1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 29 /* BTF (BPF Type Format) is the meta data format which describes 30 * the data types of BPF program/map. Hence, it basically focus 31 * on the C programming language which the modern BPF is primary 32 * using. 33 * 34 * ELF Section: 35 * ~~~~~~~~~~~ 36 * The BTF data is stored under the ".BTF" ELF section 37 * 38 * struct btf_type: 39 * ~~~~~~~~~~~~~~~ 40 * Each 'struct btf_type' object describes a C data type. 41 * Depending on the type it is describing, a 'struct btf_type' 42 * object may be followed by more data. F.e. 43 * To describe an array, 'struct btf_type' is followed by 44 * 'struct btf_array'. 45 * 46 * 'struct btf_type' and any extra data following it are 47 * 4 bytes aligned. 48 * 49 * Type section: 50 * ~~~~~~~~~~~~~ 51 * The BTF type section contains a list of 'struct btf_type' objects. 52 * Each one describes a C type. Recall from the above section 53 * that a 'struct btf_type' object could be immediately followed by extra 54 * data in order to describe some particular C types. 55 * 56 * type_id: 57 * ~~~~~~~ 58 * Each btf_type object is identified by a type_id. The type_id 59 * is implicitly implied by the location of the btf_type object in 60 * the BTF type section. The first one has type_id 1. The second 61 * one has type_id 2...etc. Hence, an earlier btf_type has 62 * a smaller type_id. 63 * 64 * A btf_type object may refer to another btf_type object by using 65 * type_id (i.e. the "type" in the "struct btf_type"). 66 * 67 * NOTE that we cannot assume any reference-order. 68 * A btf_type object can refer to an earlier btf_type object 69 * but it can also refer to a later btf_type object. 70 * 71 * For example, to describe "const void *". A btf_type 72 * object describing "const" may refer to another btf_type 73 * object describing "void *". This type-reference is done 74 * by specifying type_id: 75 * 76 * [1] CONST (anon) type_id=2 77 * [2] PTR (anon) type_id=0 78 * 79 * The above is the btf_verifier debug log: 80 * - Each line started with "[?]" is a btf_type object 81 * - [?] is the type_id of the btf_type object. 82 * - CONST/PTR is the BTF_KIND_XXX 83 * - "(anon)" is the name of the type. It just 84 * happens that CONST and PTR has no name. 85 * - type_id=XXX is the 'u32 type' in btf_type 86 * 87 * NOTE: "void" has type_id 0 88 * 89 * String section: 90 * ~~~~~~~~~~~~~~ 91 * The BTF string section contains the names used by the type section. 92 * Each string is referred by an "offset" from the beginning of the 93 * string section. 94 * 95 * Each string is '\0' terminated. 96 * 97 * The first character in the string section must be '\0' 98 * which is used to mean 'anonymous'. Some btf_type may not 99 * have a name. 100 */ 101 102 /* BTF verification: 103 * 104 * To verify BTF data, two passes are needed. 105 * 106 * Pass #1 107 * ~~~~~~~ 108 * The first pass is to collect all btf_type objects to 109 * an array: "btf->types". 110 * 111 * Depending on the C type that a btf_type is describing, 112 * a btf_type may be followed by extra data. We don't know 113 * how many btf_type is there, and more importantly we don't 114 * know where each btf_type is located in the type section. 115 * 116 * Without knowing the location of each type_id, most verifications 117 * cannot be done. e.g. an earlier btf_type may refer to a later 118 * btf_type (recall the "const void *" above), so we cannot 119 * check this type-reference in the first pass. 120 * 121 * In the first pass, it still does some verifications (e.g. 122 * checking the name is a valid offset to the string section). 123 * 124 * Pass #2 125 * ~~~~~~~ 126 * The main focus is to resolve a btf_type that is referring 127 * to another type. 128 * 129 * We have to ensure the referring type: 130 * 1) does exist in the BTF (i.e. in btf->types[]) 131 * 2) does not cause a loop: 132 * struct A { 133 * struct B b; 134 * }; 135 * 136 * struct B { 137 * struct A a; 138 * }; 139 * 140 * btf_type_needs_resolve() decides if a btf_type needs 141 * to be resolved. 142 * 143 * The needs_resolve type implements the "resolve()" ops which 144 * essentially does a DFS and detects backedge. 145 * 146 * During resolve (or DFS), different C types have different 147 * "RESOLVED" conditions. 148 * 149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 150 * members because a member is always referring to another 151 * type. A struct's member can be treated as "RESOLVED" if 152 * it is referring to a BTF_KIND_PTR. Otherwise, the 153 * following valid C struct would be rejected: 154 * 155 * struct A { 156 * int m; 157 * struct A *a; 158 * }; 159 * 160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 162 * detect a pointer loop, e.g.: 163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 164 * ^ | 165 * +-----------------------------------------+ 166 * 167 */ 168 169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 173 #define BITS_ROUNDUP_BYTES(bits) \ 174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 175 176 #define BTF_INFO_MASK 0x9f00ffff 177 #define BTF_INT_MASK 0x0fffffff 178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 180 181 /* 16MB for 64k structs and each has 16 members and 182 * a few MB spaces for the string section. 183 * The hard limit is S32_MAX. 184 */ 185 #define BTF_MAX_SIZE (16 * 1024 * 1024) 186 187 #define for_each_member_from(i, from, struct_type, member) \ 188 for (i = from, member = btf_type_member(struct_type) + from; \ 189 i < btf_type_vlen(struct_type); \ 190 i++, member++) 191 192 #define for_each_vsi_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 DEFINE_IDR(btf_idr); 198 DEFINE_SPINLOCK(btf_idr_lock); 199 200 struct btf { 201 void *data; 202 struct btf_type **types; 203 u32 *resolved_ids; 204 u32 *resolved_sizes; 205 const char *strings; 206 void *nohdr_data; 207 struct btf_header hdr; 208 u32 nr_types; /* includes VOID for base BTF */ 209 u32 types_size; 210 u32 data_size; 211 refcount_t refcnt; 212 u32 id; 213 struct rcu_head rcu; 214 215 /* split BTF support */ 216 struct btf *base_btf; 217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 218 u32 start_str_off; /* first string offset (0 for base BTF) */ 219 char name[MODULE_NAME_LEN]; 220 bool kernel_btf; 221 }; 222 223 enum verifier_phase { 224 CHECK_META, 225 CHECK_TYPE, 226 }; 227 228 struct resolve_vertex { 229 const struct btf_type *t; 230 u32 type_id; 231 u16 next_member; 232 }; 233 234 enum visit_state { 235 NOT_VISITED, 236 VISITED, 237 RESOLVED, 238 }; 239 240 enum resolve_mode { 241 RESOLVE_TBD, /* To Be Determined */ 242 RESOLVE_PTR, /* Resolving for Pointer */ 243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 244 * or array 245 */ 246 }; 247 248 #define MAX_RESOLVE_DEPTH 32 249 250 struct btf_sec_info { 251 u32 off; 252 u32 len; 253 }; 254 255 struct btf_verifier_env { 256 struct btf *btf; 257 u8 *visit_states; 258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 259 struct bpf_verifier_log log; 260 u32 log_type_id; 261 u32 top_stack; 262 enum verifier_phase phase; 263 enum resolve_mode resolve_mode; 264 }; 265 266 static const char * const btf_kind_str[NR_BTF_KINDS] = { 267 [BTF_KIND_UNKN] = "UNKNOWN", 268 [BTF_KIND_INT] = "INT", 269 [BTF_KIND_PTR] = "PTR", 270 [BTF_KIND_ARRAY] = "ARRAY", 271 [BTF_KIND_STRUCT] = "STRUCT", 272 [BTF_KIND_UNION] = "UNION", 273 [BTF_KIND_ENUM] = "ENUM", 274 [BTF_KIND_FWD] = "FWD", 275 [BTF_KIND_TYPEDEF] = "TYPEDEF", 276 [BTF_KIND_VOLATILE] = "VOLATILE", 277 [BTF_KIND_CONST] = "CONST", 278 [BTF_KIND_RESTRICT] = "RESTRICT", 279 [BTF_KIND_FUNC] = "FUNC", 280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 281 [BTF_KIND_VAR] = "VAR", 282 [BTF_KIND_DATASEC] = "DATASEC", 283 [BTF_KIND_FLOAT] = "FLOAT", 284 [BTF_KIND_DECL_TAG] = "DECL_TAG", 285 }; 286 287 const char *btf_type_str(const struct btf_type *t) 288 { 289 return btf_kind_str[BTF_INFO_KIND(t->info)]; 290 } 291 292 /* Chunk size we use in safe copy of data to be shown. */ 293 #define BTF_SHOW_OBJ_SAFE_SIZE 32 294 295 /* 296 * This is the maximum size of a base type value (equivalent to a 297 * 128-bit int); if we are at the end of our safe buffer and have 298 * less than 16 bytes space we can't be assured of being able 299 * to copy the next type safely, so in such cases we will initiate 300 * a new copy. 301 */ 302 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 303 304 /* Type name size */ 305 #define BTF_SHOW_NAME_SIZE 80 306 307 /* 308 * Common data to all BTF show operations. Private show functions can add 309 * their own data to a structure containing a struct btf_show and consult it 310 * in the show callback. See btf_type_show() below. 311 * 312 * One challenge with showing nested data is we want to skip 0-valued 313 * data, but in order to figure out whether a nested object is all zeros 314 * we need to walk through it. As a result, we need to make two passes 315 * when handling structs, unions and arrays; the first path simply looks 316 * for nonzero data, while the second actually does the display. The first 317 * pass is signalled by show->state.depth_check being set, and if we 318 * encounter a non-zero value we set show->state.depth_to_show to 319 * the depth at which we encountered it. When we have completed the 320 * first pass, we will know if anything needs to be displayed if 321 * depth_to_show > depth. See btf_[struct,array]_show() for the 322 * implementation of this. 323 * 324 * Another problem is we want to ensure the data for display is safe to 325 * access. To support this, the anonymous "struct {} obj" tracks the data 326 * object and our safe copy of it. We copy portions of the data needed 327 * to the object "copy" buffer, but because its size is limited to 328 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 329 * traverse larger objects for display. 330 * 331 * The various data type show functions all start with a call to 332 * btf_show_start_type() which returns a pointer to the safe copy 333 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 334 * raw data itself). btf_show_obj_safe() is responsible for 335 * using copy_from_kernel_nofault() to update the safe data if necessary 336 * as we traverse the object's data. skbuff-like semantics are 337 * used: 338 * 339 * - obj.head points to the start of the toplevel object for display 340 * - obj.size is the size of the toplevel object 341 * - obj.data points to the current point in the original data at 342 * which our safe data starts. obj.data will advance as we copy 343 * portions of the data. 344 * 345 * In most cases a single copy will suffice, but larger data structures 346 * such as "struct task_struct" will require many copies. The logic in 347 * btf_show_obj_safe() handles the logic that determines if a new 348 * copy_from_kernel_nofault() is needed. 349 */ 350 struct btf_show { 351 u64 flags; 352 void *target; /* target of show operation (seq file, buffer) */ 353 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 354 const struct btf *btf; 355 /* below are used during iteration */ 356 struct { 357 u8 depth; 358 u8 depth_to_show; 359 u8 depth_check; 360 u8 array_member:1, 361 array_terminated:1; 362 u16 array_encoding; 363 u32 type_id; 364 int status; /* non-zero for error */ 365 const struct btf_type *type; 366 const struct btf_member *member; 367 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 368 } state; 369 struct { 370 u32 size; 371 void *head; 372 void *data; 373 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 374 } obj; 375 }; 376 377 struct btf_kind_operations { 378 s32 (*check_meta)(struct btf_verifier_env *env, 379 const struct btf_type *t, 380 u32 meta_left); 381 int (*resolve)(struct btf_verifier_env *env, 382 const struct resolve_vertex *v); 383 int (*check_member)(struct btf_verifier_env *env, 384 const struct btf_type *struct_type, 385 const struct btf_member *member, 386 const struct btf_type *member_type); 387 int (*check_kflag_member)(struct btf_verifier_env *env, 388 const struct btf_type *struct_type, 389 const struct btf_member *member, 390 const struct btf_type *member_type); 391 void (*log_details)(struct btf_verifier_env *env, 392 const struct btf_type *t); 393 void (*show)(const struct btf *btf, const struct btf_type *t, 394 u32 type_id, void *data, u8 bits_offsets, 395 struct btf_show *show); 396 }; 397 398 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 399 static struct btf_type btf_void; 400 401 static int btf_resolve(struct btf_verifier_env *env, 402 const struct btf_type *t, u32 type_id); 403 404 static bool btf_type_is_modifier(const struct btf_type *t) 405 { 406 /* Some of them is not strictly a C modifier 407 * but they are grouped into the same bucket 408 * for BTF concern: 409 * A type (t) that refers to another 410 * type through t->type AND its size cannot 411 * be determined without following the t->type. 412 * 413 * ptr does not fall into this bucket 414 * because its size is always sizeof(void *). 415 */ 416 switch (BTF_INFO_KIND(t->info)) { 417 case BTF_KIND_TYPEDEF: 418 case BTF_KIND_VOLATILE: 419 case BTF_KIND_CONST: 420 case BTF_KIND_RESTRICT: 421 return true; 422 } 423 424 return false; 425 } 426 427 bool btf_type_is_void(const struct btf_type *t) 428 { 429 return t == &btf_void; 430 } 431 432 static bool btf_type_is_fwd(const struct btf_type *t) 433 { 434 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 435 } 436 437 static bool btf_type_nosize(const struct btf_type *t) 438 { 439 return btf_type_is_void(t) || btf_type_is_fwd(t) || 440 btf_type_is_func(t) || btf_type_is_func_proto(t); 441 } 442 443 static bool btf_type_nosize_or_null(const struct btf_type *t) 444 { 445 return !t || btf_type_nosize(t); 446 } 447 448 static bool __btf_type_is_struct(const struct btf_type *t) 449 { 450 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 451 } 452 453 static bool btf_type_is_array(const struct btf_type *t) 454 { 455 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 456 } 457 458 static bool btf_type_is_datasec(const struct btf_type *t) 459 { 460 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 461 } 462 463 static bool btf_type_is_decl_tag(const struct btf_type *t) 464 { 465 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 466 } 467 468 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 469 { 470 return btf_type_is_func(t) || btf_type_is_struct(t) || 471 btf_type_is_var(t) || btf_type_is_typedef(t); 472 } 473 474 u32 btf_nr_types(const struct btf *btf) 475 { 476 u32 total = 0; 477 478 while (btf) { 479 total += btf->nr_types; 480 btf = btf->base_btf; 481 } 482 483 return total; 484 } 485 486 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 487 { 488 const struct btf_type *t; 489 const char *tname; 490 u32 i, total; 491 492 total = btf_nr_types(btf); 493 for (i = 1; i < total; i++) { 494 t = btf_type_by_id(btf, i); 495 if (BTF_INFO_KIND(t->info) != kind) 496 continue; 497 498 tname = btf_name_by_offset(btf, t->name_off); 499 if (!strcmp(tname, name)) 500 return i; 501 } 502 503 return -ENOENT; 504 } 505 506 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 507 u32 id, u32 *res_id) 508 { 509 const struct btf_type *t = btf_type_by_id(btf, id); 510 511 while (btf_type_is_modifier(t)) { 512 id = t->type; 513 t = btf_type_by_id(btf, t->type); 514 } 515 516 if (res_id) 517 *res_id = id; 518 519 return t; 520 } 521 522 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 523 u32 id, u32 *res_id) 524 { 525 const struct btf_type *t; 526 527 t = btf_type_skip_modifiers(btf, id, NULL); 528 if (!btf_type_is_ptr(t)) 529 return NULL; 530 531 return btf_type_skip_modifiers(btf, t->type, res_id); 532 } 533 534 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 535 u32 id, u32 *res_id) 536 { 537 const struct btf_type *ptype; 538 539 ptype = btf_type_resolve_ptr(btf, id, res_id); 540 if (ptype && btf_type_is_func_proto(ptype)) 541 return ptype; 542 543 return NULL; 544 } 545 546 /* Types that act only as a source, not sink or intermediate 547 * type when resolving. 548 */ 549 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 550 { 551 return btf_type_is_var(t) || 552 btf_type_is_decl_tag(t) || 553 btf_type_is_datasec(t); 554 } 555 556 /* What types need to be resolved? 557 * 558 * btf_type_is_modifier() is an obvious one. 559 * 560 * btf_type_is_struct() because its member refers to 561 * another type (through member->type). 562 * 563 * btf_type_is_var() because the variable refers to 564 * another type. btf_type_is_datasec() holds multiple 565 * btf_type_is_var() types that need resolving. 566 * 567 * btf_type_is_array() because its element (array->type) 568 * refers to another type. Array can be thought of a 569 * special case of struct while array just has the same 570 * member-type repeated by array->nelems of times. 571 */ 572 static bool btf_type_needs_resolve(const struct btf_type *t) 573 { 574 return btf_type_is_modifier(t) || 575 btf_type_is_ptr(t) || 576 btf_type_is_struct(t) || 577 btf_type_is_array(t) || 578 btf_type_is_var(t) || 579 btf_type_is_decl_tag(t) || 580 btf_type_is_datasec(t); 581 } 582 583 /* t->size can be used */ 584 static bool btf_type_has_size(const struct btf_type *t) 585 { 586 switch (BTF_INFO_KIND(t->info)) { 587 case BTF_KIND_INT: 588 case BTF_KIND_STRUCT: 589 case BTF_KIND_UNION: 590 case BTF_KIND_ENUM: 591 case BTF_KIND_DATASEC: 592 case BTF_KIND_FLOAT: 593 return true; 594 } 595 596 return false; 597 } 598 599 static const char *btf_int_encoding_str(u8 encoding) 600 { 601 if (encoding == 0) 602 return "(none)"; 603 else if (encoding == BTF_INT_SIGNED) 604 return "SIGNED"; 605 else if (encoding == BTF_INT_CHAR) 606 return "CHAR"; 607 else if (encoding == BTF_INT_BOOL) 608 return "BOOL"; 609 else 610 return "UNKN"; 611 } 612 613 static u32 btf_type_int(const struct btf_type *t) 614 { 615 return *(u32 *)(t + 1); 616 } 617 618 static const struct btf_array *btf_type_array(const struct btf_type *t) 619 { 620 return (const struct btf_array *)(t + 1); 621 } 622 623 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 624 { 625 return (const struct btf_enum *)(t + 1); 626 } 627 628 static const struct btf_var *btf_type_var(const struct btf_type *t) 629 { 630 return (const struct btf_var *)(t + 1); 631 } 632 633 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 634 { 635 return (const struct btf_decl_tag *)(t + 1); 636 } 637 638 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 639 { 640 return kind_ops[BTF_INFO_KIND(t->info)]; 641 } 642 643 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 644 { 645 if (!BTF_STR_OFFSET_VALID(offset)) 646 return false; 647 648 while (offset < btf->start_str_off) 649 btf = btf->base_btf; 650 651 offset -= btf->start_str_off; 652 return offset < btf->hdr.str_len; 653 } 654 655 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 656 { 657 if ((first ? !isalpha(c) : 658 !isalnum(c)) && 659 c != '_' && 660 ((c == '.' && !dot_ok) || 661 c != '.')) 662 return false; 663 return true; 664 } 665 666 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 667 { 668 while (offset < btf->start_str_off) 669 btf = btf->base_btf; 670 671 offset -= btf->start_str_off; 672 if (offset < btf->hdr.str_len) 673 return &btf->strings[offset]; 674 675 return NULL; 676 } 677 678 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 679 { 680 /* offset must be valid */ 681 const char *src = btf_str_by_offset(btf, offset); 682 const char *src_limit; 683 684 if (!__btf_name_char_ok(*src, true, dot_ok)) 685 return false; 686 687 /* set a limit on identifier length */ 688 src_limit = src + KSYM_NAME_LEN; 689 src++; 690 while (*src && src < src_limit) { 691 if (!__btf_name_char_ok(*src, false, dot_ok)) 692 return false; 693 src++; 694 } 695 696 return !*src; 697 } 698 699 /* Only C-style identifier is permitted. This can be relaxed if 700 * necessary. 701 */ 702 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 703 { 704 return __btf_name_valid(btf, offset, false); 705 } 706 707 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 708 { 709 return __btf_name_valid(btf, offset, true); 710 } 711 712 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 713 { 714 const char *name; 715 716 if (!offset) 717 return "(anon)"; 718 719 name = btf_str_by_offset(btf, offset); 720 return name ?: "(invalid-name-offset)"; 721 } 722 723 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 724 { 725 return btf_str_by_offset(btf, offset); 726 } 727 728 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 729 { 730 while (type_id < btf->start_id) 731 btf = btf->base_btf; 732 733 type_id -= btf->start_id; 734 if (type_id >= btf->nr_types) 735 return NULL; 736 return btf->types[type_id]; 737 } 738 739 /* 740 * Regular int is not a bit field and it must be either 741 * u8/u16/u32/u64 or __int128. 742 */ 743 static bool btf_type_int_is_regular(const struct btf_type *t) 744 { 745 u8 nr_bits, nr_bytes; 746 u32 int_data; 747 748 int_data = btf_type_int(t); 749 nr_bits = BTF_INT_BITS(int_data); 750 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 751 if (BITS_PER_BYTE_MASKED(nr_bits) || 752 BTF_INT_OFFSET(int_data) || 753 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 754 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 755 nr_bytes != (2 * sizeof(u64)))) { 756 return false; 757 } 758 759 return true; 760 } 761 762 /* 763 * Check that given struct member is a regular int with expected 764 * offset and size. 765 */ 766 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 767 const struct btf_member *m, 768 u32 expected_offset, u32 expected_size) 769 { 770 const struct btf_type *t; 771 u32 id, int_data; 772 u8 nr_bits; 773 774 id = m->type; 775 t = btf_type_id_size(btf, &id, NULL); 776 if (!t || !btf_type_is_int(t)) 777 return false; 778 779 int_data = btf_type_int(t); 780 nr_bits = BTF_INT_BITS(int_data); 781 if (btf_type_kflag(s)) { 782 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 783 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 784 785 /* if kflag set, int should be a regular int and 786 * bit offset should be at byte boundary. 787 */ 788 return !bitfield_size && 789 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 790 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 791 } 792 793 if (BTF_INT_OFFSET(int_data) || 794 BITS_PER_BYTE_MASKED(m->offset) || 795 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 796 BITS_PER_BYTE_MASKED(nr_bits) || 797 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 798 return false; 799 800 return true; 801 } 802 803 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 804 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 805 u32 id) 806 { 807 const struct btf_type *t = btf_type_by_id(btf, id); 808 809 while (btf_type_is_modifier(t) && 810 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 811 t = btf_type_by_id(btf, t->type); 812 } 813 814 return t; 815 } 816 817 #define BTF_SHOW_MAX_ITER 10 818 819 #define BTF_KIND_BIT(kind) (1ULL << kind) 820 821 /* 822 * Populate show->state.name with type name information. 823 * Format of type name is 824 * 825 * [.member_name = ] (type_name) 826 */ 827 static const char *btf_show_name(struct btf_show *show) 828 { 829 /* BTF_MAX_ITER array suffixes "[]" */ 830 const char *array_suffixes = "[][][][][][][][][][]"; 831 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 832 /* BTF_MAX_ITER pointer suffixes "*" */ 833 const char *ptr_suffixes = "**********"; 834 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 835 const char *name = NULL, *prefix = "", *parens = ""; 836 const struct btf_member *m = show->state.member; 837 const struct btf_type *t = show->state.type; 838 const struct btf_array *array; 839 u32 id = show->state.type_id; 840 const char *member = NULL; 841 bool show_member = false; 842 u64 kinds = 0; 843 int i; 844 845 show->state.name[0] = '\0'; 846 847 /* 848 * Don't show type name if we're showing an array member; 849 * in that case we show the array type so don't need to repeat 850 * ourselves for each member. 851 */ 852 if (show->state.array_member) 853 return ""; 854 855 /* Retrieve member name, if any. */ 856 if (m) { 857 member = btf_name_by_offset(show->btf, m->name_off); 858 show_member = strlen(member) > 0; 859 id = m->type; 860 } 861 862 /* 863 * Start with type_id, as we have resolved the struct btf_type * 864 * via btf_modifier_show() past the parent typedef to the child 865 * struct, int etc it is defined as. In such cases, the type_id 866 * still represents the starting type while the struct btf_type * 867 * in our show->state points at the resolved type of the typedef. 868 */ 869 t = btf_type_by_id(show->btf, id); 870 if (!t) 871 return ""; 872 873 /* 874 * The goal here is to build up the right number of pointer and 875 * array suffixes while ensuring the type name for a typedef 876 * is represented. Along the way we accumulate a list of 877 * BTF kinds we have encountered, since these will inform later 878 * display; for example, pointer types will not require an 879 * opening "{" for struct, we will just display the pointer value. 880 * 881 * We also want to accumulate the right number of pointer or array 882 * indices in the format string while iterating until we get to 883 * the typedef/pointee/array member target type. 884 * 885 * We start by pointing at the end of pointer and array suffix 886 * strings; as we accumulate pointers and arrays we move the pointer 887 * or array string backwards so it will show the expected number of 888 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 889 * and/or arrays and typedefs are supported as a precaution. 890 * 891 * We also want to get typedef name while proceeding to resolve 892 * type it points to so that we can add parentheses if it is a 893 * "typedef struct" etc. 894 */ 895 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 896 897 switch (BTF_INFO_KIND(t->info)) { 898 case BTF_KIND_TYPEDEF: 899 if (!name) 900 name = btf_name_by_offset(show->btf, 901 t->name_off); 902 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 903 id = t->type; 904 break; 905 case BTF_KIND_ARRAY: 906 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 907 parens = "["; 908 if (!t) 909 return ""; 910 array = btf_type_array(t); 911 if (array_suffix > array_suffixes) 912 array_suffix -= 2; 913 id = array->type; 914 break; 915 case BTF_KIND_PTR: 916 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 917 if (ptr_suffix > ptr_suffixes) 918 ptr_suffix -= 1; 919 id = t->type; 920 break; 921 default: 922 id = 0; 923 break; 924 } 925 if (!id) 926 break; 927 t = btf_type_skip_qualifiers(show->btf, id); 928 } 929 /* We may not be able to represent this type; bail to be safe */ 930 if (i == BTF_SHOW_MAX_ITER) 931 return ""; 932 933 if (!name) 934 name = btf_name_by_offset(show->btf, t->name_off); 935 936 switch (BTF_INFO_KIND(t->info)) { 937 case BTF_KIND_STRUCT: 938 case BTF_KIND_UNION: 939 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 940 "struct" : "union"; 941 /* if it's an array of struct/union, parens is already set */ 942 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 943 parens = "{"; 944 break; 945 case BTF_KIND_ENUM: 946 prefix = "enum"; 947 break; 948 default: 949 break; 950 } 951 952 /* pointer does not require parens */ 953 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 954 parens = ""; 955 /* typedef does not require struct/union/enum prefix */ 956 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 957 prefix = ""; 958 959 if (!name) 960 name = ""; 961 962 /* Even if we don't want type name info, we want parentheses etc */ 963 if (show->flags & BTF_SHOW_NONAME) 964 snprintf(show->state.name, sizeof(show->state.name), "%s", 965 parens); 966 else 967 snprintf(show->state.name, sizeof(show->state.name), 968 "%s%s%s(%s%s%s%s%s%s)%s", 969 /* first 3 strings comprise ".member = " */ 970 show_member ? "." : "", 971 show_member ? member : "", 972 show_member ? " = " : "", 973 /* ...next is our prefix (struct, enum, etc) */ 974 prefix, 975 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 976 /* ...this is the type name itself */ 977 name, 978 /* ...suffixed by the appropriate '*', '[]' suffixes */ 979 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 980 array_suffix, parens); 981 982 return show->state.name; 983 } 984 985 static const char *__btf_show_indent(struct btf_show *show) 986 { 987 const char *indents = " "; 988 const char *indent = &indents[strlen(indents)]; 989 990 if ((indent - show->state.depth) >= indents) 991 return indent - show->state.depth; 992 return indents; 993 } 994 995 static const char *btf_show_indent(struct btf_show *show) 996 { 997 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 998 } 999 1000 static const char *btf_show_newline(struct btf_show *show) 1001 { 1002 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1003 } 1004 1005 static const char *btf_show_delim(struct btf_show *show) 1006 { 1007 if (show->state.depth == 0) 1008 return ""; 1009 1010 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1011 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1012 return "|"; 1013 1014 return ","; 1015 } 1016 1017 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1018 { 1019 va_list args; 1020 1021 if (!show->state.depth_check) { 1022 va_start(args, fmt); 1023 show->showfn(show, fmt, args); 1024 va_end(args); 1025 } 1026 } 1027 1028 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1029 * format specifiers to the format specifier passed in; these do the work of 1030 * adding indentation, delimiters etc while the caller simply has to specify 1031 * the type value(s) in the format specifier + value(s). 1032 */ 1033 #define btf_show_type_value(show, fmt, value) \ 1034 do { \ 1035 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1036 show->state.depth == 0) { \ 1037 btf_show(show, "%s%s" fmt "%s%s", \ 1038 btf_show_indent(show), \ 1039 btf_show_name(show), \ 1040 value, btf_show_delim(show), \ 1041 btf_show_newline(show)); \ 1042 if (show->state.depth > show->state.depth_to_show) \ 1043 show->state.depth_to_show = show->state.depth; \ 1044 } \ 1045 } while (0) 1046 1047 #define btf_show_type_values(show, fmt, ...) \ 1048 do { \ 1049 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1050 btf_show_name(show), \ 1051 __VA_ARGS__, btf_show_delim(show), \ 1052 btf_show_newline(show)); \ 1053 if (show->state.depth > show->state.depth_to_show) \ 1054 show->state.depth_to_show = show->state.depth; \ 1055 } while (0) 1056 1057 /* How much is left to copy to safe buffer after @data? */ 1058 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1059 { 1060 return show->obj.head + show->obj.size - data; 1061 } 1062 1063 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1064 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1065 { 1066 return data >= show->obj.data && 1067 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1068 } 1069 1070 /* 1071 * If object pointed to by @data of @size falls within our safe buffer, return 1072 * the equivalent pointer to the same safe data. Assumes 1073 * copy_from_kernel_nofault() has already happened and our safe buffer is 1074 * populated. 1075 */ 1076 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1077 { 1078 if (btf_show_obj_is_safe(show, data, size)) 1079 return show->obj.safe + (data - show->obj.data); 1080 return NULL; 1081 } 1082 1083 /* 1084 * Return a safe-to-access version of data pointed to by @data. 1085 * We do this by copying the relevant amount of information 1086 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1087 * 1088 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1089 * safe copy is needed. 1090 * 1091 * Otherwise we need to determine if we have the required amount 1092 * of data (determined by the @data pointer and the size of the 1093 * largest base type we can encounter (represented by 1094 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1095 * that we will be able to print some of the current object, 1096 * and if more is needed a copy will be triggered. 1097 * Some objects such as structs will not fit into the buffer; 1098 * in such cases additional copies when we iterate over their 1099 * members may be needed. 1100 * 1101 * btf_show_obj_safe() is used to return a safe buffer for 1102 * btf_show_start_type(); this ensures that as we recurse into 1103 * nested types we always have safe data for the given type. 1104 * This approach is somewhat wasteful; it's possible for example 1105 * that when iterating over a large union we'll end up copying the 1106 * same data repeatedly, but the goal is safety not performance. 1107 * We use stack data as opposed to per-CPU buffers because the 1108 * iteration over a type can take some time, and preemption handling 1109 * would greatly complicate use of the safe buffer. 1110 */ 1111 static void *btf_show_obj_safe(struct btf_show *show, 1112 const struct btf_type *t, 1113 void *data) 1114 { 1115 const struct btf_type *rt; 1116 int size_left, size; 1117 void *safe = NULL; 1118 1119 if (show->flags & BTF_SHOW_UNSAFE) 1120 return data; 1121 1122 rt = btf_resolve_size(show->btf, t, &size); 1123 if (IS_ERR(rt)) { 1124 show->state.status = PTR_ERR(rt); 1125 return NULL; 1126 } 1127 1128 /* 1129 * Is this toplevel object? If so, set total object size and 1130 * initialize pointers. Otherwise check if we still fall within 1131 * our safe object data. 1132 */ 1133 if (show->state.depth == 0) { 1134 show->obj.size = size; 1135 show->obj.head = data; 1136 } else { 1137 /* 1138 * If the size of the current object is > our remaining 1139 * safe buffer we _may_ need to do a new copy. However 1140 * consider the case of a nested struct; it's size pushes 1141 * us over the safe buffer limit, but showing any individual 1142 * struct members does not. In such cases, we don't need 1143 * to initiate a fresh copy yet; however we definitely need 1144 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1145 * in our buffer, regardless of the current object size. 1146 * The logic here is that as we resolve types we will 1147 * hit a base type at some point, and we need to be sure 1148 * the next chunk of data is safely available to display 1149 * that type info safely. We cannot rely on the size of 1150 * the current object here because it may be much larger 1151 * than our current buffer (e.g. task_struct is 8k). 1152 * All we want to do here is ensure that we can print the 1153 * next basic type, which we can if either 1154 * - the current type size is within the safe buffer; or 1155 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1156 * the safe buffer. 1157 */ 1158 safe = __btf_show_obj_safe(show, data, 1159 min(size, 1160 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1161 } 1162 1163 /* 1164 * We need a new copy to our safe object, either because we haven't 1165 * yet copied and are initializing safe data, or because the data 1166 * we want falls outside the boundaries of the safe object. 1167 */ 1168 if (!safe) { 1169 size_left = btf_show_obj_size_left(show, data); 1170 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1171 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1172 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1173 data, size_left); 1174 if (!show->state.status) { 1175 show->obj.data = data; 1176 safe = show->obj.safe; 1177 } 1178 } 1179 1180 return safe; 1181 } 1182 1183 /* 1184 * Set the type we are starting to show and return a safe data pointer 1185 * to be used for showing the associated data. 1186 */ 1187 static void *btf_show_start_type(struct btf_show *show, 1188 const struct btf_type *t, 1189 u32 type_id, void *data) 1190 { 1191 show->state.type = t; 1192 show->state.type_id = type_id; 1193 show->state.name[0] = '\0'; 1194 1195 return btf_show_obj_safe(show, t, data); 1196 } 1197 1198 static void btf_show_end_type(struct btf_show *show) 1199 { 1200 show->state.type = NULL; 1201 show->state.type_id = 0; 1202 show->state.name[0] = '\0'; 1203 } 1204 1205 static void *btf_show_start_aggr_type(struct btf_show *show, 1206 const struct btf_type *t, 1207 u32 type_id, void *data) 1208 { 1209 void *safe_data = btf_show_start_type(show, t, type_id, data); 1210 1211 if (!safe_data) 1212 return safe_data; 1213 1214 btf_show(show, "%s%s%s", btf_show_indent(show), 1215 btf_show_name(show), 1216 btf_show_newline(show)); 1217 show->state.depth++; 1218 return safe_data; 1219 } 1220 1221 static void btf_show_end_aggr_type(struct btf_show *show, 1222 const char *suffix) 1223 { 1224 show->state.depth--; 1225 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1226 btf_show_delim(show), btf_show_newline(show)); 1227 btf_show_end_type(show); 1228 } 1229 1230 static void btf_show_start_member(struct btf_show *show, 1231 const struct btf_member *m) 1232 { 1233 show->state.member = m; 1234 } 1235 1236 static void btf_show_start_array_member(struct btf_show *show) 1237 { 1238 show->state.array_member = 1; 1239 btf_show_start_member(show, NULL); 1240 } 1241 1242 static void btf_show_end_member(struct btf_show *show) 1243 { 1244 show->state.member = NULL; 1245 } 1246 1247 static void btf_show_end_array_member(struct btf_show *show) 1248 { 1249 show->state.array_member = 0; 1250 btf_show_end_member(show); 1251 } 1252 1253 static void *btf_show_start_array_type(struct btf_show *show, 1254 const struct btf_type *t, 1255 u32 type_id, 1256 u16 array_encoding, 1257 void *data) 1258 { 1259 show->state.array_encoding = array_encoding; 1260 show->state.array_terminated = 0; 1261 return btf_show_start_aggr_type(show, t, type_id, data); 1262 } 1263 1264 static void btf_show_end_array_type(struct btf_show *show) 1265 { 1266 show->state.array_encoding = 0; 1267 show->state.array_terminated = 0; 1268 btf_show_end_aggr_type(show, "]"); 1269 } 1270 1271 static void *btf_show_start_struct_type(struct btf_show *show, 1272 const struct btf_type *t, 1273 u32 type_id, 1274 void *data) 1275 { 1276 return btf_show_start_aggr_type(show, t, type_id, data); 1277 } 1278 1279 static void btf_show_end_struct_type(struct btf_show *show) 1280 { 1281 btf_show_end_aggr_type(show, "}"); 1282 } 1283 1284 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1285 const char *fmt, ...) 1286 { 1287 va_list args; 1288 1289 va_start(args, fmt); 1290 bpf_verifier_vlog(log, fmt, args); 1291 va_end(args); 1292 } 1293 1294 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1295 const char *fmt, ...) 1296 { 1297 struct bpf_verifier_log *log = &env->log; 1298 va_list args; 1299 1300 if (!bpf_verifier_log_needed(log)) 1301 return; 1302 1303 va_start(args, fmt); 1304 bpf_verifier_vlog(log, fmt, args); 1305 va_end(args); 1306 } 1307 1308 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1309 const struct btf_type *t, 1310 bool log_details, 1311 const char *fmt, ...) 1312 { 1313 struct bpf_verifier_log *log = &env->log; 1314 u8 kind = BTF_INFO_KIND(t->info); 1315 struct btf *btf = env->btf; 1316 va_list args; 1317 1318 if (!bpf_verifier_log_needed(log)) 1319 return; 1320 1321 /* btf verifier prints all types it is processing via 1322 * btf_verifier_log_type(..., fmt = NULL). 1323 * Skip those prints for in-kernel BTF verification. 1324 */ 1325 if (log->level == BPF_LOG_KERNEL && !fmt) 1326 return; 1327 1328 __btf_verifier_log(log, "[%u] %s %s%s", 1329 env->log_type_id, 1330 btf_kind_str[kind], 1331 __btf_name_by_offset(btf, t->name_off), 1332 log_details ? " " : ""); 1333 1334 if (log_details) 1335 btf_type_ops(t)->log_details(env, t); 1336 1337 if (fmt && *fmt) { 1338 __btf_verifier_log(log, " "); 1339 va_start(args, fmt); 1340 bpf_verifier_vlog(log, fmt, args); 1341 va_end(args); 1342 } 1343 1344 __btf_verifier_log(log, "\n"); 1345 } 1346 1347 #define btf_verifier_log_type(env, t, ...) \ 1348 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1349 #define btf_verifier_log_basic(env, t, ...) \ 1350 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1351 1352 __printf(4, 5) 1353 static void btf_verifier_log_member(struct btf_verifier_env *env, 1354 const struct btf_type *struct_type, 1355 const struct btf_member *member, 1356 const char *fmt, ...) 1357 { 1358 struct bpf_verifier_log *log = &env->log; 1359 struct btf *btf = env->btf; 1360 va_list args; 1361 1362 if (!bpf_verifier_log_needed(log)) 1363 return; 1364 1365 if (log->level == BPF_LOG_KERNEL && !fmt) 1366 return; 1367 /* The CHECK_META phase already did a btf dump. 1368 * 1369 * If member is logged again, it must hit an error in 1370 * parsing this member. It is useful to print out which 1371 * struct this member belongs to. 1372 */ 1373 if (env->phase != CHECK_META) 1374 btf_verifier_log_type(env, struct_type, NULL); 1375 1376 if (btf_type_kflag(struct_type)) 1377 __btf_verifier_log(log, 1378 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1379 __btf_name_by_offset(btf, member->name_off), 1380 member->type, 1381 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1382 BTF_MEMBER_BIT_OFFSET(member->offset)); 1383 else 1384 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1385 __btf_name_by_offset(btf, member->name_off), 1386 member->type, member->offset); 1387 1388 if (fmt && *fmt) { 1389 __btf_verifier_log(log, " "); 1390 va_start(args, fmt); 1391 bpf_verifier_vlog(log, fmt, args); 1392 va_end(args); 1393 } 1394 1395 __btf_verifier_log(log, "\n"); 1396 } 1397 1398 __printf(4, 5) 1399 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1400 const struct btf_type *datasec_type, 1401 const struct btf_var_secinfo *vsi, 1402 const char *fmt, ...) 1403 { 1404 struct bpf_verifier_log *log = &env->log; 1405 va_list args; 1406 1407 if (!bpf_verifier_log_needed(log)) 1408 return; 1409 if (log->level == BPF_LOG_KERNEL && !fmt) 1410 return; 1411 if (env->phase != CHECK_META) 1412 btf_verifier_log_type(env, datasec_type, NULL); 1413 1414 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1415 vsi->type, vsi->offset, vsi->size); 1416 if (fmt && *fmt) { 1417 __btf_verifier_log(log, " "); 1418 va_start(args, fmt); 1419 bpf_verifier_vlog(log, fmt, args); 1420 va_end(args); 1421 } 1422 1423 __btf_verifier_log(log, "\n"); 1424 } 1425 1426 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1427 u32 btf_data_size) 1428 { 1429 struct bpf_verifier_log *log = &env->log; 1430 const struct btf *btf = env->btf; 1431 const struct btf_header *hdr; 1432 1433 if (!bpf_verifier_log_needed(log)) 1434 return; 1435 1436 if (log->level == BPF_LOG_KERNEL) 1437 return; 1438 hdr = &btf->hdr; 1439 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1440 __btf_verifier_log(log, "version: %u\n", hdr->version); 1441 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1442 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1443 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1444 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1445 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1446 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1447 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1448 } 1449 1450 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1451 { 1452 struct btf *btf = env->btf; 1453 1454 if (btf->types_size == btf->nr_types) { 1455 /* Expand 'types' array */ 1456 1457 struct btf_type **new_types; 1458 u32 expand_by, new_size; 1459 1460 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1461 btf_verifier_log(env, "Exceeded max num of types"); 1462 return -E2BIG; 1463 } 1464 1465 expand_by = max_t(u32, btf->types_size >> 2, 16); 1466 new_size = min_t(u32, BTF_MAX_TYPE, 1467 btf->types_size + expand_by); 1468 1469 new_types = kvcalloc(new_size, sizeof(*new_types), 1470 GFP_KERNEL | __GFP_NOWARN); 1471 if (!new_types) 1472 return -ENOMEM; 1473 1474 if (btf->nr_types == 0) { 1475 if (!btf->base_btf) { 1476 /* lazily init VOID type */ 1477 new_types[0] = &btf_void; 1478 btf->nr_types++; 1479 } 1480 } else { 1481 memcpy(new_types, btf->types, 1482 sizeof(*btf->types) * btf->nr_types); 1483 } 1484 1485 kvfree(btf->types); 1486 btf->types = new_types; 1487 btf->types_size = new_size; 1488 } 1489 1490 btf->types[btf->nr_types++] = t; 1491 1492 return 0; 1493 } 1494 1495 static int btf_alloc_id(struct btf *btf) 1496 { 1497 int id; 1498 1499 idr_preload(GFP_KERNEL); 1500 spin_lock_bh(&btf_idr_lock); 1501 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1502 if (id > 0) 1503 btf->id = id; 1504 spin_unlock_bh(&btf_idr_lock); 1505 idr_preload_end(); 1506 1507 if (WARN_ON_ONCE(!id)) 1508 return -ENOSPC; 1509 1510 return id > 0 ? 0 : id; 1511 } 1512 1513 static void btf_free_id(struct btf *btf) 1514 { 1515 unsigned long flags; 1516 1517 /* 1518 * In map-in-map, calling map_delete_elem() on outer 1519 * map will call bpf_map_put on the inner map. 1520 * It will then eventually call btf_free_id() 1521 * on the inner map. Some of the map_delete_elem() 1522 * implementation may have irq disabled, so 1523 * we need to use the _irqsave() version instead 1524 * of the _bh() version. 1525 */ 1526 spin_lock_irqsave(&btf_idr_lock, flags); 1527 idr_remove(&btf_idr, btf->id); 1528 spin_unlock_irqrestore(&btf_idr_lock, flags); 1529 } 1530 1531 static void btf_free(struct btf *btf) 1532 { 1533 kvfree(btf->types); 1534 kvfree(btf->resolved_sizes); 1535 kvfree(btf->resolved_ids); 1536 kvfree(btf->data); 1537 kfree(btf); 1538 } 1539 1540 static void btf_free_rcu(struct rcu_head *rcu) 1541 { 1542 struct btf *btf = container_of(rcu, struct btf, rcu); 1543 1544 btf_free(btf); 1545 } 1546 1547 void btf_get(struct btf *btf) 1548 { 1549 refcount_inc(&btf->refcnt); 1550 } 1551 1552 void btf_put(struct btf *btf) 1553 { 1554 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1555 btf_free_id(btf); 1556 call_rcu(&btf->rcu, btf_free_rcu); 1557 } 1558 } 1559 1560 static int env_resolve_init(struct btf_verifier_env *env) 1561 { 1562 struct btf *btf = env->btf; 1563 u32 nr_types = btf->nr_types; 1564 u32 *resolved_sizes = NULL; 1565 u32 *resolved_ids = NULL; 1566 u8 *visit_states = NULL; 1567 1568 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1569 GFP_KERNEL | __GFP_NOWARN); 1570 if (!resolved_sizes) 1571 goto nomem; 1572 1573 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1574 GFP_KERNEL | __GFP_NOWARN); 1575 if (!resolved_ids) 1576 goto nomem; 1577 1578 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1579 GFP_KERNEL | __GFP_NOWARN); 1580 if (!visit_states) 1581 goto nomem; 1582 1583 btf->resolved_sizes = resolved_sizes; 1584 btf->resolved_ids = resolved_ids; 1585 env->visit_states = visit_states; 1586 1587 return 0; 1588 1589 nomem: 1590 kvfree(resolved_sizes); 1591 kvfree(resolved_ids); 1592 kvfree(visit_states); 1593 return -ENOMEM; 1594 } 1595 1596 static void btf_verifier_env_free(struct btf_verifier_env *env) 1597 { 1598 kvfree(env->visit_states); 1599 kfree(env); 1600 } 1601 1602 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1603 const struct btf_type *next_type) 1604 { 1605 switch (env->resolve_mode) { 1606 case RESOLVE_TBD: 1607 /* int, enum or void is a sink */ 1608 return !btf_type_needs_resolve(next_type); 1609 case RESOLVE_PTR: 1610 /* int, enum, void, struct, array, func or func_proto is a sink 1611 * for ptr 1612 */ 1613 return !btf_type_is_modifier(next_type) && 1614 !btf_type_is_ptr(next_type); 1615 case RESOLVE_STRUCT_OR_ARRAY: 1616 /* int, enum, void, ptr, func or func_proto is a sink 1617 * for struct and array 1618 */ 1619 return !btf_type_is_modifier(next_type) && 1620 !btf_type_is_array(next_type) && 1621 !btf_type_is_struct(next_type); 1622 default: 1623 BUG(); 1624 } 1625 } 1626 1627 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1628 u32 type_id) 1629 { 1630 /* base BTF types should be resolved by now */ 1631 if (type_id < env->btf->start_id) 1632 return true; 1633 1634 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1635 } 1636 1637 static int env_stack_push(struct btf_verifier_env *env, 1638 const struct btf_type *t, u32 type_id) 1639 { 1640 const struct btf *btf = env->btf; 1641 struct resolve_vertex *v; 1642 1643 if (env->top_stack == MAX_RESOLVE_DEPTH) 1644 return -E2BIG; 1645 1646 if (type_id < btf->start_id 1647 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1648 return -EEXIST; 1649 1650 env->visit_states[type_id - btf->start_id] = VISITED; 1651 1652 v = &env->stack[env->top_stack++]; 1653 v->t = t; 1654 v->type_id = type_id; 1655 v->next_member = 0; 1656 1657 if (env->resolve_mode == RESOLVE_TBD) { 1658 if (btf_type_is_ptr(t)) 1659 env->resolve_mode = RESOLVE_PTR; 1660 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1661 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1662 } 1663 1664 return 0; 1665 } 1666 1667 static void env_stack_set_next_member(struct btf_verifier_env *env, 1668 u16 next_member) 1669 { 1670 env->stack[env->top_stack - 1].next_member = next_member; 1671 } 1672 1673 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1674 u32 resolved_type_id, 1675 u32 resolved_size) 1676 { 1677 u32 type_id = env->stack[--(env->top_stack)].type_id; 1678 struct btf *btf = env->btf; 1679 1680 type_id -= btf->start_id; /* adjust to local type id */ 1681 btf->resolved_sizes[type_id] = resolved_size; 1682 btf->resolved_ids[type_id] = resolved_type_id; 1683 env->visit_states[type_id] = RESOLVED; 1684 } 1685 1686 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1687 { 1688 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1689 } 1690 1691 /* Resolve the size of a passed-in "type" 1692 * 1693 * type: is an array (e.g. u32 array[x][y]) 1694 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1695 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1696 * corresponds to the return type. 1697 * *elem_type: u32 1698 * *elem_id: id of u32 1699 * *total_nelems: (x * y). Hence, individual elem size is 1700 * (*type_size / *total_nelems) 1701 * *type_id: id of type if it's changed within the function, 0 if not 1702 * 1703 * type: is not an array (e.g. const struct X) 1704 * return type: type "struct X" 1705 * *type_size: sizeof(struct X) 1706 * *elem_type: same as return type ("struct X") 1707 * *elem_id: 0 1708 * *total_nelems: 1 1709 * *type_id: id of type if it's changed within the function, 0 if not 1710 */ 1711 static const struct btf_type * 1712 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1713 u32 *type_size, const struct btf_type **elem_type, 1714 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1715 { 1716 const struct btf_type *array_type = NULL; 1717 const struct btf_array *array = NULL; 1718 u32 i, size, nelems = 1, id = 0; 1719 1720 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1721 switch (BTF_INFO_KIND(type->info)) { 1722 /* type->size can be used */ 1723 case BTF_KIND_INT: 1724 case BTF_KIND_STRUCT: 1725 case BTF_KIND_UNION: 1726 case BTF_KIND_ENUM: 1727 case BTF_KIND_FLOAT: 1728 size = type->size; 1729 goto resolved; 1730 1731 case BTF_KIND_PTR: 1732 size = sizeof(void *); 1733 goto resolved; 1734 1735 /* Modifiers */ 1736 case BTF_KIND_TYPEDEF: 1737 case BTF_KIND_VOLATILE: 1738 case BTF_KIND_CONST: 1739 case BTF_KIND_RESTRICT: 1740 id = type->type; 1741 type = btf_type_by_id(btf, type->type); 1742 break; 1743 1744 case BTF_KIND_ARRAY: 1745 if (!array_type) 1746 array_type = type; 1747 array = btf_type_array(type); 1748 if (nelems && array->nelems > U32_MAX / nelems) 1749 return ERR_PTR(-EINVAL); 1750 nelems *= array->nelems; 1751 type = btf_type_by_id(btf, array->type); 1752 break; 1753 1754 /* type without size */ 1755 default: 1756 return ERR_PTR(-EINVAL); 1757 } 1758 } 1759 1760 return ERR_PTR(-EINVAL); 1761 1762 resolved: 1763 if (nelems && size > U32_MAX / nelems) 1764 return ERR_PTR(-EINVAL); 1765 1766 *type_size = nelems * size; 1767 if (total_nelems) 1768 *total_nelems = nelems; 1769 if (elem_type) 1770 *elem_type = type; 1771 if (elem_id) 1772 *elem_id = array ? array->type : 0; 1773 if (type_id && id) 1774 *type_id = id; 1775 1776 return array_type ? : type; 1777 } 1778 1779 const struct btf_type * 1780 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1781 u32 *type_size) 1782 { 1783 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1784 } 1785 1786 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1787 { 1788 while (type_id < btf->start_id) 1789 btf = btf->base_btf; 1790 1791 return btf->resolved_ids[type_id - btf->start_id]; 1792 } 1793 1794 /* The input param "type_id" must point to a needs_resolve type */ 1795 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1796 u32 *type_id) 1797 { 1798 *type_id = btf_resolved_type_id(btf, *type_id); 1799 return btf_type_by_id(btf, *type_id); 1800 } 1801 1802 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1803 { 1804 while (type_id < btf->start_id) 1805 btf = btf->base_btf; 1806 1807 return btf->resolved_sizes[type_id - btf->start_id]; 1808 } 1809 1810 const struct btf_type *btf_type_id_size(const struct btf *btf, 1811 u32 *type_id, u32 *ret_size) 1812 { 1813 const struct btf_type *size_type; 1814 u32 size_type_id = *type_id; 1815 u32 size = 0; 1816 1817 size_type = btf_type_by_id(btf, size_type_id); 1818 if (btf_type_nosize_or_null(size_type)) 1819 return NULL; 1820 1821 if (btf_type_has_size(size_type)) { 1822 size = size_type->size; 1823 } else if (btf_type_is_array(size_type)) { 1824 size = btf_resolved_type_size(btf, size_type_id); 1825 } else if (btf_type_is_ptr(size_type)) { 1826 size = sizeof(void *); 1827 } else { 1828 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1829 !btf_type_is_var(size_type))) 1830 return NULL; 1831 1832 size_type_id = btf_resolved_type_id(btf, size_type_id); 1833 size_type = btf_type_by_id(btf, size_type_id); 1834 if (btf_type_nosize_or_null(size_type)) 1835 return NULL; 1836 else if (btf_type_has_size(size_type)) 1837 size = size_type->size; 1838 else if (btf_type_is_array(size_type)) 1839 size = btf_resolved_type_size(btf, size_type_id); 1840 else if (btf_type_is_ptr(size_type)) 1841 size = sizeof(void *); 1842 else 1843 return NULL; 1844 } 1845 1846 *type_id = size_type_id; 1847 if (ret_size) 1848 *ret_size = size; 1849 1850 return size_type; 1851 } 1852 1853 static int btf_df_check_member(struct btf_verifier_env *env, 1854 const struct btf_type *struct_type, 1855 const struct btf_member *member, 1856 const struct btf_type *member_type) 1857 { 1858 btf_verifier_log_basic(env, struct_type, 1859 "Unsupported check_member"); 1860 return -EINVAL; 1861 } 1862 1863 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1864 const struct btf_type *struct_type, 1865 const struct btf_member *member, 1866 const struct btf_type *member_type) 1867 { 1868 btf_verifier_log_basic(env, struct_type, 1869 "Unsupported check_kflag_member"); 1870 return -EINVAL; 1871 } 1872 1873 /* Used for ptr, array struct/union and float type members. 1874 * int, enum and modifier types have their specific callback functions. 1875 */ 1876 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1877 const struct btf_type *struct_type, 1878 const struct btf_member *member, 1879 const struct btf_type *member_type) 1880 { 1881 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1882 btf_verifier_log_member(env, struct_type, member, 1883 "Invalid member bitfield_size"); 1884 return -EINVAL; 1885 } 1886 1887 /* bitfield size is 0, so member->offset represents bit offset only. 1888 * It is safe to call non kflag check_member variants. 1889 */ 1890 return btf_type_ops(member_type)->check_member(env, struct_type, 1891 member, 1892 member_type); 1893 } 1894 1895 static int btf_df_resolve(struct btf_verifier_env *env, 1896 const struct resolve_vertex *v) 1897 { 1898 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1899 return -EINVAL; 1900 } 1901 1902 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1903 u32 type_id, void *data, u8 bits_offsets, 1904 struct btf_show *show) 1905 { 1906 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1907 } 1908 1909 static int btf_int_check_member(struct btf_verifier_env *env, 1910 const struct btf_type *struct_type, 1911 const struct btf_member *member, 1912 const struct btf_type *member_type) 1913 { 1914 u32 int_data = btf_type_int(member_type); 1915 u32 struct_bits_off = member->offset; 1916 u32 struct_size = struct_type->size; 1917 u32 nr_copy_bits; 1918 u32 bytes_offset; 1919 1920 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1921 btf_verifier_log_member(env, struct_type, member, 1922 "bits_offset exceeds U32_MAX"); 1923 return -EINVAL; 1924 } 1925 1926 struct_bits_off += BTF_INT_OFFSET(int_data); 1927 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1928 nr_copy_bits = BTF_INT_BITS(int_data) + 1929 BITS_PER_BYTE_MASKED(struct_bits_off); 1930 1931 if (nr_copy_bits > BITS_PER_U128) { 1932 btf_verifier_log_member(env, struct_type, member, 1933 "nr_copy_bits exceeds 128"); 1934 return -EINVAL; 1935 } 1936 1937 if (struct_size < bytes_offset || 1938 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1939 btf_verifier_log_member(env, struct_type, member, 1940 "Member exceeds struct_size"); 1941 return -EINVAL; 1942 } 1943 1944 return 0; 1945 } 1946 1947 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1948 const struct btf_type *struct_type, 1949 const struct btf_member *member, 1950 const struct btf_type *member_type) 1951 { 1952 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1953 u32 int_data = btf_type_int(member_type); 1954 u32 struct_size = struct_type->size; 1955 u32 nr_copy_bits; 1956 1957 /* a regular int type is required for the kflag int member */ 1958 if (!btf_type_int_is_regular(member_type)) { 1959 btf_verifier_log_member(env, struct_type, member, 1960 "Invalid member base type"); 1961 return -EINVAL; 1962 } 1963 1964 /* check sanity of bitfield size */ 1965 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1966 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1967 nr_int_data_bits = BTF_INT_BITS(int_data); 1968 if (!nr_bits) { 1969 /* Not a bitfield member, member offset must be at byte 1970 * boundary. 1971 */ 1972 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1973 btf_verifier_log_member(env, struct_type, member, 1974 "Invalid member offset"); 1975 return -EINVAL; 1976 } 1977 1978 nr_bits = nr_int_data_bits; 1979 } else if (nr_bits > nr_int_data_bits) { 1980 btf_verifier_log_member(env, struct_type, member, 1981 "Invalid member bitfield_size"); 1982 return -EINVAL; 1983 } 1984 1985 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1986 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1987 if (nr_copy_bits > BITS_PER_U128) { 1988 btf_verifier_log_member(env, struct_type, member, 1989 "nr_copy_bits exceeds 128"); 1990 return -EINVAL; 1991 } 1992 1993 if (struct_size < bytes_offset || 1994 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1995 btf_verifier_log_member(env, struct_type, member, 1996 "Member exceeds struct_size"); 1997 return -EINVAL; 1998 } 1999 2000 return 0; 2001 } 2002 2003 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2004 const struct btf_type *t, 2005 u32 meta_left) 2006 { 2007 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2008 u16 encoding; 2009 2010 if (meta_left < meta_needed) { 2011 btf_verifier_log_basic(env, t, 2012 "meta_left:%u meta_needed:%u", 2013 meta_left, meta_needed); 2014 return -EINVAL; 2015 } 2016 2017 if (btf_type_vlen(t)) { 2018 btf_verifier_log_type(env, t, "vlen != 0"); 2019 return -EINVAL; 2020 } 2021 2022 if (btf_type_kflag(t)) { 2023 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2024 return -EINVAL; 2025 } 2026 2027 int_data = btf_type_int(t); 2028 if (int_data & ~BTF_INT_MASK) { 2029 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2030 int_data); 2031 return -EINVAL; 2032 } 2033 2034 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2035 2036 if (nr_bits > BITS_PER_U128) { 2037 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2038 BITS_PER_U128); 2039 return -EINVAL; 2040 } 2041 2042 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2043 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2044 return -EINVAL; 2045 } 2046 2047 /* 2048 * Only one of the encoding bits is allowed and it 2049 * should be sufficient for the pretty print purpose (i.e. decoding). 2050 * Multiple bits can be allowed later if it is found 2051 * to be insufficient. 2052 */ 2053 encoding = BTF_INT_ENCODING(int_data); 2054 if (encoding && 2055 encoding != BTF_INT_SIGNED && 2056 encoding != BTF_INT_CHAR && 2057 encoding != BTF_INT_BOOL) { 2058 btf_verifier_log_type(env, t, "Unsupported encoding"); 2059 return -ENOTSUPP; 2060 } 2061 2062 btf_verifier_log_type(env, t, NULL); 2063 2064 return meta_needed; 2065 } 2066 2067 static void btf_int_log(struct btf_verifier_env *env, 2068 const struct btf_type *t) 2069 { 2070 int int_data = btf_type_int(t); 2071 2072 btf_verifier_log(env, 2073 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2074 t->size, BTF_INT_OFFSET(int_data), 2075 BTF_INT_BITS(int_data), 2076 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2077 } 2078 2079 static void btf_int128_print(struct btf_show *show, void *data) 2080 { 2081 /* data points to a __int128 number. 2082 * Suppose 2083 * int128_num = *(__int128 *)data; 2084 * The below formulas shows what upper_num and lower_num represents: 2085 * upper_num = int128_num >> 64; 2086 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2087 */ 2088 u64 upper_num, lower_num; 2089 2090 #ifdef __BIG_ENDIAN_BITFIELD 2091 upper_num = *(u64 *)data; 2092 lower_num = *(u64 *)(data + 8); 2093 #else 2094 upper_num = *(u64 *)(data + 8); 2095 lower_num = *(u64 *)data; 2096 #endif 2097 if (upper_num == 0) 2098 btf_show_type_value(show, "0x%llx", lower_num); 2099 else 2100 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2101 lower_num); 2102 } 2103 2104 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2105 u16 right_shift_bits) 2106 { 2107 u64 upper_num, lower_num; 2108 2109 #ifdef __BIG_ENDIAN_BITFIELD 2110 upper_num = print_num[0]; 2111 lower_num = print_num[1]; 2112 #else 2113 upper_num = print_num[1]; 2114 lower_num = print_num[0]; 2115 #endif 2116 2117 /* shake out un-needed bits by shift/or operations */ 2118 if (left_shift_bits >= 64) { 2119 upper_num = lower_num << (left_shift_bits - 64); 2120 lower_num = 0; 2121 } else { 2122 upper_num = (upper_num << left_shift_bits) | 2123 (lower_num >> (64 - left_shift_bits)); 2124 lower_num = lower_num << left_shift_bits; 2125 } 2126 2127 if (right_shift_bits >= 64) { 2128 lower_num = upper_num >> (right_shift_bits - 64); 2129 upper_num = 0; 2130 } else { 2131 lower_num = (lower_num >> right_shift_bits) | 2132 (upper_num << (64 - right_shift_bits)); 2133 upper_num = upper_num >> right_shift_bits; 2134 } 2135 2136 #ifdef __BIG_ENDIAN_BITFIELD 2137 print_num[0] = upper_num; 2138 print_num[1] = lower_num; 2139 #else 2140 print_num[0] = lower_num; 2141 print_num[1] = upper_num; 2142 #endif 2143 } 2144 2145 static void btf_bitfield_show(void *data, u8 bits_offset, 2146 u8 nr_bits, struct btf_show *show) 2147 { 2148 u16 left_shift_bits, right_shift_bits; 2149 u8 nr_copy_bytes; 2150 u8 nr_copy_bits; 2151 u64 print_num[2] = {}; 2152 2153 nr_copy_bits = nr_bits + bits_offset; 2154 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2155 2156 memcpy(print_num, data, nr_copy_bytes); 2157 2158 #ifdef __BIG_ENDIAN_BITFIELD 2159 left_shift_bits = bits_offset; 2160 #else 2161 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2162 #endif 2163 right_shift_bits = BITS_PER_U128 - nr_bits; 2164 2165 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2166 btf_int128_print(show, print_num); 2167 } 2168 2169 2170 static void btf_int_bits_show(const struct btf *btf, 2171 const struct btf_type *t, 2172 void *data, u8 bits_offset, 2173 struct btf_show *show) 2174 { 2175 u32 int_data = btf_type_int(t); 2176 u8 nr_bits = BTF_INT_BITS(int_data); 2177 u8 total_bits_offset; 2178 2179 /* 2180 * bits_offset is at most 7. 2181 * BTF_INT_OFFSET() cannot exceed 128 bits. 2182 */ 2183 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2184 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2185 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2186 btf_bitfield_show(data, bits_offset, nr_bits, show); 2187 } 2188 2189 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2190 u32 type_id, void *data, u8 bits_offset, 2191 struct btf_show *show) 2192 { 2193 u32 int_data = btf_type_int(t); 2194 u8 encoding = BTF_INT_ENCODING(int_data); 2195 bool sign = encoding & BTF_INT_SIGNED; 2196 u8 nr_bits = BTF_INT_BITS(int_data); 2197 void *safe_data; 2198 2199 safe_data = btf_show_start_type(show, t, type_id, data); 2200 if (!safe_data) 2201 return; 2202 2203 if (bits_offset || BTF_INT_OFFSET(int_data) || 2204 BITS_PER_BYTE_MASKED(nr_bits)) { 2205 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2206 goto out; 2207 } 2208 2209 switch (nr_bits) { 2210 case 128: 2211 btf_int128_print(show, safe_data); 2212 break; 2213 case 64: 2214 if (sign) 2215 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2216 else 2217 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2218 break; 2219 case 32: 2220 if (sign) 2221 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2222 else 2223 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2224 break; 2225 case 16: 2226 if (sign) 2227 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2228 else 2229 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2230 break; 2231 case 8: 2232 if (show->state.array_encoding == BTF_INT_CHAR) { 2233 /* check for null terminator */ 2234 if (show->state.array_terminated) 2235 break; 2236 if (*(char *)data == '\0') { 2237 show->state.array_terminated = 1; 2238 break; 2239 } 2240 if (isprint(*(char *)data)) { 2241 btf_show_type_value(show, "'%c'", 2242 *(char *)safe_data); 2243 break; 2244 } 2245 } 2246 if (sign) 2247 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2248 else 2249 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2250 break; 2251 default: 2252 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2253 break; 2254 } 2255 out: 2256 btf_show_end_type(show); 2257 } 2258 2259 static const struct btf_kind_operations int_ops = { 2260 .check_meta = btf_int_check_meta, 2261 .resolve = btf_df_resolve, 2262 .check_member = btf_int_check_member, 2263 .check_kflag_member = btf_int_check_kflag_member, 2264 .log_details = btf_int_log, 2265 .show = btf_int_show, 2266 }; 2267 2268 static int btf_modifier_check_member(struct btf_verifier_env *env, 2269 const struct btf_type *struct_type, 2270 const struct btf_member *member, 2271 const struct btf_type *member_type) 2272 { 2273 const struct btf_type *resolved_type; 2274 u32 resolved_type_id = member->type; 2275 struct btf_member resolved_member; 2276 struct btf *btf = env->btf; 2277 2278 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2279 if (!resolved_type) { 2280 btf_verifier_log_member(env, struct_type, member, 2281 "Invalid member"); 2282 return -EINVAL; 2283 } 2284 2285 resolved_member = *member; 2286 resolved_member.type = resolved_type_id; 2287 2288 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2289 &resolved_member, 2290 resolved_type); 2291 } 2292 2293 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2294 const struct btf_type *struct_type, 2295 const struct btf_member *member, 2296 const struct btf_type *member_type) 2297 { 2298 const struct btf_type *resolved_type; 2299 u32 resolved_type_id = member->type; 2300 struct btf_member resolved_member; 2301 struct btf *btf = env->btf; 2302 2303 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2304 if (!resolved_type) { 2305 btf_verifier_log_member(env, struct_type, member, 2306 "Invalid member"); 2307 return -EINVAL; 2308 } 2309 2310 resolved_member = *member; 2311 resolved_member.type = resolved_type_id; 2312 2313 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2314 &resolved_member, 2315 resolved_type); 2316 } 2317 2318 static int btf_ptr_check_member(struct btf_verifier_env *env, 2319 const struct btf_type *struct_type, 2320 const struct btf_member *member, 2321 const struct btf_type *member_type) 2322 { 2323 u32 struct_size, struct_bits_off, bytes_offset; 2324 2325 struct_size = struct_type->size; 2326 struct_bits_off = member->offset; 2327 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2328 2329 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2330 btf_verifier_log_member(env, struct_type, member, 2331 "Member is not byte aligned"); 2332 return -EINVAL; 2333 } 2334 2335 if (struct_size - bytes_offset < sizeof(void *)) { 2336 btf_verifier_log_member(env, struct_type, member, 2337 "Member exceeds struct_size"); 2338 return -EINVAL; 2339 } 2340 2341 return 0; 2342 } 2343 2344 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2345 const struct btf_type *t, 2346 u32 meta_left) 2347 { 2348 if (btf_type_vlen(t)) { 2349 btf_verifier_log_type(env, t, "vlen != 0"); 2350 return -EINVAL; 2351 } 2352 2353 if (btf_type_kflag(t)) { 2354 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2355 return -EINVAL; 2356 } 2357 2358 if (!BTF_TYPE_ID_VALID(t->type)) { 2359 btf_verifier_log_type(env, t, "Invalid type_id"); 2360 return -EINVAL; 2361 } 2362 2363 /* typedef type must have a valid name, and other ref types, 2364 * volatile, const, restrict, should have a null name. 2365 */ 2366 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2367 if (!t->name_off || 2368 !btf_name_valid_identifier(env->btf, t->name_off)) { 2369 btf_verifier_log_type(env, t, "Invalid name"); 2370 return -EINVAL; 2371 } 2372 } else { 2373 if (t->name_off) { 2374 btf_verifier_log_type(env, t, "Invalid name"); 2375 return -EINVAL; 2376 } 2377 } 2378 2379 btf_verifier_log_type(env, t, NULL); 2380 2381 return 0; 2382 } 2383 2384 static int btf_modifier_resolve(struct btf_verifier_env *env, 2385 const struct resolve_vertex *v) 2386 { 2387 const struct btf_type *t = v->t; 2388 const struct btf_type *next_type; 2389 u32 next_type_id = t->type; 2390 struct btf *btf = env->btf; 2391 2392 next_type = btf_type_by_id(btf, next_type_id); 2393 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2394 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2395 return -EINVAL; 2396 } 2397 2398 if (!env_type_is_resolve_sink(env, next_type) && 2399 !env_type_is_resolved(env, next_type_id)) 2400 return env_stack_push(env, next_type, next_type_id); 2401 2402 /* Figure out the resolved next_type_id with size. 2403 * They will be stored in the current modifier's 2404 * resolved_ids and resolved_sizes such that it can 2405 * save us a few type-following when we use it later (e.g. in 2406 * pretty print). 2407 */ 2408 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2409 if (env_type_is_resolved(env, next_type_id)) 2410 next_type = btf_type_id_resolve(btf, &next_type_id); 2411 2412 /* "typedef void new_void", "const void"...etc */ 2413 if (!btf_type_is_void(next_type) && 2414 !btf_type_is_fwd(next_type) && 2415 !btf_type_is_func_proto(next_type)) { 2416 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2417 return -EINVAL; 2418 } 2419 } 2420 2421 env_stack_pop_resolved(env, next_type_id, 0); 2422 2423 return 0; 2424 } 2425 2426 static int btf_var_resolve(struct btf_verifier_env *env, 2427 const struct resolve_vertex *v) 2428 { 2429 const struct btf_type *next_type; 2430 const struct btf_type *t = v->t; 2431 u32 next_type_id = t->type; 2432 struct btf *btf = env->btf; 2433 2434 next_type = btf_type_by_id(btf, next_type_id); 2435 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2436 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2437 return -EINVAL; 2438 } 2439 2440 if (!env_type_is_resolve_sink(env, next_type) && 2441 !env_type_is_resolved(env, next_type_id)) 2442 return env_stack_push(env, next_type, next_type_id); 2443 2444 if (btf_type_is_modifier(next_type)) { 2445 const struct btf_type *resolved_type; 2446 u32 resolved_type_id; 2447 2448 resolved_type_id = next_type_id; 2449 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2450 2451 if (btf_type_is_ptr(resolved_type) && 2452 !env_type_is_resolve_sink(env, resolved_type) && 2453 !env_type_is_resolved(env, resolved_type_id)) 2454 return env_stack_push(env, resolved_type, 2455 resolved_type_id); 2456 } 2457 2458 /* We must resolve to something concrete at this point, no 2459 * forward types or similar that would resolve to size of 2460 * zero is allowed. 2461 */ 2462 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2463 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2464 return -EINVAL; 2465 } 2466 2467 env_stack_pop_resolved(env, next_type_id, 0); 2468 2469 return 0; 2470 } 2471 2472 static int btf_ptr_resolve(struct btf_verifier_env *env, 2473 const struct resolve_vertex *v) 2474 { 2475 const struct btf_type *next_type; 2476 const struct btf_type *t = v->t; 2477 u32 next_type_id = t->type; 2478 struct btf *btf = env->btf; 2479 2480 next_type = btf_type_by_id(btf, next_type_id); 2481 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2482 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2483 return -EINVAL; 2484 } 2485 2486 if (!env_type_is_resolve_sink(env, next_type) && 2487 !env_type_is_resolved(env, next_type_id)) 2488 return env_stack_push(env, next_type, next_type_id); 2489 2490 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2491 * the modifier may have stopped resolving when it was resolved 2492 * to a ptr (last-resolved-ptr). 2493 * 2494 * We now need to continue from the last-resolved-ptr to 2495 * ensure the last-resolved-ptr will not referring back to 2496 * the currenct ptr (t). 2497 */ 2498 if (btf_type_is_modifier(next_type)) { 2499 const struct btf_type *resolved_type; 2500 u32 resolved_type_id; 2501 2502 resolved_type_id = next_type_id; 2503 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2504 2505 if (btf_type_is_ptr(resolved_type) && 2506 !env_type_is_resolve_sink(env, resolved_type) && 2507 !env_type_is_resolved(env, resolved_type_id)) 2508 return env_stack_push(env, resolved_type, 2509 resolved_type_id); 2510 } 2511 2512 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2513 if (env_type_is_resolved(env, next_type_id)) 2514 next_type = btf_type_id_resolve(btf, &next_type_id); 2515 2516 if (!btf_type_is_void(next_type) && 2517 !btf_type_is_fwd(next_type) && 2518 !btf_type_is_func_proto(next_type)) { 2519 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2520 return -EINVAL; 2521 } 2522 } 2523 2524 env_stack_pop_resolved(env, next_type_id, 0); 2525 2526 return 0; 2527 } 2528 2529 static void btf_modifier_show(const struct btf *btf, 2530 const struct btf_type *t, 2531 u32 type_id, void *data, 2532 u8 bits_offset, struct btf_show *show) 2533 { 2534 if (btf->resolved_ids) 2535 t = btf_type_id_resolve(btf, &type_id); 2536 else 2537 t = btf_type_skip_modifiers(btf, type_id, NULL); 2538 2539 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2540 } 2541 2542 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2543 u32 type_id, void *data, u8 bits_offset, 2544 struct btf_show *show) 2545 { 2546 t = btf_type_id_resolve(btf, &type_id); 2547 2548 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2549 } 2550 2551 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2552 u32 type_id, void *data, u8 bits_offset, 2553 struct btf_show *show) 2554 { 2555 void *safe_data; 2556 2557 safe_data = btf_show_start_type(show, t, type_id, data); 2558 if (!safe_data) 2559 return; 2560 2561 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2562 if (show->flags & BTF_SHOW_PTR_RAW) 2563 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2564 else 2565 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2566 btf_show_end_type(show); 2567 } 2568 2569 static void btf_ref_type_log(struct btf_verifier_env *env, 2570 const struct btf_type *t) 2571 { 2572 btf_verifier_log(env, "type_id=%u", t->type); 2573 } 2574 2575 static struct btf_kind_operations modifier_ops = { 2576 .check_meta = btf_ref_type_check_meta, 2577 .resolve = btf_modifier_resolve, 2578 .check_member = btf_modifier_check_member, 2579 .check_kflag_member = btf_modifier_check_kflag_member, 2580 .log_details = btf_ref_type_log, 2581 .show = btf_modifier_show, 2582 }; 2583 2584 static struct btf_kind_operations ptr_ops = { 2585 .check_meta = btf_ref_type_check_meta, 2586 .resolve = btf_ptr_resolve, 2587 .check_member = btf_ptr_check_member, 2588 .check_kflag_member = btf_generic_check_kflag_member, 2589 .log_details = btf_ref_type_log, 2590 .show = btf_ptr_show, 2591 }; 2592 2593 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2594 const struct btf_type *t, 2595 u32 meta_left) 2596 { 2597 if (btf_type_vlen(t)) { 2598 btf_verifier_log_type(env, t, "vlen != 0"); 2599 return -EINVAL; 2600 } 2601 2602 if (t->type) { 2603 btf_verifier_log_type(env, t, "type != 0"); 2604 return -EINVAL; 2605 } 2606 2607 /* fwd type must have a valid name */ 2608 if (!t->name_off || 2609 !btf_name_valid_identifier(env->btf, t->name_off)) { 2610 btf_verifier_log_type(env, t, "Invalid name"); 2611 return -EINVAL; 2612 } 2613 2614 btf_verifier_log_type(env, t, NULL); 2615 2616 return 0; 2617 } 2618 2619 static void btf_fwd_type_log(struct btf_verifier_env *env, 2620 const struct btf_type *t) 2621 { 2622 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2623 } 2624 2625 static struct btf_kind_operations fwd_ops = { 2626 .check_meta = btf_fwd_check_meta, 2627 .resolve = btf_df_resolve, 2628 .check_member = btf_df_check_member, 2629 .check_kflag_member = btf_df_check_kflag_member, 2630 .log_details = btf_fwd_type_log, 2631 .show = btf_df_show, 2632 }; 2633 2634 static int btf_array_check_member(struct btf_verifier_env *env, 2635 const struct btf_type *struct_type, 2636 const struct btf_member *member, 2637 const struct btf_type *member_type) 2638 { 2639 u32 struct_bits_off = member->offset; 2640 u32 struct_size, bytes_offset; 2641 u32 array_type_id, array_size; 2642 struct btf *btf = env->btf; 2643 2644 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2645 btf_verifier_log_member(env, struct_type, member, 2646 "Member is not byte aligned"); 2647 return -EINVAL; 2648 } 2649 2650 array_type_id = member->type; 2651 btf_type_id_size(btf, &array_type_id, &array_size); 2652 struct_size = struct_type->size; 2653 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2654 if (struct_size - bytes_offset < array_size) { 2655 btf_verifier_log_member(env, struct_type, member, 2656 "Member exceeds struct_size"); 2657 return -EINVAL; 2658 } 2659 2660 return 0; 2661 } 2662 2663 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2664 const struct btf_type *t, 2665 u32 meta_left) 2666 { 2667 const struct btf_array *array = btf_type_array(t); 2668 u32 meta_needed = sizeof(*array); 2669 2670 if (meta_left < meta_needed) { 2671 btf_verifier_log_basic(env, t, 2672 "meta_left:%u meta_needed:%u", 2673 meta_left, meta_needed); 2674 return -EINVAL; 2675 } 2676 2677 /* array type should not have a name */ 2678 if (t->name_off) { 2679 btf_verifier_log_type(env, t, "Invalid name"); 2680 return -EINVAL; 2681 } 2682 2683 if (btf_type_vlen(t)) { 2684 btf_verifier_log_type(env, t, "vlen != 0"); 2685 return -EINVAL; 2686 } 2687 2688 if (btf_type_kflag(t)) { 2689 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2690 return -EINVAL; 2691 } 2692 2693 if (t->size) { 2694 btf_verifier_log_type(env, t, "size != 0"); 2695 return -EINVAL; 2696 } 2697 2698 /* Array elem type and index type cannot be in type void, 2699 * so !array->type and !array->index_type are not allowed. 2700 */ 2701 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2702 btf_verifier_log_type(env, t, "Invalid elem"); 2703 return -EINVAL; 2704 } 2705 2706 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2707 btf_verifier_log_type(env, t, "Invalid index"); 2708 return -EINVAL; 2709 } 2710 2711 btf_verifier_log_type(env, t, NULL); 2712 2713 return meta_needed; 2714 } 2715 2716 static int btf_array_resolve(struct btf_verifier_env *env, 2717 const struct resolve_vertex *v) 2718 { 2719 const struct btf_array *array = btf_type_array(v->t); 2720 const struct btf_type *elem_type, *index_type; 2721 u32 elem_type_id, index_type_id; 2722 struct btf *btf = env->btf; 2723 u32 elem_size; 2724 2725 /* Check array->index_type */ 2726 index_type_id = array->index_type; 2727 index_type = btf_type_by_id(btf, index_type_id); 2728 if (btf_type_nosize_or_null(index_type) || 2729 btf_type_is_resolve_source_only(index_type)) { 2730 btf_verifier_log_type(env, v->t, "Invalid index"); 2731 return -EINVAL; 2732 } 2733 2734 if (!env_type_is_resolve_sink(env, index_type) && 2735 !env_type_is_resolved(env, index_type_id)) 2736 return env_stack_push(env, index_type, index_type_id); 2737 2738 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2739 if (!index_type || !btf_type_is_int(index_type) || 2740 !btf_type_int_is_regular(index_type)) { 2741 btf_verifier_log_type(env, v->t, "Invalid index"); 2742 return -EINVAL; 2743 } 2744 2745 /* Check array->type */ 2746 elem_type_id = array->type; 2747 elem_type = btf_type_by_id(btf, elem_type_id); 2748 if (btf_type_nosize_or_null(elem_type) || 2749 btf_type_is_resolve_source_only(elem_type)) { 2750 btf_verifier_log_type(env, v->t, 2751 "Invalid elem"); 2752 return -EINVAL; 2753 } 2754 2755 if (!env_type_is_resolve_sink(env, elem_type) && 2756 !env_type_is_resolved(env, elem_type_id)) 2757 return env_stack_push(env, elem_type, elem_type_id); 2758 2759 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2760 if (!elem_type) { 2761 btf_verifier_log_type(env, v->t, "Invalid elem"); 2762 return -EINVAL; 2763 } 2764 2765 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2766 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2767 return -EINVAL; 2768 } 2769 2770 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2771 btf_verifier_log_type(env, v->t, 2772 "Array size overflows U32_MAX"); 2773 return -EINVAL; 2774 } 2775 2776 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2777 2778 return 0; 2779 } 2780 2781 static void btf_array_log(struct btf_verifier_env *env, 2782 const struct btf_type *t) 2783 { 2784 const struct btf_array *array = btf_type_array(t); 2785 2786 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2787 array->type, array->index_type, array->nelems); 2788 } 2789 2790 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2791 u32 type_id, void *data, u8 bits_offset, 2792 struct btf_show *show) 2793 { 2794 const struct btf_array *array = btf_type_array(t); 2795 const struct btf_kind_operations *elem_ops; 2796 const struct btf_type *elem_type; 2797 u32 i, elem_size = 0, elem_type_id; 2798 u16 encoding = 0; 2799 2800 elem_type_id = array->type; 2801 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2802 if (elem_type && btf_type_has_size(elem_type)) 2803 elem_size = elem_type->size; 2804 2805 if (elem_type && btf_type_is_int(elem_type)) { 2806 u32 int_type = btf_type_int(elem_type); 2807 2808 encoding = BTF_INT_ENCODING(int_type); 2809 2810 /* 2811 * BTF_INT_CHAR encoding never seems to be set for 2812 * char arrays, so if size is 1 and element is 2813 * printable as a char, we'll do that. 2814 */ 2815 if (elem_size == 1) 2816 encoding = BTF_INT_CHAR; 2817 } 2818 2819 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2820 return; 2821 2822 if (!elem_type) 2823 goto out; 2824 elem_ops = btf_type_ops(elem_type); 2825 2826 for (i = 0; i < array->nelems; i++) { 2827 2828 btf_show_start_array_member(show); 2829 2830 elem_ops->show(btf, elem_type, elem_type_id, data, 2831 bits_offset, show); 2832 data += elem_size; 2833 2834 btf_show_end_array_member(show); 2835 2836 if (show->state.array_terminated) 2837 break; 2838 } 2839 out: 2840 btf_show_end_array_type(show); 2841 } 2842 2843 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2844 u32 type_id, void *data, u8 bits_offset, 2845 struct btf_show *show) 2846 { 2847 const struct btf_member *m = show->state.member; 2848 2849 /* 2850 * First check if any members would be shown (are non-zero). 2851 * See comments above "struct btf_show" definition for more 2852 * details on how this works at a high-level. 2853 */ 2854 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2855 if (!show->state.depth_check) { 2856 show->state.depth_check = show->state.depth + 1; 2857 show->state.depth_to_show = 0; 2858 } 2859 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2860 show->state.member = m; 2861 2862 if (show->state.depth_check != show->state.depth + 1) 2863 return; 2864 show->state.depth_check = 0; 2865 2866 if (show->state.depth_to_show <= show->state.depth) 2867 return; 2868 /* 2869 * Reaching here indicates we have recursed and found 2870 * non-zero array member(s). 2871 */ 2872 } 2873 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2874 } 2875 2876 static struct btf_kind_operations array_ops = { 2877 .check_meta = btf_array_check_meta, 2878 .resolve = btf_array_resolve, 2879 .check_member = btf_array_check_member, 2880 .check_kflag_member = btf_generic_check_kflag_member, 2881 .log_details = btf_array_log, 2882 .show = btf_array_show, 2883 }; 2884 2885 static int btf_struct_check_member(struct btf_verifier_env *env, 2886 const struct btf_type *struct_type, 2887 const struct btf_member *member, 2888 const struct btf_type *member_type) 2889 { 2890 u32 struct_bits_off = member->offset; 2891 u32 struct_size, bytes_offset; 2892 2893 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2894 btf_verifier_log_member(env, struct_type, member, 2895 "Member is not byte aligned"); 2896 return -EINVAL; 2897 } 2898 2899 struct_size = struct_type->size; 2900 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2901 if (struct_size - bytes_offset < member_type->size) { 2902 btf_verifier_log_member(env, struct_type, member, 2903 "Member exceeds struct_size"); 2904 return -EINVAL; 2905 } 2906 2907 return 0; 2908 } 2909 2910 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2911 const struct btf_type *t, 2912 u32 meta_left) 2913 { 2914 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2915 const struct btf_member *member; 2916 u32 meta_needed, last_offset; 2917 struct btf *btf = env->btf; 2918 u32 struct_size = t->size; 2919 u32 offset; 2920 u16 i; 2921 2922 meta_needed = btf_type_vlen(t) * sizeof(*member); 2923 if (meta_left < meta_needed) { 2924 btf_verifier_log_basic(env, t, 2925 "meta_left:%u meta_needed:%u", 2926 meta_left, meta_needed); 2927 return -EINVAL; 2928 } 2929 2930 /* struct type either no name or a valid one */ 2931 if (t->name_off && 2932 !btf_name_valid_identifier(env->btf, t->name_off)) { 2933 btf_verifier_log_type(env, t, "Invalid name"); 2934 return -EINVAL; 2935 } 2936 2937 btf_verifier_log_type(env, t, NULL); 2938 2939 last_offset = 0; 2940 for_each_member(i, t, member) { 2941 if (!btf_name_offset_valid(btf, member->name_off)) { 2942 btf_verifier_log_member(env, t, member, 2943 "Invalid member name_offset:%u", 2944 member->name_off); 2945 return -EINVAL; 2946 } 2947 2948 /* struct member either no name or a valid one */ 2949 if (member->name_off && 2950 !btf_name_valid_identifier(btf, member->name_off)) { 2951 btf_verifier_log_member(env, t, member, "Invalid name"); 2952 return -EINVAL; 2953 } 2954 /* A member cannot be in type void */ 2955 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2956 btf_verifier_log_member(env, t, member, 2957 "Invalid type_id"); 2958 return -EINVAL; 2959 } 2960 2961 offset = btf_member_bit_offset(t, member); 2962 if (is_union && offset) { 2963 btf_verifier_log_member(env, t, member, 2964 "Invalid member bits_offset"); 2965 return -EINVAL; 2966 } 2967 2968 /* 2969 * ">" instead of ">=" because the last member could be 2970 * "char a[0];" 2971 */ 2972 if (last_offset > offset) { 2973 btf_verifier_log_member(env, t, member, 2974 "Invalid member bits_offset"); 2975 return -EINVAL; 2976 } 2977 2978 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2979 btf_verifier_log_member(env, t, member, 2980 "Member bits_offset exceeds its struct size"); 2981 return -EINVAL; 2982 } 2983 2984 btf_verifier_log_member(env, t, member, NULL); 2985 last_offset = offset; 2986 } 2987 2988 return meta_needed; 2989 } 2990 2991 static int btf_struct_resolve(struct btf_verifier_env *env, 2992 const struct resolve_vertex *v) 2993 { 2994 const struct btf_member *member; 2995 int err; 2996 u16 i; 2997 2998 /* Before continue resolving the next_member, 2999 * ensure the last member is indeed resolved to a 3000 * type with size info. 3001 */ 3002 if (v->next_member) { 3003 const struct btf_type *last_member_type; 3004 const struct btf_member *last_member; 3005 u16 last_member_type_id; 3006 3007 last_member = btf_type_member(v->t) + v->next_member - 1; 3008 last_member_type_id = last_member->type; 3009 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3010 last_member_type_id))) 3011 return -EINVAL; 3012 3013 last_member_type = btf_type_by_id(env->btf, 3014 last_member_type_id); 3015 if (btf_type_kflag(v->t)) 3016 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3017 last_member, 3018 last_member_type); 3019 else 3020 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3021 last_member, 3022 last_member_type); 3023 if (err) 3024 return err; 3025 } 3026 3027 for_each_member_from(i, v->next_member, v->t, member) { 3028 u32 member_type_id = member->type; 3029 const struct btf_type *member_type = btf_type_by_id(env->btf, 3030 member_type_id); 3031 3032 if (btf_type_nosize_or_null(member_type) || 3033 btf_type_is_resolve_source_only(member_type)) { 3034 btf_verifier_log_member(env, v->t, member, 3035 "Invalid member"); 3036 return -EINVAL; 3037 } 3038 3039 if (!env_type_is_resolve_sink(env, member_type) && 3040 !env_type_is_resolved(env, member_type_id)) { 3041 env_stack_set_next_member(env, i + 1); 3042 return env_stack_push(env, member_type, member_type_id); 3043 } 3044 3045 if (btf_type_kflag(v->t)) 3046 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3047 member, 3048 member_type); 3049 else 3050 err = btf_type_ops(member_type)->check_member(env, v->t, 3051 member, 3052 member_type); 3053 if (err) 3054 return err; 3055 } 3056 3057 env_stack_pop_resolved(env, 0, 0); 3058 3059 return 0; 3060 } 3061 3062 static void btf_struct_log(struct btf_verifier_env *env, 3063 const struct btf_type *t) 3064 { 3065 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3066 } 3067 3068 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, 3069 const char *name, int sz, int align) 3070 { 3071 const struct btf_member *member; 3072 u32 i, off = -ENOENT; 3073 3074 for_each_member(i, t, member) { 3075 const struct btf_type *member_type = btf_type_by_id(btf, 3076 member->type); 3077 if (!__btf_type_is_struct(member_type)) 3078 continue; 3079 if (member_type->size != sz) 3080 continue; 3081 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) 3082 continue; 3083 if (off != -ENOENT) 3084 /* only one such field is allowed */ 3085 return -E2BIG; 3086 off = btf_member_bit_offset(t, member); 3087 if (off % 8) 3088 /* valid C code cannot generate such BTF */ 3089 return -EINVAL; 3090 off /= 8; 3091 if (off % align) 3092 return -EINVAL; 3093 } 3094 return off; 3095 } 3096 3097 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3098 const char *name, int sz, int align) 3099 { 3100 const struct btf_var_secinfo *vsi; 3101 u32 i, off = -ENOENT; 3102 3103 for_each_vsi(i, t, vsi) { 3104 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3105 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3106 3107 if (!__btf_type_is_struct(var_type)) 3108 continue; 3109 if (var_type->size != sz) 3110 continue; 3111 if (vsi->size != sz) 3112 continue; 3113 if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) 3114 continue; 3115 if (off != -ENOENT) 3116 /* only one such field is allowed */ 3117 return -E2BIG; 3118 off = vsi->offset; 3119 if (off % align) 3120 return -EINVAL; 3121 } 3122 return off; 3123 } 3124 3125 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3126 const char *name, int sz, int align) 3127 { 3128 3129 if (__btf_type_is_struct(t)) 3130 return btf_find_struct_field(btf, t, name, sz, align); 3131 else if (btf_type_is_datasec(t)) 3132 return btf_find_datasec_var(btf, t, name, sz, align); 3133 return -EINVAL; 3134 } 3135 3136 /* find 'struct bpf_spin_lock' in map value. 3137 * return >= 0 offset if found 3138 * and < 0 in case of error 3139 */ 3140 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3141 { 3142 return btf_find_field(btf, t, "bpf_spin_lock", 3143 sizeof(struct bpf_spin_lock), 3144 __alignof__(struct bpf_spin_lock)); 3145 } 3146 3147 int btf_find_timer(const struct btf *btf, const struct btf_type *t) 3148 { 3149 return btf_find_field(btf, t, "bpf_timer", 3150 sizeof(struct bpf_timer), 3151 __alignof__(struct bpf_timer)); 3152 } 3153 3154 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3155 u32 type_id, void *data, u8 bits_offset, 3156 struct btf_show *show) 3157 { 3158 const struct btf_member *member; 3159 void *safe_data; 3160 u32 i; 3161 3162 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3163 if (!safe_data) 3164 return; 3165 3166 for_each_member(i, t, member) { 3167 const struct btf_type *member_type = btf_type_by_id(btf, 3168 member->type); 3169 const struct btf_kind_operations *ops; 3170 u32 member_offset, bitfield_size; 3171 u32 bytes_offset; 3172 u8 bits8_offset; 3173 3174 btf_show_start_member(show, member); 3175 3176 member_offset = btf_member_bit_offset(t, member); 3177 bitfield_size = btf_member_bitfield_size(t, member); 3178 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3179 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3180 if (bitfield_size) { 3181 safe_data = btf_show_start_type(show, member_type, 3182 member->type, 3183 data + bytes_offset); 3184 if (safe_data) 3185 btf_bitfield_show(safe_data, 3186 bits8_offset, 3187 bitfield_size, show); 3188 btf_show_end_type(show); 3189 } else { 3190 ops = btf_type_ops(member_type); 3191 ops->show(btf, member_type, member->type, 3192 data + bytes_offset, bits8_offset, show); 3193 } 3194 3195 btf_show_end_member(show); 3196 } 3197 3198 btf_show_end_struct_type(show); 3199 } 3200 3201 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3202 u32 type_id, void *data, u8 bits_offset, 3203 struct btf_show *show) 3204 { 3205 const struct btf_member *m = show->state.member; 3206 3207 /* 3208 * First check if any members would be shown (are non-zero). 3209 * See comments above "struct btf_show" definition for more 3210 * details on how this works at a high-level. 3211 */ 3212 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3213 if (!show->state.depth_check) { 3214 show->state.depth_check = show->state.depth + 1; 3215 show->state.depth_to_show = 0; 3216 } 3217 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3218 /* Restore saved member data here */ 3219 show->state.member = m; 3220 if (show->state.depth_check != show->state.depth + 1) 3221 return; 3222 show->state.depth_check = 0; 3223 3224 if (show->state.depth_to_show <= show->state.depth) 3225 return; 3226 /* 3227 * Reaching here indicates we have recursed and found 3228 * non-zero child values. 3229 */ 3230 } 3231 3232 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3233 } 3234 3235 static struct btf_kind_operations struct_ops = { 3236 .check_meta = btf_struct_check_meta, 3237 .resolve = btf_struct_resolve, 3238 .check_member = btf_struct_check_member, 3239 .check_kflag_member = btf_generic_check_kflag_member, 3240 .log_details = btf_struct_log, 3241 .show = btf_struct_show, 3242 }; 3243 3244 static int btf_enum_check_member(struct btf_verifier_env *env, 3245 const struct btf_type *struct_type, 3246 const struct btf_member *member, 3247 const struct btf_type *member_type) 3248 { 3249 u32 struct_bits_off = member->offset; 3250 u32 struct_size, bytes_offset; 3251 3252 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3253 btf_verifier_log_member(env, struct_type, member, 3254 "Member is not byte aligned"); 3255 return -EINVAL; 3256 } 3257 3258 struct_size = struct_type->size; 3259 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3260 if (struct_size - bytes_offset < member_type->size) { 3261 btf_verifier_log_member(env, struct_type, member, 3262 "Member exceeds struct_size"); 3263 return -EINVAL; 3264 } 3265 3266 return 0; 3267 } 3268 3269 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3270 const struct btf_type *struct_type, 3271 const struct btf_member *member, 3272 const struct btf_type *member_type) 3273 { 3274 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3275 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3276 3277 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3278 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3279 if (!nr_bits) { 3280 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3281 btf_verifier_log_member(env, struct_type, member, 3282 "Member is not byte aligned"); 3283 return -EINVAL; 3284 } 3285 3286 nr_bits = int_bitsize; 3287 } else if (nr_bits > int_bitsize) { 3288 btf_verifier_log_member(env, struct_type, member, 3289 "Invalid member bitfield_size"); 3290 return -EINVAL; 3291 } 3292 3293 struct_size = struct_type->size; 3294 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3295 if (struct_size < bytes_end) { 3296 btf_verifier_log_member(env, struct_type, member, 3297 "Member exceeds struct_size"); 3298 return -EINVAL; 3299 } 3300 3301 return 0; 3302 } 3303 3304 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3305 const struct btf_type *t, 3306 u32 meta_left) 3307 { 3308 const struct btf_enum *enums = btf_type_enum(t); 3309 struct btf *btf = env->btf; 3310 u16 i, nr_enums; 3311 u32 meta_needed; 3312 3313 nr_enums = btf_type_vlen(t); 3314 meta_needed = nr_enums * sizeof(*enums); 3315 3316 if (meta_left < meta_needed) { 3317 btf_verifier_log_basic(env, t, 3318 "meta_left:%u meta_needed:%u", 3319 meta_left, meta_needed); 3320 return -EINVAL; 3321 } 3322 3323 if (btf_type_kflag(t)) { 3324 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3325 return -EINVAL; 3326 } 3327 3328 if (t->size > 8 || !is_power_of_2(t->size)) { 3329 btf_verifier_log_type(env, t, "Unexpected size"); 3330 return -EINVAL; 3331 } 3332 3333 /* enum type either no name or a valid one */ 3334 if (t->name_off && 3335 !btf_name_valid_identifier(env->btf, t->name_off)) { 3336 btf_verifier_log_type(env, t, "Invalid name"); 3337 return -EINVAL; 3338 } 3339 3340 btf_verifier_log_type(env, t, NULL); 3341 3342 for (i = 0; i < nr_enums; i++) { 3343 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3344 btf_verifier_log(env, "\tInvalid name_offset:%u", 3345 enums[i].name_off); 3346 return -EINVAL; 3347 } 3348 3349 /* enum member must have a valid name */ 3350 if (!enums[i].name_off || 3351 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3352 btf_verifier_log_type(env, t, "Invalid name"); 3353 return -EINVAL; 3354 } 3355 3356 if (env->log.level == BPF_LOG_KERNEL) 3357 continue; 3358 btf_verifier_log(env, "\t%s val=%d\n", 3359 __btf_name_by_offset(btf, enums[i].name_off), 3360 enums[i].val); 3361 } 3362 3363 return meta_needed; 3364 } 3365 3366 static void btf_enum_log(struct btf_verifier_env *env, 3367 const struct btf_type *t) 3368 { 3369 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3370 } 3371 3372 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3373 u32 type_id, void *data, u8 bits_offset, 3374 struct btf_show *show) 3375 { 3376 const struct btf_enum *enums = btf_type_enum(t); 3377 u32 i, nr_enums = btf_type_vlen(t); 3378 void *safe_data; 3379 int v; 3380 3381 safe_data = btf_show_start_type(show, t, type_id, data); 3382 if (!safe_data) 3383 return; 3384 3385 v = *(int *)safe_data; 3386 3387 for (i = 0; i < nr_enums; i++) { 3388 if (v != enums[i].val) 3389 continue; 3390 3391 btf_show_type_value(show, "%s", 3392 __btf_name_by_offset(btf, 3393 enums[i].name_off)); 3394 3395 btf_show_end_type(show); 3396 return; 3397 } 3398 3399 btf_show_type_value(show, "%d", v); 3400 btf_show_end_type(show); 3401 } 3402 3403 static struct btf_kind_operations enum_ops = { 3404 .check_meta = btf_enum_check_meta, 3405 .resolve = btf_df_resolve, 3406 .check_member = btf_enum_check_member, 3407 .check_kflag_member = btf_enum_check_kflag_member, 3408 .log_details = btf_enum_log, 3409 .show = btf_enum_show, 3410 }; 3411 3412 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3413 const struct btf_type *t, 3414 u32 meta_left) 3415 { 3416 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3417 3418 if (meta_left < meta_needed) { 3419 btf_verifier_log_basic(env, t, 3420 "meta_left:%u meta_needed:%u", 3421 meta_left, meta_needed); 3422 return -EINVAL; 3423 } 3424 3425 if (t->name_off) { 3426 btf_verifier_log_type(env, t, "Invalid name"); 3427 return -EINVAL; 3428 } 3429 3430 if (btf_type_kflag(t)) { 3431 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3432 return -EINVAL; 3433 } 3434 3435 btf_verifier_log_type(env, t, NULL); 3436 3437 return meta_needed; 3438 } 3439 3440 static void btf_func_proto_log(struct btf_verifier_env *env, 3441 const struct btf_type *t) 3442 { 3443 const struct btf_param *args = (const struct btf_param *)(t + 1); 3444 u16 nr_args = btf_type_vlen(t), i; 3445 3446 btf_verifier_log(env, "return=%u args=(", t->type); 3447 if (!nr_args) { 3448 btf_verifier_log(env, "void"); 3449 goto done; 3450 } 3451 3452 if (nr_args == 1 && !args[0].type) { 3453 /* Only one vararg */ 3454 btf_verifier_log(env, "vararg"); 3455 goto done; 3456 } 3457 3458 btf_verifier_log(env, "%u %s", args[0].type, 3459 __btf_name_by_offset(env->btf, 3460 args[0].name_off)); 3461 for (i = 1; i < nr_args - 1; i++) 3462 btf_verifier_log(env, ", %u %s", args[i].type, 3463 __btf_name_by_offset(env->btf, 3464 args[i].name_off)); 3465 3466 if (nr_args > 1) { 3467 const struct btf_param *last_arg = &args[nr_args - 1]; 3468 3469 if (last_arg->type) 3470 btf_verifier_log(env, ", %u %s", last_arg->type, 3471 __btf_name_by_offset(env->btf, 3472 last_arg->name_off)); 3473 else 3474 btf_verifier_log(env, ", vararg"); 3475 } 3476 3477 done: 3478 btf_verifier_log(env, ")"); 3479 } 3480 3481 static struct btf_kind_operations func_proto_ops = { 3482 .check_meta = btf_func_proto_check_meta, 3483 .resolve = btf_df_resolve, 3484 /* 3485 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3486 * a struct's member. 3487 * 3488 * It should be a function pointer instead. 3489 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3490 * 3491 * Hence, there is no btf_func_check_member(). 3492 */ 3493 .check_member = btf_df_check_member, 3494 .check_kflag_member = btf_df_check_kflag_member, 3495 .log_details = btf_func_proto_log, 3496 .show = btf_df_show, 3497 }; 3498 3499 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3500 const struct btf_type *t, 3501 u32 meta_left) 3502 { 3503 if (!t->name_off || 3504 !btf_name_valid_identifier(env->btf, t->name_off)) { 3505 btf_verifier_log_type(env, t, "Invalid name"); 3506 return -EINVAL; 3507 } 3508 3509 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3510 btf_verifier_log_type(env, t, "Invalid func linkage"); 3511 return -EINVAL; 3512 } 3513 3514 if (btf_type_kflag(t)) { 3515 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3516 return -EINVAL; 3517 } 3518 3519 btf_verifier_log_type(env, t, NULL); 3520 3521 return 0; 3522 } 3523 3524 static struct btf_kind_operations func_ops = { 3525 .check_meta = btf_func_check_meta, 3526 .resolve = btf_df_resolve, 3527 .check_member = btf_df_check_member, 3528 .check_kflag_member = btf_df_check_kflag_member, 3529 .log_details = btf_ref_type_log, 3530 .show = btf_df_show, 3531 }; 3532 3533 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3534 const struct btf_type *t, 3535 u32 meta_left) 3536 { 3537 const struct btf_var *var; 3538 u32 meta_needed = sizeof(*var); 3539 3540 if (meta_left < meta_needed) { 3541 btf_verifier_log_basic(env, t, 3542 "meta_left:%u meta_needed:%u", 3543 meta_left, meta_needed); 3544 return -EINVAL; 3545 } 3546 3547 if (btf_type_vlen(t)) { 3548 btf_verifier_log_type(env, t, "vlen != 0"); 3549 return -EINVAL; 3550 } 3551 3552 if (btf_type_kflag(t)) { 3553 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3554 return -EINVAL; 3555 } 3556 3557 if (!t->name_off || 3558 !__btf_name_valid(env->btf, t->name_off, true)) { 3559 btf_verifier_log_type(env, t, "Invalid name"); 3560 return -EINVAL; 3561 } 3562 3563 /* A var cannot be in type void */ 3564 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3565 btf_verifier_log_type(env, t, "Invalid type_id"); 3566 return -EINVAL; 3567 } 3568 3569 var = btf_type_var(t); 3570 if (var->linkage != BTF_VAR_STATIC && 3571 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3572 btf_verifier_log_type(env, t, "Linkage not supported"); 3573 return -EINVAL; 3574 } 3575 3576 btf_verifier_log_type(env, t, NULL); 3577 3578 return meta_needed; 3579 } 3580 3581 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3582 { 3583 const struct btf_var *var = btf_type_var(t); 3584 3585 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3586 } 3587 3588 static const struct btf_kind_operations var_ops = { 3589 .check_meta = btf_var_check_meta, 3590 .resolve = btf_var_resolve, 3591 .check_member = btf_df_check_member, 3592 .check_kflag_member = btf_df_check_kflag_member, 3593 .log_details = btf_var_log, 3594 .show = btf_var_show, 3595 }; 3596 3597 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3598 const struct btf_type *t, 3599 u32 meta_left) 3600 { 3601 const struct btf_var_secinfo *vsi; 3602 u64 last_vsi_end_off = 0, sum = 0; 3603 u32 i, meta_needed; 3604 3605 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3606 if (meta_left < meta_needed) { 3607 btf_verifier_log_basic(env, t, 3608 "meta_left:%u meta_needed:%u", 3609 meta_left, meta_needed); 3610 return -EINVAL; 3611 } 3612 3613 if (!t->size) { 3614 btf_verifier_log_type(env, t, "size == 0"); 3615 return -EINVAL; 3616 } 3617 3618 if (btf_type_kflag(t)) { 3619 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3620 return -EINVAL; 3621 } 3622 3623 if (!t->name_off || 3624 !btf_name_valid_section(env->btf, t->name_off)) { 3625 btf_verifier_log_type(env, t, "Invalid name"); 3626 return -EINVAL; 3627 } 3628 3629 btf_verifier_log_type(env, t, NULL); 3630 3631 for_each_vsi(i, t, vsi) { 3632 /* A var cannot be in type void */ 3633 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3634 btf_verifier_log_vsi(env, t, vsi, 3635 "Invalid type_id"); 3636 return -EINVAL; 3637 } 3638 3639 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3640 btf_verifier_log_vsi(env, t, vsi, 3641 "Invalid offset"); 3642 return -EINVAL; 3643 } 3644 3645 if (!vsi->size || vsi->size > t->size) { 3646 btf_verifier_log_vsi(env, t, vsi, 3647 "Invalid size"); 3648 return -EINVAL; 3649 } 3650 3651 last_vsi_end_off = vsi->offset + vsi->size; 3652 if (last_vsi_end_off > t->size) { 3653 btf_verifier_log_vsi(env, t, vsi, 3654 "Invalid offset+size"); 3655 return -EINVAL; 3656 } 3657 3658 btf_verifier_log_vsi(env, t, vsi, NULL); 3659 sum += vsi->size; 3660 } 3661 3662 if (t->size < sum) { 3663 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3664 return -EINVAL; 3665 } 3666 3667 return meta_needed; 3668 } 3669 3670 static int btf_datasec_resolve(struct btf_verifier_env *env, 3671 const struct resolve_vertex *v) 3672 { 3673 const struct btf_var_secinfo *vsi; 3674 struct btf *btf = env->btf; 3675 u16 i; 3676 3677 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3678 u32 var_type_id = vsi->type, type_id, type_size = 0; 3679 const struct btf_type *var_type = btf_type_by_id(env->btf, 3680 var_type_id); 3681 if (!var_type || !btf_type_is_var(var_type)) { 3682 btf_verifier_log_vsi(env, v->t, vsi, 3683 "Not a VAR kind member"); 3684 return -EINVAL; 3685 } 3686 3687 if (!env_type_is_resolve_sink(env, var_type) && 3688 !env_type_is_resolved(env, var_type_id)) { 3689 env_stack_set_next_member(env, i + 1); 3690 return env_stack_push(env, var_type, var_type_id); 3691 } 3692 3693 type_id = var_type->type; 3694 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3695 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3696 return -EINVAL; 3697 } 3698 3699 if (vsi->size < type_size) { 3700 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3701 return -EINVAL; 3702 } 3703 } 3704 3705 env_stack_pop_resolved(env, 0, 0); 3706 return 0; 3707 } 3708 3709 static void btf_datasec_log(struct btf_verifier_env *env, 3710 const struct btf_type *t) 3711 { 3712 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3713 } 3714 3715 static void btf_datasec_show(const struct btf *btf, 3716 const struct btf_type *t, u32 type_id, 3717 void *data, u8 bits_offset, 3718 struct btf_show *show) 3719 { 3720 const struct btf_var_secinfo *vsi; 3721 const struct btf_type *var; 3722 u32 i; 3723 3724 if (!btf_show_start_type(show, t, type_id, data)) 3725 return; 3726 3727 btf_show_type_value(show, "section (\"%s\") = {", 3728 __btf_name_by_offset(btf, t->name_off)); 3729 for_each_vsi(i, t, vsi) { 3730 var = btf_type_by_id(btf, vsi->type); 3731 if (i) 3732 btf_show(show, ","); 3733 btf_type_ops(var)->show(btf, var, vsi->type, 3734 data + vsi->offset, bits_offset, show); 3735 } 3736 btf_show_end_type(show); 3737 } 3738 3739 static const struct btf_kind_operations datasec_ops = { 3740 .check_meta = btf_datasec_check_meta, 3741 .resolve = btf_datasec_resolve, 3742 .check_member = btf_df_check_member, 3743 .check_kflag_member = btf_df_check_kflag_member, 3744 .log_details = btf_datasec_log, 3745 .show = btf_datasec_show, 3746 }; 3747 3748 static s32 btf_float_check_meta(struct btf_verifier_env *env, 3749 const struct btf_type *t, 3750 u32 meta_left) 3751 { 3752 if (btf_type_vlen(t)) { 3753 btf_verifier_log_type(env, t, "vlen != 0"); 3754 return -EINVAL; 3755 } 3756 3757 if (btf_type_kflag(t)) { 3758 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3759 return -EINVAL; 3760 } 3761 3762 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 3763 t->size != 16) { 3764 btf_verifier_log_type(env, t, "Invalid type_size"); 3765 return -EINVAL; 3766 } 3767 3768 btf_verifier_log_type(env, t, NULL); 3769 3770 return 0; 3771 } 3772 3773 static int btf_float_check_member(struct btf_verifier_env *env, 3774 const struct btf_type *struct_type, 3775 const struct btf_member *member, 3776 const struct btf_type *member_type) 3777 { 3778 u64 start_offset_bytes; 3779 u64 end_offset_bytes; 3780 u64 misalign_bits; 3781 u64 align_bytes; 3782 u64 align_bits; 3783 3784 /* Different architectures have different alignment requirements, so 3785 * here we check only for the reasonable minimum. This way we ensure 3786 * that types after CO-RE can pass the kernel BTF verifier. 3787 */ 3788 align_bytes = min_t(u64, sizeof(void *), member_type->size); 3789 align_bits = align_bytes * BITS_PER_BYTE; 3790 div64_u64_rem(member->offset, align_bits, &misalign_bits); 3791 if (misalign_bits) { 3792 btf_verifier_log_member(env, struct_type, member, 3793 "Member is not properly aligned"); 3794 return -EINVAL; 3795 } 3796 3797 start_offset_bytes = member->offset / BITS_PER_BYTE; 3798 end_offset_bytes = start_offset_bytes + member_type->size; 3799 if (end_offset_bytes > struct_type->size) { 3800 btf_verifier_log_member(env, struct_type, member, 3801 "Member exceeds struct_size"); 3802 return -EINVAL; 3803 } 3804 3805 return 0; 3806 } 3807 3808 static void btf_float_log(struct btf_verifier_env *env, 3809 const struct btf_type *t) 3810 { 3811 btf_verifier_log(env, "size=%u", t->size); 3812 } 3813 3814 static const struct btf_kind_operations float_ops = { 3815 .check_meta = btf_float_check_meta, 3816 .resolve = btf_df_resolve, 3817 .check_member = btf_float_check_member, 3818 .check_kflag_member = btf_generic_check_kflag_member, 3819 .log_details = btf_float_log, 3820 .show = btf_df_show, 3821 }; 3822 3823 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 3824 const struct btf_type *t, 3825 u32 meta_left) 3826 { 3827 const struct btf_decl_tag *tag; 3828 u32 meta_needed = sizeof(*tag); 3829 s32 component_idx; 3830 const char *value; 3831 3832 if (meta_left < meta_needed) { 3833 btf_verifier_log_basic(env, t, 3834 "meta_left:%u meta_needed:%u", 3835 meta_left, meta_needed); 3836 return -EINVAL; 3837 } 3838 3839 value = btf_name_by_offset(env->btf, t->name_off); 3840 if (!value || !value[0]) { 3841 btf_verifier_log_type(env, t, "Invalid value"); 3842 return -EINVAL; 3843 } 3844 3845 if (btf_type_vlen(t)) { 3846 btf_verifier_log_type(env, t, "vlen != 0"); 3847 return -EINVAL; 3848 } 3849 3850 if (btf_type_kflag(t)) { 3851 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3852 return -EINVAL; 3853 } 3854 3855 component_idx = btf_type_decl_tag(t)->component_idx; 3856 if (component_idx < -1) { 3857 btf_verifier_log_type(env, t, "Invalid component_idx"); 3858 return -EINVAL; 3859 } 3860 3861 btf_verifier_log_type(env, t, NULL); 3862 3863 return meta_needed; 3864 } 3865 3866 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 3867 const struct resolve_vertex *v) 3868 { 3869 const struct btf_type *next_type; 3870 const struct btf_type *t = v->t; 3871 u32 next_type_id = t->type; 3872 struct btf *btf = env->btf; 3873 s32 component_idx; 3874 u32 vlen; 3875 3876 next_type = btf_type_by_id(btf, next_type_id); 3877 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 3878 btf_verifier_log_type(env, v->t, "Invalid type_id"); 3879 return -EINVAL; 3880 } 3881 3882 if (!env_type_is_resolve_sink(env, next_type) && 3883 !env_type_is_resolved(env, next_type_id)) 3884 return env_stack_push(env, next_type, next_type_id); 3885 3886 component_idx = btf_type_decl_tag(t)->component_idx; 3887 if (component_idx != -1) { 3888 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 3889 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 3890 return -EINVAL; 3891 } 3892 3893 if (btf_type_is_struct(next_type)) { 3894 vlen = btf_type_vlen(next_type); 3895 } else { 3896 /* next_type should be a function */ 3897 next_type = btf_type_by_id(btf, next_type->type); 3898 vlen = btf_type_vlen(next_type); 3899 } 3900 3901 if ((u32)component_idx >= vlen) { 3902 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 3903 return -EINVAL; 3904 } 3905 } 3906 3907 env_stack_pop_resolved(env, next_type_id, 0); 3908 3909 return 0; 3910 } 3911 3912 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 3913 { 3914 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 3915 btf_type_decl_tag(t)->component_idx); 3916 } 3917 3918 static const struct btf_kind_operations decl_tag_ops = { 3919 .check_meta = btf_decl_tag_check_meta, 3920 .resolve = btf_decl_tag_resolve, 3921 .check_member = btf_df_check_member, 3922 .check_kflag_member = btf_df_check_kflag_member, 3923 .log_details = btf_decl_tag_log, 3924 .show = btf_df_show, 3925 }; 3926 3927 static int btf_func_proto_check(struct btf_verifier_env *env, 3928 const struct btf_type *t) 3929 { 3930 const struct btf_type *ret_type; 3931 const struct btf_param *args; 3932 const struct btf *btf; 3933 u16 nr_args, i; 3934 int err; 3935 3936 btf = env->btf; 3937 args = (const struct btf_param *)(t + 1); 3938 nr_args = btf_type_vlen(t); 3939 3940 /* Check func return type which could be "void" (t->type == 0) */ 3941 if (t->type) { 3942 u32 ret_type_id = t->type; 3943 3944 ret_type = btf_type_by_id(btf, ret_type_id); 3945 if (!ret_type) { 3946 btf_verifier_log_type(env, t, "Invalid return type"); 3947 return -EINVAL; 3948 } 3949 3950 if (btf_type_needs_resolve(ret_type) && 3951 !env_type_is_resolved(env, ret_type_id)) { 3952 err = btf_resolve(env, ret_type, ret_type_id); 3953 if (err) 3954 return err; 3955 } 3956 3957 /* Ensure the return type is a type that has a size */ 3958 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 3959 btf_verifier_log_type(env, t, "Invalid return type"); 3960 return -EINVAL; 3961 } 3962 } 3963 3964 if (!nr_args) 3965 return 0; 3966 3967 /* Last func arg type_id could be 0 if it is a vararg */ 3968 if (!args[nr_args - 1].type) { 3969 if (args[nr_args - 1].name_off) { 3970 btf_verifier_log_type(env, t, "Invalid arg#%u", 3971 nr_args); 3972 return -EINVAL; 3973 } 3974 nr_args--; 3975 } 3976 3977 err = 0; 3978 for (i = 0; i < nr_args; i++) { 3979 const struct btf_type *arg_type; 3980 u32 arg_type_id; 3981 3982 arg_type_id = args[i].type; 3983 arg_type = btf_type_by_id(btf, arg_type_id); 3984 if (!arg_type) { 3985 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 3986 err = -EINVAL; 3987 break; 3988 } 3989 3990 if (args[i].name_off && 3991 (!btf_name_offset_valid(btf, args[i].name_off) || 3992 !btf_name_valid_identifier(btf, args[i].name_off))) { 3993 btf_verifier_log_type(env, t, 3994 "Invalid arg#%u", i + 1); 3995 err = -EINVAL; 3996 break; 3997 } 3998 3999 if (btf_type_needs_resolve(arg_type) && 4000 !env_type_is_resolved(env, arg_type_id)) { 4001 err = btf_resolve(env, arg_type, arg_type_id); 4002 if (err) 4003 break; 4004 } 4005 4006 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4007 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4008 err = -EINVAL; 4009 break; 4010 } 4011 } 4012 4013 return err; 4014 } 4015 4016 static int btf_func_check(struct btf_verifier_env *env, 4017 const struct btf_type *t) 4018 { 4019 const struct btf_type *proto_type; 4020 const struct btf_param *args; 4021 const struct btf *btf; 4022 u16 nr_args, i; 4023 4024 btf = env->btf; 4025 proto_type = btf_type_by_id(btf, t->type); 4026 4027 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4028 btf_verifier_log_type(env, t, "Invalid type_id"); 4029 return -EINVAL; 4030 } 4031 4032 args = (const struct btf_param *)(proto_type + 1); 4033 nr_args = btf_type_vlen(proto_type); 4034 for (i = 0; i < nr_args; i++) { 4035 if (!args[i].name_off && args[i].type) { 4036 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4037 return -EINVAL; 4038 } 4039 } 4040 4041 return 0; 4042 } 4043 4044 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4045 [BTF_KIND_INT] = &int_ops, 4046 [BTF_KIND_PTR] = &ptr_ops, 4047 [BTF_KIND_ARRAY] = &array_ops, 4048 [BTF_KIND_STRUCT] = &struct_ops, 4049 [BTF_KIND_UNION] = &struct_ops, 4050 [BTF_KIND_ENUM] = &enum_ops, 4051 [BTF_KIND_FWD] = &fwd_ops, 4052 [BTF_KIND_TYPEDEF] = &modifier_ops, 4053 [BTF_KIND_VOLATILE] = &modifier_ops, 4054 [BTF_KIND_CONST] = &modifier_ops, 4055 [BTF_KIND_RESTRICT] = &modifier_ops, 4056 [BTF_KIND_FUNC] = &func_ops, 4057 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4058 [BTF_KIND_VAR] = &var_ops, 4059 [BTF_KIND_DATASEC] = &datasec_ops, 4060 [BTF_KIND_FLOAT] = &float_ops, 4061 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4062 }; 4063 4064 static s32 btf_check_meta(struct btf_verifier_env *env, 4065 const struct btf_type *t, 4066 u32 meta_left) 4067 { 4068 u32 saved_meta_left = meta_left; 4069 s32 var_meta_size; 4070 4071 if (meta_left < sizeof(*t)) { 4072 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4073 env->log_type_id, meta_left, sizeof(*t)); 4074 return -EINVAL; 4075 } 4076 meta_left -= sizeof(*t); 4077 4078 if (t->info & ~BTF_INFO_MASK) { 4079 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4080 env->log_type_id, t->info); 4081 return -EINVAL; 4082 } 4083 4084 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4085 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4086 btf_verifier_log(env, "[%u] Invalid kind:%u", 4087 env->log_type_id, BTF_INFO_KIND(t->info)); 4088 return -EINVAL; 4089 } 4090 4091 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4092 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4093 env->log_type_id, t->name_off); 4094 return -EINVAL; 4095 } 4096 4097 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4098 if (var_meta_size < 0) 4099 return var_meta_size; 4100 4101 meta_left -= var_meta_size; 4102 4103 return saved_meta_left - meta_left; 4104 } 4105 4106 static int btf_check_all_metas(struct btf_verifier_env *env) 4107 { 4108 struct btf *btf = env->btf; 4109 struct btf_header *hdr; 4110 void *cur, *end; 4111 4112 hdr = &btf->hdr; 4113 cur = btf->nohdr_data + hdr->type_off; 4114 end = cur + hdr->type_len; 4115 4116 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4117 while (cur < end) { 4118 struct btf_type *t = cur; 4119 s32 meta_size; 4120 4121 meta_size = btf_check_meta(env, t, end - cur); 4122 if (meta_size < 0) 4123 return meta_size; 4124 4125 btf_add_type(env, t); 4126 cur += meta_size; 4127 env->log_type_id++; 4128 } 4129 4130 return 0; 4131 } 4132 4133 static bool btf_resolve_valid(struct btf_verifier_env *env, 4134 const struct btf_type *t, 4135 u32 type_id) 4136 { 4137 struct btf *btf = env->btf; 4138 4139 if (!env_type_is_resolved(env, type_id)) 4140 return false; 4141 4142 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4143 return !btf_resolved_type_id(btf, type_id) && 4144 !btf_resolved_type_size(btf, type_id); 4145 4146 if (btf_type_is_decl_tag(t)) 4147 return btf_resolved_type_id(btf, type_id) && 4148 !btf_resolved_type_size(btf, type_id); 4149 4150 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4151 btf_type_is_var(t)) { 4152 t = btf_type_id_resolve(btf, &type_id); 4153 return t && 4154 !btf_type_is_modifier(t) && 4155 !btf_type_is_var(t) && 4156 !btf_type_is_datasec(t); 4157 } 4158 4159 if (btf_type_is_array(t)) { 4160 const struct btf_array *array = btf_type_array(t); 4161 const struct btf_type *elem_type; 4162 u32 elem_type_id = array->type; 4163 u32 elem_size; 4164 4165 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4166 return elem_type && !btf_type_is_modifier(elem_type) && 4167 (array->nelems * elem_size == 4168 btf_resolved_type_size(btf, type_id)); 4169 } 4170 4171 return false; 4172 } 4173 4174 static int btf_resolve(struct btf_verifier_env *env, 4175 const struct btf_type *t, u32 type_id) 4176 { 4177 u32 save_log_type_id = env->log_type_id; 4178 const struct resolve_vertex *v; 4179 int err = 0; 4180 4181 env->resolve_mode = RESOLVE_TBD; 4182 env_stack_push(env, t, type_id); 4183 while (!err && (v = env_stack_peak(env))) { 4184 env->log_type_id = v->type_id; 4185 err = btf_type_ops(v->t)->resolve(env, v); 4186 } 4187 4188 env->log_type_id = type_id; 4189 if (err == -E2BIG) { 4190 btf_verifier_log_type(env, t, 4191 "Exceeded max resolving depth:%u", 4192 MAX_RESOLVE_DEPTH); 4193 } else if (err == -EEXIST) { 4194 btf_verifier_log_type(env, t, "Loop detected"); 4195 } 4196 4197 /* Final sanity check */ 4198 if (!err && !btf_resolve_valid(env, t, type_id)) { 4199 btf_verifier_log_type(env, t, "Invalid resolve state"); 4200 err = -EINVAL; 4201 } 4202 4203 env->log_type_id = save_log_type_id; 4204 return err; 4205 } 4206 4207 static int btf_check_all_types(struct btf_verifier_env *env) 4208 { 4209 struct btf *btf = env->btf; 4210 const struct btf_type *t; 4211 u32 type_id, i; 4212 int err; 4213 4214 err = env_resolve_init(env); 4215 if (err) 4216 return err; 4217 4218 env->phase++; 4219 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4220 type_id = btf->start_id + i; 4221 t = btf_type_by_id(btf, type_id); 4222 4223 env->log_type_id = type_id; 4224 if (btf_type_needs_resolve(t) && 4225 !env_type_is_resolved(env, type_id)) { 4226 err = btf_resolve(env, t, type_id); 4227 if (err) 4228 return err; 4229 } 4230 4231 if (btf_type_is_func_proto(t)) { 4232 err = btf_func_proto_check(env, t); 4233 if (err) 4234 return err; 4235 } 4236 4237 if (btf_type_is_func(t)) { 4238 err = btf_func_check(env, t); 4239 if (err) 4240 return err; 4241 } 4242 } 4243 4244 return 0; 4245 } 4246 4247 static int btf_parse_type_sec(struct btf_verifier_env *env) 4248 { 4249 const struct btf_header *hdr = &env->btf->hdr; 4250 int err; 4251 4252 /* Type section must align to 4 bytes */ 4253 if (hdr->type_off & (sizeof(u32) - 1)) { 4254 btf_verifier_log(env, "Unaligned type_off"); 4255 return -EINVAL; 4256 } 4257 4258 if (!env->btf->base_btf && !hdr->type_len) { 4259 btf_verifier_log(env, "No type found"); 4260 return -EINVAL; 4261 } 4262 4263 err = btf_check_all_metas(env); 4264 if (err) 4265 return err; 4266 4267 return btf_check_all_types(env); 4268 } 4269 4270 static int btf_parse_str_sec(struct btf_verifier_env *env) 4271 { 4272 const struct btf_header *hdr; 4273 struct btf *btf = env->btf; 4274 const char *start, *end; 4275 4276 hdr = &btf->hdr; 4277 start = btf->nohdr_data + hdr->str_off; 4278 end = start + hdr->str_len; 4279 4280 if (end != btf->data + btf->data_size) { 4281 btf_verifier_log(env, "String section is not at the end"); 4282 return -EINVAL; 4283 } 4284 4285 btf->strings = start; 4286 4287 if (btf->base_btf && !hdr->str_len) 4288 return 0; 4289 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4290 btf_verifier_log(env, "Invalid string section"); 4291 return -EINVAL; 4292 } 4293 if (!btf->base_btf && start[0]) { 4294 btf_verifier_log(env, "Invalid string section"); 4295 return -EINVAL; 4296 } 4297 4298 return 0; 4299 } 4300 4301 static const size_t btf_sec_info_offset[] = { 4302 offsetof(struct btf_header, type_off), 4303 offsetof(struct btf_header, str_off), 4304 }; 4305 4306 static int btf_sec_info_cmp(const void *a, const void *b) 4307 { 4308 const struct btf_sec_info *x = a; 4309 const struct btf_sec_info *y = b; 4310 4311 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4312 } 4313 4314 static int btf_check_sec_info(struct btf_verifier_env *env, 4315 u32 btf_data_size) 4316 { 4317 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4318 u32 total, expected_total, i; 4319 const struct btf_header *hdr; 4320 const struct btf *btf; 4321 4322 btf = env->btf; 4323 hdr = &btf->hdr; 4324 4325 /* Populate the secs from hdr */ 4326 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4327 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4328 btf_sec_info_offset[i]); 4329 4330 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4331 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4332 4333 /* Check for gaps and overlap among sections */ 4334 total = 0; 4335 expected_total = btf_data_size - hdr->hdr_len; 4336 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4337 if (expected_total < secs[i].off) { 4338 btf_verifier_log(env, "Invalid section offset"); 4339 return -EINVAL; 4340 } 4341 if (total < secs[i].off) { 4342 /* gap */ 4343 btf_verifier_log(env, "Unsupported section found"); 4344 return -EINVAL; 4345 } 4346 if (total > secs[i].off) { 4347 btf_verifier_log(env, "Section overlap found"); 4348 return -EINVAL; 4349 } 4350 if (expected_total - total < secs[i].len) { 4351 btf_verifier_log(env, 4352 "Total section length too long"); 4353 return -EINVAL; 4354 } 4355 total += secs[i].len; 4356 } 4357 4358 /* There is data other than hdr and known sections */ 4359 if (expected_total != total) { 4360 btf_verifier_log(env, "Unsupported section found"); 4361 return -EINVAL; 4362 } 4363 4364 return 0; 4365 } 4366 4367 static int btf_parse_hdr(struct btf_verifier_env *env) 4368 { 4369 u32 hdr_len, hdr_copy, btf_data_size; 4370 const struct btf_header *hdr; 4371 struct btf *btf; 4372 int err; 4373 4374 btf = env->btf; 4375 btf_data_size = btf->data_size; 4376 4377 if (btf_data_size < 4378 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4379 btf_verifier_log(env, "hdr_len not found"); 4380 return -EINVAL; 4381 } 4382 4383 hdr = btf->data; 4384 hdr_len = hdr->hdr_len; 4385 if (btf_data_size < hdr_len) { 4386 btf_verifier_log(env, "btf_header not found"); 4387 return -EINVAL; 4388 } 4389 4390 /* Ensure the unsupported header fields are zero */ 4391 if (hdr_len > sizeof(btf->hdr)) { 4392 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4393 u8 *end = btf->data + hdr_len; 4394 4395 for (; expected_zero < end; expected_zero++) { 4396 if (*expected_zero) { 4397 btf_verifier_log(env, "Unsupported btf_header"); 4398 return -E2BIG; 4399 } 4400 } 4401 } 4402 4403 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4404 memcpy(&btf->hdr, btf->data, hdr_copy); 4405 4406 hdr = &btf->hdr; 4407 4408 btf_verifier_log_hdr(env, btf_data_size); 4409 4410 if (hdr->magic != BTF_MAGIC) { 4411 btf_verifier_log(env, "Invalid magic"); 4412 return -EINVAL; 4413 } 4414 4415 if (hdr->version != BTF_VERSION) { 4416 btf_verifier_log(env, "Unsupported version"); 4417 return -ENOTSUPP; 4418 } 4419 4420 if (hdr->flags) { 4421 btf_verifier_log(env, "Unsupported flags"); 4422 return -ENOTSUPP; 4423 } 4424 4425 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4426 btf_verifier_log(env, "No data"); 4427 return -EINVAL; 4428 } 4429 4430 err = btf_check_sec_info(env, btf_data_size); 4431 if (err) 4432 return err; 4433 4434 return 0; 4435 } 4436 4437 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 4438 u32 log_level, char __user *log_ubuf, u32 log_size) 4439 { 4440 struct btf_verifier_env *env = NULL; 4441 struct bpf_verifier_log *log; 4442 struct btf *btf = NULL; 4443 u8 *data; 4444 int err; 4445 4446 if (btf_data_size > BTF_MAX_SIZE) 4447 return ERR_PTR(-E2BIG); 4448 4449 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4450 if (!env) 4451 return ERR_PTR(-ENOMEM); 4452 4453 log = &env->log; 4454 if (log_level || log_ubuf || log_size) { 4455 /* user requested verbose verifier output 4456 * and supplied buffer to store the verification trace 4457 */ 4458 log->level = log_level; 4459 log->ubuf = log_ubuf; 4460 log->len_total = log_size; 4461 4462 /* log attributes have to be sane */ 4463 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 4464 !log->level || !log->ubuf) { 4465 err = -EINVAL; 4466 goto errout; 4467 } 4468 } 4469 4470 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4471 if (!btf) { 4472 err = -ENOMEM; 4473 goto errout; 4474 } 4475 env->btf = btf; 4476 4477 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4478 if (!data) { 4479 err = -ENOMEM; 4480 goto errout; 4481 } 4482 4483 btf->data = data; 4484 btf->data_size = btf_data_size; 4485 4486 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 4487 err = -EFAULT; 4488 goto errout; 4489 } 4490 4491 err = btf_parse_hdr(env); 4492 if (err) 4493 goto errout; 4494 4495 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4496 4497 err = btf_parse_str_sec(env); 4498 if (err) 4499 goto errout; 4500 4501 err = btf_parse_type_sec(env); 4502 if (err) 4503 goto errout; 4504 4505 if (log->level && bpf_verifier_log_full(log)) { 4506 err = -ENOSPC; 4507 goto errout; 4508 } 4509 4510 btf_verifier_env_free(env); 4511 refcount_set(&btf->refcnt, 1); 4512 return btf; 4513 4514 errout: 4515 btf_verifier_env_free(env); 4516 if (btf) 4517 btf_free(btf); 4518 return ERR_PTR(err); 4519 } 4520 4521 extern char __weak __start_BTF[]; 4522 extern char __weak __stop_BTF[]; 4523 extern struct btf *btf_vmlinux; 4524 4525 #define BPF_MAP_TYPE(_id, _ops) 4526 #define BPF_LINK_TYPE(_id, _name) 4527 static union { 4528 struct bpf_ctx_convert { 4529 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4530 prog_ctx_type _id##_prog; \ 4531 kern_ctx_type _id##_kern; 4532 #include <linux/bpf_types.h> 4533 #undef BPF_PROG_TYPE 4534 } *__t; 4535 /* 't' is written once under lock. Read many times. */ 4536 const struct btf_type *t; 4537 } bpf_ctx_convert; 4538 enum { 4539 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4540 __ctx_convert##_id, 4541 #include <linux/bpf_types.h> 4542 #undef BPF_PROG_TYPE 4543 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4544 }; 4545 static u8 bpf_ctx_convert_map[] = { 4546 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4547 [_id] = __ctx_convert##_id, 4548 #include <linux/bpf_types.h> 4549 #undef BPF_PROG_TYPE 4550 0, /* avoid empty array */ 4551 }; 4552 #undef BPF_MAP_TYPE 4553 #undef BPF_LINK_TYPE 4554 4555 static const struct btf_member * 4556 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 4557 const struct btf_type *t, enum bpf_prog_type prog_type, 4558 int arg) 4559 { 4560 const struct btf_type *conv_struct; 4561 const struct btf_type *ctx_struct; 4562 const struct btf_member *ctx_type; 4563 const char *tname, *ctx_tname; 4564 4565 conv_struct = bpf_ctx_convert.t; 4566 if (!conv_struct) { 4567 bpf_log(log, "btf_vmlinux is malformed\n"); 4568 return NULL; 4569 } 4570 t = btf_type_by_id(btf, t->type); 4571 while (btf_type_is_modifier(t)) 4572 t = btf_type_by_id(btf, t->type); 4573 if (!btf_type_is_struct(t)) { 4574 /* Only pointer to struct is supported for now. 4575 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4576 * is not supported yet. 4577 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4578 */ 4579 return NULL; 4580 } 4581 tname = btf_name_by_offset(btf, t->name_off); 4582 if (!tname) { 4583 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4584 return NULL; 4585 } 4586 /* prog_type is valid bpf program type. No need for bounds check. */ 4587 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4588 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4589 * Like 'struct __sk_buff' 4590 */ 4591 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4592 if (!ctx_struct) 4593 /* should not happen */ 4594 return NULL; 4595 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4596 if (!ctx_tname) { 4597 /* should not happen */ 4598 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4599 return NULL; 4600 } 4601 /* only compare that prog's ctx type name is the same as 4602 * kernel expects. No need to compare field by field. 4603 * It's ok for bpf prog to do: 4604 * struct __sk_buff {}; 4605 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4606 * { // no fields of skb are ever used } 4607 */ 4608 if (strcmp(ctx_tname, tname)) 4609 return NULL; 4610 return ctx_type; 4611 } 4612 4613 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4614 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4615 #define BPF_LINK_TYPE(_id, _name) 4616 #define BPF_MAP_TYPE(_id, _ops) \ 4617 [_id] = &_ops, 4618 #include <linux/bpf_types.h> 4619 #undef BPF_PROG_TYPE 4620 #undef BPF_LINK_TYPE 4621 #undef BPF_MAP_TYPE 4622 }; 4623 4624 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4625 struct bpf_verifier_log *log) 4626 { 4627 const struct bpf_map_ops *ops; 4628 int i, btf_id; 4629 4630 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4631 ops = btf_vmlinux_map_ops[i]; 4632 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4633 continue; 4634 if (!ops->map_btf_name || !ops->map_btf_id) { 4635 bpf_log(log, "map type %d is misconfigured\n", i); 4636 return -EINVAL; 4637 } 4638 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4639 BTF_KIND_STRUCT); 4640 if (btf_id < 0) 4641 return btf_id; 4642 *ops->map_btf_id = btf_id; 4643 } 4644 4645 return 0; 4646 } 4647 4648 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4649 struct btf *btf, 4650 const struct btf_type *t, 4651 enum bpf_prog_type prog_type, 4652 int arg) 4653 { 4654 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4655 4656 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4657 if (!prog_ctx_type) 4658 return -ENOENT; 4659 kern_ctx_type = prog_ctx_type + 1; 4660 return kern_ctx_type->type; 4661 } 4662 4663 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4664 BTF_ID(struct, bpf_ctx_convert) 4665 4666 struct btf *btf_parse_vmlinux(void) 4667 { 4668 struct btf_verifier_env *env = NULL; 4669 struct bpf_verifier_log *log; 4670 struct btf *btf = NULL; 4671 int err; 4672 4673 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4674 if (!env) 4675 return ERR_PTR(-ENOMEM); 4676 4677 log = &env->log; 4678 log->level = BPF_LOG_KERNEL; 4679 4680 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4681 if (!btf) { 4682 err = -ENOMEM; 4683 goto errout; 4684 } 4685 env->btf = btf; 4686 4687 btf->data = __start_BTF; 4688 btf->data_size = __stop_BTF - __start_BTF; 4689 btf->kernel_btf = true; 4690 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 4691 4692 err = btf_parse_hdr(env); 4693 if (err) 4694 goto errout; 4695 4696 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4697 4698 err = btf_parse_str_sec(env); 4699 if (err) 4700 goto errout; 4701 4702 err = btf_check_all_metas(env); 4703 if (err) 4704 goto errout; 4705 4706 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4707 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4708 4709 /* find bpf map structs for map_ptr access checking */ 4710 err = btf_vmlinux_map_ids_init(btf, log); 4711 if (err < 0) 4712 goto errout; 4713 4714 bpf_struct_ops_init(btf, log); 4715 4716 refcount_set(&btf->refcnt, 1); 4717 4718 err = btf_alloc_id(btf); 4719 if (err) 4720 goto errout; 4721 4722 btf_verifier_env_free(env); 4723 return btf; 4724 4725 errout: 4726 btf_verifier_env_free(env); 4727 if (btf) { 4728 kvfree(btf->types); 4729 kfree(btf); 4730 } 4731 return ERR_PTR(err); 4732 } 4733 4734 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 4735 4736 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 4737 { 4738 struct btf_verifier_env *env = NULL; 4739 struct bpf_verifier_log *log; 4740 struct btf *btf = NULL, *base_btf; 4741 int err; 4742 4743 base_btf = bpf_get_btf_vmlinux(); 4744 if (IS_ERR(base_btf)) 4745 return base_btf; 4746 if (!base_btf) 4747 return ERR_PTR(-EINVAL); 4748 4749 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4750 if (!env) 4751 return ERR_PTR(-ENOMEM); 4752 4753 log = &env->log; 4754 log->level = BPF_LOG_KERNEL; 4755 4756 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4757 if (!btf) { 4758 err = -ENOMEM; 4759 goto errout; 4760 } 4761 env->btf = btf; 4762 4763 btf->base_btf = base_btf; 4764 btf->start_id = base_btf->nr_types; 4765 btf->start_str_off = base_btf->hdr.str_len; 4766 btf->kernel_btf = true; 4767 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 4768 4769 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 4770 if (!btf->data) { 4771 err = -ENOMEM; 4772 goto errout; 4773 } 4774 memcpy(btf->data, data, data_size); 4775 btf->data_size = data_size; 4776 4777 err = btf_parse_hdr(env); 4778 if (err) 4779 goto errout; 4780 4781 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4782 4783 err = btf_parse_str_sec(env); 4784 if (err) 4785 goto errout; 4786 4787 err = btf_check_all_metas(env); 4788 if (err) 4789 goto errout; 4790 4791 btf_verifier_env_free(env); 4792 refcount_set(&btf->refcnt, 1); 4793 return btf; 4794 4795 errout: 4796 btf_verifier_env_free(env); 4797 if (btf) { 4798 kvfree(btf->data); 4799 kvfree(btf->types); 4800 kfree(btf); 4801 } 4802 return ERR_PTR(err); 4803 } 4804 4805 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 4806 4807 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4808 { 4809 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4810 4811 if (tgt_prog) 4812 return tgt_prog->aux->btf; 4813 else 4814 return prog->aux->attach_btf; 4815 } 4816 4817 static bool is_string_ptr(struct btf *btf, const struct btf_type *t) 4818 { 4819 /* t comes in already as a pointer */ 4820 t = btf_type_by_id(btf, t->type); 4821 4822 /* allow const */ 4823 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4824 t = btf_type_by_id(btf, t->type); 4825 4826 /* char, signed char, unsigned char */ 4827 return btf_type_is_int(t) && t->size == 1; 4828 } 4829 4830 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4831 const struct bpf_prog *prog, 4832 struct bpf_insn_access_aux *info) 4833 { 4834 const struct btf_type *t = prog->aux->attach_func_proto; 4835 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4836 struct btf *btf = bpf_prog_get_target_btf(prog); 4837 const char *tname = prog->aux->attach_func_name; 4838 struct bpf_verifier_log *log = info->log; 4839 const struct btf_param *args; 4840 u32 nr_args, arg; 4841 int i, ret; 4842 4843 if (off % 8) { 4844 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4845 tname, off); 4846 return false; 4847 } 4848 arg = off / 8; 4849 args = (const struct btf_param *)(t + 1); 4850 /* if (t == NULL) Fall back to default BPF prog with 4851 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 4852 */ 4853 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 4854 if (prog->aux->attach_btf_trace) { 4855 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4856 args++; 4857 nr_args--; 4858 } 4859 4860 if (arg > nr_args) { 4861 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4862 tname, arg + 1); 4863 return false; 4864 } 4865 4866 if (arg == nr_args) { 4867 switch (prog->expected_attach_type) { 4868 case BPF_LSM_MAC: 4869 case BPF_TRACE_FEXIT: 4870 /* When LSM programs are attached to void LSM hooks 4871 * they use FEXIT trampolines and when attached to 4872 * int LSM hooks, they use MODIFY_RETURN trampolines. 4873 * 4874 * While the LSM programs are BPF_MODIFY_RETURN-like 4875 * the check: 4876 * 4877 * if (ret_type != 'int') 4878 * return -EINVAL; 4879 * 4880 * is _not_ done here. This is still safe as LSM hooks 4881 * have only void and int return types. 4882 */ 4883 if (!t) 4884 return true; 4885 t = btf_type_by_id(btf, t->type); 4886 break; 4887 case BPF_MODIFY_RETURN: 4888 /* For now the BPF_MODIFY_RETURN can only be attached to 4889 * functions that return an int. 4890 */ 4891 if (!t) 4892 return false; 4893 4894 t = btf_type_skip_modifiers(btf, t->type, NULL); 4895 if (!btf_type_is_small_int(t)) { 4896 bpf_log(log, 4897 "ret type %s not allowed for fmod_ret\n", 4898 btf_kind_str[BTF_INFO_KIND(t->info)]); 4899 return false; 4900 } 4901 break; 4902 default: 4903 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4904 tname, arg + 1); 4905 return false; 4906 } 4907 } else { 4908 if (!t) 4909 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 4910 return true; 4911 t = btf_type_by_id(btf, args[arg].type); 4912 } 4913 4914 /* skip modifiers */ 4915 while (btf_type_is_modifier(t)) 4916 t = btf_type_by_id(btf, t->type); 4917 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4918 /* accessing a scalar */ 4919 return true; 4920 if (!btf_type_is_ptr(t)) { 4921 bpf_log(log, 4922 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4923 tname, arg, 4924 __btf_name_by_offset(btf, t->name_off), 4925 btf_kind_str[BTF_INFO_KIND(t->info)]); 4926 return false; 4927 } 4928 4929 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4930 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4931 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4932 4933 if (ctx_arg_info->offset == off && 4934 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL || 4935 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) { 4936 info->reg_type = ctx_arg_info->reg_type; 4937 return true; 4938 } 4939 } 4940 4941 if (t->type == 0) 4942 /* This is a pointer to void. 4943 * It is the same as scalar from the verifier safety pov. 4944 * No further pointer walking is allowed. 4945 */ 4946 return true; 4947 4948 if (is_string_ptr(btf, t)) 4949 return true; 4950 4951 /* this is a pointer to another type */ 4952 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4953 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4954 4955 if (ctx_arg_info->offset == off) { 4956 if (!ctx_arg_info->btf_id) { 4957 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 4958 return false; 4959 } 4960 4961 info->reg_type = ctx_arg_info->reg_type; 4962 info->btf = btf_vmlinux; 4963 info->btf_id = ctx_arg_info->btf_id; 4964 return true; 4965 } 4966 } 4967 4968 info->reg_type = PTR_TO_BTF_ID; 4969 if (tgt_prog) { 4970 enum bpf_prog_type tgt_type; 4971 4972 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 4973 tgt_type = tgt_prog->aux->saved_dst_prog_type; 4974 else 4975 tgt_type = tgt_prog->type; 4976 4977 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 4978 if (ret > 0) { 4979 info->btf = btf_vmlinux; 4980 info->btf_id = ret; 4981 return true; 4982 } else { 4983 return false; 4984 } 4985 } 4986 4987 info->btf = btf; 4988 info->btf_id = t->type; 4989 t = btf_type_by_id(btf, t->type); 4990 /* skip modifiers */ 4991 while (btf_type_is_modifier(t)) { 4992 info->btf_id = t->type; 4993 t = btf_type_by_id(btf, t->type); 4994 } 4995 if (!btf_type_is_struct(t)) { 4996 bpf_log(log, 4997 "func '%s' arg%d type %s is not a struct\n", 4998 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 4999 return false; 5000 } 5001 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 5002 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 5003 __btf_name_by_offset(btf, t->name_off)); 5004 return true; 5005 } 5006 5007 enum bpf_struct_walk_result { 5008 /* < 0 error */ 5009 WALK_SCALAR = 0, 5010 WALK_PTR, 5011 WALK_STRUCT, 5012 }; 5013 5014 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 5015 const struct btf_type *t, int off, int size, 5016 u32 *next_btf_id) 5017 { 5018 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 5019 const struct btf_type *mtype, *elem_type = NULL; 5020 const struct btf_member *member; 5021 const char *tname, *mname; 5022 u32 vlen, elem_id, mid; 5023 5024 again: 5025 tname = __btf_name_by_offset(btf, t->name_off); 5026 if (!btf_type_is_struct(t)) { 5027 bpf_log(log, "Type '%s' is not a struct\n", tname); 5028 return -EINVAL; 5029 } 5030 5031 vlen = btf_type_vlen(t); 5032 if (off + size > t->size) { 5033 /* If the last element is a variable size array, we may 5034 * need to relax the rule. 5035 */ 5036 struct btf_array *array_elem; 5037 5038 if (vlen == 0) 5039 goto error; 5040 5041 member = btf_type_member(t) + vlen - 1; 5042 mtype = btf_type_skip_modifiers(btf, member->type, 5043 NULL); 5044 if (!btf_type_is_array(mtype)) 5045 goto error; 5046 5047 array_elem = (struct btf_array *)(mtype + 1); 5048 if (array_elem->nelems != 0) 5049 goto error; 5050 5051 moff = btf_member_bit_offset(t, member) / 8; 5052 if (off < moff) 5053 goto error; 5054 5055 /* Only allow structure for now, can be relaxed for 5056 * other types later. 5057 */ 5058 t = btf_type_skip_modifiers(btf, array_elem->type, 5059 NULL); 5060 if (!btf_type_is_struct(t)) 5061 goto error; 5062 5063 off = (off - moff) % t->size; 5064 goto again; 5065 5066 error: 5067 bpf_log(log, "access beyond struct %s at off %u size %u\n", 5068 tname, off, size); 5069 return -EACCES; 5070 } 5071 5072 for_each_member(i, t, member) { 5073 /* offset of the field in bytes */ 5074 moff = btf_member_bit_offset(t, member) / 8; 5075 if (off + size <= moff) 5076 /* won't find anything, field is already too far */ 5077 break; 5078 5079 if (btf_member_bitfield_size(t, member)) { 5080 u32 end_bit = btf_member_bit_offset(t, member) + 5081 btf_member_bitfield_size(t, member); 5082 5083 /* off <= moff instead of off == moff because clang 5084 * does not generate a BTF member for anonymous 5085 * bitfield like the ":16" here: 5086 * struct { 5087 * int :16; 5088 * int x:8; 5089 * }; 5090 */ 5091 if (off <= moff && 5092 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 5093 return WALK_SCALAR; 5094 5095 /* off may be accessing a following member 5096 * 5097 * or 5098 * 5099 * Doing partial access at either end of this 5100 * bitfield. Continue on this case also to 5101 * treat it as not accessing this bitfield 5102 * and eventually error out as field not 5103 * found to keep it simple. 5104 * It could be relaxed if there was a legit 5105 * partial access case later. 5106 */ 5107 continue; 5108 } 5109 5110 /* In case of "off" is pointing to holes of a struct */ 5111 if (off < moff) 5112 break; 5113 5114 /* type of the field */ 5115 mid = member->type; 5116 mtype = btf_type_by_id(btf, member->type); 5117 mname = __btf_name_by_offset(btf, member->name_off); 5118 5119 mtype = __btf_resolve_size(btf, mtype, &msize, 5120 &elem_type, &elem_id, &total_nelems, 5121 &mid); 5122 if (IS_ERR(mtype)) { 5123 bpf_log(log, "field %s doesn't have size\n", mname); 5124 return -EFAULT; 5125 } 5126 5127 mtrue_end = moff + msize; 5128 if (off >= mtrue_end) 5129 /* no overlap with member, keep iterating */ 5130 continue; 5131 5132 if (btf_type_is_array(mtype)) { 5133 u32 elem_idx; 5134 5135 /* __btf_resolve_size() above helps to 5136 * linearize a multi-dimensional array. 5137 * 5138 * The logic here is treating an array 5139 * in a struct as the following way: 5140 * 5141 * struct outer { 5142 * struct inner array[2][2]; 5143 * }; 5144 * 5145 * looks like: 5146 * 5147 * struct outer { 5148 * struct inner array_elem0; 5149 * struct inner array_elem1; 5150 * struct inner array_elem2; 5151 * struct inner array_elem3; 5152 * }; 5153 * 5154 * When accessing outer->array[1][0], it moves 5155 * moff to "array_elem2", set mtype to 5156 * "struct inner", and msize also becomes 5157 * sizeof(struct inner). Then most of the 5158 * remaining logic will fall through without 5159 * caring the current member is an array or 5160 * not. 5161 * 5162 * Unlike mtype/msize/moff, mtrue_end does not 5163 * change. The naming difference ("_true") tells 5164 * that it is not always corresponding to 5165 * the current mtype/msize/moff. 5166 * It is the true end of the current 5167 * member (i.e. array in this case). That 5168 * will allow an int array to be accessed like 5169 * a scratch space, 5170 * i.e. allow access beyond the size of 5171 * the array's element as long as it is 5172 * within the mtrue_end boundary. 5173 */ 5174 5175 /* skip empty array */ 5176 if (moff == mtrue_end) 5177 continue; 5178 5179 msize /= total_nelems; 5180 elem_idx = (off - moff) / msize; 5181 moff += elem_idx * msize; 5182 mtype = elem_type; 5183 mid = elem_id; 5184 } 5185 5186 /* the 'off' we're looking for is either equal to start 5187 * of this field or inside of this struct 5188 */ 5189 if (btf_type_is_struct(mtype)) { 5190 /* our field must be inside that union or struct */ 5191 t = mtype; 5192 5193 /* return if the offset matches the member offset */ 5194 if (off == moff) { 5195 *next_btf_id = mid; 5196 return WALK_STRUCT; 5197 } 5198 5199 /* adjust offset we're looking for */ 5200 off -= moff; 5201 goto again; 5202 } 5203 5204 if (btf_type_is_ptr(mtype)) { 5205 const struct btf_type *stype; 5206 u32 id; 5207 5208 if (msize != size || off != moff) { 5209 bpf_log(log, 5210 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5211 mname, moff, tname, off, size); 5212 return -EACCES; 5213 } 5214 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5215 if (btf_type_is_struct(stype)) { 5216 *next_btf_id = id; 5217 return WALK_PTR; 5218 } 5219 } 5220 5221 /* Allow more flexible access within an int as long as 5222 * it is within mtrue_end. 5223 * Since mtrue_end could be the end of an array, 5224 * that also allows using an array of int as a scratch 5225 * space. e.g. skb->cb[]. 5226 */ 5227 if (off + size > mtrue_end) { 5228 bpf_log(log, 5229 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5230 mname, mtrue_end, tname, off, size); 5231 return -EACCES; 5232 } 5233 5234 return WALK_SCALAR; 5235 } 5236 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5237 return -EINVAL; 5238 } 5239 5240 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5241 const struct btf_type *t, int off, int size, 5242 enum bpf_access_type atype __maybe_unused, 5243 u32 *next_btf_id) 5244 { 5245 int err; 5246 u32 id; 5247 5248 do { 5249 err = btf_struct_walk(log, btf, t, off, size, &id); 5250 5251 switch (err) { 5252 case WALK_PTR: 5253 /* If we found the pointer or scalar on t+off, 5254 * we're done. 5255 */ 5256 *next_btf_id = id; 5257 return PTR_TO_BTF_ID; 5258 case WALK_SCALAR: 5259 return SCALAR_VALUE; 5260 case WALK_STRUCT: 5261 /* We found nested struct, so continue the search 5262 * by diving in it. At this point the offset is 5263 * aligned with the new type, so set it to 0. 5264 */ 5265 t = btf_type_by_id(btf, id); 5266 off = 0; 5267 break; 5268 default: 5269 /* It's either error or unknown return value.. 5270 * scream and leave. 5271 */ 5272 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5273 return -EINVAL; 5274 return err; 5275 } 5276 } while (t); 5277 5278 return -EINVAL; 5279 } 5280 5281 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5282 * the same. Trivial ID check is not enough due to module BTFs, because we can 5283 * end up with two different module BTFs, but IDs point to the common type in 5284 * vmlinux BTF. 5285 */ 5286 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5287 const struct btf *btf2, u32 id2) 5288 { 5289 if (id1 != id2) 5290 return false; 5291 if (btf1 == btf2) 5292 return true; 5293 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5294 } 5295 5296 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5297 const struct btf *btf, u32 id, int off, 5298 const struct btf *need_btf, u32 need_type_id) 5299 { 5300 const struct btf_type *type; 5301 int err; 5302 5303 /* Are we already done? */ 5304 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5305 return true; 5306 5307 again: 5308 type = btf_type_by_id(btf, id); 5309 if (!type) 5310 return false; 5311 err = btf_struct_walk(log, btf, type, off, 1, &id); 5312 if (err != WALK_STRUCT) 5313 return false; 5314 5315 /* We found nested struct object. If it matches 5316 * the requested ID, we're done. Otherwise let's 5317 * continue the search with offset 0 in the new 5318 * type. 5319 */ 5320 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5321 off = 0; 5322 goto again; 5323 } 5324 5325 return true; 5326 } 5327 5328 static int __get_type_size(struct btf *btf, u32 btf_id, 5329 const struct btf_type **bad_type) 5330 { 5331 const struct btf_type *t; 5332 5333 if (!btf_id) 5334 /* void */ 5335 return 0; 5336 t = btf_type_by_id(btf, btf_id); 5337 while (t && btf_type_is_modifier(t)) 5338 t = btf_type_by_id(btf, t->type); 5339 if (!t) { 5340 *bad_type = btf_type_by_id(btf, 0); 5341 return -EINVAL; 5342 } 5343 if (btf_type_is_ptr(t)) 5344 /* kernel size of pointer. Not BPF's size of pointer*/ 5345 return sizeof(void *); 5346 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5347 return t->size; 5348 *bad_type = t; 5349 return -EINVAL; 5350 } 5351 5352 int btf_distill_func_proto(struct bpf_verifier_log *log, 5353 struct btf *btf, 5354 const struct btf_type *func, 5355 const char *tname, 5356 struct btf_func_model *m) 5357 { 5358 const struct btf_param *args; 5359 const struct btf_type *t; 5360 u32 i, nargs; 5361 int ret; 5362 5363 if (!func) { 5364 /* BTF function prototype doesn't match the verifier types. 5365 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5366 */ 5367 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 5368 m->arg_size[i] = 8; 5369 m->ret_size = 8; 5370 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5371 return 0; 5372 } 5373 args = (const struct btf_param *)(func + 1); 5374 nargs = btf_type_vlen(func); 5375 if (nargs >= MAX_BPF_FUNC_ARGS) { 5376 bpf_log(log, 5377 "The function %s has %d arguments. Too many.\n", 5378 tname, nargs); 5379 return -EINVAL; 5380 } 5381 ret = __get_type_size(btf, func->type, &t); 5382 if (ret < 0) { 5383 bpf_log(log, 5384 "The function %s return type %s is unsupported.\n", 5385 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5386 return -EINVAL; 5387 } 5388 m->ret_size = ret; 5389 5390 for (i = 0; i < nargs; i++) { 5391 if (i == nargs - 1 && args[i].type == 0) { 5392 bpf_log(log, 5393 "The function %s with variable args is unsupported.\n", 5394 tname); 5395 return -EINVAL; 5396 } 5397 ret = __get_type_size(btf, args[i].type, &t); 5398 if (ret < 0) { 5399 bpf_log(log, 5400 "The function %s arg%d type %s is unsupported.\n", 5401 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5402 return -EINVAL; 5403 } 5404 if (ret == 0) { 5405 bpf_log(log, 5406 "The function %s has malformed void argument.\n", 5407 tname); 5408 return -EINVAL; 5409 } 5410 m->arg_size[i] = ret; 5411 } 5412 m->nr_args = nargs; 5413 return 0; 5414 } 5415 5416 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5417 * t1 points to BTF_KIND_FUNC in btf1 5418 * t2 points to BTF_KIND_FUNC in btf2 5419 * Returns: 5420 * EINVAL - function prototype mismatch 5421 * EFAULT - verifier bug 5422 * 0 - 99% match. The last 1% is validated by the verifier. 5423 */ 5424 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5425 struct btf *btf1, const struct btf_type *t1, 5426 struct btf *btf2, const struct btf_type *t2) 5427 { 5428 const struct btf_param *args1, *args2; 5429 const char *fn1, *fn2, *s1, *s2; 5430 u32 nargs1, nargs2, i; 5431 5432 fn1 = btf_name_by_offset(btf1, t1->name_off); 5433 fn2 = btf_name_by_offset(btf2, t2->name_off); 5434 5435 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5436 bpf_log(log, "%s() is not a global function\n", fn1); 5437 return -EINVAL; 5438 } 5439 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5440 bpf_log(log, "%s() is not a global function\n", fn2); 5441 return -EINVAL; 5442 } 5443 5444 t1 = btf_type_by_id(btf1, t1->type); 5445 if (!t1 || !btf_type_is_func_proto(t1)) 5446 return -EFAULT; 5447 t2 = btf_type_by_id(btf2, t2->type); 5448 if (!t2 || !btf_type_is_func_proto(t2)) 5449 return -EFAULT; 5450 5451 args1 = (const struct btf_param *)(t1 + 1); 5452 nargs1 = btf_type_vlen(t1); 5453 args2 = (const struct btf_param *)(t2 + 1); 5454 nargs2 = btf_type_vlen(t2); 5455 5456 if (nargs1 != nargs2) { 5457 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5458 fn1, nargs1, fn2, nargs2); 5459 return -EINVAL; 5460 } 5461 5462 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5463 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5464 if (t1->info != t2->info) { 5465 bpf_log(log, 5466 "Return type %s of %s() doesn't match type %s of %s()\n", 5467 btf_type_str(t1), fn1, 5468 btf_type_str(t2), fn2); 5469 return -EINVAL; 5470 } 5471 5472 for (i = 0; i < nargs1; i++) { 5473 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5474 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5475 5476 if (t1->info != t2->info) { 5477 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5478 i, fn1, btf_type_str(t1), 5479 fn2, btf_type_str(t2)); 5480 return -EINVAL; 5481 } 5482 if (btf_type_has_size(t1) && t1->size != t2->size) { 5483 bpf_log(log, 5484 "arg%d in %s() has size %d while %s() has %d\n", 5485 i, fn1, t1->size, 5486 fn2, t2->size); 5487 return -EINVAL; 5488 } 5489 5490 /* global functions are validated with scalars and pointers 5491 * to context only. And only global functions can be replaced. 5492 * Hence type check only those types. 5493 */ 5494 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5495 continue; 5496 if (!btf_type_is_ptr(t1)) { 5497 bpf_log(log, 5498 "arg%d in %s() has unrecognized type\n", 5499 i, fn1); 5500 return -EINVAL; 5501 } 5502 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5503 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5504 if (!btf_type_is_struct(t1)) { 5505 bpf_log(log, 5506 "arg%d in %s() is not a pointer to context\n", 5507 i, fn1); 5508 return -EINVAL; 5509 } 5510 if (!btf_type_is_struct(t2)) { 5511 bpf_log(log, 5512 "arg%d in %s() is not a pointer to context\n", 5513 i, fn2); 5514 return -EINVAL; 5515 } 5516 /* This is an optional check to make program writing easier. 5517 * Compare names of structs and report an error to the user. 5518 * btf_prepare_func_args() already checked that t2 struct 5519 * is a context type. btf_prepare_func_args() will check 5520 * later that t1 struct is a context type as well. 5521 */ 5522 s1 = btf_name_by_offset(btf1, t1->name_off); 5523 s2 = btf_name_by_offset(btf2, t2->name_off); 5524 if (strcmp(s1, s2)) { 5525 bpf_log(log, 5526 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5527 i, fn1, s1, fn2, s2); 5528 return -EINVAL; 5529 } 5530 } 5531 return 0; 5532 } 5533 5534 /* Compare BTFs of given program with BTF of target program */ 5535 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5536 struct btf *btf2, const struct btf_type *t2) 5537 { 5538 struct btf *btf1 = prog->aux->btf; 5539 const struct btf_type *t1; 5540 u32 btf_id = 0; 5541 5542 if (!prog->aux->func_info) { 5543 bpf_log(log, "Program extension requires BTF\n"); 5544 return -EINVAL; 5545 } 5546 5547 btf_id = prog->aux->func_info[0].type_id; 5548 if (!btf_id) 5549 return -EFAULT; 5550 5551 t1 = btf_type_by_id(btf1, btf_id); 5552 if (!t1 || !btf_type_is_func(t1)) 5553 return -EFAULT; 5554 5555 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5556 } 5557 5558 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5559 #ifdef CONFIG_NET 5560 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5561 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5562 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5563 #endif 5564 }; 5565 5566 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 5567 const struct btf *btf, u32 func_id, 5568 struct bpf_reg_state *regs, 5569 bool ptr_to_mem_ok) 5570 { 5571 struct bpf_verifier_log *log = &env->log; 5572 const char *func_name, *ref_tname; 5573 const struct btf_type *t, *ref_t; 5574 const struct btf_param *args; 5575 u32 i, nargs, ref_id; 5576 5577 t = btf_type_by_id(btf, func_id); 5578 if (!t || !btf_type_is_func(t)) { 5579 /* These checks were already done by the verifier while loading 5580 * struct bpf_func_info or in add_kfunc_call(). 5581 */ 5582 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 5583 func_id); 5584 return -EFAULT; 5585 } 5586 func_name = btf_name_by_offset(btf, t->name_off); 5587 5588 t = btf_type_by_id(btf, t->type); 5589 if (!t || !btf_type_is_func_proto(t)) { 5590 bpf_log(log, "Invalid BTF of func %s\n", func_name); 5591 return -EFAULT; 5592 } 5593 args = (const struct btf_param *)(t + 1); 5594 nargs = btf_type_vlen(t); 5595 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5596 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 5597 MAX_BPF_FUNC_REG_ARGS); 5598 return -EINVAL; 5599 } 5600 5601 /* check that BTF function arguments match actual types that the 5602 * verifier sees. 5603 */ 5604 for (i = 0; i < nargs; i++) { 5605 u32 regno = i + 1; 5606 struct bpf_reg_state *reg = ®s[regno]; 5607 5608 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5609 if (btf_type_is_scalar(t)) { 5610 if (reg->type == SCALAR_VALUE) 5611 continue; 5612 bpf_log(log, "R%d is not a scalar\n", regno); 5613 return -EINVAL; 5614 } 5615 5616 if (!btf_type_is_ptr(t)) { 5617 bpf_log(log, "Unrecognized arg#%d type %s\n", 5618 i, btf_type_str(t)); 5619 return -EINVAL; 5620 } 5621 5622 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 5623 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 5624 if (btf_is_kernel(btf)) { 5625 const struct btf_type *reg_ref_t; 5626 const struct btf *reg_btf; 5627 const char *reg_ref_tname; 5628 u32 reg_ref_id; 5629 5630 if (!btf_type_is_struct(ref_t)) { 5631 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 5632 func_name, i, btf_type_str(ref_t), 5633 ref_tname); 5634 return -EINVAL; 5635 } 5636 5637 if (reg->type == PTR_TO_BTF_ID) { 5638 reg_btf = reg->btf; 5639 reg_ref_id = reg->btf_id; 5640 } else if (reg2btf_ids[reg->type]) { 5641 reg_btf = btf_vmlinux; 5642 reg_ref_id = *reg2btf_ids[reg->type]; 5643 } else { 5644 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d is not a pointer to btf_id\n", 5645 func_name, i, 5646 btf_type_str(ref_t), ref_tname, regno); 5647 return -EINVAL; 5648 } 5649 5650 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, 5651 ®_ref_id); 5652 reg_ref_tname = btf_name_by_offset(reg_btf, 5653 reg_ref_t->name_off); 5654 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, 5655 reg->off, btf, ref_id)) { 5656 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 5657 func_name, i, 5658 btf_type_str(ref_t), ref_tname, 5659 regno, btf_type_str(reg_ref_t), 5660 reg_ref_tname); 5661 return -EINVAL; 5662 } 5663 } else if (btf_get_prog_ctx_type(log, btf, t, 5664 env->prog->type, i)) { 5665 /* If function expects ctx type in BTF check that caller 5666 * is passing PTR_TO_CTX. 5667 */ 5668 if (reg->type != PTR_TO_CTX) { 5669 bpf_log(log, 5670 "arg#%d expected pointer to ctx, but got %s\n", 5671 i, btf_type_str(t)); 5672 return -EINVAL; 5673 } 5674 if (check_ctx_reg(env, reg, regno)) 5675 return -EINVAL; 5676 } else if (ptr_to_mem_ok) { 5677 const struct btf_type *resolve_ret; 5678 u32 type_size; 5679 5680 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 5681 if (IS_ERR(resolve_ret)) { 5682 bpf_log(log, 5683 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5684 i, btf_type_str(ref_t), ref_tname, 5685 PTR_ERR(resolve_ret)); 5686 return -EINVAL; 5687 } 5688 5689 if (check_mem_reg(env, reg, regno, type_size)) 5690 return -EINVAL; 5691 } else { 5692 return -EINVAL; 5693 } 5694 } 5695 5696 return 0; 5697 } 5698 5699 /* Compare BTF of a function with given bpf_reg_state. 5700 * Returns: 5701 * EFAULT - there is a verifier bug. Abort verification. 5702 * EINVAL - there is a type mismatch or BTF is not available. 5703 * 0 - BTF matches with what bpf_reg_state expects. 5704 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5705 */ 5706 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 5707 struct bpf_reg_state *regs) 5708 { 5709 struct bpf_prog *prog = env->prog; 5710 struct btf *btf = prog->aux->btf; 5711 bool is_global; 5712 u32 btf_id; 5713 int err; 5714 5715 if (!prog->aux->func_info) 5716 return -EINVAL; 5717 5718 btf_id = prog->aux->func_info[subprog].type_id; 5719 if (!btf_id) 5720 return -EFAULT; 5721 5722 if (prog->aux->func_info_aux[subprog].unreliable) 5723 return -EINVAL; 5724 5725 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5726 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global); 5727 5728 /* Compiler optimizations can remove arguments from static functions 5729 * or mismatched type can be passed into a global function. 5730 * In such cases mark the function as unreliable from BTF point of view. 5731 */ 5732 if (err) 5733 prog->aux->func_info_aux[subprog].unreliable = true; 5734 return err; 5735 } 5736 5737 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 5738 const struct btf *btf, u32 func_id, 5739 struct bpf_reg_state *regs) 5740 { 5741 return btf_check_func_arg_match(env, btf, func_id, regs, false); 5742 } 5743 5744 /* Convert BTF of a function into bpf_reg_state if possible 5745 * Returns: 5746 * EFAULT - there is a verifier bug. Abort verification. 5747 * EINVAL - cannot convert BTF. 5748 * 0 - Successfully converted BTF into bpf_reg_state 5749 * (either PTR_TO_CTX or SCALAR_VALUE). 5750 */ 5751 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5752 struct bpf_reg_state *regs) 5753 { 5754 struct bpf_verifier_log *log = &env->log; 5755 struct bpf_prog *prog = env->prog; 5756 enum bpf_prog_type prog_type = prog->type; 5757 struct btf *btf = prog->aux->btf; 5758 const struct btf_param *args; 5759 const struct btf_type *t, *ref_t; 5760 u32 i, nargs, btf_id; 5761 const char *tname; 5762 5763 if (!prog->aux->func_info || 5764 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5765 bpf_log(log, "Verifier bug\n"); 5766 return -EFAULT; 5767 } 5768 5769 btf_id = prog->aux->func_info[subprog].type_id; 5770 if (!btf_id) { 5771 bpf_log(log, "Global functions need valid BTF\n"); 5772 return -EFAULT; 5773 } 5774 5775 t = btf_type_by_id(btf, btf_id); 5776 if (!t || !btf_type_is_func(t)) { 5777 /* These checks were already done by the verifier while loading 5778 * struct bpf_func_info 5779 */ 5780 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5781 subprog); 5782 return -EFAULT; 5783 } 5784 tname = btf_name_by_offset(btf, t->name_off); 5785 5786 if (log->level & BPF_LOG_LEVEL) 5787 bpf_log(log, "Validating %s() func#%d...\n", 5788 tname, subprog); 5789 5790 if (prog->aux->func_info_aux[subprog].unreliable) { 5791 bpf_log(log, "Verifier bug in function %s()\n", tname); 5792 return -EFAULT; 5793 } 5794 if (prog_type == BPF_PROG_TYPE_EXT) 5795 prog_type = prog->aux->dst_prog->type; 5796 5797 t = btf_type_by_id(btf, t->type); 5798 if (!t || !btf_type_is_func_proto(t)) { 5799 bpf_log(log, "Invalid type of function %s()\n", tname); 5800 return -EFAULT; 5801 } 5802 args = (const struct btf_param *)(t + 1); 5803 nargs = btf_type_vlen(t); 5804 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5805 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 5806 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 5807 return -EINVAL; 5808 } 5809 /* check that function returns int */ 5810 t = btf_type_by_id(btf, t->type); 5811 while (btf_type_is_modifier(t)) 5812 t = btf_type_by_id(btf, t->type); 5813 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 5814 bpf_log(log, 5815 "Global function %s() doesn't return scalar. Only those are supported.\n", 5816 tname); 5817 return -EINVAL; 5818 } 5819 /* Convert BTF function arguments into verifier types. 5820 * Only PTR_TO_CTX and SCALAR are supported atm. 5821 */ 5822 for (i = 0; i < nargs; i++) { 5823 struct bpf_reg_state *reg = ®s[i + 1]; 5824 5825 t = btf_type_by_id(btf, args[i].type); 5826 while (btf_type_is_modifier(t)) 5827 t = btf_type_by_id(btf, t->type); 5828 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 5829 reg->type = SCALAR_VALUE; 5830 continue; 5831 } 5832 if (btf_type_is_ptr(t)) { 5833 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 5834 reg->type = PTR_TO_CTX; 5835 continue; 5836 } 5837 5838 t = btf_type_skip_modifiers(btf, t->type, NULL); 5839 5840 ref_t = btf_resolve_size(btf, t, ®->mem_size); 5841 if (IS_ERR(ref_t)) { 5842 bpf_log(log, 5843 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5844 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 5845 PTR_ERR(ref_t)); 5846 return -EINVAL; 5847 } 5848 5849 reg->type = PTR_TO_MEM_OR_NULL; 5850 reg->id = ++env->id_gen; 5851 5852 continue; 5853 } 5854 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 5855 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 5856 return -EINVAL; 5857 } 5858 return 0; 5859 } 5860 5861 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 5862 struct btf_show *show) 5863 { 5864 const struct btf_type *t = btf_type_by_id(btf, type_id); 5865 5866 show->btf = btf; 5867 memset(&show->state, 0, sizeof(show->state)); 5868 memset(&show->obj, 0, sizeof(show->obj)); 5869 5870 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 5871 } 5872 5873 static void btf_seq_show(struct btf_show *show, const char *fmt, 5874 va_list args) 5875 { 5876 seq_vprintf((struct seq_file *)show->target, fmt, args); 5877 } 5878 5879 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 5880 void *obj, struct seq_file *m, u64 flags) 5881 { 5882 struct btf_show sseq; 5883 5884 sseq.target = m; 5885 sseq.showfn = btf_seq_show; 5886 sseq.flags = flags; 5887 5888 btf_type_show(btf, type_id, obj, &sseq); 5889 5890 return sseq.state.status; 5891 } 5892 5893 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 5894 struct seq_file *m) 5895 { 5896 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 5897 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 5898 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 5899 } 5900 5901 struct btf_show_snprintf { 5902 struct btf_show show; 5903 int len_left; /* space left in string */ 5904 int len; /* length we would have written */ 5905 }; 5906 5907 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 5908 va_list args) 5909 { 5910 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 5911 int len; 5912 5913 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 5914 5915 if (len < 0) { 5916 ssnprintf->len_left = 0; 5917 ssnprintf->len = len; 5918 } else if (len > ssnprintf->len_left) { 5919 /* no space, drive on to get length we would have written */ 5920 ssnprintf->len_left = 0; 5921 ssnprintf->len += len; 5922 } else { 5923 ssnprintf->len_left -= len; 5924 ssnprintf->len += len; 5925 show->target += len; 5926 } 5927 } 5928 5929 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 5930 char *buf, int len, u64 flags) 5931 { 5932 struct btf_show_snprintf ssnprintf; 5933 5934 ssnprintf.show.target = buf; 5935 ssnprintf.show.flags = flags; 5936 ssnprintf.show.showfn = btf_snprintf_show; 5937 ssnprintf.len_left = len; 5938 ssnprintf.len = 0; 5939 5940 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 5941 5942 /* If we encontered an error, return it. */ 5943 if (ssnprintf.show.state.status) 5944 return ssnprintf.show.state.status; 5945 5946 /* Otherwise return length we would have written */ 5947 return ssnprintf.len; 5948 } 5949 5950 #ifdef CONFIG_PROC_FS 5951 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 5952 { 5953 const struct btf *btf = filp->private_data; 5954 5955 seq_printf(m, "btf_id:\t%u\n", btf->id); 5956 } 5957 #endif 5958 5959 static int btf_release(struct inode *inode, struct file *filp) 5960 { 5961 btf_put(filp->private_data); 5962 return 0; 5963 } 5964 5965 const struct file_operations btf_fops = { 5966 #ifdef CONFIG_PROC_FS 5967 .show_fdinfo = bpf_btf_show_fdinfo, 5968 #endif 5969 .release = btf_release, 5970 }; 5971 5972 static int __btf_new_fd(struct btf *btf) 5973 { 5974 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 5975 } 5976 5977 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 5978 { 5979 struct btf *btf; 5980 int ret; 5981 5982 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 5983 attr->btf_size, attr->btf_log_level, 5984 u64_to_user_ptr(attr->btf_log_buf), 5985 attr->btf_log_size); 5986 if (IS_ERR(btf)) 5987 return PTR_ERR(btf); 5988 5989 ret = btf_alloc_id(btf); 5990 if (ret) { 5991 btf_free(btf); 5992 return ret; 5993 } 5994 5995 /* 5996 * The BTF ID is published to the userspace. 5997 * All BTF free must go through call_rcu() from 5998 * now on (i.e. free by calling btf_put()). 5999 */ 6000 6001 ret = __btf_new_fd(btf); 6002 if (ret < 0) 6003 btf_put(btf); 6004 6005 return ret; 6006 } 6007 6008 struct btf *btf_get_by_fd(int fd) 6009 { 6010 struct btf *btf; 6011 struct fd f; 6012 6013 f = fdget(fd); 6014 6015 if (!f.file) 6016 return ERR_PTR(-EBADF); 6017 6018 if (f.file->f_op != &btf_fops) { 6019 fdput(f); 6020 return ERR_PTR(-EINVAL); 6021 } 6022 6023 btf = f.file->private_data; 6024 refcount_inc(&btf->refcnt); 6025 fdput(f); 6026 6027 return btf; 6028 } 6029 6030 int btf_get_info_by_fd(const struct btf *btf, 6031 const union bpf_attr *attr, 6032 union bpf_attr __user *uattr) 6033 { 6034 struct bpf_btf_info __user *uinfo; 6035 struct bpf_btf_info info; 6036 u32 info_copy, btf_copy; 6037 void __user *ubtf; 6038 char __user *uname; 6039 u32 uinfo_len, uname_len, name_len; 6040 int ret = 0; 6041 6042 uinfo = u64_to_user_ptr(attr->info.info); 6043 uinfo_len = attr->info.info_len; 6044 6045 info_copy = min_t(u32, uinfo_len, sizeof(info)); 6046 memset(&info, 0, sizeof(info)); 6047 if (copy_from_user(&info, uinfo, info_copy)) 6048 return -EFAULT; 6049 6050 info.id = btf->id; 6051 ubtf = u64_to_user_ptr(info.btf); 6052 btf_copy = min_t(u32, btf->data_size, info.btf_size); 6053 if (copy_to_user(ubtf, btf->data, btf_copy)) 6054 return -EFAULT; 6055 info.btf_size = btf->data_size; 6056 6057 info.kernel_btf = btf->kernel_btf; 6058 6059 uname = u64_to_user_ptr(info.name); 6060 uname_len = info.name_len; 6061 if (!uname ^ !uname_len) 6062 return -EINVAL; 6063 6064 name_len = strlen(btf->name); 6065 info.name_len = name_len; 6066 6067 if (uname) { 6068 if (uname_len >= name_len + 1) { 6069 if (copy_to_user(uname, btf->name, name_len + 1)) 6070 return -EFAULT; 6071 } else { 6072 char zero = '\0'; 6073 6074 if (copy_to_user(uname, btf->name, uname_len - 1)) 6075 return -EFAULT; 6076 if (put_user(zero, uname + uname_len - 1)) 6077 return -EFAULT; 6078 /* let user-space know about too short buffer */ 6079 ret = -ENOSPC; 6080 } 6081 } 6082 6083 if (copy_to_user(uinfo, &info, info_copy) || 6084 put_user(info_copy, &uattr->info.info_len)) 6085 return -EFAULT; 6086 6087 return ret; 6088 } 6089 6090 int btf_get_fd_by_id(u32 id) 6091 { 6092 struct btf *btf; 6093 int fd; 6094 6095 rcu_read_lock(); 6096 btf = idr_find(&btf_idr, id); 6097 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 6098 btf = ERR_PTR(-ENOENT); 6099 rcu_read_unlock(); 6100 6101 if (IS_ERR(btf)) 6102 return PTR_ERR(btf); 6103 6104 fd = __btf_new_fd(btf); 6105 if (fd < 0) 6106 btf_put(btf); 6107 6108 return fd; 6109 } 6110 6111 u32 btf_obj_id(const struct btf *btf) 6112 { 6113 return btf->id; 6114 } 6115 6116 bool btf_is_kernel(const struct btf *btf) 6117 { 6118 return btf->kernel_btf; 6119 } 6120 6121 bool btf_is_module(const struct btf *btf) 6122 { 6123 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 6124 } 6125 6126 static int btf_id_cmp_func(const void *a, const void *b) 6127 { 6128 const int *pa = a, *pb = b; 6129 6130 return *pa - *pb; 6131 } 6132 6133 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 6134 { 6135 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 6136 } 6137 6138 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6139 struct btf_module { 6140 struct list_head list; 6141 struct module *module; 6142 struct btf *btf; 6143 struct bin_attribute *sysfs_attr; 6144 }; 6145 6146 static LIST_HEAD(btf_modules); 6147 static DEFINE_MUTEX(btf_module_mutex); 6148 6149 static ssize_t 6150 btf_module_read(struct file *file, struct kobject *kobj, 6151 struct bin_attribute *bin_attr, 6152 char *buf, loff_t off, size_t len) 6153 { 6154 const struct btf *btf = bin_attr->private; 6155 6156 memcpy(buf, btf->data + off, len); 6157 return len; 6158 } 6159 6160 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 6161 void *module) 6162 { 6163 struct btf_module *btf_mod, *tmp; 6164 struct module *mod = module; 6165 struct btf *btf; 6166 int err = 0; 6167 6168 if (mod->btf_data_size == 0 || 6169 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING)) 6170 goto out; 6171 6172 switch (op) { 6173 case MODULE_STATE_COMING: 6174 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 6175 if (!btf_mod) { 6176 err = -ENOMEM; 6177 goto out; 6178 } 6179 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 6180 if (IS_ERR(btf)) { 6181 pr_warn("failed to validate module [%s] BTF: %ld\n", 6182 mod->name, PTR_ERR(btf)); 6183 kfree(btf_mod); 6184 err = PTR_ERR(btf); 6185 goto out; 6186 } 6187 err = btf_alloc_id(btf); 6188 if (err) { 6189 btf_free(btf); 6190 kfree(btf_mod); 6191 goto out; 6192 } 6193 6194 mutex_lock(&btf_module_mutex); 6195 btf_mod->module = module; 6196 btf_mod->btf = btf; 6197 list_add(&btf_mod->list, &btf_modules); 6198 mutex_unlock(&btf_module_mutex); 6199 6200 if (IS_ENABLED(CONFIG_SYSFS)) { 6201 struct bin_attribute *attr; 6202 6203 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 6204 if (!attr) 6205 goto out; 6206 6207 sysfs_bin_attr_init(attr); 6208 attr->attr.name = btf->name; 6209 attr->attr.mode = 0444; 6210 attr->size = btf->data_size; 6211 attr->private = btf; 6212 attr->read = btf_module_read; 6213 6214 err = sysfs_create_bin_file(btf_kobj, attr); 6215 if (err) { 6216 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 6217 mod->name, err); 6218 kfree(attr); 6219 err = 0; 6220 goto out; 6221 } 6222 6223 btf_mod->sysfs_attr = attr; 6224 } 6225 6226 break; 6227 case MODULE_STATE_GOING: 6228 mutex_lock(&btf_module_mutex); 6229 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6230 if (btf_mod->module != module) 6231 continue; 6232 6233 list_del(&btf_mod->list); 6234 if (btf_mod->sysfs_attr) 6235 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 6236 btf_put(btf_mod->btf); 6237 kfree(btf_mod->sysfs_attr); 6238 kfree(btf_mod); 6239 break; 6240 } 6241 mutex_unlock(&btf_module_mutex); 6242 break; 6243 } 6244 out: 6245 return notifier_from_errno(err); 6246 } 6247 6248 static struct notifier_block btf_module_nb = { 6249 .notifier_call = btf_module_notify, 6250 }; 6251 6252 static int __init btf_module_init(void) 6253 { 6254 register_module_notifier(&btf_module_nb); 6255 return 0; 6256 } 6257 6258 fs_initcall(btf_module_init); 6259 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6260 6261 struct module *btf_try_get_module(const struct btf *btf) 6262 { 6263 struct module *res = NULL; 6264 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6265 struct btf_module *btf_mod, *tmp; 6266 6267 mutex_lock(&btf_module_mutex); 6268 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6269 if (btf_mod->btf != btf) 6270 continue; 6271 6272 if (try_module_get(btf_mod->module)) 6273 res = btf_mod->module; 6274 6275 break; 6276 } 6277 mutex_unlock(&btf_module_mutex); 6278 #endif 6279 6280 return res; 6281 } 6282 6283 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 6284 { 6285 struct btf *btf; 6286 long ret; 6287 6288 if (flags) 6289 return -EINVAL; 6290 6291 if (name_sz <= 1 || name[name_sz - 1]) 6292 return -EINVAL; 6293 6294 btf = bpf_get_btf_vmlinux(); 6295 if (IS_ERR(btf)) 6296 return PTR_ERR(btf); 6297 6298 ret = btf_find_by_name_kind(btf, name, kind); 6299 /* ret is never zero, since btf_find_by_name_kind returns 6300 * positive btf_id or negative error. 6301 */ 6302 if (ret < 0) { 6303 struct btf *mod_btf; 6304 int id; 6305 6306 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 6307 spin_lock_bh(&btf_idr_lock); 6308 idr_for_each_entry(&btf_idr, mod_btf, id) { 6309 if (!btf_is_module(mod_btf)) 6310 continue; 6311 /* linear search could be slow hence unlock/lock 6312 * the IDR to avoiding holding it for too long 6313 */ 6314 btf_get(mod_btf); 6315 spin_unlock_bh(&btf_idr_lock); 6316 ret = btf_find_by_name_kind(mod_btf, name, kind); 6317 if (ret > 0) { 6318 int btf_obj_fd; 6319 6320 btf_obj_fd = __btf_new_fd(mod_btf); 6321 if (btf_obj_fd < 0) { 6322 btf_put(mod_btf); 6323 return btf_obj_fd; 6324 } 6325 return ret | (((u64)btf_obj_fd) << 32); 6326 } 6327 spin_lock_bh(&btf_idr_lock); 6328 btf_put(mod_btf); 6329 } 6330 spin_unlock_bh(&btf_idr_lock); 6331 } 6332 return ret; 6333 } 6334 6335 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 6336 .func = bpf_btf_find_by_name_kind, 6337 .gpl_only = false, 6338 .ret_type = RET_INTEGER, 6339 .arg1_type = ARG_PTR_TO_MEM, 6340 .arg2_type = ARG_CONST_SIZE, 6341 .arg3_type = ARG_ANYTHING, 6342 .arg4_type = ARG_ANYTHING, 6343 }; 6344 6345 BTF_ID_LIST_GLOBAL_SINGLE(btf_task_struct_ids, struct, task_struct) 6346 6347 /* BTF ID set registration API for modules */ 6348 6349 struct kfunc_btf_id_list { 6350 struct list_head list; 6351 struct mutex mutex; 6352 }; 6353 6354 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6355 6356 void register_kfunc_btf_id_set(struct kfunc_btf_id_list *l, 6357 struct kfunc_btf_id_set *s) 6358 { 6359 mutex_lock(&l->mutex); 6360 list_add(&s->list, &l->list); 6361 mutex_unlock(&l->mutex); 6362 } 6363 EXPORT_SYMBOL_GPL(register_kfunc_btf_id_set); 6364 6365 void unregister_kfunc_btf_id_set(struct kfunc_btf_id_list *l, 6366 struct kfunc_btf_id_set *s) 6367 { 6368 mutex_lock(&l->mutex); 6369 list_del_init(&s->list); 6370 mutex_unlock(&l->mutex); 6371 } 6372 EXPORT_SYMBOL_GPL(unregister_kfunc_btf_id_set); 6373 6374 bool bpf_check_mod_kfunc_call(struct kfunc_btf_id_list *klist, u32 kfunc_id, 6375 struct module *owner) 6376 { 6377 struct kfunc_btf_id_set *s; 6378 6379 if (!owner) 6380 return false; 6381 mutex_lock(&klist->mutex); 6382 list_for_each_entry(s, &klist->list, list) { 6383 if (s->owner == owner && btf_id_set_contains(s->set, kfunc_id)) { 6384 mutex_unlock(&klist->mutex); 6385 return true; 6386 } 6387 } 6388 mutex_unlock(&klist->mutex); 6389 return false; 6390 } 6391 6392 #endif 6393 6394 #define DEFINE_KFUNC_BTF_ID_LIST(name) \ 6395 struct kfunc_btf_id_list name = { LIST_HEAD_INIT(name.list), \ 6396 __MUTEX_INITIALIZER(name.mutex) }; \ 6397 EXPORT_SYMBOL_GPL(name) 6398 6399 DEFINE_KFUNC_BTF_ID_LIST(bpf_tcp_ca_kfunc_list); 6400 DEFINE_KFUNC_BTF_ID_LIST(prog_test_kfunc_list); 6401