1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/slab.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/uaccess.h> 14 #include <linux/kernel.h> 15 #include <linux/idr.h> 16 #include <linux/sort.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/btf.h> 19 20 /* BTF (BPF Type Format) is the meta data format which describes 21 * the data types of BPF program/map. Hence, it basically focus 22 * on the C programming language which the modern BPF is primary 23 * using. 24 * 25 * ELF Section: 26 * ~~~~~~~~~~~ 27 * The BTF data is stored under the ".BTF" ELF section 28 * 29 * struct btf_type: 30 * ~~~~~~~~~~~~~~~ 31 * Each 'struct btf_type' object describes a C data type. 32 * Depending on the type it is describing, a 'struct btf_type' 33 * object may be followed by more data. F.e. 34 * To describe an array, 'struct btf_type' is followed by 35 * 'struct btf_array'. 36 * 37 * 'struct btf_type' and any extra data following it are 38 * 4 bytes aligned. 39 * 40 * Type section: 41 * ~~~~~~~~~~~~~ 42 * The BTF type section contains a list of 'struct btf_type' objects. 43 * Each one describes a C type. Recall from the above section 44 * that a 'struct btf_type' object could be immediately followed by extra 45 * data in order to desribe some particular C types. 46 * 47 * type_id: 48 * ~~~~~~~ 49 * Each btf_type object is identified by a type_id. The type_id 50 * is implicitly implied by the location of the btf_type object in 51 * the BTF type section. The first one has type_id 1. The second 52 * one has type_id 2...etc. Hence, an earlier btf_type has 53 * a smaller type_id. 54 * 55 * A btf_type object may refer to another btf_type object by using 56 * type_id (i.e. the "type" in the "struct btf_type"). 57 * 58 * NOTE that we cannot assume any reference-order. 59 * A btf_type object can refer to an earlier btf_type object 60 * but it can also refer to a later btf_type object. 61 * 62 * For example, to describe "const void *". A btf_type 63 * object describing "const" may refer to another btf_type 64 * object describing "void *". This type-reference is done 65 * by specifying type_id: 66 * 67 * [1] CONST (anon) type_id=2 68 * [2] PTR (anon) type_id=0 69 * 70 * The above is the btf_verifier debug log: 71 * - Each line started with "[?]" is a btf_type object 72 * - [?] is the type_id of the btf_type object. 73 * - CONST/PTR is the BTF_KIND_XXX 74 * - "(anon)" is the name of the type. It just 75 * happens that CONST and PTR has no name. 76 * - type_id=XXX is the 'u32 type' in btf_type 77 * 78 * NOTE: "void" has type_id 0 79 * 80 * String section: 81 * ~~~~~~~~~~~~~~ 82 * The BTF string section contains the names used by the type section. 83 * Each string is referred by an "offset" from the beginning of the 84 * string section. 85 * 86 * Each string is '\0' terminated. 87 * 88 * The first character in the string section must be '\0' 89 * which is used to mean 'anonymous'. Some btf_type may not 90 * have a name. 91 */ 92 93 /* BTF verification: 94 * 95 * To verify BTF data, two passes are needed. 96 * 97 * Pass #1 98 * ~~~~~~~ 99 * The first pass is to collect all btf_type objects to 100 * an array: "btf->types". 101 * 102 * Depending on the C type that a btf_type is describing, 103 * a btf_type may be followed by extra data. We don't know 104 * how many btf_type is there, and more importantly we don't 105 * know where each btf_type is located in the type section. 106 * 107 * Without knowing the location of each type_id, most verifications 108 * cannot be done. e.g. an earlier btf_type may refer to a later 109 * btf_type (recall the "const void *" above), so we cannot 110 * check this type-reference in the first pass. 111 * 112 * In the first pass, it still does some verifications (e.g. 113 * checking the name is a valid offset to the string section). 114 * 115 * Pass #2 116 * ~~~~~~~ 117 * The main focus is to resolve a btf_type that is referring 118 * to another type. 119 * 120 * We have to ensure the referring type: 121 * 1) does exist in the BTF (i.e. in btf->types[]) 122 * 2) does not cause a loop: 123 * struct A { 124 * struct B b; 125 * }; 126 * 127 * struct B { 128 * struct A a; 129 * }; 130 * 131 * btf_type_needs_resolve() decides if a btf_type needs 132 * to be resolved. 133 * 134 * The needs_resolve type implements the "resolve()" ops which 135 * essentially does a DFS and detects backedge. 136 * 137 * During resolve (or DFS), different C types have different 138 * "RESOLVED" conditions. 139 * 140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 141 * members because a member is always referring to another 142 * type. A struct's member can be treated as "RESOLVED" if 143 * it is referring to a BTF_KIND_PTR. Otherwise, the 144 * following valid C struct would be rejected: 145 * 146 * struct A { 147 * int m; 148 * struct A *a; 149 * }; 150 * 151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 153 * detect a pointer loop, e.g.: 154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 155 * ^ | 156 * +-----------------------------------------+ 157 * 158 */ 159 160 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 164 #define BITS_ROUNDUP_BYTES(bits) \ 165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 166 167 #define BTF_INFO_MASK 0x8f00ffff 168 #define BTF_INT_MASK 0x0fffffff 169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 171 172 /* 16MB for 64k structs and each has 16 members and 173 * a few MB spaces for the string section. 174 * The hard limit is S32_MAX. 175 */ 176 #define BTF_MAX_SIZE (16 * 1024 * 1024) 177 178 #define for_each_member(i, struct_type, member) \ 179 for (i = 0, member = btf_type_member(struct_type); \ 180 i < btf_type_vlen(struct_type); \ 181 i++, member++) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 #define for_each_vsi(i, struct_type, member) \ 189 for (i = 0, member = btf_type_var_secinfo(struct_type); \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 static DEFINE_IDR(btf_idr); 199 static DEFINE_SPINLOCK(btf_idr_lock); 200 201 struct btf { 202 void *data; 203 struct btf_type **types; 204 u32 *resolved_ids; 205 u32 *resolved_sizes; 206 const char *strings; 207 void *nohdr_data; 208 struct btf_header hdr; 209 u32 nr_types; 210 u32 types_size; 211 u32 data_size; 212 refcount_t refcnt; 213 u32 id; 214 struct rcu_head rcu; 215 }; 216 217 enum verifier_phase { 218 CHECK_META, 219 CHECK_TYPE, 220 }; 221 222 struct resolve_vertex { 223 const struct btf_type *t; 224 u32 type_id; 225 u16 next_member; 226 }; 227 228 enum visit_state { 229 NOT_VISITED, 230 VISITED, 231 RESOLVED, 232 }; 233 234 enum resolve_mode { 235 RESOLVE_TBD, /* To Be Determined */ 236 RESOLVE_PTR, /* Resolving for Pointer */ 237 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 238 * or array 239 */ 240 }; 241 242 #define MAX_RESOLVE_DEPTH 32 243 244 struct btf_sec_info { 245 u32 off; 246 u32 len; 247 }; 248 249 struct btf_verifier_env { 250 struct btf *btf; 251 u8 *visit_states; 252 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 253 struct bpf_verifier_log log; 254 u32 log_type_id; 255 u32 top_stack; 256 enum verifier_phase phase; 257 enum resolve_mode resolve_mode; 258 }; 259 260 static const char * const btf_kind_str[NR_BTF_KINDS] = { 261 [BTF_KIND_UNKN] = "UNKNOWN", 262 [BTF_KIND_INT] = "INT", 263 [BTF_KIND_PTR] = "PTR", 264 [BTF_KIND_ARRAY] = "ARRAY", 265 [BTF_KIND_STRUCT] = "STRUCT", 266 [BTF_KIND_UNION] = "UNION", 267 [BTF_KIND_ENUM] = "ENUM", 268 [BTF_KIND_FWD] = "FWD", 269 [BTF_KIND_TYPEDEF] = "TYPEDEF", 270 [BTF_KIND_VOLATILE] = "VOLATILE", 271 [BTF_KIND_CONST] = "CONST", 272 [BTF_KIND_RESTRICT] = "RESTRICT", 273 [BTF_KIND_FUNC] = "FUNC", 274 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 275 [BTF_KIND_VAR] = "VAR", 276 [BTF_KIND_DATASEC] = "DATASEC", 277 }; 278 279 struct btf_kind_operations { 280 s32 (*check_meta)(struct btf_verifier_env *env, 281 const struct btf_type *t, 282 u32 meta_left); 283 int (*resolve)(struct btf_verifier_env *env, 284 const struct resolve_vertex *v); 285 int (*check_member)(struct btf_verifier_env *env, 286 const struct btf_type *struct_type, 287 const struct btf_member *member, 288 const struct btf_type *member_type); 289 int (*check_kflag_member)(struct btf_verifier_env *env, 290 const struct btf_type *struct_type, 291 const struct btf_member *member, 292 const struct btf_type *member_type); 293 void (*log_details)(struct btf_verifier_env *env, 294 const struct btf_type *t); 295 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 296 u32 type_id, void *data, u8 bits_offsets, 297 struct seq_file *m); 298 }; 299 300 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 301 static struct btf_type btf_void; 302 303 static int btf_resolve(struct btf_verifier_env *env, 304 const struct btf_type *t, u32 type_id); 305 306 static bool btf_type_is_modifier(const struct btf_type *t) 307 { 308 /* Some of them is not strictly a C modifier 309 * but they are grouped into the same bucket 310 * for BTF concern: 311 * A type (t) that refers to another 312 * type through t->type AND its size cannot 313 * be determined without following the t->type. 314 * 315 * ptr does not fall into this bucket 316 * because its size is always sizeof(void *). 317 */ 318 switch (BTF_INFO_KIND(t->info)) { 319 case BTF_KIND_TYPEDEF: 320 case BTF_KIND_VOLATILE: 321 case BTF_KIND_CONST: 322 case BTF_KIND_RESTRICT: 323 return true; 324 } 325 326 return false; 327 } 328 329 bool btf_type_is_void(const struct btf_type *t) 330 { 331 return t == &btf_void; 332 } 333 334 static bool btf_type_is_fwd(const struct btf_type *t) 335 { 336 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 337 } 338 339 static bool btf_type_is_func(const struct btf_type *t) 340 { 341 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC; 342 } 343 344 static bool btf_type_is_func_proto(const struct btf_type *t) 345 { 346 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO; 347 } 348 349 static bool btf_type_nosize(const struct btf_type *t) 350 { 351 return btf_type_is_void(t) || btf_type_is_fwd(t) || 352 btf_type_is_func(t) || btf_type_is_func_proto(t); 353 } 354 355 static bool btf_type_nosize_or_null(const struct btf_type *t) 356 { 357 return !t || btf_type_nosize(t); 358 } 359 360 /* union is only a special case of struct: 361 * all its offsetof(member) == 0 362 */ 363 static bool btf_type_is_struct(const struct btf_type *t) 364 { 365 u8 kind = BTF_INFO_KIND(t->info); 366 367 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 368 } 369 370 static bool __btf_type_is_struct(const struct btf_type *t) 371 { 372 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 373 } 374 375 static bool btf_type_is_array(const struct btf_type *t) 376 { 377 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 378 } 379 380 static bool btf_type_is_ptr(const struct btf_type *t) 381 { 382 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 383 } 384 385 static bool btf_type_is_int(const struct btf_type *t) 386 { 387 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 388 } 389 390 static bool btf_type_is_var(const struct btf_type *t) 391 { 392 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR; 393 } 394 395 static bool btf_type_is_datasec(const struct btf_type *t) 396 { 397 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 398 } 399 400 /* Types that act only as a source, not sink or intermediate 401 * type when resolving. 402 */ 403 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 404 { 405 return btf_type_is_var(t) || 406 btf_type_is_datasec(t); 407 } 408 409 /* What types need to be resolved? 410 * 411 * btf_type_is_modifier() is an obvious one. 412 * 413 * btf_type_is_struct() because its member refers to 414 * another type (through member->type). 415 * 416 * btf_type_is_var() because the variable refers to 417 * another type. btf_type_is_datasec() holds multiple 418 * btf_type_is_var() types that need resolving. 419 * 420 * btf_type_is_array() because its element (array->type) 421 * refers to another type. Array can be thought of a 422 * special case of struct while array just has the same 423 * member-type repeated by array->nelems of times. 424 */ 425 static bool btf_type_needs_resolve(const struct btf_type *t) 426 { 427 return btf_type_is_modifier(t) || 428 btf_type_is_ptr(t) || 429 btf_type_is_struct(t) || 430 btf_type_is_array(t) || 431 btf_type_is_var(t) || 432 btf_type_is_datasec(t); 433 } 434 435 /* t->size can be used */ 436 static bool btf_type_has_size(const struct btf_type *t) 437 { 438 switch (BTF_INFO_KIND(t->info)) { 439 case BTF_KIND_INT: 440 case BTF_KIND_STRUCT: 441 case BTF_KIND_UNION: 442 case BTF_KIND_ENUM: 443 case BTF_KIND_DATASEC: 444 return true; 445 } 446 447 return false; 448 } 449 450 static const char *btf_int_encoding_str(u8 encoding) 451 { 452 if (encoding == 0) 453 return "(none)"; 454 else if (encoding == BTF_INT_SIGNED) 455 return "SIGNED"; 456 else if (encoding == BTF_INT_CHAR) 457 return "CHAR"; 458 else if (encoding == BTF_INT_BOOL) 459 return "BOOL"; 460 else 461 return "UNKN"; 462 } 463 464 static u16 btf_type_vlen(const struct btf_type *t) 465 { 466 return BTF_INFO_VLEN(t->info); 467 } 468 469 static bool btf_type_kflag(const struct btf_type *t) 470 { 471 return BTF_INFO_KFLAG(t->info); 472 } 473 474 static u32 btf_member_bit_offset(const struct btf_type *struct_type, 475 const struct btf_member *member) 476 { 477 return btf_type_kflag(struct_type) ? BTF_MEMBER_BIT_OFFSET(member->offset) 478 : member->offset; 479 } 480 481 static u32 btf_member_bitfield_size(const struct btf_type *struct_type, 482 const struct btf_member *member) 483 { 484 return btf_type_kflag(struct_type) ? BTF_MEMBER_BITFIELD_SIZE(member->offset) 485 : 0; 486 } 487 488 static u32 btf_type_int(const struct btf_type *t) 489 { 490 return *(u32 *)(t + 1); 491 } 492 493 static const struct btf_array *btf_type_array(const struct btf_type *t) 494 { 495 return (const struct btf_array *)(t + 1); 496 } 497 498 static const struct btf_member *btf_type_member(const struct btf_type *t) 499 { 500 return (const struct btf_member *)(t + 1); 501 } 502 503 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 504 { 505 return (const struct btf_enum *)(t + 1); 506 } 507 508 static const struct btf_var *btf_type_var(const struct btf_type *t) 509 { 510 return (const struct btf_var *)(t + 1); 511 } 512 513 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t) 514 { 515 return (const struct btf_var_secinfo *)(t + 1); 516 } 517 518 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 519 { 520 return kind_ops[BTF_INFO_KIND(t->info)]; 521 } 522 523 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 524 { 525 return BTF_STR_OFFSET_VALID(offset) && 526 offset < btf->hdr.str_len; 527 } 528 529 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 530 { 531 if ((first ? !isalpha(c) : 532 !isalnum(c)) && 533 c != '_' && 534 ((c == '.' && !dot_ok) || 535 c != '.')) 536 return false; 537 return true; 538 } 539 540 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 541 { 542 /* offset must be valid */ 543 const char *src = &btf->strings[offset]; 544 const char *src_limit; 545 546 if (!__btf_name_char_ok(*src, true, dot_ok)) 547 return false; 548 549 /* set a limit on identifier length */ 550 src_limit = src + KSYM_NAME_LEN; 551 src++; 552 while (*src && src < src_limit) { 553 if (!__btf_name_char_ok(*src, false, dot_ok)) 554 return false; 555 src++; 556 } 557 558 return !*src; 559 } 560 561 /* Only C-style identifier is permitted. This can be relaxed if 562 * necessary. 563 */ 564 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 565 { 566 return __btf_name_valid(btf, offset, false); 567 } 568 569 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 570 { 571 return __btf_name_valid(btf, offset, true); 572 } 573 574 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 575 { 576 if (!offset) 577 return "(anon)"; 578 else if (offset < btf->hdr.str_len) 579 return &btf->strings[offset]; 580 else 581 return "(invalid-name-offset)"; 582 } 583 584 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 585 { 586 if (offset < btf->hdr.str_len) 587 return &btf->strings[offset]; 588 589 return NULL; 590 } 591 592 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 593 { 594 if (type_id > btf->nr_types) 595 return NULL; 596 597 return btf->types[type_id]; 598 } 599 600 /* 601 * Regular int is not a bit field and it must be either 602 * u8/u16/u32/u64 or __int128. 603 */ 604 static bool btf_type_int_is_regular(const struct btf_type *t) 605 { 606 u8 nr_bits, nr_bytes; 607 u32 int_data; 608 609 int_data = btf_type_int(t); 610 nr_bits = BTF_INT_BITS(int_data); 611 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 612 if (BITS_PER_BYTE_MASKED(nr_bits) || 613 BTF_INT_OFFSET(int_data) || 614 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 615 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 616 nr_bytes != (2 * sizeof(u64)))) { 617 return false; 618 } 619 620 return true; 621 } 622 623 /* 624 * Check that given struct member is a regular int with expected 625 * offset and size. 626 */ 627 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 628 const struct btf_member *m, 629 u32 expected_offset, u32 expected_size) 630 { 631 const struct btf_type *t; 632 u32 id, int_data; 633 u8 nr_bits; 634 635 id = m->type; 636 t = btf_type_id_size(btf, &id, NULL); 637 if (!t || !btf_type_is_int(t)) 638 return false; 639 640 int_data = btf_type_int(t); 641 nr_bits = BTF_INT_BITS(int_data); 642 if (btf_type_kflag(s)) { 643 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 644 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 645 646 /* if kflag set, int should be a regular int and 647 * bit offset should be at byte boundary. 648 */ 649 return !bitfield_size && 650 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 651 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 652 } 653 654 if (BTF_INT_OFFSET(int_data) || 655 BITS_PER_BYTE_MASKED(m->offset) || 656 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 657 BITS_PER_BYTE_MASKED(nr_bits) || 658 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 659 return false; 660 661 return true; 662 } 663 664 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 665 const char *fmt, ...) 666 { 667 va_list args; 668 669 va_start(args, fmt); 670 bpf_verifier_vlog(log, fmt, args); 671 va_end(args); 672 } 673 674 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 675 const char *fmt, ...) 676 { 677 struct bpf_verifier_log *log = &env->log; 678 va_list args; 679 680 if (!bpf_verifier_log_needed(log)) 681 return; 682 683 va_start(args, fmt); 684 bpf_verifier_vlog(log, fmt, args); 685 va_end(args); 686 } 687 688 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 689 const struct btf_type *t, 690 bool log_details, 691 const char *fmt, ...) 692 { 693 struct bpf_verifier_log *log = &env->log; 694 u8 kind = BTF_INFO_KIND(t->info); 695 struct btf *btf = env->btf; 696 va_list args; 697 698 if (!bpf_verifier_log_needed(log)) 699 return; 700 701 __btf_verifier_log(log, "[%u] %s %s%s", 702 env->log_type_id, 703 btf_kind_str[kind], 704 __btf_name_by_offset(btf, t->name_off), 705 log_details ? " " : ""); 706 707 if (log_details) 708 btf_type_ops(t)->log_details(env, t); 709 710 if (fmt && *fmt) { 711 __btf_verifier_log(log, " "); 712 va_start(args, fmt); 713 bpf_verifier_vlog(log, fmt, args); 714 va_end(args); 715 } 716 717 __btf_verifier_log(log, "\n"); 718 } 719 720 #define btf_verifier_log_type(env, t, ...) \ 721 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 722 #define btf_verifier_log_basic(env, t, ...) \ 723 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 724 725 __printf(4, 5) 726 static void btf_verifier_log_member(struct btf_verifier_env *env, 727 const struct btf_type *struct_type, 728 const struct btf_member *member, 729 const char *fmt, ...) 730 { 731 struct bpf_verifier_log *log = &env->log; 732 struct btf *btf = env->btf; 733 va_list args; 734 735 if (!bpf_verifier_log_needed(log)) 736 return; 737 738 /* The CHECK_META phase already did a btf dump. 739 * 740 * If member is logged again, it must hit an error in 741 * parsing this member. It is useful to print out which 742 * struct this member belongs to. 743 */ 744 if (env->phase != CHECK_META) 745 btf_verifier_log_type(env, struct_type, NULL); 746 747 if (btf_type_kflag(struct_type)) 748 __btf_verifier_log(log, 749 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 750 __btf_name_by_offset(btf, member->name_off), 751 member->type, 752 BTF_MEMBER_BITFIELD_SIZE(member->offset), 753 BTF_MEMBER_BIT_OFFSET(member->offset)); 754 else 755 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 756 __btf_name_by_offset(btf, member->name_off), 757 member->type, member->offset); 758 759 if (fmt && *fmt) { 760 __btf_verifier_log(log, " "); 761 va_start(args, fmt); 762 bpf_verifier_vlog(log, fmt, args); 763 va_end(args); 764 } 765 766 __btf_verifier_log(log, "\n"); 767 } 768 769 __printf(4, 5) 770 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 771 const struct btf_type *datasec_type, 772 const struct btf_var_secinfo *vsi, 773 const char *fmt, ...) 774 { 775 struct bpf_verifier_log *log = &env->log; 776 va_list args; 777 778 if (!bpf_verifier_log_needed(log)) 779 return; 780 if (env->phase != CHECK_META) 781 btf_verifier_log_type(env, datasec_type, NULL); 782 783 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 784 vsi->type, vsi->offset, vsi->size); 785 if (fmt && *fmt) { 786 __btf_verifier_log(log, " "); 787 va_start(args, fmt); 788 bpf_verifier_vlog(log, fmt, args); 789 va_end(args); 790 } 791 792 __btf_verifier_log(log, "\n"); 793 } 794 795 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 796 u32 btf_data_size) 797 { 798 struct bpf_verifier_log *log = &env->log; 799 const struct btf *btf = env->btf; 800 const struct btf_header *hdr; 801 802 if (!bpf_verifier_log_needed(log)) 803 return; 804 805 hdr = &btf->hdr; 806 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 807 __btf_verifier_log(log, "version: %u\n", hdr->version); 808 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 809 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 810 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 811 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 812 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 813 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 814 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 815 } 816 817 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 818 { 819 struct btf *btf = env->btf; 820 821 /* < 2 because +1 for btf_void which is always in btf->types[0]. 822 * btf_void is not accounted in btf->nr_types because btf_void 823 * does not come from the BTF file. 824 */ 825 if (btf->types_size - btf->nr_types < 2) { 826 /* Expand 'types' array */ 827 828 struct btf_type **new_types; 829 u32 expand_by, new_size; 830 831 if (btf->types_size == BTF_MAX_TYPE) { 832 btf_verifier_log(env, "Exceeded max num of types"); 833 return -E2BIG; 834 } 835 836 expand_by = max_t(u32, btf->types_size >> 2, 16); 837 new_size = min_t(u32, BTF_MAX_TYPE, 838 btf->types_size + expand_by); 839 840 new_types = kvcalloc(new_size, sizeof(*new_types), 841 GFP_KERNEL | __GFP_NOWARN); 842 if (!new_types) 843 return -ENOMEM; 844 845 if (btf->nr_types == 0) 846 new_types[0] = &btf_void; 847 else 848 memcpy(new_types, btf->types, 849 sizeof(*btf->types) * (btf->nr_types + 1)); 850 851 kvfree(btf->types); 852 btf->types = new_types; 853 btf->types_size = new_size; 854 } 855 856 btf->types[++(btf->nr_types)] = t; 857 858 return 0; 859 } 860 861 static int btf_alloc_id(struct btf *btf) 862 { 863 int id; 864 865 idr_preload(GFP_KERNEL); 866 spin_lock_bh(&btf_idr_lock); 867 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 868 if (id > 0) 869 btf->id = id; 870 spin_unlock_bh(&btf_idr_lock); 871 idr_preload_end(); 872 873 if (WARN_ON_ONCE(!id)) 874 return -ENOSPC; 875 876 return id > 0 ? 0 : id; 877 } 878 879 static void btf_free_id(struct btf *btf) 880 { 881 unsigned long flags; 882 883 /* 884 * In map-in-map, calling map_delete_elem() on outer 885 * map will call bpf_map_put on the inner map. 886 * It will then eventually call btf_free_id() 887 * on the inner map. Some of the map_delete_elem() 888 * implementation may have irq disabled, so 889 * we need to use the _irqsave() version instead 890 * of the _bh() version. 891 */ 892 spin_lock_irqsave(&btf_idr_lock, flags); 893 idr_remove(&btf_idr, btf->id); 894 spin_unlock_irqrestore(&btf_idr_lock, flags); 895 } 896 897 static void btf_free(struct btf *btf) 898 { 899 kvfree(btf->types); 900 kvfree(btf->resolved_sizes); 901 kvfree(btf->resolved_ids); 902 kvfree(btf->data); 903 kfree(btf); 904 } 905 906 static void btf_free_rcu(struct rcu_head *rcu) 907 { 908 struct btf *btf = container_of(rcu, struct btf, rcu); 909 910 btf_free(btf); 911 } 912 913 void btf_put(struct btf *btf) 914 { 915 if (btf && refcount_dec_and_test(&btf->refcnt)) { 916 btf_free_id(btf); 917 call_rcu(&btf->rcu, btf_free_rcu); 918 } 919 } 920 921 static int env_resolve_init(struct btf_verifier_env *env) 922 { 923 struct btf *btf = env->btf; 924 u32 nr_types = btf->nr_types; 925 u32 *resolved_sizes = NULL; 926 u32 *resolved_ids = NULL; 927 u8 *visit_states = NULL; 928 929 /* +1 for btf_void */ 930 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 931 GFP_KERNEL | __GFP_NOWARN); 932 if (!resolved_sizes) 933 goto nomem; 934 935 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 936 GFP_KERNEL | __GFP_NOWARN); 937 if (!resolved_ids) 938 goto nomem; 939 940 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 941 GFP_KERNEL | __GFP_NOWARN); 942 if (!visit_states) 943 goto nomem; 944 945 btf->resolved_sizes = resolved_sizes; 946 btf->resolved_ids = resolved_ids; 947 env->visit_states = visit_states; 948 949 return 0; 950 951 nomem: 952 kvfree(resolved_sizes); 953 kvfree(resolved_ids); 954 kvfree(visit_states); 955 return -ENOMEM; 956 } 957 958 static void btf_verifier_env_free(struct btf_verifier_env *env) 959 { 960 kvfree(env->visit_states); 961 kfree(env); 962 } 963 964 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 965 const struct btf_type *next_type) 966 { 967 switch (env->resolve_mode) { 968 case RESOLVE_TBD: 969 /* int, enum or void is a sink */ 970 return !btf_type_needs_resolve(next_type); 971 case RESOLVE_PTR: 972 /* int, enum, void, struct, array, func or func_proto is a sink 973 * for ptr 974 */ 975 return !btf_type_is_modifier(next_type) && 976 !btf_type_is_ptr(next_type); 977 case RESOLVE_STRUCT_OR_ARRAY: 978 /* int, enum, void, ptr, func or func_proto is a sink 979 * for struct and array 980 */ 981 return !btf_type_is_modifier(next_type) && 982 !btf_type_is_array(next_type) && 983 !btf_type_is_struct(next_type); 984 default: 985 BUG(); 986 } 987 } 988 989 static bool env_type_is_resolved(const struct btf_verifier_env *env, 990 u32 type_id) 991 { 992 return env->visit_states[type_id] == RESOLVED; 993 } 994 995 static int env_stack_push(struct btf_verifier_env *env, 996 const struct btf_type *t, u32 type_id) 997 { 998 struct resolve_vertex *v; 999 1000 if (env->top_stack == MAX_RESOLVE_DEPTH) 1001 return -E2BIG; 1002 1003 if (env->visit_states[type_id] != NOT_VISITED) 1004 return -EEXIST; 1005 1006 env->visit_states[type_id] = VISITED; 1007 1008 v = &env->stack[env->top_stack++]; 1009 v->t = t; 1010 v->type_id = type_id; 1011 v->next_member = 0; 1012 1013 if (env->resolve_mode == RESOLVE_TBD) { 1014 if (btf_type_is_ptr(t)) 1015 env->resolve_mode = RESOLVE_PTR; 1016 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1017 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1018 } 1019 1020 return 0; 1021 } 1022 1023 static void env_stack_set_next_member(struct btf_verifier_env *env, 1024 u16 next_member) 1025 { 1026 env->stack[env->top_stack - 1].next_member = next_member; 1027 } 1028 1029 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1030 u32 resolved_type_id, 1031 u32 resolved_size) 1032 { 1033 u32 type_id = env->stack[--(env->top_stack)].type_id; 1034 struct btf *btf = env->btf; 1035 1036 btf->resolved_sizes[type_id] = resolved_size; 1037 btf->resolved_ids[type_id] = resolved_type_id; 1038 env->visit_states[type_id] = RESOLVED; 1039 } 1040 1041 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1042 { 1043 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1044 } 1045 1046 /* The input param "type_id" must point to a needs_resolve type */ 1047 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1048 u32 *type_id) 1049 { 1050 *type_id = btf->resolved_ids[*type_id]; 1051 return btf_type_by_id(btf, *type_id); 1052 } 1053 1054 const struct btf_type *btf_type_id_size(const struct btf *btf, 1055 u32 *type_id, u32 *ret_size) 1056 { 1057 const struct btf_type *size_type; 1058 u32 size_type_id = *type_id; 1059 u32 size = 0; 1060 1061 size_type = btf_type_by_id(btf, size_type_id); 1062 if (btf_type_nosize_or_null(size_type)) 1063 return NULL; 1064 1065 if (btf_type_has_size(size_type)) { 1066 size = size_type->size; 1067 } else if (btf_type_is_array(size_type)) { 1068 size = btf->resolved_sizes[size_type_id]; 1069 } else if (btf_type_is_ptr(size_type)) { 1070 size = sizeof(void *); 1071 } else { 1072 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1073 !btf_type_is_var(size_type))) 1074 return NULL; 1075 1076 size = btf->resolved_sizes[size_type_id]; 1077 size_type_id = btf->resolved_ids[size_type_id]; 1078 size_type = btf_type_by_id(btf, size_type_id); 1079 if (btf_type_nosize_or_null(size_type)) 1080 return NULL; 1081 } 1082 1083 *type_id = size_type_id; 1084 if (ret_size) 1085 *ret_size = size; 1086 1087 return size_type; 1088 } 1089 1090 static int btf_df_check_member(struct btf_verifier_env *env, 1091 const struct btf_type *struct_type, 1092 const struct btf_member *member, 1093 const struct btf_type *member_type) 1094 { 1095 btf_verifier_log_basic(env, struct_type, 1096 "Unsupported check_member"); 1097 return -EINVAL; 1098 } 1099 1100 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1101 const struct btf_type *struct_type, 1102 const struct btf_member *member, 1103 const struct btf_type *member_type) 1104 { 1105 btf_verifier_log_basic(env, struct_type, 1106 "Unsupported check_kflag_member"); 1107 return -EINVAL; 1108 } 1109 1110 /* Used for ptr, array and struct/union type members. 1111 * int, enum and modifier types have their specific callback functions. 1112 */ 1113 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1114 const struct btf_type *struct_type, 1115 const struct btf_member *member, 1116 const struct btf_type *member_type) 1117 { 1118 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1119 btf_verifier_log_member(env, struct_type, member, 1120 "Invalid member bitfield_size"); 1121 return -EINVAL; 1122 } 1123 1124 /* bitfield size is 0, so member->offset represents bit offset only. 1125 * It is safe to call non kflag check_member variants. 1126 */ 1127 return btf_type_ops(member_type)->check_member(env, struct_type, 1128 member, 1129 member_type); 1130 } 1131 1132 static int btf_df_resolve(struct btf_verifier_env *env, 1133 const struct resolve_vertex *v) 1134 { 1135 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1136 return -EINVAL; 1137 } 1138 1139 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 1140 u32 type_id, void *data, u8 bits_offsets, 1141 struct seq_file *m) 1142 { 1143 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1144 } 1145 1146 static int btf_int_check_member(struct btf_verifier_env *env, 1147 const struct btf_type *struct_type, 1148 const struct btf_member *member, 1149 const struct btf_type *member_type) 1150 { 1151 u32 int_data = btf_type_int(member_type); 1152 u32 struct_bits_off = member->offset; 1153 u32 struct_size = struct_type->size; 1154 u32 nr_copy_bits; 1155 u32 bytes_offset; 1156 1157 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1158 btf_verifier_log_member(env, struct_type, member, 1159 "bits_offset exceeds U32_MAX"); 1160 return -EINVAL; 1161 } 1162 1163 struct_bits_off += BTF_INT_OFFSET(int_data); 1164 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1165 nr_copy_bits = BTF_INT_BITS(int_data) + 1166 BITS_PER_BYTE_MASKED(struct_bits_off); 1167 1168 if (nr_copy_bits > BITS_PER_U128) { 1169 btf_verifier_log_member(env, struct_type, member, 1170 "nr_copy_bits exceeds 128"); 1171 return -EINVAL; 1172 } 1173 1174 if (struct_size < bytes_offset || 1175 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1176 btf_verifier_log_member(env, struct_type, member, 1177 "Member exceeds struct_size"); 1178 return -EINVAL; 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1185 const struct btf_type *struct_type, 1186 const struct btf_member *member, 1187 const struct btf_type *member_type) 1188 { 1189 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1190 u32 int_data = btf_type_int(member_type); 1191 u32 struct_size = struct_type->size; 1192 u32 nr_copy_bits; 1193 1194 /* a regular int type is required for the kflag int member */ 1195 if (!btf_type_int_is_regular(member_type)) { 1196 btf_verifier_log_member(env, struct_type, member, 1197 "Invalid member base type"); 1198 return -EINVAL; 1199 } 1200 1201 /* check sanity of bitfield size */ 1202 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 1203 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 1204 nr_int_data_bits = BTF_INT_BITS(int_data); 1205 if (!nr_bits) { 1206 /* Not a bitfield member, member offset must be at byte 1207 * boundary. 1208 */ 1209 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1210 btf_verifier_log_member(env, struct_type, member, 1211 "Invalid member offset"); 1212 return -EINVAL; 1213 } 1214 1215 nr_bits = nr_int_data_bits; 1216 } else if (nr_bits > nr_int_data_bits) { 1217 btf_verifier_log_member(env, struct_type, member, 1218 "Invalid member bitfield_size"); 1219 return -EINVAL; 1220 } 1221 1222 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1223 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 1224 if (nr_copy_bits > BITS_PER_U128) { 1225 btf_verifier_log_member(env, struct_type, member, 1226 "nr_copy_bits exceeds 128"); 1227 return -EINVAL; 1228 } 1229 1230 if (struct_size < bytes_offset || 1231 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1232 btf_verifier_log_member(env, struct_type, member, 1233 "Member exceeds struct_size"); 1234 return -EINVAL; 1235 } 1236 1237 return 0; 1238 } 1239 1240 static s32 btf_int_check_meta(struct btf_verifier_env *env, 1241 const struct btf_type *t, 1242 u32 meta_left) 1243 { 1244 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 1245 u16 encoding; 1246 1247 if (meta_left < meta_needed) { 1248 btf_verifier_log_basic(env, t, 1249 "meta_left:%u meta_needed:%u", 1250 meta_left, meta_needed); 1251 return -EINVAL; 1252 } 1253 1254 if (btf_type_vlen(t)) { 1255 btf_verifier_log_type(env, t, "vlen != 0"); 1256 return -EINVAL; 1257 } 1258 1259 if (btf_type_kflag(t)) { 1260 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1261 return -EINVAL; 1262 } 1263 1264 int_data = btf_type_int(t); 1265 if (int_data & ~BTF_INT_MASK) { 1266 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 1267 int_data); 1268 return -EINVAL; 1269 } 1270 1271 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 1272 1273 if (nr_bits > BITS_PER_U128) { 1274 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1275 BITS_PER_U128); 1276 return -EINVAL; 1277 } 1278 1279 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1280 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1281 return -EINVAL; 1282 } 1283 1284 /* 1285 * Only one of the encoding bits is allowed and it 1286 * should be sufficient for the pretty print purpose (i.e. decoding). 1287 * Multiple bits can be allowed later if it is found 1288 * to be insufficient. 1289 */ 1290 encoding = BTF_INT_ENCODING(int_data); 1291 if (encoding && 1292 encoding != BTF_INT_SIGNED && 1293 encoding != BTF_INT_CHAR && 1294 encoding != BTF_INT_BOOL) { 1295 btf_verifier_log_type(env, t, "Unsupported encoding"); 1296 return -ENOTSUPP; 1297 } 1298 1299 btf_verifier_log_type(env, t, NULL); 1300 1301 return meta_needed; 1302 } 1303 1304 static void btf_int_log(struct btf_verifier_env *env, 1305 const struct btf_type *t) 1306 { 1307 int int_data = btf_type_int(t); 1308 1309 btf_verifier_log(env, 1310 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1311 t->size, BTF_INT_OFFSET(int_data), 1312 BTF_INT_BITS(int_data), 1313 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1314 } 1315 1316 static void btf_int128_print(struct seq_file *m, void *data) 1317 { 1318 /* data points to a __int128 number. 1319 * Suppose 1320 * int128_num = *(__int128 *)data; 1321 * The below formulas shows what upper_num and lower_num represents: 1322 * upper_num = int128_num >> 64; 1323 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 1324 */ 1325 u64 upper_num, lower_num; 1326 1327 #ifdef __BIG_ENDIAN_BITFIELD 1328 upper_num = *(u64 *)data; 1329 lower_num = *(u64 *)(data + 8); 1330 #else 1331 upper_num = *(u64 *)(data + 8); 1332 lower_num = *(u64 *)data; 1333 #endif 1334 if (upper_num == 0) 1335 seq_printf(m, "0x%llx", lower_num); 1336 else 1337 seq_printf(m, "0x%llx%016llx", upper_num, lower_num); 1338 } 1339 1340 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 1341 u16 right_shift_bits) 1342 { 1343 u64 upper_num, lower_num; 1344 1345 #ifdef __BIG_ENDIAN_BITFIELD 1346 upper_num = print_num[0]; 1347 lower_num = print_num[1]; 1348 #else 1349 upper_num = print_num[1]; 1350 lower_num = print_num[0]; 1351 #endif 1352 1353 /* shake out un-needed bits by shift/or operations */ 1354 if (left_shift_bits >= 64) { 1355 upper_num = lower_num << (left_shift_bits - 64); 1356 lower_num = 0; 1357 } else { 1358 upper_num = (upper_num << left_shift_bits) | 1359 (lower_num >> (64 - left_shift_bits)); 1360 lower_num = lower_num << left_shift_bits; 1361 } 1362 1363 if (right_shift_bits >= 64) { 1364 lower_num = upper_num >> (right_shift_bits - 64); 1365 upper_num = 0; 1366 } else { 1367 lower_num = (lower_num >> right_shift_bits) | 1368 (upper_num << (64 - right_shift_bits)); 1369 upper_num = upper_num >> right_shift_bits; 1370 } 1371 1372 #ifdef __BIG_ENDIAN_BITFIELD 1373 print_num[0] = upper_num; 1374 print_num[1] = lower_num; 1375 #else 1376 print_num[0] = lower_num; 1377 print_num[1] = upper_num; 1378 #endif 1379 } 1380 1381 static void btf_bitfield_seq_show(void *data, u8 bits_offset, 1382 u8 nr_bits, struct seq_file *m) 1383 { 1384 u16 left_shift_bits, right_shift_bits; 1385 u8 nr_copy_bytes; 1386 u8 nr_copy_bits; 1387 u64 print_num[2] = {}; 1388 1389 nr_copy_bits = nr_bits + bits_offset; 1390 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1391 1392 memcpy(print_num, data, nr_copy_bytes); 1393 1394 #ifdef __BIG_ENDIAN_BITFIELD 1395 left_shift_bits = bits_offset; 1396 #else 1397 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 1398 #endif 1399 right_shift_bits = BITS_PER_U128 - nr_bits; 1400 1401 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 1402 btf_int128_print(m, print_num); 1403 } 1404 1405 1406 static void btf_int_bits_seq_show(const struct btf *btf, 1407 const struct btf_type *t, 1408 void *data, u8 bits_offset, 1409 struct seq_file *m) 1410 { 1411 u32 int_data = btf_type_int(t); 1412 u8 nr_bits = BTF_INT_BITS(int_data); 1413 u8 total_bits_offset; 1414 1415 /* 1416 * bits_offset is at most 7. 1417 * BTF_INT_OFFSET() cannot exceed 128 bits. 1418 */ 1419 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1420 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1421 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1422 btf_bitfield_seq_show(data, bits_offset, nr_bits, m); 1423 } 1424 1425 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1426 u32 type_id, void *data, u8 bits_offset, 1427 struct seq_file *m) 1428 { 1429 u32 int_data = btf_type_int(t); 1430 u8 encoding = BTF_INT_ENCODING(int_data); 1431 bool sign = encoding & BTF_INT_SIGNED; 1432 u8 nr_bits = BTF_INT_BITS(int_data); 1433 1434 if (bits_offset || BTF_INT_OFFSET(int_data) || 1435 BITS_PER_BYTE_MASKED(nr_bits)) { 1436 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1437 return; 1438 } 1439 1440 switch (nr_bits) { 1441 case 128: 1442 btf_int128_print(m, data); 1443 break; 1444 case 64: 1445 if (sign) 1446 seq_printf(m, "%lld", *(s64 *)data); 1447 else 1448 seq_printf(m, "%llu", *(u64 *)data); 1449 break; 1450 case 32: 1451 if (sign) 1452 seq_printf(m, "%d", *(s32 *)data); 1453 else 1454 seq_printf(m, "%u", *(u32 *)data); 1455 break; 1456 case 16: 1457 if (sign) 1458 seq_printf(m, "%d", *(s16 *)data); 1459 else 1460 seq_printf(m, "%u", *(u16 *)data); 1461 break; 1462 case 8: 1463 if (sign) 1464 seq_printf(m, "%d", *(s8 *)data); 1465 else 1466 seq_printf(m, "%u", *(u8 *)data); 1467 break; 1468 default: 1469 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1470 } 1471 } 1472 1473 static const struct btf_kind_operations int_ops = { 1474 .check_meta = btf_int_check_meta, 1475 .resolve = btf_df_resolve, 1476 .check_member = btf_int_check_member, 1477 .check_kflag_member = btf_int_check_kflag_member, 1478 .log_details = btf_int_log, 1479 .seq_show = btf_int_seq_show, 1480 }; 1481 1482 static int btf_modifier_check_member(struct btf_verifier_env *env, 1483 const struct btf_type *struct_type, 1484 const struct btf_member *member, 1485 const struct btf_type *member_type) 1486 { 1487 const struct btf_type *resolved_type; 1488 u32 resolved_type_id = member->type; 1489 struct btf_member resolved_member; 1490 struct btf *btf = env->btf; 1491 1492 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1493 if (!resolved_type) { 1494 btf_verifier_log_member(env, struct_type, member, 1495 "Invalid member"); 1496 return -EINVAL; 1497 } 1498 1499 resolved_member = *member; 1500 resolved_member.type = resolved_type_id; 1501 1502 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1503 &resolved_member, 1504 resolved_type); 1505 } 1506 1507 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 1508 const struct btf_type *struct_type, 1509 const struct btf_member *member, 1510 const struct btf_type *member_type) 1511 { 1512 const struct btf_type *resolved_type; 1513 u32 resolved_type_id = member->type; 1514 struct btf_member resolved_member; 1515 struct btf *btf = env->btf; 1516 1517 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1518 if (!resolved_type) { 1519 btf_verifier_log_member(env, struct_type, member, 1520 "Invalid member"); 1521 return -EINVAL; 1522 } 1523 1524 resolved_member = *member; 1525 resolved_member.type = resolved_type_id; 1526 1527 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 1528 &resolved_member, 1529 resolved_type); 1530 } 1531 1532 static int btf_ptr_check_member(struct btf_verifier_env *env, 1533 const struct btf_type *struct_type, 1534 const struct btf_member *member, 1535 const struct btf_type *member_type) 1536 { 1537 u32 struct_size, struct_bits_off, bytes_offset; 1538 1539 struct_size = struct_type->size; 1540 struct_bits_off = member->offset; 1541 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1542 1543 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1544 btf_verifier_log_member(env, struct_type, member, 1545 "Member is not byte aligned"); 1546 return -EINVAL; 1547 } 1548 1549 if (struct_size - bytes_offset < sizeof(void *)) { 1550 btf_verifier_log_member(env, struct_type, member, 1551 "Member exceeds struct_size"); 1552 return -EINVAL; 1553 } 1554 1555 return 0; 1556 } 1557 1558 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1559 const struct btf_type *t, 1560 u32 meta_left) 1561 { 1562 if (btf_type_vlen(t)) { 1563 btf_verifier_log_type(env, t, "vlen != 0"); 1564 return -EINVAL; 1565 } 1566 1567 if (btf_type_kflag(t)) { 1568 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1569 return -EINVAL; 1570 } 1571 1572 if (!BTF_TYPE_ID_VALID(t->type)) { 1573 btf_verifier_log_type(env, t, "Invalid type_id"); 1574 return -EINVAL; 1575 } 1576 1577 /* typedef type must have a valid name, and other ref types, 1578 * volatile, const, restrict, should have a null name. 1579 */ 1580 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 1581 if (!t->name_off || 1582 !btf_name_valid_identifier(env->btf, t->name_off)) { 1583 btf_verifier_log_type(env, t, "Invalid name"); 1584 return -EINVAL; 1585 } 1586 } else { 1587 if (t->name_off) { 1588 btf_verifier_log_type(env, t, "Invalid name"); 1589 return -EINVAL; 1590 } 1591 } 1592 1593 btf_verifier_log_type(env, t, NULL); 1594 1595 return 0; 1596 } 1597 1598 static int btf_modifier_resolve(struct btf_verifier_env *env, 1599 const struct resolve_vertex *v) 1600 { 1601 const struct btf_type *t = v->t; 1602 const struct btf_type *next_type; 1603 u32 next_type_id = t->type; 1604 struct btf *btf = env->btf; 1605 u32 next_type_size = 0; 1606 1607 next_type = btf_type_by_id(btf, next_type_id); 1608 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1609 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1610 return -EINVAL; 1611 } 1612 1613 if (!env_type_is_resolve_sink(env, next_type) && 1614 !env_type_is_resolved(env, next_type_id)) 1615 return env_stack_push(env, next_type, next_type_id); 1616 1617 /* Figure out the resolved next_type_id with size. 1618 * They will be stored in the current modifier's 1619 * resolved_ids and resolved_sizes such that it can 1620 * save us a few type-following when we use it later (e.g. in 1621 * pretty print). 1622 */ 1623 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) { 1624 if (env_type_is_resolved(env, next_type_id)) 1625 next_type = btf_type_id_resolve(btf, &next_type_id); 1626 1627 /* "typedef void new_void", "const void"...etc */ 1628 if (!btf_type_is_void(next_type) && 1629 !btf_type_is_fwd(next_type) && 1630 !btf_type_is_func_proto(next_type)) { 1631 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1632 return -EINVAL; 1633 } 1634 } 1635 1636 env_stack_pop_resolved(env, next_type_id, next_type_size); 1637 1638 return 0; 1639 } 1640 1641 static int btf_var_resolve(struct btf_verifier_env *env, 1642 const struct resolve_vertex *v) 1643 { 1644 const struct btf_type *next_type; 1645 const struct btf_type *t = v->t; 1646 u32 next_type_id = t->type; 1647 struct btf *btf = env->btf; 1648 u32 next_type_size; 1649 1650 next_type = btf_type_by_id(btf, next_type_id); 1651 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1652 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1653 return -EINVAL; 1654 } 1655 1656 if (!env_type_is_resolve_sink(env, next_type) && 1657 !env_type_is_resolved(env, next_type_id)) 1658 return env_stack_push(env, next_type, next_type_id); 1659 1660 if (btf_type_is_modifier(next_type)) { 1661 const struct btf_type *resolved_type; 1662 u32 resolved_type_id; 1663 1664 resolved_type_id = next_type_id; 1665 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1666 1667 if (btf_type_is_ptr(resolved_type) && 1668 !env_type_is_resolve_sink(env, resolved_type) && 1669 !env_type_is_resolved(env, resolved_type_id)) 1670 return env_stack_push(env, resolved_type, 1671 resolved_type_id); 1672 } 1673 1674 /* We must resolve to something concrete at this point, no 1675 * forward types or similar that would resolve to size of 1676 * zero is allowed. 1677 */ 1678 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) { 1679 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1680 return -EINVAL; 1681 } 1682 1683 env_stack_pop_resolved(env, next_type_id, next_type_size); 1684 1685 return 0; 1686 } 1687 1688 static int btf_ptr_resolve(struct btf_verifier_env *env, 1689 const struct resolve_vertex *v) 1690 { 1691 const struct btf_type *next_type; 1692 const struct btf_type *t = v->t; 1693 u32 next_type_id = t->type; 1694 struct btf *btf = env->btf; 1695 1696 next_type = btf_type_by_id(btf, next_type_id); 1697 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 1698 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1699 return -EINVAL; 1700 } 1701 1702 if (!env_type_is_resolve_sink(env, next_type) && 1703 !env_type_is_resolved(env, next_type_id)) 1704 return env_stack_push(env, next_type, next_type_id); 1705 1706 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1707 * the modifier may have stopped resolving when it was resolved 1708 * to a ptr (last-resolved-ptr). 1709 * 1710 * We now need to continue from the last-resolved-ptr to 1711 * ensure the last-resolved-ptr will not referring back to 1712 * the currenct ptr (t). 1713 */ 1714 if (btf_type_is_modifier(next_type)) { 1715 const struct btf_type *resolved_type; 1716 u32 resolved_type_id; 1717 1718 resolved_type_id = next_type_id; 1719 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1720 1721 if (btf_type_is_ptr(resolved_type) && 1722 !env_type_is_resolve_sink(env, resolved_type) && 1723 !env_type_is_resolved(env, resolved_type_id)) 1724 return env_stack_push(env, resolved_type, 1725 resolved_type_id); 1726 } 1727 1728 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1729 if (env_type_is_resolved(env, next_type_id)) 1730 next_type = btf_type_id_resolve(btf, &next_type_id); 1731 1732 if (!btf_type_is_void(next_type) && 1733 !btf_type_is_fwd(next_type) && 1734 !btf_type_is_func_proto(next_type)) { 1735 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1736 return -EINVAL; 1737 } 1738 } 1739 1740 env_stack_pop_resolved(env, next_type_id, 0); 1741 1742 return 0; 1743 } 1744 1745 static void btf_modifier_seq_show(const struct btf *btf, 1746 const struct btf_type *t, 1747 u32 type_id, void *data, 1748 u8 bits_offset, struct seq_file *m) 1749 { 1750 t = btf_type_id_resolve(btf, &type_id); 1751 1752 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1753 } 1754 1755 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t, 1756 u32 type_id, void *data, u8 bits_offset, 1757 struct seq_file *m) 1758 { 1759 t = btf_type_id_resolve(btf, &type_id); 1760 1761 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1762 } 1763 1764 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1765 u32 type_id, void *data, u8 bits_offset, 1766 struct seq_file *m) 1767 { 1768 /* It is a hashed value */ 1769 seq_printf(m, "%p", *(void **)data); 1770 } 1771 1772 static void btf_ref_type_log(struct btf_verifier_env *env, 1773 const struct btf_type *t) 1774 { 1775 btf_verifier_log(env, "type_id=%u", t->type); 1776 } 1777 1778 static struct btf_kind_operations modifier_ops = { 1779 .check_meta = btf_ref_type_check_meta, 1780 .resolve = btf_modifier_resolve, 1781 .check_member = btf_modifier_check_member, 1782 .check_kflag_member = btf_modifier_check_kflag_member, 1783 .log_details = btf_ref_type_log, 1784 .seq_show = btf_modifier_seq_show, 1785 }; 1786 1787 static struct btf_kind_operations ptr_ops = { 1788 .check_meta = btf_ref_type_check_meta, 1789 .resolve = btf_ptr_resolve, 1790 .check_member = btf_ptr_check_member, 1791 .check_kflag_member = btf_generic_check_kflag_member, 1792 .log_details = btf_ref_type_log, 1793 .seq_show = btf_ptr_seq_show, 1794 }; 1795 1796 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1797 const struct btf_type *t, 1798 u32 meta_left) 1799 { 1800 if (btf_type_vlen(t)) { 1801 btf_verifier_log_type(env, t, "vlen != 0"); 1802 return -EINVAL; 1803 } 1804 1805 if (t->type) { 1806 btf_verifier_log_type(env, t, "type != 0"); 1807 return -EINVAL; 1808 } 1809 1810 /* fwd type must have a valid name */ 1811 if (!t->name_off || 1812 !btf_name_valid_identifier(env->btf, t->name_off)) { 1813 btf_verifier_log_type(env, t, "Invalid name"); 1814 return -EINVAL; 1815 } 1816 1817 btf_verifier_log_type(env, t, NULL); 1818 1819 return 0; 1820 } 1821 1822 static void btf_fwd_type_log(struct btf_verifier_env *env, 1823 const struct btf_type *t) 1824 { 1825 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 1826 } 1827 1828 static struct btf_kind_operations fwd_ops = { 1829 .check_meta = btf_fwd_check_meta, 1830 .resolve = btf_df_resolve, 1831 .check_member = btf_df_check_member, 1832 .check_kflag_member = btf_df_check_kflag_member, 1833 .log_details = btf_fwd_type_log, 1834 .seq_show = btf_df_seq_show, 1835 }; 1836 1837 static int btf_array_check_member(struct btf_verifier_env *env, 1838 const struct btf_type *struct_type, 1839 const struct btf_member *member, 1840 const struct btf_type *member_type) 1841 { 1842 u32 struct_bits_off = member->offset; 1843 u32 struct_size, bytes_offset; 1844 u32 array_type_id, array_size; 1845 struct btf *btf = env->btf; 1846 1847 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1848 btf_verifier_log_member(env, struct_type, member, 1849 "Member is not byte aligned"); 1850 return -EINVAL; 1851 } 1852 1853 array_type_id = member->type; 1854 btf_type_id_size(btf, &array_type_id, &array_size); 1855 struct_size = struct_type->size; 1856 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1857 if (struct_size - bytes_offset < array_size) { 1858 btf_verifier_log_member(env, struct_type, member, 1859 "Member exceeds struct_size"); 1860 return -EINVAL; 1861 } 1862 1863 return 0; 1864 } 1865 1866 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1867 const struct btf_type *t, 1868 u32 meta_left) 1869 { 1870 const struct btf_array *array = btf_type_array(t); 1871 u32 meta_needed = sizeof(*array); 1872 1873 if (meta_left < meta_needed) { 1874 btf_verifier_log_basic(env, t, 1875 "meta_left:%u meta_needed:%u", 1876 meta_left, meta_needed); 1877 return -EINVAL; 1878 } 1879 1880 /* array type should not have a name */ 1881 if (t->name_off) { 1882 btf_verifier_log_type(env, t, "Invalid name"); 1883 return -EINVAL; 1884 } 1885 1886 if (btf_type_vlen(t)) { 1887 btf_verifier_log_type(env, t, "vlen != 0"); 1888 return -EINVAL; 1889 } 1890 1891 if (btf_type_kflag(t)) { 1892 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 1893 return -EINVAL; 1894 } 1895 1896 if (t->size) { 1897 btf_verifier_log_type(env, t, "size != 0"); 1898 return -EINVAL; 1899 } 1900 1901 /* Array elem type and index type cannot be in type void, 1902 * so !array->type and !array->index_type are not allowed. 1903 */ 1904 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1905 btf_verifier_log_type(env, t, "Invalid elem"); 1906 return -EINVAL; 1907 } 1908 1909 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1910 btf_verifier_log_type(env, t, "Invalid index"); 1911 return -EINVAL; 1912 } 1913 1914 btf_verifier_log_type(env, t, NULL); 1915 1916 return meta_needed; 1917 } 1918 1919 static int btf_array_resolve(struct btf_verifier_env *env, 1920 const struct resolve_vertex *v) 1921 { 1922 const struct btf_array *array = btf_type_array(v->t); 1923 const struct btf_type *elem_type, *index_type; 1924 u32 elem_type_id, index_type_id; 1925 struct btf *btf = env->btf; 1926 u32 elem_size; 1927 1928 /* Check array->index_type */ 1929 index_type_id = array->index_type; 1930 index_type = btf_type_by_id(btf, index_type_id); 1931 if (btf_type_nosize_or_null(index_type) || 1932 btf_type_is_resolve_source_only(index_type)) { 1933 btf_verifier_log_type(env, v->t, "Invalid index"); 1934 return -EINVAL; 1935 } 1936 1937 if (!env_type_is_resolve_sink(env, index_type) && 1938 !env_type_is_resolved(env, index_type_id)) 1939 return env_stack_push(env, index_type, index_type_id); 1940 1941 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1942 if (!index_type || !btf_type_is_int(index_type) || 1943 !btf_type_int_is_regular(index_type)) { 1944 btf_verifier_log_type(env, v->t, "Invalid index"); 1945 return -EINVAL; 1946 } 1947 1948 /* Check array->type */ 1949 elem_type_id = array->type; 1950 elem_type = btf_type_by_id(btf, elem_type_id); 1951 if (btf_type_nosize_or_null(elem_type) || 1952 btf_type_is_resolve_source_only(elem_type)) { 1953 btf_verifier_log_type(env, v->t, 1954 "Invalid elem"); 1955 return -EINVAL; 1956 } 1957 1958 if (!env_type_is_resolve_sink(env, elem_type) && 1959 !env_type_is_resolved(env, elem_type_id)) 1960 return env_stack_push(env, elem_type, elem_type_id); 1961 1962 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1963 if (!elem_type) { 1964 btf_verifier_log_type(env, v->t, "Invalid elem"); 1965 return -EINVAL; 1966 } 1967 1968 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1969 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1970 return -EINVAL; 1971 } 1972 1973 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1974 btf_verifier_log_type(env, v->t, 1975 "Array size overflows U32_MAX"); 1976 return -EINVAL; 1977 } 1978 1979 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1980 1981 return 0; 1982 } 1983 1984 static void btf_array_log(struct btf_verifier_env *env, 1985 const struct btf_type *t) 1986 { 1987 const struct btf_array *array = btf_type_array(t); 1988 1989 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1990 array->type, array->index_type, array->nelems); 1991 } 1992 1993 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1994 u32 type_id, void *data, u8 bits_offset, 1995 struct seq_file *m) 1996 { 1997 const struct btf_array *array = btf_type_array(t); 1998 const struct btf_kind_operations *elem_ops; 1999 const struct btf_type *elem_type; 2000 u32 i, elem_size, elem_type_id; 2001 2002 elem_type_id = array->type; 2003 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2004 elem_ops = btf_type_ops(elem_type); 2005 seq_puts(m, "["); 2006 for (i = 0; i < array->nelems; i++) { 2007 if (i) 2008 seq_puts(m, ","); 2009 2010 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 2011 bits_offset, m); 2012 data += elem_size; 2013 } 2014 seq_puts(m, "]"); 2015 } 2016 2017 static struct btf_kind_operations array_ops = { 2018 .check_meta = btf_array_check_meta, 2019 .resolve = btf_array_resolve, 2020 .check_member = btf_array_check_member, 2021 .check_kflag_member = btf_generic_check_kflag_member, 2022 .log_details = btf_array_log, 2023 .seq_show = btf_array_seq_show, 2024 }; 2025 2026 static int btf_struct_check_member(struct btf_verifier_env *env, 2027 const struct btf_type *struct_type, 2028 const struct btf_member *member, 2029 const struct btf_type *member_type) 2030 { 2031 u32 struct_bits_off = member->offset; 2032 u32 struct_size, bytes_offset; 2033 2034 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2035 btf_verifier_log_member(env, struct_type, member, 2036 "Member is not byte aligned"); 2037 return -EINVAL; 2038 } 2039 2040 struct_size = struct_type->size; 2041 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2042 if (struct_size - bytes_offset < member_type->size) { 2043 btf_verifier_log_member(env, struct_type, member, 2044 "Member exceeds struct_size"); 2045 return -EINVAL; 2046 } 2047 2048 return 0; 2049 } 2050 2051 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2052 const struct btf_type *t, 2053 u32 meta_left) 2054 { 2055 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2056 const struct btf_member *member; 2057 u32 meta_needed, last_offset; 2058 struct btf *btf = env->btf; 2059 u32 struct_size = t->size; 2060 u32 offset; 2061 u16 i; 2062 2063 meta_needed = btf_type_vlen(t) * sizeof(*member); 2064 if (meta_left < meta_needed) { 2065 btf_verifier_log_basic(env, t, 2066 "meta_left:%u meta_needed:%u", 2067 meta_left, meta_needed); 2068 return -EINVAL; 2069 } 2070 2071 /* struct type either no name or a valid one */ 2072 if (t->name_off && 2073 !btf_name_valid_identifier(env->btf, t->name_off)) { 2074 btf_verifier_log_type(env, t, "Invalid name"); 2075 return -EINVAL; 2076 } 2077 2078 btf_verifier_log_type(env, t, NULL); 2079 2080 last_offset = 0; 2081 for_each_member(i, t, member) { 2082 if (!btf_name_offset_valid(btf, member->name_off)) { 2083 btf_verifier_log_member(env, t, member, 2084 "Invalid member name_offset:%u", 2085 member->name_off); 2086 return -EINVAL; 2087 } 2088 2089 /* struct member either no name or a valid one */ 2090 if (member->name_off && 2091 !btf_name_valid_identifier(btf, member->name_off)) { 2092 btf_verifier_log_member(env, t, member, "Invalid name"); 2093 return -EINVAL; 2094 } 2095 /* A member cannot be in type void */ 2096 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 2097 btf_verifier_log_member(env, t, member, 2098 "Invalid type_id"); 2099 return -EINVAL; 2100 } 2101 2102 offset = btf_member_bit_offset(t, member); 2103 if (is_union && offset) { 2104 btf_verifier_log_member(env, t, member, 2105 "Invalid member bits_offset"); 2106 return -EINVAL; 2107 } 2108 2109 /* 2110 * ">" instead of ">=" because the last member could be 2111 * "char a[0];" 2112 */ 2113 if (last_offset > offset) { 2114 btf_verifier_log_member(env, t, member, 2115 "Invalid member bits_offset"); 2116 return -EINVAL; 2117 } 2118 2119 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 2120 btf_verifier_log_member(env, t, member, 2121 "Member bits_offset exceeds its struct size"); 2122 return -EINVAL; 2123 } 2124 2125 btf_verifier_log_member(env, t, member, NULL); 2126 last_offset = offset; 2127 } 2128 2129 return meta_needed; 2130 } 2131 2132 static int btf_struct_resolve(struct btf_verifier_env *env, 2133 const struct resolve_vertex *v) 2134 { 2135 const struct btf_member *member; 2136 int err; 2137 u16 i; 2138 2139 /* Before continue resolving the next_member, 2140 * ensure the last member is indeed resolved to a 2141 * type with size info. 2142 */ 2143 if (v->next_member) { 2144 const struct btf_type *last_member_type; 2145 const struct btf_member *last_member; 2146 u16 last_member_type_id; 2147 2148 last_member = btf_type_member(v->t) + v->next_member - 1; 2149 last_member_type_id = last_member->type; 2150 if (WARN_ON_ONCE(!env_type_is_resolved(env, 2151 last_member_type_id))) 2152 return -EINVAL; 2153 2154 last_member_type = btf_type_by_id(env->btf, 2155 last_member_type_id); 2156 if (btf_type_kflag(v->t)) 2157 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 2158 last_member, 2159 last_member_type); 2160 else 2161 err = btf_type_ops(last_member_type)->check_member(env, v->t, 2162 last_member, 2163 last_member_type); 2164 if (err) 2165 return err; 2166 } 2167 2168 for_each_member_from(i, v->next_member, v->t, member) { 2169 u32 member_type_id = member->type; 2170 const struct btf_type *member_type = btf_type_by_id(env->btf, 2171 member_type_id); 2172 2173 if (btf_type_nosize_or_null(member_type) || 2174 btf_type_is_resolve_source_only(member_type)) { 2175 btf_verifier_log_member(env, v->t, member, 2176 "Invalid member"); 2177 return -EINVAL; 2178 } 2179 2180 if (!env_type_is_resolve_sink(env, member_type) && 2181 !env_type_is_resolved(env, member_type_id)) { 2182 env_stack_set_next_member(env, i + 1); 2183 return env_stack_push(env, member_type, member_type_id); 2184 } 2185 2186 if (btf_type_kflag(v->t)) 2187 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 2188 member, 2189 member_type); 2190 else 2191 err = btf_type_ops(member_type)->check_member(env, v->t, 2192 member, 2193 member_type); 2194 if (err) 2195 return err; 2196 } 2197 2198 env_stack_pop_resolved(env, 0, 0); 2199 2200 return 0; 2201 } 2202 2203 static void btf_struct_log(struct btf_verifier_env *env, 2204 const struct btf_type *t) 2205 { 2206 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2207 } 2208 2209 /* find 'struct bpf_spin_lock' in map value. 2210 * return >= 0 offset if found 2211 * and < 0 in case of error 2212 */ 2213 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 2214 { 2215 const struct btf_member *member; 2216 u32 i, off = -ENOENT; 2217 2218 if (!__btf_type_is_struct(t)) 2219 return -EINVAL; 2220 2221 for_each_member(i, t, member) { 2222 const struct btf_type *member_type = btf_type_by_id(btf, 2223 member->type); 2224 if (!__btf_type_is_struct(member_type)) 2225 continue; 2226 if (member_type->size != sizeof(struct bpf_spin_lock)) 2227 continue; 2228 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), 2229 "bpf_spin_lock")) 2230 continue; 2231 if (off != -ENOENT) 2232 /* only one 'struct bpf_spin_lock' is allowed */ 2233 return -E2BIG; 2234 off = btf_member_bit_offset(t, member); 2235 if (off % 8) 2236 /* valid C code cannot generate such BTF */ 2237 return -EINVAL; 2238 off /= 8; 2239 if (off % __alignof__(struct bpf_spin_lock)) 2240 /* valid struct bpf_spin_lock will be 4 byte aligned */ 2241 return -EINVAL; 2242 } 2243 return off; 2244 } 2245 2246 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 2247 u32 type_id, void *data, u8 bits_offset, 2248 struct seq_file *m) 2249 { 2250 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 2251 const struct btf_member *member; 2252 u32 i; 2253 2254 seq_puts(m, "{"); 2255 for_each_member(i, t, member) { 2256 const struct btf_type *member_type = btf_type_by_id(btf, 2257 member->type); 2258 const struct btf_kind_operations *ops; 2259 u32 member_offset, bitfield_size; 2260 u32 bytes_offset; 2261 u8 bits8_offset; 2262 2263 if (i) 2264 seq_puts(m, seq); 2265 2266 member_offset = btf_member_bit_offset(t, member); 2267 bitfield_size = btf_member_bitfield_size(t, member); 2268 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 2269 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 2270 if (bitfield_size) { 2271 btf_bitfield_seq_show(data + bytes_offset, bits8_offset, 2272 bitfield_size, m); 2273 } else { 2274 ops = btf_type_ops(member_type); 2275 ops->seq_show(btf, member_type, member->type, 2276 data + bytes_offset, bits8_offset, m); 2277 } 2278 } 2279 seq_puts(m, "}"); 2280 } 2281 2282 static struct btf_kind_operations struct_ops = { 2283 .check_meta = btf_struct_check_meta, 2284 .resolve = btf_struct_resolve, 2285 .check_member = btf_struct_check_member, 2286 .check_kflag_member = btf_generic_check_kflag_member, 2287 .log_details = btf_struct_log, 2288 .seq_show = btf_struct_seq_show, 2289 }; 2290 2291 static int btf_enum_check_member(struct btf_verifier_env *env, 2292 const struct btf_type *struct_type, 2293 const struct btf_member *member, 2294 const struct btf_type *member_type) 2295 { 2296 u32 struct_bits_off = member->offset; 2297 u32 struct_size, bytes_offset; 2298 2299 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2300 btf_verifier_log_member(env, struct_type, member, 2301 "Member is not byte aligned"); 2302 return -EINVAL; 2303 } 2304 2305 struct_size = struct_type->size; 2306 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2307 if (struct_size - bytes_offset < sizeof(int)) { 2308 btf_verifier_log_member(env, struct_type, member, 2309 "Member exceeds struct_size"); 2310 return -EINVAL; 2311 } 2312 2313 return 0; 2314 } 2315 2316 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 2317 const struct btf_type *struct_type, 2318 const struct btf_member *member, 2319 const struct btf_type *member_type) 2320 { 2321 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 2322 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 2323 2324 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2325 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2326 if (!nr_bits) { 2327 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2328 btf_verifier_log_member(env, struct_type, member, 2329 "Member is not byte aligned"); 2330 return -EINVAL; 2331 } 2332 2333 nr_bits = int_bitsize; 2334 } else if (nr_bits > int_bitsize) { 2335 btf_verifier_log_member(env, struct_type, member, 2336 "Invalid member bitfield_size"); 2337 return -EINVAL; 2338 } 2339 2340 struct_size = struct_type->size; 2341 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 2342 if (struct_size < bytes_end) { 2343 btf_verifier_log_member(env, struct_type, member, 2344 "Member exceeds struct_size"); 2345 return -EINVAL; 2346 } 2347 2348 return 0; 2349 } 2350 2351 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 2352 const struct btf_type *t, 2353 u32 meta_left) 2354 { 2355 const struct btf_enum *enums = btf_type_enum(t); 2356 struct btf *btf = env->btf; 2357 u16 i, nr_enums; 2358 u32 meta_needed; 2359 2360 nr_enums = btf_type_vlen(t); 2361 meta_needed = nr_enums * sizeof(*enums); 2362 2363 if (meta_left < meta_needed) { 2364 btf_verifier_log_basic(env, t, 2365 "meta_left:%u meta_needed:%u", 2366 meta_left, meta_needed); 2367 return -EINVAL; 2368 } 2369 2370 if (btf_type_kflag(t)) { 2371 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2372 return -EINVAL; 2373 } 2374 2375 if (t->size != sizeof(int)) { 2376 btf_verifier_log_type(env, t, "Expected size:%zu", 2377 sizeof(int)); 2378 return -EINVAL; 2379 } 2380 2381 /* enum type either no name or a valid one */ 2382 if (t->name_off && 2383 !btf_name_valid_identifier(env->btf, t->name_off)) { 2384 btf_verifier_log_type(env, t, "Invalid name"); 2385 return -EINVAL; 2386 } 2387 2388 btf_verifier_log_type(env, t, NULL); 2389 2390 for (i = 0; i < nr_enums; i++) { 2391 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 2392 btf_verifier_log(env, "\tInvalid name_offset:%u", 2393 enums[i].name_off); 2394 return -EINVAL; 2395 } 2396 2397 /* enum member must have a valid name */ 2398 if (!enums[i].name_off || 2399 !btf_name_valid_identifier(btf, enums[i].name_off)) { 2400 btf_verifier_log_type(env, t, "Invalid name"); 2401 return -EINVAL; 2402 } 2403 2404 2405 btf_verifier_log(env, "\t%s val=%d\n", 2406 __btf_name_by_offset(btf, enums[i].name_off), 2407 enums[i].val); 2408 } 2409 2410 return meta_needed; 2411 } 2412 2413 static void btf_enum_log(struct btf_verifier_env *env, 2414 const struct btf_type *t) 2415 { 2416 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2417 } 2418 2419 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 2420 u32 type_id, void *data, u8 bits_offset, 2421 struct seq_file *m) 2422 { 2423 const struct btf_enum *enums = btf_type_enum(t); 2424 u32 i, nr_enums = btf_type_vlen(t); 2425 int v = *(int *)data; 2426 2427 for (i = 0; i < nr_enums; i++) { 2428 if (v == enums[i].val) { 2429 seq_printf(m, "%s", 2430 __btf_name_by_offset(btf, 2431 enums[i].name_off)); 2432 return; 2433 } 2434 } 2435 2436 seq_printf(m, "%d", v); 2437 } 2438 2439 static struct btf_kind_operations enum_ops = { 2440 .check_meta = btf_enum_check_meta, 2441 .resolve = btf_df_resolve, 2442 .check_member = btf_enum_check_member, 2443 .check_kflag_member = btf_enum_check_kflag_member, 2444 .log_details = btf_enum_log, 2445 .seq_show = btf_enum_seq_show, 2446 }; 2447 2448 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 2449 const struct btf_type *t, 2450 u32 meta_left) 2451 { 2452 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 2453 2454 if (meta_left < meta_needed) { 2455 btf_verifier_log_basic(env, t, 2456 "meta_left:%u meta_needed:%u", 2457 meta_left, meta_needed); 2458 return -EINVAL; 2459 } 2460 2461 if (t->name_off) { 2462 btf_verifier_log_type(env, t, "Invalid name"); 2463 return -EINVAL; 2464 } 2465 2466 if (btf_type_kflag(t)) { 2467 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2468 return -EINVAL; 2469 } 2470 2471 btf_verifier_log_type(env, t, NULL); 2472 2473 return meta_needed; 2474 } 2475 2476 static void btf_func_proto_log(struct btf_verifier_env *env, 2477 const struct btf_type *t) 2478 { 2479 const struct btf_param *args = (const struct btf_param *)(t + 1); 2480 u16 nr_args = btf_type_vlen(t), i; 2481 2482 btf_verifier_log(env, "return=%u args=(", t->type); 2483 if (!nr_args) { 2484 btf_verifier_log(env, "void"); 2485 goto done; 2486 } 2487 2488 if (nr_args == 1 && !args[0].type) { 2489 /* Only one vararg */ 2490 btf_verifier_log(env, "vararg"); 2491 goto done; 2492 } 2493 2494 btf_verifier_log(env, "%u %s", args[0].type, 2495 __btf_name_by_offset(env->btf, 2496 args[0].name_off)); 2497 for (i = 1; i < nr_args - 1; i++) 2498 btf_verifier_log(env, ", %u %s", args[i].type, 2499 __btf_name_by_offset(env->btf, 2500 args[i].name_off)); 2501 2502 if (nr_args > 1) { 2503 const struct btf_param *last_arg = &args[nr_args - 1]; 2504 2505 if (last_arg->type) 2506 btf_verifier_log(env, ", %u %s", last_arg->type, 2507 __btf_name_by_offset(env->btf, 2508 last_arg->name_off)); 2509 else 2510 btf_verifier_log(env, ", vararg"); 2511 } 2512 2513 done: 2514 btf_verifier_log(env, ")"); 2515 } 2516 2517 static struct btf_kind_operations func_proto_ops = { 2518 .check_meta = btf_func_proto_check_meta, 2519 .resolve = btf_df_resolve, 2520 /* 2521 * BTF_KIND_FUNC_PROTO cannot be directly referred by 2522 * a struct's member. 2523 * 2524 * It should be a funciton pointer instead. 2525 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 2526 * 2527 * Hence, there is no btf_func_check_member(). 2528 */ 2529 .check_member = btf_df_check_member, 2530 .check_kflag_member = btf_df_check_kflag_member, 2531 .log_details = btf_func_proto_log, 2532 .seq_show = btf_df_seq_show, 2533 }; 2534 2535 static s32 btf_func_check_meta(struct btf_verifier_env *env, 2536 const struct btf_type *t, 2537 u32 meta_left) 2538 { 2539 if (!t->name_off || 2540 !btf_name_valid_identifier(env->btf, t->name_off)) { 2541 btf_verifier_log_type(env, t, "Invalid name"); 2542 return -EINVAL; 2543 } 2544 2545 if (btf_type_vlen(t)) { 2546 btf_verifier_log_type(env, t, "vlen != 0"); 2547 return -EINVAL; 2548 } 2549 2550 if (btf_type_kflag(t)) { 2551 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2552 return -EINVAL; 2553 } 2554 2555 btf_verifier_log_type(env, t, NULL); 2556 2557 return 0; 2558 } 2559 2560 static struct btf_kind_operations func_ops = { 2561 .check_meta = btf_func_check_meta, 2562 .resolve = btf_df_resolve, 2563 .check_member = btf_df_check_member, 2564 .check_kflag_member = btf_df_check_kflag_member, 2565 .log_details = btf_ref_type_log, 2566 .seq_show = btf_df_seq_show, 2567 }; 2568 2569 static s32 btf_var_check_meta(struct btf_verifier_env *env, 2570 const struct btf_type *t, 2571 u32 meta_left) 2572 { 2573 const struct btf_var *var; 2574 u32 meta_needed = sizeof(*var); 2575 2576 if (meta_left < meta_needed) { 2577 btf_verifier_log_basic(env, t, 2578 "meta_left:%u meta_needed:%u", 2579 meta_left, meta_needed); 2580 return -EINVAL; 2581 } 2582 2583 if (btf_type_vlen(t)) { 2584 btf_verifier_log_type(env, t, "vlen != 0"); 2585 return -EINVAL; 2586 } 2587 2588 if (btf_type_kflag(t)) { 2589 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2590 return -EINVAL; 2591 } 2592 2593 if (!t->name_off || 2594 !__btf_name_valid(env->btf, t->name_off, true)) { 2595 btf_verifier_log_type(env, t, "Invalid name"); 2596 return -EINVAL; 2597 } 2598 2599 /* A var cannot be in type void */ 2600 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 2601 btf_verifier_log_type(env, t, "Invalid type_id"); 2602 return -EINVAL; 2603 } 2604 2605 var = btf_type_var(t); 2606 if (var->linkage != BTF_VAR_STATIC && 2607 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2608 btf_verifier_log_type(env, t, "Linkage not supported"); 2609 return -EINVAL; 2610 } 2611 2612 btf_verifier_log_type(env, t, NULL); 2613 2614 return meta_needed; 2615 } 2616 2617 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 2618 { 2619 const struct btf_var *var = btf_type_var(t); 2620 2621 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 2622 } 2623 2624 static const struct btf_kind_operations var_ops = { 2625 .check_meta = btf_var_check_meta, 2626 .resolve = btf_var_resolve, 2627 .check_member = btf_df_check_member, 2628 .check_kflag_member = btf_df_check_kflag_member, 2629 .log_details = btf_var_log, 2630 .seq_show = btf_var_seq_show, 2631 }; 2632 2633 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 2634 const struct btf_type *t, 2635 u32 meta_left) 2636 { 2637 const struct btf_var_secinfo *vsi; 2638 u64 last_vsi_end_off = 0, sum = 0; 2639 u32 i, meta_needed; 2640 2641 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 2642 if (meta_left < meta_needed) { 2643 btf_verifier_log_basic(env, t, 2644 "meta_left:%u meta_needed:%u", 2645 meta_left, meta_needed); 2646 return -EINVAL; 2647 } 2648 2649 if (!btf_type_vlen(t)) { 2650 btf_verifier_log_type(env, t, "vlen == 0"); 2651 return -EINVAL; 2652 } 2653 2654 if (!t->size) { 2655 btf_verifier_log_type(env, t, "size == 0"); 2656 return -EINVAL; 2657 } 2658 2659 if (btf_type_kflag(t)) { 2660 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2661 return -EINVAL; 2662 } 2663 2664 if (!t->name_off || 2665 !btf_name_valid_section(env->btf, t->name_off)) { 2666 btf_verifier_log_type(env, t, "Invalid name"); 2667 return -EINVAL; 2668 } 2669 2670 btf_verifier_log_type(env, t, NULL); 2671 2672 for_each_vsi(i, t, vsi) { 2673 /* A var cannot be in type void */ 2674 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 2675 btf_verifier_log_vsi(env, t, vsi, 2676 "Invalid type_id"); 2677 return -EINVAL; 2678 } 2679 2680 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 2681 btf_verifier_log_vsi(env, t, vsi, 2682 "Invalid offset"); 2683 return -EINVAL; 2684 } 2685 2686 if (!vsi->size || vsi->size > t->size) { 2687 btf_verifier_log_vsi(env, t, vsi, 2688 "Invalid size"); 2689 return -EINVAL; 2690 } 2691 2692 last_vsi_end_off = vsi->offset + vsi->size; 2693 if (last_vsi_end_off > t->size) { 2694 btf_verifier_log_vsi(env, t, vsi, 2695 "Invalid offset+size"); 2696 return -EINVAL; 2697 } 2698 2699 btf_verifier_log_vsi(env, t, vsi, NULL); 2700 sum += vsi->size; 2701 } 2702 2703 if (t->size < sum) { 2704 btf_verifier_log_type(env, t, "Invalid btf_info size"); 2705 return -EINVAL; 2706 } 2707 2708 return meta_needed; 2709 } 2710 2711 static int btf_datasec_resolve(struct btf_verifier_env *env, 2712 const struct resolve_vertex *v) 2713 { 2714 const struct btf_var_secinfo *vsi; 2715 struct btf *btf = env->btf; 2716 u16 i; 2717 2718 for_each_vsi_from(i, v->next_member, v->t, vsi) { 2719 u32 var_type_id = vsi->type, type_id, type_size = 0; 2720 const struct btf_type *var_type = btf_type_by_id(env->btf, 2721 var_type_id); 2722 if (!var_type || !btf_type_is_var(var_type)) { 2723 btf_verifier_log_vsi(env, v->t, vsi, 2724 "Not a VAR kind member"); 2725 return -EINVAL; 2726 } 2727 2728 if (!env_type_is_resolve_sink(env, var_type) && 2729 !env_type_is_resolved(env, var_type_id)) { 2730 env_stack_set_next_member(env, i + 1); 2731 return env_stack_push(env, var_type, var_type_id); 2732 } 2733 2734 type_id = var_type->type; 2735 if (!btf_type_id_size(btf, &type_id, &type_size)) { 2736 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 2737 return -EINVAL; 2738 } 2739 2740 if (vsi->size < type_size) { 2741 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 2742 return -EINVAL; 2743 } 2744 } 2745 2746 env_stack_pop_resolved(env, 0, 0); 2747 return 0; 2748 } 2749 2750 static void btf_datasec_log(struct btf_verifier_env *env, 2751 const struct btf_type *t) 2752 { 2753 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 2754 } 2755 2756 static void btf_datasec_seq_show(const struct btf *btf, 2757 const struct btf_type *t, u32 type_id, 2758 void *data, u8 bits_offset, 2759 struct seq_file *m) 2760 { 2761 const struct btf_var_secinfo *vsi; 2762 const struct btf_type *var; 2763 u32 i; 2764 2765 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off)); 2766 for_each_vsi(i, t, vsi) { 2767 var = btf_type_by_id(btf, vsi->type); 2768 if (i) 2769 seq_puts(m, ","); 2770 btf_type_ops(var)->seq_show(btf, var, vsi->type, 2771 data + vsi->offset, bits_offset, m); 2772 } 2773 seq_puts(m, "}"); 2774 } 2775 2776 static const struct btf_kind_operations datasec_ops = { 2777 .check_meta = btf_datasec_check_meta, 2778 .resolve = btf_datasec_resolve, 2779 .check_member = btf_df_check_member, 2780 .check_kflag_member = btf_df_check_kflag_member, 2781 .log_details = btf_datasec_log, 2782 .seq_show = btf_datasec_seq_show, 2783 }; 2784 2785 static int btf_func_proto_check(struct btf_verifier_env *env, 2786 const struct btf_type *t) 2787 { 2788 const struct btf_type *ret_type; 2789 const struct btf_param *args; 2790 const struct btf *btf; 2791 u16 nr_args, i; 2792 int err; 2793 2794 btf = env->btf; 2795 args = (const struct btf_param *)(t + 1); 2796 nr_args = btf_type_vlen(t); 2797 2798 /* Check func return type which could be "void" (t->type == 0) */ 2799 if (t->type) { 2800 u32 ret_type_id = t->type; 2801 2802 ret_type = btf_type_by_id(btf, ret_type_id); 2803 if (!ret_type) { 2804 btf_verifier_log_type(env, t, "Invalid return type"); 2805 return -EINVAL; 2806 } 2807 2808 if (btf_type_needs_resolve(ret_type) && 2809 !env_type_is_resolved(env, ret_type_id)) { 2810 err = btf_resolve(env, ret_type, ret_type_id); 2811 if (err) 2812 return err; 2813 } 2814 2815 /* Ensure the return type is a type that has a size */ 2816 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 2817 btf_verifier_log_type(env, t, "Invalid return type"); 2818 return -EINVAL; 2819 } 2820 } 2821 2822 if (!nr_args) 2823 return 0; 2824 2825 /* Last func arg type_id could be 0 if it is a vararg */ 2826 if (!args[nr_args - 1].type) { 2827 if (args[nr_args - 1].name_off) { 2828 btf_verifier_log_type(env, t, "Invalid arg#%u", 2829 nr_args); 2830 return -EINVAL; 2831 } 2832 nr_args--; 2833 } 2834 2835 err = 0; 2836 for (i = 0; i < nr_args; i++) { 2837 const struct btf_type *arg_type; 2838 u32 arg_type_id; 2839 2840 arg_type_id = args[i].type; 2841 arg_type = btf_type_by_id(btf, arg_type_id); 2842 if (!arg_type) { 2843 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2844 err = -EINVAL; 2845 break; 2846 } 2847 2848 if (args[i].name_off && 2849 (!btf_name_offset_valid(btf, args[i].name_off) || 2850 !btf_name_valid_identifier(btf, args[i].name_off))) { 2851 btf_verifier_log_type(env, t, 2852 "Invalid arg#%u", i + 1); 2853 err = -EINVAL; 2854 break; 2855 } 2856 2857 if (btf_type_needs_resolve(arg_type) && 2858 !env_type_is_resolved(env, arg_type_id)) { 2859 err = btf_resolve(env, arg_type, arg_type_id); 2860 if (err) 2861 break; 2862 } 2863 2864 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2865 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2866 err = -EINVAL; 2867 break; 2868 } 2869 } 2870 2871 return err; 2872 } 2873 2874 static int btf_func_check(struct btf_verifier_env *env, 2875 const struct btf_type *t) 2876 { 2877 const struct btf_type *proto_type; 2878 const struct btf_param *args; 2879 const struct btf *btf; 2880 u16 nr_args, i; 2881 2882 btf = env->btf; 2883 proto_type = btf_type_by_id(btf, t->type); 2884 2885 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 2886 btf_verifier_log_type(env, t, "Invalid type_id"); 2887 return -EINVAL; 2888 } 2889 2890 args = (const struct btf_param *)(proto_type + 1); 2891 nr_args = btf_type_vlen(proto_type); 2892 for (i = 0; i < nr_args; i++) { 2893 if (!args[i].name_off && args[i].type) { 2894 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2895 return -EINVAL; 2896 } 2897 } 2898 2899 return 0; 2900 } 2901 2902 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 2903 [BTF_KIND_INT] = &int_ops, 2904 [BTF_KIND_PTR] = &ptr_ops, 2905 [BTF_KIND_ARRAY] = &array_ops, 2906 [BTF_KIND_STRUCT] = &struct_ops, 2907 [BTF_KIND_UNION] = &struct_ops, 2908 [BTF_KIND_ENUM] = &enum_ops, 2909 [BTF_KIND_FWD] = &fwd_ops, 2910 [BTF_KIND_TYPEDEF] = &modifier_ops, 2911 [BTF_KIND_VOLATILE] = &modifier_ops, 2912 [BTF_KIND_CONST] = &modifier_ops, 2913 [BTF_KIND_RESTRICT] = &modifier_ops, 2914 [BTF_KIND_FUNC] = &func_ops, 2915 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 2916 [BTF_KIND_VAR] = &var_ops, 2917 [BTF_KIND_DATASEC] = &datasec_ops, 2918 }; 2919 2920 static s32 btf_check_meta(struct btf_verifier_env *env, 2921 const struct btf_type *t, 2922 u32 meta_left) 2923 { 2924 u32 saved_meta_left = meta_left; 2925 s32 var_meta_size; 2926 2927 if (meta_left < sizeof(*t)) { 2928 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 2929 env->log_type_id, meta_left, sizeof(*t)); 2930 return -EINVAL; 2931 } 2932 meta_left -= sizeof(*t); 2933 2934 if (t->info & ~BTF_INFO_MASK) { 2935 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 2936 env->log_type_id, t->info); 2937 return -EINVAL; 2938 } 2939 2940 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 2941 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 2942 btf_verifier_log(env, "[%u] Invalid kind:%u", 2943 env->log_type_id, BTF_INFO_KIND(t->info)); 2944 return -EINVAL; 2945 } 2946 2947 if (!btf_name_offset_valid(env->btf, t->name_off)) { 2948 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 2949 env->log_type_id, t->name_off); 2950 return -EINVAL; 2951 } 2952 2953 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 2954 if (var_meta_size < 0) 2955 return var_meta_size; 2956 2957 meta_left -= var_meta_size; 2958 2959 return saved_meta_left - meta_left; 2960 } 2961 2962 static int btf_check_all_metas(struct btf_verifier_env *env) 2963 { 2964 struct btf *btf = env->btf; 2965 struct btf_header *hdr; 2966 void *cur, *end; 2967 2968 hdr = &btf->hdr; 2969 cur = btf->nohdr_data + hdr->type_off; 2970 end = cur + hdr->type_len; 2971 2972 env->log_type_id = 1; 2973 while (cur < end) { 2974 struct btf_type *t = cur; 2975 s32 meta_size; 2976 2977 meta_size = btf_check_meta(env, t, end - cur); 2978 if (meta_size < 0) 2979 return meta_size; 2980 2981 btf_add_type(env, t); 2982 cur += meta_size; 2983 env->log_type_id++; 2984 } 2985 2986 return 0; 2987 } 2988 2989 static bool btf_resolve_valid(struct btf_verifier_env *env, 2990 const struct btf_type *t, 2991 u32 type_id) 2992 { 2993 struct btf *btf = env->btf; 2994 2995 if (!env_type_is_resolved(env, type_id)) 2996 return false; 2997 2998 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 2999 return !btf->resolved_ids[type_id] && 3000 !btf->resolved_sizes[type_id]; 3001 3002 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 3003 btf_type_is_var(t)) { 3004 t = btf_type_id_resolve(btf, &type_id); 3005 return t && 3006 !btf_type_is_modifier(t) && 3007 !btf_type_is_var(t) && 3008 !btf_type_is_datasec(t); 3009 } 3010 3011 if (btf_type_is_array(t)) { 3012 const struct btf_array *array = btf_type_array(t); 3013 const struct btf_type *elem_type; 3014 u32 elem_type_id = array->type; 3015 u32 elem_size; 3016 3017 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 3018 return elem_type && !btf_type_is_modifier(elem_type) && 3019 (array->nelems * elem_size == 3020 btf->resolved_sizes[type_id]); 3021 } 3022 3023 return false; 3024 } 3025 3026 static int btf_resolve(struct btf_verifier_env *env, 3027 const struct btf_type *t, u32 type_id) 3028 { 3029 u32 save_log_type_id = env->log_type_id; 3030 const struct resolve_vertex *v; 3031 int err = 0; 3032 3033 env->resolve_mode = RESOLVE_TBD; 3034 env_stack_push(env, t, type_id); 3035 while (!err && (v = env_stack_peak(env))) { 3036 env->log_type_id = v->type_id; 3037 err = btf_type_ops(v->t)->resolve(env, v); 3038 } 3039 3040 env->log_type_id = type_id; 3041 if (err == -E2BIG) { 3042 btf_verifier_log_type(env, t, 3043 "Exceeded max resolving depth:%u", 3044 MAX_RESOLVE_DEPTH); 3045 } else if (err == -EEXIST) { 3046 btf_verifier_log_type(env, t, "Loop detected"); 3047 } 3048 3049 /* Final sanity check */ 3050 if (!err && !btf_resolve_valid(env, t, type_id)) { 3051 btf_verifier_log_type(env, t, "Invalid resolve state"); 3052 err = -EINVAL; 3053 } 3054 3055 env->log_type_id = save_log_type_id; 3056 return err; 3057 } 3058 3059 static int btf_check_all_types(struct btf_verifier_env *env) 3060 { 3061 struct btf *btf = env->btf; 3062 u32 type_id; 3063 int err; 3064 3065 err = env_resolve_init(env); 3066 if (err) 3067 return err; 3068 3069 env->phase++; 3070 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 3071 const struct btf_type *t = btf_type_by_id(btf, type_id); 3072 3073 env->log_type_id = type_id; 3074 if (btf_type_needs_resolve(t) && 3075 !env_type_is_resolved(env, type_id)) { 3076 err = btf_resolve(env, t, type_id); 3077 if (err) 3078 return err; 3079 } 3080 3081 if (btf_type_is_func_proto(t)) { 3082 err = btf_func_proto_check(env, t); 3083 if (err) 3084 return err; 3085 } 3086 3087 if (btf_type_is_func(t)) { 3088 err = btf_func_check(env, t); 3089 if (err) 3090 return err; 3091 } 3092 } 3093 3094 return 0; 3095 } 3096 3097 static int btf_parse_type_sec(struct btf_verifier_env *env) 3098 { 3099 const struct btf_header *hdr = &env->btf->hdr; 3100 int err; 3101 3102 /* Type section must align to 4 bytes */ 3103 if (hdr->type_off & (sizeof(u32) - 1)) { 3104 btf_verifier_log(env, "Unaligned type_off"); 3105 return -EINVAL; 3106 } 3107 3108 if (!hdr->type_len) { 3109 btf_verifier_log(env, "No type found"); 3110 return -EINVAL; 3111 } 3112 3113 err = btf_check_all_metas(env); 3114 if (err) 3115 return err; 3116 3117 return btf_check_all_types(env); 3118 } 3119 3120 static int btf_parse_str_sec(struct btf_verifier_env *env) 3121 { 3122 const struct btf_header *hdr; 3123 struct btf *btf = env->btf; 3124 const char *start, *end; 3125 3126 hdr = &btf->hdr; 3127 start = btf->nohdr_data + hdr->str_off; 3128 end = start + hdr->str_len; 3129 3130 if (end != btf->data + btf->data_size) { 3131 btf_verifier_log(env, "String section is not at the end"); 3132 return -EINVAL; 3133 } 3134 3135 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 3136 start[0] || end[-1]) { 3137 btf_verifier_log(env, "Invalid string section"); 3138 return -EINVAL; 3139 } 3140 3141 btf->strings = start; 3142 3143 return 0; 3144 } 3145 3146 static const size_t btf_sec_info_offset[] = { 3147 offsetof(struct btf_header, type_off), 3148 offsetof(struct btf_header, str_off), 3149 }; 3150 3151 static int btf_sec_info_cmp(const void *a, const void *b) 3152 { 3153 const struct btf_sec_info *x = a; 3154 const struct btf_sec_info *y = b; 3155 3156 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 3157 } 3158 3159 static int btf_check_sec_info(struct btf_verifier_env *env, 3160 u32 btf_data_size) 3161 { 3162 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 3163 u32 total, expected_total, i; 3164 const struct btf_header *hdr; 3165 const struct btf *btf; 3166 3167 btf = env->btf; 3168 hdr = &btf->hdr; 3169 3170 /* Populate the secs from hdr */ 3171 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 3172 secs[i] = *(struct btf_sec_info *)((void *)hdr + 3173 btf_sec_info_offset[i]); 3174 3175 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 3176 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 3177 3178 /* Check for gaps and overlap among sections */ 3179 total = 0; 3180 expected_total = btf_data_size - hdr->hdr_len; 3181 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 3182 if (expected_total < secs[i].off) { 3183 btf_verifier_log(env, "Invalid section offset"); 3184 return -EINVAL; 3185 } 3186 if (total < secs[i].off) { 3187 /* gap */ 3188 btf_verifier_log(env, "Unsupported section found"); 3189 return -EINVAL; 3190 } 3191 if (total > secs[i].off) { 3192 btf_verifier_log(env, "Section overlap found"); 3193 return -EINVAL; 3194 } 3195 if (expected_total - total < secs[i].len) { 3196 btf_verifier_log(env, 3197 "Total section length too long"); 3198 return -EINVAL; 3199 } 3200 total += secs[i].len; 3201 } 3202 3203 /* There is data other than hdr and known sections */ 3204 if (expected_total != total) { 3205 btf_verifier_log(env, "Unsupported section found"); 3206 return -EINVAL; 3207 } 3208 3209 return 0; 3210 } 3211 3212 static int btf_parse_hdr(struct btf_verifier_env *env) 3213 { 3214 u32 hdr_len, hdr_copy, btf_data_size; 3215 const struct btf_header *hdr; 3216 struct btf *btf; 3217 int err; 3218 3219 btf = env->btf; 3220 btf_data_size = btf->data_size; 3221 3222 if (btf_data_size < 3223 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 3224 btf_verifier_log(env, "hdr_len not found"); 3225 return -EINVAL; 3226 } 3227 3228 hdr = btf->data; 3229 hdr_len = hdr->hdr_len; 3230 if (btf_data_size < hdr_len) { 3231 btf_verifier_log(env, "btf_header not found"); 3232 return -EINVAL; 3233 } 3234 3235 /* Ensure the unsupported header fields are zero */ 3236 if (hdr_len > sizeof(btf->hdr)) { 3237 u8 *expected_zero = btf->data + sizeof(btf->hdr); 3238 u8 *end = btf->data + hdr_len; 3239 3240 for (; expected_zero < end; expected_zero++) { 3241 if (*expected_zero) { 3242 btf_verifier_log(env, "Unsupported btf_header"); 3243 return -E2BIG; 3244 } 3245 } 3246 } 3247 3248 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 3249 memcpy(&btf->hdr, btf->data, hdr_copy); 3250 3251 hdr = &btf->hdr; 3252 3253 btf_verifier_log_hdr(env, btf_data_size); 3254 3255 if (hdr->magic != BTF_MAGIC) { 3256 btf_verifier_log(env, "Invalid magic"); 3257 return -EINVAL; 3258 } 3259 3260 if (hdr->version != BTF_VERSION) { 3261 btf_verifier_log(env, "Unsupported version"); 3262 return -ENOTSUPP; 3263 } 3264 3265 if (hdr->flags) { 3266 btf_verifier_log(env, "Unsupported flags"); 3267 return -ENOTSUPP; 3268 } 3269 3270 if (btf_data_size == hdr->hdr_len) { 3271 btf_verifier_log(env, "No data"); 3272 return -EINVAL; 3273 } 3274 3275 err = btf_check_sec_info(env, btf_data_size); 3276 if (err) 3277 return err; 3278 3279 return 0; 3280 } 3281 3282 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 3283 u32 log_level, char __user *log_ubuf, u32 log_size) 3284 { 3285 struct btf_verifier_env *env = NULL; 3286 struct bpf_verifier_log *log; 3287 struct btf *btf = NULL; 3288 u8 *data; 3289 int err; 3290 3291 if (btf_data_size > BTF_MAX_SIZE) 3292 return ERR_PTR(-E2BIG); 3293 3294 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 3295 if (!env) 3296 return ERR_PTR(-ENOMEM); 3297 3298 log = &env->log; 3299 if (log_level || log_ubuf || log_size) { 3300 /* user requested verbose verifier output 3301 * and supplied buffer to store the verification trace 3302 */ 3303 log->level = log_level; 3304 log->ubuf = log_ubuf; 3305 log->len_total = log_size; 3306 3307 /* log attributes have to be sane */ 3308 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 3309 !log->level || !log->ubuf) { 3310 err = -EINVAL; 3311 goto errout; 3312 } 3313 } 3314 3315 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 3316 if (!btf) { 3317 err = -ENOMEM; 3318 goto errout; 3319 } 3320 env->btf = btf; 3321 3322 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 3323 if (!data) { 3324 err = -ENOMEM; 3325 goto errout; 3326 } 3327 3328 btf->data = data; 3329 btf->data_size = btf_data_size; 3330 3331 if (copy_from_user(data, btf_data, btf_data_size)) { 3332 err = -EFAULT; 3333 goto errout; 3334 } 3335 3336 err = btf_parse_hdr(env); 3337 if (err) 3338 goto errout; 3339 3340 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 3341 3342 err = btf_parse_str_sec(env); 3343 if (err) 3344 goto errout; 3345 3346 err = btf_parse_type_sec(env); 3347 if (err) 3348 goto errout; 3349 3350 if (log->level && bpf_verifier_log_full(log)) { 3351 err = -ENOSPC; 3352 goto errout; 3353 } 3354 3355 btf_verifier_env_free(env); 3356 refcount_set(&btf->refcnt, 1); 3357 return btf; 3358 3359 errout: 3360 btf_verifier_env_free(env); 3361 if (btf) 3362 btf_free(btf); 3363 return ERR_PTR(err); 3364 } 3365 3366 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 3367 struct seq_file *m) 3368 { 3369 const struct btf_type *t = btf_type_by_id(btf, type_id); 3370 3371 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 3372 } 3373 3374 static int btf_release(struct inode *inode, struct file *filp) 3375 { 3376 btf_put(filp->private_data); 3377 return 0; 3378 } 3379 3380 const struct file_operations btf_fops = { 3381 .release = btf_release, 3382 }; 3383 3384 static int __btf_new_fd(struct btf *btf) 3385 { 3386 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 3387 } 3388 3389 int btf_new_fd(const union bpf_attr *attr) 3390 { 3391 struct btf *btf; 3392 int ret; 3393 3394 btf = btf_parse(u64_to_user_ptr(attr->btf), 3395 attr->btf_size, attr->btf_log_level, 3396 u64_to_user_ptr(attr->btf_log_buf), 3397 attr->btf_log_size); 3398 if (IS_ERR(btf)) 3399 return PTR_ERR(btf); 3400 3401 ret = btf_alloc_id(btf); 3402 if (ret) { 3403 btf_free(btf); 3404 return ret; 3405 } 3406 3407 /* 3408 * The BTF ID is published to the userspace. 3409 * All BTF free must go through call_rcu() from 3410 * now on (i.e. free by calling btf_put()). 3411 */ 3412 3413 ret = __btf_new_fd(btf); 3414 if (ret < 0) 3415 btf_put(btf); 3416 3417 return ret; 3418 } 3419 3420 struct btf *btf_get_by_fd(int fd) 3421 { 3422 struct btf *btf; 3423 struct fd f; 3424 3425 f = fdget(fd); 3426 3427 if (!f.file) 3428 return ERR_PTR(-EBADF); 3429 3430 if (f.file->f_op != &btf_fops) { 3431 fdput(f); 3432 return ERR_PTR(-EINVAL); 3433 } 3434 3435 btf = f.file->private_data; 3436 refcount_inc(&btf->refcnt); 3437 fdput(f); 3438 3439 return btf; 3440 } 3441 3442 int btf_get_info_by_fd(const struct btf *btf, 3443 const union bpf_attr *attr, 3444 union bpf_attr __user *uattr) 3445 { 3446 struct bpf_btf_info __user *uinfo; 3447 struct bpf_btf_info info = {}; 3448 u32 info_copy, btf_copy; 3449 void __user *ubtf; 3450 u32 uinfo_len; 3451 3452 uinfo = u64_to_user_ptr(attr->info.info); 3453 uinfo_len = attr->info.info_len; 3454 3455 info_copy = min_t(u32, uinfo_len, sizeof(info)); 3456 if (copy_from_user(&info, uinfo, info_copy)) 3457 return -EFAULT; 3458 3459 info.id = btf->id; 3460 ubtf = u64_to_user_ptr(info.btf); 3461 btf_copy = min_t(u32, btf->data_size, info.btf_size); 3462 if (copy_to_user(ubtf, btf->data, btf_copy)) 3463 return -EFAULT; 3464 info.btf_size = btf->data_size; 3465 3466 if (copy_to_user(uinfo, &info, info_copy) || 3467 put_user(info_copy, &uattr->info.info_len)) 3468 return -EFAULT; 3469 3470 return 0; 3471 } 3472 3473 int btf_get_fd_by_id(u32 id) 3474 { 3475 struct btf *btf; 3476 int fd; 3477 3478 rcu_read_lock(); 3479 btf = idr_find(&btf_idr, id); 3480 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 3481 btf = ERR_PTR(-ENOENT); 3482 rcu_read_unlock(); 3483 3484 if (IS_ERR(btf)) 3485 return PTR_ERR(btf); 3486 3487 fd = __btf_new_fd(btf); 3488 if (fd < 0) 3489 btf_put(btf); 3490 3491 return fd; 3492 } 3493 3494 u32 btf_id(const struct btf *btf) 3495 { 3496 return btf->id; 3497 } 3498