1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/btf_ids.h> 26 #include <net/sock.h> 27 28 /* BTF (BPF Type Format) is the meta data format which describes 29 * the data types of BPF program/map. Hence, it basically focus 30 * on the C programming language which the modern BPF is primary 31 * using. 32 * 33 * ELF Section: 34 * ~~~~~~~~~~~ 35 * The BTF data is stored under the ".BTF" ELF section 36 * 37 * struct btf_type: 38 * ~~~~~~~~~~~~~~~ 39 * Each 'struct btf_type' object describes a C data type. 40 * Depending on the type it is describing, a 'struct btf_type' 41 * object may be followed by more data. F.e. 42 * To describe an array, 'struct btf_type' is followed by 43 * 'struct btf_array'. 44 * 45 * 'struct btf_type' and any extra data following it are 46 * 4 bytes aligned. 47 * 48 * Type section: 49 * ~~~~~~~~~~~~~ 50 * The BTF type section contains a list of 'struct btf_type' objects. 51 * Each one describes a C type. Recall from the above section 52 * that a 'struct btf_type' object could be immediately followed by extra 53 * data in order to desribe some particular C types. 54 * 55 * type_id: 56 * ~~~~~~~ 57 * Each btf_type object is identified by a type_id. The type_id 58 * is implicitly implied by the location of the btf_type object in 59 * the BTF type section. The first one has type_id 1. The second 60 * one has type_id 2...etc. Hence, an earlier btf_type has 61 * a smaller type_id. 62 * 63 * A btf_type object may refer to another btf_type object by using 64 * type_id (i.e. the "type" in the "struct btf_type"). 65 * 66 * NOTE that we cannot assume any reference-order. 67 * A btf_type object can refer to an earlier btf_type object 68 * but it can also refer to a later btf_type object. 69 * 70 * For example, to describe "const void *". A btf_type 71 * object describing "const" may refer to another btf_type 72 * object describing "void *". This type-reference is done 73 * by specifying type_id: 74 * 75 * [1] CONST (anon) type_id=2 76 * [2] PTR (anon) type_id=0 77 * 78 * The above is the btf_verifier debug log: 79 * - Each line started with "[?]" is a btf_type object 80 * - [?] is the type_id of the btf_type object. 81 * - CONST/PTR is the BTF_KIND_XXX 82 * - "(anon)" is the name of the type. It just 83 * happens that CONST and PTR has no name. 84 * - type_id=XXX is the 'u32 type' in btf_type 85 * 86 * NOTE: "void" has type_id 0 87 * 88 * String section: 89 * ~~~~~~~~~~~~~~ 90 * The BTF string section contains the names used by the type section. 91 * Each string is referred by an "offset" from the beginning of the 92 * string section. 93 * 94 * Each string is '\0' terminated. 95 * 96 * The first character in the string section must be '\0' 97 * which is used to mean 'anonymous'. Some btf_type may not 98 * have a name. 99 */ 100 101 /* BTF verification: 102 * 103 * To verify BTF data, two passes are needed. 104 * 105 * Pass #1 106 * ~~~~~~~ 107 * The first pass is to collect all btf_type objects to 108 * an array: "btf->types". 109 * 110 * Depending on the C type that a btf_type is describing, 111 * a btf_type may be followed by extra data. We don't know 112 * how many btf_type is there, and more importantly we don't 113 * know where each btf_type is located in the type section. 114 * 115 * Without knowing the location of each type_id, most verifications 116 * cannot be done. e.g. an earlier btf_type may refer to a later 117 * btf_type (recall the "const void *" above), so we cannot 118 * check this type-reference in the first pass. 119 * 120 * In the first pass, it still does some verifications (e.g. 121 * checking the name is a valid offset to the string section). 122 * 123 * Pass #2 124 * ~~~~~~~ 125 * The main focus is to resolve a btf_type that is referring 126 * to another type. 127 * 128 * We have to ensure the referring type: 129 * 1) does exist in the BTF (i.e. in btf->types[]) 130 * 2) does not cause a loop: 131 * struct A { 132 * struct B b; 133 * }; 134 * 135 * struct B { 136 * struct A a; 137 * }; 138 * 139 * btf_type_needs_resolve() decides if a btf_type needs 140 * to be resolved. 141 * 142 * The needs_resolve type implements the "resolve()" ops which 143 * essentially does a DFS and detects backedge. 144 * 145 * During resolve (or DFS), different C types have different 146 * "RESOLVED" conditions. 147 * 148 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 149 * members because a member is always referring to another 150 * type. A struct's member can be treated as "RESOLVED" if 151 * it is referring to a BTF_KIND_PTR. Otherwise, the 152 * following valid C struct would be rejected: 153 * 154 * struct A { 155 * int m; 156 * struct A *a; 157 * }; 158 * 159 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 160 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 161 * detect a pointer loop, e.g.: 162 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 163 * ^ | 164 * +-----------------------------------------+ 165 * 166 */ 167 168 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 169 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 170 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 171 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 172 #define BITS_ROUNDUP_BYTES(bits) \ 173 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 174 175 #define BTF_INFO_MASK 0x8f00ffff 176 #define BTF_INT_MASK 0x0fffffff 177 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 178 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 179 180 /* 16MB for 64k structs and each has 16 members and 181 * a few MB spaces for the string section. 182 * The hard limit is S32_MAX. 183 */ 184 #define BTF_MAX_SIZE (16 * 1024 * 1024) 185 186 #define for_each_member_from(i, from, struct_type, member) \ 187 for (i = from, member = btf_type_member(struct_type) + from; \ 188 i < btf_type_vlen(struct_type); \ 189 i++, member++) 190 191 #define for_each_vsi_from(i, from, struct_type, member) \ 192 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 193 i < btf_type_vlen(struct_type); \ 194 i++, member++) 195 196 DEFINE_IDR(btf_idr); 197 DEFINE_SPINLOCK(btf_idr_lock); 198 199 struct btf { 200 void *data; 201 struct btf_type **types; 202 u32 *resolved_ids; 203 u32 *resolved_sizes; 204 const char *strings; 205 void *nohdr_data; 206 struct btf_header hdr; 207 u32 nr_types; 208 u32 types_size; 209 u32 data_size; 210 refcount_t refcnt; 211 u32 id; 212 struct rcu_head rcu; 213 }; 214 215 enum verifier_phase { 216 CHECK_META, 217 CHECK_TYPE, 218 }; 219 220 struct resolve_vertex { 221 const struct btf_type *t; 222 u32 type_id; 223 u16 next_member; 224 }; 225 226 enum visit_state { 227 NOT_VISITED, 228 VISITED, 229 RESOLVED, 230 }; 231 232 enum resolve_mode { 233 RESOLVE_TBD, /* To Be Determined */ 234 RESOLVE_PTR, /* Resolving for Pointer */ 235 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 236 * or array 237 */ 238 }; 239 240 #define MAX_RESOLVE_DEPTH 32 241 242 struct btf_sec_info { 243 u32 off; 244 u32 len; 245 }; 246 247 struct btf_verifier_env { 248 struct btf *btf; 249 u8 *visit_states; 250 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 251 struct bpf_verifier_log log; 252 u32 log_type_id; 253 u32 top_stack; 254 enum verifier_phase phase; 255 enum resolve_mode resolve_mode; 256 }; 257 258 static const char * const btf_kind_str[NR_BTF_KINDS] = { 259 [BTF_KIND_UNKN] = "UNKNOWN", 260 [BTF_KIND_INT] = "INT", 261 [BTF_KIND_PTR] = "PTR", 262 [BTF_KIND_ARRAY] = "ARRAY", 263 [BTF_KIND_STRUCT] = "STRUCT", 264 [BTF_KIND_UNION] = "UNION", 265 [BTF_KIND_ENUM] = "ENUM", 266 [BTF_KIND_FWD] = "FWD", 267 [BTF_KIND_TYPEDEF] = "TYPEDEF", 268 [BTF_KIND_VOLATILE] = "VOLATILE", 269 [BTF_KIND_CONST] = "CONST", 270 [BTF_KIND_RESTRICT] = "RESTRICT", 271 [BTF_KIND_FUNC] = "FUNC", 272 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 273 [BTF_KIND_VAR] = "VAR", 274 [BTF_KIND_DATASEC] = "DATASEC", 275 }; 276 277 static const char *btf_type_str(const struct btf_type *t) 278 { 279 return btf_kind_str[BTF_INFO_KIND(t->info)]; 280 } 281 282 /* Chunk size we use in safe copy of data to be shown. */ 283 #define BTF_SHOW_OBJ_SAFE_SIZE 32 284 285 /* 286 * This is the maximum size of a base type value (equivalent to a 287 * 128-bit int); if we are at the end of our safe buffer and have 288 * less than 16 bytes space we can't be assured of being able 289 * to copy the next type safely, so in such cases we will initiate 290 * a new copy. 291 */ 292 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 293 294 /* Type name size */ 295 #define BTF_SHOW_NAME_SIZE 80 296 297 /* 298 * Common data to all BTF show operations. Private show functions can add 299 * their own data to a structure containing a struct btf_show and consult it 300 * in the show callback. See btf_type_show() below. 301 * 302 * One challenge with showing nested data is we want to skip 0-valued 303 * data, but in order to figure out whether a nested object is all zeros 304 * we need to walk through it. As a result, we need to make two passes 305 * when handling structs, unions and arrays; the first path simply looks 306 * for nonzero data, while the second actually does the display. The first 307 * pass is signalled by show->state.depth_check being set, and if we 308 * encounter a non-zero value we set show->state.depth_to_show to 309 * the depth at which we encountered it. When we have completed the 310 * first pass, we will know if anything needs to be displayed if 311 * depth_to_show > depth. See btf_[struct,array]_show() for the 312 * implementation of this. 313 * 314 * Another problem is we want to ensure the data for display is safe to 315 * access. To support this, the anonymous "struct {} obj" tracks the data 316 * object and our safe copy of it. We copy portions of the data needed 317 * to the object "copy" buffer, but because its size is limited to 318 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 319 * traverse larger objects for display. 320 * 321 * The various data type show functions all start with a call to 322 * btf_show_start_type() which returns a pointer to the safe copy 323 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 324 * raw data itself). btf_show_obj_safe() is responsible for 325 * using copy_from_kernel_nofault() to update the safe data if necessary 326 * as we traverse the object's data. skbuff-like semantics are 327 * used: 328 * 329 * - obj.head points to the start of the toplevel object for display 330 * - obj.size is the size of the toplevel object 331 * - obj.data points to the current point in the original data at 332 * which our safe data starts. obj.data will advance as we copy 333 * portions of the data. 334 * 335 * In most cases a single copy will suffice, but larger data structures 336 * such as "struct task_struct" will require many copies. The logic in 337 * btf_show_obj_safe() handles the logic that determines if a new 338 * copy_from_kernel_nofault() is needed. 339 */ 340 struct btf_show { 341 u64 flags; 342 void *target; /* target of show operation (seq file, buffer) */ 343 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 344 const struct btf *btf; 345 /* below are used during iteration */ 346 struct { 347 u8 depth; 348 u8 depth_to_show; 349 u8 depth_check; 350 u8 array_member:1, 351 array_terminated:1; 352 u16 array_encoding; 353 u32 type_id; 354 int status; /* non-zero for error */ 355 const struct btf_type *type; 356 const struct btf_member *member; 357 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 358 } state; 359 struct { 360 u32 size; 361 void *head; 362 void *data; 363 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 364 } obj; 365 }; 366 367 struct btf_kind_operations { 368 s32 (*check_meta)(struct btf_verifier_env *env, 369 const struct btf_type *t, 370 u32 meta_left); 371 int (*resolve)(struct btf_verifier_env *env, 372 const struct resolve_vertex *v); 373 int (*check_member)(struct btf_verifier_env *env, 374 const struct btf_type *struct_type, 375 const struct btf_member *member, 376 const struct btf_type *member_type); 377 int (*check_kflag_member)(struct btf_verifier_env *env, 378 const struct btf_type *struct_type, 379 const struct btf_member *member, 380 const struct btf_type *member_type); 381 void (*log_details)(struct btf_verifier_env *env, 382 const struct btf_type *t); 383 void (*show)(const struct btf *btf, const struct btf_type *t, 384 u32 type_id, void *data, u8 bits_offsets, 385 struct btf_show *show); 386 }; 387 388 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 389 static struct btf_type btf_void; 390 391 static int btf_resolve(struct btf_verifier_env *env, 392 const struct btf_type *t, u32 type_id); 393 394 static bool btf_type_is_modifier(const struct btf_type *t) 395 { 396 /* Some of them is not strictly a C modifier 397 * but they are grouped into the same bucket 398 * for BTF concern: 399 * A type (t) that refers to another 400 * type through t->type AND its size cannot 401 * be determined without following the t->type. 402 * 403 * ptr does not fall into this bucket 404 * because its size is always sizeof(void *). 405 */ 406 switch (BTF_INFO_KIND(t->info)) { 407 case BTF_KIND_TYPEDEF: 408 case BTF_KIND_VOLATILE: 409 case BTF_KIND_CONST: 410 case BTF_KIND_RESTRICT: 411 return true; 412 } 413 414 return false; 415 } 416 417 bool btf_type_is_void(const struct btf_type *t) 418 { 419 return t == &btf_void; 420 } 421 422 static bool btf_type_is_fwd(const struct btf_type *t) 423 { 424 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 425 } 426 427 static bool btf_type_nosize(const struct btf_type *t) 428 { 429 return btf_type_is_void(t) || btf_type_is_fwd(t) || 430 btf_type_is_func(t) || btf_type_is_func_proto(t); 431 } 432 433 static bool btf_type_nosize_or_null(const struct btf_type *t) 434 { 435 return !t || btf_type_nosize(t); 436 } 437 438 static bool __btf_type_is_struct(const struct btf_type *t) 439 { 440 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 441 } 442 443 static bool btf_type_is_array(const struct btf_type *t) 444 { 445 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 446 } 447 448 static bool btf_type_is_datasec(const struct btf_type *t) 449 { 450 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 451 } 452 453 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 454 { 455 const struct btf_type *t; 456 const char *tname; 457 u32 i; 458 459 for (i = 1; i <= btf->nr_types; i++) { 460 t = btf->types[i]; 461 if (BTF_INFO_KIND(t->info) != kind) 462 continue; 463 464 tname = btf_name_by_offset(btf, t->name_off); 465 if (!strcmp(tname, name)) 466 return i; 467 } 468 469 return -ENOENT; 470 } 471 472 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 473 u32 id, u32 *res_id) 474 { 475 const struct btf_type *t = btf_type_by_id(btf, id); 476 477 while (btf_type_is_modifier(t)) { 478 id = t->type; 479 t = btf_type_by_id(btf, t->type); 480 } 481 482 if (res_id) 483 *res_id = id; 484 485 return t; 486 } 487 488 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 489 u32 id, u32 *res_id) 490 { 491 const struct btf_type *t; 492 493 t = btf_type_skip_modifiers(btf, id, NULL); 494 if (!btf_type_is_ptr(t)) 495 return NULL; 496 497 return btf_type_skip_modifiers(btf, t->type, res_id); 498 } 499 500 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 501 u32 id, u32 *res_id) 502 { 503 const struct btf_type *ptype; 504 505 ptype = btf_type_resolve_ptr(btf, id, res_id); 506 if (ptype && btf_type_is_func_proto(ptype)) 507 return ptype; 508 509 return NULL; 510 } 511 512 /* Types that act only as a source, not sink or intermediate 513 * type when resolving. 514 */ 515 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 516 { 517 return btf_type_is_var(t) || 518 btf_type_is_datasec(t); 519 } 520 521 /* What types need to be resolved? 522 * 523 * btf_type_is_modifier() is an obvious one. 524 * 525 * btf_type_is_struct() because its member refers to 526 * another type (through member->type). 527 * 528 * btf_type_is_var() because the variable refers to 529 * another type. btf_type_is_datasec() holds multiple 530 * btf_type_is_var() types that need resolving. 531 * 532 * btf_type_is_array() because its element (array->type) 533 * refers to another type. Array can be thought of a 534 * special case of struct while array just has the same 535 * member-type repeated by array->nelems of times. 536 */ 537 static bool btf_type_needs_resolve(const struct btf_type *t) 538 { 539 return btf_type_is_modifier(t) || 540 btf_type_is_ptr(t) || 541 btf_type_is_struct(t) || 542 btf_type_is_array(t) || 543 btf_type_is_var(t) || 544 btf_type_is_datasec(t); 545 } 546 547 /* t->size can be used */ 548 static bool btf_type_has_size(const struct btf_type *t) 549 { 550 switch (BTF_INFO_KIND(t->info)) { 551 case BTF_KIND_INT: 552 case BTF_KIND_STRUCT: 553 case BTF_KIND_UNION: 554 case BTF_KIND_ENUM: 555 case BTF_KIND_DATASEC: 556 return true; 557 } 558 559 return false; 560 } 561 562 static const char *btf_int_encoding_str(u8 encoding) 563 { 564 if (encoding == 0) 565 return "(none)"; 566 else if (encoding == BTF_INT_SIGNED) 567 return "SIGNED"; 568 else if (encoding == BTF_INT_CHAR) 569 return "CHAR"; 570 else if (encoding == BTF_INT_BOOL) 571 return "BOOL"; 572 else 573 return "UNKN"; 574 } 575 576 static u32 btf_type_int(const struct btf_type *t) 577 { 578 return *(u32 *)(t + 1); 579 } 580 581 static const struct btf_array *btf_type_array(const struct btf_type *t) 582 { 583 return (const struct btf_array *)(t + 1); 584 } 585 586 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 587 { 588 return (const struct btf_enum *)(t + 1); 589 } 590 591 static const struct btf_var *btf_type_var(const struct btf_type *t) 592 { 593 return (const struct btf_var *)(t + 1); 594 } 595 596 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 597 { 598 return kind_ops[BTF_INFO_KIND(t->info)]; 599 } 600 601 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 602 { 603 return BTF_STR_OFFSET_VALID(offset) && 604 offset < btf->hdr.str_len; 605 } 606 607 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 608 { 609 if ((first ? !isalpha(c) : 610 !isalnum(c)) && 611 c != '_' && 612 ((c == '.' && !dot_ok) || 613 c != '.')) 614 return false; 615 return true; 616 } 617 618 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 619 { 620 /* offset must be valid */ 621 const char *src = &btf->strings[offset]; 622 const char *src_limit; 623 624 if (!__btf_name_char_ok(*src, true, dot_ok)) 625 return false; 626 627 /* set a limit on identifier length */ 628 src_limit = src + KSYM_NAME_LEN; 629 src++; 630 while (*src && src < src_limit) { 631 if (!__btf_name_char_ok(*src, false, dot_ok)) 632 return false; 633 src++; 634 } 635 636 return !*src; 637 } 638 639 /* Only C-style identifier is permitted. This can be relaxed if 640 * necessary. 641 */ 642 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 643 { 644 return __btf_name_valid(btf, offset, false); 645 } 646 647 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 648 { 649 return __btf_name_valid(btf, offset, true); 650 } 651 652 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 653 { 654 if (!offset) 655 return "(anon)"; 656 else if (offset < btf->hdr.str_len) 657 return &btf->strings[offset]; 658 else 659 return "(invalid-name-offset)"; 660 } 661 662 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 663 { 664 if (offset < btf->hdr.str_len) 665 return &btf->strings[offset]; 666 667 return NULL; 668 } 669 670 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 671 { 672 if (type_id > btf->nr_types) 673 return NULL; 674 675 return btf->types[type_id]; 676 } 677 678 /* 679 * Regular int is not a bit field and it must be either 680 * u8/u16/u32/u64 or __int128. 681 */ 682 static bool btf_type_int_is_regular(const struct btf_type *t) 683 { 684 u8 nr_bits, nr_bytes; 685 u32 int_data; 686 687 int_data = btf_type_int(t); 688 nr_bits = BTF_INT_BITS(int_data); 689 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 690 if (BITS_PER_BYTE_MASKED(nr_bits) || 691 BTF_INT_OFFSET(int_data) || 692 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 693 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 694 nr_bytes != (2 * sizeof(u64)))) { 695 return false; 696 } 697 698 return true; 699 } 700 701 /* 702 * Check that given struct member is a regular int with expected 703 * offset and size. 704 */ 705 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 706 const struct btf_member *m, 707 u32 expected_offset, u32 expected_size) 708 { 709 const struct btf_type *t; 710 u32 id, int_data; 711 u8 nr_bits; 712 713 id = m->type; 714 t = btf_type_id_size(btf, &id, NULL); 715 if (!t || !btf_type_is_int(t)) 716 return false; 717 718 int_data = btf_type_int(t); 719 nr_bits = BTF_INT_BITS(int_data); 720 if (btf_type_kflag(s)) { 721 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 722 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 723 724 /* if kflag set, int should be a regular int and 725 * bit offset should be at byte boundary. 726 */ 727 return !bitfield_size && 728 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 729 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 730 } 731 732 if (BTF_INT_OFFSET(int_data) || 733 BITS_PER_BYTE_MASKED(m->offset) || 734 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 735 BITS_PER_BYTE_MASKED(nr_bits) || 736 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 737 return false; 738 739 return true; 740 } 741 742 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 743 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 744 u32 id) 745 { 746 const struct btf_type *t = btf_type_by_id(btf, id); 747 748 while (btf_type_is_modifier(t) && 749 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 750 id = t->type; 751 t = btf_type_by_id(btf, t->type); 752 } 753 754 return t; 755 } 756 757 #define BTF_SHOW_MAX_ITER 10 758 759 #define BTF_KIND_BIT(kind) (1ULL << kind) 760 761 /* 762 * Populate show->state.name with type name information. 763 * Format of type name is 764 * 765 * [.member_name = ] (type_name) 766 */ 767 static const char *btf_show_name(struct btf_show *show) 768 { 769 /* BTF_MAX_ITER array suffixes "[]" */ 770 const char *array_suffixes = "[][][][][][][][][][]"; 771 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 772 /* BTF_MAX_ITER pointer suffixes "*" */ 773 const char *ptr_suffixes = "**********"; 774 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 775 const char *name = NULL, *prefix = "", *parens = ""; 776 const struct btf_member *m = show->state.member; 777 const struct btf_type *t = show->state.type; 778 const struct btf_array *array; 779 u32 id = show->state.type_id; 780 const char *member = NULL; 781 bool show_member = false; 782 u64 kinds = 0; 783 int i; 784 785 show->state.name[0] = '\0'; 786 787 /* 788 * Don't show type name if we're showing an array member; 789 * in that case we show the array type so don't need to repeat 790 * ourselves for each member. 791 */ 792 if (show->state.array_member) 793 return ""; 794 795 /* Retrieve member name, if any. */ 796 if (m) { 797 member = btf_name_by_offset(show->btf, m->name_off); 798 show_member = strlen(member) > 0; 799 id = m->type; 800 } 801 802 /* 803 * Start with type_id, as we have resolved the struct btf_type * 804 * via btf_modifier_show() past the parent typedef to the child 805 * struct, int etc it is defined as. In such cases, the type_id 806 * still represents the starting type while the struct btf_type * 807 * in our show->state points at the resolved type of the typedef. 808 */ 809 t = btf_type_by_id(show->btf, id); 810 if (!t) 811 return ""; 812 813 /* 814 * The goal here is to build up the right number of pointer and 815 * array suffixes while ensuring the type name for a typedef 816 * is represented. Along the way we accumulate a list of 817 * BTF kinds we have encountered, since these will inform later 818 * display; for example, pointer types will not require an 819 * opening "{" for struct, we will just display the pointer value. 820 * 821 * We also want to accumulate the right number of pointer or array 822 * indices in the format string while iterating until we get to 823 * the typedef/pointee/array member target type. 824 * 825 * We start by pointing at the end of pointer and array suffix 826 * strings; as we accumulate pointers and arrays we move the pointer 827 * or array string backwards so it will show the expected number of 828 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 829 * and/or arrays and typedefs are supported as a precaution. 830 * 831 * We also want to get typedef name while proceeding to resolve 832 * type it points to so that we can add parentheses if it is a 833 * "typedef struct" etc. 834 */ 835 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 836 837 switch (BTF_INFO_KIND(t->info)) { 838 case BTF_KIND_TYPEDEF: 839 if (!name) 840 name = btf_name_by_offset(show->btf, 841 t->name_off); 842 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 843 id = t->type; 844 break; 845 case BTF_KIND_ARRAY: 846 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 847 parens = "["; 848 if (!t) 849 return ""; 850 array = btf_type_array(t); 851 if (array_suffix > array_suffixes) 852 array_suffix -= 2; 853 id = array->type; 854 break; 855 case BTF_KIND_PTR: 856 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 857 if (ptr_suffix > ptr_suffixes) 858 ptr_suffix -= 1; 859 id = t->type; 860 break; 861 default: 862 id = 0; 863 break; 864 } 865 if (!id) 866 break; 867 t = btf_type_skip_qualifiers(show->btf, id); 868 } 869 /* We may not be able to represent this type; bail to be safe */ 870 if (i == BTF_SHOW_MAX_ITER) 871 return ""; 872 873 if (!name) 874 name = btf_name_by_offset(show->btf, t->name_off); 875 876 switch (BTF_INFO_KIND(t->info)) { 877 case BTF_KIND_STRUCT: 878 case BTF_KIND_UNION: 879 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 880 "struct" : "union"; 881 /* if it's an array of struct/union, parens is already set */ 882 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 883 parens = "{"; 884 break; 885 case BTF_KIND_ENUM: 886 prefix = "enum"; 887 break; 888 default: 889 break; 890 } 891 892 /* pointer does not require parens */ 893 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 894 parens = ""; 895 /* typedef does not require struct/union/enum prefix */ 896 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 897 prefix = ""; 898 899 if (!name) 900 name = ""; 901 902 /* Even if we don't want type name info, we want parentheses etc */ 903 if (show->flags & BTF_SHOW_NONAME) 904 snprintf(show->state.name, sizeof(show->state.name), "%s", 905 parens); 906 else 907 snprintf(show->state.name, sizeof(show->state.name), 908 "%s%s%s(%s%s%s%s%s%s)%s", 909 /* first 3 strings comprise ".member = " */ 910 show_member ? "." : "", 911 show_member ? member : "", 912 show_member ? " = " : "", 913 /* ...next is our prefix (struct, enum, etc) */ 914 prefix, 915 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 916 /* ...this is the type name itself */ 917 name, 918 /* ...suffixed by the appropriate '*', '[]' suffixes */ 919 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 920 array_suffix, parens); 921 922 return show->state.name; 923 } 924 925 static const char *__btf_show_indent(struct btf_show *show) 926 { 927 const char *indents = " "; 928 const char *indent = &indents[strlen(indents)]; 929 930 if ((indent - show->state.depth) >= indents) 931 return indent - show->state.depth; 932 return indents; 933 } 934 935 static const char *btf_show_indent(struct btf_show *show) 936 { 937 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 938 } 939 940 static const char *btf_show_newline(struct btf_show *show) 941 { 942 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 943 } 944 945 static const char *btf_show_delim(struct btf_show *show) 946 { 947 if (show->state.depth == 0) 948 return ""; 949 950 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 951 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 952 return "|"; 953 954 return ","; 955 } 956 957 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 958 { 959 va_list args; 960 961 if (!show->state.depth_check) { 962 va_start(args, fmt); 963 show->showfn(show, fmt, args); 964 va_end(args); 965 } 966 } 967 968 /* Macros are used here as btf_show_type_value[s]() prepends and appends 969 * format specifiers to the format specifier passed in; these do the work of 970 * adding indentation, delimiters etc while the caller simply has to specify 971 * the type value(s) in the format specifier + value(s). 972 */ 973 #define btf_show_type_value(show, fmt, value) \ 974 do { \ 975 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 976 show->state.depth == 0) { \ 977 btf_show(show, "%s%s" fmt "%s%s", \ 978 btf_show_indent(show), \ 979 btf_show_name(show), \ 980 value, btf_show_delim(show), \ 981 btf_show_newline(show)); \ 982 if (show->state.depth > show->state.depth_to_show) \ 983 show->state.depth_to_show = show->state.depth; \ 984 } \ 985 } while (0) 986 987 #define btf_show_type_values(show, fmt, ...) \ 988 do { \ 989 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 990 btf_show_name(show), \ 991 __VA_ARGS__, btf_show_delim(show), \ 992 btf_show_newline(show)); \ 993 if (show->state.depth > show->state.depth_to_show) \ 994 show->state.depth_to_show = show->state.depth; \ 995 } while (0) 996 997 /* How much is left to copy to safe buffer after @data? */ 998 static int btf_show_obj_size_left(struct btf_show *show, void *data) 999 { 1000 return show->obj.head + show->obj.size - data; 1001 } 1002 1003 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1004 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1005 { 1006 return data >= show->obj.data && 1007 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1008 } 1009 1010 /* 1011 * If object pointed to by @data of @size falls within our safe buffer, return 1012 * the equivalent pointer to the same safe data. Assumes 1013 * copy_from_kernel_nofault() has already happened and our safe buffer is 1014 * populated. 1015 */ 1016 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1017 { 1018 if (btf_show_obj_is_safe(show, data, size)) 1019 return show->obj.safe + (data - show->obj.data); 1020 return NULL; 1021 } 1022 1023 /* 1024 * Return a safe-to-access version of data pointed to by @data. 1025 * We do this by copying the relevant amount of information 1026 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1027 * 1028 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1029 * safe copy is needed. 1030 * 1031 * Otherwise we need to determine if we have the required amount 1032 * of data (determined by the @data pointer and the size of the 1033 * largest base type we can encounter (represented by 1034 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1035 * that we will be able to print some of the current object, 1036 * and if more is needed a copy will be triggered. 1037 * Some objects such as structs will not fit into the buffer; 1038 * in such cases additional copies when we iterate over their 1039 * members may be needed. 1040 * 1041 * btf_show_obj_safe() is used to return a safe buffer for 1042 * btf_show_start_type(); this ensures that as we recurse into 1043 * nested types we always have safe data for the given type. 1044 * This approach is somewhat wasteful; it's possible for example 1045 * that when iterating over a large union we'll end up copying the 1046 * same data repeatedly, but the goal is safety not performance. 1047 * We use stack data as opposed to per-CPU buffers because the 1048 * iteration over a type can take some time, and preemption handling 1049 * would greatly complicate use of the safe buffer. 1050 */ 1051 static void *btf_show_obj_safe(struct btf_show *show, 1052 const struct btf_type *t, 1053 void *data) 1054 { 1055 const struct btf_type *rt; 1056 int size_left, size; 1057 void *safe = NULL; 1058 1059 if (show->flags & BTF_SHOW_UNSAFE) 1060 return data; 1061 1062 rt = btf_resolve_size(show->btf, t, &size); 1063 if (IS_ERR(rt)) { 1064 show->state.status = PTR_ERR(rt); 1065 return NULL; 1066 } 1067 1068 /* 1069 * Is this toplevel object? If so, set total object size and 1070 * initialize pointers. Otherwise check if we still fall within 1071 * our safe object data. 1072 */ 1073 if (show->state.depth == 0) { 1074 show->obj.size = size; 1075 show->obj.head = data; 1076 } else { 1077 /* 1078 * If the size of the current object is > our remaining 1079 * safe buffer we _may_ need to do a new copy. However 1080 * consider the case of a nested struct; it's size pushes 1081 * us over the safe buffer limit, but showing any individual 1082 * struct members does not. In such cases, we don't need 1083 * to initiate a fresh copy yet; however we definitely need 1084 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1085 * in our buffer, regardless of the current object size. 1086 * The logic here is that as we resolve types we will 1087 * hit a base type at some point, and we need to be sure 1088 * the next chunk of data is safely available to display 1089 * that type info safely. We cannot rely on the size of 1090 * the current object here because it may be much larger 1091 * than our current buffer (e.g. task_struct is 8k). 1092 * All we want to do here is ensure that we can print the 1093 * next basic type, which we can if either 1094 * - the current type size is within the safe buffer; or 1095 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1096 * the safe buffer. 1097 */ 1098 safe = __btf_show_obj_safe(show, data, 1099 min(size, 1100 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1101 } 1102 1103 /* 1104 * We need a new copy to our safe object, either because we haven't 1105 * yet copied and are intializing safe data, or because the data 1106 * we want falls outside the boundaries of the safe object. 1107 */ 1108 if (!safe) { 1109 size_left = btf_show_obj_size_left(show, data); 1110 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1111 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1112 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1113 data, size_left); 1114 if (!show->state.status) { 1115 show->obj.data = data; 1116 safe = show->obj.safe; 1117 } 1118 } 1119 1120 return safe; 1121 } 1122 1123 /* 1124 * Set the type we are starting to show and return a safe data pointer 1125 * to be used for showing the associated data. 1126 */ 1127 static void *btf_show_start_type(struct btf_show *show, 1128 const struct btf_type *t, 1129 u32 type_id, void *data) 1130 { 1131 show->state.type = t; 1132 show->state.type_id = type_id; 1133 show->state.name[0] = '\0'; 1134 1135 return btf_show_obj_safe(show, t, data); 1136 } 1137 1138 static void btf_show_end_type(struct btf_show *show) 1139 { 1140 show->state.type = NULL; 1141 show->state.type_id = 0; 1142 show->state.name[0] = '\0'; 1143 } 1144 1145 static void *btf_show_start_aggr_type(struct btf_show *show, 1146 const struct btf_type *t, 1147 u32 type_id, void *data) 1148 { 1149 void *safe_data = btf_show_start_type(show, t, type_id, data); 1150 1151 if (!safe_data) 1152 return safe_data; 1153 1154 btf_show(show, "%s%s%s", btf_show_indent(show), 1155 btf_show_name(show), 1156 btf_show_newline(show)); 1157 show->state.depth++; 1158 return safe_data; 1159 } 1160 1161 static void btf_show_end_aggr_type(struct btf_show *show, 1162 const char *suffix) 1163 { 1164 show->state.depth--; 1165 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1166 btf_show_delim(show), btf_show_newline(show)); 1167 btf_show_end_type(show); 1168 } 1169 1170 static void btf_show_start_member(struct btf_show *show, 1171 const struct btf_member *m) 1172 { 1173 show->state.member = m; 1174 } 1175 1176 static void btf_show_start_array_member(struct btf_show *show) 1177 { 1178 show->state.array_member = 1; 1179 btf_show_start_member(show, NULL); 1180 } 1181 1182 static void btf_show_end_member(struct btf_show *show) 1183 { 1184 show->state.member = NULL; 1185 } 1186 1187 static void btf_show_end_array_member(struct btf_show *show) 1188 { 1189 show->state.array_member = 0; 1190 btf_show_end_member(show); 1191 } 1192 1193 static void *btf_show_start_array_type(struct btf_show *show, 1194 const struct btf_type *t, 1195 u32 type_id, 1196 u16 array_encoding, 1197 void *data) 1198 { 1199 show->state.array_encoding = array_encoding; 1200 show->state.array_terminated = 0; 1201 return btf_show_start_aggr_type(show, t, type_id, data); 1202 } 1203 1204 static void btf_show_end_array_type(struct btf_show *show) 1205 { 1206 show->state.array_encoding = 0; 1207 show->state.array_terminated = 0; 1208 btf_show_end_aggr_type(show, "]"); 1209 } 1210 1211 static void *btf_show_start_struct_type(struct btf_show *show, 1212 const struct btf_type *t, 1213 u32 type_id, 1214 void *data) 1215 { 1216 return btf_show_start_aggr_type(show, t, type_id, data); 1217 } 1218 1219 static void btf_show_end_struct_type(struct btf_show *show) 1220 { 1221 btf_show_end_aggr_type(show, "}"); 1222 } 1223 1224 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1225 const char *fmt, ...) 1226 { 1227 va_list args; 1228 1229 va_start(args, fmt); 1230 bpf_verifier_vlog(log, fmt, args); 1231 va_end(args); 1232 } 1233 1234 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1235 const char *fmt, ...) 1236 { 1237 struct bpf_verifier_log *log = &env->log; 1238 va_list args; 1239 1240 if (!bpf_verifier_log_needed(log)) 1241 return; 1242 1243 va_start(args, fmt); 1244 bpf_verifier_vlog(log, fmt, args); 1245 va_end(args); 1246 } 1247 1248 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1249 const struct btf_type *t, 1250 bool log_details, 1251 const char *fmt, ...) 1252 { 1253 struct bpf_verifier_log *log = &env->log; 1254 u8 kind = BTF_INFO_KIND(t->info); 1255 struct btf *btf = env->btf; 1256 va_list args; 1257 1258 if (!bpf_verifier_log_needed(log)) 1259 return; 1260 1261 /* btf verifier prints all types it is processing via 1262 * btf_verifier_log_type(..., fmt = NULL). 1263 * Skip those prints for in-kernel BTF verification. 1264 */ 1265 if (log->level == BPF_LOG_KERNEL && !fmt) 1266 return; 1267 1268 __btf_verifier_log(log, "[%u] %s %s%s", 1269 env->log_type_id, 1270 btf_kind_str[kind], 1271 __btf_name_by_offset(btf, t->name_off), 1272 log_details ? " " : ""); 1273 1274 if (log_details) 1275 btf_type_ops(t)->log_details(env, t); 1276 1277 if (fmt && *fmt) { 1278 __btf_verifier_log(log, " "); 1279 va_start(args, fmt); 1280 bpf_verifier_vlog(log, fmt, args); 1281 va_end(args); 1282 } 1283 1284 __btf_verifier_log(log, "\n"); 1285 } 1286 1287 #define btf_verifier_log_type(env, t, ...) \ 1288 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1289 #define btf_verifier_log_basic(env, t, ...) \ 1290 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1291 1292 __printf(4, 5) 1293 static void btf_verifier_log_member(struct btf_verifier_env *env, 1294 const struct btf_type *struct_type, 1295 const struct btf_member *member, 1296 const char *fmt, ...) 1297 { 1298 struct bpf_verifier_log *log = &env->log; 1299 struct btf *btf = env->btf; 1300 va_list args; 1301 1302 if (!bpf_verifier_log_needed(log)) 1303 return; 1304 1305 if (log->level == BPF_LOG_KERNEL && !fmt) 1306 return; 1307 /* The CHECK_META phase already did a btf dump. 1308 * 1309 * If member is logged again, it must hit an error in 1310 * parsing this member. It is useful to print out which 1311 * struct this member belongs to. 1312 */ 1313 if (env->phase != CHECK_META) 1314 btf_verifier_log_type(env, struct_type, NULL); 1315 1316 if (btf_type_kflag(struct_type)) 1317 __btf_verifier_log(log, 1318 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1319 __btf_name_by_offset(btf, member->name_off), 1320 member->type, 1321 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1322 BTF_MEMBER_BIT_OFFSET(member->offset)); 1323 else 1324 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1325 __btf_name_by_offset(btf, member->name_off), 1326 member->type, member->offset); 1327 1328 if (fmt && *fmt) { 1329 __btf_verifier_log(log, " "); 1330 va_start(args, fmt); 1331 bpf_verifier_vlog(log, fmt, args); 1332 va_end(args); 1333 } 1334 1335 __btf_verifier_log(log, "\n"); 1336 } 1337 1338 __printf(4, 5) 1339 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1340 const struct btf_type *datasec_type, 1341 const struct btf_var_secinfo *vsi, 1342 const char *fmt, ...) 1343 { 1344 struct bpf_verifier_log *log = &env->log; 1345 va_list args; 1346 1347 if (!bpf_verifier_log_needed(log)) 1348 return; 1349 if (log->level == BPF_LOG_KERNEL && !fmt) 1350 return; 1351 if (env->phase != CHECK_META) 1352 btf_verifier_log_type(env, datasec_type, NULL); 1353 1354 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1355 vsi->type, vsi->offset, vsi->size); 1356 if (fmt && *fmt) { 1357 __btf_verifier_log(log, " "); 1358 va_start(args, fmt); 1359 bpf_verifier_vlog(log, fmt, args); 1360 va_end(args); 1361 } 1362 1363 __btf_verifier_log(log, "\n"); 1364 } 1365 1366 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1367 u32 btf_data_size) 1368 { 1369 struct bpf_verifier_log *log = &env->log; 1370 const struct btf *btf = env->btf; 1371 const struct btf_header *hdr; 1372 1373 if (!bpf_verifier_log_needed(log)) 1374 return; 1375 1376 if (log->level == BPF_LOG_KERNEL) 1377 return; 1378 hdr = &btf->hdr; 1379 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1380 __btf_verifier_log(log, "version: %u\n", hdr->version); 1381 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1382 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1383 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1384 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1385 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1386 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1387 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1388 } 1389 1390 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1391 { 1392 struct btf *btf = env->btf; 1393 1394 /* < 2 because +1 for btf_void which is always in btf->types[0]. 1395 * btf_void is not accounted in btf->nr_types because btf_void 1396 * does not come from the BTF file. 1397 */ 1398 if (btf->types_size - btf->nr_types < 2) { 1399 /* Expand 'types' array */ 1400 1401 struct btf_type **new_types; 1402 u32 expand_by, new_size; 1403 1404 if (btf->types_size == BTF_MAX_TYPE) { 1405 btf_verifier_log(env, "Exceeded max num of types"); 1406 return -E2BIG; 1407 } 1408 1409 expand_by = max_t(u32, btf->types_size >> 2, 16); 1410 new_size = min_t(u32, BTF_MAX_TYPE, 1411 btf->types_size + expand_by); 1412 1413 new_types = kvcalloc(new_size, sizeof(*new_types), 1414 GFP_KERNEL | __GFP_NOWARN); 1415 if (!new_types) 1416 return -ENOMEM; 1417 1418 if (btf->nr_types == 0) 1419 new_types[0] = &btf_void; 1420 else 1421 memcpy(new_types, btf->types, 1422 sizeof(*btf->types) * (btf->nr_types + 1)); 1423 1424 kvfree(btf->types); 1425 btf->types = new_types; 1426 btf->types_size = new_size; 1427 } 1428 1429 btf->types[++(btf->nr_types)] = t; 1430 1431 return 0; 1432 } 1433 1434 static int btf_alloc_id(struct btf *btf) 1435 { 1436 int id; 1437 1438 idr_preload(GFP_KERNEL); 1439 spin_lock_bh(&btf_idr_lock); 1440 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1441 if (id > 0) 1442 btf->id = id; 1443 spin_unlock_bh(&btf_idr_lock); 1444 idr_preload_end(); 1445 1446 if (WARN_ON_ONCE(!id)) 1447 return -ENOSPC; 1448 1449 return id > 0 ? 0 : id; 1450 } 1451 1452 static void btf_free_id(struct btf *btf) 1453 { 1454 unsigned long flags; 1455 1456 /* 1457 * In map-in-map, calling map_delete_elem() on outer 1458 * map will call bpf_map_put on the inner map. 1459 * It will then eventually call btf_free_id() 1460 * on the inner map. Some of the map_delete_elem() 1461 * implementation may have irq disabled, so 1462 * we need to use the _irqsave() version instead 1463 * of the _bh() version. 1464 */ 1465 spin_lock_irqsave(&btf_idr_lock, flags); 1466 idr_remove(&btf_idr, btf->id); 1467 spin_unlock_irqrestore(&btf_idr_lock, flags); 1468 } 1469 1470 static void btf_free(struct btf *btf) 1471 { 1472 kvfree(btf->types); 1473 kvfree(btf->resolved_sizes); 1474 kvfree(btf->resolved_ids); 1475 kvfree(btf->data); 1476 kfree(btf); 1477 } 1478 1479 static void btf_free_rcu(struct rcu_head *rcu) 1480 { 1481 struct btf *btf = container_of(rcu, struct btf, rcu); 1482 1483 btf_free(btf); 1484 } 1485 1486 void btf_put(struct btf *btf) 1487 { 1488 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1489 btf_free_id(btf); 1490 call_rcu(&btf->rcu, btf_free_rcu); 1491 } 1492 } 1493 1494 static int env_resolve_init(struct btf_verifier_env *env) 1495 { 1496 struct btf *btf = env->btf; 1497 u32 nr_types = btf->nr_types; 1498 u32 *resolved_sizes = NULL; 1499 u32 *resolved_ids = NULL; 1500 u8 *visit_states = NULL; 1501 1502 /* +1 for btf_void */ 1503 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 1504 GFP_KERNEL | __GFP_NOWARN); 1505 if (!resolved_sizes) 1506 goto nomem; 1507 1508 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 1509 GFP_KERNEL | __GFP_NOWARN); 1510 if (!resolved_ids) 1511 goto nomem; 1512 1513 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 1514 GFP_KERNEL | __GFP_NOWARN); 1515 if (!visit_states) 1516 goto nomem; 1517 1518 btf->resolved_sizes = resolved_sizes; 1519 btf->resolved_ids = resolved_ids; 1520 env->visit_states = visit_states; 1521 1522 return 0; 1523 1524 nomem: 1525 kvfree(resolved_sizes); 1526 kvfree(resolved_ids); 1527 kvfree(visit_states); 1528 return -ENOMEM; 1529 } 1530 1531 static void btf_verifier_env_free(struct btf_verifier_env *env) 1532 { 1533 kvfree(env->visit_states); 1534 kfree(env); 1535 } 1536 1537 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1538 const struct btf_type *next_type) 1539 { 1540 switch (env->resolve_mode) { 1541 case RESOLVE_TBD: 1542 /* int, enum or void is a sink */ 1543 return !btf_type_needs_resolve(next_type); 1544 case RESOLVE_PTR: 1545 /* int, enum, void, struct, array, func or func_proto is a sink 1546 * for ptr 1547 */ 1548 return !btf_type_is_modifier(next_type) && 1549 !btf_type_is_ptr(next_type); 1550 case RESOLVE_STRUCT_OR_ARRAY: 1551 /* int, enum, void, ptr, func or func_proto is a sink 1552 * for struct and array 1553 */ 1554 return !btf_type_is_modifier(next_type) && 1555 !btf_type_is_array(next_type) && 1556 !btf_type_is_struct(next_type); 1557 default: 1558 BUG(); 1559 } 1560 } 1561 1562 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1563 u32 type_id) 1564 { 1565 return env->visit_states[type_id] == RESOLVED; 1566 } 1567 1568 static int env_stack_push(struct btf_verifier_env *env, 1569 const struct btf_type *t, u32 type_id) 1570 { 1571 struct resolve_vertex *v; 1572 1573 if (env->top_stack == MAX_RESOLVE_DEPTH) 1574 return -E2BIG; 1575 1576 if (env->visit_states[type_id] != NOT_VISITED) 1577 return -EEXIST; 1578 1579 env->visit_states[type_id] = VISITED; 1580 1581 v = &env->stack[env->top_stack++]; 1582 v->t = t; 1583 v->type_id = type_id; 1584 v->next_member = 0; 1585 1586 if (env->resolve_mode == RESOLVE_TBD) { 1587 if (btf_type_is_ptr(t)) 1588 env->resolve_mode = RESOLVE_PTR; 1589 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1590 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static void env_stack_set_next_member(struct btf_verifier_env *env, 1597 u16 next_member) 1598 { 1599 env->stack[env->top_stack - 1].next_member = next_member; 1600 } 1601 1602 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1603 u32 resolved_type_id, 1604 u32 resolved_size) 1605 { 1606 u32 type_id = env->stack[--(env->top_stack)].type_id; 1607 struct btf *btf = env->btf; 1608 1609 btf->resolved_sizes[type_id] = resolved_size; 1610 btf->resolved_ids[type_id] = resolved_type_id; 1611 env->visit_states[type_id] = RESOLVED; 1612 } 1613 1614 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1615 { 1616 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1617 } 1618 1619 /* Resolve the size of a passed-in "type" 1620 * 1621 * type: is an array (e.g. u32 array[x][y]) 1622 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1623 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1624 * corresponds to the return type. 1625 * *elem_type: u32 1626 * *elem_id: id of u32 1627 * *total_nelems: (x * y). Hence, individual elem size is 1628 * (*type_size / *total_nelems) 1629 * *type_id: id of type if it's changed within the function, 0 if not 1630 * 1631 * type: is not an array (e.g. const struct X) 1632 * return type: type "struct X" 1633 * *type_size: sizeof(struct X) 1634 * *elem_type: same as return type ("struct X") 1635 * *elem_id: 0 1636 * *total_nelems: 1 1637 * *type_id: id of type if it's changed within the function, 0 if not 1638 */ 1639 static const struct btf_type * 1640 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1641 u32 *type_size, const struct btf_type **elem_type, 1642 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1643 { 1644 const struct btf_type *array_type = NULL; 1645 const struct btf_array *array = NULL; 1646 u32 i, size, nelems = 1, id = 0; 1647 1648 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1649 switch (BTF_INFO_KIND(type->info)) { 1650 /* type->size can be used */ 1651 case BTF_KIND_INT: 1652 case BTF_KIND_STRUCT: 1653 case BTF_KIND_UNION: 1654 case BTF_KIND_ENUM: 1655 size = type->size; 1656 goto resolved; 1657 1658 case BTF_KIND_PTR: 1659 size = sizeof(void *); 1660 goto resolved; 1661 1662 /* Modifiers */ 1663 case BTF_KIND_TYPEDEF: 1664 case BTF_KIND_VOLATILE: 1665 case BTF_KIND_CONST: 1666 case BTF_KIND_RESTRICT: 1667 id = type->type; 1668 type = btf_type_by_id(btf, type->type); 1669 break; 1670 1671 case BTF_KIND_ARRAY: 1672 if (!array_type) 1673 array_type = type; 1674 array = btf_type_array(type); 1675 if (nelems && array->nelems > U32_MAX / nelems) 1676 return ERR_PTR(-EINVAL); 1677 nelems *= array->nelems; 1678 type = btf_type_by_id(btf, array->type); 1679 break; 1680 1681 /* type without size */ 1682 default: 1683 return ERR_PTR(-EINVAL); 1684 } 1685 } 1686 1687 return ERR_PTR(-EINVAL); 1688 1689 resolved: 1690 if (nelems && size > U32_MAX / nelems) 1691 return ERR_PTR(-EINVAL); 1692 1693 *type_size = nelems * size; 1694 if (total_nelems) 1695 *total_nelems = nelems; 1696 if (elem_type) 1697 *elem_type = type; 1698 if (elem_id) 1699 *elem_id = array ? array->type : 0; 1700 if (type_id && id) 1701 *type_id = id; 1702 1703 return array_type ? : type; 1704 } 1705 1706 const struct btf_type * 1707 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1708 u32 *type_size) 1709 { 1710 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1711 } 1712 1713 /* The input param "type_id" must point to a needs_resolve type */ 1714 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1715 u32 *type_id) 1716 { 1717 *type_id = btf->resolved_ids[*type_id]; 1718 return btf_type_by_id(btf, *type_id); 1719 } 1720 1721 const struct btf_type *btf_type_id_size(const struct btf *btf, 1722 u32 *type_id, u32 *ret_size) 1723 { 1724 const struct btf_type *size_type; 1725 u32 size_type_id = *type_id; 1726 u32 size = 0; 1727 1728 size_type = btf_type_by_id(btf, size_type_id); 1729 if (btf_type_nosize_or_null(size_type)) 1730 return NULL; 1731 1732 if (btf_type_has_size(size_type)) { 1733 size = size_type->size; 1734 } else if (btf_type_is_array(size_type)) { 1735 size = btf->resolved_sizes[size_type_id]; 1736 } else if (btf_type_is_ptr(size_type)) { 1737 size = sizeof(void *); 1738 } else { 1739 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1740 !btf_type_is_var(size_type))) 1741 return NULL; 1742 1743 size_type_id = btf->resolved_ids[size_type_id]; 1744 size_type = btf_type_by_id(btf, size_type_id); 1745 if (btf_type_nosize_or_null(size_type)) 1746 return NULL; 1747 else if (btf_type_has_size(size_type)) 1748 size = size_type->size; 1749 else if (btf_type_is_array(size_type)) 1750 size = btf->resolved_sizes[size_type_id]; 1751 else if (btf_type_is_ptr(size_type)) 1752 size = sizeof(void *); 1753 else 1754 return NULL; 1755 } 1756 1757 *type_id = size_type_id; 1758 if (ret_size) 1759 *ret_size = size; 1760 1761 return size_type; 1762 } 1763 1764 static int btf_df_check_member(struct btf_verifier_env *env, 1765 const struct btf_type *struct_type, 1766 const struct btf_member *member, 1767 const struct btf_type *member_type) 1768 { 1769 btf_verifier_log_basic(env, struct_type, 1770 "Unsupported check_member"); 1771 return -EINVAL; 1772 } 1773 1774 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1775 const struct btf_type *struct_type, 1776 const struct btf_member *member, 1777 const struct btf_type *member_type) 1778 { 1779 btf_verifier_log_basic(env, struct_type, 1780 "Unsupported check_kflag_member"); 1781 return -EINVAL; 1782 } 1783 1784 /* Used for ptr, array and struct/union type members. 1785 * int, enum and modifier types have their specific callback functions. 1786 */ 1787 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1788 const struct btf_type *struct_type, 1789 const struct btf_member *member, 1790 const struct btf_type *member_type) 1791 { 1792 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1793 btf_verifier_log_member(env, struct_type, member, 1794 "Invalid member bitfield_size"); 1795 return -EINVAL; 1796 } 1797 1798 /* bitfield size is 0, so member->offset represents bit offset only. 1799 * It is safe to call non kflag check_member variants. 1800 */ 1801 return btf_type_ops(member_type)->check_member(env, struct_type, 1802 member, 1803 member_type); 1804 } 1805 1806 static int btf_df_resolve(struct btf_verifier_env *env, 1807 const struct resolve_vertex *v) 1808 { 1809 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1810 return -EINVAL; 1811 } 1812 1813 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1814 u32 type_id, void *data, u8 bits_offsets, 1815 struct btf_show *show) 1816 { 1817 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1818 } 1819 1820 static int btf_int_check_member(struct btf_verifier_env *env, 1821 const struct btf_type *struct_type, 1822 const struct btf_member *member, 1823 const struct btf_type *member_type) 1824 { 1825 u32 int_data = btf_type_int(member_type); 1826 u32 struct_bits_off = member->offset; 1827 u32 struct_size = struct_type->size; 1828 u32 nr_copy_bits; 1829 u32 bytes_offset; 1830 1831 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1832 btf_verifier_log_member(env, struct_type, member, 1833 "bits_offset exceeds U32_MAX"); 1834 return -EINVAL; 1835 } 1836 1837 struct_bits_off += BTF_INT_OFFSET(int_data); 1838 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1839 nr_copy_bits = BTF_INT_BITS(int_data) + 1840 BITS_PER_BYTE_MASKED(struct_bits_off); 1841 1842 if (nr_copy_bits > BITS_PER_U128) { 1843 btf_verifier_log_member(env, struct_type, member, 1844 "nr_copy_bits exceeds 128"); 1845 return -EINVAL; 1846 } 1847 1848 if (struct_size < bytes_offset || 1849 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1850 btf_verifier_log_member(env, struct_type, member, 1851 "Member exceeds struct_size"); 1852 return -EINVAL; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1859 const struct btf_type *struct_type, 1860 const struct btf_member *member, 1861 const struct btf_type *member_type) 1862 { 1863 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1864 u32 int_data = btf_type_int(member_type); 1865 u32 struct_size = struct_type->size; 1866 u32 nr_copy_bits; 1867 1868 /* a regular int type is required for the kflag int member */ 1869 if (!btf_type_int_is_regular(member_type)) { 1870 btf_verifier_log_member(env, struct_type, member, 1871 "Invalid member base type"); 1872 return -EINVAL; 1873 } 1874 1875 /* check sanity of bitfield size */ 1876 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1877 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1878 nr_int_data_bits = BTF_INT_BITS(int_data); 1879 if (!nr_bits) { 1880 /* Not a bitfield member, member offset must be at byte 1881 * boundary. 1882 */ 1883 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1884 btf_verifier_log_member(env, struct_type, member, 1885 "Invalid member offset"); 1886 return -EINVAL; 1887 } 1888 1889 nr_bits = nr_int_data_bits; 1890 } else if (nr_bits > nr_int_data_bits) { 1891 btf_verifier_log_member(env, struct_type, member, 1892 "Invalid member bitfield_size"); 1893 return -EINVAL; 1894 } 1895 1896 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1897 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1898 if (nr_copy_bits > BITS_PER_U128) { 1899 btf_verifier_log_member(env, struct_type, member, 1900 "nr_copy_bits exceeds 128"); 1901 return -EINVAL; 1902 } 1903 1904 if (struct_size < bytes_offset || 1905 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1906 btf_verifier_log_member(env, struct_type, member, 1907 "Member exceeds struct_size"); 1908 return -EINVAL; 1909 } 1910 1911 return 0; 1912 } 1913 1914 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1915 const struct btf_type *t, 1916 u32 meta_left) 1917 { 1918 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1919 u16 encoding; 1920 1921 if (meta_left < meta_needed) { 1922 btf_verifier_log_basic(env, t, 1923 "meta_left:%u meta_needed:%u", 1924 meta_left, meta_needed); 1925 return -EINVAL; 1926 } 1927 1928 if (btf_type_vlen(t)) { 1929 btf_verifier_log_type(env, t, "vlen != 0"); 1930 return -EINVAL; 1931 } 1932 1933 if (btf_type_kflag(t)) { 1934 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1935 return -EINVAL; 1936 } 1937 1938 int_data = btf_type_int(t); 1939 if (int_data & ~BTF_INT_MASK) { 1940 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 1941 int_data); 1942 return -EINVAL; 1943 } 1944 1945 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 1946 1947 if (nr_bits > BITS_PER_U128) { 1948 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1949 BITS_PER_U128); 1950 return -EINVAL; 1951 } 1952 1953 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1954 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1955 return -EINVAL; 1956 } 1957 1958 /* 1959 * Only one of the encoding bits is allowed and it 1960 * should be sufficient for the pretty print purpose (i.e. decoding). 1961 * Multiple bits can be allowed later if it is found 1962 * to be insufficient. 1963 */ 1964 encoding = BTF_INT_ENCODING(int_data); 1965 if (encoding && 1966 encoding != BTF_INT_SIGNED && 1967 encoding != BTF_INT_CHAR && 1968 encoding != BTF_INT_BOOL) { 1969 btf_verifier_log_type(env, t, "Unsupported encoding"); 1970 return -ENOTSUPP; 1971 } 1972 1973 btf_verifier_log_type(env, t, NULL); 1974 1975 return meta_needed; 1976 } 1977 1978 static void btf_int_log(struct btf_verifier_env *env, 1979 const struct btf_type *t) 1980 { 1981 int int_data = btf_type_int(t); 1982 1983 btf_verifier_log(env, 1984 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1985 t->size, BTF_INT_OFFSET(int_data), 1986 BTF_INT_BITS(int_data), 1987 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1988 } 1989 1990 static void btf_int128_print(struct btf_show *show, void *data) 1991 { 1992 /* data points to a __int128 number. 1993 * Suppose 1994 * int128_num = *(__int128 *)data; 1995 * The below formulas shows what upper_num and lower_num represents: 1996 * upper_num = int128_num >> 64; 1997 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 1998 */ 1999 u64 upper_num, lower_num; 2000 2001 #ifdef __BIG_ENDIAN_BITFIELD 2002 upper_num = *(u64 *)data; 2003 lower_num = *(u64 *)(data + 8); 2004 #else 2005 upper_num = *(u64 *)(data + 8); 2006 lower_num = *(u64 *)data; 2007 #endif 2008 if (upper_num == 0) 2009 btf_show_type_value(show, "0x%llx", lower_num); 2010 else 2011 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2012 lower_num); 2013 } 2014 2015 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2016 u16 right_shift_bits) 2017 { 2018 u64 upper_num, lower_num; 2019 2020 #ifdef __BIG_ENDIAN_BITFIELD 2021 upper_num = print_num[0]; 2022 lower_num = print_num[1]; 2023 #else 2024 upper_num = print_num[1]; 2025 lower_num = print_num[0]; 2026 #endif 2027 2028 /* shake out un-needed bits by shift/or operations */ 2029 if (left_shift_bits >= 64) { 2030 upper_num = lower_num << (left_shift_bits - 64); 2031 lower_num = 0; 2032 } else { 2033 upper_num = (upper_num << left_shift_bits) | 2034 (lower_num >> (64 - left_shift_bits)); 2035 lower_num = lower_num << left_shift_bits; 2036 } 2037 2038 if (right_shift_bits >= 64) { 2039 lower_num = upper_num >> (right_shift_bits - 64); 2040 upper_num = 0; 2041 } else { 2042 lower_num = (lower_num >> right_shift_bits) | 2043 (upper_num << (64 - right_shift_bits)); 2044 upper_num = upper_num >> right_shift_bits; 2045 } 2046 2047 #ifdef __BIG_ENDIAN_BITFIELD 2048 print_num[0] = upper_num; 2049 print_num[1] = lower_num; 2050 #else 2051 print_num[0] = lower_num; 2052 print_num[1] = upper_num; 2053 #endif 2054 } 2055 2056 static void btf_bitfield_show(void *data, u8 bits_offset, 2057 u8 nr_bits, struct btf_show *show) 2058 { 2059 u16 left_shift_bits, right_shift_bits; 2060 u8 nr_copy_bytes; 2061 u8 nr_copy_bits; 2062 u64 print_num[2] = {}; 2063 2064 nr_copy_bits = nr_bits + bits_offset; 2065 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2066 2067 memcpy(print_num, data, nr_copy_bytes); 2068 2069 #ifdef __BIG_ENDIAN_BITFIELD 2070 left_shift_bits = bits_offset; 2071 #else 2072 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2073 #endif 2074 right_shift_bits = BITS_PER_U128 - nr_bits; 2075 2076 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2077 btf_int128_print(show, print_num); 2078 } 2079 2080 2081 static void btf_int_bits_show(const struct btf *btf, 2082 const struct btf_type *t, 2083 void *data, u8 bits_offset, 2084 struct btf_show *show) 2085 { 2086 u32 int_data = btf_type_int(t); 2087 u8 nr_bits = BTF_INT_BITS(int_data); 2088 u8 total_bits_offset; 2089 2090 /* 2091 * bits_offset is at most 7. 2092 * BTF_INT_OFFSET() cannot exceed 128 bits. 2093 */ 2094 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2095 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2096 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2097 btf_bitfield_show(data, bits_offset, nr_bits, show); 2098 } 2099 2100 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2101 u32 type_id, void *data, u8 bits_offset, 2102 struct btf_show *show) 2103 { 2104 u32 int_data = btf_type_int(t); 2105 u8 encoding = BTF_INT_ENCODING(int_data); 2106 bool sign = encoding & BTF_INT_SIGNED; 2107 u8 nr_bits = BTF_INT_BITS(int_data); 2108 void *safe_data; 2109 2110 safe_data = btf_show_start_type(show, t, type_id, data); 2111 if (!safe_data) 2112 return; 2113 2114 if (bits_offset || BTF_INT_OFFSET(int_data) || 2115 BITS_PER_BYTE_MASKED(nr_bits)) { 2116 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2117 goto out; 2118 } 2119 2120 switch (nr_bits) { 2121 case 128: 2122 btf_int128_print(show, safe_data); 2123 break; 2124 case 64: 2125 if (sign) 2126 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2127 else 2128 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2129 break; 2130 case 32: 2131 if (sign) 2132 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2133 else 2134 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2135 break; 2136 case 16: 2137 if (sign) 2138 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2139 else 2140 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2141 break; 2142 case 8: 2143 if (show->state.array_encoding == BTF_INT_CHAR) { 2144 /* check for null terminator */ 2145 if (show->state.array_terminated) 2146 break; 2147 if (*(char *)data == '\0') { 2148 show->state.array_terminated = 1; 2149 break; 2150 } 2151 if (isprint(*(char *)data)) { 2152 btf_show_type_value(show, "'%c'", 2153 *(char *)safe_data); 2154 break; 2155 } 2156 } 2157 if (sign) 2158 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2159 else 2160 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2161 break; 2162 default: 2163 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2164 break; 2165 } 2166 out: 2167 btf_show_end_type(show); 2168 } 2169 2170 static const struct btf_kind_operations int_ops = { 2171 .check_meta = btf_int_check_meta, 2172 .resolve = btf_df_resolve, 2173 .check_member = btf_int_check_member, 2174 .check_kflag_member = btf_int_check_kflag_member, 2175 .log_details = btf_int_log, 2176 .show = btf_int_show, 2177 }; 2178 2179 static int btf_modifier_check_member(struct btf_verifier_env *env, 2180 const struct btf_type *struct_type, 2181 const struct btf_member *member, 2182 const struct btf_type *member_type) 2183 { 2184 const struct btf_type *resolved_type; 2185 u32 resolved_type_id = member->type; 2186 struct btf_member resolved_member; 2187 struct btf *btf = env->btf; 2188 2189 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2190 if (!resolved_type) { 2191 btf_verifier_log_member(env, struct_type, member, 2192 "Invalid member"); 2193 return -EINVAL; 2194 } 2195 2196 resolved_member = *member; 2197 resolved_member.type = resolved_type_id; 2198 2199 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2200 &resolved_member, 2201 resolved_type); 2202 } 2203 2204 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2205 const struct btf_type *struct_type, 2206 const struct btf_member *member, 2207 const struct btf_type *member_type) 2208 { 2209 const struct btf_type *resolved_type; 2210 u32 resolved_type_id = member->type; 2211 struct btf_member resolved_member; 2212 struct btf *btf = env->btf; 2213 2214 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2215 if (!resolved_type) { 2216 btf_verifier_log_member(env, struct_type, member, 2217 "Invalid member"); 2218 return -EINVAL; 2219 } 2220 2221 resolved_member = *member; 2222 resolved_member.type = resolved_type_id; 2223 2224 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2225 &resolved_member, 2226 resolved_type); 2227 } 2228 2229 static int btf_ptr_check_member(struct btf_verifier_env *env, 2230 const struct btf_type *struct_type, 2231 const struct btf_member *member, 2232 const struct btf_type *member_type) 2233 { 2234 u32 struct_size, struct_bits_off, bytes_offset; 2235 2236 struct_size = struct_type->size; 2237 struct_bits_off = member->offset; 2238 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2239 2240 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2241 btf_verifier_log_member(env, struct_type, member, 2242 "Member is not byte aligned"); 2243 return -EINVAL; 2244 } 2245 2246 if (struct_size - bytes_offset < sizeof(void *)) { 2247 btf_verifier_log_member(env, struct_type, member, 2248 "Member exceeds struct_size"); 2249 return -EINVAL; 2250 } 2251 2252 return 0; 2253 } 2254 2255 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2256 const struct btf_type *t, 2257 u32 meta_left) 2258 { 2259 if (btf_type_vlen(t)) { 2260 btf_verifier_log_type(env, t, "vlen != 0"); 2261 return -EINVAL; 2262 } 2263 2264 if (btf_type_kflag(t)) { 2265 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2266 return -EINVAL; 2267 } 2268 2269 if (!BTF_TYPE_ID_VALID(t->type)) { 2270 btf_verifier_log_type(env, t, "Invalid type_id"); 2271 return -EINVAL; 2272 } 2273 2274 /* typedef type must have a valid name, and other ref types, 2275 * volatile, const, restrict, should have a null name. 2276 */ 2277 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2278 if (!t->name_off || 2279 !btf_name_valid_identifier(env->btf, t->name_off)) { 2280 btf_verifier_log_type(env, t, "Invalid name"); 2281 return -EINVAL; 2282 } 2283 } else { 2284 if (t->name_off) { 2285 btf_verifier_log_type(env, t, "Invalid name"); 2286 return -EINVAL; 2287 } 2288 } 2289 2290 btf_verifier_log_type(env, t, NULL); 2291 2292 return 0; 2293 } 2294 2295 static int btf_modifier_resolve(struct btf_verifier_env *env, 2296 const struct resolve_vertex *v) 2297 { 2298 const struct btf_type *t = v->t; 2299 const struct btf_type *next_type; 2300 u32 next_type_id = t->type; 2301 struct btf *btf = env->btf; 2302 2303 next_type = btf_type_by_id(btf, next_type_id); 2304 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2305 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2306 return -EINVAL; 2307 } 2308 2309 if (!env_type_is_resolve_sink(env, next_type) && 2310 !env_type_is_resolved(env, next_type_id)) 2311 return env_stack_push(env, next_type, next_type_id); 2312 2313 /* Figure out the resolved next_type_id with size. 2314 * They will be stored in the current modifier's 2315 * resolved_ids and resolved_sizes such that it can 2316 * save us a few type-following when we use it later (e.g. in 2317 * pretty print). 2318 */ 2319 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2320 if (env_type_is_resolved(env, next_type_id)) 2321 next_type = btf_type_id_resolve(btf, &next_type_id); 2322 2323 /* "typedef void new_void", "const void"...etc */ 2324 if (!btf_type_is_void(next_type) && 2325 !btf_type_is_fwd(next_type) && 2326 !btf_type_is_func_proto(next_type)) { 2327 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2328 return -EINVAL; 2329 } 2330 } 2331 2332 env_stack_pop_resolved(env, next_type_id, 0); 2333 2334 return 0; 2335 } 2336 2337 static int btf_var_resolve(struct btf_verifier_env *env, 2338 const struct resolve_vertex *v) 2339 { 2340 const struct btf_type *next_type; 2341 const struct btf_type *t = v->t; 2342 u32 next_type_id = t->type; 2343 struct btf *btf = env->btf; 2344 2345 next_type = btf_type_by_id(btf, next_type_id); 2346 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2347 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2348 return -EINVAL; 2349 } 2350 2351 if (!env_type_is_resolve_sink(env, next_type) && 2352 !env_type_is_resolved(env, next_type_id)) 2353 return env_stack_push(env, next_type, next_type_id); 2354 2355 if (btf_type_is_modifier(next_type)) { 2356 const struct btf_type *resolved_type; 2357 u32 resolved_type_id; 2358 2359 resolved_type_id = next_type_id; 2360 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2361 2362 if (btf_type_is_ptr(resolved_type) && 2363 !env_type_is_resolve_sink(env, resolved_type) && 2364 !env_type_is_resolved(env, resolved_type_id)) 2365 return env_stack_push(env, resolved_type, 2366 resolved_type_id); 2367 } 2368 2369 /* We must resolve to something concrete at this point, no 2370 * forward types or similar that would resolve to size of 2371 * zero is allowed. 2372 */ 2373 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2374 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2375 return -EINVAL; 2376 } 2377 2378 env_stack_pop_resolved(env, next_type_id, 0); 2379 2380 return 0; 2381 } 2382 2383 static int btf_ptr_resolve(struct btf_verifier_env *env, 2384 const struct resolve_vertex *v) 2385 { 2386 const struct btf_type *next_type; 2387 const struct btf_type *t = v->t; 2388 u32 next_type_id = t->type; 2389 struct btf *btf = env->btf; 2390 2391 next_type = btf_type_by_id(btf, next_type_id); 2392 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2393 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2394 return -EINVAL; 2395 } 2396 2397 if (!env_type_is_resolve_sink(env, next_type) && 2398 !env_type_is_resolved(env, next_type_id)) 2399 return env_stack_push(env, next_type, next_type_id); 2400 2401 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2402 * the modifier may have stopped resolving when it was resolved 2403 * to a ptr (last-resolved-ptr). 2404 * 2405 * We now need to continue from the last-resolved-ptr to 2406 * ensure the last-resolved-ptr will not referring back to 2407 * the currenct ptr (t). 2408 */ 2409 if (btf_type_is_modifier(next_type)) { 2410 const struct btf_type *resolved_type; 2411 u32 resolved_type_id; 2412 2413 resolved_type_id = next_type_id; 2414 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2415 2416 if (btf_type_is_ptr(resolved_type) && 2417 !env_type_is_resolve_sink(env, resolved_type) && 2418 !env_type_is_resolved(env, resolved_type_id)) 2419 return env_stack_push(env, resolved_type, 2420 resolved_type_id); 2421 } 2422 2423 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2424 if (env_type_is_resolved(env, next_type_id)) 2425 next_type = btf_type_id_resolve(btf, &next_type_id); 2426 2427 if (!btf_type_is_void(next_type) && 2428 !btf_type_is_fwd(next_type) && 2429 !btf_type_is_func_proto(next_type)) { 2430 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2431 return -EINVAL; 2432 } 2433 } 2434 2435 env_stack_pop_resolved(env, next_type_id, 0); 2436 2437 return 0; 2438 } 2439 2440 static void btf_modifier_show(const struct btf *btf, 2441 const struct btf_type *t, 2442 u32 type_id, void *data, 2443 u8 bits_offset, struct btf_show *show) 2444 { 2445 if (btf->resolved_ids) 2446 t = btf_type_id_resolve(btf, &type_id); 2447 else 2448 t = btf_type_skip_modifiers(btf, type_id, NULL); 2449 2450 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2451 } 2452 2453 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2454 u32 type_id, void *data, u8 bits_offset, 2455 struct btf_show *show) 2456 { 2457 t = btf_type_id_resolve(btf, &type_id); 2458 2459 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2460 } 2461 2462 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2463 u32 type_id, void *data, u8 bits_offset, 2464 struct btf_show *show) 2465 { 2466 void *safe_data; 2467 2468 safe_data = btf_show_start_type(show, t, type_id, data); 2469 if (!safe_data) 2470 return; 2471 2472 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2473 if (show->flags & BTF_SHOW_PTR_RAW) 2474 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2475 else 2476 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2477 btf_show_end_type(show); 2478 } 2479 2480 static void btf_ref_type_log(struct btf_verifier_env *env, 2481 const struct btf_type *t) 2482 { 2483 btf_verifier_log(env, "type_id=%u", t->type); 2484 } 2485 2486 static struct btf_kind_operations modifier_ops = { 2487 .check_meta = btf_ref_type_check_meta, 2488 .resolve = btf_modifier_resolve, 2489 .check_member = btf_modifier_check_member, 2490 .check_kflag_member = btf_modifier_check_kflag_member, 2491 .log_details = btf_ref_type_log, 2492 .show = btf_modifier_show, 2493 }; 2494 2495 static struct btf_kind_operations ptr_ops = { 2496 .check_meta = btf_ref_type_check_meta, 2497 .resolve = btf_ptr_resolve, 2498 .check_member = btf_ptr_check_member, 2499 .check_kflag_member = btf_generic_check_kflag_member, 2500 .log_details = btf_ref_type_log, 2501 .show = btf_ptr_show, 2502 }; 2503 2504 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2505 const struct btf_type *t, 2506 u32 meta_left) 2507 { 2508 if (btf_type_vlen(t)) { 2509 btf_verifier_log_type(env, t, "vlen != 0"); 2510 return -EINVAL; 2511 } 2512 2513 if (t->type) { 2514 btf_verifier_log_type(env, t, "type != 0"); 2515 return -EINVAL; 2516 } 2517 2518 /* fwd type must have a valid name */ 2519 if (!t->name_off || 2520 !btf_name_valid_identifier(env->btf, t->name_off)) { 2521 btf_verifier_log_type(env, t, "Invalid name"); 2522 return -EINVAL; 2523 } 2524 2525 btf_verifier_log_type(env, t, NULL); 2526 2527 return 0; 2528 } 2529 2530 static void btf_fwd_type_log(struct btf_verifier_env *env, 2531 const struct btf_type *t) 2532 { 2533 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2534 } 2535 2536 static struct btf_kind_operations fwd_ops = { 2537 .check_meta = btf_fwd_check_meta, 2538 .resolve = btf_df_resolve, 2539 .check_member = btf_df_check_member, 2540 .check_kflag_member = btf_df_check_kflag_member, 2541 .log_details = btf_fwd_type_log, 2542 .show = btf_df_show, 2543 }; 2544 2545 static int btf_array_check_member(struct btf_verifier_env *env, 2546 const struct btf_type *struct_type, 2547 const struct btf_member *member, 2548 const struct btf_type *member_type) 2549 { 2550 u32 struct_bits_off = member->offset; 2551 u32 struct_size, bytes_offset; 2552 u32 array_type_id, array_size; 2553 struct btf *btf = env->btf; 2554 2555 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2556 btf_verifier_log_member(env, struct_type, member, 2557 "Member is not byte aligned"); 2558 return -EINVAL; 2559 } 2560 2561 array_type_id = member->type; 2562 btf_type_id_size(btf, &array_type_id, &array_size); 2563 struct_size = struct_type->size; 2564 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2565 if (struct_size - bytes_offset < array_size) { 2566 btf_verifier_log_member(env, struct_type, member, 2567 "Member exceeds struct_size"); 2568 return -EINVAL; 2569 } 2570 2571 return 0; 2572 } 2573 2574 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2575 const struct btf_type *t, 2576 u32 meta_left) 2577 { 2578 const struct btf_array *array = btf_type_array(t); 2579 u32 meta_needed = sizeof(*array); 2580 2581 if (meta_left < meta_needed) { 2582 btf_verifier_log_basic(env, t, 2583 "meta_left:%u meta_needed:%u", 2584 meta_left, meta_needed); 2585 return -EINVAL; 2586 } 2587 2588 /* array type should not have a name */ 2589 if (t->name_off) { 2590 btf_verifier_log_type(env, t, "Invalid name"); 2591 return -EINVAL; 2592 } 2593 2594 if (btf_type_vlen(t)) { 2595 btf_verifier_log_type(env, t, "vlen != 0"); 2596 return -EINVAL; 2597 } 2598 2599 if (btf_type_kflag(t)) { 2600 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2601 return -EINVAL; 2602 } 2603 2604 if (t->size) { 2605 btf_verifier_log_type(env, t, "size != 0"); 2606 return -EINVAL; 2607 } 2608 2609 /* Array elem type and index type cannot be in type void, 2610 * so !array->type and !array->index_type are not allowed. 2611 */ 2612 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2613 btf_verifier_log_type(env, t, "Invalid elem"); 2614 return -EINVAL; 2615 } 2616 2617 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2618 btf_verifier_log_type(env, t, "Invalid index"); 2619 return -EINVAL; 2620 } 2621 2622 btf_verifier_log_type(env, t, NULL); 2623 2624 return meta_needed; 2625 } 2626 2627 static int btf_array_resolve(struct btf_verifier_env *env, 2628 const struct resolve_vertex *v) 2629 { 2630 const struct btf_array *array = btf_type_array(v->t); 2631 const struct btf_type *elem_type, *index_type; 2632 u32 elem_type_id, index_type_id; 2633 struct btf *btf = env->btf; 2634 u32 elem_size; 2635 2636 /* Check array->index_type */ 2637 index_type_id = array->index_type; 2638 index_type = btf_type_by_id(btf, index_type_id); 2639 if (btf_type_nosize_or_null(index_type) || 2640 btf_type_is_resolve_source_only(index_type)) { 2641 btf_verifier_log_type(env, v->t, "Invalid index"); 2642 return -EINVAL; 2643 } 2644 2645 if (!env_type_is_resolve_sink(env, index_type) && 2646 !env_type_is_resolved(env, index_type_id)) 2647 return env_stack_push(env, index_type, index_type_id); 2648 2649 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2650 if (!index_type || !btf_type_is_int(index_type) || 2651 !btf_type_int_is_regular(index_type)) { 2652 btf_verifier_log_type(env, v->t, "Invalid index"); 2653 return -EINVAL; 2654 } 2655 2656 /* Check array->type */ 2657 elem_type_id = array->type; 2658 elem_type = btf_type_by_id(btf, elem_type_id); 2659 if (btf_type_nosize_or_null(elem_type) || 2660 btf_type_is_resolve_source_only(elem_type)) { 2661 btf_verifier_log_type(env, v->t, 2662 "Invalid elem"); 2663 return -EINVAL; 2664 } 2665 2666 if (!env_type_is_resolve_sink(env, elem_type) && 2667 !env_type_is_resolved(env, elem_type_id)) 2668 return env_stack_push(env, elem_type, elem_type_id); 2669 2670 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2671 if (!elem_type) { 2672 btf_verifier_log_type(env, v->t, "Invalid elem"); 2673 return -EINVAL; 2674 } 2675 2676 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2677 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2678 return -EINVAL; 2679 } 2680 2681 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2682 btf_verifier_log_type(env, v->t, 2683 "Array size overflows U32_MAX"); 2684 return -EINVAL; 2685 } 2686 2687 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2688 2689 return 0; 2690 } 2691 2692 static void btf_array_log(struct btf_verifier_env *env, 2693 const struct btf_type *t) 2694 { 2695 const struct btf_array *array = btf_type_array(t); 2696 2697 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2698 array->type, array->index_type, array->nelems); 2699 } 2700 2701 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2702 u32 type_id, void *data, u8 bits_offset, 2703 struct btf_show *show) 2704 { 2705 const struct btf_array *array = btf_type_array(t); 2706 const struct btf_kind_operations *elem_ops; 2707 const struct btf_type *elem_type; 2708 u32 i, elem_size = 0, elem_type_id; 2709 u16 encoding = 0; 2710 2711 elem_type_id = array->type; 2712 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2713 if (elem_type && btf_type_has_size(elem_type)) 2714 elem_size = elem_type->size; 2715 2716 if (elem_type && btf_type_is_int(elem_type)) { 2717 u32 int_type = btf_type_int(elem_type); 2718 2719 encoding = BTF_INT_ENCODING(int_type); 2720 2721 /* 2722 * BTF_INT_CHAR encoding never seems to be set for 2723 * char arrays, so if size is 1 and element is 2724 * printable as a char, we'll do that. 2725 */ 2726 if (elem_size == 1) 2727 encoding = BTF_INT_CHAR; 2728 } 2729 2730 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2731 return; 2732 2733 if (!elem_type) 2734 goto out; 2735 elem_ops = btf_type_ops(elem_type); 2736 2737 for (i = 0; i < array->nelems; i++) { 2738 2739 btf_show_start_array_member(show); 2740 2741 elem_ops->show(btf, elem_type, elem_type_id, data, 2742 bits_offset, show); 2743 data += elem_size; 2744 2745 btf_show_end_array_member(show); 2746 2747 if (show->state.array_terminated) 2748 break; 2749 } 2750 out: 2751 btf_show_end_array_type(show); 2752 } 2753 2754 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2755 u32 type_id, void *data, u8 bits_offset, 2756 struct btf_show *show) 2757 { 2758 const struct btf_member *m = show->state.member; 2759 2760 /* 2761 * First check if any members would be shown (are non-zero). 2762 * See comments above "struct btf_show" definition for more 2763 * details on how this works at a high-level. 2764 */ 2765 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2766 if (!show->state.depth_check) { 2767 show->state.depth_check = show->state.depth + 1; 2768 show->state.depth_to_show = 0; 2769 } 2770 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2771 show->state.member = m; 2772 2773 if (show->state.depth_check != show->state.depth + 1) 2774 return; 2775 show->state.depth_check = 0; 2776 2777 if (show->state.depth_to_show <= show->state.depth) 2778 return; 2779 /* 2780 * Reaching here indicates we have recursed and found 2781 * non-zero array member(s). 2782 */ 2783 } 2784 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2785 } 2786 2787 static struct btf_kind_operations array_ops = { 2788 .check_meta = btf_array_check_meta, 2789 .resolve = btf_array_resolve, 2790 .check_member = btf_array_check_member, 2791 .check_kflag_member = btf_generic_check_kflag_member, 2792 .log_details = btf_array_log, 2793 .show = btf_array_show, 2794 }; 2795 2796 static int btf_struct_check_member(struct btf_verifier_env *env, 2797 const struct btf_type *struct_type, 2798 const struct btf_member *member, 2799 const struct btf_type *member_type) 2800 { 2801 u32 struct_bits_off = member->offset; 2802 u32 struct_size, bytes_offset; 2803 2804 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2805 btf_verifier_log_member(env, struct_type, member, 2806 "Member is not byte aligned"); 2807 return -EINVAL; 2808 } 2809 2810 struct_size = struct_type->size; 2811 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2812 if (struct_size - bytes_offset < member_type->size) { 2813 btf_verifier_log_member(env, struct_type, member, 2814 "Member exceeds struct_size"); 2815 return -EINVAL; 2816 } 2817 2818 return 0; 2819 } 2820 2821 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2822 const struct btf_type *t, 2823 u32 meta_left) 2824 { 2825 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2826 const struct btf_member *member; 2827 u32 meta_needed, last_offset; 2828 struct btf *btf = env->btf; 2829 u32 struct_size = t->size; 2830 u32 offset; 2831 u16 i; 2832 2833 meta_needed = btf_type_vlen(t) * sizeof(*member); 2834 if (meta_left < meta_needed) { 2835 btf_verifier_log_basic(env, t, 2836 "meta_left:%u meta_needed:%u", 2837 meta_left, meta_needed); 2838 return -EINVAL; 2839 } 2840 2841 /* struct type either no name or a valid one */ 2842 if (t->name_off && 2843 !btf_name_valid_identifier(env->btf, t->name_off)) { 2844 btf_verifier_log_type(env, t, "Invalid name"); 2845 return -EINVAL; 2846 } 2847 2848 btf_verifier_log_type(env, t, NULL); 2849 2850 last_offset = 0; 2851 for_each_member(i, t, member) { 2852 if (!btf_name_offset_valid(btf, member->name_off)) { 2853 btf_verifier_log_member(env, t, member, 2854 "Invalid member name_offset:%u", 2855 member->name_off); 2856 return -EINVAL; 2857 } 2858 2859 /* struct member either no name or a valid one */ 2860 if (member->name_off && 2861 !btf_name_valid_identifier(btf, member->name_off)) { 2862 btf_verifier_log_member(env, t, member, "Invalid name"); 2863 return -EINVAL; 2864 } 2865 /* A member cannot be in type void */ 2866 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2867 btf_verifier_log_member(env, t, member, 2868 "Invalid type_id"); 2869 return -EINVAL; 2870 } 2871 2872 offset = btf_member_bit_offset(t, member); 2873 if (is_union && offset) { 2874 btf_verifier_log_member(env, t, member, 2875 "Invalid member bits_offset"); 2876 return -EINVAL; 2877 } 2878 2879 /* 2880 * ">" instead of ">=" because the last member could be 2881 * "char a[0];" 2882 */ 2883 if (last_offset > offset) { 2884 btf_verifier_log_member(env, t, member, 2885 "Invalid member bits_offset"); 2886 return -EINVAL; 2887 } 2888 2889 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2890 btf_verifier_log_member(env, t, member, 2891 "Member bits_offset exceeds its struct size"); 2892 return -EINVAL; 2893 } 2894 2895 btf_verifier_log_member(env, t, member, NULL); 2896 last_offset = offset; 2897 } 2898 2899 return meta_needed; 2900 } 2901 2902 static int btf_struct_resolve(struct btf_verifier_env *env, 2903 const struct resolve_vertex *v) 2904 { 2905 const struct btf_member *member; 2906 int err; 2907 u16 i; 2908 2909 /* Before continue resolving the next_member, 2910 * ensure the last member is indeed resolved to a 2911 * type with size info. 2912 */ 2913 if (v->next_member) { 2914 const struct btf_type *last_member_type; 2915 const struct btf_member *last_member; 2916 u16 last_member_type_id; 2917 2918 last_member = btf_type_member(v->t) + v->next_member - 1; 2919 last_member_type_id = last_member->type; 2920 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2921 last_member_type_id))) 2922 return -EINVAL; 2923 2924 last_member_type = btf_type_by_id(env->btf, 2925 last_member_type_id); 2926 if (btf_type_kflag(v->t)) 2927 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2928 last_member, 2929 last_member_type); 2930 else 2931 err = btf_type_ops(last_member_type)->check_member(env, v->t, 2932 last_member, 2933 last_member_type); 2934 if (err) 2935 return err; 2936 } 2937 2938 for_each_member_from(i, v->next_member, v->t, member) { 2939 u32 member_type_id = member->type; 2940 const struct btf_type *member_type = btf_type_by_id(env->btf, 2941 member_type_id); 2942 2943 if (btf_type_nosize_or_null(member_type) || 2944 btf_type_is_resolve_source_only(member_type)) { 2945 btf_verifier_log_member(env, v->t, member, 2946 "Invalid member"); 2947 return -EINVAL; 2948 } 2949 2950 if (!env_type_is_resolve_sink(env, member_type) && 2951 !env_type_is_resolved(env, member_type_id)) { 2952 env_stack_set_next_member(env, i + 1); 2953 return env_stack_push(env, member_type, member_type_id); 2954 } 2955 2956 if (btf_type_kflag(v->t)) 2957 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 2958 member, 2959 member_type); 2960 else 2961 err = btf_type_ops(member_type)->check_member(env, v->t, 2962 member, 2963 member_type); 2964 if (err) 2965 return err; 2966 } 2967 2968 env_stack_pop_resolved(env, 0, 0); 2969 2970 return 0; 2971 } 2972 2973 static void btf_struct_log(struct btf_verifier_env *env, 2974 const struct btf_type *t) 2975 { 2976 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2977 } 2978 2979 /* find 'struct bpf_spin_lock' in map value. 2980 * return >= 0 offset if found 2981 * and < 0 in case of error 2982 */ 2983 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 2984 { 2985 const struct btf_member *member; 2986 u32 i, off = -ENOENT; 2987 2988 if (!__btf_type_is_struct(t)) 2989 return -EINVAL; 2990 2991 for_each_member(i, t, member) { 2992 const struct btf_type *member_type = btf_type_by_id(btf, 2993 member->type); 2994 if (!__btf_type_is_struct(member_type)) 2995 continue; 2996 if (member_type->size != sizeof(struct bpf_spin_lock)) 2997 continue; 2998 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 2999 "bpf_spin_lock")) 3000 continue; 3001 if (off != -ENOENT) 3002 /* only one 'struct bpf_spin_lock' is allowed */ 3003 return -E2BIG; 3004 off = btf_member_bit_offset(t, member); 3005 if (off % 8) 3006 /* valid C code cannot generate such BTF */ 3007 return -EINVAL; 3008 off /= 8; 3009 if (off % __alignof__(struct bpf_spin_lock)) 3010 /* valid struct bpf_spin_lock will be 4 byte aligned */ 3011 return -EINVAL; 3012 } 3013 return off; 3014 } 3015 3016 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3017 u32 type_id, void *data, u8 bits_offset, 3018 struct btf_show *show) 3019 { 3020 const struct btf_member *member; 3021 void *safe_data; 3022 u32 i; 3023 3024 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3025 if (!safe_data) 3026 return; 3027 3028 for_each_member(i, t, member) { 3029 const struct btf_type *member_type = btf_type_by_id(btf, 3030 member->type); 3031 const struct btf_kind_operations *ops; 3032 u32 member_offset, bitfield_size; 3033 u32 bytes_offset; 3034 u8 bits8_offset; 3035 3036 btf_show_start_member(show, member); 3037 3038 member_offset = btf_member_bit_offset(t, member); 3039 bitfield_size = btf_member_bitfield_size(t, member); 3040 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3041 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3042 if (bitfield_size) { 3043 safe_data = btf_show_start_type(show, member_type, 3044 member->type, 3045 data + bytes_offset); 3046 if (safe_data) 3047 btf_bitfield_show(safe_data, 3048 bits8_offset, 3049 bitfield_size, show); 3050 btf_show_end_type(show); 3051 } else { 3052 ops = btf_type_ops(member_type); 3053 ops->show(btf, member_type, member->type, 3054 data + bytes_offset, bits8_offset, show); 3055 } 3056 3057 btf_show_end_member(show); 3058 } 3059 3060 btf_show_end_struct_type(show); 3061 } 3062 3063 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3064 u32 type_id, void *data, u8 bits_offset, 3065 struct btf_show *show) 3066 { 3067 const struct btf_member *m = show->state.member; 3068 3069 /* 3070 * First check if any members would be shown (are non-zero). 3071 * See comments above "struct btf_show" definition for more 3072 * details on how this works at a high-level. 3073 */ 3074 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3075 if (!show->state.depth_check) { 3076 show->state.depth_check = show->state.depth + 1; 3077 show->state.depth_to_show = 0; 3078 } 3079 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3080 /* Restore saved member data here */ 3081 show->state.member = m; 3082 if (show->state.depth_check != show->state.depth + 1) 3083 return; 3084 show->state.depth_check = 0; 3085 3086 if (show->state.depth_to_show <= show->state.depth) 3087 return; 3088 /* 3089 * Reaching here indicates we have recursed and found 3090 * non-zero child values. 3091 */ 3092 } 3093 3094 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3095 } 3096 3097 static struct btf_kind_operations struct_ops = { 3098 .check_meta = btf_struct_check_meta, 3099 .resolve = btf_struct_resolve, 3100 .check_member = btf_struct_check_member, 3101 .check_kflag_member = btf_generic_check_kflag_member, 3102 .log_details = btf_struct_log, 3103 .show = btf_struct_show, 3104 }; 3105 3106 static int btf_enum_check_member(struct btf_verifier_env *env, 3107 const struct btf_type *struct_type, 3108 const struct btf_member *member, 3109 const struct btf_type *member_type) 3110 { 3111 u32 struct_bits_off = member->offset; 3112 u32 struct_size, bytes_offset; 3113 3114 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3115 btf_verifier_log_member(env, struct_type, member, 3116 "Member is not byte aligned"); 3117 return -EINVAL; 3118 } 3119 3120 struct_size = struct_type->size; 3121 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3122 if (struct_size - bytes_offset < member_type->size) { 3123 btf_verifier_log_member(env, struct_type, member, 3124 "Member exceeds struct_size"); 3125 return -EINVAL; 3126 } 3127 3128 return 0; 3129 } 3130 3131 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3132 const struct btf_type *struct_type, 3133 const struct btf_member *member, 3134 const struct btf_type *member_type) 3135 { 3136 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3137 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3138 3139 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3140 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3141 if (!nr_bits) { 3142 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3143 btf_verifier_log_member(env, struct_type, member, 3144 "Member is not byte aligned"); 3145 return -EINVAL; 3146 } 3147 3148 nr_bits = int_bitsize; 3149 } else if (nr_bits > int_bitsize) { 3150 btf_verifier_log_member(env, struct_type, member, 3151 "Invalid member bitfield_size"); 3152 return -EINVAL; 3153 } 3154 3155 struct_size = struct_type->size; 3156 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3157 if (struct_size < bytes_end) { 3158 btf_verifier_log_member(env, struct_type, member, 3159 "Member exceeds struct_size"); 3160 return -EINVAL; 3161 } 3162 3163 return 0; 3164 } 3165 3166 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3167 const struct btf_type *t, 3168 u32 meta_left) 3169 { 3170 const struct btf_enum *enums = btf_type_enum(t); 3171 struct btf *btf = env->btf; 3172 u16 i, nr_enums; 3173 u32 meta_needed; 3174 3175 nr_enums = btf_type_vlen(t); 3176 meta_needed = nr_enums * sizeof(*enums); 3177 3178 if (meta_left < meta_needed) { 3179 btf_verifier_log_basic(env, t, 3180 "meta_left:%u meta_needed:%u", 3181 meta_left, meta_needed); 3182 return -EINVAL; 3183 } 3184 3185 if (btf_type_kflag(t)) { 3186 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3187 return -EINVAL; 3188 } 3189 3190 if (t->size > 8 || !is_power_of_2(t->size)) { 3191 btf_verifier_log_type(env, t, "Unexpected size"); 3192 return -EINVAL; 3193 } 3194 3195 /* enum type either no name or a valid one */ 3196 if (t->name_off && 3197 !btf_name_valid_identifier(env->btf, t->name_off)) { 3198 btf_verifier_log_type(env, t, "Invalid name"); 3199 return -EINVAL; 3200 } 3201 3202 btf_verifier_log_type(env, t, NULL); 3203 3204 for (i = 0; i < nr_enums; i++) { 3205 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3206 btf_verifier_log(env, "\tInvalid name_offset:%u", 3207 enums[i].name_off); 3208 return -EINVAL; 3209 } 3210 3211 /* enum member must have a valid name */ 3212 if (!enums[i].name_off || 3213 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3214 btf_verifier_log_type(env, t, "Invalid name"); 3215 return -EINVAL; 3216 } 3217 3218 if (env->log.level == BPF_LOG_KERNEL) 3219 continue; 3220 btf_verifier_log(env, "\t%s val=%d\n", 3221 __btf_name_by_offset(btf, enums[i].name_off), 3222 enums[i].val); 3223 } 3224 3225 return meta_needed; 3226 } 3227 3228 static void btf_enum_log(struct btf_verifier_env *env, 3229 const struct btf_type *t) 3230 { 3231 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3232 } 3233 3234 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3235 u32 type_id, void *data, u8 bits_offset, 3236 struct btf_show *show) 3237 { 3238 const struct btf_enum *enums = btf_type_enum(t); 3239 u32 i, nr_enums = btf_type_vlen(t); 3240 void *safe_data; 3241 int v; 3242 3243 safe_data = btf_show_start_type(show, t, type_id, data); 3244 if (!safe_data) 3245 return; 3246 3247 v = *(int *)safe_data; 3248 3249 for (i = 0; i < nr_enums; i++) { 3250 if (v != enums[i].val) 3251 continue; 3252 3253 btf_show_type_value(show, "%s", 3254 __btf_name_by_offset(btf, 3255 enums[i].name_off)); 3256 3257 btf_show_end_type(show); 3258 return; 3259 } 3260 3261 btf_show_type_value(show, "%d", v); 3262 btf_show_end_type(show); 3263 } 3264 3265 static struct btf_kind_operations enum_ops = { 3266 .check_meta = btf_enum_check_meta, 3267 .resolve = btf_df_resolve, 3268 .check_member = btf_enum_check_member, 3269 .check_kflag_member = btf_enum_check_kflag_member, 3270 .log_details = btf_enum_log, 3271 .show = btf_enum_show, 3272 }; 3273 3274 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3275 const struct btf_type *t, 3276 u32 meta_left) 3277 { 3278 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3279 3280 if (meta_left < meta_needed) { 3281 btf_verifier_log_basic(env, t, 3282 "meta_left:%u meta_needed:%u", 3283 meta_left, meta_needed); 3284 return -EINVAL; 3285 } 3286 3287 if (t->name_off) { 3288 btf_verifier_log_type(env, t, "Invalid name"); 3289 return -EINVAL; 3290 } 3291 3292 if (btf_type_kflag(t)) { 3293 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3294 return -EINVAL; 3295 } 3296 3297 btf_verifier_log_type(env, t, NULL); 3298 3299 return meta_needed; 3300 } 3301 3302 static void btf_func_proto_log(struct btf_verifier_env *env, 3303 const struct btf_type *t) 3304 { 3305 const struct btf_param *args = (const struct btf_param *)(t + 1); 3306 u16 nr_args = btf_type_vlen(t), i; 3307 3308 btf_verifier_log(env, "return=%u args=(", t->type); 3309 if (!nr_args) { 3310 btf_verifier_log(env, "void"); 3311 goto done; 3312 } 3313 3314 if (nr_args == 1 && !args[0].type) { 3315 /* Only one vararg */ 3316 btf_verifier_log(env, "vararg"); 3317 goto done; 3318 } 3319 3320 btf_verifier_log(env, "%u %s", args[0].type, 3321 __btf_name_by_offset(env->btf, 3322 args[0].name_off)); 3323 for (i = 1; i < nr_args - 1; i++) 3324 btf_verifier_log(env, ", %u %s", args[i].type, 3325 __btf_name_by_offset(env->btf, 3326 args[i].name_off)); 3327 3328 if (nr_args > 1) { 3329 const struct btf_param *last_arg = &args[nr_args - 1]; 3330 3331 if (last_arg->type) 3332 btf_verifier_log(env, ", %u %s", last_arg->type, 3333 __btf_name_by_offset(env->btf, 3334 last_arg->name_off)); 3335 else 3336 btf_verifier_log(env, ", vararg"); 3337 } 3338 3339 done: 3340 btf_verifier_log(env, ")"); 3341 } 3342 3343 static struct btf_kind_operations func_proto_ops = { 3344 .check_meta = btf_func_proto_check_meta, 3345 .resolve = btf_df_resolve, 3346 /* 3347 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3348 * a struct's member. 3349 * 3350 * It should be a funciton pointer instead. 3351 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3352 * 3353 * Hence, there is no btf_func_check_member(). 3354 */ 3355 .check_member = btf_df_check_member, 3356 .check_kflag_member = btf_df_check_kflag_member, 3357 .log_details = btf_func_proto_log, 3358 .show = btf_df_show, 3359 }; 3360 3361 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3362 const struct btf_type *t, 3363 u32 meta_left) 3364 { 3365 if (!t->name_off || 3366 !btf_name_valid_identifier(env->btf, t->name_off)) { 3367 btf_verifier_log_type(env, t, "Invalid name"); 3368 return -EINVAL; 3369 } 3370 3371 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3372 btf_verifier_log_type(env, t, "Invalid func linkage"); 3373 return -EINVAL; 3374 } 3375 3376 if (btf_type_kflag(t)) { 3377 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3378 return -EINVAL; 3379 } 3380 3381 btf_verifier_log_type(env, t, NULL); 3382 3383 return 0; 3384 } 3385 3386 static struct btf_kind_operations func_ops = { 3387 .check_meta = btf_func_check_meta, 3388 .resolve = btf_df_resolve, 3389 .check_member = btf_df_check_member, 3390 .check_kflag_member = btf_df_check_kflag_member, 3391 .log_details = btf_ref_type_log, 3392 .show = btf_df_show, 3393 }; 3394 3395 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3396 const struct btf_type *t, 3397 u32 meta_left) 3398 { 3399 const struct btf_var *var; 3400 u32 meta_needed = sizeof(*var); 3401 3402 if (meta_left < meta_needed) { 3403 btf_verifier_log_basic(env, t, 3404 "meta_left:%u meta_needed:%u", 3405 meta_left, meta_needed); 3406 return -EINVAL; 3407 } 3408 3409 if (btf_type_vlen(t)) { 3410 btf_verifier_log_type(env, t, "vlen != 0"); 3411 return -EINVAL; 3412 } 3413 3414 if (btf_type_kflag(t)) { 3415 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3416 return -EINVAL; 3417 } 3418 3419 if (!t->name_off || 3420 !__btf_name_valid(env->btf, t->name_off, true)) { 3421 btf_verifier_log_type(env, t, "Invalid name"); 3422 return -EINVAL; 3423 } 3424 3425 /* A var cannot be in type void */ 3426 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3427 btf_verifier_log_type(env, t, "Invalid type_id"); 3428 return -EINVAL; 3429 } 3430 3431 var = btf_type_var(t); 3432 if (var->linkage != BTF_VAR_STATIC && 3433 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3434 btf_verifier_log_type(env, t, "Linkage not supported"); 3435 return -EINVAL; 3436 } 3437 3438 btf_verifier_log_type(env, t, NULL); 3439 3440 return meta_needed; 3441 } 3442 3443 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3444 { 3445 const struct btf_var *var = btf_type_var(t); 3446 3447 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3448 } 3449 3450 static const struct btf_kind_operations var_ops = { 3451 .check_meta = btf_var_check_meta, 3452 .resolve = btf_var_resolve, 3453 .check_member = btf_df_check_member, 3454 .check_kflag_member = btf_df_check_kflag_member, 3455 .log_details = btf_var_log, 3456 .show = btf_var_show, 3457 }; 3458 3459 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3460 const struct btf_type *t, 3461 u32 meta_left) 3462 { 3463 const struct btf_var_secinfo *vsi; 3464 u64 last_vsi_end_off = 0, sum = 0; 3465 u32 i, meta_needed; 3466 3467 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3468 if (meta_left < meta_needed) { 3469 btf_verifier_log_basic(env, t, 3470 "meta_left:%u meta_needed:%u", 3471 meta_left, meta_needed); 3472 return -EINVAL; 3473 } 3474 3475 if (!btf_type_vlen(t)) { 3476 btf_verifier_log_type(env, t, "vlen == 0"); 3477 return -EINVAL; 3478 } 3479 3480 if (!t->size) { 3481 btf_verifier_log_type(env, t, "size == 0"); 3482 return -EINVAL; 3483 } 3484 3485 if (btf_type_kflag(t)) { 3486 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3487 return -EINVAL; 3488 } 3489 3490 if (!t->name_off || 3491 !btf_name_valid_section(env->btf, t->name_off)) { 3492 btf_verifier_log_type(env, t, "Invalid name"); 3493 return -EINVAL; 3494 } 3495 3496 btf_verifier_log_type(env, t, NULL); 3497 3498 for_each_vsi(i, t, vsi) { 3499 /* A var cannot be in type void */ 3500 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3501 btf_verifier_log_vsi(env, t, vsi, 3502 "Invalid type_id"); 3503 return -EINVAL; 3504 } 3505 3506 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3507 btf_verifier_log_vsi(env, t, vsi, 3508 "Invalid offset"); 3509 return -EINVAL; 3510 } 3511 3512 if (!vsi->size || vsi->size > t->size) { 3513 btf_verifier_log_vsi(env, t, vsi, 3514 "Invalid size"); 3515 return -EINVAL; 3516 } 3517 3518 last_vsi_end_off = vsi->offset + vsi->size; 3519 if (last_vsi_end_off > t->size) { 3520 btf_verifier_log_vsi(env, t, vsi, 3521 "Invalid offset+size"); 3522 return -EINVAL; 3523 } 3524 3525 btf_verifier_log_vsi(env, t, vsi, NULL); 3526 sum += vsi->size; 3527 } 3528 3529 if (t->size < sum) { 3530 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3531 return -EINVAL; 3532 } 3533 3534 return meta_needed; 3535 } 3536 3537 static int btf_datasec_resolve(struct btf_verifier_env *env, 3538 const struct resolve_vertex *v) 3539 { 3540 const struct btf_var_secinfo *vsi; 3541 struct btf *btf = env->btf; 3542 u16 i; 3543 3544 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3545 u32 var_type_id = vsi->type, type_id, type_size = 0; 3546 const struct btf_type *var_type = btf_type_by_id(env->btf, 3547 var_type_id); 3548 if (!var_type || !btf_type_is_var(var_type)) { 3549 btf_verifier_log_vsi(env, v->t, vsi, 3550 "Not a VAR kind member"); 3551 return -EINVAL; 3552 } 3553 3554 if (!env_type_is_resolve_sink(env, var_type) && 3555 !env_type_is_resolved(env, var_type_id)) { 3556 env_stack_set_next_member(env, i + 1); 3557 return env_stack_push(env, var_type, var_type_id); 3558 } 3559 3560 type_id = var_type->type; 3561 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3562 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3563 return -EINVAL; 3564 } 3565 3566 if (vsi->size < type_size) { 3567 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3568 return -EINVAL; 3569 } 3570 } 3571 3572 env_stack_pop_resolved(env, 0, 0); 3573 return 0; 3574 } 3575 3576 static void btf_datasec_log(struct btf_verifier_env *env, 3577 const struct btf_type *t) 3578 { 3579 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3580 } 3581 3582 static void btf_datasec_show(const struct btf *btf, 3583 const struct btf_type *t, u32 type_id, 3584 void *data, u8 bits_offset, 3585 struct btf_show *show) 3586 { 3587 const struct btf_var_secinfo *vsi; 3588 const struct btf_type *var; 3589 u32 i; 3590 3591 if (!btf_show_start_type(show, t, type_id, data)) 3592 return; 3593 3594 btf_show_type_value(show, "section (\"%s\") = {", 3595 __btf_name_by_offset(btf, t->name_off)); 3596 for_each_vsi(i, t, vsi) { 3597 var = btf_type_by_id(btf, vsi->type); 3598 if (i) 3599 btf_show(show, ","); 3600 btf_type_ops(var)->show(btf, var, vsi->type, 3601 data + vsi->offset, bits_offset, show); 3602 } 3603 btf_show_end_type(show); 3604 } 3605 3606 static const struct btf_kind_operations datasec_ops = { 3607 .check_meta = btf_datasec_check_meta, 3608 .resolve = btf_datasec_resolve, 3609 .check_member = btf_df_check_member, 3610 .check_kflag_member = btf_df_check_kflag_member, 3611 .log_details = btf_datasec_log, 3612 .show = btf_datasec_show, 3613 }; 3614 3615 static int btf_func_proto_check(struct btf_verifier_env *env, 3616 const struct btf_type *t) 3617 { 3618 const struct btf_type *ret_type; 3619 const struct btf_param *args; 3620 const struct btf *btf; 3621 u16 nr_args, i; 3622 int err; 3623 3624 btf = env->btf; 3625 args = (const struct btf_param *)(t + 1); 3626 nr_args = btf_type_vlen(t); 3627 3628 /* Check func return type which could be "void" (t->type == 0) */ 3629 if (t->type) { 3630 u32 ret_type_id = t->type; 3631 3632 ret_type = btf_type_by_id(btf, ret_type_id); 3633 if (!ret_type) { 3634 btf_verifier_log_type(env, t, "Invalid return type"); 3635 return -EINVAL; 3636 } 3637 3638 if (btf_type_needs_resolve(ret_type) && 3639 !env_type_is_resolved(env, ret_type_id)) { 3640 err = btf_resolve(env, ret_type, ret_type_id); 3641 if (err) 3642 return err; 3643 } 3644 3645 /* Ensure the return type is a type that has a size */ 3646 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 3647 btf_verifier_log_type(env, t, "Invalid return type"); 3648 return -EINVAL; 3649 } 3650 } 3651 3652 if (!nr_args) 3653 return 0; 3654 3655 /* Last func arg type_id could be 0 if it is a vararg */ 3656 if (!args[nr_args - 1].type) { 3657 if (args[nr_args - 1].name_off) { 3658 btf_verifier_log_type(env, t, "Invalid arg#%u", 3659 nr_args); 3660 return -EINVAL; 3661 } 3662 nr_args--; 3663 } 3664 3665 err = 0; 3666 for (i = 0; i < nr_args; i++) { 3667 const struct btf_type *arg_type; 3668 u32 arg_type_id; 3669 3670 arg_type_id = args[i].type; 3671 arg_type = btf_type_by_id(btf, arg_type_id); 3672 if (!arg_type) { 3673 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3674 err = -EINVAL; 3675 break; 3676 } 3677 3678 if (args[i].name_off && 3679 (!btf_name_offset_valid(btf, args[i].name_off) || 3680 !btf_name_valid_identifier(btf, args[i].name_off))) { 3681 btf_verifier_log_type(env, t, 3682 "Invalid arg#%u", i + 1); 3683 err = -EINVAL; 3684 break; 3685 } 3686 3687 if (btf_type_needs_resolve(arg_type) && 3688 !env_type_is_resolved(env, arg_type_id)) { 3689 err = btf_resolve(env, arg_type, arg_type_id); 3690 if (err) 3691 break; 3692 } 3693 3694 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 3695 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3696 err = -EINVAL; 3697 break; 3698 } 3699 } 3700 3701 return err; 3702 } 3703 3704 static int btf_func_check(struct btf_verifier_env *env, 3705 const struct btf_type *t) 3706 { 3707 const struct btf_type *proto_type; 3708 const struct btf_param *args; 3709 const struct btf *btf; 3710 u16 nr_args, i; 3711 3712 btf = env->btf; 3713 proto_type = btf_type_by_id(btf, t->type); 3714 3715 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 3716 btf_verifier_log_type(env, t, "Invalid type_id"); 3717 return -EINVAL; 3718 } 3719 3720 args = (const struct btf_param *)(proto_type + 1); 3721 nr_args = btf_type_vlen(proto_type); 3722 for (i = 0; i < nr_args; i++) { 3723 if (!args[i].name_off && args[i].type) { 3724 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3725 return -EINVAL; 3726 } 3727 } 3728 3729 return 0; 3730 } 3731 3732 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 3733 [BTF_KIND_INT] = &int_ops, 3734 [BTF_KIND_PTR] = &ptr_ops, 3735 [BTF_KIND_ARRAY] = &array_ops, 3736 [BTF_KIND_STRUCT] = &struct_ops, 3737 [BTF_KIND_UNION] = &struct_ops, 3738 [BTF_KIND_ENUM] = &enum_ops, 3739 [BTF_KIND_FWD] = &fwd_ops, 3740 [BTF_KIND_TYPEDEF] = &modifier_ops, 3741 [BTF_KIND_VOLATILE] = &modifier_ops, 3742 [BTF_KIND_CONST] = &modifier_ops, 3743 [BTF_KIND_RESTRICT] = &modifier_ops, 3744 [BTF_KIND_FUNC] = &func_ops, 3745 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 3746 [BTF_KIND_VAR] = &var_ops, 3747 [BTF_KIND_DATASEC] = &datasec_ops, 3748 }; 3749 3750 static s32 btf_check_meta(struct btf_verifier_env *env, 3751 const struct btf_type *t, 3752 u32 meta_left) 3753 { 3754 u32 saved_meta_left = meta_left; 3755 s32 var_meta_size; 3756 3757 if (meta_left < sizeof(*t)) { 3758 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 3759 env->log_type_id, meta_left, sizeof(*t)); 3760 return -EINVAL; 3761 } 3762 meta_left -= sizeof(*t); 3763 3764 if (t->info & ~BTF_INFO_MASK) { 3765 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 3766 env->log_type_id, t->info); 3767 return -EINVAL; 3768 } 3769 3770 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 3771 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 3772 btf_verifier_log(env, "[%u] Invalid kind:%u", 3773 env->log_type_id, BTF_INFO_KIND(t->info)); 3774 return -EINVAL; 3775 } 3776 3777 if (!btf_name_offset_valid(env->btf, t->name_off)) { 3778 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 3779 env->log_type_id, t->name_off); 3780 return -EINVAL; 3781 } 3782 3783 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 3784 if (var_meta_size < 0) 3785 return var_meta_size; 3786 3787 meta_left -= var_meta_size; 3788 3789 return saved_meta_left - meta_left; 3790 } 3791 3792 static int btf_check_all_metas(struct btf_verifier_env *env) 3793 { 3794 struct btf *btf = env->btf; 3795 struct btf_header *hdr; 3796 void *cur, *end; 3797 3798 hdr = &btf->hdr; 3799 cur = btf->nohdr_data + hdr->type_off; 3800 end = cur + hdr->type_len; 3801 3802 env->log_type_id = 1; 3803 while (cur < end) { 3804 struct btf_type *t = cur; 3805 s32 meta_size; 3806 3807 meta_size = btf_check_meta(env, t, end - cur); 3808 if (meta_size < 0) 3809 return meta_size; 3810 3811 btf_add_type(env, t); 3812 cur += meta_size; 3813 env->log_type_id++; 3814 } 3815 3816 return 0; 3817 } 3818 3819 static bool btf_resolve_valid(struct btf_verifier_env *env, 3820 const struct btf_type *t, 3821 u32 type_id) 3822 { 3823 struct btf *btf = env->btf; 3824 3825 if (!env_type_is_resolved(env, type_id)) 3826 return false; 3827 3828 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 3829 return !btf->resolved_ids[type_id] && 3830 !btf->resolved_sizes[type_id]; 3831 3832 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3833 btf_type_is_var(t)) { 3834 t = btf_type_id_resolve(btf, &type_id); 3835 return t && 3836 !btf_type_is_modifier(t) && 3837 !btf_type_is_var(t) && 3838 !btf_type_is_datasec(t); 3839 } 3840 3841 if (btf_type_is_array(t)) { 3842 const struct btf_array *array = btf_type_array(t); 3843 const struct btf_type *elem_type; 3844 u32 elem_type_id = array->type; 3845 u32 elem_size; 3846 3847 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3848 return elem_type && !btf_type_is_modifier(elem_type) && 3849 (array->nelems * elem_size == 3850 btf->resolved_sizes[type_id]); 3851 } 3852 3853 return false; 3854 } 3855 3856 static int btf_resolve(struct btf_verifier_env *env, 3857 const struct btf_type *t, u32 type_id) 3858 { 3859 u32 save_log_type_id = env->log_type_id; 3860 const struct resolve_vertex *v; 3861 int err = 0; 3862 3863 env->resolve_mode = RESOLVE_TBD; 3864 env_stack_push(env, t, type_id); 3865 while (!err && (v = env_stack_peak(env))) { 3866 env->log_type_id = v->type_id; 3867 err = btf_type_ops(v->t)->resolve(env, v); 3868 } 3869 3870 env->log_type_id = type_id; 3871 if (err == -E2BIG) { 3872 btf_verifier_log_type(env, t, 3873 "Exceeded max resolving depth:%u", 3874 MAX_RESOLVE_DEPTH); 3875 } else if (err == -EEXIST) { 3876 btf_verifier_log_type(env, t, "Loop detected"); 3877 } 3878 3879 /* Final sanity check */ 3880 if (!err && !btf_resolve_valid(env, t, type_id)) { 3881 btf_verifier_log_type(env, t, "Invalid resolve state"); 3882 err = -EINVAL; 3883 } 3884 3885 env->log_type_id = save_log_type_id; 3886 return err; 3887 } 3888 3889 static int btf_check_all_types(struct btf_verifier_env *env) 3890 { 3891 struct btf *btf = env->btf; 3892 u32 type_id; 3893 int err; 3894 3895 err = env_resolve_init(env); 3896 if (err) 3897 return err; 3898 3899 env->phase++; 3900 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 3901 const struct btf_type *t = btf_type_by_id(btf, type_id); 3902 3903 env->log_type_id = type_id; 3904 if (btf_type_needs_resolve(t) && 3905 !env_type_is_resolved(env, type_id)) { 3906 err = btf_resolve(env, t, type_id); 3907 if (err) 3908 return err; 3909 } 3910 3911 if (btf_type_is_func_proto(t)) { 3912 err = btf_func_proto_check(env, t); 3913 if (err) 3914 return err; 3915 } 3916 3917 if (btf_type_is_func(t)) { 3918 err = btf_func_check(env, t); 3919 if (err) 3920 return err; 3921 } 3922 } 3923 3924 return 0; 3925 } 3926 3927 static int btf_parse_type_sec(struct btf_verifier_env *env) 3928 { 3929 const struct btf_header *hdr = &env->btf->hdr; 3930 int err; 3931 3932 /* Type section must align to 4 bytes */ 3933 if (hdr->type_off & (sizeof(u32) - 1)) { 3934 btf_verifier_log(env, "Unaligned type_off"); 3935 return -EINVAL; 3936 } 3937 3938 if (!hdr->type_len) { 3939 btf_verifier_log(env, "No type found"); 3940 return -EINVAL; 3941 } 3942 3943 err = btf_check_all_metas(env); 3944 if (err) 3945 return err; 3946 3947 return btf_check_all_types(env); 3948 } 3949 3950 static int btf_parse_str_sec(struct btf_verifier_env *env) 3951 { 3952 const struct btf_header *hdr; 3953 struct btf *btf = env->btf; 3954 const char *start, *end; 3955 3956 hdr = &btf->hdr; 3957 start = btf->nohdr_data + hdr->str_off; 3958 end = start + hdr->str_len; 3959 3960 if (end != btf->data + btf->data_size) { 3961 btf_verifier_log(env, "String section is not at the end"); 3962 return -EINVAL; 3963 } 3964 3965 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 3966 start[0] || end[-1]) { 3967 btf_verifier_log(env, "Invalid string section"); 3968 return -EINVAL; 3969 } 3970 3971 btf->strings = start; 3972 3973 return 0; 3974 } 3975 3976 static const size_t btf_sec_info_offset[] = { 3977 offsetof(struct btf_header, type_off), 3978 offsetof(struct btf_header, str_off), 3979 }; 3980 3981 static int btf_sec_info_cmp(const void *a, const void *b) 3982 { 3983 const struct btf_sec_info *x = a; 3984 const struct btf_sec_info *y = b; 3985 3986 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 3987 } 3988 3989 static int btf_check_sec_info(struct btf_verifier_env *env, 3990 u32 btf_data_size) 3991 { 3992 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 3993 u32 total, expected_total, i; 3994 const struct btf_header *hdr; 3995 const struct btf *btf; 3996 3997 btf = env->btf; 3998 hdr = &btf->hdr; 3999 4000 /* Populate the secs from hdr */ 4001 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4002 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4003 btf_sec_info_offset[i]); 4004 4005 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4006 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4007 4008 /* Check for gaps and overlap among sections */ 4009 total = 0; 4010 expected_total = btf_data_size - hdr->hdr_len; 4011 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4012 if (expected_total < secs[i].off) { 4013 btf_verifier_log(env, "Invalid section offset"); 4014 return -EINVAL; 4015 } 4016 if (total < secs[i].off) { 4017 /* gap */ 4018 btf_verifier_log(env, "Unsupported section found"); 4019 return -EINVAL; 4020 } 4021 if (total > secs[i].off) { 4022 btf_verifier_log(env, "Section overlap found"); 4023 return -EINVAL; 4024 } 4025 if (expected_total - total < secs[i].len) { 4026 btf_verifier_log(env, 4027 "Total section length too long"); 4028 return -EINVAL; 4029 } 4030 total += secs[i].len; 4031 } 4032 4033 /* There is data other than hdr and known sections */ 4034 if (expected_total != total) { 4035 btf_verifier_log(env, "Unsupported section found"); 4036 return -EINVAL; 4037 } 4038 4039 return 0; 4040 } 4041 4042 static int btf_parse_hdr(struct btf_verifier_env *env) 4043 { 4044 u32 hdr_len, hdr_copy, btf_data_size; 4045 const struct btf_header *hdr; 4046 struct btf *btf; 4047 int err; 4048 4049 btf = env->btf; 4050 btf_data_size = btf->data_size; 4051 4052 if (btf_data_size < 4053 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4054 btf_verifier_log(env, "hdr_len not found"); 4055 return -EINVAL; 4056 } 4057 4058 hdr = btf->data; 4059 hdr_len = hdr->hdr_len; 4060 if (btf_data_size < hdr_len) { 4061 btf_verifier_log(env, "btf_header not found"); 4062 return -EINVAL; 4063 } 4064 4065 /* Ensure the unsupported header fields are zero */ 4066 if (hdr_len > sizeof(btf->hdr)) { 4067 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4068 u8 *end = btf->data + hdr_len; 4069 4070 for (; expected_zero < end; expected_zero++) { 4071 if (*expected_zero) { 4072 btf_verifier_log(env, "Unsupported btf_header"); 4073 return -E2BIG; 4074 } 4075 } 4076 } 4077 4078 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4079 memcpy(&btf->hdr, btf->data, hdr_copy); 4080 4081 hdr = &btf->hdr; 4082 4083 btf_verifier_log_hdr(env, btf_data_size); 4084 4085 if (hdr->magic != BTF_MAGIC) { 4086 btf_verifier_log(env, "Invalid magic"); 4087 return -EINVAL; 4088 } 4089 4090 if (hdr->version != BTF_VERSION) { 4091 btf_verifier_log(env, "Unsupported version"); 4092 return -ENOTSUPP; 4093 } 4094 4095 if (hdr->flags) { 4096 btf_verifier_log(env, "Unsupported flags"); 4097 return -ENOTSUPP; 4098 } 4099 4100 if (btf_data_size == hdr->hdr_len) { 4101 btf_verifier_log(env, "No data"); 4102 return -EINVAL; 4103 } 4104 4105 err = btf_check_sec_info(env, btf_data_size); 4106 if (err) 4107 return err; 4108 4109 return 0; 4110 } 4111 4112 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 4113 u32 log_level, char __user *log_ubuf, u32 log_size) 4114 { 4115 struct btf_verifier_env *env = NULL; 4116 struct bpf_verifier_log *log; 4117 struct btf *btf = NULL; 4118 u8 *data; 4119 int err; 4120 4121 if (btf_data_size > BTF_MAX_SIZE) 4122 return ERR_PTR(-E2BIG); 4123 4124 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4125 if (!env) 4126 return ERR_PTR(-ENOMEM); 4127 4128 log = &env->log; 4129 if (log_level || log_ubuf || log_size) { 4130 /* user requested verbose verifier output 4131 * and supplied buffer to store the verification trace 4132 */ 4133 log->level = log_level; 4134 log->ubuf = log_ubuf; 4135 log->len_total = log_size; 4136 4137 /* log attributes have to be sane */ 4138 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4139 !log->level || !log->ubuf) { 4140 err = -EINVAL; 4141 goto errout; 4142 } 4143 } 4144 4145 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4146 if (!btf) { 4147 err = -ENOMEM; 4148 goto errout; 4149 } 4150 env->btf = btf; 4151 4152 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4153 if (!data) { 4154 err = -ENOMEM; 4155 goto errout; 4156 } 4157 4158 btf->data = data; 4159 btf->data_size = btf_data_size; 4160 4161 if (copy_from_user(data, btf_data, btf_data_size)) { 4162 err = -EFAULT; 4163 goto errout; 4164 } 4165 4166 err = btf_parse_hdr(env); 4167 if (err) 4168 goto errout; 4169 4170 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4171 4172 err = btf_parse_str_sec(env); 4173 if (err) 4174 goto errout; 4175 4176 err = btf_parse_type_sec(env); 4177 if (err) 4178 goto errout; 4179 4180 if (log->level && bpf_verifier_log_full(log)) { 4181 err = -ENOSPC; 4182 goto errout; 4183 } 4184 4185 btf_verifier_env_free(env); 4186 refcount_set(&btf->refcnt, 1); 4187 return btf; 4188 4189 errout: 4190 btf_verifier_env_free(env); 4191 if (btf) 4192 btf_free(btf); 4193 return ERR_PTR(err); 4194 } 4195 4196 extern char __weak __start_BTF[]; 4197 extern char __weak __stop_BTF[]; 4198 extern struct btf *btf_vmlinux; 4199 4200 #define BPF_MAP_TYPE(_id, _ops) 4201 #define BPF_LINK_TYPE(_id, _name) 4202 static union { 4203 struct bpf_ctx_convert { 4204 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4205 prog_ctx_type _id##_prog; \ 4206 kern_ctx_type _id##_kern; 4207 #include <linux/bpf_types.h> 4208 #undef BPF_PROG_TYPE 4209 } *__t; 4210 /* 't' is written once under lock. Read many times. */ 4211 const struct btf_type *t; 4212 } bpf_ctx_convert; 4213 enum { 4214 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4215 __ctx_convert##_id, 4216 #include <linux/bpf_types.h> 4217 #undef BPF_PROG_TYPE 4218 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4219 }; 4220 static u8 bpf_ctx_convert_map[] = { 4221 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4222 [_id] = __ctx_convert##_id, 4223 #include <linux/bpf_types.h> 4224 #undef BPF_PROG_TYPE 4225 0, /* avoid empty array */ 4226 }; 4227 #undef BPF_MAP_TYPE 4228 #undef BPF_LINK_TYPE 4229 4230 static const struct btf_member * 4231 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf, 4232 const struct btf_type *t, enum bpf_prog_type prog_type, 4233 int arg) 4234 { 4235 const struct btf_type *conv_struct; 4236 const struct btf_type *ctx_struct; 4237 const struct btf_member *ctx_type; 4238 const char *tname, *ctx_tname; 4239 4240 conv_struct = bpf_ctx_convert.t; 4241 if (!conv_struct) { 4242 bpf_log(log, "btf_vmlinux is malformed\n"); 4243 return NULL; 4244 } 4245 t = btf_type_by_id(btf, t->type); 4246 while (btf_type_is_modifier(t)) 4247 t = btf_type_by_id(btf, t->type); 4248 if (!btf_type_is_struct(t)) { 4249 /* Only pointer to struct is supported for now. 4250 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4251 * is not supported yet. 4252 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4253 */ 4254 if (log->level & BPF_LOG_LEVEL) 4255 bpf_log(log, "arg#%d type is not a struct\n", arg); 4256 return NULL; 4257 } 4258 tname = btf_name_by_offset(btf, t->name_off); 4259 if (!tname) { 4260 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4261 return NULL; 4262 } 4263 /* prog_type is valid bpf program type. No need for bounds check. */ 4264 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4265 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4266 * Like 'struct __sk_buff' 4267 */ 4268 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4269 if (!ctx_struct) 4270 /* should not happen */ 4271 return NULL; 4272 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4273 if (!ctx_tname) { 4274 /* should not happen */ 4275 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4276 return NULL; 4277 } 4278 /* only compare that prog's ctx type name is the same as 4279 * kernel expects. No need to compare field by field. 4280 * It's ok for bpf prog to do: 4281 * struct __sk_buff {}; 4282 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4283 * { // no fields of skb are ever used } 4284 */ 4285 if (strcmp(ctx_tname, tname)) 4286 return NULL; 4287 return ctx_type; 4288 } 4289 4290 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4291 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4292 #define BPF_LINK_TYPE(_id, _name) 4293 #define BPF_MAP_TYPE(_id, _ops) \ 4294 [_id] = &_ops, 4295 #include <linux/bpf_types.h> 4296 #undef BPF_PROG_TYPE 4297 #undef BPF_LINK_TYPE 4298 #undef BPF_MAP_TYPE 4299 }; 4300 4301 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4302 struct bpf_verifier_log *log) 4303 { 4304 const struct bpf_map_ops *ops; 4305 int i, btf_id; 4306 4307 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4308 ops = btf_vmlinux_map_ops[i]; 4309 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4310 continue; 4311 if (!ops->map_btf_name || !ops->map_btf_id) { 4312 bpf_log(log, "map type %d is misconfigured\n", i); 4313 return -EINVAL; 4314 } 4315 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4316 BTF_KIND_STRUCT); 4317 if (btf_id < 0) 4318 return btf_id; 4319 *ops->map_btf_id = btf_id; 4320 } 4321 4322 return 0; 4323 } 4324 4325 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4326 struct btf *btf, 4327 const struct btf_type *t, 4328 enum bpf_prog_type prog_type, 4329 int arg) 4330 { 4331 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4332 4333 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4334 if (!prog_ctx_type) 4335 return -ENOENT; 4336 kern_ctx_type = prog_ctx_type + 1; 4337 return kern_ctx_type->type; 4338 } 4339 4340 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4341 BTF_ID(struct, bpf_ctx_convert) 4342 4343 struct btf *btf_parse_vmlinux(void) 4344 { 4345 struct btf_verifier_env *env = NULL; 4346 struct bpf_verifier_log *log; 4347 struct btf *btf = NULL; 4348 int err; 4349 4350 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4351 if (!env) 4352 return ERR_PTR(-ENOMEM); 4353 4354 log = &env->log; 4355 log->level = BPF_LOG_KERNEL; 4356 4357 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4358 if (!btf) { 4359 err = -ENOMEM; 4360 goto errout; 4361 } 4362 env->btf = btf; 4363 4364 btf->data = __start_BTF; 4365 btf->data_size = __stop_BTF - __start_BTF; 4366 4367 err = btf_parse_hdr(env); 4368 if (err) 4369 goto errout; 4370 4371 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4372 4373 err = btf_parse_str_sec(env); 4374 if (err) 4375 goto errout; 4376 4377 err = btf_check_all_metas(env); 4378 if (err) 4379 goto errout; 4380 4381 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4382 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4383 4384 /* find bpf map structs for map_ptr access checking */ 4385 err = btf_vmlinux_map_ids_init(btf, log); 4386 if (err < 0) 4387 goto errout; 4388 4389 bpf_struct_ops_init(btf, log); 4390 4391 btf_verifier_env_free(env); 4392 refcount_set(&btf->refcnt, 1); 4393 return btf; 4394 4395 errout: 4396 btf_verifier_env_free(env); 4397 if (btf) { 4398 kvfree(btf->types); 4399 kfree(btf); 4400 } 4401 return ERR_PTR(err); 4402 } 4403 4404 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4405 { 4406 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4407 4408 if (tgt_prog) { 4409 return tgt_prog->aux->btf; 4410 } else { 4411 return btf_vmlinux; 4412 } 4413 } 4414 4415 static bool is_string_ptr(struct btf *btf, const struct btf_type *t) 4416 { 4417 /* t comes in already as a pointer */ 4418 t = btf_type_by_id(btf, t->type); 4419 4420 /* allow const */ 4421 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4422 t = btf_type_by_id(btf, t->type); 4423 4424 /* char, signed char, unsigned char */ 4425 return btf_type_is_int(t) && t->size == 1; 4426 } 4427 4428 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4429 const struct bpf_prog *prog, 4430 struct bpf_insn_access_aux *info) 4431 { 4432 const struct btf_type *t = prog->aux->attach_func_proto; 4433 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4434 struct btf *btf = bpf_prog_get_target_btf(prog); 4435 const char *tname = prog->aux->attach_func_name; 4436 struct bpf_verifier_log *log = info->log; 4437 const struct btf_param *args; 4438 u32 nr_args, arg; 4439 int i, ret; 4440 4441 if (off % 8) { 4442 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4443 tname, off); 4444 return false; 4445 } 4446 arg = off / 8; 4447 args = (const struct btf_param *)(t + 1); 4448 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */ 4449 nr_args = t ? btf_type_vlen(t) : 5; 4450 if (prog->aux->attach_btf_trace) { 4451 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4452 args++; 4453 nr_args--; 4454 } 4455 4456 if (arg > nr_args) { 4457 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4458 tname, arg + 1); 4459 return false; 4460 } 4461 4462 if (arg == nr_args) { 4463 switch (prog->expected_attach_type) { 4464 case BPF_LSM_MAC: 4465 case BPF_TRACE_FEXIT: 4466 /* When LSM programs are attached to void LSM hooks 4467 * they use FEXIT trampolines and when attached to 4468 * int LSM hooks, they use MODIFY_RETURN trampolines. 4469 * 4470 * While the LSM programs are BPF_MODIFY_RETURN-like 4471 * the check: 4472 * 4473 * if (ret_type != 'int') 4474 * return -EINVAL; 4475 * 4476 * is _not_ done here. This is still safe as LSM hooks 4477 * have only void and int return types. 4478 */ 4479 if (!t) 4480 return true; 4481 t = btf_type_by_id(btf, t->type); 4482 break; 4483 case BPF_MODIFY_RETURN: 4484 /* For now the BPF_MODIFY_RETURN can only be attached to 4485 * functions that return an int. 4486 */ 4487 if (!t) 4488 return false; 4489 4490 t = btf_type_skip_modifiers(btf, t->type, NULL); 4491 if (!btf_type_is_small_int(t)) { 4492 bpf_log(log, 4493 "ret type %s not allowed for fmod_ret\n", 4494 btf_kind_str[BTF_INFO_KIND(t->info)]); 4495 return false; 4496 } 4497 break; 4498 default: 4499 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4500 tname, arg + 1); 4501 return false; 4502 } 4503 } else { 4504 if (!t) 4505 /* Default prog with 5 args */ 4506 return true; 4507 t = btf_type_by_id(btf, args[arg].type); 4508 } 4509 4510 /* skip modifiers */ 4511 while (btf_type_is_modifier(t)) 4512 t = btf_type_by_id(btf, t->type); 4513 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4514 /* accessing a scalar */ 4515 return true; 4516 if (!btf_type_is_ptr(t)) { 4517 bpf_log(log, 4518 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4519 tname, arg, 4520 __btf_name_by_offset(btf, t->name_off), 4521 btf_kind_str[BTF_INFO_KIND(t->info)]); 4522 return false; 4523 } 4524 4525 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4526 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4527 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4528 4529 if (ctx_arg_info->offset == off && 4530 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL || 4531 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) { 4532 info->reg_type = ctx_arg_info->reg_type; 4533 return true; 4534 } 4535 } 4536 4537 if (t->type == 0) 4538 /* This is a pointer to void. 4539 * It is the same as scalar from the verifier safety pov. 4540 * No further pointer walking is allowed. 4541 */ 4542 return true; 4543 4544 if (is_string_ptr(btf, t)) 4545 return true; 4546 4547 /* this is a pointer to another type */ 4548 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4549 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4550 4551 if (ctx_arg_info->offset == off) { 4552 info->reg_type = ctx_arg_info->reg_type; 4553 info->btf_id = ctx_arg_info->btf_id; 4554 return true; 4555 } 4556 } 4557 4558 info->reg_type = PTR_TO_BTF_ID; 4559 if (tgt_prog) { 4560 enum bpf_prog_type tgt_type; 4561 4562 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 4563 tgt_type = tgt_prog->aux->saved_dst_prog_type; 4564 else 4565 tgt_type = tgt_prog->type; 4566 4567 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 4568 if (ret > 0) { 4569 info->btf_id = ret; 4570 return true; 4571 } else { 4572 return false; 4573 } 4574 } 4575 4576 info->btf_id = t->type; 4577 t = btf_type_by_id(btf, t->type); 4578 /* skip modifiers */ 4579 while (btf_type_is_modifier(t)) { 4580 info->btf_id = t->type; 4581 t = btf_type_by_id(btf, t->type); 4582 } 4583 if (!btf_type_is_struct(t)) { 4584 bpf_log(log, 4585 "func '%s' arg%d type %s is not a struct\n", 4586 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 4587 return false; 4588 } 4589 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 4590 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 4591 __btf_name_by_offset(btf, t->name_off)); 4592 return true; 4593 } 4594 4595 enum bpf_struct_walk_result { 4596 /* < 0 error */ 4597 WALK_SCALAR = 0, 4598 WALK_PTR, 4599 WALK_STRUCT, 4600 }; 4601 4602 static int btf_struct_walk(struct bpf_verifier_log *log, 4603 const struct btf_type *t, int off, int size, 4604 u32 *next_btf_id) 4605 { 4606 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 4607 const struct btf_type *mtype, *elem_type = NULL; 4608 const struct btf_member *member; 4609 const char *tname, *mname; 4610 u32 vlen, elem_id, mid; 4611 4612 again: 4613 tname = __btf_name_by_offset(btf_vmlinux, t->name_off); 4614 if (!btf_type_is_struct(t)) { 4615 bpf_log(log, "Type '%s' is not a struct\n", tname); 4616 return -EINVAL; 4617 } 4618 4619 vlen = btf_type_vlen(t); 4620 if (off + size > t->size) { 4621 /* If the last element is a variable size array, we may 4622 * need to relax the rule. 4623 */ 4624 struct btf_array *array_elem; 4625 4626 if (vlen == 0) 4627 goto error; 4628 4629 member = btf_type_member(t) + vlen - 1; 4630 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type, 4631 NULL); 4632 if (!btf_type_is_array(mtype)) 4633 goto error; 4634 4635 array_elem = (struct btf_array *)(mtype + 1); 4636 if (array_elem->nelems != 0) 4637 goto error; 4638 4639 moff = btf_member_bit_offset(t, member) / 8; 4640 if (off < moff) 4641 goto error; 4642 4643 /* Only allow structure for now, can be relaxed for 4644 * other types later. 4645 */ 4646 t = btf_type_skip_modifiers(btf_vmlinux, array_elem->type, 4647 NULL); 4648 if (!btf_type_is_struct(t)) 4649 goto error; 4650 4651 off = (off - moff) % t->size; 4652 goto again; 4653 4654 error: 4655 bpf_log(log, "access beyond struct %s at off %u size %u\n", 4656 tname, off, size); 4657 return -EACCES; 4658 } 4659 4660 for_each_member(i, t, member) { 4661 /* offset of the field in bytes */ 4662 moff = btf_member_bit_offset(t, member) / 8; 4663 if (off + size <= moff) 4664 /* won't find anything, field is already too far */ 4665 break; 4666 4667 if (btf_member_bitfield_size(t, member)) { 4668 u32 end_bit = btf_member_bit_offset(t, member) + 4669 btf_member_bitfield_size(t, member); 4670 4671 /* off <= moff instead of off == moff because clang 4672 * does not generate a BTF member for anonymous 4673 * bitfield like the ":16" here: 4674 * struct { 4675 * int :16; 4676 * int x:8; 4677 * }; 4678 */ 4679 if (off <= moff && 4680 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 4681 return WALK_SCALAR; 4682 4683 /* off may be accessing a following member 4684 * 4685 * or 4686 * 4687 * Doing partial access at either end of this 4688 * bitfield. Continue on this case also to 4689 * treat it as not accessing this bitfield 4690 * and eventually error out as field not 4691 * found to keep it simple. 4692 * It could be relaxed if there was a legit 4693 * partial access case later. 4694 */ 4695 continue; 4696 } 4697 4698 /* In case of "off" is pointing to holes of a struct */ 4699 if (off < moff) 4700 break; 4701 4702 /* type of the field */ 4703 mid = member->type; 4704 mtype = btf_type_by_id(btf_vmlinux, member->type); 4705 mname = __btf_name_by_offset(btf_vmlinux, member->name_off); 4706 4707 mtype = __btf_resolve_size(btf_vmlinux, mtype, &msize, 4708 &elem_type, &elem_id, &total_nelems, 4709 &mid); 4710 if (IS_ERR(mtype)) { 4711 bpf_log(log, "field %s doesn't have size\n", mname); 4712 return -EFAULT; 4713 } 4714 4715 mtrue_end = moff + msize; 4716 if (off >= mtrue_end) 4717 /* no overlap with member, keep iterating */ 4718 continue; 4719 4720 if (btf_type_is_array(mtype)) { 4721 u32 elem_idx; 4722 4723 /* __btf_resolve_size() above helps to 4724 * linearize a multi-dimensional array. 4725 * 4726 * The logic here is treating an array 4727 * in a struct as the following way: 4728 * 4729 * struct outer { 4730 * struct inner array[2][2]; 4731 * }; 4732 * 4733 * looks like: 4734 * 4735 * struct outer { 4736 * struct inner array_elem0; 4737 * struct inner array_elem1; 4738 * struct inner array_elem2; 4739 * struct inner array_elem3; 4740 * }; 4741 * 4742 * When accessing outer->array[1][0], it moves 4743 * moff to "array_elem2", set mtype to 4744 * "struct inner", and msize also becomes 4745 * sizeof(struct inner). Then most of the 4746 * remaining logic will fall through without 4747 * caring the current member is an array or 4748 * not. 4749 * 4750 * Unlike mtype/msize/moff, mtrue_end does not 4751 * change. The naming difference ("_true") tells 4752 * that it is not always corresponding to 4753 * the current mtype/msize/moff. 4754 * It is the true end of the current 4755 * member (i.e. array in this case). That 4756 * will allow an int array to be accessed like 4757 * a scratch space, 4758 * i.e. allow access beyond the size of 4759 * the array's element as long as it is 4760 * within the mtrue_end boundary. 4761 */ 4762 4763 /* skip empty array */ 4764 if (moff == mtrue_end) 4765 continue; 4766 4767 msize /= total_nelems; 4768 elem_idx = (off - moff) / msize; 4769 moff += elem_idx * msize; 4770 mtype = elem_type; 4771 mid = elem_id; 4772 } 4773 4774 /* the 'off' we're looking for is either equal to start 4775 * of this field or inside of this struct 4776 */ 4777 if (btf_type_is_struct(mtype)) { 4778 /* our field must be inside that union or struct */ 4779 t = mtype; 4780 4781 /* return if the offset matches the member offset */ 4782 if (off == moff) { 4783 *next_btf_id = mid; 4784 return WALK_STRUCT; 4785 } 4786 4787 /* adjust offset we're looking for */ 4788 off -= moff; 4789 goto again; 4790 } 4791 4792 if (btf_type_is_ptr(mtype)) { 4793 const struct btf_type *stype; 4794 u32 id; 4795 4796 if (msize != size || off != moff) { 4797 bpf_log(log, 4798 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 4799 mname, moff, tname, off, size); 4800 return -EACCES; 4801 } 4802 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id); 4803 if (btf_type_is_struct(stype)) { 4804 *next_btf_id = id; 4805 return WALK_PTR; 4806 } 4807 } 4808 4809 /* Allow more flexible access within an int as long as 4810 * it is within mtrue_end. 4811 * Since mtrue_end could be the end of an array, 4812 * that also allows using an array of int as a scratch 4813 * space. e.g. skb->cb[]. 4814 */ 4815 if (off + size > mtrue_end) { 4816 bpf_log(log, 4817 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 4818 mname, mtrue_end, tname, off, size); 4819 return -EACCES; 4820 } 4821 4822 return WALK_SCALAR; 4823 } 4824 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 4825 return -EINVAL; 4826 } 4827 4828 int btf_struct_access(struct bpf_verifier_log *log, 4829 const struct btf_type *t, int off, int size, 4830 enum bpf_access_type atype __maybe_unused, 4831 u32 *next_btf_id) 4832 { 4833 int err; 4834 u32 id; 4835 4836 do { 4837 err = btf_struct_walk(log, t, off, size, &id); 4838 4839 switch (err) { 4840 case WALK_PTR: 4841 /* If we found the pointer or scalar on t+off, 4842 * we're done. 4843 */ 4844 *next_btf_id = id; 4845 return PTR_TO_BTF_ID; 4846 case WALK_SCALAR: 4847 return SCALAR_VALUE; 4848 case WALK_STRUCT: 4849 /* We found nested struct, so continue the search 4850 * by diving in it. At this point the offset is 4851 * aligned with the new type, so set it to 0. 4852 */ 4853 t = btf_type_by_id(btf_vmlinux, id); 4854 off = 0; 4855 break; 4856 default: 4857 /* It's either error or unknown return value.. 4858 * scream and leave. 4859 */ 4860 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 4861 return -EINVAL; 4862 return err; 4863 } 4864 } while (t); 4865 4866 return -EINVAL; 4867 } 4868 4869 bool btf_struct_ids_match(struct bpf_verifier_log *log, 4870 int off, u32 id, u32 need_type_id) 4871 { 4872 const struct btf_type *type; 4873 int err; 4874 4875 /* Are we already done? */ 4876 if (need_type_id == id && off == 0) 4877 return true; 4878 4879 again: 4880 type = btf_type_by_id(btf_vmlinux, id); 4881 if (!type) 4882 return false; 4883 err = btf_struct_walk(log, type, off, 1, &id); 4884 if (err != WALK_STRUCT) 4885 return false; 4886 4887 /* We found nested struct object. If it matches 4888 * the requested ID, we're done. Otherwise let's 4889 * continue the search with offset 0 in the new 4890 * type. 4891 */ 4892 if (need_type_id != id) { 4893 off = 0; 4894 goto again; 4895 } 4896 4897 return true; 4898 } 4899 4900 static int __get_type_size(struct btf *btf, u32 btf_id, 4901 const struct btf_type **bad_type) 4902 { 4903 const struct btf_type *t; 4904 4905 if (!btf_id) 4906 /* void */ 4907 return 0; 4908 t = btf_type_by_id(btf, btf_id); 4909 while (t && btf_type_is_modifier(t)) 4910 t = btf_type_by_id(btf, t->type); 4911 if (!t) { 4912 *bad_type = btf->types[0]; 4913 return -EINVAL; 4914 } 4915 if (btf_type_is_ptr(t)) 4916 /* kernel size of pointer. Not BPF's size of pointer*/ 4917 return sizeof(void *); 4918 if (btf_type_is_int(t) || btf_type_is_enum(t)) 4919 return t->size; 4920 *bad_type = t; 4921 return -EINVAL; 4922 } 4923 4924 int btf_distill_func_proto(struct bpf_verifier_log *log, 4925 struct btf *btf, 4926 const struct btf_type *func, 4927 const char *tname, 4928 struct btf_func_model *m) 4929 { 4930 const struct btf_param *args; 4931 const struct btf_type *t; 4932 u32 i, nargs; 4933 int ret; 4934 4935 if (!func) { 4936 /* BTF function prototype doesn't match the verifier types. 4937 * Fall back to 5 u64 args. 4938 */ 4939 for (i = 0; i < 5; i++) 4940 m->arg_size[i] = 8; 4941 m->ret_size = 8; 4942 m->nr_args = 5; 4943 return 0; 4944 } 4945 args = (const struct btf_param *)(func + 1); 4946 nargs = btf_type_vlen(func); 4947 if (nargs >= MAX_BPF_FUNC_ARGS) { 4948 bpf_log(log, 4949 "The function %s has %d arguments. Too many.\n", 4950 tname, nargs); 4951 return -EINVAL; 4952 } 4953 ret = __get_type_size(btf, func->type, &t); 4954 if (ret < 0) { 4955 bpf_log(log, 4956 "The function %s return type %s is unsupported.\n", 4957 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 4958 return -EINVAL; 4959 } 4960 m->ret_size = ret; 4961 4962 for (i = 0; i < nargs; i++) { 4963 ret = __get_type_size(btf, args[i].type, &t); 4964 if (ret < 0) { 4965 bpf_log(log, 4966 "The function %s arg%d type %s is unsupported.\n", 4967 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 4968 return -EINVAL; 4969 } 4970 m->arg_size[i] = ret; 4971 } 4972 m->nr_args = nargs; 4973 return 0; 4974 } 4975 4976 /* Compare BTFs of two functions assuming only scalars and pointers to context. 4977 * t1 points to BTF_KIND_FUNC in btf1 4978 * t2 points to BTF_KIND_FUNC in btf2 4979 * Returns: 4980 * EINVAL - function prototype mismatch 4981 * EFAULT - verifier bug 4982 * 0 - 99% match. The last 1% is validated by the verifier. 4983 */ 4984 static int btf_check_func_type_match(struct bpf_verifier_log *log, 4985 struct btf *btf1, const struct btf_type *t1, 4986 struct btf *btf2, const struct btf_type *t2) 4987 { 4988 const struct btf_param *args1, *args2; 4989 const char *fn1, *fn2, *s1, *s2; 4990 u32 nargs1, nargs2, i; 4991 4992 fn1 = btf_name_by_offset(btf1, t1->name_off); 4993 fn2 = btf_name_by_offset(btf2, t2->name_off); 4994 4995 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 4996 bpf_log(log, "%s() is not a global function\n", fn1); 4997 return -EINVAL; 4998 } 4999 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5000 bpf_log(log, "%s() is not a global function\n", fn2); 5001 return -EINVAL; 5002 } 5003 5004 t1 = btf_type_by_id(btf1, t1->type); 5005 if (!t1 || !btf_type_is_func_proto(t1)) 5006 return -EFAULT; 5007 t2 = btf_type_by_id(btf2, t2->type); 5008 if (!t2 || !btf_type_is_func_proto(t2)) 5009 return -EFAULT; 5010 5011 args1 = (const struct btf_param *)(t1 + 1); 5012 nargs1 = btf_type_vlen(t1); 5013 args2 = (const struct btf_param *)(t2 + 1); 5014 nargs2 = btf_type_vlen(t2); 5015 5016 if (nargs1 != nargs2) { 5017 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5018 fn1, nargs1, fn2, nargs2); 5019 return -EINVAL; 5020 } 5021 5022 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5023 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5024 if (t1->info != t2->info) { 5025 bpf_log(log, 5026 "Return type %s of %s() doesn't match type %s of %s()\n", 5027 btf_type_str(t1), fn1, 5028 btf_type_str(t2), fn2); 5029 return -EINVAL; 5030 } 5031 5032 for (i = 0; i < nargs1; i++) { 5033 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5034 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5035 5036 if (t1->info != t2->info) { 5037 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5038 i, fn1, btf_type_str(t1), 5039 fn2, btf_type_str(t2)); 5040 return -EINVAL; 5041 } 5042 if (btf_type_has_size(t1) && t1->size != t2->size) { 5043 bpf_log(log, 5044 "arg%d in %s() has size %d while %s() has %d\n", 5045 i, fn1, t1->size, 5046 fn2, t2->size); 5047 return -EINVAL; 5048 } 5049 5050 /* global functions are validated with scalars and pointers 5051 * to context only. And only global functions can be replaced. 5052 * Hence type check only those types. 5053 */ 5054 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5055 continue; 5056 if (!btf_type_is_ptr(t1)) { 5057 bpf_log(log, 5058 "arg%d in %s() has unrecognized type\n", 5059 i, fn1); 5060 return -EINVAL; 5061 } 5062 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5063 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5064 if (!btf_type_is_struct(t1)) { 5065 bpf_log(log, 5066 "arg%d in %s() is not a pointer to context\n", 5067 i, fn1); 5068 return -EINVAL; 5069 } 5070 if (!btf_type_is_struct(t2)) { 5071 bpf_log(log, 5072 "arg%d in %s() is not a pointer to context\n", 5073 i, fn2); 5074 return -EINVAL; 5075 } 5076 /* This is an optional check to make program writing easier. 5077 * Compare names of structs and report an error to the user. 5078 * btf_prepare_func_args() already checked that t2 struct 5079 * is a context type. btf_prepare_func_args() will check 5080 * later that t1 struct is a context type as well. 5081 */ 5082 s1 = btf_name_by_offset(btf1, t1->name_off); 5083 s2 = btf_name_by_offset(btf2, t2->name_off); 5084 if (strcmp(s1, s2)) { 5085 bpf_log(log, 5086 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5087 i, fn1, s1, fn2, s2); 5088 return -EINVAL; 5089 } 5090 } 5091 return 0; 5092 } 5093 5094 /* Compare BTFs of given program with BTF of target program */ 5095 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5096 struct btf *btf2, const struct btf_type *t2) 5097 { 5098 struct btf *btf1 = prog->aux->btf; 5099 const struct btf_type *t1; 5100 u32 btf_id = 0; 5101 5102 if (!prog->aux->func_info) { 5103 bpf_log(log, "Program extension requires BTF\n"); 5104 return -EINVAL; 5105 } 5106 5107 btf_id = prog->aux->func_info[0].type_id; 5108 if (!btf_id) 5109 return -EFAULT; 5110 5111 t1 = btf_type_by_id(btf1, btf_id); 5112 if (!t1 || !btf_type_is_func(t1)) 5113 return -EFAULT; 5114 5115 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5116 } 5117 5118 /* Compare BTF of a function with given bpf_reg_state. 5119 * Returns: 5120 * EFAULT - there is a verifier bug. Abort verification. 5121 * EINVAL - there is a type mismatch or BTF is not available. 5122 * 0 - BTF matches with what bpf_reg_state expects. 5123 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5124 */ 5125 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog, 5126 struct bpf_reg_state *reg) 5127 { 5128 struct bpf_verifier_log *log = &env->log; 5129 struct bpf_prog *prog = env->prog; 5130 struct btf *btf = prog->aux->btf; 5131 const struct btf_param *args; 5132 const struct btf_type *t; 5133 u32 i, nargs, btf_id; 5134 const char *tname; 5135 5136 if (!prog->aux->func_info) 5137 return -EINVAL; 5138 5139 btf_id = prog->aux->func_info[subprog].type_id; 5140 if (!btf_id) 5141 return -EFAULT; 5142 5143 if (prog->aux->func_info_aux[subprog].unreliable) 5144 return -EINVAL; 5145 5146 t = btf_type_by_id(btf, btf_id); 5147 if (!t || !btf_type_is_func(t)) { 5148 /* These checks were already done by the verifier while loading 5149 * struct bpf_func_info 5150 */ 5151 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5152 subprog); 5153 return -EFAULT; 5154 } 5155 tname = btf_name_by_offset(btf, t->name_off); 5156 5157 t = btf_type_by_id(btf, t->type); 5158 if (!t || !btf_type_is_func_proto(t)) { 5159 bpf_log(log, "Invalid BTF of func %s\n", tname); 5160 return -EFAULT; 5161 } 5162 args = (const struct btf_param *)(t + 1); 5163 nargs = btf_type_vlen(t); 5164 if (nargs > 5) { 5165 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs); 5166 goto out; 5167 } 5168 /* check that BTF function arguments match actual types that the 5169 * verifier sees. 5170 */ 5171 for (i = 0; i < nargs; i++) { 5172 t = btf_type_by_id(btf, args[i].type); 5173 while (btf_type_is_modifier(t)) 5174 t = btf_type_by_id(btf, t->type); 5175 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5176 if (reg[i + 1].type == SCALAR_VALUE) 5177 continue; 5178 bpf_log(log, "R%d is not a scalar\n", i + 1); 5179 goto out; 5180 } 5181 if (btf_type_is_ptr(t)) { 5182 if (reg[i + 1].type == SCALAR_VALUE) { 5183 bpf_log(log, "R%d is not a pointer\n", i + 1); 5184 goto out; 5185 } 5186 /* If function expects ctx type in BTF check that caller 5187 * is passing PTR_TO_CTX. 5188 */ 5189 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) { 5190 if (reg[i + 1].type != PTR_TO_CTX) { 5191 bpf_log(log, 5192 "arg#%d expected pointer to ctx, but got %s\n", 5193 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5194 goto out; 5195 } 5196 if (check_ctx_reg(env, ®[i + 1], i + 1)) 5197 goto out; 5198 continue; 5199 } 5200 } 5201 bpf_log(log, "Unrecognized arg#%d type %s\n", 5202 i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5203 goto out; 5204 } 5205 return 0; 5206 out: 5207 /* Compiler optimizations can remove arguments from static functions 5208 * or mismatched type can be passed into a global function. 5209 * In such cases mark the function as unreliable from BTF point of view. 5210 */ 5211 prog->aux->func_info_aux[subprog].unreliable = true; 5212 return -EINVAL; 5213 } 5214 5215 /* Convert BTF of a function into bpf_reg_state if possible 5216 * Returns: 5217 * EFAULT - there is a verifier bug. Abort verification. 5218 * EINVAL - cannot convert BTF. 5219 * 0 - Successfully converted BTF into bpf_reg_state 5220 * (either PTR_TO_CTX or SCALAR_VALUE). 5221 */ 5222 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5223 struct bpf_reg_state *reg) 5224 { 5225 struct bpf_verifier_log *log = &env->log; 5226 struct bpf_prog *prog = env->prog; 5227 enum bpf_prog_type prog_type = prog->type; 5228 struct btf *btf = prog->aux->btf; 5229 const struct btf_param *args; 5230 const struct btf_type *t; 5231 u32 i, nargs, btf_id; 5232 const char *tname; 5233 5234 if (!prog->aux->func_info || 5235 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5236 bpf_log(log, "Verifier bug\n"); 5237 return -EFAULT; 5238 } 5239 5240 btf_id = prog->aux->func_info[subprog].type_id; 5241 if (!btf_id) { 5242 bpf_log(log, "Global functions need valid BTF\n"); 5243 return -EFAULT; 5244 } 5245 5246 t = btf_type_by_id(btf, btf_id); 5247 if (!t || !btf_type_is_func(t)) { 5248 /* These checks were already done by the verifier while loading 5249 * struct bpf_func_info 5250 */ 5251 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5252 subprog); 5253 return -EFAULT; 5254 } 5255 tname = btf_name_by_offset(btf, t->name_off); 5256 5257 if (log->level & BPF_LOG_LEVEL) 5258 bpf_log(log, "Validating %s() func#%d...\n", 5259 tname, subprog); 5260 5261 if (prog->aux->func_info_aux[subprog].unreliable) { 5262 bpf_log(log, "Verifier bug in function %s()\n", tname); 5263 return -EFAULT; 5264 } 5265 if (prog_type == BPF_PROG_TYPE_EXT) 5266 prog_type = prog->aux->dst_prog->type; 5267 5268 t = btf_type_by_id(btf, t->type); 5269 if (!t || !btf_type_is_func_proto(t)) { 5270 bpf_log(log, "Invalid type of function %s()\n", tname); 5271 return -EFAULT; 5272 } 5273 args = (const struct btf_param *)(t + 1); 5274 nargs = btf_type_vlen(t); 5275 if (nargs > 5) { 5276 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n", 5277 tname, nargs); 5278 return -EINVAL; 5279 } 5280 /* check that function returns int */ 5281 t = btf_type_by_id(btf, t->type); 5282 while (btf_type_is_modifier(t)) 5283 t = btf_type_by_id(btf, t->type); 5284 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 5285 bpf_log(log, 5286 "Global function %s() doesn't return scalar. Only those are supported.\n", 5287 tname); 5288 return -EINVAL; 5289 } 5290 /* Convert BTF function arguments into verifier types. 5291 * Only PTR_TO_CTX and SCALAR are supported atm. 5292 */ 5293 for (i = 0; i < nargs; i++) { 5294 t = btf_type_by_id(btf, args[i].type); 5295 while (btf_type_is_modifier(t)) 5296 t = btf_type_by_id(btf, t->type); 5297 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5298 reg[i + 1].type = SCALAR_VALUE; 5299 continue; 5300 } 5301 if (btf_type_is_ptr(t) && 5302 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 5303 reg[i + 1].type = PTR_TO_CTX; 5304 continue; 5305 } 5306 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 5307 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 5308 return -EINVAL; 5309 } 5310 return 0; 5311 } 5312 5313 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 5314 struct btf_show *show) 5315 { 5316 const struct btf_type *t = btf_type_by_id(btf, type_id); 5317 5318 show->btf = btf; 5319 memset(&show->state, 0, sizeof(show->state)); 5320 memset(&show->obj, 0, sizeof(show->obj)); 5321 5322 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 5323 } 5324 5325 static void btf_seq_show(struct btf_show *show, const char *fmt, 5326 va_list args) 5327 { 5328 seq_vprintf((struct seq_file *)show->target, fmt, args); 5329 } 5330 5331 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 5332 void *obj, struct seq_file *m, u64 flags) 5333 { 5334 struct btf_show sseq; 5335 5336 sseq.target = m; 5337 sseq.showfn = btf_seq_show; 5338 sseq.flags = flags; 5339 5340 btf_type_show(btf, type_id, obj, &sseq); 5341 5342 return sseq.state.status; 5343 } 5344 5345 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 5346 struct seq_file *m) 5347 { 5348 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 5349 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 5350 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 5351 } 5352 5353 struct btf_show_snprintf { 5354 struct btf_show show; 5355 int len_left; /* space left in string */ 5356 int len; /* length we would have written */ 5357 }; 5358 5359 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 5360 va_list args) 5361 { 5362 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 5363 int len; 5364 5365 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 5366 5367 if (len < 0) { 5368 ssnprintf->len_left = 0; 5369 ssnprintf->len = len; 5370 } else if (len > ssnprintf->len_left) { 5371 /* no space, drive on to get length we would have written */ 5372 ssnprintf->len_left = 0; 5373 ssnprintf->len += len; 5374 } else { 5375 ssnprintf->len_left -= len; 5376 ssnprintf->len += len; 5377 show->target += len; 5378 } 5379 } 5380 5381 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 5382 char *buf, int len, u64 flags) 5383 { 5384 struct btf_show_snprintf ssnprintf; 5385 5386 ssnprintf.show.target = buf; 5387 ssnprintf.show.flags = flags; 5388 ssnprintf.show.showfn = btf_snprintf_show; 5389 ssnprintf.len_left = len; 5390 ssnprintf.len = 0; 5391 5392 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 5393 5394 /* If we encontered an error, return it. */ 5395 if (ssnprintf.show.state.status) 5396 return ssnprintf.show.state.status; 5397 5398 /* Otherwise return length we would have written */ 5399 return ssnprintf.len; 5400 } 5401 5402 #ifdef CONFIG_PROC_FS 5403 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 5404 { 5405 const struct btf *btf = filp->private_data; 5406 5407 seq_printf(m, "btf_id:\t%u\n", btf->id); 5408 } 5409 #endif 5410 5411 static int btf_release(struct inode *inode, struct file *filp) 5412 { 5413 btf_put(filp->private_data); 5414 return 0; 5415 } 5416 5417 const struct file_operations btf_fops = { 5418 #ifdef CONFIG_PROC_FS 5419 .show_fdinfo = bpf_btf_show_fdinfo, 5420 #endif 5421 .release = btf_release, 5422 }; 5423 5424 static int __btf_new_fd(struct btf *btf) 5425 { 5426 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 5427 } 5428 5429 int btf_new_fd(const union bpf_attr *attr) 5430 { 5431 struct btf *btf; 5432 int ret; 5433 5434 btf = btf_parse(u64_to_user_ptr(attr->btf), 5435 attr->btf_size, attr->btf_log_level, 5436 u64_to_user_ptr(attr->btf_log_buf), 5437 attr->btf_log_size); 5438 if (IS_ERR(btf)) 5439 return PTR_ERR(btf); 5440 5441 ret = btf_alloc_id(btf); 5442 if (ret) { 5443 btf_free(btf); 5444 return ret; 5445 } 5446 5447 /* 5448 * The BTF ID is published to the userspace. 5449 * All BTF free must go through call_rcu() from 5450 * now on (i.e. free by calling btf_put()). 5451 */ 5452 5453 ret = __btf_new_fd(btf); 5454 if (ret < 0) 5455 btf_put(btf); 5456 5457 return ret; 5458 } 5459 5460 struct btf *btf_get_by_fd(int fd) 5461 { 5462 struct btf *btf; 5463 struct fd f; 5464 5465 f = fdget(fd); 5466 5467 if (!f.file) 5468 return ERR_PTR(-EBADF); 5469 5470 if (f.file->f_op != &btf_fops) { 5471 fdput(f); 5472 return ERR_PTR(-EINVAL); 5473 } 5474 5475 btf = f.file->private_data; 5476 refcount_inc(&btf->refcnt); 5477 fdput(f); 5478 5479 return btf; 5480 } 5481 5482 int btf_get_info_by_fd(const struct btf *btf, 5483 const union bpf_attr *attr, 5484 union bpf_attr __user *uattr) 5485 { 5486 struct bpf_btf_info __user *uinfo; 5487 struct bpf_btf_info info; 5488 u32 info_copy, btf_copy; 5489 void __user *ubtf; 5490 u32 uinfo_len; 5491 5492 uinfo = u64_to_user_ptr(attr->info.info); 5493 uinfo_len = attr->info.info_len; 5494 5495 info_copy = min_t(u32, uinfo_len, sizeof(info)); 5496 memset(&info, 0, sizeof(info)); 5497 if (copy_from_user(&info, uinfo, info_copy)) 5498 return -EFAULT; 5499 5500 info.id = btf->id; 5501 ubtf = u64_to_user_ptr(info.btf); 5502 btf_copy = min_t(u32, btf->data_size, info.btf_size); 5503 if (copy_to_user(ubtf, btf->data, btf_copy)) 5504 return -EFAULT; 5505 info.btf_size = btf->data_size; 5506 5507 if (copy_to_user(uinfo, &info, info_copy) || 5508 put_user(info_copy, &uattr->info.info_len)) 5509 return -EFAULT; 5510 5511 return 0; 5512 } 5513 5514 int btf_get_fd_by_id(u32 id) 5515 { 5516 struct btf *btf; 5517 int fd; 5518 5519 rcu_read_lock(); 5520 btf = idr_find(&btf_idr, id); 5521 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 5522 btf = ERR_PTR(-ENOENT); 5523 rcu_read_unlock(); 5524 5525 if (IS_ERR(btf)) 5526 return PTR_ERR(btf); 5527 5528 fd = __btf_new_fd(btf); 5529 if (fd < 0) 5530 btf_put(btf); 5531 5532 return fd; 5533 } 5534 5535 u32 btf_id(const struct btf *btf) 5536 { 5537 return btf->id; 5538 } 5539 5540 static int btf_id_cmp_func(const void *a, const void *b) 5541 { 5542 const int *pa = a, *pb = b; 5543 5544 return *pa - *pb; 5545 } 5546 5547 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 5548 { 5549 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 5550 } 5551