1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/errno.h> 9 #include <linux/slab.h> 10 #include <linux/anon_inodes.h> 11 #include <linux/file.h> 12 #include <linux/uaccess.h> 13 #include <linux/kernel.h> 14 #include <linux/idr.h> 15 #include <linux/sort.h> 16 #include <linux/bpf_verifier.h> 17 #include <linux/btf.h> 18 19 /* BTF (BPF Type Format) is the meta data format which describes 20 * the data types of BPF program/map. Hence, it basically focus 21 * on the C programming language which the modern BPF is primary 22 * using. 23 * 24 * ELF Section: 25 * ~~~~~~~~~~~ 26 * The BTF data is stored under the ".BTF" ELF section 27 * 28 * struct btf_type: 29 * ~~~~~~~~~~~~~~~ 30 * Each 'struct btf_type' object describes a C data type. 31 * Depending on the type it is describing, a 'struct btf_type' 32 * object may be followed by more data. F.e. 33 * To describe an array, 'struct btf_type' is followed by 34 * 'struct btf_array'. 35 * 36 * 'struct btf_type' and any extra data following it are 37 * 4 bytes aligned. 38 * 39 * Type section: 40 * ~~~~~~~~~~~~~ 41 * The BTF type section contains a list of 'struct btf_type' objects. 42 * Each one describes a C type. Recall from the above section 43 * that a 'struct btf_type' object could be immediately followed by extra 44 * data in order to desribe some particular C types. 45 * 46 * type_id: 47 * ~~~~~~~ 48 * Each btf_type object is identified by a type_id. The type_id 49 * is implicitly implied by the location of the btf_type object in 50 * the BTF type section. The first one has type_id 1. The second 51 * one has type_id 2...etc. Hence, an earlier btf_type has 52 * a smaller type_id. 53 * 54 * A btf_type object may refer to another btf_type object by using 55 * type_id (i.e. the "type" in the "struct btf_type"). 56 * 57 * NOTE that we cannot assume any reference-order. 58 * A btf_type object can refer to an earlier btf_type object 59 * but it can also refer to a later btf_type object. 60 * 61 * For example, to describe "const void *". A btf_type 62 * object describing "const" may refer to another btf_type 63 * object describing "void *". This type-reference is done 64 * by specifying type_id: 65 * 66 * [1] CONST (anon) type_id=2 67 * [2] PTR (anon) type_id=0 68 * 69 * The above is the btf_verifier debug log: 70 * - Each line started with "[?]" is a btf_type object 71 * - [?] is the type_id of the btf_type object. 72 * - CONST/PTR is the BTF_KIND_XXX 73 * - "(anon)" is the name of the type. It just 74 * happens that CONST and PTR has no name. 75 * - type_id=XXX is the 'u32 type' in btf_type 76 * 77 * NOTE: "void" has type_id 0 78 * 79 * String section: 80 * ~~~~~~~~~~~~~~ 81 * The BTF string section contains the names used by the type section. 82 * Each string is referred by an "offset" from the beginning of the 83 * string section. 84 * 85 * Each string is '\0' terminated. 86 * 87 * The first character in the string section must be '\0' 88 * which is used to mean 'anonymous'. Some btf_type may not 89 * have a name. 90 */ 91 92 /* BTF verification: 93 * 94 * To verify BTF data, two passes are needed. 95 * 96 * Pass #1 97 * ~~~~~~~ 98 * The first pass is to collect all btf_type objects to 99 * an array: "btf->types". 100 * 101 * Depending on the C type that a btf_type is describing, 102 * a btf_type may be followed by extra data. We don't know 103 * how many btf_type is there, and more importantly we don't 104 * know where each btf_type is located in the type section. 105 * 106 * Without knowing the location of each type_id, most verifications 107 * cannot be done. e.g. an earlier btf_type may refer to a later 108 * btf_type (recall the "const void *" above), so we cannot 109 * check this type-reference in the first pass. 110 * 111 * In the first pass, it still does some verifications (e.g. 112 * checking the name is a valid offset to the string section). 113 * 114 * Pass #2 115 * ~~~~~~~ 116 * The main focus is to resolve a btf_type that is referring 117 * to another type. 118 * 119 * We have to ensure the referring type: 120 * 1) does exist in the BTF (i.e. in btf->types[]) 121 * 2) does not cause a loop: 122 * struct A { 123 * struct B b; 124 * }; 125 * 126 * struct B { 127 * struct A a; 128 * }; 129 * 130 * btf_type_needs_resolve() decides if a btf_type needs 131 * to be resolved. 132 * 133 * The needs_resolve type implements the "resolve()" ops which 134 * essentially does a DFS and detects backedge. 135 * 136 * During resolve (or DFS), different C types have different 137 * "RESOLVED" conditions. 138 * 139 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 140 * members because a member is always referring to another 141 * type. A struct's member can be treated as "RESOLVED" if 142 * it is referring to a BTF_KIND_PTR. Otherwise, the 143 * following valid C struct would be rejected: 144 * 145 * struct A { 146 * int m; 147 * struct A *a; 148 * }; 149 * 150 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 151 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 152 * detect a pointer loop, e.g.: 153 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 154 * ^ | 155 * +-----------------------------------------+ 156 * 157 */ 158 159 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE) 160 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 161 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 162 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 163 #define BITS_ROUNDUP_BYTES(bits) \ 164 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 165 166 #define BTF_INFO_MASK 0x0f00ffff 167 #define BTF_INT_MASK 0x0fffffff 168 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 169 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 170 171 /* 16MB for 64k structs and each has 16 members and 172 * a few MB spaces for the string section. 173 * The hard limit is S32_MAX. 174 */ 175 #define BTF_MAX_SIZE (16 * 1024 * 1024) 176 177 #define for_each_member(i, struct_type, member) \ 178 for (i = 0, member = btf_type_member(struct_type); \ 179 i < btf_type_vlen(struct_type); \ 180 i++, member++) 181 182 #define for_each_member_from(i, from, struct_type, member) \ 183 for (i = from, member = btf_type_member(struct_type) + from; \ 184 i < btf_type_vlen(struct_type); \ 185 i++, member++) 186 187 static DEFINE_IDR(btf_idr); 188 static DEFINE_SPINLOCK(btf_idr_lock); 189 190 struct btf { 191 void *data; 192 struct btf_type **types; 193 u32 *resolved_ids; 194 u32 *resolved_sizes; 195 const char *strings; 196 void *nohdr_data; 197 struct btf_header hdr; 198 u32 nr_types; 199 u32 types_size; 200 u32 data_size; 201 refcount_t refcnt; 202 u32 id; 203 struct rcu_head rcu; 204 }; 205 206 enum verifier_phase { 207 CHECK_META, 208 CHECK_TYPE, 209 }; 210 211 struct resolve_vertex { 212 const struct btf_type *t; 213 u32 type_id; 214 u16 next_member; 215 }; 216 217 enum visit_state { 218 NOT_VISITED, 219 VISITED, 220 RESOLVED, 221 }; 222 223 enum resolve_mode { 224 RESOLVE_TBD, /* To Be Determined */ 225 RESOLVE_PTR, /* Resolving for Pointer */ 226 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 227 * or array 228 */ 229 }; 230 231 #define MAX_RESOLVE_DEPTH 32 232 233 struct btf_sec_info { 234 u32 off; 235 u32 len; 236 }; 237 238 struct btf_verifier_env { 239 struct btf *btf; 240 u8 *visit_states; 241 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 242 struct bpf_verifier_log log; 243 u32 log_type_id; 244 u32 top_stack; 245 enum verifier_phase phase; 246 enum resolve_mode resolve_mode; 247 }; 248 249 static const char * const btf_kind_str[NR_BTF_KINDS] = { 250 [BTF_KIND_UNKN] = "UNKNOWN", 251 [BTF_KIND_INT] = "INT", 252 [BTF_KIND_PTR] = "PTR", 253 [BTF_KIND_ARRAY] = "ARRAY", 254 [BTF_KIND_STRUCT] = "STRUCT", 255 [BTF_KIND_UNION] = "UNION", 256 [BTF_KIND_ENUM] = "ENUM", 257 [BTF_KIND_FWD] = "FWD", 258 [BTF_KIND_TYPEDEF] = "TYPEDEF", 259 [BTF_KIND_VOLATILE] = "VOLATILE", 260 [BTF_KIND_CONST] = "CONST", 261 [BTF_KIND_RESTRICT] = "RESTRICT", 262 }; 263 264 struct btf_kind_operations { 265 s32 (*check_meta)(struct btf_verifier_env *env, 266 const struct btf_type *t, 267 u32 meta_left); 268 int (*resolve)(struct btf_verifier_env *env, 269 const struct resolve_vertex *v); 270 int (*check_member)(struct btf_verifier_env *env, 271 const struct btf_type *struct_type, 272 const struct btf_member *member, 273 const struct btf_type *member_type); 274 void (*log_details)(struct btf_verifier_env *env, 275 const struct btf_type *t); 276 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 277 u32 type_id, void *data, u8 bits_offsets, 278 struct seq_file *m); 279 }; 280 281 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 282 static struct btf_type btf_void; 283 284 static bool btf_type_is_modifier(const struct btf_type *t) 285 { 286 /* Some of them is not strictly a C modifier 287 * but they are grouped into the same bucket 288 * for BTF concern: 289 * A type (t) that refers to another 290 * type through t->type AND its size cannot 291 * be determined without following the t->type. 292 * 293 * ptr does not fall into this bucket 294 * because its size is always sizeof(void *). 295 */ 296 switch (BTF_INFO_KIND(t->info)) { 297 case BTF_KIND_TYPEDEF: 298 case BTF_KIND_VOLATILE: 299 case BTF_KIND_CONST: 300 case BTF_KIND_RESTRICT: 301 return true; 302 } 303 304 return false; 305 } 306 307 static bool btf_type_is_void(const struct btf_type *t) 308 { 309 /* void => no type and size info. 310 * Hence, FWD is also treated as void. 311 */ 312 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 313 } 314 315 static bool btf_type_is_void_or_null(const struct btf_type *t) 316 { 317 return !t || btf_type_is_void(t); 318 } 319 320 /* union is only a special case of struct: 321 * all its offsetof(member) == 0 322 */ 323 static bool btf_type_is_struct(const struct btf_type *t) 324 { 325 u8 kind = BTF_INFO_KIND(t->info); 326 327 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 328 } 329 330 static bool btf_type_is_array(const struct btf_type *t) 331 { 332 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 333 } 334 335 static bool btf_type_is_ptr(const struct btf_type *t) 336 { 337 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 338 } 339 340 static bool btf_type_is_int(const struct btf_type *t) 341 { 342 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 343 } 344 345 /* What types need to be resolved? 346 * 347 * btf_type_is_modifier() is an obvious one. 348 * 349 * btf_type_is_struct() because its member refers to 350 * another type (through member->type). 351 352 * btf_type_is_array() because its element (array->type) 353 * refers to another type. Array can be thought of a 354 * special case of struct while array just has the same 355 * member-type repeated by array->nelems of times. 356 */ 357 static bool btf_type_needs_resolve(const struct btf_type *t) 358 { 359 return btf_type_is_modifier(t) || 360 btf_type_is_ptr(t) || 361 btf_type_is_struct(t) || 362 btf_type_is_array(t); 363 } 364 365 /* t->size can be used */ 366 static bool btf_type_has_size(const struct btf_type *t) 367 { 368 switch (BTF_INFO_KIND(t->info)) { 369 case BTF_KIND_INT: 370 case BTF_KIND_STRUCT: 371 case BTF_KIND_UNION: 372 case BTF_KIND_ENUM: 373 return true; 374 } 375 376 return false; 377 } 378 379 static const char *btf_int_encoding_str(u8 encoding) 380 { 381 if (encoding == 0) 382 return "(none)"; 383 else if (encoding == BTF_INT_SIGNED) 384 return "SIGNED"; 385 else if (encoding == BTF_INT_CHAR) 386 return "CHAR"; 387 else if (encoding == BTF_INT_BOOL) 388 return "BOOL"; 389 else 390 return "UNKN"; 391 } 392 393 static u16 btf_type_vlen(const struct btf_type *t) 394 { 395 return BTF_INFO_VLEN(t->info); 396 } 397 398 static u32 btf_type_int(const struct btf_type *t) 399 { 400 return *(u32 *)(t + 1); 401 } 402 403 static const struct btf_array *btf_type_array(const struct btf_type *t) 404 { 405 return (const struct btf_array *)(t + 1); 406 } 407 408 static const struct btf_member *btf_type_member(const struct btf_type *t) 409 { 410 return (const struct btf_member *)(t + 1); 411 } 412 413 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 414 { 415 return (const struct btf_enum *)(t + 1); 416 } 417 418 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 419 { 420 return kind_ops[BTF_INFO_KIND(t->info)]; 421 } 422 423 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 424 { 425 return BTF_STR_OFFSET_VALID(offset) && 426 offset < btf->hdr.str_len; 427 } 428 429 static const char *btf_name_by_offset(const struct btf *btf, u32 offset) 430 { 431 if (!offset) 432 return "(anon)"; 433 else if (offset < btf->hdr.str_len) 434 return &btf->strings[offset]; 435 else 436 return "(invalid-name-offset)"; 437 } 438 439 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 440 { 441 if (type_id > btf->nr_types) 442 return NULL; 443 444 return btf->types[type_id]; 445 } 446 447 /* 448 * Regular int is not a bit field and it must be either 449 * u8/u16/u32/u64. 450 */ 451 static bool btf_type_int_is_regular(const struct btf_type *t) 452 { 453 u8 nr_bits, nr_bytes; 454 u32 int_data; 455 456 int_data = btf_type_int(t); 457 nr_bits = BTF_INT_BITS(int_data); 458 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 459 if (BITS_PER_BYTE_MASKED(nr_bits) || 460 BTF_INT_OFFSET(int_data) || 461 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 462 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) { 463 return false; 464 } 465 466 return true; 467 } 468 469 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 470 const char *fmt, ...) 471 { 472 va_list args; 473 474 va_start(args, fmt); 475 bpf_verifier_vlog(log, fmt, args); 476 va_end(args); 477 } 478 479 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 480 const char *fmt, ...) 481 { 482 struct bpf_verifier_log *log = &env->log; 483 va_list args; 484 485 if (!bpf_verifier_log_needed(log)) 486 return; 487 488 va_start(args, fmt); 489 bpf_verifier_vlog(log, fmt, args); 490 va_end(args); 491 } 492 493 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 494 const struct btf_type *t, 495 bool log_details, 496 const char *fmt, ...) 497 { 498 struct bpf_verifier_log *log = &env->log; 499 u8 kind = BTF_INFO_KIND(t->info); 500 struct btf *btf = env->btf; 501 va_list args; 502 503 if (!bpf_verifier_log_needed(log)) 504 return; 505 506 __btf_verifier_log(log, "[%u] %s %s%s", 507 env->log_type_id, 508 btf_kind_str[kind], 509 btf_name_by_offset(btf, t->name_off), 510 log_details ? " " : ""); 511 512 if (log_details) 513 btf_type_ops(t)->log_details(env, t); 514 515 if (fmt && *fmt) { 516 __btf_verifier_log(log, " "); 517 va_start(args, fmt); 518 bpf_verifier_vlog(log, fmt, args); 519 va_end(args); 520 } 521 522 __btf_verifier_log(log, "\n"); 523 } 524 525 #define btf_verifier_log_type(env, t, ...) \ 526 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 527 #define btf_verifier_log_basic(env, t, ...) \ 528 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 529 530 __printf(4, 5) 531 static void btf_verifier_log_member(struct btf_verifier_env *env, 532 const struct btf_type *struct_type, 533 const struct btf_member *member, 534 const char *fmt, ...) 535 { 536 struct bpf_verifier_log *log = &env->log; 537 struct btf *btf = env->btf; 538 va_list args; 539 540 if (!bpf_verifier_log_needed(log)) 541 return; 542 543 /* The CHECK_META phase already did a btf dump. 544 * 545 * If member is logged again, it must hit an error in 546 * parsing this member. It is useful to print out which 547 * struct this member belongs to. 548 */ 549 if (env->phase != CHECK_META) 550 btf_verifier_log_type(env, struct_type, NULL); 551 552 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 553 btf_name_by_offset(btf, member->name_off), 554 member->type, member->offset); 555 556 if (fmt && *fmt) { 557 __btf_verifier_log(log, " "); 558 va_start(args, fmt); 559 bpf_verifier_vlog(log, fmt, args); 560 va_end(args); 561 } 562 563 __btf_verifier_log(log, "\n"); 564 } 565 566 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 567 u32 btf_data_size) 568 { 569 struct bpf_verifier_log *log = &env->log; 570 const struct btf *btf = env->btf; 571 const struct btf_header *hdr; 572 573 if (!bpf_verifier_log_needed(log)) 574 return; 575 576 hdr = &btf->hdr; 577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 578 __btf_verifier_log(log, "version: %u\n", hdr->version); 579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 586 } 587 588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 589 { 590 struct btf *btf = env->btf; 591 592 /* < 2 because +1 for btf_void which is always in btf->types[0]. 593 * btf_void is not accounted in btf->nr_types because btf_void 594 * does not come from the BTF file. 595 */ 596 if (btf->types_size - btf->nr_types < 2) { 597 /* Expand 'types' array */ 598 599 struct btf_type **new_types; 600 u32 expand_by, new_size; 601 602 if (btf->types_size == BTF_MAX_TYPE) { 603 btf_verifier_log(env, "Exceeded max num of types"); 604 return -E2BIG; 605 } 606 607 expand_by = max_t(u32, btf->types_size >> 2, 16); 608 new_size = min_t(u32, BTF_MAX_TYPE, 609 btf->types_size + expand_by); 610 611 new_types = kvcalloc(new_size, sizeof(*new_types), 612 GFP_KERNEL | __GFP_NOWARN); 613 if (!new_types) 614 return -ENOMEM; 615 616 if (btf->nr_types == 0) 617 new_types[0] = &btf_void; 618 else 619 memcpy(new_types, btf->types, 620 sizeof(*btf->types) * (btf->nr_types + 1)); 621 622 kvfree(btf->types); 623 btf->types = new_types; 624 btf->types_size = new_size; 625 } 626 627 btf->types[++(btf->nr_types)] = t; 628 629 return 0; 630 } 631 632 static int btf_alloc_id(struct btf *btf) 633 { 634 int id; 635 636 idr_preload(GFP_KERNEL); 637 spin_lock_bh(&btf_idr_lock); 638 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 639 if (id > 0) 640 btf->id = id; 641 spin_unlock_bh(&btf_idr_lock); 642 idr_preload_end(); 643 644 if (WARN_ON_ONCE(!id)) 645 return -ENOSPC; 646 647 return id > 0 ? 0 : id; 648 } 649 650 static void btf_free_id(struct btf *btf) 651 { 652 unsigned long flags; 653 654 /* 655 * In map-in-map, calling map_delete_elem() on outer 656 * map will call bpf_map_put on the inner map. 657 * It will then eventually call btf_free_id() 658 * on the inner map. Some of the map_delete_elem() 659 * implementation may have irq disabled, so 660 * we need to use the _irqsave() version instead 661 * of the _bh() version. 662 */ 663 spin_lock_irqsave(&btf_idr_lock, flags); 664 idr_remove(&btf_idr, btf->id); 665 spin_unlock_irqrestore(&btf_idr_lock, flags); 666 } 667 668 static void btf_free(struct btf *btf) 669 { 670 kvfree(btf->types); 671 kvfree(btf->resolved_sizes); 672 kvfree(btf->resolved_ids); 673 kvfree(btf->data); 674 kfree(btf); 675 } 676 677 static void btf_free_rcu(struct rcu_head *rcu) 678 { 679 struct btf *btf = container_of(rcu, struct btf, rcu); 680 681 btf_free(btf); 682 } 683 684 void btf_put(struct btf *btf) 685 { 686 if (btf && refcount_dec_and_test(&btf->refcnt)) { 687 btf_free_id(btf); 688 call_rcu(&btf->rcu, btf_free_rcu); 689 } 690 } 691 692 static int env_resolve_init(struct btf_verifier_env *env) 693 { 694 struct btf *btf = env->btf; 695 u32 nr_types = btf->nr_types; 696 u32 *resolved_sizes = NULL; 697 u32 *resolved_ids = NULL; 698 u8 *visit_states = NULL; 699 700 /* +1 for btf_void */ 701 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 702 GFP_KERNEL | __GFP_NOWARN); 703 if (!resolved_sizes) 704 goto nomem; 705 706 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 707 GFP_KERNEL | __GFP_NOWARN); 708 if (!resolved_ids) 709 goto nomem; 710 711 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 712 GFP_KERNEL | __GFP_NOWARN); 713 if (!visit_states) 714 goto nomem; 715 716 btf->resolved_sizes = resolved_sizes; 717 btf->resolved_ids = resolved_ids; 718 env->visit_states = visit_states; 719 720 return 0; 721 722 nomem: 723 kvfree(resolved_sizes); 724 kvfree(resolved_ids); 725 kvfree(visit_states); 726 return -ENOMEM; 727 } 728 729 static void btf_verifier_env_free(struct btf_verifier_env *env) 730 { 731 kvfree(env->visit_states); 732 kfree(env); 733 } 734 735 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 736 const struct btf_type *next_type) 737 { 738 switch (env->resolve_mode) { 739 case RESOLVE_TBD: 740 /* int, enum or void is a sink */ 741 return !btf_type_needs_resolve(next_type); 742 case RESOLVE_PTR: 743 /* int, enum, void, struct or array is a sink for ptr */ 744 return !btf_type_is_modifier(next_type) && 745 !btf_type_is_ptr(next_type); 746 case RESOLVE_STRUCT_OR_ARRAY: 747 /* int, enum, void or ptr is a sink for struct and array */ 748 return !btf_type_is_modifier(next_type) && 749 !btf_type_is_array(next_type) && 750 !btf_type_is_struct(next_type); 751 default: 752 BUG(); 753 } 754 } 755 756 static bool env_type_is_resolved(const struct btf_verifier_env *env, 757 u32 type_id) 758 { 759 return env->visit_states[type_id] == RESOLVED; 760 } 761 762 static int env_stack_push(struct btf_verifier_env *env, 763 const struct btf_type *t, u32 type_id) 764 { 765 struct resolve_vertex *v; 766 767 if (env->top_stack == MAX_RESOLVE_DEPTH) 768 return -E2BIG; 769 770 if (env->visit_states[type_id] != NOT_VISITED) 771 return -EEXIST; 772 773 env->visit_states[type_id] = VISITED; 774 775 v = &env->stack[env->top_stack++]; 776 v->t = t; 777 v->type_id = type_id; 778 v->next_member = 0; 779 780 if (env->resolve_mode == RESOLVE_TBD) { 781 if (btf_type_is_ptr(t)) 782 env->resolve_mode = RESOLVE_PTR; 783 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 784 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 785 } 786 787 return 0; 788 } 789 790 static void env_stack_set_next_member(struct btf_verifier_env *env, 791 u16 next_member) 792 { 793 env->stack[env->top_stack - 1].next_member = next_member; 794 } 795 796 static void env_stack_pop_resolved(struct btf_verifier_env *env, 797 u32 resolved_type_id, 798 u32 resolved_size) 799 { 800 u32 type_id = env->stack[--(env->top_stack)].type_id; 801 struct btf *btf = env->btf; 802 803 btf->resolved_sizes[type_id] = resolved_size; 804 btf->resolved_ids[type_id] = resolved_type_id; 805 env->visit_states[type_id] = RESOLVED; 806 } 807 808 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 809 { 810 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 811 } 812 813 /* The input param "type_id" must point to a needs_resolve type */ 814 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 815 u32 *type_id) 816 { 817 *type_id = btf->resolved_ids[*type_id]; 818 return btf_type_by_id(btf, *type_id); 819 } 820 821 const struct btf_type *btf_type_id_size(const struct btf *btf, 822 u32 *type_id, u32 *ret_size) 823 { 824 const struct btf_type *size_type; 825 u32 size_type_id = *type_id; 826 u32 size = 0; 827 828 size_type = btf_type_by_id(btf, size_type_id); 829 if (btf_type_is_void_or_null(size_type)) 830 return NULL; 831 832 if (btf_type_has_size(size_type)) { 833 size = size_type->size; 834 } else if (btf_type_is_array(size_type)) { 835 size = btf->resolved_sizes[size_type_id]; 836 } else if (btf_type_is_ptr(size_type)) { 837 size = sizeof(void *); 838 } else { 839 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) 840 return NULL; 841 842 size = btf->resolved_sizes[size_type_id]; 843 size_type_id = btf->resolved_ids[size_type_id]; 844 size_type = btf_type_by_id(btf, size_type_id); 845 if (btf_type_is_void(size_type)) 846 return NULL; 847 } 848 849 *type_id = size_type_id; 850 if (ret_size) 851 *ret_size = size; 852 853 return size_type; 854 } 855 856 static int btf_df_check_member(struct btf_verifier_env *env, 857 const struct btf_type *struct_type, 858 const struct btf_member *member, 859 const struct btf_type *member_type) 860 { 861 btf_verifier_log_basic(env, struct_type, 862 "Unsupported check_member"); 863 return -EINVAL; 864 } 865 866 static int btf_df_resolve(struct btf_verifier_env *env, 867 const struct resolve_vertex *v) 868 { 869 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 870 return -EINVAL; 871 } 872 873 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 874 u32 type_id, void *data, u8 bits_offsets, 875 struct seq_file *m) 876 { 877 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 878 } 879 880 static int btf_int_check_member(struct btf_verifier_env *env, 881 const struct btf_type *struct_type, 882 const struct btf_member *member, 883 const struct btf_type *member_type) 884 { 885 u32 int_data = btf_type_int(member_type); 886 u32 struct_bits_off = member->offset; 887 u32 struct_size = struct_type->size; 888 u32 nr_copy_bits; 889 u32 bytes_offset; 890 891 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 892 btf_verifier_log_member(env, struct_type, member, 893 "bits_offset exceeds U32_MAX"); 894 return -EINVAL; 895 } 896 897 struct_bits_off += BTF_INT_OFFSET(int_data); 898 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 899 nr_copy_bits = BTF_INT_BITS(int_data) + 900 BITS_PER_BYTE_MASKED(struct_bits_off); 901 902 if (nr_copy_bits > BITS_PER_U64) { 903 btf_verifier_log_member(env, struct_type, member, 904 "nr_copy_bits exceeds 64"); 905 return -EINVAL; 906 } 907 908 if (struct_size < bytes_offset || 909 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 910 btf_verifier_log_member(env, struct_type, member, 911 "Member exceeds struct_size"); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 static s32 btf_int_check_meta(struct btf_verifier_env *env, 919 const struct btf_type *t, 920 u32 meta_left) 921 { 922 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 923 u16 encoding; 924 925 if (meta_left < meta_needed) { 926 btf_verifier_log_basic(env, t, 927 "meta_left:%u meta_needed:%u", 928 meta_left, meta_needed); 929 return -EINVAL; 930 } 931 932 if (btf_type_vlen(t)) { 933 btf_verifier_log_type(env, t, "vlen != 0"); 934 return -EINVAL; 935 } 936 937 int_data = btf_type_int(t); 938 if (int_data & ~BTF_INT_MASK) { 939 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 940 int_data); 941 return -EINVAL; 942 } 943 944 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 945 946 if (nr_bits > BITS_PER_U64) { 947 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 948 BITS_PER_U64); 949 return -EINVAL; 950 } 951 952 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 953 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 954 return -EINVAL; 955 } 956 957 /* 958 * Only one of the encoding bits is allowed and it 959 * should be sufficient for the pretty print purpose (i.e. decoding). 960 * Multiple bits can be allowed later if it is found 961 * to be insufficient. 962 */ 963 encoding = BTF_INT_ENCODING(int_data); 964 if (encoding && 965 encoding != BTF_INT_SIGNED && 966 encoding != BTF_INT_CHAR && 967 encoding != BTF_INT_BOOL) { 968 btf_verifier_log_type(env, t, "Unsupported encoding"); 969 return -ENOTSUPP; 970 } 971 972 btf_verifier_log_type(env, t, NULL); 973 974 return meta_needed; 975 } 976 977 static void btf_int_log(struct btf_verifier_env *env, 978 const struct btf_type *t) 979 { 980 int int_data = btf_type_int(t); 981 982 btf_verifier_log(env, 983 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 984 t->size, BTF_INT_OFFSET(int_data), 985 BTF_INT_BITS(int_data), 986 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 987 } 988 989 static void btf_int_bits_seq_show(const struct btf *btf, 990 const struct btf_type *t, 991 void *data, u8 bits_offset, 992 struct seq_file *m) 993 { 994 u16 left_shift_bits, right_shift_bits; 995 u32 int_data = btf_type_int(t); 996 u8 nr_bits = BTF_INT_BITS(int_data); 997 u8 total_bits_offset; 998 u8 nr_copy_bytes; 999 u8 nr_copy_bits; 1000 u64 print_num; 1001 1002 /* 1003 * bits_offset is at most 7. 1004 * BTF_INT_OFFSET() cannot exceed 64 bits. 1005 */ 1006 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1007 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1008 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1009 nr_copy_bits = nr_bits + bits_offset; 1010 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1011 1012 print_num = 0; 1013 memcpy(&print_num, data, nr_copy_bytes); 1014 1015 #ifdef __BIG_ENDIAN_BITFIELD 1016 left_shift_bits = bits_offset; 1017 #else 1018 left_shift_bits = BITS_PER_U64 - nr_copy_bits; 1019 #endif 1020 right_shift_bits = BITS_PER_U64 - nr_bits; 1021 1022 print_num <<= left_shift_bits; 1023 print_num >>= right_shift_bits; 1024 1025 seq_printf(m, "0x%llx", print_num); 1026 } 1027 1028 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1029 u32 type_id, void *data, u8 bits_offset, 1030 struct seq_file *m) 1031 { 1032 u32 int_data = btf_type_int(t); 1033 u8 encoding = BTF_INT_ENCODING(int_data); 1034 bool sign = encoding & BTF_INT_SIGNED; 1035 u8 nr_bits = BTF_INT_BITS(int_data); 1036 1037 if (bits_offset || BTF_INT_OFFSET(int_data) || 1038 BITS_PER_BYTE_MASKED(nr_bits)) { 1039 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1040 return; 1041 } 1042 1043 switch (nr_bits) { 1044 case 64: 1045 if (sign) 1046 seq_printf(m, "%lld", *(s64 *)data); 1047 else 1048 seq_printf(m, "%llu", *(u64 *)data); 1049 break; 1050 case 32: 1051 if (sign) 1052 seq_printf(m, "%d", *(s32 *)data); 1053 else 1054 seq_printf(m, "%u", *(u32 *)data); 1055 break; 1056 case 16: 1057 if (sign) 1058 seq_printf(m, "%d", *(s16 *)data); 1059 else 1060 seq_printf(m, "%u", *(u16 *)data); 1061 break; 1062 case 8: 1063 if (sign) 1064 seq_printf(m, "%d", *(s8 *)data); 1065 else 1066 seq_printf(m, "%u", *(u8 *)data); 1067 break; 1068 default: 1069 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1070 } 1071 } 1072 1073 static const struct btf_kind_operations int_ops = { 1074 .check_meta = btf_int_check_meta, 1075 .resolve = btf_df_resolve, 1076 .check_member = btf_int_check_member, 1077 .log_details = btf_int_log, 1078 .seq_show = btf_int_seq_show, 1079 }; 1080 1081 static int btf_modifier_check_member(struct btf_verifier_env *env, 1082 const struct btf_type *struct_type, 1083 const struct btf_member *member, 1084 const struct btf_type *member_type) 1085 { 1086 const struct btf_type *resolved_type; 1087 u32 resolved_type_id = member->type; 1088 struct btf_member resolved_member; 1089 struct btf *btf = env->btf; 1090 1091 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1092 if (!resolved_type) { 1093 btf_verifier_log_member(env, struct_type, member, 1094 "Invalid member"); 1095 return -EINVAL; 1096 } 1097 1098 resolved_member = *member; 1099 resolved_member.type = resolved_type_id; 1100 1101 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1102 &resolved_member, 1103 resolved_type); 1104 } 1105 1106 static int btf_ptr_check_member(struct btf_verifier_env *env, 1107 const struct btf_type *struct_type, 1108 const struct btf_member *member, 1109 const struct btf_type *member_type) 1110 { 1111 u32 struct_size, struct_bits_off, bytes_offset; 1112 1113 struct_size = struct_type->size; 1114 struct_bits_off = member->offset; 1115 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1116 1117 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1118 btf_verifier_log_member(env, struct_type, member, 1119 "Member is not byte aligned"); 1120 return -EINVAL; 1121 } 1122 1123 if (struct_size - bytes_offset < sizeof(void *)) { 1124 btf_verifier_log_member(env, struct_type, member, 1125 "Member exceeds struct_size"); 1126 return -EINVAL; 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1133 const struct btf_type *t, 1134 u32 meta_left) 1135 { 1136 if (btf_type_vlen(t)) { 1137 btf_verifier_log_type(env, t, "vlen != 0"); 1138 return -EINVAL; 1139 } 1140 1141 if (!BTF_TYPE_ID_VALID(t->type)) { 1142 btf_verifier_log_type(env, t, "Invalid type_id"); 1143 return -EINVAL; 1144 } 1145 1146 btf_verifier_log_type(env, t, NULL); 1147 1148 return 0; 1149 } 1150 1151 static int btf_modifier_resolve(struct btf_verifier_env *env, 1152 const struct resolve_vertex *v) 1153 { 1154 const struct btf_type *t = v->t; 1155 const struct btf_type *next_type; 1156 u32 next_type_id = t->type; 1157 struct btf *btf = env->btf; 1158 u32 next_type_size = 0; 1159 1160 next_type = btf_type_by_id(btf, next_type_id); 1161 if (!next_type) { 1162 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1163 return -EINVAL; 1164 } 1165 1166 /* "typedef void new_void", "const void"...etc */ 1167 if (btf_type_is_void(next_type)) 1168 goto resolved; 1169 1170 if (!env_type_is_resolve_sink(env, next_type) && 1171 !env_type_is_resolved(env, next_type_id)) 1172 return env_stack_push(env, next_type, next_type_id); 1173 1174 /* Figure out the resolved next_type_id with size. 1175 * They will be stored in the current modifier's 1176 * resolved_ids and resolved_sizes such that it can 1177 * save us a few type-following when we use it later (e.g. in 1178 * pretty print). 1179 */ 1180 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && 1181 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { 1182 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1183 return -EINVAL; 1184 } 1185 1186 resolved: 1187 env_stack_pop_resolved(env, next_type_id, next_type_size); 1188 1189 return 0; 1190 } 1191 1192 static int btf_ptr_resolve(struct btf_verifier_env *env, 1193 const struct resolve_vertex *v) 1194 { 1195 const struct btf_type *next_type; 1196 const struct btf_type *t = v->t; 1197 u32 next_type_id = t->type; 1198 struct btf *btf = env->btf; 1199 u32 next_type_size = 0; 1200 1201 next_type = btf_type_by_id(btf, next_type_id); 1202 if (!next_type) { 1203 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1204 return -EINVAL; 1205 } 1206 1207 /* "void *" */ 1208 if (btf_type_is_void(next_type)) 1209 goto resolved; 1210 1211 if (!env_type_is_resolve_sink(env, next_type) && 1212 !env_type_is_resolved(env, next_type_id)) 1213 return env_stack_push(env, next_type, next_type_id); 1214 1215 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1216 * the modifier may have stopped resolving when it was resolved 1217 * to a ptr (last-resolved-ptr). 1218 * 1219 * We now need to continue from the last-resolved-ptr to 1220 * ensure the last-resolved-ptr will not referring back to 1221 * the currenct ptr (t). 1222 */ 1223 if (btf_type_is_modifier(next_type)) { 1224 const struct btf_type *resolved_type; 1225 u32 resolved_type_id; 1226 1227 resolved_type_id = next_type_id; 1228 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1229 1230 if (btf_type_is_ptr(resolved_type) && 1231 !env_type_is_resolve_sink(env, resolved_type) && 1232 !env_type_is_resolved(env, resolved_type_id)) 1233 return env_stack_push(env, resolved_type, 1234 resolved_type_id); 1235 } 1236 1237 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && 1238 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { 1239 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1240 return -EINVAL; 1241 } 1242 1243 resolved: 1244 env_stack_pop_resolved(env, next_type_id, 0); 1245 1246 return 0; 1247 } 1248 1249 static void btf_modifier_seq_show(const struct btf *btf, 1250 const struct btf_type *t, 1251 u32 type_id, void *data, 1252 u8 bits_offset, struct seq_file *m) 1253 { 1254 t = btf_type_id_resolve(btf, &type_id); 1255 1256 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1257 } 1258 1259 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1260 u32 type_id, void *data, u8 bits_offset, 1261 struct seq_file *m) 1262 { 1263 /* It is a hashed value */ 1264 seq_printf(m, "%p", *(void **)data); 1265 } 1266 1267 static void btf_ref_type_log(struct btf_verifier_env *env, 1268 const struct btf_type *t) 1269 { 1270 btf_verifier_log(env, "type_id=%u", t->type); 1271 } 1272 1273 static struct btf_kind_operations modifier_ops = { 1274 .check_meta = btf_ref_type_check_meta, 1275 .resolve = btf_modifier_resolve, 1276 .check_member = btf_modifier_check_member, 1277 .log_details = btf_ref_type_log, 1278 .seq_show = btf_modifier_seq_show, 1279 }; 1280 1281 static struct btf_kind_operations ptr_ops = { 1282 .check_meta = btf_ref_type_check_meta, 1283 .resolve = btf_ptr_resolve, 1284 .check_member = btf_ptr_check_member, 1285 .log_details = btf_ref_type_log, 1286 .seq_show = btf_ptr_seq_show, 1287 }; 1288 1289 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1290 const struct btf_type *t, 1291 u32 meta_left) 1292 { 1293 if (btf_type_vlen(t)) { 1294 btf_verifier_log_type(env, t, "vlen != 0"); 1295 return -EINVAL; 1296 } 1297 1298 if (t->type) { 1299 btf_verifier_log_type(env, t, "type != 0"); 1300 return -EINVAL; 1301 } 1302 1303 btf_verifier_log_type(env, t, NULL); 1304 1305 return 0; 1306 } 1307 1308 static struct btf_kind_operations fwd_ops = { 1309 .check_meta = btf_fwd_check_meta, 1310 .resolve = btf_df_resolve, 1311 .check_member = btf_df_check_member, 1312 .log_details = btf_ref_type_log, 1313 .seq_show = btf_df_seq_show, 1314 }; 1315 1316 static int btf_array_check_member(struct btf_verifier_env *env, 1317 const struct btf_type *struct_type, 1318 const struct btf_member *member, 1319 const struct btf_type *member_type) 1320 { 1321 u32 struct_bits_off = member->offset; 1322 u32 struct_size, bytes_offset; 1323 u32 array_type_id, array_size; 1324 struct btf *btf = env->btf; 1325 1326 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1327 btf_verifier_log_member(env, struct_type, member, 1328 "Member is not byte aligned"); 1329 return -EINVAL; 1330 } 1331 1332 array_type_id = member->type; 1333 btf_type_id_size(btf, &array_type_id, &array_size); 1334 struct_size = struct_type->size; 1335 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1336 if (struct_size - bytes_offset < array_size) { 1337 btf_verifier_log_member(env, struct_type, member, 1338 "Member exceeds struct_size"); 1339 return -EINVAL; 1340 } 1341 1342 return 0; 1343 } 1344 1345 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1346 const struct btf_type *t, 1347 u32 meta_left) 1348 { 1349 const struct btf_array *array = btf_type_array(t); 1350 u32 meta_needed = sizeof(*array); 1351 1352 if (meta_left < meta_needed) { 1353 btf_verifier_log_basic(env, t, 1354 "meta_left:%u meta_needed:%u", 1355 meta_left, meta_needed); 1356 return -EINVAL; 1357 } 1358 1359 if (btf_type_vlen(t)) { 1360 btf_verifier_log_type(env, t, "vlen != 0"); 1361 return -EINVAL; 1362 } 1363 1364 if (t->size) { 1365 btf_verifier_log_type(env, t, "size != 0"); 1366 return -EINVAL; 1367 } 1368 1369 /* Array elem type and index type cannot be in type void, 1370 * so !array->type and !array->index_type are not allowed. 1371 */ 1372 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1373 btf_verifier_log_type(env, t, "Invalid elem"); 1374 return -EINVAL; 1375 } 1376 1377 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1378 btf_verifier_log_type(env, t, "Invalid index"); 1379 return -EINVAL; 1380 } 1381 1382 btf_verifier_log_type(env, t, NULL); 1383 1384 return meta_needed; 1385 } 1386 1387 static int btf_array_resolve(struct btf_verifier_env *env, 1388 const struct resolve_vertex *v) 1389 { 1390 const struct btf_array *array = btf_type_array(v->t); 1391 const struct btf_type *elem_type, *index_type; 1392 u32 elem_type_id, index_type_id; 1393 struct btf *btf = env->btf; 1394 u32 elem_size; 1395 1396 /* Check array->index_type */ 1397 index_type_id = array->index_type; 1398 index_type = btf_type_by_id(btf, index_type_id); 1399 if (btf_type_is_void_or_null(index_type)) { 1400 btf_verifier_log_type(env, v->t, "Invalid index"); 1401 return -EINVAL; 1402 } 1403 1404 if (!env_type_is_resolve_sink(env, index_type) && 1405 !env_type_is_resolved(env, index_type_id)) 1406 return env_stack_push(env, index_type, index_type_id); 1407 1408 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1409 if (!index_type || !btf_type_is_int(index_type) || 1410 !btf_type_int_is_regular(index_type)) { 1411 btf_verifier_log_type(env, v->t, "Invalid index"); 1412 return -EINVAL; 1413 } 1414 1415 /* Check array->type */ 1416 elem_type_id = array->type; 1417 elem_type = btf_type_by_id(btf, elem_type_id); 1418 if (btf_type_is_void_or_null(elem_type)) { 1419 btf_verifier_log_type(env, v->t, 1420 "Invalid elem"); 1421 return -EINVAL; 1422 } 1423 1424 if (!env_type_is_resolve_sink(env, elem_type) && 1425 !env_type_is_resolved(env, elem_type_id)) 1426 return env_stack_push(env, elem_type, elem_type_id); 1427 1428 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1429 if (!elem_type) { 1430 btf_verifier_log_type(env, v->t, "Invalid elem"); 1431 return -EINVAL; 1432 } 1433 1434 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1435 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1436 return -EINVAL; 1437 } 1438 1439 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1440 btf_verifier_log_type(env, v->t, 1441 "Array size overflows U32_MAX"); 1442 return -EINVAL; 1443 } 1444 1445 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1446 1447 return 0; 1448 } 1449 1450 static void btf_array_log(struct btf_verifier_env *env, 1451 const struct btf_type *t) 1452 { 1453 const struct btf_array *array = btf_type_array(t); 1454 1455 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1456 array->type, array->index_type, array->nelems); 1457 } 1458 1459 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1460 u32 type_id, void *data, u8 bits_offset, 1461 struct seq_file *m) 1462 { 1463 const struct btf_array *array = btf_type_array(t); 1464 const struct btf_kind_operations *elem_ops; 1465 const struct btf_type *elem_type; 1466 u32 i, elem_size, elem_type_id; 1467 1468 elem_type_id = array->type; 1469 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1470 elem_ops = btf_type_ops(elem_type); 1471 seq_puts(m, "["); 1472 for (i = 0; i < array->nelems; i++) { 1473 if (i) 1474 seq_puts(m, ","); 1475 1476 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 1477 bits_offset, m); 1478 data += elem_size; 1479 } 1480 seq_puts(m, "]"); 1481 } 1482 1483 static struct btf_kind_operations array_ops = { 1484 .check_meta = btf_array_check_meta, 1485 .resolve = btf_array_resolve, 1486 .check_member = btf_array_check_member, 1487 .log_details = btf_array_log, 1488 .seq_show = btf_array_seq_show, 1489 }; 1490 1491 static int btf_struct_check_member(struct btf_verifier_env *env, 1492 const struct btf_type *struct_type, 1493 const struct btf_member *member, 1494 const struct btf_type *member_type) 1495 { 1496 u32 struct_bits_off = member->offset; 1497 u32 struct_size, bytes_offset; 1498 1499 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1500 btf_verifier_log_member(env, struct_type, member, 1501 "Member is not byte aligned"); 1502 return -EINVAL; 1503 } 1504 1505 struct_size = struct_type->size; 1506 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1507 if (struct_size - bytes_offset < member_type->size) { 1508 btf_verifier_log_member(env, struct_type, member, 1509 "Member exceeds struct_size"); 1510 return -EINVAL; 1511 } 1512 1513 return 0; 1514 } 1515 1516 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 1517 const struct btf_type *t, 1518 u32 meta_left) 1519 { 1520 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 1521 const struct btf_member *member; 1522 u32 meta_needed, last_offset; 1523 struct btf *btf = env->btf; 1524 u32 struct_size = t->size; 1525 u16 i; 1526 1527 meta_needed = btf_type_vlen(t) * sizeof(*member); 1528 if (meta_left < meta_needed) { 1529 btf_verifier_log_basic(env, t, 1530 "meta_left:%u meta_needed:%u", 1531 meta_left, meta_needed); 1532 return -EINVAL; 1533 } 1534 1535 btf_verifier_log_type(env, t, NULL); 1536 1537 last_offset = 0; 1538 for_each_member(i, t, member) { 1539 if (!btf_name_offset_valid(btf, member->name_off)) { 1540 btf_verifier_log_member(env, t, member, 1541 "Invalid member name_offset:%u", 1542 member->name_off); 1543 return -EINVAL; 1544 } 1545 1546 /* A member cannot be in type void */ 1547 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 1548 btf_verifier_log_member(env, t, member, 1549 "Invalid type_id"); 1550 return -EINVAL; 1551 } 1552 1553 if (is_union && member->offset) { 1554 btf_verifier_log_member(env, t, member, 1555 "Invalid member bits_offset"); 1556 return -EINVAL; 1557 } 1558 1559 /* 1560 * ">" instead of ">=" because the last member could be 1561 * "char a[0];" 1562 */ 1563 if (last_offset > member->offset) { 1564 btf_verifier_log_member(env, t, member, 1565 "Invalid member bits_offset"); 1566 return -EINVAL; 1567 } 1568 1569 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { 1570 btf_verifier_log_member(env, t, member, 1571 "Memmber bits_offset exceeds its struct size"); 1572 return -EINVAL; 1573 } 1574 1575 btf_verifier_log_member(env, t, member, NULL); 1576 last_offset = member->offset; 1577 } 1578 1579 return meta_needed; 1580 } 1581 1582 static int btf_struct_resolve(struct btf_verifier_env *env, 1583 const struct resolve_vertex *v) 1584 { 1585 const struct btf_member *member; 1586 int err; 1587 u16 i; 1588 1589 /* Before continue resolving the next_member, 1590 * ensure the last member is indeed resolved to a 1591 * type with size info. 1592 */ 1593 if (v->next_member) { 1594 const struct btf_type *last_member_type; 1595 const struct btf_member *last_member; 1596 u16 last_member_type_id; 1597 1598 last_member = btf_type_member(v->t) + v->next_member - 1; 1599 last_member_type_id = last_member->type; 1600 if (WARN_ON_ONCE(!env_type_is_resolved(env, 1601 last_member_type_id))) 1602 return -EINVAL; 1603 1604 last_member_type = btf_type_by_id(env->btf, 1605 last_member_type_id); 1606 err = btf_type_ops(last_member_type)->check_member(env, v->t, 1607 last_member, 1608 last_member_type); 1609 if (err) 1610 return err; 1611 } 1612 1613 for_each_member_from(i, v->next_member, v->t, member) { 1614 u32 member_type_id = member->type; 1615 const struct btf_type *member_type = btf_type_by_id(env->btf, 1616 member_type_id); 1617 1618 if (btf_type_is_void_or_null(member_type)) { 1619 btf_verifier_log_member(env, v->t, member, 1620 "Invalid member"); 1621 return -EINVAL; 1622 } 1623 1624 if (!env_type_is_resolve_sink(env, member_type) && 1625 !env_type_is_resolved(env, member_type_id)) { 1626 env_stack_set_next_member(env, i + 1); 1627 return env_stack_push(env, member_type, member_type_id); 1628 } 1629 1630 err = btf_type_ops(member_type)->check_member(env, v->t, 1631 member, 1632 member_type); 1633 if (err) 1634 return err; 1635 } 1636 1637 env_stack_pop_resolved(env, 0, 0); 1638 1639 return 0; 1640 } 1641 1642 static void btf_struct_log(struct btf_verifier_env *env, 1643 const struct btf_type *t) 1644 { 1645 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1646 } 1647 1648 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 1649 u32 type_id, void *data, u8 bits_offset, 1650 struct seq_file *m) 1651 { 1652 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 1653 const struct btf_member *member; 1654 u32 i; 1655 1656 seq_puts(m, "{"); 1657 for_each_member(i, t, member) { 1658 const struct btf_type *member_type = btf_type_by_id(btf, 1659 member->type); 1660 u32 member_offset = member->offset; 1661 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 1662 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 1663 const struct btf_kind_operations *ops; 1664 1665 if (i) 1666 seq_puts(m, seq); 1667 1668 ops = btf_type_ops(member_type); 1669 ops->seq_show(btf, member_type, member->type, 1670 data + bytes_offset, bits8_offset, m); 1671 } 1672 seq_puts(m, "}"); 1673 } 1674 1675 static struct btf_kind_operations struct_ops = { 1676 .check_meta = btf_struct_check_meta, 1677 .resolve = btf_struct_resolve, 1678 .check_member = btf_struct_check_member, 1679 .log_details = btf_struct_log, 1680 .seq_show = btf_struct_seq_show, 1681 }; 1682 1683 static int btf_enum_check_member(struct btf_verifier_env *env, 1684 const struct btf_type *struct_type, 1685 const struct btf_member *member, 1686 const struct btf_type *member_type) 1687 { 1688 u32 struct_bits_off = member->offset; 1689 u32 struct_size, bytes_offset; 1690 1691 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1692 btf_verifier_log_member(env, struct_type, member, 1693 "Member is not byte aligned"); 1694 return -EINVAL; 1695 } 1696 1697 struct_size = struct_type->size; 1698 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1699 if (struct_size - bytes_offset < sizeof(int)) { 1700 btf_verifier_log_member(env, struct_type, member, 1701 "Member exceeds struct_size"); 1702 return -EINVAL; 1703 } 1704 1705 return 0; 1706 } 1707 1708 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 1709 const struct btf_type *t, 1710 u32 meta_left) 1711 { 1712 const struct btf_enum *enums = btf_type_enum(t); 1713 struct btf *btf = env->btf; 1714 u16 i, nr_enums; 1715 u32 meta_needed; 1716 1717 nr_enums = btf_type_vlen(t); 1718 meta_needed = nr_enums * sizeof(*enums); 1719 1720 if (meta_left < meta_needed) { 1721 btf_verifier_log_basic(env, t, 1722 "meta_left:%u meta_needed:%u", 1723 meta_left, meta_needed); 1724 return -EINVAL; 1725 } 1726 1727 if (t->size != sizeof(int)) { 1728 btf_verifier_log_type(env, t, "Expected size:%zu", 1729 sizeof(int)); 1730 return -EINVAL; 1731 } 1732 1733 btf_verifier_log_type(env, t, NULL); 1734 1735 for (i = 0; i < nr_enums; i++) { 1736 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 1737 btf_verifier_log(env, "\tInvalid name_offset:%u", 1738 enums[i].name_off); 1739 return -EINVAL; 1740 } 1741 1742 btf_verifier_log(env, "\t%s val=%d\n", 1743 btf_name_by_offset(btf, enums[i].name_off), 1744 enums[i].val); 1745 } 1746 1747 return meta_needed; 1748 } 1749 1750 static void btf_enum_log(struct btf_verifier_env *env, 1751 const struct btf_type *t) 1752 { 1753 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1754 } 1755 1756 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 1757 u32 type_id, void *data, u8 bits_offset, 1758 struct seq_file *m) 1759 { 1760 const struct btf_enum *enums = btf_type_enum(t); 1761 u32 i, nr_enums = btf_type_vlen(t); 1762 int v = *(int *)data; 1763 1764 for (i = 0; i < nr_enums; i++) { 1765 if (v == enums[i].val) { 1766 seq_printf(m, "%s", 1767 btf_name_by_offset(btf, enums[i].name_off)); 1768 return; 1769 } 1770 } 1771 1772 seq_printf(m, "%d", v); 1773 } 1774 1775 static struct btf_kind_operations enum_ops = { 1776 .check_meta = btf_enum_check_meta, 1777 .resolve = btf_df_resolve, 1778 .check_member = btf_enum_check_member, 1779 .log_details = btf_enum_log, 1780 .seq_show = btf_enum_seq_show, 1781 }; 1782 1783 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 1784 [BTF_KIND_INT] = &int_ops, 1785 [BTF_KIND_PTR] = &ptr_ops, 1786 [BTF_KIND_ARRAY] = &array_ops, 1787 [BTF_KIND_STRUCT] = &struct_ops, 1788 [BTF_KIND_UNION] = &struct_ops, 1789 [BTF_KIND_ENUM] = &enum_ops, 1790 [BTF_KIND_FWD] = &fwd_ops, 1791 [BTF_KIND_TYPEDEF] = &modifier_ops, 1792 [BTF_KIND_VOLATILE] = &modifier_ops, 1793 [BTF_KIND_CONST] = &modifier_ops, 1794 [BTF_KIND_RESTRICT] = &modifier_ops, 1795 }; 1796 1797 static s32 btf_check_meta(struct btf_verifier_env *env, 1798 const struct btf_type *t, 1799 u32 meta_left) 1800 { 1801 u32 saved_meta_left = meta_left; 1802 s32 var_meta_size; 1803 1804 if (meta_left < sizeof(*t)) { 1805 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 1806 env->log_type_id, meta_left, sizeof(*t)); 1807 return -EINVAL; 1808 } 1809 meta_left -= sizeof(*t); 1810 1811 if (t->info & ~BTF_INFO_MASK) { 1812 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 1813 env->log_type_id, t->info); 1814 return -EINVAL; 1815 } 1816 1817 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 1818 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 1819 btf_verifier_log(env, "[%u] Invalid kind:%u", 1820 env->log_type_id, BTF_INFO_KIND(t->info)); 1821 return -EINVAL; 1822 } 1823 1824 if (!btf_name_offset_valid(env->btf, t->name_off)) { 1825 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 1826 env->log_type_id, t->name_off); 1827 return -EINVAL; 1828 } 1829 1830 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 1831 if (var_meta_size < 0) 1832 return var_meta_size; 1833 1834 meta_left -= var_meta_size; 1835 1836 return saved_meta_left - meta_left; 1837 } 1838 1839 static int btf_check_all_metas(struct btf_verifier_env *env) 1840 { 1841 struct btf *btf = env->btf; 1842 struct btf_header *hdr; 1843 void *cur, *end; 1844 1845 hdr = &btf->hdr; 1846 cur = btf->nohdr_data + hdr->type_off; 1847 end = btf->nohdr_data + hdr->type_len; 1848 1849 env->log_type_id = 1; 1850 while (cur < end) { 1851 struct btf_type *t = cur; 1852 s32 meta_size; 1853 1854 meta_size = btf_check_meta(env, t, end - cur); 1855 if (meta_size < 0) 1856 return meta_size; 1857 1858 btf_add_type(env, t); 1859 cur += meta_size; 1860 env->log_type_id++; 1861 } 1862 1863 return 0; 1864 } 1865 1866 static int btf_resolve(struct btf_verifier_env *env, 1867 const struct btf_type *t, u32 type_id) 1868 { 1869 const struct resolve_vertex *v; 1870 int err = 0; 1871 1872 env->resolve_mode = RESOLVE_TBD; 1873 env_stack_push(env, t, type_id); 1874 while (!err && (v = env_stack_peak(env))) { 1875 env->log_type_id = v->type_id; 1876 err = btf_type_ops(v->t)->resolve(env, v); 1877 } 1878 1879 env->log_type_id = type_id; 1880 if (err == -E2BIG) 1881 btf_verifier_log_type(env, t, 1882 "Exceeded max resolving depth:%u", 1883 MAX_RESOLVE_DEPTH); 1884 else if (err == -EEXIST) 1885 btf_verifier_log_type(env, t, "Loop detected"); 1886 1887 return err; 1888 } 1889 1890 static bool btf_resolve_valid(struct btf_verifier_env *env, 1891 const struct btf_type *t, 1892 u32 type_id) 1893 { 1894 struct btf *btf = env->btf; 1895 1896 if (!env_type_is_resolved(env, type_id)) 1897 return false; 1898 1899 if (btf_type_is_struct(t)) 1900 return !btf->resolved_ids[type_id] && 1901 !btf->resolved_sizes[type_id]; 1902 1903 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { 1904 t = btf_type_id_resolve(btf, &type_id); 1905 return t && !btf_type_is_modifier(t); 1906 } 1907 1908 if (btf_type_is_array(t)) { 1909 const struct btf_array *array = btf_type_array(t); 1910 const struct btf_type *elem_type; 1911 u32 elem_type_id = array->type; 1912 u32 elem_size; 1913 1914 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1915 return elem_type && !btf_type_is_modifier(elem_type) && 1916 (array->nelems * elem_size == 1917 btf->resolved_sizes[type_id]); 1918 } 1919 1920 return false; 1921 } 1922 1923 static int btf_check_all_types(struct btf_verifier_env *env) 1924 { 1925 struct btf *btf = env->btf; 1926 u32 type_id; 1927 int err; 1928 1929 err = env_resolve_init(env); 1930 if (err) 1931 return err; 1932 1933 env->phase++; 1934 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 1935 const struct btf_type *t = btf_type_by_id(btf, type_id); 1936 1937 env->log_type_id = type_id; 1938 if (btf_type_needs_resolve(t) && 1939 !env_type_is_resolved(env, type_id)) { 1940 err = btf_resolve(env, t, type_id); 1941 if (err) 1942 return err; 1943 } 1944 1945 if (btf_type_needs_resolve(t) && 1946 !btf_resolve_valid(env, t, type_id)) { 1947 btf_verifier_log_type(env, t, "Invalid resolve state"); 1948 return -EINVAL; 1949 } 1950 } 1951 1952 return 0; 1953 } 1954 1955 static int btf_parse_type_sec(struct btf_verifier_env *env) 1956 { 1957 const struct btf_header *hdr = &env->btf->hdr; 1958 int err; 1959 1960 /* Type section must align to 4 bytes */ 1961 if (hdr->type_off & (sizeof(u32) - 1)) { 1962 btf_verifier_log(env, "Unaligned type_off"); 1963 return -EINVAL; 1964 } 1965 1966 if (!hdr->type_len) { 1967 btf_verifier_log(env, "No type found"); 1968 return -EINVAL; 1969 } 1970 1971 err = btf_check_all_metas(env); 1972 if (err) 1973 return err; 1974 1975 return btf_check_all_types(env); 1976 } 1977 1978 static int btf_parse_str_sec(struct btf_verifier_env *env) 1979 { 1980 const struct btf_header *hdr; 1981 struct btf *btf = env->btf; 1982 const char *start, *end; 1983 1984 hdr = &btf->hdr; 1985 start = btf->nohdr_data + hdr->str_off; 1986 end = start + hdr->str_len; 1987 1988 if (end != btf->data + btf->data_size) { 1989 btf_verifier_log(env, "String section is not at the end"); 1990 return -EINVAL; 1991 } 1992 1993 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 1994 start[0] || end[-1]) { 1995 btf_verifier_log(env, "Invalid string section"); 1996 return -EINVAL; 1997 } 1998 1999 btf->strings = start; 2000 2001 return 0; 2002 } 2003 2004 static const size_t btf_sec_info_offset[] = { 2005 offsetof(struct btf_header, type_off), 2006 offsetof(struct btf_header, str_off), 2007 }; 2008 2009 static int btf_sec_info_cmp(const void *a, const void *b) 2010 { 2011 const struct btf_sec_info *x = a; 2012 const struct btf_sec_info *y = b; 2013 2014 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 2015 } 2016 2017 static int btf_check_sec_info(struct btf_verifier_env *env, 2018 u32 btf_data_size) 2019 { 2020 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 2021 u32 total, expected_total, i; 2022 const struct btf_header *hdr; 2023 const struct btf *btf; 2024 2025 btf = env->btf; 2026 hdr = &btf->hdr; 2027 2028 /* Populate the secs from hdr */ 2029 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 2030 secs[i] = *(struct btf_sec_info *)((void *)hdr + 2031 btf_sec_info_offset[i]); 2032 2033 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 2034 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 2035 2036 /* Check for gaps and overlap among sections */ 2037 total = 0; 2038 expected_total = btf_data_size - hdr->hdr_len; 2039 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 2040 if (expected_total < secs[i].off) { 2041 btf_verifier_log(env, "Invalid section offset"); 2042 return -EINVAL; 2043 } 2044 if (total < secs[i].off) { 2045 /* gap */ 2046 btf_verifier_log(env, "Unsupported section found"); 2047 return -EINVAL; 2048 } 2049 if (total > secs[i].off) { 2050 btf_verifier_log(env, "Section overlap found"); 2051 return -EINVAL; 2052 } 2053 if (expected_total - total < secs[i].len) { 2054 btf_verifier_log(env, 2055 "Total section length too long"); 2056 return -EINVAL; 2057 } 2058 total += secs[i].len; 2059 } 2060 2061 /* There is data other than hdr and known sections */ 2062 if (expected_total != total) { 2063 btf_verifier_log(env, "Unsupported section found"); 2064 return -EINVAL; 2065 } 2066 2067 return 0; 2068 } 2069 2070 static int btf_parse_hdr(struct btf_verifier_env *env, void __user *btf_data, 2071 u32 btf_data_size) 2072 { 2073 const struct btf_header *hdr; 2074 u32 hdr_len, hdr_copy; 2075 /* 2076 * Minimal part of the "struct btf_header" that 2077 * contains the hdr_len. 2078 */ 2079 struct btf_min_header { 2080 u16 magic; 2081 u8 version; 2082 u8 flags; 2083 u32 hdr_len; 2084 } __user *min_hdr; 2085 struct btf *btf; 2086 int err; 2087 2088 btf = env->btf; 2089 min_hdr = btf_data; 2090 2091 if (btf_data_size < sizeof(*min_hdr)) { 2092 btf_verifier_log(env, "hdr_len not found"); 2093 return -EINVAL; 2094 } 2095 2096 if (get_user(hdr_len, &min_hdr->hdr_len)) 2097 return -EFAULT; 2098 2099 if (btf_data_size < hdr_len) { 2100 btf_verifier_log(env, "btf_header not found"); 2101 return -EINVAL; 2102 } 2103 2104 err = bpf_check_uarg_tail_zero(btf_data, sizeof(btf->hdr), hdr_len); 2105 if (err) { 2106 if (err == -E2BIG) 2107 btf_verifier_log(env, "Unsupported btf_header"); 2108 return err; 2109 } 2110 2111 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 2112 if (copy_from_user(&btf->hdr, btf_data, hdr_copy)) 2113 return -EFAULT; 2114 2115 hdr = &btf->hdr; 2116 2117 btf_verifier_log_hdr(env, btf_data_size); 2118 2119 if (hdr->magic != BTF_MAGIC) { 2120 btf_verifier_log(env, "Invalid magic"); 2121 return -EINVAL; 2122 } 2123 2124 if (hdr->version != BTF_VERSION) { 2125 btf_verifier_log(env, "Unsupported version"); 2126 return -ENOTSUPP; 2127 } 2128 2129 if (hdr->flags) { 2130 btf_verifier_log(env, "Unsupported flags"); 2131 return -ENOTSUPP; 2132 } 2133 2134 if (btf_data_size == hdr->hdr_len) { 2135 btf_verifier_log(env, "No data"); 2136 return -EINVAL; 2137 } 2138 2139 err = btf_check_sec_info(env, btf_data_size); 2140 if (err) 2141 return err; 2142 2143 return 0; 2144 } 2145 2146 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 2147 u32 log_level, char __user *log_ubuf, u32 log_size) 2148 { 2149 struct btf_verifier_env *env = NULL; 2150 struct bpf_verifier_log *log; 2151 struct btf *btf = NULL; 2152 u8 *data; 2153 int err; 2154 2155 if (btf_data_size > BTF_MAX_SIZE) 2156 return ERR_PTR(-E2BIG); 2157 2158 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 2159 if (!env) 2160 return ERR_PTR(-ENOMEM); 2161 2162 log = &env->log; 2163 if (log_level || log_ubuf || log_size) { 2164 /* user requested verbose verifier output 2165 * and supplied buffer to store the verification trace 2166 */ 2167 log->level = log_level; 2168 log->ubuf = log_ubuf; 2169 log->len_total = log_size; 2170 2171 /* log attributes have to be sane */ 2172 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 2173 !log->level || !log->ubuf) { 2174 err = -EINVAL; 2175 goto errout; 2176 } 2177 } 2178 2179 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 2180 if (!btf) { 2181 err = -ENOMEM; 2182 goto errout; 2183 } 2184 env->btf = btf; 2185 2186 err = btf_parse_hdr(env, btf_data, btf_data_size); 2187 if (err) 2188 goto errout; 2189 2190 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 2191 if (!data) { 2192 err = -ENOMEM; 2193 goto errout; 2194 } 2195 2196 btf->data = data; 2197 btf->data_size = btf_data_size; 2198 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 2199 2200 if (copy_from_user(data, btf_data, btf_data_size)) { 2201 err = -EFAULT; 2202 goto errout; 2203 } 2204 2205 err = btf_parse_str_sec(env); 2206 if (err) 2207 goto errout; 2208 2209 err = btf_parse_type_sec(env); 2210 if (err) 2211 goto errout; 2212 2213 if (log->level && bpf_verifier_log_full(log)) { 2214 err = -ENOSPC; 2215 goto errout; 2216 } 2217 2218 btf_verifier_env_free(env); 2219 refcount_set(&btf->refcnt, 1); 2220 return btf; 2221 2222 errout: 2223 btf_verifier_env_free(env); 2224 if (btf) 2225 btf_free(btf); 2226 return ERR_PTR(err); 2227 } 2228 2229 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 2230 struct seq_file *m) 2231 { 2232 const struct btf_type *t = btf_type_by_id(btf, type_id); 2233 2234 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 2235 } 2236 2237 static int btf_release(struct inode *inode, struct file *filp) 2238 { 2239 btf_put(filp->private_data); 2240 return 0; 2241 } 2242 2243 const struct file_operations btf_fops = { 2244 .release = btf_release, 2245 }; 2246 2247 static int __btf_new_fd(struct btf *btf) 2248 { 2249 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 2250 } 2251 2252 int btf_new_fd(const union bpf_attr *attr) 2253 { 2254 struct btf *btf; 2255 int ret; 2256 2257 btf = btf_parse(u64_to_user_ptr(attr->btf), 2258 attr->btf_size, attr->btf_log_level, 2259 u64_to_user_ptr(attr->btf_log_buf), 2260 attr->btf_log_size); 2261 if (IS_ERR(btf)) 2262 return PTR_ERR(btf); 2263 2264 ret = btf_alloc_id(btf); 2265 if (ret) { 2266 btf_free(btf); 2267 return ret; 2268 } 2269 2270 /* 2271 * The BTF ID is published to the userspace. 2272 * All BTF free must go through call_rcu() from 2273 * now on (i.e. free by calling btf_put()). 2274 */ 2275 2276 ret = __btf_new_fd(btf); 2277 if (ret < 0) 2278 btf_put(btf); 2279 2280 return ret; 2281 } 2282 2283 struct btf *btf_get_by_fd(int fd) 2284 { 2285 struct btf *btf; 2286 struct fd f; 2287 2288 f = fdget(fd); 2289 2290 if (!f.file) 2291 return ERR_PTR(-EBADF); 2292 2293 if (f.file->f_op != &btf_fops) { 2294 fdput(f); 2295 return ERR_PTR(-EINVAL); 2296 } 2297 2298 btf = f.file->private_data; 2299 refcount_inc(&btf->refcnt); 2300 fdput(f); 2301 2302 return btf; 2303 } 2304 2305 int btf_get_info_by_fd(const struct btf *btf, 2306 const union bpf_attr *attr, 2307 union bpf_attr __user *uattr) 2308 { 2309 struct bpf_btf_info __user *uinfo; 2310 struct bpf_btf_info info = {}; 2311 u32 info_copy, btf_copy; 2312 void __user *ubtf; 2313 u32 uinfo_len; 2314 2315 uinfo = u64_to_user_ptr(attr->info.info); 2316 uinfo_len = attr->info.info_len; 2317 2318 info_copy = min_t(u32, uinfo_len, sizeof(info)); 2319 if (copy_from_user(&info, uinfo, info_copy)) 2320 return -EFAULT; 2321 2322 info.id = btf->id; 2323 ubtf = u64_to_user_ptr(info.btf); 2324 btf_copy = min_t(u32, btf->data_size, info.btf_size); 2325 if (copy_to_user(ubtf, btf->data, btf_copy)) 2326 return -EFAULT; 2327 info.btf_size = btf->data_size; 2328 2329 if (copy_to_user(uinfo, &info, info_copy) || 2330 put_user(info_copy, &uattr->info.info_len)) 2331 return -EFAULT; 2332 2333 return 0; 2334 } 2335 2336 int btf_get_fd_by_id(u32 id) 2337 { 2338 struct btf *btf; 2339 int fd; 2340 2341 rcu_read_lock(); 2342 btf = idr_find(&btf_idr, id); 2343 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 2344 btf = ERR_PTR(-ENOENT); 2345 rcu_read_unlock(); 2346 2347 if (IS_ERR(btf)) 2348 return PTR_ERR(btf); 2349 2350 fd = __btf_new_fd(btf); 2351 if (fd < 0) 2352 btf_put(btf); 2353 2354 return fd; 2355 } 2356 2357 u32 btf_id(const struct btf *btf) 2358 { 2359 return btf->id; 2360 } 2361