 			*next_btf_id = id;
5075 			return PTR_TO_BTF_ID;
5076 		case WALK_SCALAR:
5077 			return SCALAR_VALUE;
5078 		case WALK_STRUCT:
5079 			/* We found nested struct, so continue the search
5080 			 * by diving in it. At this point the offset is
5081 			 * aligned with the new type, so set it to 0.
5082 			 */
5083 			t = btf_type_by_id(btf, id);
5084 			off = 0;
5085 			break;
5086 		default:
5087 			/* It's either error or unknown return value..
5088 			 * scream and leave.
5089 			 */
5090 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5091 				return -EINVAL;
5092 			return err;
5093 		}
5094 	} while (t);
5095 
5096 	return -EINVAL;
5097 }
5098 
5099 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5100  * the same. Trivial ID check is not enough due to module BTFs, because we can
5101  * end up with two different module BTFs, but IDs point to the common type in
5102  * vmlinux BTF.
5103  */
5104 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5105 			       const struct btf *btf2, u32 id2)
5106 {
5107 	if (id1 != id2)
5108 		return false;
5109 	if (btf1 == btf2)
5110 		return true;
5111 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5112 }
5113 
5114 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5115 			  const struct btf *btf, u32 id, int off,
5116 			  const struct btf *need_btf, u32 need_type_id)
5117 {
5118 	const struct btf_type *type;
5119 	int err;
5120 
5121 	/* Are we already done? */
5122 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5123 		return true;
5124 
5125 again:
5126 	type = btf_type_by_id(btf, id);
5127 	if (!type)
5128 		return false;
5129 	err = btf_struct_walk(log, btf, type, off, 1, &id);
5130 	if (err != WALK_STRUCT)
5131 		return false;
5132 
5133 	/* We found nested struct object. If it matches
5134 	 * the requested ID, we're done. Otherwise let's
5135 	 * continue the search with offset 0 in the new
5136 	 * type.
5137 	 */
5138 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5139 		off = 0;
5140 		goto again;
5141 	}
5142 
5143 	return true;
5144 }
5145 
5146 static int __get_type_size(struct btf *btf, u32 btf_id,
5147 			   const struct btf_type **bad_type)
5148 {
5149 	const struct btf_type *t;
5150 
5151 	if (!btf_id)
5152 		/* void */
5153 		return 0;
5154 	t = btf_type_by_id(btf, btf_id);
5155 	while (t && btf_type_is_modifier(t))
5156 		t = btf_type_by_id(btf, t->type);
5157 	if (!t) {
5158 		*bad_type = btf_type_by_id(btf, 0);
5159 		return -EINVAL;
5160 	}
5161 	if (btf_type_is_ptr(t))
5162 		/* kernel size of pointer. Not BPF's size of pointer*/
5163 		return sizeof(void *);
5164 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5165 		return t->size;
5166 	*bad_type = t;
5167 	return -EINVAL;
5168 }
5169 
5170 int btf_distill_func_proto(struct bpf_verifier_log *log,
5171 			   struct btf *btf,
5172 			   const struct btf_type *func,
5173 			   const char *tname,
5174 			   struct btf_func_model *m)
5175 {
5176 	const struct btf_param *args;
5177 	const struct btf_type *t;
5178 	u32 i, nargs;
5179 	int ret;
5180 
5181 	if (!func) {
5182 		/* BTF function prototype doesn't match the verifier types.
5183 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5184 		 */
5185 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5186 			m->arg_size[i] = 8;
5187 		m->ret_size = 8;
5188 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5189 		return 0;
5190 	}
5191 	args = (const struct btf_param *)(func + 1);
5192 	nargs = btf_type_vlen(func);
5193 	if (nargs >= MAX_BPF_FUNC_ARGS) {
5194 		bpf_log(log,
5195 			"The function %s has %d arguments. Too many.\n",
5196 			tname, nargs);
5197 		return -EINVAL;
5198 	}
5199 	ret = __get_type_size(btf, func->type, &t);
5200 	if (ret < 0) {
5201 		bpf_log(log,
5202 			"The function %s return type %s is unsupported.\n",
5203 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5204 		return -EINVAL;
5205 	}
5206 	m->ret_size = ret;
5207 
5208 	for (i = 0; i < nargs; i++) {
5209 		if (i == nargs - 1 && args[i].type == 0) {
5210 			bpf_log(log,
5211 				"The function %s with variable args is unsupported.\n",
5212 				tname);
5213 			return -EINVAL;
5214 		}
5215 		ret = __get_type_size(btf, args[i].type, &t);
5216 		if (ret < 0) {
5217 			bpf_log(log,
5218 				"The function %s arg%d type %s is unsupported.\n",
5219 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5220 			return -EINVAL;
5221 		}
5222 		if (ret == 0) {
5223 			bpf_log(log,
5224 				"The function %s has malformed void argument.\n",
5225 				tname);
5226 			return -EINVAL;
5227 		}
5228 		m->arg_size[i] = ret;
5229 	}
5230 	m->nr_args = nargs;
5231 	return 0;
5232 }
5233 
5234 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5235  * t1 points to BTF_KIND_FUNC in btf1
5236  * t2 points to BTF_KIND_FUNC in btf2
5237  * Returns:
5238  * EINVAL - function prototype mismatch
5239  * EFAULT - verifier bug
5240  * 0 - 99% match. The last 1% is validated by the verifier.
5241  */
5242 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5243 				     struct btf *btf1, const struct btf_type *t1,
5244 				     struct btf *btf2, const struct btf_type *t2)
5245 {
5246 	const struct btf_param *args1, *args2;
5247 	const char *fn1, *fn2, *s1, *s2;
5248 	u32 nargs1, nargs2, i;
5249 
5250 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5251 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5252 
5253 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5254 		bpf_log(log, "%s() is not a global function\n", fn1);
5255 		return -EINVAL;
5256 	}
5257 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5258 		bpf_log(log, "%s() is not a global function\n", fn2);
5259 		return -EINVAL;
5260 	}
5261 
5262 	t1 = btf_type_by_id(btf1, t1->type);
5263 	if (!t1 || !btf_type_is_func_proto(t1))
5264 		return -EFAULT;
5265 	t2 = btf_type_by_id(btf2, t2->type);
5266 	if (!t2 || !btf_type_is_func_proto(t2))
5267 		return -EFAULT;
5268 
5269 	args1 = (const struct btf_param *)(t1 + 1);
5270 	nargs1 = btf_type_vlen(t1);
5271 	args2 = (const struct btf_param *)(t2 + 1);
5272 	nargs2 = btf_type_vlen(t2);
5273 
5274 	if (nargs1 != nargs2) {
5275 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5276 			fn1, nargs1, fn2, nargs2);
5277 		return -EINVAL;
5278 	}
5279 
5280 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5281 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5282 	if (t1->info != t2->info) {
5283 		bpf_log(log,
5284 			"Return type %s of %s() doesn't match type %s of %s()\n",
5285 			btf_type_str(t1), fn1,
5286 			btf_type_str(t2), fn2);
5287 		return -EINVAL;
5288 	}
5289 
5290 	for (i = 0; i < nargs1; i++) {
5291 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5292 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5293 
5294 		if (t1->info != t2->info) {
5295 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5296 				i, fn1, btf_type_str(t1),
5297 				fn2, btf_type_str(t2));
5298 			return -EINVAL;
5299 		}
5300 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5301 			bpf_log(log,
5302 				"arg%d in %s() has size %d while %s() has %d\n",
5303 				i, fn1, t1->size,
5304 				fn2, t2->size);
5305 			return -EINVAL;
5306 		}
5307 
5308 		/* global functions are validated with scalars and pointers
5309 		 * to context only. And only global functions can be replaced.
5310 		 * Hence type check only those types.
5311 		 */
5312 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5313 			continue;
5314 		if (!btf_type_is_ptr(t1)) {
5315 			bpf_log(log,
5316 				"arg%d in %s() has unrecognized type\n",
5317 				i, fn1);
5318 			return -EINVAL;
5319 		}
5320 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5321 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5322 		if (!btf_type_is_struct(t1)) {
5323 			bpf_log(log,
5324 				"arg%d in %s() is not a pointer to context\n",
5325 				i, fn1);
5326 			return -EINVAL;
5327 		}
5328 		if (!btf_type_is_struct(t2)) {
5329 			bpf_log(log,
5330 				"arg%d in %s() is not a pointer to context\n",
5331 				i, fn2);
5332 			return -EINVAL;
5333 		}
5334 		/* This is an optional check to make program writing easier.
5335 		 * Compare names of structs and report an error to the user.
5336 		 * btf_prepare_func_args() already checked that t2 struct
5337 		 * is a context type. btf_prepare_func_args() will check
5338 		 * later that t1 struct is a context type as well.
5339 		 */
5340 		s1 = btf_name_by_offset(btf1, t1->name_off);
5341 		s2 = btf_name_by_offset(btf2, t2->name_off);
5342 		if (strcmp(s1, s2)) {
5343 			bpf_log(log,
5344 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5345 				i, fn1, s1, fn2, s2);
5346 			return -EINVAL;
5347 		}
5348 	}
5349 	return 0;
5350 }
5351 
5352 /* Compare BTFs of given program with BTF of target program */
5353 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5354 			 struct btf *btf2, const struct btf_type *t2)
5355 {
5356 	struct btf *btf1 = prog->aux->btf;
5357 	const struct btf_type *t1;
5358 	u32 btf_id = 0;
5359 
5360 	if (!prog->aux->func_info) {
5361 		bpf_log(log, "Program extension requires BTF\n");
5362 		return -EINVAL;
5363 	}
5364 
5365 	btf_id = prog->aux->func_info[0].type_id;
5366 	if (!btf_id)
5367 		return -EFAULT;
5368 
5369 	t1 = btf_type_by_id(btf1, btf_id);
5370 	if (!t1 || !btf_type_is_func(t1))
5371 		return -EFAULT;
5372 
5373 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5374 }
5375 
5376 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5377 #ifdef CONFIG_NET
5378 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5379 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5380 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5381 #endif
5382 };
5383 
5384 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5385 				    const struct btf *btf, u32 func_id,
5386 				    struct bpf_reg_state *regs,
5387 				    bool ptr_to_mem_ok)
5388 {
5389 	struct bpf_verifier_log *log = &env->log;
5390 	const char *func_name, *ref_tname;
5391 	const struct btf_type *t, *ref_t;
5392 	const struct btf_param *args;
5393 	u32 i, nargs, ref_id;
5394 
5395 	t = btf_type_by_id(btf, func_id);
5396 	if (!t || !btf_type_is_func(t)) {
5397 		/* These checks were already done by the verifier while loading
5398 		 * struct bpf_func_info or in add_kfunc_call().
5399 		 */
5400 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5401 			func_id);
5402 		return -EFAULT;
5403 	}
5404 	func_name = btf_name_by_offset(btf, t->name_off);
5405 
5406 	t = btf_type_by_id(btf, t->type);
5407 	if (!t || !btf_type_is_func_proto(t)) {
5408 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
5409 		return -EFAULT;
5410 	}
5411 	args = (const struct btf_param *)(t + 1);
5412 	nargs = btf_type_vlen(t);
5413 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5414 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5415 			MAX_BPF_FUNC_REG_ARGS);
5416 		return -EINVAL;
5417 	}
5418 
5419 	/* check that BTF function arguments match actual types that the
5420 	 * verifier sees.
5421 	 */
5422 	for (i = 0; i < nargs; i++) {
5423 		u32 regno = i + 1;
5424 		struct bpf_reg_state *reg = &regs[regno];
5425 
5426 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5427 		if (btf_type_is_scalar(t)) {
5428 			if (reg->type == SCALAR_VALUE)
5429 				continue;
5430 			bpf_log(log, "R%d is not a scalar\n", regno);
5431 			return -EINVAL;
5432 		}
5433 
5434 		if (!btf_type_is_ptr(t)) {
5435 			bpf_log(log, "Unrecognized arg#%d type %s\n",
5436 				i, btf_type_str(t));
5437 			return -EINVAL;
5438 		}
5439 
5440 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5441 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5442 		if (btf_is_kernel(btf)) {
5443 			const struct btf_type *reg_ref_t;
5444 			const struct btf *reg_btf;
5445 			const char *reg_ref_tname;
5446 			u32 reg_ref_id;
5447 
5448 			if (!btf_type_is_struct(ref_t)) {
5449 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5450 					func_name, i, btf_type_str(ref_t),
5451 					ref_tname);
5452 				return -EINVAL;
5453 			}
5454 
5455 			if (reg->type == PTR_TO_BTF_ID) {
5456 				reg_btf = reg->btf;
5457 				reg_ref_id = reg->btf_id;
5458 			} else if (reg2btf_ids[reg->type]) {
5459 				reg_btf = btf_vmlinux;
5460 				reg_ref_id = *reg2btf_ids[reg->type];
5461 			} else {
5462 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n",
5463 					func_name, i,
5464 					btf_type_str(ref_t), ref_tname, regno);
5465 				return -EINVAL;
5466 			}
5467 
5468 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5469 							    &reg_ref_id);
5470 			reg_ref_tname = btf_name_by_offset(reg_btf,
5471 							   reg_ref_t->name_off);
5472 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5473 						  reg->off, btf, ref_id)) {
5474 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5475 					func_name, i,
5476 					btf_type_str(ref_t), ref_tname,
5477 					regno, btf_type_str(reg_ref_t),
5478 					reg_ref_tname);
5479 				return -EINVAL;
5480 			}
5481 		} else if (btf_get_prog_ctx_type(log, btf, t,
5482 						 env->prog->type, i)) {
5483 			/* If function expects ctx type in BTF check that caller
5484 			 * is passing PTR_TO_CTX.
5485 			 */
5486 			if (reg->type != PTR_TO_CTX) {
5487 				bpf_log(log,
5488 					"arg#%d expected pointer to ctx, but got %s\n",
5489 					i, btf_type_str(t));
5490 				return -EINVAL;
5491 			}
5492 			if (check_ctx_reg(env, reg, regno))
5493 				return -EINVAL;
5494 		} else if (ptr_to_mem_ok) {
5495 			const struct btf_type *resolve_ret;
5496 			u32 type_size;
5497 
5498 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5499 			if (IS_ERR(resolve_ret)) {
5500 				bpf_log(log,
5501 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5502 					i, btf_type_str(ref_t), ref_tname,
5503 					PTR_ERR(resolve_ret));
5504 				return -EINVAL;
5505 			}
5506 
5507 			if (check_mem_reg(env, reg, regno, type_size))
5508 				return -EINVAL;
5509 		} else {
5510 			return -EINVAL;
5511 		}
5512 	}
5513 
5514 	return 0;
5515 }
5516 
5517 /* Compare BTF of a function with given bpf_reg_state.
5518  * Returns:
5519  * EFAULT - there is a verifier bug. Abort verification.
5520  * EINVAL - there is a type mismatch or BTF is not available.
5521  * 0 - BTF matches with what bpf_reg_state expects.
5522  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5523  */
5524 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5525 				struct bpf_reg_state *regs)
5526 {
5527 	struct bpf_prog *prog = env->prog;
5528 	struct btf *btf = prog->aux->btf;
5529 	bool is_global;
5530 	u32 btf_id;
5531 	int err;
5532 
5533 	if (!prog->aux->func_info)
5534 		return -EINVAL;
5535 
5536 	btf_id = prog->aux->func_info[subprog].type_id;
5537 	if (!btf_id)
5538 		return -EFAULT;
5539 
5540 	if (prog->aux->func_info_aux[subprog].unreliable)
5541 		return -EINVAL;
5542 
5543 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5544 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5545 
5546 	/* Compiler optimizations can remove arguments from static functions
5547 	 * or mismatched type can be passed into a global function.
5548 	 * In such cases mark the function as unreliable from BTF point of view.
5549 	 */
5550 	if (err)
5551 		prog->aux->func_info_aux[subprog].unreliable = true;
5552 	return err;
5553 }
5554 
5555 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5556 			      const struct btf *btf, u32 func_id,
5557 			      struct bpf_reg_state *regs)
5558 {
5559 	return btf_check_func_arg_match(env, btf, func_id, regs, false);
5560 }
5561 
5562 /* Convert BTF of a function into bpf_reg_state if possible
5563  * Returns:
5564  * EFAULT - there is a verifier bug. Abort verification.
5565  * EINVAL - cannot convert BTF.
5566  * 0 - Successfully converted BTF into bpf_reg_state
5567  * (either PTR_TO_CTX or SCALAR_VALUE).
5568  */
5569 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5570 			  struct bpf_reg_state *regs)
5571 {
5572 	struct bpf_verifier_log *log = &env->log;
5573 	struct bpf_prog *prog = env->prog;
5574 	enum bpf_prog_type prog_type = prog->type;
5575 	struct btf *btf = prog->aux->btf;
5576 	const struct btf_param *args;
5577 	const struct btf_type *t, *ref_t;
5578 	u32 i, nargs, btf_id;
5579 	const char *tname;
5580 
5581 	if (!prog->aux->func_info ||
5582 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5583 		bpf_log(log, "Verifier bug\n");
5584 		return -EFAULT;
5585 	}
5586 
5587 	btf_id = prog->aux->func_info[subprog].type_id;
5588 	if (!btf_id) {
5589 		bpf_log(log, "Global functions need valid BTF\n");
5590 		return -EFAULT;
5591 	}
5592 
5593 	t = btf_type_by_id(btf, btf_id);
5594 	if (!t || !btf_type_is_func(t)) {
5595 		/* These checks were already done by the verifier while loading
5596 		 * struct bpf_func_info
5597 		 */
5598 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5599 			subprog);
5600 		return -EFAULT;
5601 	}
5602 	tname = btf_name_by_offset(btf, t->name_off);
5603 
5604 	if (log->level & BPF_LOG_LEVEL)
5605 		bpf_log(log, "Validating %s() func#%d...\n",
5606 			tname, subprog);
5607 
5608 	if (prog->aux->func_info_aux[subprog].unreliable) {
5609 		bpf_log(log, "Verifier bug in function %s()\n", tname);
5610 		return -EFAULT;
5611 	}
5612 	if (prog_type == BPF_PROG_TYPE_EXT)
5613 		prog_type = prog->aux->dst_prog->type;
5614 
5615 	t = btf_type_by_id(btf, t->type);
5616 	if (!t || !btf_type_is_func_proto(t)) {
5617 		bpf_log(log, "Invalid type of function %s()\n", tname);
5618 		return -EFAULT;
5619 	}
5620 	args = (const struct btf_param *)(t + 1);
5621 	nargs = btf_type_vlen(t);
5622 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5623 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
5624 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
5625 		return -EINVAL;
5626 	}
5627 	/* check that function returns int */
5628 	t = btf_type_by_id(btf, t->type);
5629 	while (btf_type_is_modifier(t))
5630 		t = btf_type_by_id(btf, t->type);
5631 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5632 		bpf_log(log,
5633 			"Global function %s() doesn't return scalar. Only those are supported.\n",
5634 			tname);
5635 		return -EINVAL;
5636 	}
5637 	/* Convert BTF function arguments into verifier types.
5638 	 * Only PTR_TO_CTX and SCALAR are supported atm.
5639 	 */
5640 	for (i = 0; i < nargs; i++) {
5641 		struct bpf_reg_state *reg = &regs[i + 1];
5642 
5643 		t = btf_type_by_id(btf, args[i].type);
5644 		while (btf_type_is_modifier(t))
5645 			t = btf_type_by_id(btf, t->type);
5646 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5647 			reg->type = SCALAR_VALUE;
5648 			continue;
5649 		}
5650 		if (btf_type_is_ptr(t)) {
5651 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5652 				reg->type = PTR_TO_CTX;
5653 				continue;
5654 			}
5655 
5656 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5657 
5658 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
5659 			if (IS_ERR(ref_t)) {
5660 				bpf_log(log,
5661 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5662 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
5663 					PTR_ERR(ref_t));
5664 				return -EINVAL;
5665 			}
5666 
5667 			reg->type = PTR_TO_MEM_OR_NULL;
5668 			reg->id = ++env->id_gen;
5669 
5670 			continue;
5671 		}
5672 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5673 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5674 		return -EINVAL;
5675 	}
5676 	return 0;
5677 }
5678 
5679 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5680 			  struct btf_show *show)
5681 {
5682 	const struct btf_type *t = btf_type_by_id(btf, type_id);
5683 
5684 	show->btf = btf;
5685 	memset(&show->state, 0, sizeof(show->state));
5686 	memset(&show->obj, 0, sizeof(show->obj));
5687 
5688 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5689 }
5690 
5691 static void btf_seq_show(struct btf_show *show, const char *fmt,
5692 			 va_list args)
5693 {
5694 	seq_vprintf((struct seq_file *)show->target, fmt, args);
5695 }
5696 
5697 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5698 			    void *obj, struct seq_file *m, u64 flags)
5699 {
5700 	struct btf_show sseq;
5701 
5702 	sseq.target = m;
5703 	sseq.showfn = btf_seq_show;
5704 	sseq.flags = flags;
5705 
5706 	btf_type_show(btf, type_id, obj, &sseq);
5707 
5708 	return sseq.state.status;
5709 }
5710 
5711 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5712 		       struct seq_file *m)
5713 {
5714 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
5715 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5716 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5717 }
5718 
5719 struct btf_show_snprintf {
5720 	struct btf_show show;
5721 	int len_left;		/* space left in string */
5722 	int len;		/* length we would have written */
5723 };
5724 
5725 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5726 			      va_list args)
5727 {
5728 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5729 	int len;
5730 
5731 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5732 
5733 	if (len < 0) {
5734 		ssnprintf->len_left = 0;
5735 		ssnprintf->len = len;
5736 	} else if (len > ssnprintf->len_left) {
5737 		/* no space, drive on to get length we would have written */
5738 		ssnprintf->len_left = 0;
5739 		ssnprintf->len += len;
5740 	} else {
5741 		ssnprintf->len_left -= len;
5742 		ssnprintf->len += len;
5743 		show->target += len;
5744 	}
5745 }
5746 
5747 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5748 			   char *buf, int len, u64 flags)
5749 {
5750 	struct btf_show_snprintf ssnprintf;
5751 
5752 	ssnprintf.show.target = buf;
5753 	ssnprintf.show.flags = flags;
5754 	ssnprintf.show.showfn = btf_snprintf_show;
5755 	ssnprintf.len_left = len;
5756 	ssnprintf.len = 0;
5757 
5758 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5759 
5760 	/* If we encontered an error, return it. */
5761 	if (ssnprintf.show.state.status)
5762 		return ssnprintf.show.state.status;
5763 
5764 	/* Otherwise return length we would have written */
5765 	return ssnprintf.len;
5766 }
5767 
5768 #ifdef CONFIG_PROC_FS
5769 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5770 {
5771 	const struct btf *btf = filp->private_data;
5772 
5773 	seq_printf(m, "btf_id:\t%u\n", btf->id);
5774 }
5775 #endif
5776 
5777 static int btf_release(struct inode *inode, struct file *filp)
5778 {
5779 	btf_put(filp->private_data);
5780 	return 0;
5781 }
5782 
5783 const struct file_operations btf_fops = {
5784 #ifdef CONFIG_PROC_FS
5785 	.show_fdinfo	= bpf_btf_show_fdinfo,
5786 #endif
5787 	.release	= btf_release,
5788 };
5789 
5790 static int __btf_new_fd(struct btf *btf)
5791 {
5792 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5793 }
5794 
5795 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
5796 {
5797 	struct btf *btf;
5798 	int ret;
5799 
5800 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
5801 			attr->btf_size, attr->btf_log_level,
5802 			u64_to_user_ptr(attr->btf_log_buf),
5803 			attr->btf_log_size);
5804 	if (IS_ERR(btf))
5805 		return PTR_ERR(btf);
5806 
5807 	ret = btf_alloc_id(btf);
5808 	if (ret) {
5809 		btf_free(btf);
5810 		return ret;
5811 	}
5812 
5813 	/*
5814 	 * The BTF ID is published to the userspace.
5815 	 * All BTF free must go through call_rcu() from
5816 	 * now on (i.e. free by calling btf_put()).
5817 	 */
5818 
5819 	ret = __btf_new_fd(btf);
5820 	if (ret < 0)
5821 		btf_put(btf);
5822 
5823 	return ret;
5824 }
5825 
5826 struct btf *btf_get_by_fd(int fd)
5827 {
5828 	struct btf *btf;
5829 	struct fd f;
5830 
5831 	f = fdget(fd);
5832 
5833 	if (!f.file)
5834 		return ERR_PTR(-EBADF);
5835 
5836 	if (f.file->f_op != &btf_fops) {
5837 		fdput(f);
5838 		return ERR_PTR(-EINVAL);
5839 	}
5840 
5841 	btf = f.file->private_data;
5842 	refcount_inc(&btf->refcnt);
5843 	fdput(f);
5844 
5845 	return btf;
5846 }
5847 
5848 int btf_get_info_by_fd(const struct btf *btf,
5849 		       const union bpf_attr *attr,
5850 		       union bpf_attr __user *uattr)
5851 {
5852 	struct bpf_btf_info __user *uinfo;
5853 	struct bpf_btf_info info;
5854 	u32 info_copy, btf_copy;
5855 	void __user *ubtf;
5856 	char __user *uname;
5857 	u32 uinfo_len, uname_len, name_len;
5858 	int ret = 0;
5859 
5860 	uinfo = u64_to_user_ptr(attr->info.info);
5861 	uinfo_len = attr->info.info_len;
5862 
5863 	info_copy = min_t(u32, uinfo_len, sizeof(info));
5864 	memset(&info, 0, sizeof(info));
5865 	if (copy_from_user(&info, uinfo, info_copy))
5866 		return -EFAULT;
5867 
5868 	info.id = btf->id;
5869 	ubtf = u64_to_user_ptr(info.btf);
5870 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
5871 	if (copy_to_user(ubtf, btf->data, btf_copy))
5872 		return -EFAULT;
5873 	info.btf_size = btf->data_size;
5874 
5875 	info.kernel_btf = btf->kernel_btf;
5876 
5877 	uname = u64_to_user_ptr(info.name);
5878 	uname_len = info.name_len;
5879 	if (!uname ^ !uname_len)
5880 		return -EINVAL;
5881 
5882 	name_len = strlen(btf->name);
5883 	info.name_len = name_len;
5884 
5885 	if (uname) {
5886 		if (uname_len >= name_len + 1) {
5887 			if (copy_to_user(uname, btf->name, name_len + 1))
5888 				return -EFAULT;
5889 		} else {
5890 			char zero = '\0';
5891 
5892 			if (copy_to_user(uname, btf->name, uname_len - 1))
5893 				return -EFAULT;
5894 			if (put_user(zero, uname + uname_len - 1))
5895 				return -EFAULT;
5896 			/* let user-space know about too short buffer */
5897 			ret = -ENOSPC;
5898 		}
5899 	}
5900 
5901 	if (copy_to_user(uinfo, &info, info_copy) ||
5902 	    put_user(info_copy, &uattr->info.info_len))
5903 		return -EFAULT;
5904 
5905 	return ret;
5906 }
5907 
5908 int btf_get_fd_by_id(u32 id)
5909 {
5910 	struct btf *btf;
5911 	int fd;
5912 
5913 	rcu_read_lock();
5914 	btf = idr_find(&btf_idr, id);
5915 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5916 		btf = ERR_PTR(-ENOENT);
5917 	rcu_read_unlock();
5918 
5919 	if (IS_ERR(btf))
5920 		return PTR_ERR(btf);
5921 
5922 	fd = __btf_new_fd(btf);
5923 	if (fd < 0)
5924 		btf_put(btf);
5925 
5926 	return fd;
5927 }
5928 
5929 u32 btf_obj_id(const struct btf *btf)
5930 {
5931 	return btf->id;
5932 }
5933 
5934 bool btf_is_kernel(const struct btf *btf)
5935 {
5936 	return btf->kernel_btf;
5937 }
5938 
5939 bool btf_is_module(const struct btf *btf)
5940 {
5941 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
5942 }
5943 
5944 static int btf_id_cmp_func(const void *a, const void *b)
5945 {
5946 	const int *pa = a, *pb = b;
5947 
5948 	return *pa - *pb;
5949 }
5950 
5951 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5952 {
5953 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5954 }
5955 
5956 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5957 struct btf_module {
5958 	struct list_head list;
5959 	struct module *module;
5960 	struct btf *btf;
5961 	struct bin_attribute *sysfs_attr;
5962 };
5963 
5964 static LIST_HEAD(btf_modules);
5965 static DEFINE_MUTEX(btf_module_mutex);
5966 
5967 static ssize_t
5968 btf_module_read(struct file *file, struct kobject *kobj,
5969 		struct bin_attribute *bin_attr,
5970 		char *buf, loff_t off, size_t len)
5971 {
5972 	const struct btf *btf = bin_attr->private;
5973 
5974 	memcpy(buf, btf->data + off, len);
5975 	return len;
5976 }
5977 
5978 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5979 			     void *module)
5980 {
5981 	struct btf_module *btf_mod, *tmp;
5982 	struct module *mod = module;
5983 	struct btf *btf;
5984 	int err = 0;
5985 
5986 	if (mod->btf_data_size == 0 ||
5987 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5988 		goto out;
5989 
5990 	switch (op) {
5991 	case MODULE_STATE_COMING:
5992 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5993 		if (!btf_mod) {
5994 			err = -ENOMEM;
5995 			goto out;
5996 		}
5997 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5998 		if (IS_ERR(btf)) {
5999 			pr_warn("failed to validate module [%s] BTF: %ld\n",
6000 				mod->name, PTR_ERR(btf));
6001 			kfree(btf_mod);
6002 			err = PTR_ERR(btf);
6003 			goto out;
6004 		}
6005 		err = btf_alloc_id(btf);
6006 		if (err) {
6007 			btf_free(btf);
6008 			kfree(btf_mod);
6009 			goto out;
6010 		}
6011 
6012 		mutex_lock(&btf_module_mutex);
6013 		btf_mod->module = module;
6014 		btf_mod->btf = btf;
6015 		list_add(&btf_mod->list, &btf_modules);
6016 		mutex_unlock(&btf_module_mutex);
6017 
6018 		if (IS_ENABLED(CONFIG_SYSFS)) {
6019 			struct bin_attribute *attr;
6020 
6021 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6022 			if (!attr)
6023 				goto out;
6024 
6025 			sysfs_bin_attr_init(attr);
6026 			attr->attr.name = btf->name;
6027 			attr->attr.mode = 0444;
6028 			attr->size = btf->data_size;
6029 			attr->private = btf;
6030 			attr->read = btf_module_read;
6031 
6032 			err = sysfs_create_bin_file(btf_kobj, attr);
6033 			if (err) {
6034 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6035 					mod->name, err);
6036 				kfree(attr);
6037 				err = 0;
6038 				goto out;
6039 			}
6040 
6041 			btf_mod->sysfs_attr = attr;
6042 		}
6043 
6044 		break;
6045 	case MODULE_STATE_GOING:
6046 		mutex_lock(&btf_module_mutex);
6047 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6048 			if (btf_mod->module != module)
6049 				continue;
6050 
6051 			list_del(&btf_mod->list);
6052 			if (btf_mod->sysfs_attr)
6053 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6054 			btf_put(btf_mod->btf);
6055 			kfree(btf_mod->sysfs_attr);
6056 			kfree(btf_mod);
6057 			break;
6058 		}
6059 		mutex_unlock(&btf_module_mutex);
6060 		break;
6061 	}
6062 out:
6063 	return notifier_from_errno(err);
6064 }
6065 
6066 static struct notifier_block btf_module_nb = {
6067 	.notifier_call = btf_module_notify,
6068 };
6069 
6070 static int __init btf_module_init(void)
6071 {
6072 	register_module_notifier(&btf_module_nb);
6073 	return 0;
6074 }
6075 
6076 fs_initcall(btf_module_init);
6077 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6078 
6079 struct module *btf_try_get_module(const struct btf *btf)
6080 {
6081 	struct module *res = NULL;
6082 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6083 	struct btf_module *btf_mod, *tmp;
6084 
6085 	mutex_lock(&btf_module_mutex);
6086 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6087 		if (btf_mod->btf != btf)
6088 			continue;
6089 
6090 		if (try_module_get(btf_mod->module))
6091 			res = btf_mod->module;
6092 
6093 		break;
6094 	}
6095 	mutex_unlock(&btf_module_mutex);
6096 #endif
6097 
6098 	return res;
6099 }
6100 
6101 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6102 {
6103 	struct btf *btf;
6104 	long ret;
6105 
6106 	if (flags)
6107 		return -EINVAL;
6108 
6109 	if (name_sz <= 1 || name[name_sz - 1])
6110 		return -EINVAL;
6111 
6112 	btf = bpf_get_btf_vmlinux();
6113 	if (IS_ERR(btf))
6114 		return PTR_ERR(btf);
6115 
6116 	ret = btf_find_by_name_kind(btf, name, kind);
6117 	/* ret is never zero, since btf_find_by_name_kind returns
6118 	 * positive btf_id or negative error.
6119 	 */
6120 	if (ret < 0) {
6121 		struct btf *mod_btf;
6122 		int id;
6123 
6124 		/* If name is not found in vmlinux's BTF then search in module's BTFs */
6125 		spin_lock_bh(&btf_idr_lock);
6126 		idr_for_each_entry(&btf_idr, mod_btf, id) {
6127 			if (!btf_is_module(mod_btf))
6128 				continue;
6129 			/* linear search could be slow hence unlock/lock
6130 			 * the IDR to avoiding holding it for too long
6131 			 */
6132 			btf_get(mod_btf);
6133 			spin_unlock_bh(&btf_idr_lock);
6134 			ret = btf_find_by_name_kind(mod_btf, name, kind);
6135 			if (ret > 0) {
6136 				int btf_obj_fd;
6137 
6138 				btf_obj_fd = __btf_new_fd(mod_btf);
6139 				if (btf_obj_fd < 0) {
6140 					btf_put(mod_btf);
6141 					return btf_obj_fd;
6142 				}
6143 				return ret | (((u64)btf_obj_fd) << 32);
6144 			}
6145 			spin_lock_bh(&btf_idr_lock);
6146 			btf_put(mod_btf);
6147 		}
6148 		spin_unlock_bh(&btf_idr_lock);
6149 	}
6150 	return ret;
6151 }
6152 
6153 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6154 	.func		= bpf_btf_find_by_name_kind,
6155 	.gpl_only	= false,
6156 	.ret_type	= RET_INTEGER,
6157 	.arg1_type	= ARG_PTR_TO_MEM,
6158 	.arg2_type	= ARG_CONST_SIZE,
6159 	.arg3_type	= ARG_ANYTHING,
6160 	.arg4_type	= ARG_ANYTHING,
6161 };
6162