1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/errno.h> 9 #include <linux/slab.h> 10 #include <linux/anon_inodes.h> 11 #include <linux/file.h> 12 #include <linux/uaccess.h> 13 #include <linux/kernel.h> 14 #include <linux/idr.h> 15 #include <linux/sort.h> 16 #include <linux/bpf_verifier.h> 17 #include <linux/btf.h> 18 19 /* BTF (BPF Type Format) is the meta data format which describes 20 * the data types of BPF program/map. Hence, it basically focus 21 * on the C programming language which the modern BPF is primary 22 * using. 23 * 24 * ELF Section: 25 * ~~~~~~~~~~~ 26 * The BTF data is stored under the ".BTF" ELF section 27 * 28 * struct btf_type: 29 * ~~~~~~~~~~~~~~~ 30 * Each 'struct btf_type' object describes a C data type. 31 * Depending on the type it is describing, a 'struct btf_type' 32 * object may be followed by more data. F.e. 33 * To describe an array, 'struct btf_type' is followed by 34 * 'struct btf_array'. 35 * 36 * 'struct btf_type' and any extra data following it are 37 * 4 bytes aligned. 38 * 39 * Type section: 40 * ~~~~~~~~~~~~~ 41 * The BTF type section contains a list of 'struct btf_type' objects. 42 * Each one describes a C type. Recall from the above section 43 * that a 'struct btf_type' object could be immediately followed by extra 44 * data in order to desribe some particular C types. 45 * 46 * type_id: 47 * ~~~~~~~ 48 * Each btf_type object is identified by a type_id. The type_id 49 * is implicitly implied by the location of the btf_type object in 50 * the BTF type section. The first one has type_id 1. The second 51 * one has type_id 2...etc. Hence, an earlier btf_type has 52 * a smaller type_id. 53 * 54 * A btf_type object may refer to another btf_type object by using 55 * type_id (i.e. the "type" in the "struct btf_type"). 56 * 57 * NOTE that we cannot assume any reference-order. 58 * A btf_type object can refer to an earlier btf_type object 59 * but it can also refer to a later btf_type object. 60 * 61 * For example, to describe "const void *". A btf_type 62 * object describing "const" may refer to another btf_type 63 * object describing "void *". This type-reference is done 64 * by specifying type_id: 65 * 66 * [1] CONST (anon) type_id=2 67 * [2] PTR (anon) type_id=0 68 * 69 * The above is the btf_verifier debug log: 70 * - Each line started with "[?]" is a btf_type object 71 * - [?] is the type_id of the btf_type object. 72 * - CONST/PTR is the BTF_KIND_XXX 73 * - "(anon)" is the name of the type. It just 74 * happens that CONST and PTR has no name. 75 * - type_id=XXX is the 'u32 type' in btf_type 76 * 77 * NOTE: "void" has type_id 0 78 * 79 * String section: 80 * ~~~~~~~~~~~~~~ 81 * The BTF string section contains the names used by the type section. 82 * Each string is referred by an "offset" from the beginning of the 83 * string section. 84 * 85 * Each string is '\0' terminated. 86 * 87 * The first character in the string section must be '\0' 88 * which is used to mean 'anonymous'. Some btf_type may not 89 * have a name. 90 */ 91 92 /* BTF verification: 93 * 94 * To verify BTF data, two passes are needed. 95 * 96 * Pass #1 97 * ~~~~~~~ 98 * The first pass is to collect all btf_type objects to 99 * an array: "btf->types". 100 * 101 * Depending on the C type that a btf_type is describing, 102 * a btf_type may be followed by extra data. We don't know 103 * how many btf_type is there, and more importantly we don't 104 * know where each btf_type is located in the type section. 105 * 106 * Without knowing the location of each type_id, most verifications 107 * cannot be done. e.g. an earlier btf_type may refer to a later 108 * btf_type (recall the "const void *" above), so we cannot 109 * check this type-reference in the first pass. 110 * 111 * In the first pass, it still does some verifications (e.g. 112 * checking the name is a valid offset to the string section). 113 * 114 * Pass #2 115 * ~~~~~~~ 116 * The main focus is to resolve a btf_type that is referring 117 * to another type. 118 * 119 * We have to ensure the referring type: 120 * 1) does exist in the BTF (i.e. in btf->types[]) 121 * 2) does not cause a loop: 122 * struct A { 123 * struct B b; 124 * }; 125 * 126 * struct B { 127 * struct A a; 128 * }; 129 * 130 * btf_type_needs_resolve() decides if a btf_type needs 131 * to be resolved. 132 * 133 * The needs_resolve type implements the "resolve()" ops which 134 * essentially does a DFS and detects backedge. 135 * 136 * During resolve (or DFS), different C types have different 137 * "RESOLVED" conditions. 138 * 139 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 140 * members because a member is always referring to another 141 * type. A struct's member can be treated as "RESOLVED" if 142 * it is referring to a BTF_KIND_PTR. Otherwise, the 143 * following valid C struct would be rejected: 144 * 145 * struct A { 146 * int m; 147 * struct A *a; 148 * }; 149 * 150 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 151 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 152 * detect a pointer loop, e.g.: 153 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 154 * ^ | 155 * +-----------------------------------------+ 156 * 157 */ 158 159 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE) 160 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 161 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 162 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 163 #define BITS_ROUNDUP_BYTES(bits) \ 164 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 165 166 #define BTF_INFO_MASK 0x0f00ffff 167 #define BTF_INT_MASK 0x0fffffff 168 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 169 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 170 171 /* 16MB for 64k structs and each has 16 members and 172 * a few MB spaces for the string section. 173 * The hard limit is S32_MAX. 174 */ 175 #define BTF_MAX_SIZE (16 * 1024 * 1024) 176 177 #define for_each_member(i, struct_type, member) \ 178 for (i = 0, member = btf_type_member(struct_type); \ 179 i < btf_type_vlen(struct_type); \ 180 i++, member++) 181 182 #define for_each_member_from(i, from, struct_type, member) \ 183 for (i = from, member = btf_type_member(struct_type) + from; \ 184 i < btf_type_vlen(struct_type); \ 185 i++, member++) 186 187 static DEFINE_IDR(btf_idr); 188 static DEFINE_SPINLOCK(btf_idr_lock); 189 190 struct btf { 191 void *data; 192 struct btf_type **types; 193 u32 *resolved_ids; 194 u32 *resolved_sizes; 195 const char *strings; 196 void *nohdr_data; 197 struct btf_header hdr; 198 u32 nr_types; 199 u32 types_size; 200 u32 data_size; 201 refcount_t refcnt; 202 u32 id; 203 struct rcu_head rcu; 204 }; 205 206 enum verifier_phase { 207 CHECK_META, 208 CHECK_TYPE, 209 }; 210 211 struct resolve_vertex { 212 const struct btf_type *t; 213 u32 type_id; 214 u16 next_member; 215 }; 216 217 enum visit_state { 218 NOT_VISITED, 219 VISITED, 220 RESOLVED, 221 }; 222 223 enum resolve_mode { 224 RESOLVE_TBD, /* To Be Determined */ 225 RESOLVE_PTR, /* Resolving for Pointer */ 226 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 227 * or array 228 */ 229 }; 230 231 #define MAX_RESOLVE_DEPTH 32 232 233 struct btf_sec_info { 234 u32 off; 235 u32 len; 236 }; 237 238 struct btf_verifier_env { 239 struct btf *btf; 240 u8 *visit_states; 241 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 242 struct bpf_verifier_log log; 243 u32 log_type_id; 244 u32 top_stack; 245 enum verifier_phase phase; 246 enum resolve_mode resolve_mode; 247 }; 248 249 static const char * const btf_kind_str[NR_BTF_KINDS] = { 250 [BTF_KIND_UNKN] = "UNKNOWN", 251 [BTF_KIND_INT] = "INT", 252 [BTF_KIND_PTR] = "PTR", 253 [BTF_KIND_ARRAY] = "ARRAY", 254 [BTF_KIND_STRUCT] = "STRUCT", 255 [BTF_KIND_UNION] = "UNION", 256 [BTF_KIND_ENUM] = "ENUM", 257 [BTF_KIND_FWD] = "FWD", 258 [BTF_KIND_TYPEDEF] = "TYPEDEF", 259 [BTF_KIND_VOLATILE] = "VOLATILE", 260 [BTF_KIND_CONST] = "CONST", 261 [BTF_KIND_RESTRICT] = "RESTRICT", 262 }; 263 264 struct btf_kind_operations { 265 s32 (*check_meta)(struct btf_verifier_env *env, 266 const struct btf_type *t, 267 u32 meta_left); 268 int (*resolve)(struct btf_verifier_env *env, 269 const struct resolve_vertex *v); 270 int (*check_member)(struct btf_verifier_env *env, 271 const struct btf_type *struct_type, 272 const struct btf_member *member, 273 const struct btf_type *member_type); 274 void (*log_details)(struct btf_verifier_env *env, 275 const struct btf_type *t); 276 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 277 u32 type_id, void *data, u8 bits_offsets, 278 struct seq_file *m); 279 }; 280 281 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 282 static struct btf_type btf_void; 283 284 static bool btf_type_is_modifier(const struct btf_type *t) 285 { 286 /* Some of them is not strictly a C modifier 287 * but they are grouped into the same bucket 288 * for BTF concern: 289 * A type (t) that refers to another 290 * type through t->type AND its size cannot 291 * be determined without following the t->type. 292 * 293 * ptr does not fall into this bucket 294 * because its size is always sizeof(void *). 295 */ 296 switch (BTF_INFO_KIND(t->info)) { 297 case BTF_KIND_TYPEDEF: 298 case BTF_KIND_VOLATILE: 299 case BTF_KIND_CONST: 300 case BTF_KIND_RESTRICT: 301 return true; 302 } 303 304 return false; 305 } 306 307 static bool btf_type_is_void(const struct btf_type *t) 308 { 309 /* void => no type and size info. 310 * Hence, FWD is also treated as void. 311 */ 312 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 313 } 314 315 static bool btf_type_is_void_or_null(const struct btf_type *t) 316 { 317 return !t || btf_type_is_void(t); 318 } 319 320 /* union is only a special case of struct: 321 * all its offsetof(member) == 0 322 */ 323 static bool btf_type_is_struct(const struct btf_type *t) 324 { 325 u8 kind = BTF_INFO_KIND(t->info); 326 327 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 328 } 329 330 static bool btf_type_is_array(const struct btf_type *t) 331 { 332 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 333 } 334 335 static bool btf_type_is_ptr(const struct btf_type *t) 336 { 337 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 338 } 339 340 static bool btf_type_is_int(const struct btf_type *t) 341 { 342 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 343 } 344 345 /* What types need to be resolved? 346 * 347 * btf_type_is_modifier() is an obvious one. 348 * 349 * btf_type_is_struct() because its member refers to 350 * another type (through member->type). 351 352 * btf_type_is_array() because its element (array->type) 353 * refers to another type. Array can be thought of a 354 * special case of struct while array just has the same 355 * member-type repeated by array->nelems of times. 356 */ 357 static bool btf_type_needs_resolve(const struct btf_type *t) 358 { 359 return btf_type_is_modifier(t) || 360 btf_type_is_ptr(t) || 361 btf_type_is_struct(t) || 362 btf_type_is_array(t); 363 } 364 365 /* t->size can be used */ 366 static bool btf_type_has_size(const struct btf_type *t) 367 { 368 switch (BTF_INFO_KIND(t->info)) { 369 case BTF_KIND_INT: 370 case BTF_KIND_STRUCT: 371 case BTF_KIND_UNION: 372 case BTF_KIND_ENUM: 373 return true; 374 } 375 376 return false; 377 } 378 379 static const char *btf_int_encoding_str(u8 encoding) 380 { 381 if (encoding == 0) 382 return "(none)"; 383 else if (encoding == BTF_INT_SIGNED) 384 return "SIGNED"; 385 else if (encoding == BTF_INT_CHAR) 386 return "CHAR"; 387 else if (encoding == BTF_INT_BOOL) 388 return "BOOL"; 389 else 390 return "UNKN"; 391 } 392 393 static u16 btf_type_vlen(const struct btf_type *t) 394 { 395 return BTF_INFO_VLEN(t->info); 396 } 397 398 static u32 btf_type_int(const struct btf_type *t) 399 { 400 return *(u32 *)(t + 1); 401 } 402 403 static const struct btf_array *btf_type_array(const struct btf_type *t) 404 { 405 return (const struct btf_array *)(t + 1); 406 } 407 408 static const struct btf_member *btf_type_member(const struct btf_type *t) 409 { 410 return (const struct btf_member *)(t + 1); 411 } 412 413 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 414 { 415 return (const struct btf_enum *)(t + 1); 416 } 417 418 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 419 { 420 return kind_ops[BTF_INFO_KIND(t->info)]; 421 } 422 423 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 424 { 425 return BTF_STR_OFFSET_VALID(offset) && 426 offset < btf->hdr.str_len; 427 } 428 429 static const char *btf_name_by_offset(const struct btf *btf, u32 offset) 430 { 431 if (!offset) 432 return "(anon)"; 433 else if (offset < btf->hdr.str_len) 434 return &btf->strings[offset]; 435 else 436 return "(invalid-name-offset)"; 437 } 438 439 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 440 { 441 if (type_id > btf->nr_types) 442 return NULL; 443 444 return btf->types[type_id]; 445 } 446 447 /* 448 * Regular int is not a bit field and it must be either 449 * u8/u16/u32/u64. 450 */ 451 static bool btf_type_int_is_regular(const struct btf_type *t) 452 { 453 u16 nr_bits, nr_bytes; 454 u32 int_data; 455 456 int_data = btf_type_int(t); 457 nr_bits = BTF_INT_BITS(int_data); 458 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 459 if (BITS_PER_BYTE_MASKED(nr_bits) || 460 BTF_INT_OFFSET(int_data) || 461 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 462 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) { 463 return false; 464 } 465 466 return true; 467 } 468 469 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 470 const char *fmt, ...) 471 { 472 va_list args; 473 474 va_start(args, fmt); 475 bpf_verifier_vlog(log, fmt, args); 476 va_end(args); 477 } 478 479 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 480 const char *fmt, ...) 481 { 482 struct bpf_verifier_log *log = &env->log; 483 va_list args; 484 485 if (!bpf_verifier_log_needed(log)) 486 return; 487 488 va_start(args, fmt); 489 bpf_verifier_vlog(log, fmt, args); 490 va_end(args); 491 } 492 493 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 494 const struct btf_type *t, 495 bool log_details, 496 const char *fmt, ...) 497 { 498 struct bpf_verifier_log *log = &env->log; 499 u8 kind = BTF_INFO_KIND(t->info); 500 struct btf *btf = env->btf; 501 va_list args; 502 503 if (!bpf_verifier_log_needed(log)) 504 return; 505 506 __btf_verifier_log(log, "[%u] %s %s%s", 507 env->log_type_id, 508 btf_kind_str[kind], 509 btf_name_by_offset(btf, t->name_off), 510 log_details ? " " : ""); 511 512 if (log_details) 513 btf_type_ops(t)->log_details(env, t); 514 515 if (fmt && *fmt) { 516 __btf_verifier_log(log, " "); 517 va_start(args, fmt); 518 bpf_verifier_vlog(log, fmt, args); 519 va_end(args); 520 } 521 522 __btf_verifier_log(log, "\n"); 523 } 524 525 #define btf_verifier_log_type(env, t, ...) \ 526 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 527 #define btf_verifier_log_basic(env, t, ...) \ 528 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 529 530 __printf(4, 5) 531 static void btf_verifier_log_member(struct btf_verifier_env *env, 532 const struct btf_type *struct_type, 533 const struct btf_member *member, 534 const char *fmt, ...) 535 { 536 struct bpf_verifier_log *log = &env->log; 537 struct btf *btf = env->btf; 538 va_list args; 539 540 if (!bpf_verifier_log_needed(log)) 541 return; 542 543 /* The CHECK_META phase already did a btf dump. 544 * 545 * If member is logged again, it must hit an error in 546 * parsing this member. It is useful to print out which 547 * struct this member belongs to. 548 */ 549 if (env->phase != CHECK_META) 550 btf_verifier_log_type(env, struct_type, NULL); 551 552 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 553 btf_name_by_offset(btf, member->name_off), 554 member->type, member->offset); 555 556 if (fmt && *fmt) { 557 __btf_verifier_log(log, " "); 558 va_start(args, fmt); 559 bpf_verifier_vlog(log, fmt, args); 560 va_end(args); 561 } 562 563 __btf_verifier_log(log, "\n"); 564 } 565 566 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 567 u32 btf_data_size) 568 { 569 struct bpf_verifier_log *log = &env->log; 570 const struct btf *btf = env->btf; 571 const struct btf_header *hdr; 572 573 if (!bpf_verifier_log_needed(log)) 574 return; 575 576 hdr = &btf->hdr; 577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 578 __btf_verifier_log(log, "version: %u\n", hdr->version); 579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 586 } 587 588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 589 { 590 struct btf *btf = env->btf; 591 592 /* < 2 because +1 for btf_void which is always in btf->types[0]. 593 * btf_void is not accounted in btf->nr_types because btf_void 594 * does not come from the BTF file. 595 */ 596 if (btf->types_size - btf->nr_types < 2) { 597 /* Expand 'types' array */ 598 599 struct btf_type **new_types; 600 u32 expand_by, new_size; 601 602 if (btf->types_size == BTF_MAX_TYPE) { 603 btf_verifier_log(env, "Exceeded max num of types"); 604 return -E2BIG; 605 } 606 607 expand_by = max_t(u32, btf->types_size >> 2, 16); 608 new_size = min_t(u32, BTF_MAX_TYPE, 609 btf->types_size + expand_by); 610 611 new_types = kvcalloc(new_size, sizeof(*new_types), 612 GFP_KERNEL | __GFP_NOWARN); 613 if (!new_types) 614 return -ENOMEM; 615 616 if (btf->nr_types == 0) 617 new_types[0] = &btf_void; 618 else 619 memcpy(new_types, btf->types, 620 sizeof(*btf->types) * (btf->nr_types + 1)); 621 622 kvfree(btf->types); 623 btf->types = new_types; 624 btf->types_size = new_size; 625 } 626 627 btf->types[++(btf->nr_types)] = t; 628 629 return 0; 630 } 631 632 static int btf_alloc_id(struct btf *btf) 633 { 634 int id; 635 636 idr_preload(GFP_KERNEL); 637 spin_lock_bh(&btf_idr_lock); 638 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 639 if (id > 0) 640 btf->id = id; 641 spin_unlock_bh(&btf_idr_lock); 642 idr_preload_end(); 643 644 if (WARN_ON_ONCE(!id)) 645 return -ENOSPC; 646 647 return id > 0 ? 0 : id; 648 } 649 650 static void btf_free_id(struct btf *btf) 651 { 652 unsigned long flags; 653 654 /* 655 * In map-in-map, calling map_delete_elem() on outer 656 * map will call bpf_map_put on the inner map. 657 * It will then eventually call btf_free_id() 658 * on the inner map. Some of the map_delete_elem() 659 * implementation may have irq disabled, so 660 * we need to use the _irqsave() version instead 661 * of the _bh() version. 662 */ 663 spin_lock_irqsave(&btf_idr_lock, flags); 664 idr_remove(&btf_idr, btf->id); 665 spin_unlock_irqrestore(&btf_idr_lock, flags); 666 } 667 668 static void btf_free(struct btf *btf) 669 { 670 kvfree(btf->types); 671 kvfree(btf->resolved_sizes); 672 kvfree(btf->resolved_ids); 673 kvfree(btf->data); 674 kfree(btf); 675 } 676 677 static void btf_free_rcu(struct rcu_head *rcu) 678 { 679 struct btf *btf = container_of(rcu, struct btf, rcu); 680 681 btf_free(btf); 682 } 683 684 void btf_put(struct btf *btf) 685 { 686 if (btf && refcount_dec_and_test(&btf->refcnt)) { 687 btf_free_id(btf); 688 call_rcu(&btf->rcu, btf_free_rcu); 689 } 690 } 691 692 static int env_resolve_init(struct btf_verifier_env *env) 693 { 694 struct btf *btf = env->btf; 695 u32 nr_types = btf->nr_types; 696 u32 *resolved_sizes = NULL; 697 u32 *resolved_ids = NULL; 698 u8 *visit_states = NULL; 699 700 /* +1 for btf_void */ 701 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 702 GFP_KERNEL | __GFP_NOWARN); 703 if (!resolved_sizes) 704 goto nomem; 705 706 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 707 GFP_KERNEL | __GFP_NOWARN); 708 if (!resolved_ids) 709 goto nomem; 710 711 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 712 GFP_KERNEL | __GFP_NOWARN); 713 if (!visit_states) 714 goto nomem; 715 716 btf->resolved_sizes = resolved_sizes; 717 btf->resolved_ids = resolved_ids; 718 env->visit_states = visit_states; 719 720 return 0; 721 722 nomem: 723 kvfree(resolved_sizes); 724 kvfree(resolved_ids); 725 kvfree(visit_states); 726 return -ENOMEM; 727 } 728 729 static void btf_verifier_env_free(struct btf_verifier_env *env) 730 { 731 kvfree(env->visit_states); 732 kfree(env); 733 } 734 735 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 736 const struct btf_type *next_type) 737 { 738 switch (env->resolve_mode) { 739 case RESOLVE_TBD: 740 /* int, enum or void is a sink */ 741 return !btf_type_needs_resolve(next_type); 742 case RESOLVE_PTR: 743 /* int, enum, void, struct or array is a sink for ptr */ 744 return !btf_type_is_modifier(next_type) && 745 !btf_type_is_ptr(next_type); 746 case RESOLVE_STRUCT_OR_ARRAY: 747 /* int, enum, void or ptr is a sink for struct and array */ 748 return !btf_type_is_modifier(next_type) && 749 !btf_type_is_array(next_type) && 750 !btf_type_is_struct(next_type); 751 default: 752 BUG(); 753 } 754 } 755 756 static bool env_type_is_resolved(const struct btf_verifier_env *env, 757 u32 type_id) 758 { 759 return env->visit_states[type_id] == RESOLVED; 760 } 761 762 static int env_stack_push(struct btf_verifier_env *env, 763 const struct btf_type *t, u32 type_id) 764 { 765 struct resolve_vertex *v; 766 767 if (env->top_stack == MAX_RESOLVE_DEPTH) 768 return -E2BIG; 769 770 if (env->visit_states[type_id] != NOT_VISITED) 771 return -EEXIST; 772 773 env->visit_states[type_id] = VISITED; 774 775 v = &env->stack[env->top_stack++]; 776 v->t = t; 777 v->type_id = type_id; 778 v->next_member = 0; 779 780 if (env->resolve_mode == RESOLVE_TBD) { 781 if (btf_type_is_ptr(t)) 782 env->resolve_mode = RESOLVE_PTR; 783 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 784 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 785 } 786 787 return 0; 788 } 789 790 static void env_stack_set_next_member(struct btf_verifier_env *env, 791 u16 next_member) 792 { 793 env->stack[env->top_stack - 1].next_member = next_member; 794 } 795 796 static void env_stack_pop_resolved(struct btf_verifier_env *env, 797 u32 resolved_type_id, 798 u32 resolved_size) 799 { 800 u32 type_id = env->stack[--(env->top_stack)].type_id; 801 struct btf *btf = env->btf; 802 803 btf->resolved_sizes[type_id] = resolved_size; 804 btf->resolved_ids[type_id] = resolved_type_id; 805 env->visit_states[type_id] = RESOLVED; 806 } 807 808 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 809 { 810 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 811 } 812 813 /* The input param "type_id" must point to a needs_resolve type */ 814 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 815 u32 *type_id) 816 { 817 *type_id = btf->resolved_ids[*type_id]; 818 return btf_type_by_id(btf, *type_id); 819 } 820 821 const struct btf_type *btf_type_id_size(const struct btf *btf, 822 u32 *type_id, u32 *ret_size) 823 { 824 const struct btf_type *size_type; 825 u32 size_type_id = *type_id; 826 u32 size = 0; 827 828 size_type = btf_type_by_id(btf, size_type_id); 829 if (btf_type_is_void_or_null(size_type)) 830 return NULL; 831 832 if (btf_type_has_size(size_type)) { 833 size = size_type->size; 834 } else if (btf_type_is_array(size_type)) { 835 size = btf->resolved_sizes[size_type_id]; 836 } else if (btf_type_is_ptr(size_type)) { 837 size = sizeof(void *); 838 } else { 839 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) 840 return NULL; 841 842 size = btf->resolved_sizes[size_type_id]; 843 size_type_id = btf->resolved_ids[size_type_id]; 844 size_type = btf_type_by_id(btf, size_type_id); 845 if (btf_type_is_void(size_type)) 846 return NULL; 847 } 848 849 *type_id = size_type_id; 850 if (ret_size) 851 *ret_size = size; 852 853 return size_type; 854 } 855 856 static int btf_df_check_member(struct btf_verifier_env *env, 857 const struct btf_type *struct_type, 858 const struct btf_member *member, 859 const struct btf_type *member_type) 860 { 861 btf_verifier_log_basic(env, struct_type, 862 "Unsupported check_member"); 863 return -EINVAL; 864 } 865 866 static int btf_df_resolve(struct btf_verifier_env *env, 867 const struct resolve_vertex *v) 868 { 869 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 870 return -EINVAL; 871 } 872 873 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 874 u32 type_id, void *data, u8 bits_offsets, 875 struct seq_file *m) 876 { 877 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 878 } 879 880 static int btf_int_check_member(struct btf_verifier_env *env, 881 const struct btf_type *struct_type, 882 const struct btf_member *member, 883 const struct btf_type *member_type) 884 { 885 u32 int_data = btf_type_int(member_type); 886 u32 struct_bits_off = member->offset; 887 u32 struct_size = struct_type->size; 888 u32 nr_copy_bits; 889 u32 bytes_offset; 890 891 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 892 btf_verifier_log_member(env, struct_type, member, 893 "bits_offset exceeds U32_MAX"); 894 return -EINVAL; 895 } 896 897 struct_bits_off += BTF_INT_OFFSET(int_data); 898 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 899 nr_copy_bits = BTF_INT_BITS(int_data) + 900 BITS_PER_BYTE_MASKED(struct_bits_off); 901 902 if (nr_copy_bits > BITS_PER_U64) { 903 btf_verifier_log_member(env, struct_type, member, 904 "nr_copy_bits exceeds 64"); 905 return -EINVAL; 906 } 907 908 if (struct_size < bytes_offset || 909 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 910 btf_verifier_log_member(env, struct_type, member, 911 "Member exceeds struct_size"); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 static s32 btf_int_check_meta(struct btf_verifier_env *env, 919 const struct btf_type *t, 920 u32 meta_left) 921 { 922 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 923 u16 encoding; 924 925 if (meta_left < meta_needed) { 926 btf_verifier_log_basic(env, t, 927 "meta_left:%u meta_needed:%u", 928 meta_left, meta_needed); 929 return -EINVAL; 930 } 931 932 if (btf_type_vlen(t)) { 933 btf_verifier_log_type(env, t, "vlen != 0"); 934 return -EINVAL; 935 } 936 937 int_data = btf_type_int(t); 938 if (int_data & ~BTF_INT_MASK) { 939 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 940 int_data); 941 return -EINVAL; 942 } 943 944 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 945 946 if (nr_bits > BITS_PER_U64) { 947 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 948 BITS_PER_U64); 949 return -EINVAL; 950 } 951 952 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 953 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 954 return -EINVAL; 955 } 956 957 /* 958 * Only one of the encoding bits is allowed and it 959 * should be sufficient for the pretty print purpose (i.e. decoding). 960 * Multiple bits can be allowed later if it is found 961 * to be insufficient. 962 */ 963 encoding = BTF_INT_ENCODING(int_data); 964 if (encoding && 965 encoding != BTF_INT_SIGNED && 966 encoding != BTF_INT_CHAR && 967 encoding != BTF_INT_BOOL) { 968 btf_verifier_log_type(env, t, "Unsupported encoding"); 969 return -ENOTSUPP; 970 } 971 972 btf_verifier_log_type(env, t, NULL); 973 974 return meta_needed; 975 } 976 977 static void btf_int_log(struct btf_verifier_env *env, 978 const struct btf_type *t) 979 { 980 int int_data = btf_type_int(t); 981 982 btf_verifier_log(env, 983 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 984 t->size, BTF_INT_OFFSET(int_data), 985 BTF_INT_BITS(int_data), 986 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 987 } 988 989 static void btf_int_bits_seq_show(const struct btf *btf, 990 const struct btf_type *t, 991 void *data, u8 bits_offset, 992 struct seq_file *m) 993 { 994 u16 left_shift_bits, right_shift_bits; 995 u32 int_data = btf_type_int(t); 996 u16 nr_bits = BTF_INT_BITS(int_data); 997 u16 total_bits_offset; 998 u16 nr_copy_bytes; 999 u16 nr_copy_bits; 1000 u64 print_num; 1001 1002 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1003 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1004 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1005 nr_copy_bits = nr_bits + bits_offset; 1006 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1007 1008 print_num = 0; 1009 memcpy(&print_num, data, nr_copy_bytes); 1010 1011 #ifdef __BIG_ENDIAN_BITFIELD 1012 left_shift_bits = bits_offset; 1013 #else 1014 left_shift_bits = BITS_PER_U64 - nr_copy_bits; 1015 #endif 1016 right_shift_bits = BITS_PER_U64 - nr_bits; 1017 1018 print_num <<= left_shift_bits; 1019 print_num >>= right_shift_bits; 1020 1021 seq_printf(m, "0x%llx", print_num); 1022 } 1023 1024 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1025 u32 type_id, void *data, u8 bits_offset, 1026 struct seq_file *m) 1027 { 1028 u32 int_data = btf_type_int(t); 1029 u8 encoding = BTF_INT_ENCODING(int_data); 1030 bool sign = encoding & BTF_INT_SIGNED; 1031 u32 nr_bits = BTF_INT_BITS(int_data); 1032 1033 if (bits_offset || BTF_INT_OFFSET(int_data) || 1034 BITS_PER_BYTE_MASKED(nr_bits)) { 1035 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1036 return; 1037 } 1038 1039 switch (nr_bits) { 1040 case 64: 1041 if (sign) 1042 seq_printf(m, "%lld", *(s64 *)data); 1043 else 1044 seq_printf(m, "%llu", *(u64 *)data); 1045 break; 1046 case 32: 1047 if (sign) 1048 seq_printf(m, "%d", *(s32 *)data); 1049 else 1050 seq_printf(m, "%u", *(u32 *)data); 1051 break; 1052 case 16: 1053 if (sign) 1054 seq_printf(m, "%d", *(s16 *)data); 1055 else 1056 seq_printf(m, "%u", *(u16 *)data); 1057 break; 1058 case 8: 1059 if (sign) 1060 seq_printf(m, "%d", *(s8 *)data); 1061 else 1062 seq_printf(m, "%u", *(u8 *)data); 1063 break; 1064 default: 1065 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1066 } 1067 } 1068 1069 static const struct btf_kind_operations int_ops = { 1070 .check_meta = btf_int_check_meta, 1071 .resolve = btf_df_resolve, 1072 .check_member = btf_int_check_member, 1073 .log_details = btf_int_log, 1074 .seq_show = btf_int_seq_show, 1075 }; 1076 1077 static int btf_modifier_check_member(struct btf_verifier_env *env, 1078 const struct btf_type *struct_type, 1079 const struct btf_member *member, 1080 const struct btf_type *member_type) 1081 { 1082 const struct btf_type *resolved_type; 1083 u32 resolved_type_id = member->type; 1084 struct btf_member resolved_member; 1085 struct btf *btf = env->btf; 1086 1087 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1088 if (!resolved_type) { 1089 btf_verifier_log_member(env, struct_type, member, 1090 "Invalid member"); 1091 return -EINVAL; 1092 } 1093 1094 resolved_member = *member; 1095 resolved_member.type = resolved_type_id; 1096 1097 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1098 &resolved_member, 1099 resolved_type); 1100 } 1101 1102 static int btf_ptr_check_member(struct btf_verifier_env *env, 1103 const struct btf_type *struct_type, 1104 const struct btf_member *member, 1105 const struct btf_type *member_type) 1106 { 1107 u32 struct_size, struct_bits_off, bytes_offset; 1108 1109 struct_size = struct_type->size; 1110 struct_bits_off = member->offset; 1111 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1112 1113 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1114 btf_verifier_log_member(env, struct_type, member, 1115 "Member is not byte aligned"); 1116 return -EINVAL; 1117 } 1118 1119 if (struct_size - bytes_offset < sizeof(void *)) { 1120 btf_verifier_log_member(env, struct_type, member, 1121 "Member exceeds struct_size"); 1122 return -EINVAL; 1123 } 1124 1125 return 0; 1126 } 1127 1128 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1129 const struct btf_type *t, 1130 u32 meta_left) 1131 { 1132 if (btf_type_vlen(t)) { 1133 btf_verifier_log_type(env, t, "vlen != 0"); 1134 return -EINVAL; 1135 } 1136 1137 if (!BTF_TYPE_ID_VALID(t->type)) { 1138 btf_verifier_log_type(env, t, "Invalid type_id"); 1139 return -EINVAL; 1140 } 1141 1142 btf_verifier_log_type(env, t, NULL); 1143 1144 return 0; 1145 } 1146 1147 static int btf_modifier_resolve(struct btf_verifier_env *env, 1148 const struct resolve_vertex *v) 1149 { 1150 const struct btf_type *t = v->t; 1151 const struct btf_type *next_type; 1152 u32 next_type_id = t->type; 1153 struct btf *btf = env->btf; 1154 u32 next_type_size = 0; 1155 1156 next_type = btf_type_by_id(btf, next_type_id); 1157 if (!next_type) { 1158 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1159 return -EINVAL; 1160 } 1161 1162 /* "typedef void new_void", "const void"...etc */ 1163 if (btf_type_is_void(next_type)) 1164 goto resolved; 1165 1166 if (!env_type_is_resolve_sink(env, next_type) && 1167 !env_type_is_resolved(env, next_type_id)) 1168 return env_stack_push(env, next_type, next_type_id); 1169 1170 /* Figure out the resolved next_type_id with size. 1171 * They will be stored in the current modifier's 1172 * resolved_ids and resolved_sizes such that it can 1173 * save us a few type-following when we use it later (e.g. in 1174 * pretty print). 1175 */ 1176 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && 1177 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { 1178 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1179 return -EINVAL; 1180 } 1181 1182 resolved: 1183 env_stack_pop_resolved(env, next_type_id, next_type_size); 1184 1185 return 0; 1186 } 1187 1188 static int btf_ptr_resolve(struct btf_verifier_env *env, 1189 const struct resolve_vertex *v) 1190 { 1191 const struct btf_type *next_type; 1192 const struct btf_type *t = v->t; 1193 u32 next_type_id = t->type; 1194 struct btf *btf = env->btf; 1195 u32 next_type_size = 0; 1196 1197 next_type = btf_type_by_id(btf, next_type_id); 1198 if (!next_type) { 1199 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1200 return -EINVAL; 1201 } 1202 1203 /* "void *" */ 1204 if (btf_type_is_void(next_type)) 1205 goto resolved; 1206 1207 if (!env_type_is_resolve_sink(env, next_type) && 1208 !env_type_is_resolved(env, next_type_id)) 1209 return env_stack_push(env, next_type, next_type_id); 1210 1211 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1212 * the modifier may have stopped resolving when it was resolved 1213 * to a ptr (last-resolved-ptr). 1214 * 1215 * We now need to continue from the last-resolved-ptr to 1216 * ensure the last-resolved-ptr will not referring back to 1217 * the currenct ptr (t). 1218 */ 1219 if (btf_type_is_modifier(next_type)) { 1220 const struct btf_type *resolved_type; 1221 u32 resolved_type_id; 1222 1223 resolved_type_id = next_type_id; 1224 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1225 1226 if (btf_type_is_ptr(resolved_type) && 1227 !env_type_is_resolve_sink(env, resolved_type) && 1228 !env_type_is_resolved(env, resolved_type_id)) 1229 return env_stack_push(env, resolved_type, 1230 resolved_type_id); 1231 } 1232 1233 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && 1234 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { 1235 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1236 return -EINVAL; 1237 } 1238 1239 resolved: 1240 env_stack_pop_resolved(env, next_type_id, 0); 1241 1242 return 0; 1243 } 1244 1245 static void btf_modifier_seq_show(const struct btf *btf, 1246 const struct btf_type *t, 1247 u32 type_id, void *data, 1248 u8 bits_offset, struct seq_file *m) 1249 { 1250 t = btf_type_id_resolve(btf, &type_id); 1251 1252 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1253 } 1254 1255 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1256 u32 type_id, void *data, u8 bits_offset, 1257 struct seq_file *m) 1258 { 1259 /* It is a hashed value */ 1260 seq_printf(m, "%p", *(void **)data); 1261 } 1262 1263 static void btf_ref_type_log(struct btf_verifier_env *env, 1264 const struct btf_type *t) 1265 { 1266 btf_verifier_log(env, "type_id=%u", t->type); 1267 } 1268 1269 static struct btf_kind_operations modifier_ops = { 1270 .check_meta = btf_ref_type_check_meta, 1271 .resolve = btf_modifier_resolve, 1272 .check_member = btf_modifier_check_member, 1273 .log_details = btf_ref_type_log, 1274 .seq_show = btf_modifier_seq_show, 1275 }; 1276 1277 static struct btf_kind_operations ptr_ops = { 1278 .check_meta = btf_ref_type_check_meta, 1279 .resolve = btf_ptr_resolve, 1280 .check_member = btf_ptr_check_member, 1281 .log_details = btf_ref_type_log, 1282 .seq_show = btf_ptr_seq_show, 1283 }; 1284 1285 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1286 const struct btf_type *t, 1287 u32 meta_left) 1288 { 1289 if (btf_type_vlen(t)) { 1290 btf_verifier_log_type(env, t, "vlen != 0"); 1291 return -EINVAL; 1292 } 1293 1294 if (t->type) { 1295 btf_verifier_log_type(env, t, "type != 0"); 1296 return -EINVAL; 1297 } 1298 1299 btf_verifier_log_type(env, t, NULL); 1300 1301 return 0; 1302 } 1303 1304 static struct btf_kind_operations fwd_ops = { 1305 .check_meta = btf_fwd_check_meta, 1306 .resolve = btf_df_resolve, 1307 .check_member = btf_df_check_member, 1308 .log_details = btf_ref_type_log, 1309 .seq_show = btf_df_seq_show, 1310 }; 1311 1312 static int btf_array_check_member(struct btf_verifier_env *env, 1313 const struct btf_type *struct_type, 1314 const struct btf_member *member, 1315 const struct btf_type *member_type) 1316 { 1317 u32 struct_bits_off = member->offset; 1318 u32 struct_size, bytes_offset; 1319 u32 array_type_id, array_size; 1320 struct btf *btf = env->btf; 1321 1322 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1323 btf_verifier_log_member(env, struct_type, member, 1324 "Member is not byte aligned"); 1325 return -EINVAL; 1326 } 1327 1328 array_type_id = member->type; 1329 btf_type_id_size(btf, &array_type_id, &array_size); 1330 struct_size = struct_type->size; 1331 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1332 if (struct_size - bytes_offset < array_size) { 1333 btf_verifier_log_member(env, struct_type, member, 1334 "Member exceeds struct_size"); 1335 return -EINVAL; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1342 const struct btf_type *t, 1343 u32 meta_left) 1344 { 1345 const struct btf_array *array = btf_type_array(t); 1346 u32 meta_needed = sizeof(*array); 1347 1348 if (meta_left < meta_needed) { 1349 btf_verifier_log_basic(env, t, 1350 "meta_left:%u meta_needed:%u", 1351 meta_left, meta_needed); 1352 return -EINVAL; 1353 } 1354 1355 if (btf_type_vlen(t)) { 1356 btf_verifier_log_type(env, t, "vlen != 0"); 1357 return -EINVAL; 1358 } 1359 1360 if (t->size) { 1361 btf_verifier_log_type(env, t, "size != 0"); 1362 return -EINVAL; 1363 } 1364 1365 /* Array elem type and index type cannot be in type void, 1366 * so !array->type and !array->index_type are not allowed. 1367 */ 1368 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1369 btf_verifier_log_type(env, t, "Invalid elem"); 1370 return -EINVAL; 1371 } 1372 1373 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1374 btf_verifier_log_type(env, t, "Invalid index"); 1375 return -EINVAL; 1376 } 1377 1378 btf_verifier_log_type(env, t, NULL); 1379 1380 return meta_needed; 1381 } 1382 1383 static int btf_array_resolve(struct btf_verifier_env *env, 1384 const struct resolve_vertex *v) 1385 { 1386 const struct btf_array *array = btf_type_array(v->t); 1387 const struct btf_type *elem_type, *index_type; 1388 u32 elem_type_id, index_type_id; 1389 struct btf *btf = env->btf; 1390 u32 elem_size; 1391 1392 /* Check array->index_type */ 1393 index_type_id = array->index_type; 1394 index_type = btf_type_by_id(btf, index_type_id); 1395 if (btf_type_is_void_or_null(index_type)) { 1396 btf_verifier_log_type(env, v->t, "Invalid index"); 1397 return -EINVAL; 1398 } 1399 1400 if (!env_type_is_resolve_sink(env, index_type) && 1401 !env_type_is_resolved(env, index_type_id)) 1402 return env_stack_push(env, index_type, index_type_id); 1403 1404 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1405 if (!index_type || !btf_type_is_int(index_type) || 1406 !btf_type_int_is_regular(index_type)) { 1407 btf_verifier_log_type(env, v->t, "Invalid index"); 1408 return -EINVAL; 1409 } 1410 1411 /* Check array->type */ 1412 elem_type_id = array->type; 1413 elem_type = btf_type_by_id(btf, elem_type_id); 1414 if (btf_type_is_void_or_null(elem_type)) { 1415 btf_verifier_log_type(env, v->t, 1416 "Invalid elem"); 1417 return -EINVAL; 1418 } 1419 1420 if (!env_type_is_resolve_sink(env, elem_type) && 1421 !env_type_is_resolved(env, elem_type_id)) 1422 return env_stack_push(env, elem_type, elem_type_id); 1423 1424 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1425 if (!elem_type) { 1426 btf_verifier_log_type(env, v->t, "Invalid elem"); 1427 return -EINVAL; 1428 } 1429 1430 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1431 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1432 return -EINVAL; 1433 } 1434 1435 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1436 btf_verifier_log_type(env, v->t, 1437 "Array size overflows U32_MAX"); 1438 return -EINVAL; 1439 } 1440 1441 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1442 1443 return 0; 1444 } 1445 1446 static void btf_array_log(struct btf_verifier_env *env, 1447 const struct btf_type *t) 1448 { 1449 const struct btf_array *array = btf_type_array(t); 1450 1451 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1452 array->type, array->index_type, array->nelems); 1453 } 1454 1455 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1456 u32 type_id, void *data, u8 bits_offset, 1457 struct seq_file *m) 1458 { 1459 const struct btf_array *array = btf_type_array(t); 1460 const struct btf_kind_operations *elem_ops; 1461 const struct btf_type *elem_type; 1462 u32 i, elem_size, elem_type_id; 1463 1464 elem_type_id = array->type; 1465 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1466 elem_ops = btf_type_ops(elem_type); 1467 seq_puts(m, "["); 1468 for (i = 0; i < array->nelems; i++) { 1469 if (i) 1470 seq_puts(m, ","); 1471 1472 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 1473 bits_offset, m); 1474 data += elem_size; 1475 } 1476 seq_puts(m, "]"); 1477 } 1478 1479 static struct btf_kind_operations array_ops = { 1480 .check_meta = btf_array_check_meta, 1481 .resolve = btf_array_resolve, 1482 .check_member = btf_array_check_member, 1483 .log_details = btf_array_log, 1484 .seq_show = btf_array_seq_show, 1485 }; 1486 1487 static int btf_struct_check_member(struct btf_verifier_env *env, 1488 const struct btf_type *struct_type, 1489 const struct btf_member *member, 1490 const struct btf_type *member_type) 1491 { 1492 u32 struct_bits_off = member->offset; 1493 u32 struct_size, bytes_offset; 1494 1495 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1496 btf_verifier_log_member(env, struct_type, member, 1497 "Member is not byte aligned"); 1498 return -EINVAL; 1499 } 1500 1501 struct_size = struct_type->size; 1502 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1503 if (struct_size - bytes_offset < member_type->size) { 1504 btf_verifier_log_member(env, struct_type, member, 1505 "Member exceeds struct_size"); 1506 return -EINVAL; 1507 } 1508 1509 return 0; 1510 } 1511 1512 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 1513 const struct btf_type *t, 1514 u32 meta_left) 1515 { 1516 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 1517 const struct btf_member *member; 1518 struct btf *btf = env->btf; 1519 u32 struct_size = t->size; 1520 u32 meta_needed; 1521 u16 i; 1522 1523 meta_needed = btf_type_vlen(t) * sizeof(*member); 1524 if (meta_left < meta_needed) { 1525 btf_verifier_log_basic(env, t, 1526 "meta_left:%u meta_needed:%u", 1527 meta_left, meta_needed); 1528 return -EINVAL; 1529 } 1530 1531 btf_verifier_log_type(env, t, NULL); 1532 1533 for_each_member(i, t, member) { 1534 if (!btf_name_offset_valid(btf, member->name_off)) { 1535 btf_verifier_log_member(env, t, member, 1536 "Invalid member name_offset:%u", 1537 member->name_off); 1538 return -EINVAL; 1539 } 1540 1541 /* A member cannot be in type void */ 1542 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 1543 btf_verifier_log_member(env, t, member, 1544 "Invalid type_id"); 1545 return -EINVAL; 1546 } 1547 1548 if (is_union && member->offset) { 1549 btf_verifier_log_member(env, t, member, 1550 "Invalid member bits_offset"); 1551 return -EINVAL; 1552 } 1553 1554 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { 1555 btf_verifier_log_member(env, t, member, 1556 "Memmber bits_offset exceeds its struct size"); 1557 return -EINVAL; 1558 } 1559 1560 btf_verifier_log_member(env, t, member, NULL); 1561 } 1562 1563 return meta_needed; 1564 } 1565 1566 static int btf_struct_resolve(struct btf_verifier_env *env, 1567 const struct resolve_vertex *v) 1568 { 1569 const struct btf_member *member; 1570 int err; 1571 u16 i; 1572 1573 /* Before continue resolving the next_member, 1574 * ensure the last member is indeed resolved to a 1575 * type with size info. 1576 */ 1577 if (v->next_member) { 1578 const struct btf_type *last_member_type; 1579 const struct btf_member *last_member; 1580 u16 last_member_type_id; 1581 1582 last_member = btf_type_member(v->t) + v->next_member - 1; 1583 last_member_type_id = last_member->type; 1584 if (WARN_ON_ONCE(!env_type_is_resolved(env, 1585 last_member_type_id))) 1586 return -EINVAL; 1587 1588 last_member_type = btf_type_by_id(env->btf, 1589 last_member_type_id); 1590 err = btf_type_ops(last_member_type)->check_member(env, v->t, 1591 last_member, 1592 last_member_type); 1593 if (err) 1594 return err; 1595 } 1596 1597 for_each_member_from(i, v->next_member, v->t, member) { 1598 u32 member_type_id = member->type; 1599 const struct btf_type *member_type = btf_type_by_id(env->btf, 1600 member_type_id); 1601 1602 if (btf_type_is_void_or_null(member_type)) { 1603 btf_verifier_log_member(env, v->t, member, 1604 "Invalid member"); 1605 return -EINVAL; 1606 } 1607 1608 if (!env_type_is_resolve_sink(env, member_type) && 1609 !env_type_is_resolved(env, member_type_id)) { 1610 env_stack_set_next_member(env, i + 1); 1611 return env_stack_push(env, member_type, member_type_id); 1612 } 1613 1614 err = btf_type_ops(member_type)->check_member(env, v->t, 1615 member, 1616 member_type); 1617 if (err) 1618 return err; 1619 } 1620 1621 env_stack_pop_resolved(env, 0, 0); 1622 1623 return 0; 1624 } 1625 1626 static void btf_struct_log(struct btf_verifier_env *env, 1627 const struct btf_type *t) 1628 { 1629 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1630 } 1631 1632 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 1633 u32 type_id, void *data, u8 bits_offset, 1634 struct seq_file *m) 1635 { 1636 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 1637 const struct btf_member *member; 1638 u32 i; 1639 1640 seq_puts(m, "{"); 1641 for_each_member(i, t, member) { 1642 const struct btf_type *member_type = btf_type_by_id(btf, 1643 member->type); 1644 u32 member_offset = member->offset; 1645 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 1646 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 1647 const struct btf_kind_operations *ops; 1648 1649 if (i) 1650 seq_puts(m, seq); 1651 1652 ops = btf_type_ops(member_type); 1653 ops->seq_show(btf, member_type, member->type, 1654 data + bytes_offset, bits8_offset, m); 1655 } 1656 seq_puts(m, "}"); 1657 } 1658 1659 static struct btf_kind_operations struct_ops = { 1660 .check_meta = btf_struct_check_meta, 1661 .resolve = btf_struct_resolve, 1662 .check_member = btf_struct_check_member, 1663 .log_details = btf_struct_log, 1664 .seq_show = btf_struct_seq_show, 1665 }; 1666 1667 static int btf_enum_check_member(struct btf_verifier_env *env, 1668 const struct btf_type *struct_type, 1669 const struct btf_member *member, 1670 const struct btf_type *member_type) 1671 { 1672 u32 struct_bits_off = member->offset; 1673 u32 struct_size, bytes_offset; 1674 1675 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1676 btf_verifier_log_member(env, struct_type, member, 1677 "Member is not byte aligned"); 1678 return -EINVAL; 1679 } 1680 1681 struct_size = struct_type->size; 1682 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1683 if (struct_size - bytes_offset < sizeof(int)) { 1684 btf_verifier_log_member(env, struct_type, member, 1685 "Member exceeds struct_size"); 1686 return -EINVAL; 1687 } 1688 1689 return 0; 1690 } 1691 1692 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 1693 const struct btf_type *t, 1694 u32 meta_left) 1695 { 1696 const struct btf_enum *enums = btf_type_enum(t); 1697 struct btf *btf = env->btf; 1698 u16 i, nr_enums; 1699 u32 meta_needed; 1700 1701 nr_enums = btf_type_vlen(t); 1702 meta_needed = nr_enums * sizeof(*enums); 1703 1704 if (meta_left < meta_needed) { 1705 btf_verifier_log_basic(env, t, 1706 "meta_left:%u meta_needed:%u", 1707 meta_left, meta_needed); 1708 return -EINVAL; 1709 } 1710 1711 if (t->size != sizeof(int)) { 1712 btf_verifier_log_type(env, t, "Expected size:%zu", 1713 sizeof(int)); 1714 return -EINVAL; 1715 } 1716 1717 btf_verifier_log_type(env, t, NULL); 1718 1719 for (i = 0; i < nr_enums; i++) { 1720 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 1721 btf_verifier_log(env, "\tInvalid name_offset:%u", 1722 enums[i].name_off); 1723 return -EINVAL; 1724 } 1725 1726 btf_verifier_log(env, "\t%s val=%d\n", 1727 btf_name_by_offset(btf, enums[i].name_off), 1728 enums[i].val); 1729 } 1730 1731 return meta_needed; 1732 } 1733 1734 static void btf_enum_log(struct btf_verifier_env *env, 1735 const struct btf_type *t) 1736 { 1737 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1738 } 1739 1740 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 1741 u32 type_id, void *data, u8 bits_offset, 1742 struct seq_file *m) 1743 { 1744 const struct btf_enum *enums = btf_type_enum(t); 1745 u32 i, nr_enums = btf_type_vlen(t); 1746 int v = *(int *)data; 1747 1748 for (i = 0; i < nr_enums; i++) { 1749 if (v == enums[i].val) { 1750 seq_printf(m, "%s", 1751 btf_name_by_offset(btf, enums[i].name_off)); 1752 return; 1753 } 1754 } 1755 1756 seq_printf(m, "%d", v); 1757 } 1758 1759 static struct btf_kind_operations enum_ops = { 1760 .check_meta = btf_enum_check_meta, 1761 .resolve = btf_df_resolve, 1762 .check_member = btf_enum_check_member, 1763 .log_details = btf_enum_log, 1764 .seq_show = btf_enum_seq_show, 1765 }; 1766 1767 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 1768 [BTF_KIND_INT] = &int_ops, 1769 [BTF_KIND_PTR] = &ptr_ops, 1770 [BTF_KIND_ARRAY] = &array_ops, 1771 [BTF_KIND_STRUCT] = &struct_ops, 1772 [BTF_KIND_UNION] = &struct_ops, 1773 [BTF_KIND_ENUM] = &enum_ops, 1774 [BTF_KIND_FWD] = &fwd_ops, 1775 [BTF_KIND_TYPEDEF] = &modifier_ops, 1776 [BTF_KIND_VOLATILE] = &modifier_ops, 1777 [BTF_KIND_CONST] = &modifier_ops, 1778 [BTF_KIND_RESTRICT] = &modifier_ops, 1779 }; 1780 1781 static s32 btf_check_meta(struct btf_verifier_env *env, 1782 const struct btf_type *t, 1783 u32 meta_left) 1784 { 1785 u32 saved_meta_left = meta_left; 1786 s32 var_meta_size; 1787 1788 if (meta_left < sizeof(*t)) { 1789 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 1790 env->log_type_id, meta_left, sizeof(*t)); 1791 return -EINVAL; 1792 } 1793 meta_left -= sizeof(*t); 1794 1795 if (t->info & ~BTF_INFO_MASK) { 1796 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 1797 env->log_type_id, t->info); 1798 return -EINVAL; 1799 } 1800 1801 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 1802 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 1803 btf_verifier_log(env, "[%u] Invalid kind:%u", 1804 env->log_type_id, BTF_INFO_KIND(t->info)); 1805 return -EINVAL; 1806 } 1807 1808 if (!btf_name_offset_valid(env->btf, t->name_off)) { 1809 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 1810 env->log_type_id, t->name_off); 1811 return -EINVAL; 1812 } 1813 1814 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 1815 if (var_meta_size < 0) 1816 return var_meta_size; 1817 1818 meta_left -= var_meta_size; 1819 1820 return saved_meta_left - meta_left; 1821 } 1822 1823 static int btf_check_all_metas(struct btf_verifier_env *env) 1824 { 1825 struct btf *btf = env->btf; 1826 struct btf_header *hdr; 1827 void *cur, *end; 1828 1829 hdr = &btf->hdr; 1830 cur = btf->nohdr_data + hdr->type_off; 1831 end = btf->nohdr_data + hdr->type_len; 1832 1833 env->log_type_id = 1; 1834 while (cur < end) { 1835 struct btf_type *t = cur; 1836 s32 meta_size; 1837 1838 meta_size = btf_check_meta(env, t, end - cur); 1839 if (meta_size < 0) 1840 return meta_size; 1841 1842 btf_add_type(env, t); 1843 cur += meta_size; 1844 env->log_type_id++; 1845 } 1846 1847 return 0; 1848 } 1849 1850 static int btf_resolve(struct btf_verifier_env *env, 1851 const struct btf_type *t, u32 type_id) 1852 { 1853 const struct resolve_vertex *v; 1854 int err = 0; 1855 1856 env->resolve_mode = RESOLVE_TBD; 1857 env_stack_push(env, t, type_id); 1858 while (!err && (v = env_stack_peak(env))) { 1859 env->log_type_id = v->type_id; 1860 err = btf_type_ops(v->t)->resolve(env, v); 1861 } 1862 1863 env->log_type_id = type_id; 1864 if (err == -E2BIG) 1865 btf_verifier_log_type(env, t, 1866 "Exceeded max resolving depth:%u", 1867 MAX_RESOLVE_DEPTH); 1868 else if (err == -EEXIST) 1869 btf_verifier_log_type(env, t, "Loop detected"); 1870 1871 return err; 1872 } 1873 1874 static bool btf_resolve_valid(struct btf_verifier_env *env, 1875 const struct btf_type *t, 1876 u32 type_id) 1877 { 1878 struct btf *btf = env->btf; 1879 1880 if (!env_type_is_resolved(env, type_id)) 1881 return false; 1882 1883 if (btf_type_is_struct(t)) 1884 return !btf->resolved_ids[type_id] && 1885 !btf->resolved_sizes[type_id]; 1886 1887 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { 1888 t = btf_type_id_resolve(btf, &type_id); 1889 return t && !btf_type_is_modifier(t); 1890 } 1891 1892 if (btf_type_is_array(t)) { 1893 const struct btf_array *array = btf_type_array(t); 1894 const struct btf_type *elem_type; 1895 u32 elem_type_id = array->type; 1896 u32 elem_size; 1897 1898 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1899 return elem_type && !btf_type_is_modifier(elem_type) && 1900 (array->nelems * elem_size == 1901 btf->resolved_sizes[type_id]); 1902 } 1903 1904 return false; 1905 } 1906 1907 static int btf_check_all_types(struct btf_verifier_env *env) 1908 { 1909 struct btf *btf = env->btf; 1910 u32 type_id; 1911 int err; 1912 1913 err = env_resolve_init(env); 1914 if (err) 1915 return err; 1916 1917 env->phase++; 1918 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 1919 const struct btf_type *t = btf_type_by_id(btf, type_id); 1920 1921 env->log_type_id = type_id; 1922 if (btf_type_needs_resolve(t) && 1923 !env_type_is_resolved(env, type_id)) { 1924 err = btf_resolve(env, t, type_id); 1925 if (err) 1926 return err; 1927 } 1928 1929 if (btf_type_needs_resolve(t) && 1930 !btf_resolve_valid(env, t, type_id)) { 1931 btf_verifier_log_type(env, t, "Invalid resolve state"); 1932 return -EINVAL; 1933 } 1934 } 1935 1936 return 0; 1937 } 1938 1939 static int btf_parse_type_sec(struct btf_verifier_env *env) 1940 { 1941 const struct btf_header *hdr = &env->btf->hdr; 1942 int err; 1943 1944 /* Type section must align to 4 bytes */ 1945 if (hdr->type_off & (sizeof(u32) - 1)) { 1946 btf_verifier_log(env, "Unaligned type_off"); 1947 return -EINVAL; 1948 } 1949 1950 if (!hdr->type_len) { 1951 btf_verifier_log(env, "No type found"); 1952 return -EINVAL; 1953 } 1954 1955 err = btf_check_all_metas(env); 1956 if (err) 1957 return err; 1958 1959 return btf_check_all_types(env); 1960 } 1961 1962 static int btf_parse_str_sec(struct btf_verifier_env *env) 1963 { 1964 const struct btf_header *hdr; 1965 struct btf *btf = env->btf; 1966 const char *start, *end; 1967 1968 hdr = &btf->hdr; 1969 start = btf->nohdr_data + hdr->str_off; 1970 end = start + hdr->str_len; 1971 1972 if (end != btf->data + btf->data_size) { 1973 btf_verifier_log(env, "String section is not at the end"); 1974 return -EINVAL; 1975 } 1976 1977 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 1978 start[0] || end[-1]) { 1979 btf_verifier_log(env, "Invalid string section"); 1980 return -EINVAL; 1981 } 1982 1983 btf->strings = start; 1984 1985 return 0; 1986 } 1987 1988 static const size_t btf_sec_info_offset[] = { 1989 offsetof(struct btf_header, type_off), 1990 offsetof(struct btf_header, str_off), 1991 }; 1992 1993 static int btf_sec_info_cmp(const void *a, const void *b) 1994 { 1995 const struct btf_sec_info *x = a; 1996 const struct btf_sec_info *y = b; 1997 1998 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 1999 } 2000 2001 static int btf_check_sec_info(struct btf_verifier_env *env, 2002 u32 btf_data_size) 2003 { 2004 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 2005 u32 total, expected_total, i; 2006 const struct btf_header *hdr; 2007 const struct btf *btf; 2008 2009 btf = env->btf; 2010 hdr = &btf->hdr; 2011 2012 /* Populate the secs from hdr */ 2013 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 2014 secs[i] = *(struct btf_sec_info *)((void *)hdr + 2015 btf_sec_info_offset[i]); 2016 2017 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 2018 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 2019 2020 /* Check for gaps and overlap among sections */ 2021 total = 0; 2022 expected_total = btf_data_size - hdr->hdr_len; 2023 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 2024 if (expected_total < secs[i].off) { 2025 btf_verifier_log(env, "Invalid section offset"); 2026 return -EINVAL; 2027 } 2028 if (total < secs[i].off) { 2029 /* gap */ 2030 btf_verifier_log(env, "Unsupported section found"); 2031 return -EINVAL; 2032 } 2033 if (total > secs[i].off) { 2034 btf_verifier_log(env, "Section overlap found"); 2035 return -EINVAL; 2036 } 2037 if (expected_total - total < secs[i].len) { 2038 btf_verifier_log(env, 2039 "Total section length too long"); 2040 return -EINVAL; 2041 } 2042 total += secs[i].len; 2043 } 2044 2045 /* There is data other than hdr and known sections */ 2046 if (expected_total != total) { 2047 btf_verifier_log(env, "Unsupported section found"); 2048 return -EINVAL; 2049 } 2050 2051 return 0; 2052 } 2053 2054 static int btf_parse_hdr(struct btf_verifier_env *env, void __user *btf_data, 2055 u32 btf_data_size) 2056 { 2057 const struct btf_header *hdr; 2058 u32 hdr_len, hdr_copy; 2059 /* 2060 * Minimal part of the "struct btf_header" that 2061 * contains the hdr_len. 2062 */ 2063 struct btf_min_header { 2064 u16 magic; 2065 u8 version; 2066 u8 flags; 2067 u32 hdr_len; 2068 } __user *min_hdr; 2069 struct btf *btf; 2070 int err; 2071 2072 btf = env->btf; 2073 min_hdr = btf_data; 2074 2075 if (btf_data_size < sizeof(*min_hdr)) { 2076 btf_verifier_log(env, "hdr_len not found"); 2077 return -EINVAL; 2078 } 2079 2080 if (get_user(hdr_len, &min_hdr->hdr_len)) 2081 return -EFAULT; 2082 2083 if (btf_data_size < hdr_len) { 2084 btf_verifier_log(env, "btf_header not found"); 2085 return -EINVAL; 2086 } 2087 2088 err = bpf_check_uarg_tail_zero(btf_data, sizeof(btf->hdr), hdr_len); 2089 if (err) { 2090 if (err == -E2BIG) 2091 btf_verifier_log(env, "Unsupported btf_header"); 2092 return err; 2093 } 2094 2095 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 2096 if (copy_from_user(&btf->hdr, btf_data, hdr_copy)) 2097 return -EFAULT; 2098 2099 hdr = &btf->hdr; 2100 2101 btf_verifier_log_hdr(env, btf_data_size); 2102 2103 if (hdr->magic != BTF_MAGIC) { 2104 btf_verifier_log(env, "Invalid magic"); 2105 return -EINVAL; 2106 } 2107 2108 if (hdr->version != BTF_VERSION) { 2109 btf_verifier_log(env, "Unsupported version"); 2110 return -ENOTSUPP; 2111 } 2112 2113 if (hdr->flags) { 2114 btf_verifier_log(env, "Unsupported flags"); 2115 return -ENOTSUPP; 2116 } 2117 2118 if (btf_data_size == hdr->hdr_len) { 2119 btf_verifier_log(env, "No data"); 2120 return -EINVAL; 2121 } 2122 2123 err = btf_check_sec_info(env, btf_data_size); 2124 if (err) 2125 return err; 2126 2127 return 0; 2128 } 2129 2130 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 2131 u32 log_level, char __user *log_ubuf, u32 log_size) 2132 { 2133 struct btf_verifier_env *env = NULL; 2134 struct bpf_verifier_log *log; 2135 struct btf *btf = NULL; 2136 u8 *data; 2137 int err; 2138 2139 if (btf_data_size > BTF_MAX_SIZE) 2140 return ERR_PTR(-E2BIG); 2141 2142 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 2143 if (!env) 2144 return ERR_PTR(-ENOMEM); 2145 2146 log = &env->log; 2147 if (log_level || log_ubuf || log_size) { 2148 /* user requested verbose verifier output 2149 * and supplied buffer to store the verification trace 2150 */ 2151 log->level = log_level; 2152 log->ubuf = log_ubuf; 2153 log->len_total = log_size; 2154 2155 /* log attributes have to be sane */ 2156 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 2157 !log->level || !log->ubuf) { 2158 err = -EINVAL; 2159 goto errout; 2160 } 2161 } 2162 2163 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 2164 if (!btf) { 2165 err = -ENOMEM; 2166 goto errout; 2167 } 2168 env->btf = btf; 2169 2170 err = btf_parse_hdr(env, btf_data, btf_data_size); 2171 if (err) 2172 goto errout; 2173 2174 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 2175 if (!data) { 2176 err = -ENOMEM; 2177 goto errout; 2178 } 2179 2180 btf->data = data; 2181 btf->data_size = btf_data_size; 2182 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 2183 2184 if (copy_from_user(data, btf_data, btf_data_size)) { 2185 err = -EFAULT; 2186 goto errout; 2187 } 2188 2189 err = btf_parse_str_sec(env); 2190 if (err) 2191 goto errout; 2192 2193 err = btf_parse_type_sec(env); 2194 if (err) 2195 goto errout; 2196 2197 if (log->level && bpf_verifier_log_full(log)) { 2198 err = -ENOSPC; 2199 goto errout; 2200 } 2201 2202 btf_verifier_env_free(env); 2203 refcount_set(&btf->refcnt, 1); 2204 return btf; 2205 2206 errout: 2207 btf_verifier_env_free(env); 2208 if (btf) 2209 btf_free(btf); 2210 return ERR_PTR(err); 2211 } 2212 2213 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 2214 struct seq_file *m) 2215 { 2216 const struct btf_type *t = btf_type_by_id(btf, type_id); 2217 2218 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 2219 } 2220 2221 static int btf_release(struct inode *inode, struct file *filp) 2222 { 2223 btf_put(filp->private_data); 2224 return 0; 2225 } 2226 2227 const struct file_operations btf_fops = { 2228 .release = btf_release, 2229 }; 2230 2231 static int __btf_new_fd(struct btf *btf) 2232 { 2233 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 2234 } 2235 2236 int btf_new_fd(const union bpf_attr *attr) 2237 { 2238 struct btf *btf; 2239 int ret; 2240 2241 btf = btf_parse(u64_to_user_ptr(attr->btf), 2242 attr->btf_size, attr->btf_log_level, 2243 u64_to_user_ptr(attr->btf_log_buf), 2244 attr->btf_log_size); 2245 if (IS_ERR(btf)) 2246 return PTR_ERR(btf); 2247 2248 ret = btf_alloc_id(btf); 2249 if (ret) { 2250 btf_free(btf); 2251 return ret; 2252 } 2253 2254 /* 2255 * The BTF ID is published to the userspace. 2256 * All BTF free must go through call_rcu() from 2257 * now on (i.e. free by calling btf_put()). 2258 */ 2259 2260 ret = __btf_new_fd(btf); 2261 if (ret < 0) 2262 btf_put(btf); 2263 2264 return ret; 2265 } 2266 2267 struct btf *btf_get_by_fd(int fd) 2268 { 2269 struct btf *btf; 2270 struct fd f; 2271 2272 f = fdget(fd); 2273 2274 if (!f.file) 2275 return ERR_PTR(-EBADF); 2276 2277 if (f.file->f_op != &btf_fops) { 2278 fdput(f); 2279 return ERR_PTR(-EINVAL); 2280 } 2281 2282 btf = f.file->private_data; 2283 refcount_inc(&btf->refcnt); 2284 fdput(f); 2285 2286 return btf; 2287 } 2288 2289 int btf_get_info_by_fd(const struct btf *btf, 2290 const union bpf_attr *attr, 2291 union bpf_attr __user *uattr) 2292 { 2293 struct bpf_btf_info __user *uinfo; 2294 struct bpf_btf_info info = {}; 2295 u32 info_copy, btf_copy; 2296 void __user *ubtf; 2297 u32 uinfo_len; 2298 2299 uinfo = u64_to_user_ptr(attr->info.info); 2300 uinfo_len = attr->info.info_len; 2301 2302 info_copy = min_t(u32, uinfo_len, sizeof(info)); 2303 if (copy_from_user(&info, uinfo, info_copy)) 2304 return -EFAULT; 2305 2306 info.id = btf->id; 2307 ubtf = u64_to_user_ptr(info.btf); 2308 btf_copy = min_t(u32, btf->data_size, info.btf_size); 2309 if (copy_to_user(ubtf, btf->data, btf_copy)) 2310 return -EFAULT; 2311 info.btf_size = btf->data_size; 2312 2313 if (copy_to_user(uinfo, &info, info_copy) || 2314 put_user(info_copy, &uattr->info.info_len)) 2315 return -EFAULT; 2316 2317 return 0; 2318 } 2319 2320 int btf_get_fd_by_id(u32 id) 2321 { 2322 struct btf *btf; 2323 int fd; 2324 2325 rcu_read_lock(); 2326 btf = idr_find(&btf_idr, id); 2327 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 2328 btf = ERR_PTR(-ENOENT); 2329 rcu_read_unlock(); 2330 2331 if (IS_ERR(btf)) 2332 return PTR_ERR(btf); 2333 2334 fd = __btf_new_fd(btf); 2335 if (fd < 0) 2336 btf_put(btf); 2337 2338 return fd; 2339 } 2340 2341 u32 btf_id(const struct btf *btf) 2342 { 2343 return btf->id; 2344 } 2345