1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/errno.h> 9 #include <linux/slab.h> 10 #include <linux/anon_inodes.h> 11 #include <linux/file.h> 12 #include <linux/uaccess.h> 13 #include <linux/kernel.h> 14 #include <linux/idr.h> 15 #include <linux/sort.h> 16 #include <linux/bpf_verifier.h> 17 #include <linux/btf.h> 18 19 /* BTF (BPF Type Format) is the meta data format which describes 20 * the data types of BPF program/map. Hence, it basically focus 21 * on the C programming language which the modern BPF is primary 22 * using. 23 * 24 * ELF Section: 25 * ~~~~~~~~~~~ 26 * The BTF data is stored under the ".BTF" ELF section 27 * 28 * struct btf_type: 29 * ~~~~~~~~~~~~~~~ 30 * Each 'struct btf_type' object describes a C data type. 31 * Depending on the type it is describing, a 'struct btf_type' 32 * object may be followed by more data. F.e. 33 * To describe an array, 'struct btf_type' is followed by 34 * 'struct btf_array'. 35 * 36 * 'struct btf_type' and any extra data following it are 37 * 4 bytes aligned. 38 * 39 * Type section: 40 * ~~~~~~~~~~~~~ 41 * The BTF type section contains a list of 'struct btf_type' objects. 42 * Each one describes a C type. Recall from the above section 43 * that a 'struct btf_type' object could be immediately followed by extra 44 * data in order to desribe some particular C types. 45 * 46 * type_id: 47 * ~~~~~~~ 48 * Each btf_type object is identified by a type_id. The type_id 49 * is implicitly implied by the location of the btf_type object in 50 * the BTF type section. The first one has type_id 1. The second 51 * one has type_id 2...etc. Hence, an earlier btf_type has 52 * a smaller type_id. 53 * 54 * A btf_type object may refer to another btf_type object by using 55 * type_id (i.e. the "type" in the "struct btf_type"). 56 * 57 * NOTE that we cannot assume any reference-order. 58 * A btf_type object can refer to an earlier btf_type object 59 * but it can also refer to a later btf_type object. 60 * 61 * For example, to describe "const void *". A btf_type 62 * object describing "const" may refer to another btf_type 63 * object describing "void *". This type-reference is done 64 * by specifying type_id: 65 * 66 * [1] CONST (anon) type_id=2 67 * [2] PTR (anon) type_id=0 68 * 69 * The above is the btf_verifier debug log: 70 * - Each line started with "[?]" is a btf_type object 71 * - [?] is the type_id of the btf_type object. 72 * - CONST/PTR is the BTF_KIND_XXX 73 * - "(anon)" is the name of the type. It just 74 * happens that CONST and PTR has no name. 75 * - type_id=XXX is the 'u32 type' in btf_type 76 * 77 * NOTE: "void" has type_id 0 78 * 79 * String section: 80 * ~~~~~~~~~~~~~~ 81 * The BTF string section contains the names used by the type section. 82 * Each string is referred by an "offset" from the beginning of the 83 * string section. 84 * 85 * Each string is '\0' terminated. 86 * 87 * The first character in the string section must be '\0' 88 * which is used to mean 'anonymous'. Some btf_type may not 89 * have a name. 90 */ 91 92 /* BTF verification: 93 * 94 * To verify BTF data, two passes are needed. 95 * 96 * Pass #1 97 * ~~~~~~~ 98 * The first pass is to collect all btf_type objects to 99 * an array: "btf->types". 100 * 101 * Depending on the C type that a btf_type is describing, 102 * a btf_type may be followed by extra data. We don't know 103 * how many btf_type is there, and more importantly we don't 104 * know where each btf_type is located in the type section. 105 * 106 * Without knowing the location of each type_id, most verifications 107 * cannot be done. e.g. an earlier btf_type may refer to a later 108 * btf_type (recall the "const void *" above), so we cannot 109 * check this type-reference in the first pass. 110 * 111 * In the first pass, it still does some verifications (e.g. 112 * checking the name is a valid offset to the string section). 113 * 114 * Pass #2 115 * ~~~~~~~ 116 * The main focus is to resolve a btf_type that is referring 117 * to another type. 118 * 119 * We have to ensure the referring type: 120 * 1) does exist in the BTF (i.e. in btf->types[]) 121 * 2) does not cause a loop: 122 * struct A { 123 * struct B b; 124 * }; 125 * 126 * struct B { 127 * struct A a; 128 * }; 129 * 130 * btf_type_needs_resolve() decides if a btf_type needs 131 * to be resolved. 132 * 133 * The needs_resolve type implements the "resolve()" ops which 134 * essentially does a DFS and detects backedge. 135 * 136 * During resolve (or DFS), different C types have different 137 * "RESOLVED" conditions. 138 * 139 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 140 * members because a member is always referring to another 141 * type. A struct's member can be treated as "RESOLVED" if 142 * it is referring to a BTF_KIND_PTR. Otherwise, the 143 * following valid C struct would be rejected: 144 * 145 * struct A { 146 * int m; 147 * struct A *a; 148 * }; 149 * 150 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 151 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 152 * detect a pointer loop, e.g.: 153 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 154 * ^ | 155 * +-----------------------------------------+ 156 * 157 */ 158 159 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE) 160 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 161 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 162 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 163 #define BITS_ROUNDUP_BYTES(bits) \ 164 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 165 166 #define BTF_INFO_MASK 0x0f00ffff 167 #define BTF_INT_MASK 0x0fffffff 168 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 169 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 170 171 /* 16MB for 64k structs and each has 16 members and 172 * a few MB spaces for the string section. 173 * The hard limit is S32_MAX. 174 */ 175 #define BTF_MAX_SIZE (16 * 1024 * 1024) 176 177 #define for_each_member(i, struct_type, member) \ 178 for (i = 0, member = btf_type_member(struct_type); \ 179 i < btf_type_vlen(struct_type); \ 180 i++, member++) 181 182 #define for_each_member_from(i, from, struct_type, member) \ 183 for (i = from, member = btf_type_member(struct_type) + from; \ 184 i < btf_type_vlen(struct_type); \ 185 i++, member++) 186 187 static DEFINE_IDR(btf_idr); 188 static DEFINE_SPINLOCK(btf_idr_lock); 189 190 struct btf { 191 void *data; 192 struct btf_type **types; 193 u32 *resolved_ids; 194 u32 *resolved_sizes; 195 const char *strings; 196 void *nohdr_data; 197 struct btf_header hdr; 198 u32 nr_types; 199 u32 types_size; 200 u32 data_size; 201 refcount_t refcnt; 202 u32 id; 203 struct rcu_head rcu; 204 }; 205 206 enum verifier_phase { 207 CHECK_META, 208 CHECK_TYPE, 209 }; 210 211 struct resolve_vertex { 212 const struct btf_type *t; 213 u32 type_id; 214 u16 next_member; 215 }; 216 217 enum visit_state { 218 NOT_VISITED, 219 VISITED, 220 RESOLVED, 221 }; 222 223 enum resolve_mode { 224 RESOLVE_TBD, /* To Be Determined */ 225 RESOLVE_PTR, /* Resolving for Pointer */ 226 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 227 * or array 228 */ 229 }; 230 231 #define MAX_RESOLVE_DEPTH 32 232 233 struct btf_sec_info { 234 u32 off; 235 u32 len; 236 }; 237 238 struct btf_verifier_env { 239 struct btf *btf; 240 u8 *visit_states; 241 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 242 struct bpf_verifier_log log; 243 u32 log_type_id; 244 u32 top_stack; 245 enum verifier_phase phase; 246 enum resolve_mode resolve_mode; 247 }; 248 249 static const char * const btf_kind_str[NR_BTF_KINDS] = { 250 [BTF_KIND_UNKN] = "UNKNOWN", 251 [BTF_KIND_INT] = "INT", 252 [BTF_KIND_PTR] = "PTR", 253 [BTF_KIND_ARRAY] = "ARRAY", 254 [BTF_KIND_STRUCT] = "STRUCT", 255 [BTF_KIND_UNION] = "UNION", 256 [BTF_KIND_ENUM] = "ENUM", 257 [BTF_KIND_FWD] = "FWD", 258 [BTF_KIND_TYPEDEF] = "TYPEDEF", 259 [BTF_KIND_VOLATILE] = "VOLATILE", 260 [BTF_KIND_CONST] = "CONST", 261 [BTF_KIND_RESTRICT] = "RESTRICT", 262 }; 263 264 struct btf_kind_operations { 265 s32 (*check_meta)(struct btf_verifier_env *env, 266 const struct btf_type *t, 267 u32 meta_left); 268 int (*resolve)(struct btf_verifier_env *env, 269 const struct resolve_vertex *v); 270 int (*check_member)(struct btf_verifier_env *env, 271 const struct btf_type *struct_type, 272 const struct btf_member *member, 273 const struct btf_type *member_type); 274 void (*log_details)(struct btf_verifier_env *env, 275 const struct btf_type *t); 276 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 277 u32 type_id, void *data, u8 bits_offsets, 278 struct seq_file *m); 279 }; 280 281 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 282 static struct btf_type btf_void; 283 284 static bool btf_type_is_modifier(const struct btf_type *t) 285 { 286 /* Some of them is not strictly a C modifier 287 * but they are grouped into the same bucket 288 * for BTF concern: 289 * A type (t) that refers to another 290 * type through t->type AND its size cannot 291 * be determined without following the t->type. 292 * 293 * ptr does not fall into this bucket 294 * because its size is always sizeof(void *). 295 */ 296 switch (BTF_INFO_KIND(t->info)) { 297 case BTF_KIND_TYPEDEF: 298 case BTF_KIND_VOLATILE: 299 case BTF_KIND_CONST: 300 case BTF_KIND_RESTRICT: 301 return true; 302 } 303 304 return false; 305 } 306 307 static bool btf_type_is_void(const struct btf_type *t) 308 { 309 /* void => no type and size info. 310 * Hence, FWD is also treated as void. 311 */ 312 return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 313 } 314 315 static bool btf_type_is_void_or_null(const struct btf_type *t) 316 { 317 return !t || btf_type_is_void(t); 318 } 319 320 /* union is only a special case of struct: 321 * all its offsetof(member) == 0 322 */ 323 static bool btf_type_is_struct(const struct btf_type *t) 324 { 325 u8 kind = BTF_INFO_KIND(t->info); 326 327 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 328 } 329 330 static bool btf_type_is_array(const struct btf_type *t) 331 { 332 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 333 } 334 335 static bool btf_type_is_ptr(const struct btf_type *t) 336 { 337 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 338 } 339 340 static bool btf_type_is_int(const struct btf_type *t) 341 { 342 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 343 } 344 345 /* What types need to be resolved? 346 * 347 * btf_type_is_modifier() is an obvious one. 348 * 349 * btf_type_is_struct() because its member refers to 350 * another type (through member->type). 351 352 * btf_type_is_array() because its element (array->type) 353 * refers to another type. Array can be thought of a 354 * special case of struct while array just has the same 355 * member-type repeated by array->nelems of times. 356 */ 357 static bool btf_type_needs_resolve(const struct btf_type *t) 358 { 359 return btf_type_is_modifier(t) || 360 btf_type_is_ptr(t) || 361 btf_type_is_struct(t) || 362 btf_type_is_array(t); 363 } 364 365 /* t->size can be used */ 366 static bool btf_type_has_size(const struct btf_type *t) 367 { 368 switch (BTF_INFO_KIND(t->info)) { 369 case BTF_KIND_INT: 370 case BTF_KIND_STRUCT: 371 case BTF_KIND_UNION: 372 case BTF_KIND_ENUM: 373 return true; 374 } 375 376 return false; 377 } 378 379 static const char *btf_int_encoding_str(u8 encoding) 380 { 381 if (encoding == 0) 382 return "(none)"; 383 else if (encoding == BTF_INT_SIGNED) 384 return "SIGNED"; 385 else if (encoding == BTF_INT_CHAR) 386 return "CHAR"; 387 else if (encoding == BTF_INT_BOOL) 388 return "BOOL"; 389 else 390 return "UNKN"; 391 } 392 393 static u16 btf_type_vlen(const struct btf_type *t) 394 { 395 return BTF_INFO_VLEN(t->info); 396 } 397 398 static u32 btf_type_int(const struct btf_type *t) 399 { 400 return *(u32 *)(t + 1); 401 } 402 403 static const struct btf_array *btf_type_array(const struct btf_type *t) 404 { 405 return (const struct btf_array *)(t + 1); 406 } 407 408 static const struct btf_member *btf_type_member(const struct btf_type *t) 409 { 410 return (const struct btf_member *)(t + 1); 411 } 412 413 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 414 { 415 return (const struct btf_enum *)(t + 1); 416 } 417 418 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 419 { 420 return kind_ops[BTF_INFO_KIND(t->info)]; 421 } 422 423 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 424 { 425 return BTF_STR_OFFSET_VALID(offset) && 426 offset < btf->hdr.str_len; 427 } 428 429 static const char *btf_name_by_offset(const struct btf *btf, u32 offset) 430 { 431 if (!offset) 432 return "(anon)"; 433 else if (offset < btf->hdr.str_len) 434 return &btf->strings[offset]; 435 else 436 return "(invalid-name-offset)"; 437 } 438 439 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 440 { 441 if (type_id > btf->nr_types) 442 return NULL; 443 444 return btf->types[type_id]; 445 } 446 447 /* 448 * Regular int is not a bit field and it must be either 449 * u8/u16/u32/u64. 450 */ 451 static bool btf_type_int_is_regular(const struct btf_type *t) 452 { 453 u16 nr_bits, nr_bytes; 454 u32 int_data; 455 456 int_data = btf_type_int(t); 457 nr_bits = BTF_INT_BITS(int_data); 458 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 459 if (BITS_PER_BYTE_MASKED(nr_bits) || 460 BTF_INT_OFFSET(int_data) || 461 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 462 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) { 463 return false; 464 } 465 466 return true; 467 } 468 469 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 470 const char *fmt, ...) 471 { 472 va_list args; 473 474 va_start(args, fmt); 475 bpf_verifier_vlog(log, fmt, args); 476 va_end(args); 477 } 478 479 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 480 const char *fmt, ...) 481 { 482 struct bpf_verifier_log *log = &env->log; 483 va_list args; 484 485 if (!bpf_verifier_log_needed(log)) 486 return; 487 488 va_start(args, fmt); 489 bpf_verifier_vlog(log, fmt, args); 490 va_end(args); 491 } 492 493 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 494 const struct btf_type *t, 495 bool log_details, 496 const char *fmt, ...) 497 { 498 struct bpf_verifier_log *log = &env->log; 499 u8 kind = BTF_INFO_KIND(t->info); 500 struct btf *btf = env->btf; 501 va_list args; 502 503 if (!bpf_verifier_log_needed(log)) 504 return; 505 506 __btf_verifier_log(log, "[%u] %s %s%s", 507 env->log_type_id, 508 btf_kind_str[kind], 509 btf_name_by_offset(btf, t->name_off), 510 log_details ? " " : ""); 511 512 if (log_details) 513 btf_type_ops(t)->log_details(env, t); 514 515 if (fmt && *fmt) { 516 __btf_verifier_log(log, " "); 517 va_start(args, fmt); 518 bpf_verifier_vlog(log, fmt, args); 519 va_end(args); 520 } 521 522 __btf_verifier_log(log, "\n"); 523 } 524 525 #define btf_verifier_log_type(env, t, ...) \ 526 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 527 #define btf_verifier_log_basic(env, t, ...) \ 528 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 529 530 __printf(4, 5) 531 static void btf_verifier_log_member(struct btf_verifier_env *env, 532 const struct btf_type *struct_type, 533 const struct btf_member *member, 534 const char *fmt, ...) 535 { 536 struct bpf_verifier_log *log = &env->log; 537 struct btf *btf = env->btf; 538 va_list args; 539 540 if (!bpf_verifier_log_needed(log)) 541 return; 542 543 /* The CHECK_META phase already did a btf dump. 544 * 545 * If member is logged again, it must hit an error in 546 * parsing this member. It is useful to print out which 547 * struct this member belongs to. 548 */ 549 if (env->phase != CHECK_META) 550 btf_verifier_log_type(env, struct_type, NULL); 551 552 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 553 btf_name_by_offset(btf, member->name_off), 554 member->type, member->offset); 555 556 if (fmt && *fmt) { 557 __btf_verifier_log(log, " "); 558 va_start(args, fmt); 559 bpf_verifier_vlog(log, fmt, args); 560 va_end(args); 561 } 562 563 __btf_verifier_log(log, "\n"); 564 } 565 566 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 567 u32 btf_data_size) 568 { 569 struct bpf_verifier_log *log = &env->log; 570 const struct btf *btf = env->btf; 571 const struct btf_header *hdr; 572 573 if (!bpf_verifier_log_needed(log)) 574 return; 575 576 hdr = &btf->hdr; 577 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 578 __btf_verifier_log(log, "version: %u\n", hdr->version); 579 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 580 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 581 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 582 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 583 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 584 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 585 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 586 } 587 588 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 589 { 590 struct btf *btf = env->btf; 591 592 /* < 2 because +1 for btf_void which is always in btf->types[0]. 593 * btf_void is not accounted in btf->nr_types because btf_void 594 * does not come from the BTF file. 595 */ 596 if (btf->types_size - btf->nr_types < 2) { 597 /* Expand 'types' array */ 598 599 struct btf_type **new_types; 600 u32 expand_by, new_size; 601 602 if (btf->types_size == BTF_MAX_TYPE) { 603 btf_verifier_log(env, "Exceeded max num of types"); 604 return -E2BIG; 605 } 606 607 expand_by = max_t(u32, btf->types_size >> 2, 16); 608 new_size = min_t(u32, BTF_MAX_TYPE, 609 btf->types_size + expand_by); 610 611 new_types = kvzalloc(new_size * sizeof(*new_types), 612 GFP_KERNEL | __GFP_NOWARN); 613 if (!new_types) 614 return -ENOMEM; 615 616 if (btf->nr_types == 0) 617 new_types[0] = &btf_void; 618 else 619 memcpy(new_types, btf->types, 620 sizeof(*btf->types) * (btf->nr_types + 1)); 621 622 kvfree(btf->types); 623 btf->types = new_types; 624 btf->types_size = new_size; 625 } 626 627 btf->types[++(btf->nr_types)] = t; 628 629 return 0; 630 } 631 632 static int btf_alloc_id(struct btf *btf) 633 { 634 int id; 635 636 idr_preload(GFP_KERNEL); 637 spin_lock_bh(&btf_idr_lock); 638 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 639 if (id > 0) 640 btf->id = id; 641 spin_unlock_bh(&btf_idr_lock); 642 idr_preload_end(); 643 644 if (WARN_ON_ONCE(!id)) 645 return -ENOSPC; 646 647 return id > 0 ? 0 : id; 648 } 649 650 static void btf_free_id(struct btf *btf) 651 { 652 unsigned long flags; 653 654 /* 655 * In map-in-map, calling map_delete_elem() on outer 656 * map will call bpf_map_put on the inner map. 657 * It will then eventually call btf_free_id() 658 * on the inner map. Some of the map_delete_elem() 659 * implementation may have irq disabled, so 660 * we need to use the _irqsave() version instead 661 * of the _bh() version. 662 */ 663 spin_lock_irqsave(&btf_idr_lock, flags); 664 idr_remove(&btf_idr, btf->id); 665 spin_unlock_irqrestore(&btf_idr_lock, flags); 666 } 667 668 static void btf_free(struct btf *btf) 669 { 670 kvfree(btf->types); 671 kvfree(btf->resolved_sizes); 672 kvfree(btf->resolved_ids); 673 kvfree(btf->data); 674 kfree(btf); 675 } 676 677 static void btf_free_rcu(struct rcu_head *rcu) 678 { 679 struct btf *btf = container_of(rcu, struct btf, rcu); 680 681 btf_free(btf); 682 } 683 684 void btf_put(struct btf *btf) 685 { 686 if (btf && refcount_dec_and_test(&btf->refcnt)) { 687 btf_free_id(btf); 688 call_rcu(&btf->rcu, btf_free_rcu); 689 } 690 } 691 692 static int env_resolve_init(struct btf_verifier_env *env) 693 { 694 struct btf *btf = env->btf; 695 u32 nr_types = btf->nr_types; 696 u32 *resolved_sizes = NULL; 697 u32 *resolved_ids = NULL; 698 u8 *visit_states = NULL; 699 700 /* +1 for btf_void */ 701 resolved_sizes = kvzalloc((nr_types + 1) * sizeof(*resolved_sizes), 702 GFP_KERNEL | __GFP_NOWARN); 703 if (!resolved_sizes) 704 goto nomem; 705 706 resolved_ids = kvzalloc((nr_types + 1) * sizeof(*resolved_ids), 707 GFP_KERNEL | __GFP_NOWARN); 708 if (!resolved_ids) 709 goto nomem; 710 711 visit_states = kvzalloc((nr_types + 1) * sizeof(*visit_states), 712 GFP_KERNEL | __GFP_NOWARN); 713 if (!visit_states) 714 goto nomem; 715 716 btf->resolved_sizes = resolved_sizes; 717 btf->resolved_ids = resolved_ids; 718 env->visit_states = visit_states; 719 720 return 0; 721 722 nomem: 723 kvfree(resolved_sizes); 724 kvfree(resolved_ids); 725 kvfree(visit_states); 726 return -ENOMEM; 727 } 728 729 static void btf_verifier_env_free(struct btf_verifier_env *env) 730 { 731 kvfree(env->visit_states); 732 kfree(env); 733 } 734 735 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 736 const struct btf_type *next_type) 737 { 738 switch (env->resolve_mode) { 739 case RESOLVE_TBD: 740 /* int, enum or void is a sink */ 741 return !btf_type_needs_resolve(next_type); 742 case RESOLVE_PTR: 743 /* int, enum, void, struct or array is a sink for ptr */ 744 return !btf_type_is_modifier(next_type) && 745 !btf_type_is_ptr(next_type); 746 case RESOLVE_STRUCT_OR_ARRAY: 747 /* int, enum, void or ptr is a sink for struct and array */ 748 return !btf_type_is_modifier(next_type) && 749 !btf_type_is_array(next_type) && 750 !btf_type_is_struct(next_type); 751 default: 752 BUG_ON(1); 753 } 754 } 755 756 static bool env_type_is_resolved(const struct btf_verifier_env *env, 757 u32 type_id) 758 { 759 return env->visit_states[type_id] == RESOLVED; 760 } 761 762 static int env_stack_push(struct btf_verifier_env *env, 763 const struct btf_type *t, u32 type_id) 764 { 765 struct resolve_vertex *v; 766 767 if (env->top_stack == MAX_RESOLVE_DEPTH) 768 return -E2BIG; 769 770 if (env->visit_states[type_id] != NOT_VISITED) 771 return -EEXIST; 772 773 env->visit_states[type_id] = VISITED; 774 775 v = &env->stack[env->top_stack++]; 776 v->t = t; 777 v->type_id = type_id; 778 v->next_member = 0; 779 780 if (env->resolve_mode == RESOLVE_TBD) { 781 if (btf_type_is_ptr(t)) 782 env->resolve_mode = RESOLVE_PTR; 783 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 784 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 785 } 786 787 return 0; 788 } 789 790 static void env_stack_set_next_member(struct btf_verifier_env *env, 791 u16 next_member) 792 { 793 env->stack[env->top_stack - 1].next_member = next_member; 794 } 795 796 static void env_stack_pop_resolved(struct btf_verifier_env *env, 797 u32 resolved_type_id, 798 u32 resolved_size) 799 { 800 u32 type_id = env->stack[--(env->top_stack)].type_id; 801 struct btf *btf = env->btf; 802 803 btf->resolved_sizes[type_id] = resolved_size; 804 btf->resolved_ids[type_id] = resolved_type_id; 805 env->visit_states[type_id] = RESOLVED; 806 } 807 808 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 809 { 810 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 811 } 812 813 /* The input param "type_id" must point to a needs_resolve type */ 814 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 815 u32 *type_id) 816 { 817 *type_id = btf->resolved_ids[*type_id]; 818 return btf_type_by_id(btf, *type_id); 819 } 820 821 const struct btf_type *btf_type_id_size(const struct btf *btf, 822 u32 *type_id, u32 *ret_size) 823 { 824 const struct btf_type *size_type; 825 u32 size_type_id = *type_id; 826 u32 size = 0; 827 828 size_type = btf_type_by_id(btf, size_type_id); 829 if (btf_type_is_void_or_null(size_type)) 830 return NULL; 831 832 if (btf_type_has_size(size_type)) { 833 size = size_type->size; 834 } else if (btf_type_is_array(size_type)) { 835 size = btf->resolved_sizes[size_type_id]; 836 } else if (btf_type_is_ptr(size_type)) { 837 size = sizeof(void *); 838 } else { 839 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) 840 return NULL; 841 842 size = btf->resolved_sizes[size_type_id]; 843 size_type_id = btf->resolved_ids[size_type_id]; 844 size_type = btf_type_by_id(btf, size_type_id); 845 if (btf_type_is_void(size_type)) 846 return NULL; 847 } 848 849 *type_id = size_type_id; 850 if (ret_size) 851 *ret_size = size; 852 853 return size_type; 854 } 855 856 static int btf_df_check_member(struct btf_verifier_env *env, 857 const struct btf_type *struct_type, 858 const struct btf_member *member, 859 const struct btf_type *member_type) 860 { 861 btf_verifier_log_basic(env, struct_type, 862 "Unsupported check_member"); 863 return -EINVAL; 864 } 865 866 static int btf_df_resolve(struct btf_verifier_env *env, 867 const struct resolve_vertex *v) 868 { 869 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 870 return -EINVAL; 871 } 872 873 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 874 u32 type_id, void *data, u8 bits_offsets, 875 struct seq_file *m) 876 { 877 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 878 } 879 880 static int btf_int_check_member(struct btf_verifier_env *env, 881 const struct btf_type *struct_type, 882 const struct btf_member *member, 883 const struct btf_type *member_type) 884 { 885 u32 int_data = btf_type_int(member_type); 886 u32 struct_bits_off = member->offset; 887 u32 struct_size = struct_type->size; 888 u32 nr_copy_bits; 889 u32 bytes_offset; 890 891 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 892 btf_verifier_log_member(env, struct_type, member, 893 "bits_offset exceeds U32_MAX"); 894 return -EINVAL; 895 } 896 897 struct_bits_off += BTF_INT_OFFSET(int_data); 898 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 899 nr_copy_bits = BTF_INT_BITS(int_data) + 900 BITS_PER_BYTE_MASKED(struct_bits_off); 901 902 if (nr_copy_bits > BITS_PER_U64) { 903 btf_verifier_log_member(env, struct_type, member, 904 "nr_copy_bits exceeds 64"); 905 return -EINVAL; 906 } 907 908 if (struct_size < bytes_offset || 909 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 910 btf_verifier_log_member(env, struct_type, member, 911 "Member exceeds struct_size"); 912 return -EINVAL; 913 } 914 915 return 0; 916 } 917 918 static s32 btf_int_check_meta(struct btf_verifier_env *env, 919 const struct btf_type *t, 920 u32 meta_left) 921 { 922 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 923 u16 encoding; 924 925 if (meta_left < meta_needed) { 926 btf_verifier_log_basic(env, t, 927 "meta_left:%u meta_needed:%u", 928 meta_left, meta_needed); 929 return -EINVAL; 930 } 931 932 if (btf_type_vlen(t)) { 933 btf_verifier_log_type(env, t, "vlen != 0"); 934 return -EINVAL; 935 } 936 937 int_data = btf_type_int(t); 938 if (int_data & ~BTF_INT_MASK) { 939 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 940 int_data); 941 return -EINVAL; 942 } 943 944 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 945 946 if (nr_bits > BITS_PER_U64) { 947 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 948 BITS_PER_U64); 949 return -EINVAL; 950 } 951 952 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 953 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 954 return -EINVAL; 955 } 956 957 /* 958 * Only one of the encoding bits is allowed and it 959 * should be sufficient for the pretty print purpose (i.e. decoding). 960 * Multiple bits can be allowed later if it is found 961 * to be insufficient. 962 */ 963 encoding = BTF_INT_ENCODING(int_data); 964 if (encoding && 965 encoding != BTF_INT_SIGNED && 966 encoding != BTF_INT_CHAR && 967 encoding != BTF_INT_BOOL) { 968 btf_verifier_log_type(env, t, "Unsupported encoding"); 969 return -ENOTSUPP; 970 } 971 972 btf_verifier_log_type(env, t, NULL); 973 974 return meta_needed; 975 } 976 977 static void btf_int_log(struct btf_verifier_env *env, 978 const struct btf_type *t) 979 { 980 int int_data = btf_type_int(t); 981 982 btf_verifier_log(env, 983 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 984 t->size, BTF_INT_OFFSET(int_data), 985 BTF_INT_BITS(int_data), 986 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 987 } 988 989 static void btf_int_bits_seq_show(const struct btf *btf, 990 const struct btf_type *t, 991 void *data, u8 bits_offset, 992 struct seq_file *m) 993 { 994 u32 int_data = btf_type_int(t); 995 u16 nr_bits = BTF_INT_BITS(int_data); 996 u16 total_bits_offset; 997 u16 nr_copy_bytes; 998 u16 nr_copy_bits; 999 u8 nr_upper_bits; 1000 union { 1001 u64 u64_num; 1002 u8 u8_nums[8]; 1003 } print_num; 1004 1005 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1006 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1007 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1008 nr_copy_bits = nr_bits + bits_offset; 1009 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1010 1011 print_num.u64_num = 0; 1012 memcpy(&print_num.u64_num, data, nr_copy_bytes); 1013 1014 /* Ditch the higher order bits */ 1015 nr_upper_bits = BITS_PER_BYTE_MASKED(nr_copy_bits); 1016 if (nr_upper_bits) { 1017 /* We need to mask out some bits of the upper byte. */ 1018 u8 mask = (1 << nr_upper_bits) - 1; 1019 1020 print_num.u8_nums[nr_copy_bytes - 1] &= mask; 1021 } 1022 1023 print_num.u64_num >>= bits_offset; 1024 1025 seq_printf(m, "0x%llx", print_num.u64_num); 1026 } 1027 1028 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1029 u32 type_id, void *data, u8 bits_offset, 1030 struct seq_file *m) 1031 { 1032 u32 int_data = btf_type_int(t); 1033 u8 encoding = BTF_INT_ENCODING(int_data); 1034 bool sign = encoding & BTF_INT_SIGNED; 1035 u32 nr_bits = BTF_INT_BITS(int_data); 1036 1037 if (bits_offset || BTF_INT_OFFSET(int_data) || 1038 BITS_PER_BYTE_MASKED(nr_bits)) { 1039 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1040 return; 1041 } 1042 1043 switch (nr_bits) { 1044 case 64: 1045 if (sign) 1046 seq_printf(m, "%lld", *(s64 *)data); 1047 else 1048 seq_printf(m, "%llu", *(u64 *)data); 1049 break; 1050 case 32: 1051 if (sign) 1052 seq_printf(m, "%d", *(s32 *)data); 1053 else 1054 seq_printf(m, "%u", *(u32 *)data); 1055 break; 1056 case 16: 1057 if (sign) 1058 seq_printf(m, "%d", *(s16 *)data); 1059 else 1060 seq_printf(m, "%u", *(u16 *)data); 1061 break; 1062 case 8: 1063 if (sign) 1064 seq_printf(m, "%d", *(s8 *)data); 1065 else 1066 seq_printf(m, "%u", *(u8 *)data); 1067 break; 1068 default: 1069 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1070 } 1071 } 1072 1073 static const struct btf_kind_operations int_ops = { 1074 .check_meta = btf_int_check_meta, 1075 .resolve = btf_df_resolve, 1076 .check_member = btf_int_check_member, 1077 .log_details = btf_int_log, 1078 .seq_show = btf_int_seq_show, 1079 }; 1080 1081 static int btf_modifier_check_member(struct btf_verifier_env *env, 1082 const struct btf_type *struct_type, 1083 const struct btf_member *member, 1084 const struct btf_type *member_type) 1085 { 1086 const struct btf_type *resolved_type; 1087 u32 resolved_type_id = member->type; 1088 struct btf_member resolved_member; 1089 struct btf *btf = env->btf; 1090 1091 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1092 if (!resolved_type) { 1093 btf_verifier_log_member(env, struct_type, member, 1094 "Invalid member"); 1095 return -EINVAL; 1096 } 1097 1098 resolved_member = *member; 1099 resolved_member.type = resolved_type_id; 1100 1101 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1102 &resolved_member, 1103 resolved_type); 1104 } 1105 1106 static int btf_ptr_check_member(struct btf_verifier_env *env, 1107 const struct btf_type *struct_type, 1108 const struct btf_member *member, 1109 const struct btf_type *member_type) 1110 { 1111 u32 struct_size, struct_bits_off, bytes_offset; 1112 1113 struct_size = struct_type->size; 1114 struct_bits_off = member->offset; 1115 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1116 1117 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1118 btf_verifier_log_member(env, struct_type, member, 1119 "Member is not byte aligned"); 1120 return -EINVAL; 1121 } 1122 1123 if (struct_size - bytes_offset < sizeof(void *)) { 1124 btf_verifier_log_member(env, struct_type, member, 1125 "Member exceeds struct_size"); 1126 return -EINVAL; 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1133 const struct btf_type *t, 1134 u32 meta_left) 1135 { 1136 if (btf_type_vlen(t)) { 1137 btf_verifier_log_type(env, t, "vlen != 0"); 1138 return -EINVAL; 1139 } 1140 1141 if (!BTF_TYPE_ID_VALID(t->type)) { 1142 btf_verifier_log_type(env, t, "Invalid type_id"); 1143 return -EINVAL; 1144 } 1145 1146 btf_verifier_log_type(env, t, NULL); 1147 1148 return 0; 1149 } 1150 1151 static int btf_modifier_resolve(struct btf_verifier_env *env, 1152 const struct resolve_vertex *v) 1153 { 1154 const struct btf_type *t = v->t; 1155 const struct btf_type *next_type; 1156 u32 next_type_id = t->type; 1157 struct btf *btf = env->btf; 1158 u32 next_type_size = 0; 1159 1160 next_type = btf_type_by_id(btf, next_type_id); 1161 if (!next_type) { 1162 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1163 return -EINVAL; 1164 } 1165 1166 /* "typedef void new_void", "const void"...etc */ 1167 if (btf_type_is_void(next_type)) 1168 goto resolved; 1169 1170 if (!env_type_is_resolve_sink(env, next_type) && 1171 !env_type_is_resolved(env, next_type_id)) 1172 return env_stack_push(env, next_type, next_type_id); 1173 1174 /* Figure out the resolved next_type_id with size. 1175 * They will be stored in the current modifier's 1176 * resolved_ids and resolved_sizes such that it can 1177 * save us a few type-following when we use it later (e.g. in 1178 * pretty print). 1179 */ 1180 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && 1181 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { 1182 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1183 return -EINVAL; 1184 } 1185 1186 resolved: 1187 env_stack_pop_resolved(env, next_type_id, next_type_size); 1188 1189 return 0; 1190 } 1191 1192 static int btf_ptr_resolve(struct btf_verifier_env *env, 1193 const struct resolve_vertex *v) 1194 { 1195 const struct btf_type *next_type; 1196 const struct btf_type *t = v->t; 1197 u32 next_type_id = t->type; 1198 struct btf *btf = env->btf; 1199 u32 next_type_size = 0; 1200 1201 next_type = btf_type_by_id(btf, next_type_id); 1202 if (!next_type) { 1203 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1204 return -EINVAL; 1205 } 1206 1207 /* "void *" */ 1208 if (btf_type_is_void(next_type)) 1209 goto resolved; 1210 1211 if (!env_type_is_resolve_sink(env, next_type) && 1212 !env_type_is_resolved(env, next_type_id)) 1213 return env_stack_push(env, next_type, next_type_id); 1214 1215 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1216 * the modifier may have stopped resolving when it was resolved 1217 * to a ptr (last-resolved-ptr). 1218 * 1219 * We now need to continue from the last-resolved-ptr to 1220 * ensure the last-resolved-ptr will not referring back to 1221 * the currenct ptr (t). 1222 */ 1223 if (btf_type_is_modifier(next_type)) { 1224 const struct btf_type *resolved_type; 1225 u32 resolved_type_id; 1226 1227 resolved_type_id = next_type_id; 1228 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1229 1230 if (btf_type_is_ptr(resolved_type) && 1231 !env_type_is_resolve_sink(env, resolved_type) && 1232 !env_type_is_resolved(env, resolved_type_id)) 1233 return env_stack_push(env, resolved_type, 1234 resolved_type_id); 1235 } 1236 1237 if (!btf_type_id_size(btf, &next_type_id, &next_type_size) && 1238 !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) { 1239 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1240 return -EINVAL; 1241 } 1242 1243 resolved: 1244 env_stack_pop_resolved(env, next_type_id, 0); 1245 1246 return 0; 1247 } 1248 1249 static void btf_modifier_seq_show(const struct btf *btf, 1250 const struct btf_type *t, 1251 u32 type_id, void *data, 1252 u8 bits_offset, struct seq_file *m) 1253 { 1254 t = btf_type_id_resolve(btf, &type_id); 1255 1256 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1257 } 1258 1259 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1260 u32 type_id, void *data, u8 bits_offset, 1261 struct seq_file *m) 1262 { 1263 /* It is a hashed value */ 1264 seq_printf(m, "%p", *(void **)data); 1265 } 1266 1267 static void btf_ref_type_log(struct btf_verifier_env *env, 1268 const struct btf_type *t) 1269 { 1270 btf_verifier_log(env, "type_id=%u", t->type); 1271 } 1272 1273 static struct btf_kind_operations modifier_ops = { 1274 .check_meta = btf_ref_type_check_meta, 1275 .resolve = btf_modifier_resolve, 1276 .check_member = btf_modifier_check_member, 1277 .log_details = btf_ref_type_log, 1278 .seq_show = btf_modifier_seq_show, 1279 }; 1280 1281 static struct btf_kind_operations ptr_ops = { 1282 .check_meta = btf_ref_type_check_meta, 1283 .resolve = btf_ptr_resolve, 1284 .check_member = btf_ptr_check_member, 1285 .log_details = btf_ref_type_log, 1286 .seq_show = btf_ptr_seq_show, 1287 }; 1288 1289 static struct btf_kind_operations fwd_ops = { 1290 .check_meta = btf_ref_type_check_meta, 1291 .resolve = btf_df_resolve, 1292 .check_member = btf_df_check_member, 1293 .log_details = btf_ref_type_log, 1294 .seq_show = btf_df_seq_show, 1295 }; 1296 1297 static int btf_array_check_member(struct btf_verifier_env *env, 1298 const struct btf_type *struct_type, 1299 const struct btf_member *member, 1300 const struct btf_type *member_type) 1301 { 1302 u32 struct_bits_off = member->offset; 1303 u32 struct_size, bytes_offset; 1304 u32 array_type_id, array_size; 1305 struct btf *btf = env->btf; 1306 1307 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1308 btf_verifier_log_member(env, struct_type, member, 1309 "Member is not byte aligned"); 1310 return -EINVAL; 1311 } 1312 1313 array_type_id = member->type; 1314 btf_type_id_size(btf, &array_type_id, &array_size); 1315 struct_size = struct_type->size; 1316 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1317 if (struct_size - bytes_offset < array_size) { 1318 btf_verifier_log_member(env, struct_type, member, 1319 "Member exceeds struct_size"); 1320 return -EINVAL; 1321 } 1322 1323 return 0; 1324 } 1325 1326 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1327 const struct btf_type *t, 1328 u32 meta_left) 1329 { 1330 const struct btf_array *array = btf_type_array(t); 1331 u32 meta_needed = sizeof(*array); 1332 1333 if (meta_left < meta_needed) { 1334 btf_verifier_log_basic(env, t, 1335 "meta_left:%u meta_needed:%u", 1336 meta_left, meta_needed); 1337 return -EINVAL; 1338 } 1339 1340 if (btf_type_vlen(t)) { 1341 btf_verifier_log_type(env, t, "vlen != 0"); 1342 return -EINVAL; 1343 } 1344 1345 /* Array elem type and index type cannot be in type void, 1346 * so !array->type and !array->index_type are not allowed. 1347 */ 1348 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1349 btf_verifier_log_type(env, t, "Invalid elem"); 1350 return -EINVAL; 1351 } 1352 1353 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1354 btf_verifier_log_type(env, t, "Invalid index"); 1355 return -EINVAL; 1356 } 1357 1358 btf_verifier_log_type(env, t, NULL); 1359 1360 return meta_needed; 1361 } 1362 1363 static int btf_array_resolve(struct btf_verifier_env *env, 1364 const struct resolve_vertex *v) 1365 { 1366 const struct btf_array *array = btf_type_array(v->t); 1367 const struct btf_type *elem_type, *index_type; 1368 u32 elem_type_id, index_type_id; 1369 struct btf *btf = env->btf; 1370 u32 elem_size; 1371 1372 /* Check array->index_type */ 1373 index_type_id = array->index_type; 1374 index_type = btf_type_by_id(btf, index_type_id); 1375 if (btf_type_is_void_or_null(index_type)) { 1376 btf_verifier_log_type(env, v->t, "Invalid index"); 1377 return -EINVAL; 1378 } 1379 1380 if (!env_type_is_resolve_sink(env, index_type) && 1381 !env_type_is_resolved(env, index_type_id)) 1382 return env_stack_push(env, index_type, index_type_id); 1383 1384 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1385 if (!index_type || !btf_type_is_int(index_type) || 1386 !btf_type_int_is_regular(index_type)) { 1387 btf_verifier_log_type(env, v->t, "Invalid index"); 1388 return -EINVAL; 1389 } 1390 1391 /* Check array->type */ 1392 elem_type_id = array->type; 1393 elem_type = btf_type_by_id(btf, elem_type_id); 1394 if (btf_type_is_void_or_null(elem_type)) { 1395 btf_verifier_log_type(env, v->t, 1396 "Invalid elem"); 1397 return -EINVAL; 1398 } 1399 1400 if (!env_type_is_resolve_sink(env, elem_type) && 1401 !env_type_is_resolved(env, elem_type_id)) 1402 return env_stack_push(env, elem_type, elem_type_id); 1403 1404 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1405 if (!elem_type) { 1406 btf_verifier_log_type(env, v->t, "Invalid elem"); 1407 return -EINVAL; 1408 } 1409 1410 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1411 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1412 return -EINVAL; 1413 } 1414 1415 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1416 btf_verifier_log_type(env, v->t, 1417 "Array size overflows U32_MAX"); 1418 return -EINVAL; 1419 } 1420 1421 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1422 1423 return 0; 1424 } 1425 1426 static void btf_array_log(struct btf_verifier_env *env, 1427 const struct btf_type *t) 1428 { 1429 const struct btf_array *array = btf_type_array(t); 1430 1431 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1432 array->type, array->index_type, array->nelems); 1433 } 1434 1435 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1436 u32 type_id, void *data, u8 bits_offset, 1437 struct seq_file *m) 1438 { 1439 const struct btf_array *array = btf_type_array(t); 1440 const struct btf_kind_operations *elem_ops; 1441 const struct btf_type *elem_type; 1442 u32 i, elem_size, elem_type_id; 1443 1444 elem_type_id = array->type; 1445 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1446 elem_ops = btf_type_ops(elem_type); 1447 seq_puts(m, "["); 1448 for (i = 0; i < array->nelems; i++) { 1449 if (i) 1450 seq_puts(m, ","); 1451 1452 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 1453 bits_offset, m); 1454 data += elem_size; 1455 } 1456 seq_puts(m, "]"); 1457 } 1458 1459 static struct btf_kind_operations array_ops = { 1460 .check_meta = btf_array_check_meta, 1461 .resolve = btf_array_resolve, 1462 .check_member = btf_array_check_member, 1463 .log_details = btf_array_log, 1464 .seq_show = btf_array_seq_show, 1465 }; 1466 1467 static int btf_struct_check_member(struct btf_verifier_env *env, 1468 const struct btf_type *struct_type, 1469 const struct btf_member *member, 1470 const struct btf_type *member_type) 1471 { 1472 u32 struct_bits_off = member->offset; 1473 u32 struct_size, bytes_offset; 1474 1475 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1476 btf_verifier_log_member(env, struct_type, member, 1477 "Member is not byte aligned"); 1478 return -EINVAL; 1479 } 1480 1481 struct_size = struct_type->size; 1482 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1483 if (struct_size - bytes_offset < member_type->size) { 1484 btf_verifier_log_member(env, struct_type, member, 1485 "Member exceeds struct_size"); 1486 return -EINVAL; 1487 } 1488 1489 return 0; 1490 } 1491 1492 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 1493 const struct btf_type *t, 1494 u32 meta_left) 1495 { 1496 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 1497 const struct btf_member *member; 1498 struct btf *btf = env->btf; 1499 u32 struct_size = t->size; 1500 u32 meta_needed; 1501 u16 i; 1502 1503 meta_needed = btf_type_vlen(t) * sizeof(*member); 1504 if (meta_left < meta_needed) { 1505 btf_verifier_log_basic(env, t, 1506 "meta_left:%u meta_needed:%u", 1507 meta_left, meta_needed); 1508 return -EINVAL; 1509 } 1510 1511 btf_verifier_log_type(env, t, NULL); 1512 1513 for_each_member(i, t, member) { 1514 if (!btf_name_offset_valid(btf, member->name_off)) { 1515 btf_verifier_log_member(env, t, member, 1516 "Invalid member name_offset:%u", 1517 member->name_off); 1518 return -EINVAL; 1519 } 1520 1521 /* A member cannot be in type void */ 1522 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 1523 btf_verifier_log_member(env, t, member, 1524 "Invalid type_id"); 1525 return -EINVAL; 1526 } 1527 1528 if (is_union && member->offset) { 1529 btf_verifier_log_member(env, t, member, 1530 "Invalid member bits_offset"); 1531 return -EINVAL; 1532 } 1533 1534 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { 1535 btf_verifier_log_member(env, t, member, 1536 "Memmber bits_offset exceeds its struct size"); 1537 return -EINVAL; 1538 } 1539 1540 btf_verifier_log_member(env, t, member, NULL); 1541 } 1542 1543 return meta_needed; 1544 } 1545 1546 static int btf_struct_resolve(struct btf_verifier_env *env, 1547 const struct resolve_vertex *v) 1548 { 1549 const struct btf_member *member; 1550 int err; 1551 u16 i; 1552 1553 /* Before continue resolving the next_member, 1554 * ensure the last member is indeed resolved to a 1555 * type with size info. 1556 */ 1557 if (v->next_member) { 1558 const struct btf_type *last_member_type; 1559 const struct btf_member *last_member; 1560 u16 last_member_type_id; 1561 1562 last_member = btf_type_member(v->t) + v->next_member - 1; 1563 last_member_type_id = last_member->type; 1564 if (WARN_ON_ONCE(!env_type_is_resolved(env, 1565 last_member_type_id))) 1566 return -EINVAL; 1567 1568 last_member_type = btf_type_by_id(env->btf, 1569 last_member_type_id); 1570 err = btf_type_ops(last_member_type)->check_member(env, v->t, 1571 last_member, 1572 last_member_type); 1573 if (err) 1574 return err; 1575 } 1576 1577 for_each_member_from(i, v->next_member, v->t, member) { 1578 u32 member_type_id = member->type; 1579 const struct btf_type *member_type = btf_type_by_id(env->btf, 1580 member_type_id); 1581 1582 if (btf_type_is_void_or_null(member_type)) { 1583 btf_verifier_log_member(env, v->t, member, 1584 "Invalid member"); 1585 return -EINVAL; 1586 } 1587 1588 if (!env_type_is_resolve_sink(env, member_type) && 1589 !env_type_is_resolved(env, member_type_id)) { 1590 env_stack_set_next_member(env, i + 1); 1591 return env_stack_push(env, member_type, member_type_id); 1592 } 1593 1594 err = btf_type_ops(member_type)->check_member(env, v->t, 1595 member, 1596 member_type); 1597 if (err) 1598 return err; 1599 } 1600 1601 env_stack_pop_resolved(env, 0, 0); 1602 1603 return 0; 1604 } 1605 1606 static void btf_struct_log(struct btf_verifier_env *env, 1607 const struct btf_type *t) 1608 { 1609 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1610 } 1611 1612 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 1613 u32 type_id, void *data, u8 bits_offset, 1614 struct seq_file *m) 1615 { 1616 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 1617 const struct btf_member *member; 1618 u32 i; 1619 1620 seq_puts(m, "{"); 1621 for_each_member(i, t, member) { 1622 const struct btf_type *member_type = btf_type_by_id(btf, 1623 member->type); 1624 u32 member_offset = member->offset; 1625 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 1626 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 1627 const struct btf_kind_operations *ops; 1628 1629 if (i) 1630 seq_puts(m, seq); 1631 1632 ops = btf_type_ops(member_type); 1633 ops->seq_show(btf, member_type, member->type, 1634 data + bytes_offset, bits8_offset, m); 1635 } 1636 seq_puts(m, "}"); 1637 } 1638 1639 static struct btf_kind_operations struct_ops = { 1640 .check_meta = btf_struct_check_meta, 1641 .resolve = btf_struct_resolve, 1642 .check_member = btf_struct_check_member, 1643 .log_details = btf_struct_log, 1644 .seq_show = btf_struct_seq_show, 1645 }; 1646 1647 static int btf_enum_check_member(struct btf_verifier_env *env, 1648 const struct btf_type *struct_type, 1649 const struct btf_member *member, 1650 const struct btf_type *member_type) 1651 { 1652 u32 struct_bits_off = member->offset; 1653 u32 struct_size, bytes_offset; 1654 1655 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1656 btf_verifier_log_member(env, struct_type, member, 1657 "Member is not byte aligned"); 1658 return -EINVAL; 1659 } 1660 1661 struct_size = struct_type->size; 1662 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1663 if (struct_size - bytes_offset < sizeof(int)) { 1664 btf_verifier_log_member(env, struct_type, member, 1665 "Member exceeds struct_size"); 1666 return -EINVAL; 1667 } 1668 1669 return 0; 1670 } 1671 1672 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 1673 const struct btf_type *t, 1674 u32 meta_left) 1675 { 1676 const struct btf_enum *enums = btf_type_enum(t); 1677 struct btf *btf = env->btf; 1678 u16 i, nr_enums; 1679 u32 meta_needed; 1680 1681 nr_enums = btf_type_vlen(t); 1682 meta_needed = nr_enums * sizeof(*enums); 1683 1684 if (meta_left < meta_needed) { 1685 btf_verifier_log_basic(env, t, 1686 "meta_left:%u meta_needed:%u", 1687 meta_left, meta_needed); 1688 return -EINVAL; 1689 } 1690 1691 if (t->size != sizeof(int)) { 1692 btf_verifier_log_type(env, t, "Expected size:%zu", 1693 sizeof(int)); 1694 return -EINVAL; 1695 } 1696 1697 btf_verifier_log_type(env, t, NULL); 1698 1699 for (i = 0; i < nr_enums; i++) { 1700 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 1701 btf_verifier_log(env, "\tInvalid name_offset:%u", 1702 enums[i].name_off); 1703 return -EINVAL; 1704 } 1705 1706 btf_verifier_log(env, "\t%s val=%d\n", 1707 btf_name_by_offset(btf, enums[i].name_off), 1708 enums[i].val); 1709 } 1710 1711 return meta_needed; 1712 } 1713 1714 static void btf_enum_log(struct btf_verifier_env *env, 1715 const struct btf_type *t) 1716 { 1717 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1718 } 1719 1720 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 1721 u32 type_id, void *data, u8 bits_offset, 1722 struct seq_file *m) 1723 { 1724 const struct btf_enum *enums = btf_type_enum(t); 1725 u32 i, nr_enums = btf_type_vlen(t); 1726 int v = *(int *)data; 1727 1728 for (i = 0; i < nr_enums; i++) { 1729 if (v == enums[i].val) { 1730 seq_printf(m, "%s", 1731 btf_name_by_offset(btf, enums[i].name_off)); 1732 return; 1733 } 1734 } 1735 1736 seq_printf(m, "%d", v); 1737 } 1738 1739 static struct btf_kind_operations enum_ops = { 1740 .check_meta = btf_enum_check_meta, 1741 .resolve = btf_df_resolve, 1742 .check_member = btf_enum_check_member, 1743 .log_details = btf_enum_log, 1744 .seq_show = btf_enum_seq_show, 1745 }; 1746 1747 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 1748 [BTF_KIND_INT] = &int_ops, 1749 [BTF_KIND_PTR] = &ptr_ops, 1750 [BTF_KIND_ARRAY] = &array_ops, 1751 [BTF_KIND_STRUCT] = &struct_ops, 1752 [BTF_KIND_UNION] = &struct_ops, 1753 [BTF_KIND_ENUM] = &enum_ops, 1754 [BTF_KIND_FWD] = &fwd_ops, 1755 [BTF_KIND_TYPEDEF] = &modifier_ops, 1756 [BTF_KIND_VOLATILE] = &modifier_ops, 1757 [BTF_KIND_CONST] = &modifier_ops, 1758 [BTF_KIND_RESTRICT] = &modifier_ops, 1759 }; 1760 1761 static s32 btf_check_meta(struct btf_verifier_env *env, 1762 const struct btf_type *t, 1763 u32 meta_left) 1764 { 1765 u32 saved_meta_left = meta_left; 1766 s32 var_meta_size; 1767 1768 if (meta_left < sizeof(*t)) { 1769 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 1770 env->log_type_id, meta_left, sizeof(*t)); 1771 return -EINVAL; 1772 } 1773 meta_left -= sizeof(*t); 1774 1775 if (t->info & ~BTF_INFO_MASK) { 1776 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 1777 env->log_type_id, t->info); 1778 return -EINVAL; 1779 } 1780 1781 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 1782 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 1783 btf_verifier_log(env, "[%u] Invalid kind:%u", 1784 env->log_type_id, BTF_INFO_KIND(t->info)); 1785 return -EINVAL; 1786 } 1787 1788 if (!btf_name_offset_valid(env->btf, t->name_off)) { 1789 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 1790 env->log_type_id, t->name_off); 1791 return -EINVAL; 1792 } 1793 1794 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 1795 if (var_meta_size < 0) 1796 return var_meta_size; 1797 1798 meta_left -= var_meta_size; 1799 1800 return saved_meta_left - meta_left; 1801 } 1802 1803 static int btf_check_all_metas(struct btf_verifier_env *env) 1804 { 1805 struct btf *btf = env->btf; 1806 struct btf_header *hdr; 1807 void *cur, *end; 1808 1809 hdr = &btf->hdr; 1810 cur = btf->nohdr_data + hdr->type_off; 1811 end = btf->nohdr_data + hdr->type_len; 1812 1813 env->log_type_id = 1; 1814 while (cur < end) { 1815 struct btf_type *t = cur; 1816 s32 meta_size; 1817 1818 meta_size = btf_check_meta(env, t, end - cur); 1819 if (meta_size < 0) 1820 return meta_size; 1821 1822 btf_add_type(env, t); 1823 cur += meta_size; 1824 env->log_type_id++; 1825 } 1826 1827 return 0; 1828 } 1829 1830 static int btf_resolve(struct btf_verifier_env *env, 1831 const struct btf_type *t, u32 type_id) 1832 { 1833 const struct resolve_vertex *v; 1834 int err = 0; 1835 1836 env->resolve_mode = RESOLVE_TBD; 1837 env_stack_push(env, t, type_id); 1838 while (!err && (v = env_stack_peak(env))) { 1839 env->log_type_id = v->type_id; 1840 err = btf_type_ops(v->t)->resolve(env, v); 1841 } 1842 1843 env->log_type_id = type_id; 1844 if (err == -E2BIG) 1845 btf_verifier_log_type(env, t, 1846 "Exceeded max resolving depth:%u", 1847 MAX_RESOLVE_DEPTH); 1848 else if (err == -EEXIST) 1849 btf_verifier_log_type(env, t, "Loop detected"); 1850 1851 return err; 1852 } 1853 1854 static bool btf_resolve_valid(struct btf_verifier_env *env, 1855 const struct btf_type *t, 1856 u32 type_id) 1857 { 1858 struct btf *btf = env->btf; 1859 1860 if (!env_type_is_resolved(env, type_id)) 1861 return false; 1862 1863 if (btf_type_is_struct(t)) 1864 return !btf->resolved_ids[type_id] && 1865 !btf->resolved_sizes[type_id]; 1866 1867 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { 1868 t = btf_type_id_resolve(btf, &type_id); 1869 return t && !btf_type_is_modifier(t); 1870 } 1871 1872 if (btf_type_is_array(t)) { 1873 const struct btf_array *array = btf_type_array(t); 1874 const struct btf_type *elem_type; 1875 u32 elem_type_id = array->type; 1876 u32 elem_size; 1877 1878 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1879 return elem_type && !btf_type_is_modifier(elem_type) && 1880 (array->nelems * elem_size == 1881 btf->resolved_sizes[type_id]); 1882 } 1883 1884 return false; 1885 } 1886 1887 static int btf_check_all_types(struct btf_verifier_env *env) 1888 { 1889 struct btf *btf = env->btf; 1890 u32 type_id; 1891 int err; 1892 1893 err = env_resolve_init(env); 1894 if (err) 1895 return err; 1896 1897 env->phase++; 1898 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 1899 const struct btf_type *t = btf_type_by_id(btf, type_id); 1900 1901 env->log_type_id = type_id; 1902 if (btf_type_needs_resolve(t) && 1903 !env_type_is_resolved(env, type_id)) { 1904 err = btf_resolve(env, t, type_id); 1905 if (err) 1906 return err; 1907 } 1908 1909 if (btf_type_needs_resolve(t) && 1910 !btf_resolve_valid(env, t, type_id)) { 1911 btf_verifier_log_type(env, t, "Invalid resolve state"); 1912 return -EINVAL; 1913 } 1914 } 1915 1916 return 0; 1917 } 1918 1919 static int btf_parse_type_sec(struct btf_verifier_env *env) 1920 { 1921 const struct btf_header *hdr = &env->btf->hdr; 1922 int err; 1923 1924 /* Type section must align to 4 bytes */ 1925 if (hdr->type_off & (sizeof(u32) - 1)) { 1926 btf_verifier_log(env, "Unaligned type_off"); 1927 return -EINVAL; 1928 } 1929 1930 if (!hdr->type_len) { 1931 btf_verifier_log(env, "No type found"); 1932 return -EINVAL; 1933 } 1934 1935 err = btf_check_all_metas(env); 1936 if (err) 1937 return err; 1938 1939 return btf_check_all_types(env); 1940 } 1941 1942 static int btf_parse_str_sec(struct btf_verifier_env *env) 1943 { 1944 const struct btf_header *hdr; 1945 struct btf *btf = env->btf; 1946 const char *start, *end; 1947 1948 hdr = &btf->hdr; 1949 start = btf->nohdr_data + hdr->str_off; 1950 end = start + hdr->str_len; 1951 1952 if (end != btf->data + btf->data_size) { 1953 btf_verifier_log(env, "String section is not at the end"); 1954 return -EINVAL; 1955 } 1956 1957 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 1958 start[0] || end[-1]) { 1959 btf_verifier_log(env, "Invalid string section"); 1960 return -EINVAL; 1961 } 1962 1963 btf->strings = start; 1964 1965 return 0; 1966 } 1967 1968 static const size_t btf_sec_info_offset[] = { 1969 offsetof(struct btf_header, type_off), 1970 offsetof(struct btf_header, str_off), 1971 }; 1972 1973 static int btf_sec_info_cmp(const void *a, const void *b) 1974 { 1975 const struct btf_sec_info *x = a; 1976 const struct btf_sec_info *y = b; 1977 1978 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 1979 } 1980 1981 static int btf_check_sec_info(struct btf_verifier_env *env, 1982 u32 btf_data_size) 1983 { 1984 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 1985 u32 total, expected_total, i; 1986 const struct btf_header *hdr; 1987 const struct btf *btf; 1988 1989 btf = env->btf; 1990 hdr = &btf->hdr; 1991 1992 /* Populate the secs from hdr */ 1993 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 1994 secs[i] = *(struct btf_sec_info *)((void *)hdr + 1995 btf_sec_info_offset[i]); 1996 1997 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 1998 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 1999 2000 /* Check for gaps and overlap among sections */ 2001 total = 0; 2002 expected_total = btf_data_size - hdr->hdr_len; 2003 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 2004 if (expected_total < secs[i].off) { 2005 btf_verifier_log(env, "Invalid section offset"); 2006 return -EINVAL; 2007 } 2008 if (total < secs[i].off) { 2009 /* gap */ 2010 btf_verifier_log(env, "Unsupported section found"); 2011 return -EINVAL; 2012 } 2013 if (total > secs[i].off) { 2014 btf_verifier_log(env, "Section overlap found"); 2015 return -EINVAL; 2016 } 2017 if (expected_total - total < secs[i].len) { 2018 btf_verifier_log(env, 2019 "Total section length too long"); 2020 return -EINVAL; 2021 } 2022 total += secs[i].len; 2023 } 2024 2025 /* There is data other than hdr and known sections */ 2026 if (expected_total != total) { 2027 btf_verifier_log(env, "Unsupported section found"); 2028 return -EINVAL; 2029 } 2030 2031 return 0; 2032 } 2033 2034 static int btf_parse_hdr(struct btf_verifier_env *env, void __user *btf_data, 2035 u32 btf_data_size) 2036 { 2037 const struct btf_header *hdr; 2038 u32 hdr_len, hdr_copy; 2039 /* 2040 * Minimal part of the "struct btf_header" that 2041 * contains the hdr_len. 2042 */ 2043 struct btf_min_header { 2044 u16 magic; 2045 u8 version; 2046 u8 flags; 2047 u32 hdr_len; 2048 } __user *min_hdr; 2049 struct btf *btf; 2050 int err; 2051 2052 btf = env->btf; 2053 min_hdr = btf_data; 2054 2055 if (btf_data_size < sizeof(*min_hdr)) { 2056 btf_verifier_log(env, "hdr_len not found"); 2057 return -EINVAL; 2058 } 2059 2060 if (get_user(hdr_len, &min_hdr->hdr_len)) 2061 return -EFAULT; 2062 2063 if (btf_data_size < hdr_len) { 2064 btf_verifier_log(env, "btf_header not found"); 2065 return -EINVAL; 2066 } 2067 2068 err = bpf_check_uarg_tail_zero(btf_data, sizeof(btf->hdr), hdr_len); 2069 if (err) { 2070 if (err == -E2BIG) 2071 btf_verifier_log(env, "Unsupported btf_header"); 2072 return err; 2073 } 2074 2075 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 2076 if (copy_from_user(&btf->hdr, btf_data, hdr_copy)) 2077 return -EFAULT; 2078 2079 hdr = &btf->hdr; 2080 2081 btf_verifier_log_hdr(env, btf_data_size); 2082 2083 if (hdr->magic != BTF_MAGIC) { 2084 btf_verifier_log(env, "Invalid magic"); 2085 return -EINVAL; 2086 } 2087 2088 if (hdr->version != BTF_VERSION) { 2089 btf_verifier_log(env, "Unsupported version"); 2090 return -ENOTSUPP; 2091 } 2092 2093 if (hdr->flags) { 2094 btf_verifier_log(env, "Unsupported flags"); 2095 return -ENOTSUPP; 2096 } 2097 2098 if (btf_data_size == hdr->hdr_len) { 2099 btf_verifier_log(env, "No data"); 2100 return -EINVAL; 2101 } 2102 2103 err = btf_check_sec_info(env, btf_data_size); 2104 if (err) 2105 return err; 2106 2107 return 0; 2108 } 2109 2110 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 2111 u32 log_level, char __user *log_ubuf, u32 log_size) 2112 { 2113 struct btf_verifier_env *env = NULL; 2114 struct bpf_verifier_log *log; 2115 struct btf *btf = NULL; 2116 u8 *data; 2117 int err; 2118 2119 if (btf_data_size > BTF_MAX_SIZE) 2120 return ERR_PTR(-E2BIG); 2121 2122 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 2123 if (!env) 2124 return ERR_PTR(-ENOMEM); 2125 2126 log = &env->log; 2127 if (log_level || log_ubuf || log_size) { 2128 /* user requested verbose verifier output 2129 * and supplied buffer to store the verification trace 2130 */ 2131 log->level = log_level; 2132 log->ubuf = log_ubuf; 2133 log->len_total = log_size; 2134 2135 /* log attributes have to be sane */ 2136 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 2137 !log->level || !log->ubuf) { 2138 err = -EINVAL; 2139 goto errout; 2140 } 2141 } 2142 2143 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 2144 if (!btf) { 2145 err = -ENOMEM; 2146 goto errout; 2147 } 2148 env->btf = btf; 2149 2150 err = btf_parse_hdr(env, btf_data, btf_data_size); 2151 if (err) 2152 goto errout; 2153 2154 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 2155 if (!data) { 2156 err = -ENOMEM; 2157 goto errout; 2158 } 2159 2160 btf->data = data; 2161 btf->data_size = btf_data_size; 2162 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 2163 2164 if (copy_from_user(data, btf_data, btf_data_size)) { 2165 err = -EFAULT; 2166 goto errout; 2167 } 2168 2169 err = btf_parse_str_sec(env); 2170 if (err) 2171 goto errout; 2172 2173 err = btf_parse_type_sec(env); 2174 if (err) 2175 goto errout; 2176 2177 if (log->level && bpf_verifier_log_full(log)) { 2178 err = -ENOSPC; 2179 goto errout; 2180 } 2181 2182 btf_verifier_env_free(env); 2183 refcount_set(&btf->refcnt, 1); 2184 return btf; 2185 2186 errout: 2187 btf_verifier_env_free(env); 2188 if (btf) 2189 btf_free(btf); 2190 return ERR_PTR(err); 2191 } 2192 2193 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 2194 struct seq_file *m) 2195 { 2196 const struct btf_type *t = btf_type_by_id(btf, type_id); 2197 2198 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 2199 } 2200 2201 static int btf_release(struct inode *inode, struct file *filp) 2202 { 2203 btf_put(filp->private_data); 2204 return 0; 2205 } 2206 2207 const struct file_operations btf_fops = { 2208 .release = btf_release, 2209 }; 2210 2211 static int __btf_new_fd(struct btf *btf) 2212 { 2213 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 2214 } 2215 2216 int btf_new_fd(const union bpf_attr *attr) 2217 { 2218 struct btf *btf; 2219 int ret; 2220 2221 btf = btf_parse(u64_to_user_ptr(attr->btf), 2222 attr->btf_size, attr->btf_log_level, 2223 u64_to_user_ptr(attr->btf_log_buf), 2224 attr->btf_log_size); 2225 if (IS_ERR(btf)) 2226 return PTR_ERR(btf); 2227 2228 ret = btf_alloc_id(btf); 2229 if (ret) { 2230 btf_free(btf); 2231 return ret; 2232 } 2233 2234 /* 2235 * The BTF ID is published to the userspace. 2236 * All BTF free must go through call_rcu() from 2237 * now on (i.e. free by calling btf_put()). 2238 */ 2239 2240 ret = __btf_new_fd(btf); 2241 if (ret < 0) 2242 btf_put(btf); 2243 2244 return ret; 2245 } 2246 2247 struct btf *btf_get_by_fd(int fd) 2248 { 2249 struct btf *btf; 2250 struct fd f; 2251 2252 f = fdget(fd); 2253 2254 if (!f.file) 2255 return ERR_PTR(-EBADF); 2256 2257 if (f.file->f_op != &btf_fops) { 2258 fdput(f); 2259 return ERR_PTR(-EINVAL); 2260 } 2261 2262 btf = f.file->private_data; 2263 refcount_inc(&btf->refcnt); 2264 fdput(f); 2265 2266 return btf; 2267 } 2268 2269 int btf_get_info_by_fd(const struct btf *btf, 2270 const union bpf_attr *attr, 2271 union bpf_attr __user *uattr) 2272 { 2273 struct bpf_btf_info __user *uinfo; 2274 struct bpf_btf_info info = {}; 2275 u32 info_copy, btf_copy; 2276 void __user *ubtf; 2277 u32 uinfo_len; 2278 2279 uinfo = u64_to_user_ptr(attr->info.info); 2280 uinfo_len = attr->info.info_len; 2281 2282 info_copy = min_t(u32, uinfo_len, sizeof(info)); 2283 if (copy_from_user(&info, uinfo, info_copy)) 2284 return -EFAULT; 2285 2286 info.id = btf->id; 2287 ubtf = u64_to_user_ptr(info.btf); 2288 btf_copy = min_t(u32, btf->data_size, info.btf_size); 2289 if (copy_to_user(ubtf, btf->data, btf_copy)) 2290 return -EFAULT; 2291 info.btf_size = btf->data_size; 2292 2293 if (copy_to_user(uinfo, &info, info_copy) || 2294 put_user(info_copy, &uattr->info.info_len)) 2295 return -EFAULT; 2296 2297 return 0; 2298 } 2299 2300 int btf_get_fd_by_id(u32 id) 2301 { 2302 struct btf *btf; 2303 int fd; 2304 2305 rcu_read_lock(); 2306 btf = idr_find(&btf_idr, id); 2307 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 2308 btf = ERR_PTR(-ENOENT); 2309 rcu_read_unlock(); 2310 2311 if (IS_ERR(btf)) 2312 return PTR_ERR(btf); 2313 2314 fd = __btf_new_fd(btf); 2315 if (fd < 0) 2316 btf_put(btf); 2317 2318 return fd; 2319 } 2320 2321 u32 btf_id(const struct btf *btf) 2322 { 2323 return btf->id; 2324 } 2325