xref: /openbmc/linux/kernel/bpf/btf.c (revision 40867d74c374b235e14d839f3a77f26684feefe5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28 #include "../tools/lib/bpf/relo_core.h"
29 
30 /* BTF (BPF Type Format) is the meta data format which describes
31  * the data types of BPF program/map.  Hence, it basically focus
32  * on the C programming language which the modern BPF is primary
33  * using.
34  *
35  * ELF Section:
36  * ~~~~~~~~~~~
37  * The BTF data is stored under the ".BTF" ELF section
38  *
39  * struct btf_type:
40  * ~~~~~~~~~~~~~~~
41  * Each 'struct btf_type' object describes a C data type.
42  * Depending on the type it is describing, a 'struct btf_type'
43  * object may be followed by more data.  F.e.
44  * To describe an array, 'struct btf_type' is followed by
45  * 'struct btf_array'.
46  *
47  * 'struct btf_type' and any extra data following it are
48  * 4 bytes aligned.
49  *
50  * Type section:
51  * ~~~~~~~~~~~~~
52  * The BTF type section contains a list of 'struct btf_type' objects.
53  * Each one describes a C type.  Recall from the above section
54  * that a 'struct btf_type' object could be immediately followed by extra
55  * data in order to describe some particular C types.
56  *
57  * type_id:
58  * ~~~~~~~
59  * Each btf_type object is identified by a type_id.  The type_id
60  * is implicitly implied by the location of the btf_type object in
61  * the BTF type section.  The first one has type_id 1.  The second
62  * one has type_id 2...etc.  Hence, an earlier btf_type has
63  * a smaller type_id.
64  *
65  * A btf_type object may refer to another btf_type object by using
66  * type_id (i.e. the "type" in the "struct btf_type").
67  *
68  * NOTE that we cannot assume any reference-order.
69  * A btf_type object can refer to an earlier btf_type object
70  * but it can also refer to a later btf_type object.
71  *
72  * For example, to describe "const void *".  A btf_type
73  * object describing "const" may refer to another btf_type
74  * object describing "void *".  This type-reference is done
75  * by specifying type_id:
76  *
77  * [1] CONST (anon) type_id=2
78  * [2] PTR (anon) type_id=0
79  *
80  * The above is the btf_verifier debug log:
81  *   - Each line started with "[?]" is a btf_type object
82  *   - [?] is the type_id of the btf_type object.
83  *   - CONST/PTR is the BTF_KIND_XXX
84  *   - "(anon)" is the name of the type.  It just
85  *     happens that CONST and PTR has no name.
86  *   - type_id=XXX is the 'u32 type' in btf_type
87  *
88  * NOTE: "void" has type_id 0
89  *
90  * String section:
91  * ~~~~~~~~~~~~~~
92  * The BTF string section contains the names used by the type section.
93  * Each string is referred by an "offset" from the beginning of the
94  * string section.
95  *
96  * Each string is '\0' terminated.
97  *
98  * The first character in the string section must be '\0'
99  * which is used to mean 'anonymous'. Some btf_type may not
100  * have a name.
101  */
102 
103 /* BTF verification:
104  *
105  * To verify BTF data, two passes are needed.
106  *
107  * Pass #1
108  * ~~~~~~~
109  * The first pass is to collect all btf_type objects to
110  * an array: "btf->types".
111  *
112  * Depending on the C type that a btf_type is describing,
113  * a btf_type may be followed by extra data.  We don't know
114  * how many btf_type is there, and more importantly we don't
115  * know where each btf_type is located in the type section.
116  *
117  * Without knowing the location of each type_id, most verifications
118  * cannot be done.  e.g. an earlier btf_type may refer to a later
119  * btf_type (recall the "const void *" above), so we cannot
120  * check this type-reference in the first pass.
121  *
122  * In the first pass, it still does some verifications (e.g.
123  * checking the name is a valid offset to the string section).
124  *
125  * Pass #2
126  * ~~~~~~~
127  * The main focus is to resolve a btf_type that is referring
128  * to another type.
129  *
130  * We have to ensure the referring type:
131  * 1) does exist in the BTF (i.e. in btf->types[])
132  * 2) does not cause a loop:
133  *	struct A {
134  *		struct B b;
135  *	};
136  *
137  *	struct B {
138  *		struct A a;
139  *	};
140  *
141  * btf_type_needs_resolve() decides if a btf_type needs
142  * to be resolved.
143  *
144  * The needs_resolve type implements the "resolve()" ops which
145  * essentially does a DFS and detects backedge.
146  *
147  * During resolve (or DFS), different C types have different
148  * "RESOLVED" conditions.
149  *
150  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
151  * members because a member is always referring to another
152  * type.  A struct's member can be treated as "RESOLVED" if
153  * it is referring to a BTF_KIND_PTR.  Otherwise, the
154  * following valid C struct would be rejected:
155  *
156  *	struct A {
157  *		int m;
158  *		struct A *a;
159  *	};
160  *
161  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
162  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
163  * detect a pointer loop, e.g.:
164  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
165  *                        ^                                         |
166  *                        +-----------------------------------------+
167  *
168  */
169 
170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
174 #define BITS_ROUNDUP_BYTES(bits) \
175 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
176 
177 #define BTF_INFO_MASK 0x9f00ffff
178 #define BTF_INT_MASK 0x0fffffff
179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
181 
182 /* 16MB for 64k structs and each has 16 members and
183  * a few MB spaces for the string section.
184  * The hard limit is S32_MAX.
185  */
186 #define BTF_MAX_SIZE (16 * 1024 * 1024)
187 
188 #define for_each_member_from(i, from, struct_type, member)		\
189 	for (i = from, member = btf_type_member(struct_type) + from;	\
190 	     i < btf_type_vlen(struct_type);				\
191 	     i++, member++)
192 
193 #define for_each_vsi_from(i, from, struct_type, member)				\
194 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
195 	     i < btf_type_vlen(struct_type);					\
196 	     i++, member++)
197 
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200 
201 enum btf_kfunc_hook {
202 	BTF_KFUNC_HOOK_XDP,
203 	BTF_KFUNC_HOOK_TC,
204 	BTF_KFUNC_HOOK_STRUCT_OPS,
205 	BTF_KFUNC_HOOK_MAX,
206 };
207 
208 enum {
209 	BTF_KFUNC_SET_MAX_CNT = 32,
210 };
211 
212 struct btf_kfunc_set_tab {
213 	struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX];
214 };
215 
216 struct btf {
217 	void *data;
218 	struct btf_type **types;
219 	u32 *resolved_ids;
220 	u32 *resolved_sizes;
221 	const char *strings;
222 	void *nohdr_data;
223 	struct btf_header hdr;
224 	u32 nr_types; /* includes VOID for base BTF */
225 	u32 types_size;
226 	u32 data_size;
227 	refcount_t refcnt;
228 	u32 id;
229 	struct rcu_head rcu;
230 	struct btf_kfunc_set_tab *kfunc_set_tab;
231 
232 	/* split BTF support */
233 	struct btf *base_btf;
234 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
235 	u32 start_str_off; /* first string offset (0 for base BTF) */
236 	char name[MODULE_NAME_LEN];
237 	bool kernel_btf;
238 };
239 
240 enum verifier_phase {
241 	CHECK_META,
242 	CHECK_TYPE,
243 };
244 
245 struct resolve_vertex {
246 	const struct btf_type *t;
247 	u32 type_id;
248 	u16 next_member;
249 };
250 
251 enum visit_state {
252 	NOT_VISITED,
253 	VISITED,
254 	RESOLVED,
255 };
256 
257 enum resolve_mode {
258 	RESOLVE_TBD,	/* To Be Determined */
259 	RESOLVE_PTR,	/* Resolving for Pointer */
260 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
261 					 * or array
262 					 */
263 };
264 
265 #define MAX_RESOLVE_DEPTH 32
266 
267 struct btf_sec_info {
268 	u32 off;
269 	u32 len;
270 };
271 
272 struct btf_verifier_env {
273 	struct btf *btf;
274 	u8 *visit_states;
275 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
276 	struct bpf_verifier_log log;
277 	u32 log_type_id;
278 	u32 top_stack;
279 	enum verifier_phase phase;
280 	enum resolve_mode resolve_mode;
281 };
282 
283 static const char * const btf_kind_str[NR_BTF_KINDS] = {
284 	[BTF_KIND_UNKN]		= "UNKNOWN",
285 	[BTF_KIND_INT]		= "INT",
286 	[BTF_KIND_PTR]		= "PTR",
287 	[BTF_KIND_ARRAY]	= "ARRAY",
288 	[BTF_KIND_STRUCT]	= "STRUCT",
289 	[BTF_KIND_UNION]	= "UNION",
290 	[BTF_KIND_ENUM]		= "ENUM",
291 	[BTF_KIND_FWD]		= "FWD",
292 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
293 	[BTF_KIND_VOLATILE]	= "VOLATILE",
294 	[BTF_KIND_CONST]	= "CONST",
295 	[BTF_KIND_RESTRICT]	= "RESTRICT",
296 	[BTF_KIND_FUNC]		= "FUNC",
297 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
298 	[BTF_KIND_VAR]		= "VAR",
299 	[BTF_KIND_DATASEC]	= "DATASEC",
300 	[BTF_KIND_FLOAT]	= "FLOAT",
301 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
302 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
303 };
304 
305 const char *btf_type_str(const struct btf_type *t)
306 {
307 	return btf_kind_str[BTF_INFO_KIND(t->info)];
308 }
309 
310 /* Chunk size we use in safe copy of data to be shown. */
311 #define BTF_SHOW_OBJ_SAFE_SIZE		32
312 
313 /*
314  * This is the maximum size of a base type value (equivalent to a
315  * 128-bit int); if we are at the end of our safe buffer and have
316  * less than 16 bytes space we can't be assured of being able
317  * to copy the next type safely, so in such cases we will initiate
318  * a new copy.
319  */
320 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
321 
322 /* Type name size */
323 #define BTF_SHOW_NAME_SIZE		80
324 
325 /*
326  * Common data to all BTF show operations. Private show functions can add
327  * their own data to a structure containing a struct btf_show and consult it
328  * in the show callback.  See btf_type_show() below.
329  *
330  * One challenge with showing nested data is we want to skip 0-valued
331  * data, but in order to figure out whether a nested object is all zeros
332  * we need to walk through it.  As a result, we need to make two passes
333  * when handling structs, unions and arrays; the first path simply looks
334  * for nonzero data, while the second actually does the display.  The first
335  * pass is signalled by show->state.depth_check being set, and if we
336  * encounter a non-zero value we set show->state.depth_to_show to
337  * the depth at which we encountered it.  When we have completed the
338  * first pass, we will know if anything needs to be displayed if
339  * depth_to_show > depth.  See btf_[struct,array]_show() for the
340  * implementation of this.
341  *
342  * Another problem is we want to ensure the data for display is safe to
343  * access.  To support this, the anonymous "struct {} obj" tracks the data
344  * object and our safe copy of it.  We copy portions of the data needed
345  * to the object "copy" buffer, but because its size is limited to
346  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
347  * traverse larger objects for display.
348  *
349  * The various data type show functions all start with a call to
350  * btf_show_start_type() which returns a pointer to the safe copy
351  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
352  * raw data itself).  btf_show_obj_safe() is responsible for
353  * using copy_from_kernel_nofault() to update the safe data if necessary
354  * as we traverse the object's data.  skbuff-like semantics are
355  * used:
356  *
357  * - obj.head points to the start of the toplevel object for display
358  * - obj.size is the size of the toplevel object
359  * - obj.data points to the current point in the original data at
360  *   which our safe data starts.  obj.data will advance as we copy
361  *   portions of the data.
362  *
363  * In most cases a single copy will suffice, but larger data structures
364  * such as "struct task_struct" will require many copies.  The logic in
365  * btf_show_obj_safe() handles the logic that determines if a new
366  * copy_from_kernel_nofault() is needed.
367  */
368 struct btf_show {
369 	u64 flags;
370 	void *target;	/* target of show operation (seq file, buffer) */
371 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
372 	const struct btf *btf;
373 	/* below are used during iteration */
374 	struct {
375 		u8 depth;
376 		u8 depth_to_show;
377 		u8 depth_check;
378 		u8 array_member:1,
379 		   array_terminated:1;
380 		u16 array_encoding;
381 		u32 type_id;
382 		int status;			/* non-zero for error */
383 		const struct btf_type *type;
384 		const struct btf_member *member;
385 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
386 	} state;
387 	struct {
388 		u32 size;
389 		void *head;
390 		void *data;
391 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
392 	} obj;
393 };
394 
395 struct btf_kind_operations {
396 	s32 (*check_meta)(struct btf_verifier_env *env,
397 			  const struct btf_type *t,
398 			  u32 meta_left);
399 	int (*resolve)(struct btf_verifier_env *env,
400 		       const struct resolve_vertex *v);
401 	int (*check_member)(struct btf_verifier_env *env,
402 			    const struct btf_type *struct_type,
403 			    const struct btf_member *member,
404 			    const struct btf_type *member_type);
405 	int (*check_kflag_member)(struct btf_verifier_env *env,
406 				  const struct btf_type *struct_type,
407 				  const struct btf_member *member,
408 				  const struct btf_type *member_type);
409 	void (*log_details)(struct btf_verifier_env *env,
410 			    const struct btf_type *t);
411 	void (*show)(const struct btf *btf, const struct btf_type *t,
412 			 u32 type_id, void *data, u8 bits_offsets,
413 			 struct btf_show *show);
414 };
415 
416 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
417 static struct btf_type btf_void;
418 
419 static int btf_resolve(struct btf_verifier_env *env,
420 		       const struct btf_type *t, u32 type_id);
421 
422 static int btf_func_check(struct btf_verifier_env *env,
423 			  const struct btf_type *t);
424 
425 static bool btf_type_is_modifier(const struct btf_type *t)
426 {
427 	/* Some of them is not strictly a C modifier
428 	 * but they are grouped into the same bucket
429 	 * for BTF concern:
430 	 *   A type (t) that refers to another
431 	 *   type through t->type AND its size cannot
432 	 *   be determined without following the t->type.
433 	 *
434 	 * ptr does not fall into this bucket
435 	 * because its size is always sizeof(void *).
436 	 */
437 	switch (BTF_INFO_KIND(t->info)) {
438 	case BTF_KIND_TYPEDEF:
439 	case BTF_KIND_VOLATILE:
440 	case BTF_KIND_CONST:
441 	case BTF_KIND_RESTRICT:
442 	case BTF_KIND_TYPE_TAG:
443 		return true;
444 	}
445 
446 	return false;
447 }
448 
449 bool btf_type_is_void(const struct btf_type *t)
450 {
451 	return t == &btf_void;
452 }
453 
454 static bool btf_type_is_fwd(const struct btf_type *t)
455 {
456 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
457 }
458 
459 static bool btf_type_nosize(const struct btf_type *t)
460 {
461 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
462 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
463 }
464 
465 static bool btf_type_nosize_or_null(const struct btf_type *t)
466 {
467 	return !t || btf_type_nosize(t);
468 }
469 
470 static bool __btf_type_is_struct(const struct btf_type *t)
471 {
472 	return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
473 }
474 
475 static bool btf_type_is_array(const struct btf_type *t)
476 {
477 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
478 }
479 
480 static bool btf_type_is_datasec(const struct btf_type *t)
481 {
482 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
483 }
484 
485 static bool btf_type_is_decl_tag(const struct btf_type *t)
486 {
487 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
488 }
489 
490 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
491 {
492 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
493 	       btf_type_is_var(t) || btf_type_is_typedef(t);
494 }
495 
496 u32 btf_nr_types(const struct btf *btf)
497 {
498 	u32 total = 0;
499 
500 	while (btf) {
501 		total += btf->nr_types;
502 		btf = btf->base_btf;
503 	}
504 
505 	return total;
506 }
507 
508 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
509 {
510 	const struct btf_type *t;
511 	const char *tname;
512 	u32 i, total;
513 
514 	total = btf_nr_types(btf);
515 	for (i = 1; i < total; i++) {
516 		t = btf_type_by_id(btf, i);
517 		if (BTF_INFO_KIND(t->info) != kind)
518 			continue;
519 
520 		tname = btf_name_by_offset(btf, t->name_off);
521 		if (!strcmp(tname, name))
522 			return i;
523 	}
524 
525 	return -ENOENT;
526 }
527 
528 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
529 					       u32 id, u32 *res_id)
530 {
531 	const struct btf_type *t = btf_type_by_id(btf, id);
532 
533 	while (btf_type_is_modifier(t)) {
534 		id = t->type;
535 		t = btf_type_by_id(btf, t->type);
536 	}
537 
538 	if (res_id)
539 		*res_id = id;
540 
541 	return t;
542 }
543 
544 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
545 					    u32 id, u32 *res_id)
546 {
547 	const struct btf_type *t;
548 
549 	t = btf_type_skip_modifiers(btf, id, NULL);
550 	if (!btf_type_is_ptr(t))
551 		return NULL;
552 
553 	return btf_type_skip_modifiers(btf, t->type, res_id);
554 }
555 
556 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
557 						 u32 id, u32 *res_id)
558 {
559 	const struct btf_type *ptype;
560 
561 	ptype = btf_type_resolve_ptr(btf, id, res_id);
562 	if (ptype && btf_type_is_func_proto(ptype))
563 		return ptype;
564 
565 	return NULL;
566 }
567 
568 /* Types that act only as a source, not sink or intermediate
569  * type when resolving.
570  */
571 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
572 {
573 	return btf_type_is_var(t) ||
574 	       btf_type_is_decl_tag(t) ||
575 	       btf_type_is_datasec(t);
576 }
577 
578 /* What types need to be resolved?
579  *
580  * btf_type_is_modifier() is an obvious one.
581  *
582  * btf_type_is_struct() because its member refers to
583  * another type (through member->type).
584  *
585  * btf_type_is_var() because the variable refers to
586  * another type. btf_type_is_datasec() holds multiple
587  * btf_type_is_var() types that need resolving.
588  *
589  * btf_type_is_array() because its element (array->type)
590  * refers to another type.  Array can be thought of a
591  * special case of struct while array just has the same
592  * member-type repeated by array->nelems of times.
593  */
594 static bool btf_type_needs_resolve(const struct btf_type *t)
595 {
596 	return btf_type_is_modifier(t) ||
597 	       btf_type_is_ptr(t) ||
598 	       btf_type_is_struct(t) ||
599 	       btf_type_is_array(t) ||
600 	       btf_type_is_var(t) ||
601 	       btf_type_is_func(t) ||
602 	       btf_type_is_decl_tag(t) ||
603 	       btf_type_is_datasec(t);
604 }
605 
606 /* t->size can be used */
607 static bool btf_type_has_size(const struct btf_type *t)
608 {
609 	switch (BTF_INFO_KIND(t->info)) {
610 	case BTF_KIND_INT:
611 	case BTF_KIND_STRUCT:
612 	case BTF_KIND_UNION:
613 	case BTF_KIND_ENUM:
614 	case BTF_KIND_DATASEC:
615 	case BTF_KIND_FLOAT:
616 		return true;
617 	}
618 
619 	return false;
620 }
621 
622 static const char *btf_int_encoding_str(u8 encoding)
623 {
624 	if (encoding == 0)
625 		return "(none)";
626 	else if (encoding == BTF_INT_SIGNED)
627 		return "SIGNED";
628 	else if (encoding == BTF_INT_CHAR)
629 		return "CHAR";
630 	else if (encoding == BTF_INT_BOOL)
631 		return "BOOL";
632 	else
633 		return "UNKN";
634 }
635 
636 static u32 btf_type_int(const struct btf_type *t)
637 {
638 	return *(u32 *)(t + 1);
639 }
640 
641 static const struct btf_array *btf_type_array(const struct btf_type *t)
642 {
643 	return (const struct btf_array *)(t + 1);
644 }
645 
646 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
647 {
648 	return (const struct btf_enum *)(t + 1);
649 }
650 
651 static const struct btf_var *btf_type_var(const struct btf_type *t)
652 {
653 	return (const struct btf_var *)(t + 1);
654 }
655 
656 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
657 {
658 	return (const struct btf_decl_tag *)(t + 1);
659 }
660 
661 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
662 {
663 	return kind_ops[BTF_INFO_KIND(t->info)];
664 }
665 
666 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
667 {
668 	if (!BTF_STR_OFFSET_VALID(offset))
669 		return false;
670 
671 	while (offset < btf->start_str_off)
672 		btf = btf->base_btf;
673 
674 	offset -= btf->start_str_off;
675 	return offset < btf->hdr.str_len;
676 }
677 
678 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
679 {
680 	if ((first ? !isalpha(c) :
681 		     !isalnum(c)) &&
682 	    c != '_' &&
683 	    ((c == '.' && !dot_ok) ||
684 	      c != '.'))
685 		return false;
686 	return true;
687 }
688 
689 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
690 {
691 	while (offset < btf->start_str_off)
692 		btf = btf->base_btf;
693 
694 	offset -= btf->start_str_off;
695 	if (offset < btf->hdr.str_len)
696 		return &btf->strings[offset];
697 
698 	return NULL;
699 }
700 
701 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
702 {
703 	/* offset must be valid */
704 	const char *src = btf_str_by_offset(btf, offset);
705 	const char *src_limit;
706 
707 	if (!__btf_name_char_ok(*src, true, dot_ok))
708 		return false;
709 
710 	/* set a limit on identifier length */
711 	src_limit = src + KSYM_NAME_LEN;
712 	src++;
713 	while (*src && src < src_limit) {
714 		if (!__btf_name_char_ok(*src, false, dot_ok))
715 			return false;
716 		src++;
717 	}
718 
719 	return !*src;
720 }
721 
722 /* Only C-style identifier is permitted. This can be relaxed if
723  * necessary.
724  */
725 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
726 {
727 	return __btf_name_valid(btf, offset, false);
728 }
729 
730 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
731 {
732 	return __btf_name_valid(btf, offset, true);
733 }
734 
735 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
736 {
737 	const char *name;
738 
739 	if (!offset)
740 		return "(anon)";
741 
742 	name = btf_str_by_offset(btf, offset);
743 	return name ?: "(invalid-name-offset)";
744 }
745 
746 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
747 {
748 	return btf_str_by_offset(btf, offset);
749 }
750 
751 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
752 {
753 	while (type_id < btf->start_id)
754 		btf = btf->base_btf;
755 
756 	type_id -= btf->start_id;
757 	if (type_id >= btf->nr_types)
758 		return NULL;
759 	return btf->types[type_id];
760 }
761 
762 /*
763  * Regular int is not a bit field and it must be either
764  * u8/u16/u32/u64 or __int128.
765  */
766 static bool btf_type_int_is_regular(const struct btf_type *t)
767 {
768 	u8 nr_bits, nr_bytes;
769 	u32 int_data;
770 
771 	int_data = btf_type_int(t);
772 	nr_bits = BTF_INT_BITS(int_data);
773 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
774 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
775 	    BTF_INT_OFFSET(int_data) ||
776 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
777 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
778 	     nr_bytes != (2 * sizeof(u64)))) {
779 		return false;
780 	}
781 
782 	return true;
783 }
784 
785 /*
786  * Check that given struct member is a regular int with expected
787  * offset and size.
788  */
789 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
790 			   const struct btf_member *m,
791 			   u32 expected_offset, u32 expected_size)
792 {
793 	const struct btf_type *t;
794 	u32 id, int_data;
795 	u8 nr_bits;
796 
797 	id = m->type;
798 	t = btf_type_id_size(btf, &id, NULL);
799 	if (!t || !btf_type_is_int(t))
800 		return false;
801 
802 	int_data = btf_type_int(t);
803 	nr_bits = BTF_INT_BITS(int_data);
804 	if (btf_type_kflag(s)) {
805 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
806 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
807 
808 		/* if kflag set, int should be a regular int and
809 		 * bit offset should be at byte boundary.
810 		 */
811 		return !bitfield_size &&
812 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
813 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
814 	}
815 
816 	if (BTF_INT_OFFSET(int_data) ||
817 	    BITS_PER_BYTE_MASKED(m->offset) ||
818 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
819 	    BITS_PER_BYTE_MASKED(nr_bits) ||
820 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
821 		return false;
822 
823 	return true;
824 }
825 
826 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
827 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
828 						       u32 id)
829 {
830 	const struct btf_type *t = btf_type_by_id(btf, id);
831 
832 	while (btf_type_is_modifier(t) &&
833 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
834 		t = btf_type_by_id(btf, t->type);
835 	}
836 
837 	return t;
838 }
839 
840 #define BTF_SHOW_MAX_ITER	10
841 
842 #define BTF_KIND_BIT(kind)	(1ULL << kind)
843 
844 /*
845  * Populate show->state.name with type name information.
846  * Format of type name is
847  *
848  * [.member_name = ] (type_name)
849  */
850 static const char *btf_show_name(struct btf_show *show)
851 {
852 	/* BTF_MAX_ITER array suffixes "[]" */
853 	const char *array_suffixes = "[][][][][][][][][][]";
854 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
855 	/* BTF_MAX_ITER pointer suffixes "*" */
856 	const char *ptr_suffixes = "**********";
857 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
858 	const char *name = NULL, *prefix = "", *parens = "";
859 	const struct btf_member *m = show->state.member;
860 	const struct btf_type *t;
861 	const struct btf_array *array;
862 	u32 id = show->state.type_id;
863 	const char *member = NULL;
864 	bool show_member = false;
865 	u64 kinds = 0;
866 	int i;
867 
868 	show->state.name[0] = '\0';
869 
870 	/*
871 	 * Don't show type name if we're showing an array member;
872 	 * in that case we show the array type so don't need to repeat
873 	 * ourselves for each member.
874 	 */
875 	if (show->state.array_member)
876 		return "";
877 
878 	/* Retrieve member name, if any. */
879 	if (m) {
880 		member = btf_name_by_offset(show->btf, m->name_off);
881 		show_member = strlen(member) > 0;
882 		id = m->type;
883 	}
884 
885 	/*
886 	 * Start with type_id, as we have resolved the struct btf_type *
887 	 * via btf_modifier_show() past the parent typedef to the child
888 	 * struct, int etc it is defined as.  In such cases, the type_id
889 	 * still represents the starting type while the struct btf_type *
890 	 * in our show->state points at the resolved type of the typedef.
891 	 */
892 	t = btf_type_by_id(show->btf, id);
893 	if (!t)
894 		return "";
895 
896 	/*
897 	 * The goal here is to build up the right number of pointer and
898 	 * array suffixes while ensuring the type name for a typedef
899 	 * is represented.  Along the way we accumulate a list of
900 	 * BTF kinds we have encountered, since these will inform later
901 	 * display; for example, pointer types will not require an
902 	 * opening "{" for struct, we will just display the pointer value.
903 	 *
904 	 * We also want to accumulate the right number of pointer or array
905 	 * indices in the format string while iterating until we get to
906 	 * the typedef/pointee/array member target type.
907 	 *
908 	 * We start by pointing at the end of pointer and array suffix
909 	 * strings; as we accumulate pointers and arrays we move the pointer
910 	 * or array string backwards so it will show the expected number of
911 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
912 	 * and/or arrays and typedefs are supported as a precaution.
913 	 *
914 	 * We also want to get typedef name while proceeding to resolve
915 	 * type it points to so that we can add parentheses if it is a
916 	 * "typedef struct" etc.
917 	 */
918 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
919 
920 		switch (BTF_INFO_KIND(t->info)) {
921 		case BTF_KIND_TYPEDEF:
922 			if (!name)
923 				name = btf_name_by_offset(show->btf,
924 							       t->name_off);
925 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
926 			id = t->type;
927 			break;
928 		case BTF_KIND_ARRAY:
929 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
930 			parens = "[";
931 			if (!t)
932 				return "";
933 			array = btf_type_array(t);
934 			if (array_suffix > array_suffixes)
935 				array_suffix -= 2;
936 			id = array->type;
937 			break;
938 		case BTF_KIND_PTR:
939 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
940 			if (ptr_suffix > ptr_suffixes)
941 				ptr_suffix -= 1;
942 			id = t->type;
943 			break;
944 		default:
945 			id = 0;
946 			break;
947 		}
948 		if (!id)
949 			break;
950 		t = btf_type_skip_qualifiers(show->btf, id);
951 	}
952 	/* We may not be able to represent this type; bail to be safe */
953 	if (i == BTF_SHOW_MAX_ITER)
954 		return "";
955 
956 	if (!name)
957 		name = btf_name_by_offset(show->btf, t->name_off);
958 
959 	switch (BTF_INFO_KIND(t->info)) {
960 	case BTF_KIND_STRUCT:
961 	case BTF_KIND_UNION:
962 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
963 			 "struct" : "union";
964 		/* if it's an array of struct/union, parens is already set */
965 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
966 			parens = "{";
967 		break;
968 	case BTF_KIND_ENUM:
969 		prefix = "enum";
970 		break;
971 	default:
972 		break;
973 	}
974 
975 	/* pointer does not require parens */
976 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
977 		parens = "";
978 	/* typedef does not require struct/union/enum prefix */
979 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
980 		prefix = "";
981 
982 	if (!name)
983 		name = "";
984 
985 	/* Even if we don't want type name info, we want parentheses etc */
986 	if (show->flags & BTF_SHOW_NONAME)
987 		snprintf(show->state.name, sizeof(show->state.name), "%s",
988 			 parens);
989 	else
990 		snprintf(show->state.name, sizeof(show->state.name),
991 			 "%s%s%s(%s%s%s%s%s%s)%s",
992 			 /* first 3 strings comprise ".member = " */
993 			 show_member ? "." : "",
994 			 show_member ? member : "",
995 			 show_member ? " = " : "",
996 			 /* ...next is our prefix (struct, enum, etc) */
997 			 prefix,
998 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
999 			 /* ...this is the type name itself */
1000 			 name,
1001 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1002 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1003 			 array_suffix, parens);
1004 
1005 	return show->state.name;
1006 }
1007 
1008 static const char *__btf_show_indent(struct btf_show *show)
1009 {
1010 	const char *indents = "                                ";
1011 	const char *indent = &indents[strlen(indents)];
1012 
1013 	if ((indent - show->state.depth) >= indents)
1014 		return indent - show->state.depth;
1015 	return indents;
1016 }
1017 
1018 static const char *btf_show_indent(struct btf_show *show)
1019 {
1020 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1021 }
1022 
1023 static const char *btf_show_newline(struct btf_show *show)
1024 {
1025 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1026 }
1027 
1028 static const char *btf_show_delim(struct btf_show *show)
1029 {
1030 	if (show->state.depth == 0)
1031 		return "";
1032 
1033 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1034 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1035 		return "|";
1036 
1037 	return ",";
1038 }
1039 
1040 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1041 {
1042 	va_list args;
1043 
1044 	if (!show->state.depth_check) {
1045 		va_start(args, fmt);
1046 		show->showfn(show, fmt, args);
1047 		va_end(args);
1048 	}
1049 }
1050 
1051 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1052  * format specifiers to the format specifier passed in; these do the work of
1053  * adding indentation, delimiters etc while the caller simply has to specify
1054  * the type value(s) in the format specifier + value(s).
1055  */
1056 #define btf_show_type_value(show, fmt, value)				       \
1057 	do {								       \
1058 		if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) ||	       \
1059 		    show->state.depth == 0) {				       \
1060 			btf_show(show, "%s%s" fmt "%s%s",		       \
1061 				 btf_show_indent(show),			       \
1062 				 btf_show_name(show),			       \
1063 				 value, btf_show_delim(show),		       \
1064 				 btf_show_newline(show));		       \
1065 			if (show->state.depth > show->state.depth_to_show)     \
1066 				show->state.depth_to_show = show->state.depth; \
1067 		}							       \
1068 	} while (0)
1069 
1070 #define btf_show_type_values(show, fmt, ...)				       \
1071 	do {								       \
1072 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1073 			 btf_show_name(show),				       \
1074 			 __VA_ARGS__, btf_show_delim(show),		       \
1075 			 btf_show_newline(show));			       \
1076 		if (show->state.depth > show->state.depth_to_show)	       \
1077 			show->state.depth_to_show = show->state.depth;	       \
1078 	} while (0)
1079 
1080 /* How much is left to copy to safe buffer after @data? */
1081 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1082 {
1083 	return show->obj.head + show->obj.size - data;
1084 }
1085 
1086 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1087 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1088 {
1089 	return data >= show->obj.data &&
1090 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1091 }
1092 
1093 /*
1094  * If object pointed to by @data of @size falls within our safe buffer, return
1095  * the equivalent pointer to the same safe data.  Assumes
1096  * copy_from_kernel_nofault() has already happened and our safe buffer is
1097  * populated.
1098  */
1099 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1100 {
1101 	if (btf_show_obj_is_safe(show, data, size))
1102 		return show->obj.safe + (data - show->obj.data);
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * Return a safe-to-access version of data pointed to by @data.
1108  * We do this by copying the relevant amount of information
1109  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1110  *
1111  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1112  * safe copy is needed.
1113  *
1114  * Otherwise we need to determine if we have the required amount
1115  * of data (determined by the @data pointer and the size of the
1116  * largest base type we can encounter (represented by
1117  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1118  * that we will be able to print some of the current object,
1119  * and if more is needed a copy will be triggered.
1120  * Some objects such as structs will not fit into the buffer;
1121  * in such cases additional copies when we iterate over their
1122  * members may be needed.
1123  *
1124  * btf_show_obj_safe() is used to return a safe buffer for
1125  * btf_show_start_type(); this ensures that as we recurse into
1126  * nested types we always have safe data for the given type.
1127  * This approach is somewhat wasteful; it's possible for example
1128  * that when iterating over a large union we'll end up copying the
1129  * same data repeatedly, but the goal is safety not performance.
1130  * We use stack data as opposed to per-CPU buffers because the
1131  * iteration over a type can take some time, and preemption handling
1132  * would greatly complicate use of the safe buffer.
1133  */
1134 static void *btf_show_obj_safe(struct btf_show *show,
1135 			       const struct btf_type *t,
1136 			       void *data)
1137 {
1138 	const struct btf_type *rt;
1139 	int size_left, size;
1140 	void *safe = NULL;
1141 
1142 	if (show->flags & BTF_SHOW_UNSAFE)
1143 		return data;
1144 
1145 	rt = btf_resolve_size(show->btf, t, &size);
1146 	if (IS_ERR(rt)) {
1147 		show->state.status = PTR_ERR(rt);
1148 		return NULL;
1149 	}
1150 
1151 	/*
1152 	 * Is this toplevel object? If so, set total object size and
1153 	 * initialize pointers.  Otherwise check if we still fall within
1154 	 * our safe object data.
1155 	 */
1156 	if (show->state.depth == 0) {
1157 		show->obj.size = size;
1158 		show->obj.head = data;
1159 	} else {
1160 		/*
1161 		 * If the size of the current object is > our remaining
1162 		 * safe buffer we _may_ need to do a new copy.  However
1163 		 * consider the case of a nested struct; it's size pushes
1164 		 * us over the safe buffer limit, but showing any individual
1165 		 * struct members does not.  In such cases, we don't need
1166 		 * to initiate a fresh copy yet; however we definitely need
1167 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1168 		 * in our buffer, regardless of the current object size.
1169 		 * The logic here is that as we resolve types we will
1170 		 * hit a base type at some point, and we need to be sure
1171 		 * the next chunk of data is safely available to display
1172 		 * that type info safely.  We cannot rely on the size of
1173 		 * the current object here because it may be much larger
1174 		 * than our current buffer (e.g. task_struct is 8k).
1175 		 * All we want to do here is ensure that we can print the
1176 		 * next basic type, which we can if either
1177 		 * - the current type size is within the safe buffer; or
1178 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1179 		 *   the safe buffer.
1180 		 */
1181 		safe = __btf_show_obj_safe(show, data,
1182 					   min(size,
1183 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1184 	}
1185 
1186 	/*
1187 	 * We need a new copy to our safe object, either because we haven't
1188 	 * yet copied and are initializing safe data, or because the data
1189 	 * we want falls outside the boundaries of the safe object.
1190 	 */
1191 	if (!safe) {
1192 		size_left = btf_show_obj_size_left(show, data);
1193 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1194 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1195 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1196 							      data, size_left);
1197 		if (!show->state.status) {
1198 			show->obj.data = data;
1199 			safe = show->obj.safe;
1200 		}
1201 	}
1202 
1203 	return safe;
1204 }
1205 
1206 /*
1207  * Set the type we are starting to show and return a safe data pointer
1208  * to be used for showing the associated data.
1209  */
1210 static void *btf_show_start_type(struct btf_show *show,
1211 				 const struct btf_type *t,
1212 				 u32 type_id, void *data)
1213 {
1214 	show->state.type = t;
1215 	show->state.type_id = type_id;
1216 	show->state.name[0] = '\0';
1217 
1218 	return btf_show_obj_safe(show, t, data);
1219 }
1220 
1221 static void btf_show_end_type(struct btf_show *show)
1222 {
1223 	show->state.type = NULL;
1224 	show->state.type_id = 0;
1225 	show->state.name[0] = '\0';
1226 }
1227 
1228 static void *btf_show_start_aggr_type(struct btf_show *show,
1229 				      const struct btf_type *t,
1230 				      u32 type_id, void *data)
1231 {
1232 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1233 
1234 	if (!safe_data)
1235 		return safe_data;
1236 
1237 	btf_show(show, "%s%s%s", btf_show_indent(show),
1238 		 btf_show_name(show),
1239 		 btf_show_newline(show));
1240 	show->state.depth++;
1241 	return safe_data;
1242 }
1243 
1244 static void btf_show_end_aggr_type(struct btf_show *show,
1245 				   const char *suffix)
1246 {
1247 	show->state.depth--;
1248 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1249 		 btf_show_delim(show), btf_show_newline(show));
1250 	btf_show_end_type(show);
1251 }
1252 
1253 static void btf_show_start_member(struct btf_show *show,
1254 				  const struct btf_member *m)
1255 {
1256 	show->state.member = m;
1257 }
1258 
1259 static void btf_show_start_array_member(struct btf_show *show)
1260 {
1261 	show->state.array_member = 1;
1262 	btf_show_start_member(show, NULL);
1263 }
1264 
1265 static void btf_show_end_member(struct btf_show *show)
1266 {
1267 	show->state.member = NULL;
1268 }
1269 
1270 static void btf_show_end_array_member(struct btf_show *show)
1271 {
1272 	show->state.array_member = 0;
1273 	btf_show_end_member(show);
1274 }
1275 
1276 static void *btf_show_start_array_type(struct btf_show *show,
1277 				       const struct btf_type *t,
1278 				       u32 type_id,
1279 				       u16 array_encoding,
1280 				       void *data)
1281 {
1282 	show->state.array_encoding = array_encoding;
1283 	show->state.array_terminated = 0;
1284 	return btf_show_start_aggr_type(show, t, type_id, data);
1285 }
1286 
1287 static void btf_show_end_array_type(struct btf_show *show)
1288 {
1289 	show->state.array_encoding = 0;
1290 	show->state.array_terminated = 0;
1291 	btf_show_end_aggr_type(show, "]");
1292 }
1293 
1294 static void *btf_show_start_struct_type(struct btf_show *show,
1295 					const struct btf_type *t,
1296 					u32 type_id,
1297 					void *data)
1298 {
1299 	return btf_show_start_aggr_type(show, t, type_id, data);
1300 }
1301 
1302 static void btf_show_end_struct_type(struct btf_show *show)
1303 {
1304 	btf_show_end_aggr_type(show, "}");
1305 }
1306 
1307 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1308 					      const char *fmt, ...)
1309 {
1310 	va_list args;
1311 
1312 	va_start(args, fmt);
1313 	bpf_verifier_vlog(log, fmt, args);
1314 	va_end(args);
1315 }
1316 
1317 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1318 					    const char *fmt, ...)
1319 {
1320 	struct bpf_verifier_log *log = &env->log;
1321 	va_list args;
1322 
1323 	if (!bpf_verifier_log_needed(log))
1324 		return;
1325 
1326 	va_start(args, fmt);
1327 	bpf_verifier_vlog(log, fmt, args);
1328 	va_end(args);
1329 }
1330 
1331 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1332 						   const struct btf_type *t,
1333 						   bool log_details,
1334 						   const char *fmt, ...)
1335 {
1336 	struct bpf_verifier_log *log = &env->log;
1337 	u8 kind = BTF_INFO_KIND(t->info);
1338 	struct btf *btf = env->btf;
1339 	va_list args;
1340 
1341 	if (!bpf_verifier_log_needed(log))
1342 		return;
1343 
1344 	/* btf verifier prints all types it is processing via
1345 	 * btf_verifier_log_type(..., fmt = NULL).
1346 	 * Skip those prints for in-kernel BTF verification.
1347 	 */
1348 	if (log->level == BPF_LOG_KERNEL && !fmt)
1349 		return;
1350 
1351 	__btf_verifier_log(log, "[%u] %s %s%s",
1352 			   env->log_type_id,
1353 			   btf_kind_str[kind],
1354 			   __btf_name_by_offset(btf, t->name_off),
1355 			   log_details ? " " : "");
1356 
1357 	if (log_details)
1358 		btf_type_ops(t)->log_details(env, t);
1359 
1360 	if (fmt && *fmt) {
1361 		__btf_verifier_log(log, " ");
1362 		va_start(args, fmt);
1363 		bpf_verifier_vlog(log, fmt, args);
1364 		va_end(args);
1365 	}
1366 
1367 	__btf_verifier_log(log, "\n");
1368 }
1369 
1370 #define btf_verifier_log_type(env, t, ...) \
1371 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1372 #define btf_verifier_log_basic(env, t, ...) \
1373 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1374 
1375 __printf(4, 5)
1376 static void btf_verifier_log_member(struct btf_verifier_env *env,
1377 				    const struct btf_type *struct_type,
1378 				    const struct btf_member *member,
1379 				    const char *fmt, ...)
1380 {
1381 	struct bpf_verifier_log *log = &env->log;
1382 	struct btf *btf = env->btf;
1383 	va_list args;
1384 
1385 	if (!bpf_verifier_log_needed(log))
1386 		return;
1387 
1388 	if (log->level == BPF_LOG_KERNEL && !fmt)
1389 		return;
1390 	/* The CHECK_META phase already did a btf dump.
1391 	 *
1392 	 * If member is logged again, it must hit an error in
1393 	 * parsing this member.  It is useful to print out which
1394 	 * struct this member belongs to.
1395 	 */
1396 	if (env->phase != CHECK_META)
1397 		btf_verifier_log_type(env, struct_type, NULL);
1398 
1399 	if (btf_type_kflag(struct_type))
1400 		__btf_verifier_log(log,
1401 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1402 				   __btf_name_by_offset(btf, member->name_off),
1403 				   member->type,
1404 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1405 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1406 	else
1407 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1408 				   __btf_name_by_offset(btf, member->name_off),
1409 				   member->type, member->offset);
1410 
1411 	if (fmt && *fmt) {
1412 		__btf_verifier_log(log, " ");
1413 		va_start(args, fmt);
1414 		bpf_verifier_vlog(log, fmt, args);
1415 		va_end(args);
1416 	}
1417 
1418 	__btf_verifier_log(log, "\n");
1419 }
1420 
1421 __printf(4, 5)
1422 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1423 				 const struct btf_type *datasec_type,
1424 				 const struct btf_var_secinfo *vsi,
1425 				 const char *fmt, ...)
1426 {
1427 	struct bpf_verifier_log *log = &env->log;
1428 	va_list args;
1429 
1430 	if (!bpf_verifier_log_needed(log))
1431 		return;
1432 	if (log->level == BPF_LOG_KERNEL && !fmt)
1433 		return;
1434 	if (env->phase != CHECK_META)
1435 		btf_verifier_log_type(env, datasec_type, NULL);
1436 
1437 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1438 			   vsi->type, vsi->offset, vsi->size);
1439 	if (fmt && *fmt) {
1440 		__btf_verifier_log(log, " ");
1441 		va_start(args, fmt);
1442 		bpf_verifier_vlog(log, fmt, args);
1443 		va_end(args);
1444 	}
1445 
1446 	__btf_verifier_log(log, "\n");
1447 }
1448 
1449 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1450 				 u32 btf_data_size)
1451 {
1452 	struct bpf_verifier_log *log = &env->log;
1453 	const struct btf *btf = env->btf;
1454 	const struct btf_header *hdr;
1455 
1456 	if (!bpf_verifier_log_needed(log))
1457 		return;
1458 
1459 	if (log->level == BPF_LOG_KERNEL)
1460 		return;
1461 	hdr = &btf->hdr;
1462 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1463 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1464 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1465 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1466 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1467 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1468 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1469 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1470 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1471 }
1472 
1473 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1474 {
1475 	struct btf *btf = env->btf;
1476 
1477 	if (btf->types_size == btf->nr_types) {
1478 		/* Expand 'types' array */
1479 
1480 		struct btf_type **new_types;
1481 		u32 expand_by, new_size;
1482 
1483 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1484 			btf_verifier_log(env, "Exceeded max num of types");
1485 			return -E2BIG;
1486 		}
1487 
1488 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1489 		new_size = min_t(u32, BTF_MAX_TYPE,
1490 				 btf->types_size + expand_by);
1491 
1492 		new_types = kvcalloc(new_size, sizeof(*new_types),
1493 				     GFP_KERNEL | __GFP_NOWARN);
1494 		if (!new_types)
1495 			return -ENOMEM;
1496 
1497 		if (btf->nr_types == 0) {
1498 			if (!btf->base_btf) {
1499 				/* lazily init VOID type */
1500 				new_types[0] = &btf_void;
1501 				btf->nr_types++;
1502 			}
1503 		} else {
1504 			memcpy(new_types, btf->types,
1505 			       sizeof(*btf->types) * btf->nr_types);
1506 		}
1507 
1508 		kvfree(btf->types);
1509 		btf->types = new_types;
1510 		btf->types_size = new_size;
1511 	}
1512 
1513 	btf->types[btf->nr_types++] = t;
1514 
1515 	return 0;
1516 }
1517 
1518 static int btf_alloc_id(struct btf *btf)
1519 {
1520 	int id;
1521 
1522 	idr_preload(GFP_KERNEL);
1523 	spin_lock_bh(&btf_idr_lock);
1524 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1525 	if (id > 0)
1526 		btf->id = id;
1527 	spin_unlock_bh(&btf_idr_lock);
1528 	idr_preload_end();
1529 
1530 	if (WARN_ON_ONCE(!id))
1531 		return -ENOSPC;
1532 
1533 	return id > 0 ? 0 : id;
1534 }
1535 
1536 static void btf_free_id(struct btf *btf)
1537 {
1538 	unsigned long flags;
1539 
1540 	/*
1541 	 * In map-in-map, calling map_delete_elem() on outer
1542 	 * map will call bpf_map_put on the inner map.
1543 	 * It will then eventually call btf_free_id()
1544 	 * on the inner map.  Some of the map_delete_elem()
1545 	 * implementation may have irq disabled, so
1546 	 * we need to use the _irqsave() version instead
1547 	 * of the _bh() version.
1548 	 */
1549 	spin_lock_irqsave(&btf_idr_lock, flags);
1550 	idr_remove(&btf_idr, btf->id);
1551 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1552 }
1553 
1554 static void btf_free_kfunc_set_tab(struct btf *btf)
1555 {
1556 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1557 	int hook, type;
1558 
1559 	if (!tab)
1560 		return;
1561 	/* For module BTF, we directly assign the sets being registered, so
1562 	 * there is nothing to free except kfunc_set_tab.
1563 	 */
1564 	if (btf_is_module(btf))
1565 		goto free_tab;
1566 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) {
1567 		for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++)
1568 			kfree(tab->sets[hook][type]);
1569 	}
1570 free_tab:
1571 	kfree(tab);
1572 	btf->kfunc_set_tab = NULL;
1573 }
1574 
1575 static void btf_free(struct btf *btf)
1576 {
1577 	btf_free_kfunc_set_tab(btf);
1578 	kvfree(btf->types);
1579 	kvfree(btf->resolved_sizes);
1580 	kvfree(btf->resolved_ids);
1581 	kvfree(btf->data);
1582 	kfree(btf);
1583 }
1584 
1585 static void btf_free_rcu(struct rcu_head *rcu)
1586 {
1587 	struct btf *btf = container_of(rcu, struct btf, rcu);
1588 
1589 	btf_free(btf);
1590 }
1591 
1592 void btf_get(struct btf *btf)
1593 {
1594 	refcount_inc(&btf->refcnt);
1595 }
1596 
1597 void btf_put(struct btf *btf)
1598 {
1599 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1600 		btf_free_id(btf);
1601 		call_rcu(&btf->rcu, btf_free_rcu);
1602 	}
1603 }
1604 
1605 static int env_resolve_init(struct btf_verifier_env *env)
1606 {
1607 	struct btf *btf = env->btf;
1608 	u32 nr_types = btf->nr_types;
1609 	u32 *resolved_sizes = NULL;
1610 	u32 *resolved_ids = NULL;
1611 	u8 *visit_states = NULL;
1612 
1613 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1614 				  GFP_KERNEL | __GFP_NOWARN);
1615 	if (!resolved_sizes)
1616 		goto nomem;
1617 
1618 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1619 				GFP_KERNEL | __GFP_NOWARN);
1620 	if (!resolved_ids)
1621 		goto nomem;
1622 
1623 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1624 				GFP_KERNEL | __GFP_NOWARN);
1625 	if (!visit_states)
1626 		goto nomem;
1627 
1628 	btf->resolved_sizes = resolved_sizes;
1629 	btf->resolved_ids = resolved_ids;
1630 	env->visit_states = visit_states;
1631 
1632 	return 0;
1633 
1634 nomem:
1635 	kvfree(resolved_sizes);
1636 	kvfree(resolved_ids);
1637 	kvfree(visit_states);
1638 	return -ENOMEM;
1639 }
1640 
1641 static void btf_verifier_env_free(struct btf_verifier_env *env)
1642 {
1643 	kvfree(env->visit_states);
1644 	kfree(env);
1645 }
1646 
1647 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1648 				     const struct btf_type *next_type)
1649 {
1650 	switch (env->resolve_mode) {
1651 	case RESOLVE_TBD:
1652 		/* int, enum or void is a sink */
1653 		return !btf_type_needs_resolve(next_type);
1654 	case RESOLVE_PTR:
1655 		/* int, enum, void, struct, array, func or func_proto is a sink
1656 		 * for ptr
1657 		 */
1658 		return !btf_type_is_modifier(next_type) &&
1659 			!btf_type_is_ptr(next_type);
1660 	case RESOLVE_STRUCT_OR_ARRAY:
1661 		/* int, enum, void, ptr, func or func_proto is a sink
1662 		 * for struct and array
1663 		 */
1664 		return !btf_type_is_modifier(next_type) &&
1665 			!btf_type_is_array(next_type) &&
1666 			!btf_type_is_struct(next_type);
1667 	default:
1668 		BUG();
1669 	}
1670 }
1671 
1672 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1673 				 u32 type_id)
1674 {
1675 	/* base BTF types should be resolved by now */
1676 	if (type_id < env->btf->start_id)
1677 		return true;
1678 
1679 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1680 }
1681 
1682 static int env_stack_push(struct btf_verifier_env *env,
1683 			  const struct btf_type *t, u32 type_id)
1684 {
1685 	const struct btf *btf = env->btf;
1686 	struct resolve_vertex *v;
1687 
1688 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1689 		return -E2BIG;
1690 
1691 	if (type_id < btf->start_id
1692 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1693 		return -EEXIST;
1694 
1695 	env->visit_states[type_id - btf->start_id] = VISITED;
1696 
1697 	v = &env->stack[env->top_stack++];
1698 	v->t = t;
1699 	v->type_id = type_id;
1700 	v->next_member = 0;
1701 
1702 	if (env->resolve_mode == RESOLVE_TBD) {
1703 		if (btf_type_is_ptr(t))
1704 			env->resolve_mode = RESOLVE_PTR;
1705 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1706 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 static void env_stack_set_next_member(struct btf_verifier_env *env,
1713 				      u16 next_member)
1714 {
1715 	env->stack[env->top_stack - 1].next_member = next_member;
1716 }
1717 
1718 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1719 				   u32 resolved_type_id,
1720 				   u32 resolved_size)
1721 {
1722 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1723 	struct btf *btf = env->btf;
1724 
1725 	type_id -= btf->start_id; /* adjust to local type id */
1726 	btf->resolved_sizes[type_id] = resolved_size;
1727 	btf->resolved_ids[type_id] = resolved_type_id;
1728 	env->visit_states[type_id] = RESOLVED;
1729 }
1730 
1731 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1732 {
1733 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1734 }
1735 
1736 /* Resolve the size of a passed-in "type"
1737  *
1738  * type: is an array (e.g. u32 array[x][y])
1739  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1740  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1741  *             corresponds to the return type.
1742  * *elem_type: u32
1743  * *elem_id: id of u32
1744  * *total_nelems: (x * y).  Hence, individual elem size is
1745  *                (*type_size / *total_nelems)
1746  * *type_id: id of type if it's changed within the function, 0 if not
1747  *
1748  * type: is not an array (e.g. const struct X)
1749  * return type: type "struct X"
1750  * *type_size: sizeof(struct X)
1751  * *elem_type: same as return type ("struct X")
1752  * *elem_id: 0
1753  * *total_nelems: 1
1754  * *type_id: id of type if it's changed within the function, 0 if not
1755  */
1756 static const struct btf_type *
1757 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1758 		   u32 *type_size, const struct btf_type **elem_type,
1759 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1760 {
1761 	const struct btf_type *array_type = NULL;
1762 	const struct btf_array *array = NULL;
1763 	u32 i, size, nelems = 1, id = 0;
1764 
1765 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1766 		switch (BTF_INFO_KIND(type->info)) {
1767 		/* type->size can be used */
1768 		case BTF_KIND_INT:
1769 		case BTF_KIND_STRUCT:
1770 		case BTF_KIND_UNION:
1771 		case BTF_KIND_ENUM:
1772 		case BTF_KIND_FLOAT:
1773 			size = type->size;
1774 			goto resolved;
1775 
1776 		case BTF_KIND_PTR:
1777 			size = sizeof(void *);
1778 			goto resolved;
1779 
1780 		/* Modifiers */
1781 		case BTF_KIND_TYPEDEF:
1782 		case BTF_KIND_VOLATILE:
1783 		case BTF_KIND_CONST:
1784 		case BTF_KIND_RESTRICT:
1785 		case BTF_KIND_TYPE_TAG:
1786 			id = type->type;
1787 			type = btf_type_by_id(btf, type->type);
1788 			break;
1789 
1790 		case BTF_KIND_ARRAY:
1791 			if (!array_type)
1792 				array_type = type;
1793 			array = btf_type_array(type);
1794 			if (nelems && array->nelems > U32_MAX / nelems)
1795 				return ERR_PTR(-EINVAL);
1796 			nelems *= array->nelems;
1797 			type = btf_type_by_id(btf, array->type);
1798 			break;
1799 
1800 		/* type without size */
1801 		default:
1802 			return ERR_PTR(-EINVAL);
1803 		}
1804 	}
1805 
1806 	return ERR_PTR(-EINVAL);
1807 
1808 resolved:
1809 	if (nelems && size > U32_MAX / nelems)
1810 		return ERR_PTR(-EINVAL);
1811 
1812 	*type_size = nelems * size;
1813 	if (total_nelems)
1814 		*total_nelems = nelems;
1815 	if (elem_type)
1816 		*elem_type = type;
1817 	if (elem_id)
1818 		*elem_id = array ? array->type : 0;
1819 	if (type_id && id)
1820 		*type_id = id;
1821 
1822 	return array_type ? : type;
1823 }
1824 
1825 const struct btf_type *
1826 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1827 		 u32 *type_size)
1828 {
1829 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1830 }
1831 
1832 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1833 {
1834 	while (type_id < btf->start_id)
1835 		btf = btf->base_btf;
1836 
1837 	return btf->resolved_ids[type_id - btf->start_id];
1838 }
1839 
1840 /* The input param "type_id" must point to a needs_resolve type */
1841 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1842 						  u32 *type_id)
1843 {
1844 	*type_id = btf_resolved_type_id(btf, *type_id);
1845 	return btf_type_by_id(btf, *type_id);
1846 }
1847 
1848 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1849 {
1850 	while (type_id < btf->start_id)
1851 		btf = btf->base_btf;
1852 
1853 	return btf->resolved_sizes[type_id - btf->start_id];
1854 }
1855 
1856 const struct btf_type *btf_type_id_size(const struct btf *btf,
1857 					u32 *type_id, u32 *ret_size)
1858 {
1859 	const struct btf_type *size_type;
1860 	u32 size_type_id = *type_id;
1861 	u32 size = 0;
1862 
1863 	size_type = btf_type_by_id(btf, size_type_id);
1864 	if (btf_type_nosize_or_null(size_type))
1865 		return NULL;
1866 
1867 	if (btf_type_has_size(size_type)) {
1868 		size = size_type->size;
1869 	} else if (btf_type_is_array(size_type)) {
1870 		size = btf_resolved_type_size(btf, size_type_id);
1871 	} else if (btf_type_is_ptr(size_type)) {
1872 		size = sizeof(void *);
1873 	} else {
1874 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1875 				 !btf_type_is_var(size_type)))
1876 			return NULL;
1877 
1878 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1879 		size_type = btf_type_by_id(btf, size_type_id);
1880 		if (btf_type_nosize_or_null(size_type))
1881 			return NULL;
1882 		else if (btf_type_has_size(size_type))
1883 			size = size_type->size;
1884 		else if (btf_type_is_array(size_type))
1885 			size = btf_resolved_type_size(btf, size_type_id);
1886 		else if (btf_type_is_ptr(size_type))
1887 			size = sizeof(void *);
1888 		else
1889 			return NULL;
1890 	}
1891 
1892 	*type_id = size_type_id;
1893 	if (ret_size)
1894 		*ret_size = size;
1895 
1896 	return size_type;
1897 }
1898 
1899 static int btf_df_check_member(struct btf_verifier_env *env,
1900 			       const struct btf_type *struct_type,
1901 			       const struct btf_member *member,
1902 			       const struct btf_type *member_type)
1903 {
1904 	btf_verifier_log_basic(env, struct_type,
1905 			       "Unsupported check_member");
1906 	return -EINVAL;
1907 }
1908 
1909 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1910 				     const struct btf_type *struct_type,
1911 				     const struct btf_member *member,
1912 				     const struct btf_type *member_type)
1913 {
1914 	btf_verifier_log_basic(env, struct_type,
1915 			       "Unsupported check_kflag_member");
1916 	return -EINVAL;
1917 }
1918 
1919 /* Used for ptr, array struct/union and float type members.
1920  * int, enum and modifier types have their specific callback functions.
1921  */
1922 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1923 					  const struct btf_type *struct_type,
1924 					  const struct btf_member *member,
1925 					  const struct btf_type *member_type)
1926 {
1927 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1928 		btf_verifier_log_member(env, struct_type, member,
1929 					"Invalid member bitfield_size");
1930 		return -EINVAL;
1931 	}
1932 
1933 	/* bitfield size is 0, so member->offset represents bit offset only.
1934 	 * It is safe to call non kflag check_member variants.
1935 	 */
1936 	return btf_type_ops(member_type)->check_member(env, struct_type,
1937 						       member,
1938 						       member_type);
1939 }
1940 
1941 static int btf_df_resolve(struct btf_verifier_env *env,
1942 			  const struct resolve_vertex *v)
1943 {
1944 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1945 	return -EINVAL;
1946 }
1947 
1948 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1949 			u32 type_id, void *data, u8 bits_offsets,
1950 			struct btf_show *show)
1951 {
1952 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1953 }
1954 
1955 static int btf_int_check_member(struct btf_verifier_env *env,
1956 				const struct btf_type *struct_type,
1957 				const struct btf_member *member,
1958 				const struct btf_type *member_type)
1959 {
1960 	u32 int_data = btf_type_int(member_type);
1961 	u32 struct_bits_off = member->offset;
1962 	u32 struct_size = struct_type->size;
1963 	u32 nr_copy_bits;
1964 	u32 bytes_offset;
1965 
1966 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1967 		btf_verifier_log_member(env, struct_type, member,
1968 					"bits_offset exceeds U32_MAX");
1969 		return -EINVAL;
1970 	}
1971 
1972 	struct_bits_off += BTF_INT_OFFSET(int_data);
1973 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1974 	nr_copy_bits = BTF_INT_BITS(int_data) +
1975 		BITS_PER_BYTE_MASKED(struct_bits_off);
1976 
1977 	if (nr_copy_bits > BITS_PER_U128) {
1978 		btf_verifier_log_member(env, struct_type, member,
1979 					"nr_copy_bits exceeds 128");
1980 		return -EINVAL;
1981 	}
1982 
1983 	if (struct_size < bytes_offset ||
1984 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1985 		btf_verifier_log_member(env, struct_type, member,
1986 					"Member exceeds struct_size");
1987 		return -EINVAL;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1994 				      const struct btf_type *struct_type,
1995 				      const struct btf_member *member,
1996 				      const struct btf_type *member_type)
1997 {
1998 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1999 	u32 int_data = btf_type_int(member_type);
2000 	u32 struct_size = struct_type->size;
2001 	u32 nr_copy_bits;
2002 
2003 	/* a regular int type is required for the kflag int member */
2004 	if (!btf_type_int_is_regular(member_type)) {
2005 		btf_verifier_log_member(env, struct_type, member,
2006 					"Invalid member base type");
2007 		return -EINVAL;
2008 	}
2009 
2010 	/* check sanity of bitfield size */
2011 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2012 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2013 	nr_int_data_bits = BTF_INT_BITS(int_data);
2014 	if (!nr_bits) {
2015 		/* Not a bitfield member, member offset must be at byte
2016 		 * boundary.
2017 		 */
2018 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2019 			btf_verifier_log_member(env, struct_type, member,
2020 						"Invalid member offset");
2021 			return -EINVAL;
2022 		}
2023 
2024 		nr_bits = nr_int_data_bits;
2025 	} else if (nr_bits > nr_int_data_bits) {
2026 		btf_verifier_log_member(env, struct_type, member,
2027 					"Invalid member bitfield_size");
2028 		return -EINVAL;
2029 	}
2030 
2031 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2032 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2033 	if (nr_copy_bits > BITS_PER_U128) {
2034 		btf_verifier_log_member(env, struct_type, member,
2035 					"nr_copy_bits exceeds 128");
2036 		return -EINVAL;
2037 	}
2038 
2039 	if (struct_size < bytes_offset ||
2040 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2041 		btf_verifier_log_member(env, struct_type, member,
2042 					"Member exceeds struct_size");
2043 		return -EINVAL;
2044 	}
2045 
2046 	return 0;
2047 }
2048 
2049 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2050 			      const struct btf_type *t,
2051 			      u32 meta_left)
2052 {
2053 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2054 	u16 encoding;
2055 
2056 	if (meta_left < meta_needed) {
2057 		btf_verifier_log_basic(env, t,
2058 				       "meta_left:%u meta_needed:%u",
2059 				       meta_left, meta_needed);
2060 		return -EINVAL;
2061 	}
2062 
2063 	if (btf_type_vlen(t)) {
2064 		btf_verifier_log_type(env, t, "vlen != 0");
2065 		return -EINVAL;
2066 	}
2067 
2068 	if (btf_type_kflag(t)) {
2069 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2070 		return -EINVAL;
2071 	}
2072 
2073 	int_data = btf_type_int(t);
2074 	if (int_data & ~BTF_INT_MASK) {
2075 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2076 				       int_data);
2077 		return -EINVAL;
2078 	}
2079 
2080 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2081 
2082 	if (nr_bits > BITS_PER_U128) {
2083 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2084 				      BITS_PER_U128);
2085 		return -EINVAL;
2086 	}
2087 
2088 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2089 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2090 		return -EINVAL;
2091 	}
2092 
2093 	/*
2094 	 * Only one of the encoding bits is allowed and it
2095 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2096 	 * Multiple bits can be allowed later if it is found
2097 	 * to be insufficient.
2098 	 */
2099 	encoding = BTF_INT_ENCODING(int_data);
2100 	if (encoding &&
2101 	    encoding != BTF_INT_SIGNED &&
2102 	    encoding != BTF_INT_CHAR &&
2103 	    encoding != BTF_INT_BOOL) {
2104 		btf_verifier_log_type(env, t, "Unsupported encoding");
2105 		return -ENOTSUPP;
2106 	}
2107 
2108 	btf_verifier_log_type(env, t, NULL);
2109 
2110 	return meta_needed;
2111 }
2112 
2113 static void btf_int_log(struct btf_verifier_env *env,
2114 			const struct btf_type *t)
2115 {
2116 	int int_data = btf_type_int(t);
2117 
2118 	btf_verifier_log(env,
2119 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2120 			 t->size, BTF_INT_OFFSET(int_data),
2121 			 BTF_INT_BITS(int_data),
2122 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2123 }
2124 
2125 static void btf_int128_print(struct btf_show *show, void *data)
2126 {
2127 	/* data points to a __int128 number.
2128 	 * Suppose
2129 	 *     int128_num = *(__int128 *)data;
2130 	 * The below formulas shows what upper_num and lower_num represents:
2131 	 *     upper_num = int128_num >> 64;
2132 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2133 	 */
2134 	u64 upper_num, lower_num;
2135 
2136 #ifdef __BIG_ENDIAN_BITFIELD
2137 	upper_num = *(u64 *)data;
2138 	lower_num = *(u64 *)(data + 8);
2139 #else
2140 	upper_num = *(u64 *)(data + 8);
2141 	lower_num = *(u64 *)data;
2142 #endif
2143 	if (upper_num == 0)
2144 		btf_show_type_value(show, "0x%llx", lower_num);
2145 	else
2146 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2147 				     lower_num);
2148 }
2149 
2150 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2151 			     u16 right_shift_bits)
2152 {
2153 	u64 upper_num, lower_num;
2154 
2155 #ifdef __BIG_ENDIAN_BITFIELD
2156 	upper_num = print_num[0];
2157 	lower_num = print_num[1];
2158 #else
2159 	upper_num = print_num[1];
2160 	lower_num = print_num[0];
2161 #endif
2162 
2163 	/* shake out un-needed bits by shift/or operations */
2164 	if (left_shift_bits >= 64) {
2165 		upper_num = lower_num << (left_shift_bits - 64);
2166 		lower_num = 0;
2167 	} else {
2168 		upper_num = (upper_num << left_shift_bits) |
2169 			    (lower_num >> (64 - left_shift_bits));
2170 		lower_num = lower_num << left_shift_bits;
2171 	}
2172 
2173 	if (right_shift_bits >= 64) {
2174 		lower_num = upper_num >> (right_shift_bits - 64);
2175 		upper_num = 0;
2176 	} else {
2177 		lower_num = (lower_num >> right_shift_bits) |
2178 			    (upper_num << (64 - right_shift_bits));
2179 		upper_num = upper_num >> right_shift_bits;
2180 	}
2181 
2182 #ifdef __BIG_ENDIAN_BITFIELD
2183 	print_num[0] = upper_num;
2184 	print_num[1] = lower_num;
2185 #else
2186 	print_num[0] = lower_num;
2187 	print_num[1] = upper_num;
2188 #endif
2189 }
2190 
2191 static void btf_bitfield_show(void *data, u8 bits_offset,
2192 			      u8 nr_bits, struct btf_show *show)
2193 {
2194 	u16 left_shift_bits, right_shift_bits;
2195 	u8 nr_copy_bytes;
2196 	u8 nr_copy_bits;
2197 	u64 print_num[2] = {};
2198 
2199 	nr_copy_bits = nr_bits + bits_offset;
2200 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2201 
2202 	memcpy(print_num, data, nr_copy_bytes);
2203 
2204 #ifdef __BIG_ENDIAN_BITFIELD
2205 	left_shift_bits = bits_offset;
2206 #else
2207 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2208 #endif
2209 	right_shift_bits = BITS_PER_U128 - nr_bits;
2210 
2211 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2212 	btf_int128_print(show, print_num);
2213 }
2214 
2215 
2216 static void btf_int_bits_show(const struct btf *btf,
2217 			      const struct btf_type *t,
2218 			      void *data, u8 bits_offset,
2219 			      struct btf_show *show)
2220 {
2221 	u32 int_data = btf_type_int(t);
2222 	u8 nr_bits = BTF_INT_BITS(int_data);
2223 	u8 total_bits_offset;
2224 
2225 	/*
2226 	 * bits_offset is at most 7.
2227 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2228 	 */
2229 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2230 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2231 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2232 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2233 }
2234 
2235 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2236 			 u32 type_id, void *data, u8 bits_offset,
2237 			 struct btf_show *show)
2238 {
2239 	u32 int_data = btf_type_int(t);
2240 	u8 encoding = BTF_INT_ENCODING(int_data);
2241 	bool sign = encoding & BTF_INT_SIGNED;
2242 	u8 nr_bits = BTF_INT_BITS(int_data);
2243 	void *safe_data;
2244 
2245 	safe_data = btf_show_start_type(show, t, type_id, data);
2246 	if (!safe_data)
2247 		return;
2248 
2249 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2250 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2251 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2252 		goto out;
2253 	}
2254 
2255 	switch (nr_bits) {
2256 	case 128:
2257 		btf_int128_print(show, safe_data);
2258 		break;
2259 	case 64:
2260 		if (sign)
2261 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2262 		else
2263 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2264 		break;
2265 	case 32:
2266 		if (sign)
2267 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2268 		else
2269 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2270 		break;
2271 	case 16:
2272 		if (sign)
2273 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2274 		else
2275 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2276 		break;
2277 	case 8:
2278 		if (show->state.array_encoding == BTF_INT_CHAR) {
2279 			/* check for null terminator */
2280 			if (show->state.array_terminated)
2281 				break;
2282 			if (*(char *)data == '\0') {
2283 				show->state.array_terminated = 1;
2284 				break;
2285 			}
2286 			if (isprint(*(char *)data)) {
2287 				btf_show_type_value(show, "'%c'",
2288 						    *(char *)safe_data);
2289 				break;
2290 			}
2291 		}
2292 		if (sign)
2293 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2294 		else
2295 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2296 		break;
2297 	default:
2298 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2299 		break;
2300 	}
2301 out:
2302 	btf_show_end_type(show);
2303 }
2304 
2305 static const struct btf_kind_operations int_ops = {
2306 	.check_meta = btf_int_check_meta,
2307 	.resolve = btf_df_resolve,
2308 	.check_member = btf_int_check_member,
2309 	.check_kflag_member = btf_int_check_kflag_member,
2310 	.log_details = btf_int_log,
2311 	.show = btf_int_show,
2312 };
2313 
2314 static int btf_modifier_check_member(struct btf_verifier_env *env,
2315 				     const struct btf_type *struct_type,
2316 				     const struct btf_member *member,
2317 				     const struct btf_type *member_type)
2318 {
2319 	const struct btf_type *resolved_type;
2320 	u32 resolved_type_id = member->type;
2321 	struct btf_member resolved_member;
2322 	struct btf *btf = env->btf;
2323 
2324 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2325 	if (!resolved_type) {
2326 		btf_verifier_log_member(env, struct_type, member,
2327 					"Invalid member");
2328 		return -EINVAL;
2329 	}
2330 
2331 	resolved_member = *member;
2332 	resolved_member.type = resolved_type_id;
2333 
2334 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2335 							 &resolved_member,
2336 							 resolved_type);
2337 }
2338 
2339 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2340 					   const struct btf_type *struct_type,
2341 					   const struct btf_member *member,
2342 					   const struct btf_type *member_type)
2343 {
2344 	const struct btf_type *resolved_type;
2345 	u32 resolved_type_id = member->type;
2346 	struct btf_member resolved_member;
2347 	struct btf *btf = env->btf;
2348 
2349 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2350 	if (!resolved_type) {
2351 		btf_verifier_log_member(env, struct_type, member,
2352 					"Invalid member");
2353 		return -EINVAL;
2354 	}
2355 
2356 	resolved_member = *member;
2357 	resolved_member.type = resolved_type_id;
2358 
2359 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2360 							       &resolved_member,
2361 							       resolved_type);
2362 }
2363 
2364 static int btf_ptr_check_member(struct btf_verifier_env *env,
2365 				const struct btf_type *struct_type,
2366 				const struct btf_member *member,
2367 				const struct btf_type *member_type)
2368 {
2369 	u32 struct_size, struct_bits_off, bytes_offset;
2370 
2371 	struct_size = struct_type->size;
2372 	struct_bits_off = member->offset;
2373 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2374 
2375 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2376 		btf_verifier_log_member(env, struct_type, member,
2377 					"Member is not byte aligned");
2378 		return -EINVAL;
2379 	}
2380 
2381 	if (struct_size - bytes_offset < sizeof(void *)) {
2382 		btf_verifier_log_member(env, struct_type, member,
2383 					"Member exceeds struct_size");
2384 		return -EINVAL;
2385 	}
2386 
2387 	return 0;
2388 }
2389 
2390 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2391 				   const struct btf_type *t,
2392 				   u32 meta_left)
2393 {
2394 	const char *value;
2395 
2396 	if (btf_type_vlen(t)) {
2397 		btf_verifier_log_type(env, t, "vlen != 0");
2398 		return -EINVAL;
2399 	}
2400 
2401 	if (btf_type_kflag(t)) {
2402 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2403 		return -EINVAL;
2404 	}
2405 
2406 	if (!BTF_TYPE_ID_VALID(t->type)) {
2407 		btf_verifier_log_type(env, t, "Invalid type_id");
2408 		return -EINVAL;
2409 	}
2410 
2411 	/* typedef/type_tag type must have a valid name, and other ref types,
2412 	 * volatile, const, restrict, should have a null name.
2413 	 */
2414 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2415 		if (!t->name_off ||
2416 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2417 			btf_verifier_log_type(env, t, "Invalid name");
2418 			return -EINVAL;
2419 		}
2420 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2421 		value = btf_name_by_offset(env->btf, t->name_off);
2422 		if (!value || !value[0]) {
2423 			btf_verifier_log_type(env, t, "Invalid name");
2424 			return -EINVAL;
2425 		}
2426 	} else {
2427 		if (t->name_off) {
2428 			btf_verifier_log_type(env, t, "Invalid name");
2429 			return -EINVAL;
2430 		}
2431 	}
2432 
2433 	btf_verifier_log_type(env, t, NULL);
2434 
2435 	return 0;
2436 }
2437 
2438 static int btf_modifier_resolve(struct btf_verifier_env *env,
2439 				const struct resolve_vertex *v)
2440 {
2441 	const struct btf_type *t = v->t;
2442 	const struct btf_type *next_type;
2443 	u32 next_type_id = t->type;
2444 	struct btf *btf = env->btf;
2445 
2446 	next_type = btf_type_by_id(btf, next_type_id);
2447 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2448 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2449 		return -EINVAL;
2450 	}
2451 
2452 	if (!env_type_is_resolve_sink(env, next_type) &&
2453 	    !env_type_is_resolved(env, next_type_id))
2454 		return env_stack_push(env, next_type, next_type_id);
2455 
2456 	/* Figure out the resolved next_type_id with size.
2457 	 * They will be stored in the current modifier's
2458 	 * resolved_ids and resolved_sizes such that it can
2459 	 * save us a few type-following when we use it later (e.g. in
2460 	 * pretty print).
2461 	 */
2462 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2463 		if (env_type_is_resolved(env, next_type_id))
2464 			next_type = btf_type_id_resolve(btf, &next_type_id);
2465 
2466 		/* "typedef void new_void", "const void"...etc */
2467 		if (!btf_type_is_void(next_type) &&
2468 		    !btf_type_is_fwd(next_type) &&
2469 		    !btf_type_is_func_proto(next_type)) {
2470 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2471 			return -EINVAL;
2472 		}
2473 	}
2474 
2475 	env_stack_pop_resolved(env, next_type_id, 0);
2476 
2477 	return 0;
2478 }
2479 
2480 static int btf_var_resolve(struct btf_verifier_env *env,
2481 			   const struct resolve_vertex *v)
2482 {
2483 	const struct btf_type *next_type;
2484 	const struct btf_type *t = v->t;
2485 	u32 next_type_id = t->type;
2486 	struct btf *btf = env->btf;
2487 
2488 	next_type = btf_type_by_id(btf, next_type_id);
2489 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2490 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2491 		return -EINVAL;
2492 	}
2493 
2494 	if (!env_type_is_resolve_sink(env, next_type) &&
2495 	    !env_type_is_resolved(env, next_type_id))
2496 		return env_stack_push(env, next_type, next_type_id);
2497 
2498 	if (btf_type_is_modifier(next_type)) {
2499 		const struct btf_type *resolved_type;
2500 		u32 resolved_type_id;
2501 
2502 		resolved_type_id = next_type_id;
2503 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2504 
2505 		if (btf_type_is_ptr(resolved_type) &&
2506 		    !env_type_is_resolve_sink(env, resolved_type) &&
2507 		    !env_type_is_resolved(env, resolved_type_id))
2508 			return env_stack_push(env, resolved_type,
2509 					      resolved_type_id);
2510 	}
2511 
2512 	/* We must resolve to something concrete at this point, no
2513 	 * forward types or similar that would resolve to size of
2514 	 * zero is allowed.
2515 	 */
2516 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2517 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2518 		return -EINVAL;
2519 	}
2520 
2521 	env_stack_pop_resolved(env, next_type_id, 0);
2522 
2523 	return 0;
2524 }
2525 
2526 static int btf_ptr_resolve(struct btf_verifier_env *env,
2527 			   const struct resolve_vertex *v)
2528 {
2529 	const struct btf_type *next_type;
2530 	const struct btf_type *t = v->t;
2531 	u32 next_type_id = t->type;
2532 	struct btf *btf = env->btf;
2533 
2534 	next_type = btf_type_by_id(btf, next_type_id);
2535 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2536 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2537 		return -EINVAL;
2538 	}
2539 
2540 	if (!env_type_is_resolve_sink(env, next_type) &&
2541 	    !env_type_is_resolved(env, next_type_id))
2542 		return env_stack_push(env, next_type, next_type_id);
2543 
2544 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2545 	 * the modifier may have stopped resolving when it was resolved
2546 	 * to a ptr (last-resolved-ptr).
2547 	 *
2548 	 * We now need to continue from the last-resolved-ptr to
2549 	 * ensure the last-resolved-ptr will not referring back to
2550 	 * the current ptr (t).
2551 	 */
2552 	if (btf_type_is_modifier(next_type)) {
2553 		const struct btf_type *resolved_type;
2554 		u32 resolved_type_id;
2555 
2556 		resolved_type_id = next_type_id;
2557 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2558 
2559 		if (btf_type_is_ptr(resolved_type) &&
2560 		    !env_type_is_resolve_sink(env, resolved_type) &&
2561 		    !env_type_is_resolved(env, resolved_type_id))
2562 			return env_stack_push(env, resolved_type,
2563 					      resolved_type_id);
2564 	}
2565 
2566 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2567 		if (env_type_is_resolved(env, next_type_id))
2568 			next_type = btf_type_id_resolve(btf, &next_type_id);
2569 
2570 		if (!btf_type_is_void(next_type) &&
2571 		    !btf_type_is_fwd(next_type) &&
2572 		    !btf_type_is_func_proto(next_type)) {
2573 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2574 			return -EINVAL;
2575 		}
2576 	}
2577 
2578 	env_stack_pop_resolved(env, next_type_id, 0);
2579 
2580 	return 0;
2581 }
2582 
2583 static void btf_modifier_show(const struct btf *btf,
2584 			      const struct btf_type *t,
2585 			      u32 type_id, void *data,
2586 			      u8 bits_offset, struct btf_show *show)
2587 {
2588 	if (btf->resolved_ids)
2589 		t = btf_type_id_resolve(btf, &type_id);
2590 	else
2591 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2592 
2593 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2594 }
2595 
2596 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2597 			 u32 type_id, void *data, u8 bits_offset,
2598 			 struct btf_show *show)
2599 {
2600 	t = btf_type_id_resolve(btf, &type_id);
2601 
2602 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2603 }
2604 
2605 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2606 			 u32 type_id, void *data, u8 bits_offset,
2607 			 struct btf_show *show)
2608 {
2609 	void *safe_data;
2610 
2611 	safe_data = btf_show_start_type(show, t, type_id, data);
2612 	if (!safe_data)
2613 		return;
2614 
2615 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2616 	if (show->flags & BTF_SHOW_PTR_RAW)
2617 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2618 	else
2619 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2620 	btf_show_end_type(show);
2621 }
2622 
2623 static void btf_ref_type_log(struct btf_verifier_env *env,
2624 			     const struct btf_type *t)
2625 {
2626 	btf_verifier_log(env, "type_id=%u", t->type);
2627 }
2628 
2629 static struct btf_kind_operations modifier_ops = {
2630 	.check_meta = btf_ref_type_check_meta,
2631 	.resolve = btf_modifier_resolve,
2632 	.check_member = btf_modifier_check_member,
2633 	.check_kflag_member = btf_modifier_check_kflag_member,
2634 	.log_details = btf_ref_type_log,
2635 	.show = btf_modifier_show,
2636 };
2637 
2638 static struct btf_kind_operations ptr_ops = {
2639 	.check_meta = btf_ref_type_check_meta,
2640 	.resolve = btf_ptr_resolve,
2641 	.check_member = btf_ptr_check_member,
2642 	.check_kflag_member = btf_generic_check_kflag_member,
2643 	.log_details = btf_ref_type_log,
2644 	.show = btf_ptr_show,
2645 };
2646 
2647 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2648 			      const struct btf_type *t,
2649 			      u32 meta_left)
2650 {
2651 	if (btf_type_vlen(t)) {
2652 		btf_verifier_log_type(env, t, "vlen != 0");
2653 		return -EINVAL;
2654 	}
2655 
2656 	if (t->type) {
2657 		btf_verifier_log_type(env, t, "type != 0");
2658 		return -EINVAL;
2659 	}
2660 
2661 	/* fwd type must have a valid name */
2662 	if (!t->name_off ||
2663 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2664 		btf_verifier_log_type(env, t, "Invalid name");
2665 		return -EINVAL;
2666 	}
2667 
2668 	btf_verifier_log_type(env, t, NULL);
2669 
2670 	return 0;
2671 }
2672 
2673 static void btf_fwd_type_log(struct btf_verifier_env *env,
2674 			     const struct btf_type *t)
2675 {
2676 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2677 }
2678 
2679 static struct btf_kind_operations fwd_ops = {
2680 	.check_meta = btf_fwd_check_meta,
2681 	.resolve = btf_df_resolve,
2682 	.check_member = btf_df_check_member,
2683 	.check_kflag_member = btf_df_check_kflag_member,
2684 	.log_details = btf_fwd_type_log,
2685 	.show = btf_df_show,
2686 };
2687 
2688 static int btf_array_check_member(struct btf_verifier_env *env,
2689 				  const struct btf_type *struct_type,
2690 				  const struct btf_member *member,
2691 				  const struct btf_type *member_type)
2692 {
2693 	u32 struct_bits_off = member->offset;
2694 	u32 struct_size, bytes_offset;
2695 	u32 array_type_id, array_size;
2696 	struct btf *btf = env->btf;
2697 
2698 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2699 		btf_verifier_log_member(env, struct_type, member,
2700 					"Member is not byte aligned");
2701 		return -EINVAL;
2702 	}
2703 
2704 	array_type_id = member->type;
2705 	btf_type_id_size(btf, &array_type_id, &array_size);
2706 	struct_size = struct_type->size;
2707 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2708 	if (struct_size - bytes_offset < array_size) {
2709 		btf_verifier_log_member(env, struct_type, member,
2710 					"Member exceeds struct_size");
2711 		return -EINVAL;
2712 	}
2713 
2714 	return 0;
2715 }
2716 
2717 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2718 				const struct btf_type *t,
2719 				u32 meta_left)
2720 {
2721 	const struct btf_array *array = btf_type_array(t);
2722 	u32 meta_needed = sizeof(*array);
2723 
2724 	if (meta_left < meta_needed) {
2725 		btf_verifier_log_basic(env, t,
2726 				       "meta_left:%u meta_needed:%u",
2727 				       meta_left, meta_needed);
2728 		return -EINVAL;
2729 	}
2730 
2731 	/* array type should not have a name */
2732 	if (t->name_off) {
2733 		btf_verifier_log_type(env, t, "Invalid name");
2734 		return -EINVAL;
2735 	}
2736 
2737 	if (btf_type_vlen(t)) {
2738 		btf_verifier_log_type(env, t, "vlen != 0");
2739 		return -EINVAL;
2740 	}
2741 
2742 	if (btf_type_kflag(t)) {
2743 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2744 		return -EINVAL;
2745 	}
2746 
2747 	if (t->size) {
2748 		btf_verifier_log_type(env, t, "size != 0");
2749 		return -EINVAL;
2750 	}
2751 
2752 	/* Array elem type and index type cannot be in type void,
2753 	 * so !array->type and !array->index_type are not allowed.
2754 	 */
2755 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2756 		btf_verifier_log_type(env, t, "Invalid elem");
2757 		return -EINVAL;
2758 	}
2759 
2760 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2761 		btf_verifier_log_type(env, t, "Invalid index");
2762 		return -EINVAL;
2763 	}
2764 
2765 	btf_verifier_log_type(env, t, NULL);
2766 
2767 	return meta_needed;
2768 }
2769 
2770 static int btf_array_resolve(struct btf_verifier_env *env,
2771 			     const struct resolve_vertex *v)
2772 {
2773 	const struct btf_array *array = btf_type_array(v->t);
2774 	const struct btf_type *elem_type, *index_type;
2775 	u32 elem_type_id, index_type_id;
2776 	struct btf *btf = env->btf;
2777 	u32 elem_size;
2778 
2779 	/* Check array->index_type */
2780 	index_type_id = array->index_type;
2781 	index_type = btf_type_by_id(btf, index_type_id);
2782 	if (btf_type_nosize_or_null(index_type) ||
2783 	    btf_type_is_resolve_source_only(index_type)) {
2784 		btf_verifier_log_type(env, v->t, "Invalid index");
2785 		return -EINVAL;
2786 	}
2787 
2788 	if (!env_type_is_resolve_sink(env, index_type) &&
2789 	    !env_type_is_resolved(env, index_type_id))
2790 		return env_stack_push(env, index_type, index_type_id);
2791 
2792 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2793 	if (!index_type || !btf_type_is_int(index_type) ||
2794 	    !btf_type_int_is_regular(index_type)) {
2795 		btf_verifier_log_type(env, v->t, "Invalid index");
2796 		return -EINVAL;
2797 	}
2798 
2799 	/* Check array->type */
2800 	elem_type_id = array->type;
2801 	elem_type = btf_type_by_id(btf, elem_type_id);
2802 	if (btf_type_nosize_or_null(elem_type) ||
2803 	    btf_type_is_resolve_source_only(elem_type)) {
2804 		btf_verifier_log_type(env, v->t,
2805 				      "Invalid elem");
2806 		return -EINVAL;
2807 	}
2808 
2809 	if (!env_type_is_resolve_sink(env, elem_type) &&
2810 	    !env_type_is_resolved(env, elem_type_id))
2811 		return env_stack_push(env, elem_type, elem_type_id);
2812 
2813 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2814 	if (!elem_type) {
2815 		btf_verifier_log_type(env, v->t, "Invalid elem");
2816 		return -EINVAL;
2817 	}
2818 
2819 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2820 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2821 		return -EINVAL;
2822 	}
2823 
2824 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2825 		btf_verifier_log_type(env, v->t,
2826 				      "Array size overflows U32_MAX");
2827 		return -EINVAL;
2828 	}
2829 
2830 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2831 
2832 	return 0;
2833 }
2834 
2835 static void btf_array_log(struct btf_verifier_env *env,
2836 			  const struct btf_type *t)
2837 {
2838 	const struct btf_array *array = btf_type_array(t);
2839 
2840 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2841 			 array->type, array->index_type, array->nelems);
2842 }
2843 
2844 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2845 			     u32 type_id, void *data, u8 bits_offset,
2846 			     struct btf_show *show)
2847 {
2848 	const struct btf_array *array = btf_type_array(t);
2849 	const struct btf_kind_operations *elem_ops;
2850 	const struct btf_type *elem_type;
2851 	u32 i, elem_size = 0, elem_type_id;
2852 	u16 encoding = 0;
2853 
2854 	elem_type_id = array->type;
2855 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2856 	if (elem_type && btf_type_has_size(elem_type))
2857 		elem_size = elem_type->size;
2858 
2859 	if (elem_type && btf_type_is_int(elem_type)) {
2860 		u32 int_type = btf_type_int(elem_type);
2861 
2862 		encoding = BTF_INT_ENCODING(int_type);
2863 
2864 		/*
2865 		 * BTF_INT_CHAR encoding never seems to be set for
2866 		 * char arrays, so if size is 1 and element is
2867 		 * printable as a char, we'll do that.
2868 		 */
2869 		if (elem_size == 1)
2870 			encoding = BTF_INT_CHAR;
2871 	}
2872 
2873 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2874 		return;
2875 
2876 	if (!elem_type)
2877 		goto out;
2878 	elem_ops = btf_type_ops(elem_type);
2879 
2880 	for (i = 0; i < array->nelems; i++) {
2881 
2882 		btf_show_start_array_member(show);
2883 
2884 		elem_ops->show(btf, elem_type, elem_type_id, data,
2885 			       bits_offset, show);
2886 		data += elem_size;
2887 
2888 		btf_show_end_array_member(show);
2889 
2890 		if (show->state.array_terminated)
2891 			break;
2892 	}
2893 out:
2894 	btf_show_end_array_type(show);
2895 }
2896 
2897 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2898 			   u32 type_id, void *data, u8 bits_offset,
2899 			   struct btf_show *show)
2900 {
2901 	const struct btf_member *m = show->state.member;
2902 
2903 	/*
2904 	 * First check if any members would be shown (are non-zero).
2905 	 * See comments above "struct btf_show" definition for more
2906 	 * details on how this works at a high-level.
2907 	 */
2908 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2909 		if (!show->state.depth_check) {
2910 			show->state.depth_check = show->state.depth + 1;
2911 			show->state.depth_to_show = 0;
2912 		}
2913 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
2914 		show->state.member = m;
2915 
2916 		if (show->state.depth_check != show->state.depth + 1)
2917 			return;
2918 		show->state.depth_check = 0;
2919 
2920 		if (show->state.depth_to_show <= show->state.depth)
2921 			return;
2922 		/*
2923 		 * Reaching here indicates we have recursed and found
2924 		 * non-zero array member(s).
2925 		 */
2926 	}
2927 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
2928 }
2929 
2930 static struct btf_kind_operations array_ops = {
2931 	.check_meta = btf_array_check_meta,
2932 	.resolve = btf_array_resolve,
2933 	.check_member = btf_array_check_member,
2934 	.check_kflag_member = btf_generic_check_kflag_member,
2935 	.log_details = btf_array_log,
2936 	.show = btf_array_show,
2937 };
2938 
2939 static int btf_struct_check_member(struct btf_verifier_env *env,
2940 				   const struct btf_type *struct_type,
2941 				   const struct btf_member *member,
2942 				   const struct btf_type *member_type)
2943 {
2944 	u32 struct_bits_off = member->offset;
2945 	u32 struct_size, bytes_offset;
2946 
2947 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2948 		btf_verifier_log_member(env, struct_type, member,
2949 					"Member is not byte aligned");
2950 		return -EINVAL;
2951 	}
2952 
2953 	struct_size = struct_type->size;
2954 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2955 	if (struct_size - bytes_offset < member_type->size) {
2956 		btf_verifier_log_member(env, struct_type, member,
2957 					"Member exceeds struct_size");
2958 		return -EINVAL;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2965 				 const struct btf_type *t,
2966 				 u32 meta_left)
2967 {
2968 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2969 	const struct btf_member *member;
2970 	u32 meta_needed, last_offset;
2971 	struct btf *btf = env->btf;
2972 	u32 struct_size = t->size;
2973 	u32 offset;
2974 	u16 i;
2975 
2976 	meta_needed = btf_type_vlen(t) * sizeof(*member);
2977 	if (meta_left < meta_needed) {
2978 		btf_verifier_log_basic(env, t,
2979 				       "meta_left:%u meta_needed:%u",
2980 				       meta_left, meta_needed);
2981 		return -EINVAL;
2982 	}
2983 
2984 	/* struct type either no name or a valid one */
2985 	if (t->name_off &&
2986 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2987 		btf_verifier_log_type(env, t, "Invalid name");
2988 		return -EINVAL;
2989 	}
2990 
2991 	btf_verifier_log_type(env, t, NULL);
2992 
2993 	last_offset = 0;
2994 	for_each_member(i, t, member) {
2995 		if (!btf_name_offset_valid(btf, member->name_off)) {
2996 			btf_verifier_log_member(env, t, member,
2997 						"Invalid member name_offset:%u",
2998 						member->name_off);
2999 			return -EINVAL;
3000 		}
3001 
3002 		/* struct member either no name or a valid one */
3003 		if (member->name_off &&
3004 		    !btf_name_valid_identifier(btf, member->name_off)) {
3005 			btf_verifier_log_member(env, t, member, "Invalid name");
3006 			return -EINVAL;
3007 		}
3008 		/* A member cannot be in type void */
3009 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3010 			btf_verifier_log_member(env, t, member,
3011 						"Invalid type_id");
3012 			return -EINVAL;
3013 		}
3014 
3015 		offset = __btf_member_bit_offset(t, member);
3016 		if (is_union && offset) {
3017 			btf_verifier_log_member(env, t, member,
3018 						"Invalid member bits_offset");
3019 			return -EINVAL;
3020 		}
3021 
3022 		/*
3023 		 * ">" instead of ">=" because the last member could be
3024 		 * "char a[0];"
3025 		 */
3026 		if (last_offset > offset) {
3027 			btf_verifier_log_member(env, t, member,
3028 						"Invalid member bits_offset");
3029 			return -EINVAL;
3030 		}
3031 
3032 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3033 			btf_verifier_log_member(env, t, member,
3034 						"Member bits_offset exceeds its struct size");
3035 			return -EINVAL;
3036 		}
3037 
3038 		btf_verifier_log_member(env, t, member, NULL);
3039 		last_offset = offset;
3040 	}
3041 
3042 	return meta_needed;
3043 }
3044 
3045 static int btf_struct_resolve(struct btf_verifier_env *env,
3046 			      const struct resolve_vertex *v)
3047 {
3048 	const struct btf_member *member;
3049 	int err;
3050 	u16 i;
3051 
3052 	/* Before continue resolving the next_member,
3053 	 * ensure the last member is indeed resolved to a
3054 	 * type with size info.
3055 	 */
3056 	if (v->next_member) {
3057 		const struct btf_type *last_member_type;
3058 		const struct btf_member *last_member;
3059 		u16 last_member_type_id;
3060 
3061 		last_member = btf_type_member(v->t) + v->next_member - 1;
3062 		last_member_type_id = last_member->type;
3063 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3064 						       last_member_type_id)))
3065 			return -EINVAL;
3066 
3067 		last_member_type = btf_type_by_id(env->btf,
3068 						  last_member_type_id);
3069 		if (btf_type_kflag(v->t))
3070 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3071 								last_member,
3072 								last_member_type);
3073 		else
3074 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3075 								last_member,
3076 								last_member_type);
3077 		if (err)
3078 			return err;
3079 	}
3080 
3081 	for_each_member_from(i, v->next_member, v->t, member) {
3082 		u32 member_type_id = member->type;
3083 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3084 								member_type_id);
3085 
3086 		if (btf_type_nosize_or_null(member_type) ||
3087 		    btf_type_is_resolve_source_only(member_type)) {
3088 			btf_verifier_log_member(env, v->t, member,
3089 						"Invalid member");
3090 			return -EINVAL;
3091 		}
3092 
3093 		if (!env_type_is_resolve_sink(env, member_type) &&
3094 		    !env_type_is_resolved(env, member_type_id)) {
3095 			env_stack_set_next_member(env, i + 1);
3096 			return env_stack_push(env, member_type, member_type_id);
3097 		}
3098 
3099 		if (btf_type_kflag(v->t))
3100 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3101 									    member,
3102 									    member_type);
3103 		else
3104 			err = btf_type_ops(member_type)->check_member(env, v->t,
3105 								      member,
3106 								      member_type);
3107 		if (err)
3108 			return err;
3109 	}
3110 
3111 	env_stack_pop_resolved(env, 0, 0);
3112 
3113 	return 0;
3114 }
3115 
3116 static void btf_struct_log(struct btf_verifier_env *env,
3117 			   const struct btf_type *t)
3118 {
3119 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3120 }
3121 
3122 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t,
3123 				 const char *name, int sz, int align)
3124 {
3125 	const struct btf_member *member;
3126 	u32 i, off = -ENOENT;
3127 
3128 	for_each_member(i, t, member) {
3129 		const struct btf_type *member_type = btf_type_by_id(btf,
3130 								    member->type);
3131 		if (!__btf_type_is_struct(member_type))
3132 			continue;
3133 		if (member_type->size != sz)
3134 			continue;
3135 		if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name))
3136 			continue;
3137 		if (off != -ENOENT)
3138 			/* only one such field is allowed */
3139 			return -E2BIG;
3140 		off = __btf_member_bit_offset(t, member);
3141 		if (off % 8)
3142 			/* valid C code cannot generate such BTF */
3143 			return -EINVAL;
3144 		off /= 8;
3145 		if (off % align)
3146 			return -EINVAL;
3147 	}
3148 	return off;
3149 }
3150 
3151 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3152 				const char *name, int sz, int align)
3153 {
3154 	const struct btf_var_secinfo *vsi;
3155 	u32 i, off = -ENOENT;
3156 
3157 	for_each_vsi(i, t, vsi) {
3158 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3159 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3160 
3161 		if (!__btf_type_is_struct(var_type))
3162 			continue;
3163 		if (var_type->size != sz)
3164 			continue;
3165 		if (vsi->size != sz)
3166 			continue;
3167 		if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name))
3168 			continue;
3169 		if (off != -ENOENT)
3170 			/* only one such field is allowed */
3171 			return -E2BIG;
3172 		off = vsi->offset;
3173 		if (off % align)
3174 			return -EINVAL;
3175 	}
3176 	return off;
3177 }
3178 
3179 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3180 			  const char *name, int sz, int align)
3181 {
3182 
3183 	if (__btf_type_is_struct(t))
3184 		return btf_find_struct_field(btf, t, name, sz, align);
3185 	else if (btf_type_is_datasec(t))
3186 		return btf_find_datasec_var(btf, t, name, sz, align);
3187 	return -EINVAL;
3188 }
3189 
3190 /* find 'struct bpf_spin_lock' in map value.
3191  * return >= 0 offset if found
3192  * and < 0 in case of error
3193  */
3194 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3195 {
3196 	return btf_find_field(btf, t, "bpf_spin_lock",
3197 			      sizeof(struct bpf_spin_lock),
3198 			      __alignof__(struct bpf_spin_lock));
3199 }
3200 
3201 int btf_find_timer(const struct btf *btf, const struct btf_type *t)
3202 {
3203 	return btf_find_field(btf, t, "bpf_timer",
3204 			      sizeof(struct bpf_timer),
3205 			      __alignof__(struct bpf_timer));
3206 }
3207 
3208 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3209 			      u32 type_id, void *data, u8 bits_offset,
3210 			      struct btf_show *show)
3211 {
3212 	const struct btf_member *member;
3213 	void *safe_data;
3214 	u32 i;
3215 
3216 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3217 	if (!safe_data)
3218 		return;
3219 
3220 	for_each_member(i, t, member) {
3221 		const struct btf_type *member_type = btf_type_by_id(btf,
3222 								member->type);
3223 		const struct btf_kind_operations *ops;
3224 		u32 member_offset, bitfield_size;
3225 		u32 bytes_offset;
3226 		u8 bits8_offset;
3227 
3228 		btf_show_start_member(show, member);
3229 
3230 		member_offset = __btf_member_bit_offset(t, member);
3231 		bitfield_size = __btf_member_bitfield_size(t, member);
3232 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3233 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3234 		if (bitfield_size) {
3235 			safe_data = btf_show_start_type(show, member_type,
3236 							member->type,
3237 							data + bytes_offset);
3238 			if (safe_data)
3239 				btf_bitfield_show(safe_data,
3240 						  bits8_offset,
3241 						  bitfield_size, show);
3242 			btf_show_end_type(show);
3243 		} else {
3244 			ops = btf_type_ops(member_type);
3245 			ops->show(btf, member_type, member->type,
3246 				  data + bytes_offset, bits8_offset, show);
3247 		}
3248 
3249 		btf_show_end_member(show);
3250 	}
3251 
3252 	btf_show_end_struct_type(show);
3253 }
3254 
3255 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3256 			    u32 type_id, void *data, u8 bits_offset,
3257 			    struct btf_show *show)
3258 {
3259 	const struct btf_member *m = show->state.member;
3260 
3261 	/*
3262 	 * First check if any members would be shown (are non-zero).
3263 	 * See comments above "struct btf_show" definition for more
3264 	 * details on how this works at a high-level.
3265 	 */
3266 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3267 		if (!show->state.depth_check) {
3268 			show->state.depth_check = show->state.depth + 1;
3269 			show->state.depth_to_show = 0;
3270 		}
3271 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3272 		/* Restore saved member data here */
3273 		show->state.member = m;
3274 		if (show->state.depth_check != show->state.depth + 1)
3275 			return;
3276 		show->state.depth_check = 0;
3277 
3278 		if (show->state.depth_to_show <= show->state.depth)
3279 			return;
3280 		/*
3281 		 * Reaching here indicates we have recursed and found
3282 		 * non-zero child values.
3283 		 */
3284 	}
3285 
3286 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3287 }
3288 
3289 static struct btf_kind_operations struct_ops = {
3290 	.check_meta = btf_struct_check_meta,
3291 	.resolve = btf_struct_resolve,
3292 	.check_member = btf_struct_check_member,
3293 	.check_kflag_member = btf_generic_check_kflag_member,
3294 	.log_details = btf_struct_log,
3295 	.show = btf_struct_show,
3296 };
3297 
3298 static int btf_enum_check_member(struct btf_verifier_env *env,
3299 				 const struct btf_type *struct_type,
3300 				 const struct btf_member *member,
3301 				 const struct btf_type *member_type)
3302 {
3303 	u32 struct_bits_off = member->offset;
3304 	u32 struct_size, bytes_offset;
3305 
3306 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3307 		btf_verifier_log_member(env, struct_type, member,
3308 					"Member is not byte aligned");
3309 		return -EINVAL;
3310 	}
3311 
3312 	struct_size = struct_type->size;
3313 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3314 	if (struct_size - bytes_offset < member_type->size) {
3315 		btf_verifier_log_member(env, struct_type, member,
3316 					"Member exceeds struct_size");
3317 		return -EINVAL;
3318 	}
3319 
3320 	return 0;
3321 }
3322 
3323 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3324 				       const struct btf_type *struct_type,
3325 				       const struct btf_member *member,
3326 				       const struct btf_type *member_type)
3327 {
3328 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3329 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3330 
3331 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3332 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3333 	if (!nr_bits) {
3334 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3335 			btf_verifier_log_member(env, struct_type, member,
3336 						"Member is not byte aligned");
3337 			return -EINVAL;
3338 		}
3339 
3340 		nr_bits = int_bitsize;
3341 	} else if (nr_bits > int_bitsize) {
3342 		btf_verifier_log_member(env, struct_type, member,
3343 					"Invalid member bitfield_size");
3344 		return -EINVAL;
3345 	}
3346 
3347 	struct_size = struct_type->size;
3348 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3349 	if (struct_size < bytes_end) {
3350 		btf_verifier_log_member(env, struct_type, member,
3351 					"Member exceeds struct_size");
3352 		return -EINVAL;
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3359 			       const struct btf_type *t,
3360 			       u32 meta_left)
3361 {
3362 	const struct btf_enum *enums = btf_type_enum(t);
3363 	struct btf *btf = env->btf;
3364 	u16 i, nr_enums;
3365 	u32 meta_needed;
3366 
3367 	nr_enums = btf_type_vlen(t);
3368 	meta_needed = nr_enums * sizeof(*enums);
3369 
3370 	if (meta_left < meta_needed) {
3371 		btf_verifier_log_basic(env, t,
3372 				       "meta_left:%u meta_needed:%u",
3373 				       meta_left, meta_needed);
3374 		return -EINVAL;
3375 	}
3376 
3377 	if (btf_type_kflag(t)) {
3378 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3379 		return -EINVAL;
3380 	}
3381 
3382 	if (t->size > 8 || !is_power_of_2(t->size)) {
3383 		btf_verifier_log_type(env, t, "Unexpected size");
3384 		return -EINVAL;
3385 	}
3386 
3387 	/* enum type either no name or a valid one */
3388 	if (t->name_off &&
3389 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3390 		btf_verifier_log_type(env, t, "Invalid name");
3391 		return -EINVAL;
3392 	}
3393 
3394 	btf_verifier_log_type(env, t, NULL);
3395 
3396 	for (i = 0; i < nr_enums; i++) {
3397 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3398 			btf_verifier_log(env, "\tInvalid name_offset:%u",
3399 					 enums[i].name_off);
3400 			return -EINVAL;
3401 		}
3402 
3403 		/* enum member must have a valid name */
3404 		if (!enums[i].name_off ||
3405 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
3406 			btf_verifier_log_type(env, t, "Invalid name");
3407 			return -EINVAL;
3408 		}
3409 
3410 		if (env->log.level == BPF_LOG_KERNEL)
3411 			continue;
3412 		btf_verifier_log(env, "\t%s val=%d\n",
3413 				 __btf_name_by_offset(btf, enums[i].name_off),
3414 				 enums[i].val);
3415 	}
3416 
3417 	return meta_needed;
3418 }
3419 
3420 static void btf_enum_log(struct btf_verifier_env *env,
3421 			 const struct btf_type *t)
3422 {
3423 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3424 }
3425 
3426 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3427 			  u32 type_id, void *data, u8 bits_offset,
3428 			  struct btf_show *show)
3429 {
3430 	const struct btf_enum *enums = btf_type_enum(t);
3431 	u32 i, nr_enums = btf_type_vlen(t);
3432 	void *safe_data;
3433 	int v;
3434 
3435 	safe_data = btf_show_start_type(show, t, type_id, data);
3436 	if (!safe_data)
3437 		return;
3438 
3439 	v = *(int *)safe_data;
3440 
3441 	for (i = 0; i < nr_enums; i++) {
3442 		if (v != enums[i].val)
3443 			continue;
3444 
3445 		btf_show_type_value(show, "%s",
3446 				    __btf_name_by_offset(btf,
3447 							 enums[i].name_off));
3448 
3449 		btf_show_end_type(show);
3450 		return;
3451 	}
3452 
3453 	btf_show_type_value(show, "%d", v);
3454 	btf_show_end_type(show);
3455 }
3456 
3457 static struct btf_kind_operations enum_ops = {
3458 	.check_meta = btf_enum_check_meta,
3459 	.resolve = btf_df_resolve,
3460 	.check_member = btf_enum_check_member,
3461 	.check_kflag_member = btf_enum_check_kflag_member,
3462 	.log_details = btf_enum_log,
3463 	.show = btf_enum_show,
3464 };
3465 
3466 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3467 				     const struct btf_type *t,
3468 				     u32 meta_left)
3469 {
3470 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3471 
3472 	if (meta_left < meta_needed) {
3473 		btf_verifier_log_basic(env, t,
3474 				       "meta_left:%u meta_needed:%u",
3475 				       meta_left, meta_needed);
3476 		return -EINVAL;
3477 	}
3478 
3479 	if (t->name_off) {
3480 		btf_verifier_log_type(env, t, "Invalid name");
3481 		return -EINVAL;
3482 	}
3483 
3484 	if (btf_type_kflag(t)) {
3485 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3486 		return -EINVAL;
3487 	}
3488 
3489 	btf_verifier_log_type(env, t, NULL);
3490 
3491 	return meta_needed;
3492 }
3493 
3494 static void btf_func_proto_log(struct btf_verifier_env *env,
3495 			       const struct btf_type *t)
3496 {
3497 	const struct btf_param *args = (const struct btf_param *)(t + 1);
3498 	u16 nr_args = btf_type_vlen(t), i;
3499 
3500 	btf_verifier_log(env, "return=%u args=(", t->type);
3501 	if (!nr_args) {
3502 		btf_verifier_log(env, "void");
3503 		goto done;
3504 	}
3505 
3506 	if (nr_args == 1 && !args[0].type) {
3507 		/* Only one vararg */
3508 		btf_verifier_log(env, "vararg");
3509 		goto done;
3510 	}
3511 
3512 	btf_verifier_log(env, "%u %s", args[0].type,
3513 			 __btf_name_by_offset(env->btf,
3514 					      args[0].name_off));
3515 	for (i = 1; i < nr_args - 1; i++)
3516 		btf_verifier_log(env, ", %u %s", args[i].type,
3517 				 __btf_name_by_offset(env->btf,
3518 						      args[i].name_off));
3519 
3520 	if (nr_args > 1) {
3521 		const struct btf_param *last_arg = &args[nr_args - 1];
3522 
3523 		if (last_arg->type)
3524 			btf_verifier_log(env, ", %u %s", last_arg->type,
3525 					 __btf_name_by_offset(env->btf,
3526 							      last_arg->name_off));
3527 		else
3528 			btf_verifier_log(env, ", vararg");
3529 	}
3530 
3531 done:
3532 	btf_verifier_log(env, ")");
3533 }
3534 
3535 static struct btf_kind_operations func_proto_ops = {
3536 	.check_meta = btf_func_proto_check_meta,
3537 	.resolve = btf_df_resolve,
3538 	/*
3539 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3540 	 * a struct's member.
3541 	 *
3542 	 * It should be a function pointer instead.
3543 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3544 	 *
3545 	 * Hence, there is no btf_func_check_member().
3546 	 */
3547 	.check_member = btf_df_check_member,
3548 	.check_kflag_member = btf_df_check_kflag_member,
3549 	.log_details = btf_func_proto_log,
3550 	.show = btf_df_show,
3551 };
3552 
3553 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3554 			       const struct btf_type *t,
3555 			       u32 meta_left)
3556 {
3557 	if (!t->name_off ||
3558 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3559 		btf_verifier_log_type(env, t, "Invalid name");
3560 		return -EINVAL;
3561 	}
3562 
3563 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3564 		btf_verifier_log_type(env, t, "Invalid func linkage");
3565 		return -EINVAL;
3566 	}
3567 
3568 	if (btf_type_kflag(t)) {
3569 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3570 		return -EINVAL;
3571 	}
3572 
3573 	btf_verifier_log_type(env, t, NULL);
3574 
3575 	return 0;
3576 }
3577 
3578 static int btf_func_resolve(struct btf_verifier_env *env,
3579 			    const struct resolve_vertex *v)
3580 {
3581 	const struct btf_type *t = v->t;
3582 	u32 next_type_id = t->type;
3583 	int err;
3584 
3585 	err = btf_func_check(env, t);
3586 	if (err)
3587 		return err;
3588 
3589 	env_stack_pop_resolved(env, next_type_id, 0);
3590 	return 0;
3591 }
3592 
3593 static struct btf_kind_operations func_ops = {
3594 	.check_meta = btf_func_check_meta,
3595 	.resolve = btf_func_resolve,
3596 	.check_member = btf_df_check_member,
3597 	.check_kflag_member = btf_df_check_kflag_member,
3598 	.log_details = btf_ref_type_log,
3599 	.show = btf_df_show,
3600 };
3601 
3602 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3603 			      const struct btf_type *t,
3604 			      u32 meta_left)
3605 {
3606 	const struct btf_var *var;
3607 	u32 meta_needed = sizeof(*var);
3608 
3609 	if (meta_left < meta_needed) {
3610 		btf_verifier_log_basic(env, t,
3611 				       "meta_left:%u meta_needed:%u",
3612 				       meta_left, meta_needed);
3613 		return -EINVAL;
3614 	}
3615 
3616 	if (btf_type_vlen(t)) {
3617 		btf_verifier_log_type(env, t, "vlen != 0");
3618 		return -EINVAL;
3619 	}
3620 
3621 	if (btf_type_kflag(t)) {
3622 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3623 		return -EINVAL;
3624 	}
3625 
3626 	if (!t->name_off ||
3627 	    !__btf_name_valid(env->btf, t->name_off, true)) {
3628 		btf_verifier_log_type(env, t, "Invalid name");
3629 		return -EINVAL;
3630 	}
3631 
3632 	/* A var cannot be in type void */
3633 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3634 		btf_verifier_log_type(env, t, "Invalid type_id");
3635 		return -EINVAL;
3636 	}
3637 
3638 	var = btf_type_var(t);
3639 	if (var->linkage != BTF_VAR_STATIC &&
3640 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3641 		btf_verifier_log_type(env, t, "Linkage not supported");
3642 		return -EINVAL;
3643 	}
3644 
3645 	btf_verifier_log_type(env, t, NULL);
3646 
3647 	return meta_needed;
3648 }
3649 
3650 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3651 {
3652 	const struct btf_var *var = btf_type_var(t);
3653 
3654 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3655 }
3656 
3657 static const struct btf_kind_operations var_ops = {
3658 	.check_meta		= btf_var_check_meta,
3659 	.resolve		= btf_var_resolve,
3660 	.check_member		= btf_df_check_member,
3661 	.check_kflag_member	= btf_df_check_kflag_member,
3662 	.log_details		= btf_var_log,
3663 	.show			= btf_var_show,
3664 };
3665 
3666 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3667 				  const struct btf_type *t,
3668 				  u32 meta_left)
3669 {
3670 	const struct btf_var_secinfo *vsi;
3671 	u64 last_vsi_end_off = 0, sum = 0;
3672 	u32 i, meta_needed;
3673 
3674 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3675 	if (meta_left < meta_needed) {
3676 		btf_verifier_log_basic(env, t,
3677 				       "meta_left:%u meta_needed:%u",
3678 				       meta_left, meta_needed);
3679 		return -EINVAL;
3680 	}
3681 
3682 	if (!t->size) {
3683 		btf_verifier_log_type(env, t, "size == 0");
3684 		return -EINVAL;
3685 	}
3686 
3687 	if (btf_type_kflag(t)) {
3688 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3689 		return -EINVAL;
3690 	}
3691 
3692 	if (!t->name_off ||
3693 	    !btf_name_valid_section(env->btf, t->name_off)) {
3694 		btf_verifier_log_type(env, t, "Invalid name");
3695 		return -EINVAL;
3696 	}
3697 
3698 	btf_verifier_log_type(env, t, NULL);
3699 
3700 	for_each_vsi(i, t, vsi) {
3701 		/* A var cannot be in type void */
3702 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3703 			btf_verifier_log_vsi(env, t, vsi,
3704 					     "Invalid type_id");
3705 			return -EINVAL;
3706 		}
3707 
3708 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3709 			btf_verifier_log_vsi(env, t, vsi,
3710 					     "Invalid offset");
3711 			return -EINVAL;
3712 		}
3713 
3714 		if (!vsi->size || vsi->size > t->size) {
3715 			btf_verifier_log_vsi(env, t, vsi,
3716 					     "Invalid size");
3717 			return -EINVAL;
3718 		}
3719 
3720 		last_vsi_end_off = vsi->offset + vsi->size;
3721 		if (last_vsi_end_off > t->size) {
3722 			btf_verifier_log_vsi(env, t, vsi,
3723 					     "Invalid offset+size");
3724 			return -EINVAL;
3725 		}
3726 
3727 		btf_verifier_log_vsi(env, t, vsi, NULL);
3728 		sum += vsi->size;
3729 	}
3730 
3731 	if (t->size < sum) {
3732 		btf_verifier_log_type(env, t, "Invalid btf_info size");
3733 		return -EINVAL;
3734 	}
3735 
3736 	return meta_needed;
3737 }
3738 
3739 static int btf_datasec_resolve(struct btf_verifier_env *env,
3740 			       const struct resolve_vertex *v)
3741 {
3742 	const struct btf_var_secinfo *vsi;
3743 	struct btf *btf = env->btf;
3744 	u16 i;
3745 
3746 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
3747 		u32 var_type_id = vsi->type, type_id, type_size = 0;
3748 		const struct btf_type *var_type = btf_type_by_id(env->btf,
3749 								 var_type_id);
3750 		if (!var_type || !btf_type_is_var(var_type)) {
3751 			btf_verifier_log_vsi(env, v->t, vsi,
3752 					     "Not a VAR kind member");
3753 			return -EINVAL;
3754 		}
3755 
3756 		if (!env_type_is_resolve_sink(env, var_type) &&
3757 		    !env_type_is_resolved(env, var_type_id)) {
3758 			env_stack_set_next_member(env, i + 1);
3759 			return env_stack_push(env, var_type, var_type_id);
3760 		}
3761 
3762 		type_id = var_type->type;
3763 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
3764 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3765 			return -EINVAL;
3766 		}
3767 
3768 		if (vsi->size < type_size) {
3769 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3770 			return -EINVAL;
3771 		}
3772 	}
3773 
3774 	env_stack_pop_resolved(env, 0, 0);
3775 	return 0;
3776 }
3777 
3778 static void btf_datasec_log(struct btf_verifier_env *env,
3779 			    const struct btf_type *t)
3780 {
3781 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3782 }
3783 
3784 static void btf_datasec_show(const struct btf *btf,
3785 			     const struct btf_type *t, u32 type_id,
3786 			     void *data, u8 bits_offset,
3787 			     struct btf_show *show)
3788 {
3789 	const struct btf_var_secinfo *vsi;
3790 	const struct btf_type *var;
3791 	u32 i;
3792 
3793 	if (!btf_show_start_type(show, t, type_id, data))
3794 		return;
3795 
3796 	btf_show_type_value(show, "section (\"%s\") = {",
3797 			    __btf_name_by_offset(btf, t->name_off));
3798 	for_each_vsi(i, t, vsi) {
3799 		var = btf_type_by_id(btf, vsi->type);
3800 		if (i)
3801 			btf_show(show, ",");
3802 		btf_type_ops(var)->show(btf, var, vsi->type,
3803 					data + vsi->offset, bits_offset, show);
3804 	}
3805 	btf_show_end_type(show);
3806 }
3807 
3808 static const struct btf_kind_operations datasec_ops = {
3809 	.check_meta		= btf_datasec_check_meta,
3810 	.resolve		= btf_datasec_resolve,
3811 	.check_member		= btf_df_check_member,
3812 	.check_kflag_member	= btf_df_check_kflag_member,
3813 	.log_details		= btf_datasec_log,
3814 	.show			= btf_datasec_show,
3815 };
3816 
3817 static s32 btf_float_check_meta(struct btf_verifier_env *env,
3818 				const struct btf_type *t,
3819 				u32 meta_left)
3820 {
3821 	if (btf_type_vlen(t)) {
3822 		btf_verifier_log_type(env, t, "vlen != 0");
3823 		return -EINVAL;
3824 	}
3825 
3826 	if (btf_type_kflag(t)) {
3827 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3828 		return -EINVAL;
3829 	}
3830 
3831 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
3832 	    t->size != 16) {
3833 		btf_verifier_log_type(env, t, "Invalid type_size");
3834 		return -EINVAL;
3835 	}
3836 
3837 	btf_verifier_log_type(env, t, NULL);
3838 
3839 	return 0;
3840 }
3841 
3842 static int btf_float_check_member(struct btf_verifier_env *env,
3843 				  const struct btf_type *struct_type,
3844 				  const struct btf_member *member,
3845 				  const struct btf_type *member_type)
3846 {
3847 	u64 start_offset_bytes;
3848 	u64 end_offset_bytes;
3849 	u64 misalign_bits;
3850 	u64 align_bytes;
3851 	u64 align_bits;
3852 
3853 	/* Different architectures have different alignment requirements, so
3854 	 * here we check only for the reasonable minimum. This way we ensure
3855 	 * that types after CO-RE can pass the kernel BTF verifier.
3856 	 */
3857 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
3858 	align_bits = align_bytes * BITS_PER_BYTE;
3859 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
3860 	if (misalign_bits) {
3861 		btf_verifier_log_member(env, struct_type, member,
3862 					"Member is not properly aligned");
3863 		return -EINVAL;
3864 	}
3865 
3866 	start_offset_bytes = member->offset / BITS_PER_BYTE;
3867 	end_offset_bytes = start_offset_bytes + member_type->size;
3868 	if (end_offset_bytes > struct_type->size) {
3869 		btf_verifier_log_member(env, struct_type, member,
3870 					"Member exceeds struct_size");
3871 		return -EINVAL;
3872 	}
3873 
3874 	return 0;
3875 }
3876 
3877 static void btf_float_log(struct btf_verifier_env *env,
3878 			  const struct btf_type *t)
3879 {
3880 	btf_verifier_log(env, "size=%u", t->size);
3881 }
3882 
3883 static const struct btf_kind_operations float_ops = {
3884 	.check_meta = btf_float_check_meta,
3885 	.resolve = btf_df_resolve,
3886 	.check_member = btf_float_check_member,
3887 	.check_kflag_member = btf_generic_check_kflag_member,
3888 	.log_details = btf_float_log,
3889 	.show = btf_df_show,
3890 };
3891 
3892 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
3893 			      const struct btf_type *t,
3894 			      u32 meta_left)
3895 {
3896 	const struct btf_decl_tag *tag;
3897 	u32 meta_needed = sizeof(*tag);
3898 	s32 component_idx;
3899 	const char *value;
3900 
3901 	if (meta_left < meta_needed) {
3902 		btf_verifier_log_basic(env, t,
3903 				       "meta_left:%u meta_needed:%u",
3904 				       meta_left, meta_needed);
3905 		return -EINVAL;
3906 	}
3907 
3908 	value = btf_name_by_offset(env->btf, t->name_off);
3909 	if (!value || !value[0]) {
3910 		btf_verifier_log_type(env, t, "Invalid value");
3911 		return -EINVAL;
3912 	}
3913 
3914 	if (btf_type_vlen(t)) {
3915 		btf_verifier_log_type(env, t, "vlen != 0");
3916 		return -EINVAL;
3917 	}
3918 
3919 	if (btf_type_kflag(t)) {
3920 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3921 		return -EINVAL;
3922 	}
3923 
3924 	component_idx = btf_type_decl_tag(t)->component_idx;
3925 	if (component_idx < -1) {
3926 		btf_verifier_log_type(env, t, "Invalid component_idx");
3927 		return -EINVAL;
3928 	}
3929 
3930 	btf_verifier_log_type(env, t, NULL);
3931 
3932 	return meta_needed;
3933 }
3934 
3935 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
3936 			   const struct resolve_vertex *v)
3937 {
3938 	const struct btf_type *next_type;
3939 	const struct btf_type *t = v->t;
3940 	u32 next_type_id = t->type;
3941 	struct btf *btf = env->btf;
3942 	s32 component_idx;
3943 	u32 vlen;
3944 
3945 	next_type = btf_type_by_id(btf, next_type_id);
3946 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
3947 		btf_verifier_log_type(env, v->t, "Invalid type_id");
3948 		return -EINVAL;
3949 	}
3950 
3951 	if (!env_type_is_resolve_sink(env, next_type) &&
3952 	    !env_type_is_resolved(env, next_type_id))
3953 		return env_stack_push(env, next_type, next_type_id);
3954 
3955 	component_idx = btf_type_decl_tag(t)->component_idx;
3956 	if (component_idx != -1) {
3957 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
3958 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
3959 			return -EINVAL;
3960 		}
3961 
3962 		if (btf_type_is_struct(next_type)) {
3963 			vlen = btf_type_vlen(next_type);
3964 		} else {
3965 			/* next_type should be a function */
3966 			next_type = btf_type_by_id(btf, next_type->type);
3967 			vlen = btf_type_vlen(next_type);
3968 		}
3969 
3970 		if ((u32)component_idx >= vlen) {
3971 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
3972 			return -EINVAL;
3973 		}
3974 	}
3975 
3976 	env_stack_pop_resolved(env, next_type_id, 0);
3977 
3978 	return 0;
3979 }
3980 
3981 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
3982 {
3983 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
3984 			 btf_type_decl_tag(t)->component_idx);
3985 }
3986 
3987 static const struct btf_kind_operations decl_tag_ops = {
3988 	.check_meta = btf_decl_tag_check_meta,
3989 	.resolve = btf_decl_tag_resolve,
3990 	.check_member = btf_df_check_member,
3991 	.check_kflag_member = btf_df_check_kflag_member,
3992 	.log_details = btf_decl_tag_log,
3993 	.show = btf_df_show,
3994 };
3995 
3996 static int btf_func_proto_check(struct btf_verifier_env *env,
3997 				const struct btf_type *t)
3998 {
3999 	const struct btf_type *ret_type;
4000 	const struct btf_param *args;
4001 	const struct btf *btf;
4002 	u16 nr_args, i;
4003 	int err;
4004 
4005 	btf = env->btf;
4006 	args = (const struct btf_param *)(t + 1);
4007 	nr_args = btf_type_vlen(t);
4008 
4009 	/* Check func return type which could be "void" (t->type == 0) */
4010 	if (t->type) {
4011 		u32 ret_type_id = t->type;
4012 
4013 		ret_type = btf_type_by_id(btf, ret_type_id);
4014 		if (!ret_type) {
4015 			btf_verifier_log_type(env, t, "Invalid return type");
4016 			return -EINVAL;
4017 		}
4018 
4019 		if (btf_type_needs_resolve(ret_type) &&
4020 		    !env_type_is_resolved(env, ret_type_id)) {
4021 			err = btf_resolve(env, ret_type, ret_type_id);
4022 			if (err)
4023 				return err;
4024 		}
4025 
4026 		/* Ensure the return type is a type that has a size */
4027 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4028 			btf_verifier_log_type(env, t, "Invalid return type");
4029 			return -EINVAL;
4030 		}
4031 	}
4032 
4033 	if (!nr_args)
4034 		return 0;
4035 
4036 	/* Last func arg type_id could be 0 if it is a vararg */
4037 	if (!args[nr_args - 1].type) {
4038 		if (args[nr_args - 1].name_off) {
4039 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4040 					      nr_args);
4041 			return -EINVAL;
4042 		}
4043 		nr_args--;
4044 	}
4045 
4046 	err = 0;
4047 	for (i = 0; i < nr_args; i++) {
4048 		const struct btf_type *arg_type;
4049 		u32 arg_type_id;
4050 
4051 		arg_type_id = args[i].type;
4052 		arg_type = btf_type_by_id(btf, arg_type_id);
4053 		if (!arg_type) {
4054 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4055 			err = -EINVAL;
4056 			break;
4057 		}
4058 
4059 		if (args[i].name_off &&
4060 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4061 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4062 			btf_verifier_log_type(env, t,
4063 					      "Invalid arg#%u", i + 1);
4064 			err = -EINVAL;
4065 			break;
4066 		}
4067 
4068 		if (btf_type_needs_resolve(arg_type) &&
4069 		    !env_type_is_resolved(env, arg_type_id)) {
4070 			err = btf_resolve(env, arg_type, arg_type_id);
4071 			if (err)
4072 				break;
4073 		}
4074 
4075 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4076 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4077 			err = -EINVAL;
4078 			break;
4079 		}
4080 	}
4081 
4082 	return err;
4083 }
4084 
4085 static int btf_func_check(struct btf_verifier_env *env,
4086 			  const struct btf_type *t)
4087 {
4088 	const struct btf_type *proto_type;
4089 	const struct btf_param *args;
4090 	const struct btf *btf;
4091 	u16 nr_args, i;
4092 
4093 	btf = env->btf;
4094 	proto_type = btf_type_by_id(btf, t->type);
4095 
4096 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4097 		btf_verifier_log_type(env, t, "Invalid type_id");
4098 		return -EINVAL;
4099 	}
4100 
4101 	args = (const struct btf_param *)(proto_type + 1);
4102 	nr_args = btf_type_vlen(proto_type);
4103 	for (i = 0; i < nr_args; i++) {
4104 		if (!args[i].name_off && args[i].type) {
4105 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4106 			return -EINVAL;
4107 		}
4108 	}
4109 
4110 	return 0;
4111 }
4112 
4113 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4114 	[BTF_KIND_INT] = &int_ops,
4115 	[BTF_KIND_PTR] = &ptr_ops,
4116 	[BTF_KIND_ARRAY] = &array_ops,
4117 	[BTF_KIND_STRUCT] = &struct_ops,
4118 	[BTF_KIND_UNION] = &struct_ops,
4119 	[BTF_KIND_ENUM] = &enum_ops,
4120 	[BTF_KIND_FWD] = &fwd_ops,
4121 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4122 	[BTF_KIND_VOLATILE] = &modifier_ops,
4123 	[BTF_KIND_CONST] = &modifier_ops,
4124 	[BTF_KIND_RESTRICT] = &modifier_ops,
4125 	[BTF_KIND_FUNC] = &func_ops,
4126 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4127 	[BTF_KIND_VAR] = &var_ops,
4128 	[BTF_KIND_DATASEC] = &datasec_ops,
4129 	[BTF_KIND_FLOAT] = &float_ops,
4130 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4131 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4132 };
4133 
4134 static s32 btf_check_meta(struct btf_verifier_env *env,
4135 			  const struct btf_type *t,
4136 			  u32 meta_left)
4137 {
4138 	u32 saved_meta_left = meta_left;
4139 	s32 var_meta_size;
4140 
4141 	if (meta_left < sizeof(*t)) {
4142 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4143 				 env->log_type_id, meta_left, sizeof(*t));
4144 		return -EINVAL;
4145 	}
4146 	meta_left -= sizeof(*t);
4147 
4148 	if (t->info & ~BTF_INFO_MASK) {
4149 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4150 				 env->log_type_id, t->info);
4151 		return -EINVAL;
4152 	}
4153 
4154 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4155 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4156 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4157 				 env->log_type_id, BTF_INFO_KIND(t->info));
4158 		return -EINVAL;
4159 	}
4160 
4161 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4162 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4163 				 env->log_type_id, t->name_off);
4164 		return -EINVAL;
4165 	}
4166 
4167 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4168 	if (var_meta_size < 0)
4169 		return var_meta_size;
4170 
4171 	meta_left -= var_meta_size;
4172 
4173 	return saved_meta_left - meta_left;
4174 }
4175 
4176 static int btf_check_all_metas(struct btf_verifier_env *env)
4177 {
4178 	struct btf *btf = env->btf;
4179 	struct btf_header *hdr;
4180 	void *cur, *end;
4181 
4182 	hdr = &btf->hdr;
4183 	cur = btf->nohdr_data + hdr->type_off;
4184 	end = cur + hdr->type_len;
4185 
4186 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4187 	while (cur < end) {
4188 		struct btf_type *t = cur;
4189 		s32 meta_size;
4190 
4191 		meta_size = btf_check_meta(env, t, end - cur);
4192 		if (meta_size < 0)
4193 			return meta_size;
4194 
4195 		btf_add_type(env, t);
4196 		cur += meta_size;
4197 		env->log_type_id++;
4198 	}
4199 
4200 	return 0;
4201 }
4202 
4203 static bool btf_resolve_valid(struct btf_verifier_env *env,
4204 			      const struct btf_type *t,
4205 			      u32 type_id)
4206 {
4207 	struct btf *btf = env->btf;
4208 
4209 	if (!env_type_is_resolved(env, type_id))
4210 		return false;
4211 
4212 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4213 		return !btf_resolved_type_id(btf, type_id) &&
4214 		       !btf_resolved_type_size(btf, type_id);
4215 
4216 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4217 		return btf_resolved_type_id(btf, type_id) &&
4218 		       !btf_resolved_type_size(btf, type_id);
4219 
4220 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4221 	    btf_type_is_var(t)) {
4222 		t = btf_type_id_resolve(btf, &type_id);
4223 		return t &&
4224 		       !btf_type_is_modifier(t) &&
4225 		       !btf_type_is_var(t) &&
4226 		       !btf_type_is_datasec(t);
4227 	}
4228 
4229 	if (btf_type_is_array(t)) {
4230 		const struct btf_array *array = btf_type_array(t);
4231 		const struct btf_type *elem_type;
4232 		u32 elem_type_id = array->type;
4233 		u32 elem_size;
4234 
4235 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4236 		return elem_type && !btf_type_is_modifier(elem_type) &&
4237 			(array->nelems * elem_size ==
4238 			 btf_resolved_type_size(btf, type_id));
4239 	}
4240 
4241 	return false;
4242 }
4243 
4244 static int btf_resolve(struct btf_verifier_env *env,
4245 		       const struct btf_type *t, u32 type_id)
4246 {
4247 	u32 save_log_type_id = env->log_type_id;
4248 	const struct resolve_vertex *v;
4249 	int err = 0;
4250 
4251 	env->resolve_mode = RESOLVE_TBD;
4252 	env_stack_push(env, t, type_id);
4253 	while (!err && (v = env_stack_peak(env))) {
4254 		env->log_type_id = v->type_id;
4255 		err = btf_type_ops(v->t)->resolve(env, v);
4256 	}
4257 
4258 	env->log_type_id = type_id;
4259 	if (err == -E2BIG) {
4260 		btf_verifier_log_type(env, t,
4261 				      "Exceeded max resolving depth:%u",
4262 				      MAX_RESOLVE_DEPTH);
4263 	} else if (err == -EEXIST) {
4264 		btf_verifier_log_type(env, t, "Loop detected");
4265 	}
4266 
4267 	/* Final sanity check */
4268 	if (!err && !btf_resolve_valid(env, t, type_id)) {
4269 		btf_verifier_log_type(env, t, "Invalid resolve state");
4270 		err = -EINVAL;
4271 	}
4272 
4273 	env->log_type_id = save_log_type_id;
4274 	return err;
4275 }
4276 
4277 static int btf_check_all_types(struct btf_verifier_env *env)
4278 {
4279 	struct btf *btf = env->btf;
4280 	const struct btf_type *t;
4281 	u32 type_id, i;
4282 	int err;
4283 
4284 	err = env_resolve_init(env);
4285 	if (err)
4286 		return err;
4287 
4288 	env->phase++;
4289 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
4290 		type_id = btf->start_id + i;
4291 		t = btf_type_by_id(btf, type_id);
4292 
4293 		env->log_type_id = type_id;
4294 		if (btf_type_needs_resolve(t) &&
4295 		    !env_type_is_resolved(env, type_id)) {
4296 			err = btf_resolve(env, t, type_id);
4297 			if (err)
4298 				return err;
4299 		}
4300 
4301 		if (btf_type_is_func_proto(t)) {
4302 			err = btf_func_proto_check(env, t);
4303 			if (err)
4304 				return err;
4305 		}
4306 	}
4307 
4308 	return 0;
4309 }
4310 
4311 static int btf_parse_type_sec(struct btf_verifier_env *env)
4312 {
4313 	const struct btf_header *hdr = &env->btf->hdr;
4314 	int err;
4315 
4316 	/* Type section must align to 4 bytes */
4317 	if (hdr->type_off & (sizeof(u32) - 1)) {
4318 		btf_verifier_log(env, "Unaligned type_off");
4319 		return -EINVAL;
4320 	}
4321 
4322 	if (!env->btf->base_btf && !hdr->type_len) {
4323 		btf_verifier_log(env, "No type found");
4324 		return -EINVAL;
4325 	}
4326 
4327 	err = btf_check_all_metas(env);
4328 	if (err)
4329 		return err;
4330 
4331 	return btf_check_all_types(env);
4332 }
4333 
4334 static int btf_parse_str_sec(struct btf_verifier_env *env)
4335 {
4336 	const struct btf_header *hdr;
4337 	struct btf *btf = env->btf;
4338 	const char *start, *end;
4339 
4340 	hdr = &btf->hdr;
4341 	start = btf->nohdr_data + hdr->str_off;
4342 	end = start + hdr->str_len;
4343 
4344 	if (end != btf->data + btf->data_size) {
4345 		btf_verifier_log(env, "String section is not at the end");
4346 		return -EINVAL;
4347 	}
4348 
4349 	btf->strings = start;
4350 
4351 	if (btf->base_btf && !hdr->str_len)
4352 		return 0;
4353 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4354 		btf_verifier_log(env, "Invalid string section");
4355 		return -EINVAL;
4356 	}
4357 	if (!btf->base_btf && start[0]) {
4358 		btf_verifier_log(env, "Invalid string section");
4359 		return -EINVAL;
4360 	}
4361 
4362 	return 0;
4363 }
4364 
4365 static const size_t btf_sec_info_offset[] = {
4366 	offsetof(struct btf_header, type_off),
4367 	offsetof(struct btf_header, str_off),
4368 };
4369 
4370 static int btf_sec_info_cmp(const void *a, const void *b)
4371 {
4372 	const struct btf_sec_info *x = a;
4373 	const struct btf_sec_info *y = b;
4374 
4375 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4376 }
4377 
4378 static int btf_check_sec_info(struct btf_verifier_env *env,
4379 			      u32 btf_data_size)
4380 {
4381 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4382 	u32 total, expected_total, i;
4383 	const struct btf_header *hdr;
4384 	const struct btf *btf;
4385 
4386 	btf = env->btf;
4387 	hdr = &btf->hdr;
4388 
4389 	/* Populate the secs from hdr */
4390 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4391 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
4392 						   btf_sec_info_offset[i]);
4393 
4394 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4395 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4396 
4397 	/* Check for gaps and overlap among sections */
4398 	total = 0;
4399 	expected_total = btf_data_size - hdr->hdr_len;
4400 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4401 		if (expected_total < secs[i].off) {
4402 			btf_verifier_log(env, "Invalid section offset");
4403 			return -EINVAL;
4404 		}
4405 		if (total < secs[i].off) {
4406 			/* gap */
4407 			btf_verifier_log(env, "Unsupported section found");
4408 			return -EINVAL;
4409 		}
4410 		if (total > secs[i].off) {
4411 			btf_verifier_log(env, "Section overlap found");
4412 			return -EINVAL;
4413 		}
4414 		if (expected_total - total < secs[i].len) {
4415 			btf_verifier_log(env,
4416 					 "Total section length too long");
4417 			return -EINVAL;
4418 		}
4419 		total += secs[i].len;
4420 	}
4421 
4422 	/* There is data other than hdr and known sections */
4423 	if (expected_total != total) {
4424 		btf_verifier_log(env, "Unsupported section found");
4425 		return -EINVAL;
4426 	}
4427 
4428 	return 0;
4429 }
4430 
4431 static int btf_parse_hdr(struct btf_verifier_env *env)
4432 {
4433 	u32 hdr_len, hdr_copy, btf_data_size;
4434 	const struct btf_header *hdr;
4435 	struct btf *btf;
4436 	int err;
4437 
4438 	btf = env->btf;
4439 	btf_data_size = btf->data_size;
4440 
4441 	if (btf_data_size <
4442 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4443 		btf_verifier_log(env, "hdr_len not found");
4444 		return -EINVAL;
4445 	}
4446 
4447 	hdr = btf->data;
4448 	hdr_len = hdr->hdr_len;
4449 	if (btf_data_size < hdr_len) {
4450 		btf_verifier_log(env, "btf_header not found");
4451 		return -EINVAL;
4452 	}
4453 
4454 	/* Ensure the unsupported header fields are zero */
4455 	if (hdr_len > sizeof(btf->hdr)) {
4456 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
4457 		u8 *end = btf->data + hdr_len;
4458 
4459 		for (; expected_zero < end; expected_zero++) {
4460 			if (*expected_zero) {
4461 				btf_verifier_log(env, "Unsupported btf_header");
4462 				return -E2BIG;
4463 			}
4464 		}
4465 	}
4466 
4467 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4468 	memcpy(&btf->hdr, btf->data, hdr_copy);
4469 
4470 	hdr = &btf->hdr;
4471 
4472 	btf_verifier_log_hdr(env, btf_data_size);
4473 
4474 	if (hdr->magic != BTF_MAGIC) {
4475 		btf_verifier_log(env, "Invalid magic");
4476 		return -EINVAL;
4477 	}
4478 
4479 	if (hdr->version != BTF_VERSION) {
4480 		btf_verifier_log(env, "Unsupported version");
4481 		return -ENOTSUPP;
4482 	}
4483 
4484 	if (hdr->flags) {
4485 		btf_verifier_log(env, "Unsupported flags");
4486 		return -ENOTSUPP;
4487 	}
4488 
4489 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
4490 		btf_verifier_log(env, "No data");
4491 		return -EINVAL;
4492 	}
4493 
4494 	err = btf_check_sec_info(env, btf_data_size);
4495 	if (err)
4496 		return err;
4497 
4498 	return 0;
4499 }
4500 
4501 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
4502 			     u32 log_level, char __user *log_ubuf, u32 log_size)
4503 {
4504 	struct btf_verifier_env *env = NULL;
4505 	struct bpf_verifier_log *log;
4506 	struct btf *btf = NULL;
4507 	u8 *data;
4508 	int err;
4509 
4510 	if (btf_data_size > BTF_MAX_SIZE)
4511 		return ERR_PTR(-E2BIG);
4512 
4513 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4514 	if (!env)
4515 		return ERR_PTR(-ENOMEM);
4516 
4517 	log = &env->log;
4518 	if (log_level || log_ubuf || log_size) {
4519 		/* user requested verbose verifier output
4520 		 * and supplied buffer to store the verification trace
4521 		 */
4522 		log->level = log_level;
4523 		log->ubuf = log_ubuf;
4524 		log->len_total = log_size;
4525 
4526 		/* log attributes have to be sane */
4527 		if (!bpf_verifier_log_attr_valid(log)) {
4528 			err = -EINVAL;
4529 			goto errout;
4530 		}
4531 	}
4532 
4533 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4534 	if (!btf) {
4535 		err = -ENOMEM;
4536 		goto errout;
4537 	}
4538 	env->btf = btf;
4539 
4540 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4541 	if (!data) {
4542 		err = -ENOMEM;
4543 		goto errout;
4544 	}
4545 
4546 	btf->data = data;
4547 	btf->data_size = btf_data_size;
4548 
4549 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
4550 		err = -EFAULT;
4551 		goto errout;
4552 	}
4553 
4554 	err = btf_parse_hdr(env);
4555 	if (err)
4556 		goto errout;
4557 
4558 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4559 
4560 	err = btf_parse_str_sec(env);
4561 	if (err)
4562 		goto errout;
4563 
4564 	err = btf_parse_type_sec(env);
4565 	if (err)
4566 		goto errout;
4567 
4568 	if (log->level && bpf_verifier_log_full(log)) {
4569 		err = -ENOSPC;
4570 		goto errout;
4571 	}
4572 
4573 	btf_verifier_env_free(env);
4574 	refcount_set(&btf->refcnt, 1);
4575 	return btf;
4576 
4577 errout:
4578 	btf_verifier_env_free(env);
4579 	if (btf)
4580 		btf_free(btf);
4581 	return ERR_PTR(err);
4582 }
4583 
4584 extern char __weak __start_BTF[];
4585 extern char __weak __stop_BTF[];
4586 extern struct btf *btf_vmlinux;
4587 
4588 #define BPF_MAP_TYPE(_id, _ops)
4589 #define BPF_LINK_TYPE(_id, _name)
4590 static union {
4591 	struct bpf_ctx_convert {
4592 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4593 	prog_ctx_type _id##_prog; \
4594 	kern_ctx_type _id##_kern;
4595 #include <linux/bpf_types.h>
4596 #undef BPF_PROG_TYPE
4597 	} *__t;
4598 	/* 't' is written once under lock. Read many times. */
4599 	const struct btf_type *t;
4600 } bpf_ctx_convert;
4601 enum {
4602 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4603 	__ctx_convert##_id,
4604 #include <linux/bpf_types.h>
4605 #undef BPF_PROG_TYPE
4606 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
4607 };
4608 static u8 bpf_ctx_convert_map[] = {
4609 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4610 	[_id] = __ctx_convert##_id,
4611 #include <linux/bpf_types.h>
4612 #undef BPF_PROG_TYPE
4613 	0, /* avoid empty array */
4614 };
4615 #undef BPF_MAP_TYPE
4616 #undef BPF_LINK_TYPE
4617 
4618 static const struct btf_member *
4619 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
4620 		      const struct btf_type *t, enum bpf_prog_type prog_type,
4621 		      int arg)
4622 {
4623 	const struct btf_type *conv_struct;
4624 	const struct btf_type *ctx_struct;
4625 	const struct btf_member *ctx_type;
4626 	const char *tname, *ctx_tname;
4627 
4628 	conv_struct = bpf_ctx_convert.t;
4629 	if (!conv_struct) {
4630 		bpf_log(log, "btf_vmlinux is malformed\n");
4631 		return NULL;
4632 	}
4633 	t = btf_type_by_id(btf, t->type);
4634 	while (btf_type_is_modifier(t))
4635 		t = btf_type_by_id(btf, t->type);
4636 	if (!btf_type_is_struct(t)) {
4637 		/* Only pointer to struct is supported for now.
4638 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4639 		 * is not supported yet.
4640 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4641 		 */
4642 		return NULL;
4643 	}
4644 	tname = btf_name_by_offset(btf, t->name_off);
4645 	if (!tname) {
4646 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4647 		return NULL;
4648 	}
4649 	/* prog_type is valid bpf program type. No need for bounds check. */
4650 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4651 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4652 	 * Like 'struct __sk_buff'
4653 	 */
4654 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4655 	if (!ctx_struct)
4656 		/* should not happen */
4657 		return NULL;
4658 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4659 	if (!ctx_tname) {
4660 		/* should not happen */
4661 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4662 		return NULL;
4663 	}
4664 	/* only compare that prog's ctx type name is the same as
4665 	 * kernel expects. No need to compare field by field.
4666 	 * It's ok for bpf prog to do:
4667 	 * struct __sk_buff {};
4668 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4669 	 * { // no fields of skb are ever used }
4670 	 */
4671 	if (strcmp(ctx_tname, tname))
4672 		return NULL;
4673 	return ctx_type;
4674 }
4675 
4676 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4677 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4678 #define BPF_LINK_TYPE(_id, _name)
4679 #define BPF_MAP_TYPE(_id, _ops) \
4680 	[_id] = &_ops,
4681 #include <linux/bpf_types.h>
4682 #undef BPF_PROG_TYPE
4683 #undef BPF_LINK_TYPE
4684 #undef BPF_MAP_TYPE
4685 };
4686 
4687 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4688 				    struct bpf_verifier_log *log)
4689 {
4690 	const struct bpf_map_ops *ops;
4691 	int i, btf_id;
4692 
4693 	for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4694 		ops = btf_vmlinux_map_ops[i];
4695 		if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4696 			continue;
4697 		if (!ops->map_btf_name || !ops->map_btf_id) {
4698 			bpf_log(log, "map type %d is misconfigured\n", i);
4699 			return -EINVAL;
4700 		}
4701 		btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4702 					       BTF_KIND_STRUCT);
4703 		if (btf_id < 0)
4704 			return btf_id;
4705 		*ops->map_btf_id = btf_id;
4706 	}
4707 
4708 	return 0;
4709 }
4710 
4711 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4712 				     struct btf *btf,
4713 				     const struct btf_type *t,
4714 				     enum bpf_prog_type prog_type,
4715 				     int arg)
4716 {
4717 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
4718 
4719 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4720 	if (!prog_ctx_type)
4721 		return -ENOENT;
4722 	kern_ctx_type = prog_ctx_type + 1;
4723 	return kern_ctx_type->type;
4724 }
4725 
4726 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4727 BTF_ID(struct, bpf_ctx_convert)
4728 
4729 struct btf *btf_parse_vmlinux(void)
4730 {
4731 	struct btf_verifier_env *env = NULL;
4732 	struct bpf_verifier_log *log;
4733 	struct btf *btf = NULL;
4734 	int err;
4735 
4736 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4737 	if (!env)
4738 		return ERR_PTR(-ENOMEM);
4739 
4740 	log = &env->log;
4741 	log->level = BPF_LOG_KERNEL;
4742 
4743 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4744 	if (!btf) {
4745 		err = -ENOMEM;
4746 		goto errout;
4747 	}
4748 	env->btf = btf;
4749 
4750 	btf->data = __start_BTF;
4751 	btf->data_size = __stop_BTF - __start_BTF;
4752 	btf->kernel_btf = true;
4753 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
4754 
4755 	err = btf_parse_hdr(env);
4756 	if (err)
4757 		goto errout;
4758 
4759 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4760 
4761 	err = btf_parse_str_sec(env);
4762 	if (err)
4763 		goto errout;
4764 
4765 	err = btf_check_all_metas(env);
4766 	if (err)
4767 		goto errout;
4768 
4769 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
4770 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4771 
4772 	/* find bpf map structs for map_ptr access checking */
4773 	err = btf_vmlinux_map_ids_init(btf, log);
4774 	if (err < 0)
4775 		goto errout;
4776 
4777 	bpf_struct_ops_init(btf, log);
4778 
4779 	refcount_set(&btf->refcnt, 1);
4780 
4781 	err = btf_alloc_id(btf);
4782 	if (err)
4783 		goto errout;
4784 
4785 	btf_verifier_env_free(env);
4786 	return btf;
4787 
4788 errout:
4789 	btf_verifier_env_free(env);
4790 	if (btf) {
4791 		kvfree(btf->types);
4792 		kfree(btf);
4793 	}
4794 	return ERR_PTR(err);
4795 }
4796 
4797 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4798 
4799 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4800 {
4801 	struct btf_verifier_env *env = NULL;
4802 	struct bpf_verifier_log *log;
4803 	struct btf *btf = NULL, *base_btf;
4804 	int err;
4805 
4806 	base_btf = bpf_get_btf_vmlinux();
4807 	if (IS_ERR(base_btf))
4808 		return base_btf;
4809 	if (!base_btf)
4810 		return ERR_PTR(-EINVAL);
4811 
4812 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4813 	if (!env)
4814 		return ERR_PTR(-ENOMEM);
4815 
4816 	log = &env->log;
4817 	log->level = BPF_LOG_KERNEL;
4818 
4819 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4820 	if (!btf) {
4821 		err = -ENOMEM;
4822 		goto errout;
4823 	}
4824 	env->btf = btf;
4825 
4826 	btf->base_btf = base_btf;
4827 	btf->start_id = base_btf->nr_types;
4828 	btf->start_str_off = base_btf->hdr.str_len;
4829 	btf->kernel_btf = true;
4830 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4831 
4832 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4833 	if (!btf->data) {
4834 		err = -ENOMEM;
4835 		goto errout;
4836 	}
4837 	memcpy(btf->data, data, data_size);
4838 	btf->data_size = data_size;
4839 
4840 	err = btf_parse_hdr(env);
4841 	if (err)
4842 		goto errout;
4843 
4844 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4845 
4846 	err = btf_parse_str_sec(env);
4847 	if (err)
4848 		goto errout;
4849 
4850 	err = btf_check_all_metas(env);
4851 	if (err)
4852 		goto errout;
4853 
4854 	btf_verifier_env_free(env);
4855 	refcount_set(&btf->refcnt, 1);
4856 	return btf;
4857 
4858 errout:
4859 	btf_verifier_env_free(env);
4860 	if (btf) {
4861 		kvfree(btf->data);
4862 		kvfree(btf->types);
4863 		kfree(btf);
4864 	}
4865 	return ERR_PTR(err);
4866 }
4867 
4868 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4869 
4870 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4871 {
4872 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4873 
4874 	if (tgt_prog)
4875 		return tgt_prog->aux->btf;
4876 	else
4877 		return prog->aux->attach_btf;
4878 }
4879 
4880 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
4881 {
4882 	/* t comes in already as a pointer */
4883 	t = btf_type_by_id(btf, t->type);
4884 
4885 	/* allow const */
4886 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4887 		t = btf_type_by_id(btf, t->type);
4888 
4889 	return btf_type_is_int(t);
4890 }
4891 
4892 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4893 		    const struct bpf_prog *prog,
4894 		    struct bpf_insn_access_aux *info)
4895 {
4896 	const struct btf_type *t = prog->aux->attach_func_proto;
4897 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4898 	struct btf *btf = bpf_prog_get_target_btf(prog);
4899 	const char *tname = prog->aux->attach_func_name;
4900 	struct bpf_verifier_log *log = info->log;
4901 	const struct btf_param *args;
4902 	const char *tag_value;
4903 	u32 nr_args, arg;
4904 	int i, ret;
4905 
4906 	if (off % 8) {
4907 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4908 			tname, off);
4909 		return false;
4910 	}
4911 	arg = off / 8;
4912 	args = (const struct btf_param *)(t + 1);
4913 	/* if (t == NULL) Fall back to default BPF prog with
4914 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
4915 	 */
4916 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
4917 	if (prog->aux->attach_btf_trace) {
4918 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
4919 		args++;
4920 		nr_args--;
4921 	}
4922 
4923 	if (arg > nr_args) {
4924 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4925 			tname, arg + 1);
4926 		return false;
4927 	}
4928 
4929 	if (arg == nr_args) {
4930 		switch (prog->expected_attach_type) {
4931 		case BPF_LSM_MAC:
4932 		case BPF_TRACE_FEXIT:
4933 			/* When LSM programs are attached to void LSM hooks
4934 			 * they use FEXIT trampolines and when attached to
4935 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
4936 			 *
4937 			 * While the LSM programs are BPF_MODIFY_RETURN-like
4938 			 * the check:
4939 			 *
4940 			 *	if (ret_type != 'int')
4941 			 *		return -EINVAL;
4942 			 *
4943 			 * is _not_ done here. This is still safe as LSM hooks
4944 			 * have only void and int return types.
4945 			 */
4946 			if (!t)
4947 				return true;
4948 			t = btf_type_by_id(btf, t->type);
4949 			break;
4950 		case BPF_MODIFY_RETURN:
4951 			/* For now the BPF_MODIFY_RETURN can only be attached to
4952 			 * functions that return an int.
4953 			 */
4954 			if (!t)
4955 				return false;
4956 
4957 			t = btf_type_skip_modifiers(btf, t->type, NULL);
4958 			if (!btf_type_is_small_int(t)) {
4959 				bpf_log(log,
4960 					"ret type %s not allowed for fmod_ret\n",
4961 					btf_kind_str[BTF_INFO_KIND(t->info)]);
4962 				return false;
4963 			}
4964 			break;
4965 		default:
4966 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4967 				tname, arg + 1);
4968 			return false;
4969 		}
4970 	} else {
4971 		if (!t)
4972 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
4973 			return true;
4974 		t = btf_type_by_id(btf, args[arg].type);
4975 	}
4976 
4977 	/* skip modifiers */
4978 	while (btf_type_is_modifier(t))
4979 		t = btf_type_by_id(btf, t->type);
4980 	if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4981 		/* accessing a scalar */
4982 		return true;
4983 	if (!btf_type_is_ptr(t)) {
4984 		bpf_log(log,
4985 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4986 			tname, arg,
4987 			__btf_name_by_offset(btf, t->name_off),
4988 			btf_kind_str[BTF_INFO_KIND(t->info)]);
4989 		return false;
4990 	}
4991 
4992 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4993 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4994 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4995 		u32 type, flag;
4996 
4997 		type = base_type(ctx_arg_info->reg_type);
4998 		flag = type_flag(ctx_arg_info->reg_type);
4999 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5000 		    (flag & PTR_MAYBE_NULL)) {
5001 			info->reg_type = ctx_arg_info->reg_type;
5002 			return true;
5003 		}
5004 	}
5005 
5006 	if (t->type == 0)
5007 		/* This is a pointer to void.
5008 		 * It is the same as scalar from the verifier safety pov.
5009 		 * No further pointer walking is allowed.
5010 		 */
5011 		return true;
5012 
5013 	if (is_int_ptr(btf, t))
5014 		return true;
5015 
5016 	/* this is a pointer to another type */
5017 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5018 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5019 
5020 		if (ctx_arg_info->offset == off) {
5021 			if (!ctx_arg_info->btf_id) {
5022 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5023 				return false;
5024 			}
5025 
5026 			info->reg_type = ctx_arg_info->reg_type;
5027 			info->btf = btf_vmlinux;
5028 			info->btf_id = ctx_arg_info->btf_id;
5029 			return true;
5030 		}
5031 	}
5032 
5033 	info->reg_type = PTR_TO_BTF_ID;
5034 	if (tgt_prog) {
5035 		enum bpf_prog_type tgt_type;
5036 
5037 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5038 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5039 		else
5040 			tgt_type = tgt_prog->type;
5041 
5042 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5043 		if (ret > 0) {
5044 			info->btf = btf_vmlinux;
5045 			info->btf_id = ret;
5046 			return true;
5047 		} else {
5048 			return false;
5049 		}
5050 	}
5051 
5052 	info->btf = btf;
5053 	info->btf_id = t->type;
5054 	t = btf_type_by_id(btf, t->type);
5055 
5056 	if (btf_type_is_type_tag(t)) {
5057 		tag_value = __btf_name_by_offset(btf, t->name_off);
5058 		if (strcmp(tag_value, "user") == 0)
5059 			info->reg_type |= MEM_USER;
5060 	}
5061 
5062 	/* skip modifiers */
5063 	while (btf_type_is_modifier(t)) {
5064 		info->btf_id = t->type;
5065 		t = btf_type_by_id(btf, t->type);
5066 	}
5067 	if (!btf_type_is_struct(t)) {
5068 		bpf_log(log,
5069 			"func '%s' arg%d type %s is not a struct\n",
5070 			tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
5071 		return false;
5072 	}
5073 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
5074 		tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
5075 		__btf_name_by_offset(btf, t->name_off));
5076 	return true;
5077 }
5078 
5079 enum bpf_struct_walk_result {
5080 	/* < 0 error */
5081 	WALK_SCALAR = 0,
5082 	WALK_PTR,
5083 	WALK_STRUCT,
5084 };
5085 
5086 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
5087 			   const struct btf_type *t, int off, int size,
5088 			   u32 *next_btf_id, enum bpf_type_flag *flag)
5089 {
5090 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
5091 	const struct btf_type *mtype, *elem_type = NULL;
5092 	const struct btf_member *member;
5093 	const char *tname, *mname, *tag_value;
5094 	u32 vlen, elem_id, mid;
5095 
5096 again:
5097 	tname = __btf_name_by_offset(btf, t->name_off);
5098 	if (!btf_type_is_struct(t)) {
5099 		bpf_log(log, "Type '%s' is not a struct\n", tname);
5100 		return -EINVAL;
5101 	}
5102 
5103 	vlen = btf_type_vlen(t);
5104 	if (off + size > t->size) {
5105 		/* If the last element is a variable size array, we may
5106 		 * need to relax the rule.
5107 		 */
5108 		struct btf_array *array_elem;
5109 
5110 		if (vlen == 0)
5111 			goto error;
5112 
5113 		member = btf_type_member(t) + vlen - 1;
5114 		mtype = btf_type_skip_modifiers(btf, member->type,
5115 						NULL);
5116 		if (!btf_type_is_array(mtype))
5117 			goto error;
5118 
5119 		array_elem = (struct btf_array *)(mtype + 1);
5120 		if (array_elem->nelems != 0)
5121 			goto error;
5122 
5123 		moff = __btf_member_bit_offset(t, member) / 8;
5124 		if (off < moff)
5125 			goto error;
5126 
5127 		/* Only allow structure for now, can be relaxed for
5128 		 * other types later.
5129 		 */
5130 		t = btf_type_skip_modifiers(btf, array_elem->type,
5131 					    NULL);
5132 		if (!btf_type_is_struct(t))
5133 			goto error;
5134 
5135 		off = (off - moff) % t->size;
5136 		goto again;
5137 
5138 error:
5139 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
5140 			tname, off, size);
5141 		return -EACCES;
5142 	}
5143 
5144 	for_each_member(i, t, member) {
5145 		/* offset of the field in bytes */
5146 		moff = __btf_member_bit_offset(t, member) / 8;
5147 		if (off + size <= moff)
5148 			/* won't find anything, field is already too far */
5149 			break;
5150 
5151 		if (__btf_member_bitfield_size(t, member)) {
5152 			u32 end_bit = __btf_member_bit_offset(t, member) +
5153 				__btf_member_bitfield_size(t, member);
5154 
5155 			/* off <= moff instead of off == moff because clang
5156 			 * does not generate a BTF member for anonymous
5157 			 * bitfield like the ":16" here:
5158 			 * struct {
5159 			 *	int :16;
5160 			 *	int x:8;
5161 			 * };
5162 			 */
5163 			if (off <= moff &&
5164 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
5165 				return WALK_SCALAR;
5166 
5167 			/* off may be accessing a following member
5168 			 *
5169 			 * or
5170 			 *
5171 			 * Doing partial access at either end of this
5172 			 * bitfield.  Continue on this case also to
5173 			 * treat it as not accessing this bitfield
5174 			 * and eventually error out as field not
5175 			 * found to keep it simple.
5176 			 * It could be relaxed if there was a legit
5177 			 * partial access case later.
5178 			 */
5179 			continue;
5180 		}
5181 
5182 		/* In case of "off" is pointing to holes of a struct */
5183 		if (off < moff)
5184 			break;
5185 
5186 		/* type of the field */
5187 		mid = member->type;
5188 		mtype = btf_type_by_id(btf, member->type);
5189 		mname = __btf_name_by_offset(btf, member->name_off);
5190 
5191 		mtype = __btf_resolve_size(btf, mtype, &msize,
5192 					   &elem_type, &elem_id, &total_nelems,
5193 					   &mid);
5194 		if (IS_ERR(mtype)) {
5195 			bpf_log(log, "field %s doesn't have size\n", mname);
5196 			return -EFAULT;
5197 		}
5198 
5199 		mtrue_end = moff + msize;
5200 		if (off >= mtrue_end)
5201 			/* no overlap with member, keep iterating */
5202 			continue;
5203 
5204 		if (btf_type_is_array(mtype)) {
5205 			u32 elem_idx;
5206 
5207 			/* __btf_resolve_size() above helps to
5208 			 * linearize a multi-dimensional array.
5209 			 *
5210 			 * The logic here is treating an array
5211 			 * in a struct as the following way:
5212 			 *
5213 			 * struct outer {
5214 			 *	struct inner array[2][2];
5215 			 * };
5216 			 *
5217 			 * looks like:
5218 			 *
5219 			 * struct outer {
5220 			 *	struct inner array_elem0;
5221 			 *	struct inner array_elem1;
5222 			 *	struct inner array_elem2;
5223 			 *	struct inner array_elem3;
5224 			 * };
5225 			 *
5226 			 * When accessing outer->array[1][0], it moves
5227 			 * moff to "array_elem2", set mtype to
5228 			 * "struct inner", and msize also becomes
5229 			 * sizeof(struct inner).  Then most of the
5230 			 * remaining logic will fall through without
5231 			 * caring the current member is an array or
5232 			 * not.
5233 			 *
5234 			 * Unlike mtype/msize/moff, mtrue_end does not
5235 			 * change.  The naming difference ("_true") tells
5236 			 * that it is not always corresponding to
5237 			 * the current mtype/msize/moff.
5238 			 * It is the true end of the current
5239 			 * member (i.e. array in this case).  That
5240 			 * will allow an int array to be accessed like
5241 			 * a scratch space,
5242 			 * i.e. allow access beyond the size of
5243 			 *      the array's element as long as it is
5244 			 *      within the mtrue_end boundary.
5245 			 */
5246 
5247 			/* skip empty array */
5248 			if (moff == mtrue_end)
5249 				continue;
5250 
5251 			msize /= total_nelems;
5252 			elem_idx = (off - moff) / msize;
5253 			moff += elem_idx * msize;
5254 			mtype = elem_type;
5255 			mid = elem_id;
5256 		}
5257 
5258 		/* the 'off' we're looking for is either equal to start
5259 		 * of this field or inside of this struct
5260 		 */
5261 		if (btf_type_is_struct(mtype)) {
5262 			/* our field must be inside that union or struct */
5263 			t = mtype;
5264 
5265 			/* return if the offset matches the member offset */
5266 			if (off == moff) {
5267 				*next_btf_id = mid;
5268 				return WALK_STRUCT;
5269 			}
5270 
5271 			/* adjust offset we're looking for */
5272 			off -= moff;
5273 			goto again;
5274 		}
5275 
5276 		if (btf_type_is_ptr(mtype)) {
5277 			const struct btf_type *stype, *t;
5278 			enum bpf_type_flag tmp_flag = 0;
5279 			u32 id;
5280 
5281 			if (msize != size || off != moff) {
5282 				bpf_log(log,
5283 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
5284 					mname, moff, tname, off, size);
5285 				return -EACCES;
5286 			}
5287 
5288 			/* check __user tag */
5289 			t = btf_type_by_id(btf, mtype->type);
5290 			if (btf_type_is_type_tag(t)) {
5291 				tag_value = __btf_name_by_offset(btf, t->name_off);
5292 				if (strcmp(tag_value, "user") == 0)
5293 					tmp_flag = MEM_USER;
5294 			}
5295 
5296 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
5297 			if (btf_type_is_struct(stype)) {
5298 				*next_btf_id = id;
5299 				*flag = tmp_flag;
5300 				return WALK_PTR;
5301 			}
5302 		}
5303 
5304 		/* Allow more flexible access within an int as long as
5305 		 * it is within mtrue_end.
5306 		 * Since mtrue_end could be the end of an array,
5307 		 * that also allows using an array of int as a scratch
5308 		 * space. e.g. skb->cb[].
5309 		 */
5310 		if (off + size > mtrue_end) {
5311 			bpf_log(log,
5312 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
5313 				mname, mtrue_end, tname, off, size);
5314 			return -EACCES;
5315 		}
5316 
5317 		return WALK_SCALAR;
5318 	}
5319 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
5320 	return -EINVAL;
5321 }
5322 
5323 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
5324 		      const struct btf_type *t, int off, int size,
5325 		      enum bpf_access_type atype __maybe_unused,
5326 		      u32 *next_btf_id, enum bpf_type_flag *flag)
5327 {
5328 	enum bpf_type_flag tmp_flag = 0;
5329 	int err;
5330 	u32 id;
5331 
5332 	do {
5333 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
5334 
5335 		switch (err) {
5336 		case WALK_PTR:
5337 			/* If we found the pointer or scalar on t+off,
5338 			 * we're done.
5339 			 */
5340 			*next_btf_id = id;
5341 			*flag = tmp_flag;
5342 			return PTR_TO_BTF_ID;
5343 		case WALK_SCALAR:
5344 			return SCALAR_VALUE;
5345 		case WALK_STRUCT:
5346 			/* We found nested struct, so continue the search
5347 			 * by diving in it. At this point the offset is
5348 			 * aligned with the new type, so set it to 0.
5349 			 */
5350 			t = btf_type_by_id(btf, id);
5351 			off = 0;
5352 			break;
5353 		default:
5354 			/* It's either error or unknown return value..
5355 			 * scream and leave.
5356 			 */
5357 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5358 				return -EINVAL;
5359 			return err;
5360 		}
5361 	} while (t);
5362 
5363 	return -EINVAL;
5364 }
5365 
5366 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5367  * the same. Trivial ID check is not enough due to module BTFs, because we can
5368  * end up with two different module BTFs, but IDs point to the common type in
5369  * vmlinux BTF.
5370  */
5371 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5372 			       const struct btf *btf2, u32 id2)
5373 {
5374 	if (id1 != id2)
5375 		return false;
5376 	if (btf1 == btf2)
5377 		return true;
5378 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5379 }
5380 
5381 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5382 			  const struct btf *btf, u32 id, int off,
5383 			  const struct btf *need_btf, u32 need_type_id)
5384 {
5385 	const struct btf_type *type;
5386 	enum bpf_type_flag flag;
5387 	int err;
5388 
5389 	/* Are we already done? */
5390 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5391 		return true;
5392 
5393 again:
5394 	type = btf_type_by_id(btf, id);
5395 	if (!type)
5396 		return false;
5397 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
5398 	if (err != WALK_STRUCT)
5399 		return false;
5400 
5401 	/* We found nested struct object. If it matches
5402 	 * the requested ID, we're done. Otherwise let's
5403 	 * continue the search with offset 0 in the new
5404 	 * type.
5405 	 */
5406 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5407 		off = 0;
5408 		goto again;
5409 	}
5410 
5411 	return true;
5412 }
5413 
5414 static int __get_type_size(struct btf *btf, u32 btf_id,
5415 			   const struct btf_type **bad_type)
5416 {
5417 	const struct btf_type *t;
5418 
5419 	if (!btf_id)
5420 		/* void */
5421 		return 0;
5422 	t = btf_type_by_id(btf, btf_id);
5423 	while (t && btf_type_is_modifier(t))
5424 		t = btf_type_by_id(btf, t->type);
5425 	if (!t) {
5426 		*bad_type = btf_type_by_id(btf, 0);
5427 		return -EINVAL;
5428 	}
5429 	if (btf_type_is_ptr(t))
5430 		/* kernel size of pointer. Not BPF's size of pointer*/
5431 		return sizeof(void *);
5432 	if (btf_type_is_int(t) || btf_type_is_enum(t))
5433 		return t->size;
5434 	*bad_type = t;
5435 	return -EINVAL;
5436 }
5437 
5438 int btf_distill_func_proto(struct bpf_verifier_log *log,
5439 			   struct btf *btf,
5440 			   const struct btf_type *func,
5441 			   const char *tname,
5442 			   struct btf_func_model *m)
5443 {
5444 	const struct btf_param *args;
5445 	const struct btf_type *t;
5446 	u32 i, nargs;
5447 	int ret;
5448 
5449 	if (!func) {
5450 		/* BTF function prototype doesn't match the verifier types.
5451 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
5452 		 */
5453 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++)
5454 			m->arg_size[i] = 8;
5455 		m->ret_size = 8;
5456 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
5457 		return 0;
5458 	}
5459 	args = (const struct btf_param *)(func + 1);
5460 	nargs = btf_type_vlen(func);
5461 	if (nargs >= MAX_BPF_FUNC_ARGS) {
5462 		bpf_log(log,
5463 			"The function %s has %d arguments. Too many.\n",
5464 			tname, nargs);
5465 		return -EINVAL;
5466 	}
5467 	ret = __get_type_size(btf, func->type, &t);
5468 	if (ret < 0) {
5469 		bpf_log(log,
5470 			"The function %s return type %s is unsupported.\n",
5471 			tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5472 		return -EINVAL;
5473 	}
5474 	m->ret_size = ret;
5475 
5476 	for (i = 0; i < nargs; i++) {
5477 		if (i == nargs - 1 && args[i].type == 0) {
5478 			bpf_log(log,
5479 				"The function %s with variable args is unsupported.\n",
5480 				tname);
5481 			return -EINVAL;
5482 		}
5483 		ret = __get_type_size(btf, args[i].type, &t);
5484 		if (ret < 0) {
5485 			bpf_log(log,
5486 				"The function %s arg%d type %s is unsupported.\n",
5487 				tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5488 			return -EINVAL;
5489 		}
5490 		if (ret == 0) {
5491 			bpf_log(log,
5492 				"The function %s has malformed void argument.\n",
5493 				tname);
5494 			return -EINVAL;
5495 		}
5496 		m->arg_size[i] = ret;
5497 	}
5498 	m->nr_args = nargs;
5499 	return 0;
5500 }
5501 
5502 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5503  * t1 points to BTF_KIND_FUNC in btf1
5504  * t2 points to BTF_KIND_FUNC in btf2
5505  * Returns:
5506  * EINVAL - function prototype mismatch
5507  * EFAULT - verifier bug
5508  * 0 - 99% match. The last 1% is validated by the verifier.
5509  */
5510 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5511 				     struct btf *btf1, const struct btf_type *t1,
5512 				     struct btf *btf2, const struct btf_type *t2)
5513 {
5514 	const struct btf_param *args1, *args2;
5515 	const char *fn1, *fn2, *s1, *s2;
5516 	u32 nargs1, nargs2, i;
5517 
5518 	fn1 = btf_name_by_offset(btf1, t1->name_off);
5519 	fn2 = btf_name_by_offset(btf2, t2->name_off);
5520 
5521 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5522 		bpf_log(log, "%s() is not a global function\n", fn1);
5523 		return -EINVAL;
5524 	}
5525 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5526 		bpf_log(log, "%s() is not a global function\n", fn2);
5527 		return -EINVAL;
5528 	}
5529 
5530 	t1 = btf_type_by_id(btf1, t1->type);
5531 	if (!t1 || !btf_type_is_func_proto(t1))
5532 		return -EFAULT;
5533 	t2 = btf_type_by_id(btf2, t2->type);
5534 	if (!t2 || !btf_type_is_func_proto(t2))
5535 		return -EFAULT;
5536 
5537 	args1 = (const struct btf_param *)(t1 + 1);
5538 	nargs1 = btf_type_vlen(t1);
5539 	args2 = (const struct btf_param *)(t2 + 1);
5540 	nargs2 = btf_type_vlen(t2);
5541 
5542 	if (nargs1 != nargs2) {
5543 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
5544 			fn1, nargs1, fn2, nargs2);
5545 		return -EINVAL;
5546 	}
5547 
5548 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5549 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5550 	if (t1->info != t2->info) {
5551 		bpf_log(log,
5552 			"Return type %s of %s() doesn't match type %s of %s()\n",
5553 			btf_type_str(t1), fn1,
5554 			btf_type_str(t2), fn2);
5555 		return -EINVAL;
5556 	}
5557 
5558 	for (i = 0; i < nargs1; i++) {
5559 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5560 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5561 
5562 		if (t1->info != t2->info) {
5563 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5564 				i, fn1, btf_type_str(t1),
5565 				fn2, btf_type_str(t2));
5566 			return -EINVAL;
5567 		}
5568 		if (btf_type_has_size(t1) && t1->size != t2->size) {
5569 			bpf_log(log,
5570 				"arg%d in %s() has size %d while %s() has %d\n",
5571 				i, fn1, t1->size,
5572 				fn2, t2->size);
5573 			return -EINVAL;
5574 		}
5575 
5576 		/* global functions are validated with scalars and pointers
5577 		 * to context only. And only global functions can be replaced.
5578 		 * Hence type check only those types.
5579 		 */
5580 		if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5581 			continue;
5582 		if (!btf_type_is_ptr(t1)) {
5583 			bpf_log(log,
5584 				"arg%d in %s() has unrecognized type\n",
5585 				i, fn1);
5586 			return -EINVAL;
5587 		}
5588 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5589 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5590 		if (!btf_type_is_struct(t1)) {
5591 			bpf_log(log,
5592 				"arg%d in %s() is not a pointer to context\n",
5593 				i, fn1);
5594 			return -EINVAL;
5595 		}
5596 		if (!btf_type_is_struct(t2)) {
5597 			bpf_log(log,
5598 				"arg%d in %s() is not a pointer to context\n",
5599 				i, fn2);
5600 			return -EINVAL;
5601 		}
5602 		/* This is an optional check to make program writing easier.
5603 		 * Compare names of structs and report an error to the user.
5604 		 * btf_prepare_func_args() already checked that t2 struct
5605 		 * is a context type. btf_prepare_func_args() will check
5606 		 * later that t1 struct is a context type as well.
5607 		 */
5608 		s1 = btf_name_by_offset(btf1, t1->name_off);
5609 		s2 = btf_name_by_offset(btf2, t2->name_off);
5610 		if (strcmp(s1, s2)) {
5611 			bpf_log(log,
5612 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5613 				i, fn1, s1, fn2, s2);
5614 			return -EINVAL;
5615 		}
5616 	}
5617 	return 0;
5618 }
5619 
5620 /* Compare BTFs of given program with BTF of target program */
5621 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5622 			 struct btf *btf2, const struct btf_type *t2)
5623 {
5624 	struct btf *btf1 = prog->aux->btf;
5625 	const struct btf_type *t1;
5626 	u32 btf_id = 0;
5627 
5628 	if (!prog->aux->func_info) {
5629 		bpf_log(log, "Program extension requires BTF\n");
5630 		return -EINVAL;
5631 	}
5632 
5633 	btf_id = prog->aux->func_info[0].type_id;
5634 	if (!btf_id)
5635 		return -EFAULT;
5636 
5637 	t1 = btf_type_by_id(btf1, btf_id);
5638 	if (!t1 || !btf_type_is_func(t1))
5639 		return -EFAULT;
5640 
5641 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5642 }
5643 
5644 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = {
5645 #ifdef CONFIG_NET
5646 	[PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK],
5647 	[PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
5648 	[PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
5649 #endif
5650 };
5651 
5652 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */
5653 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log,
5654 					const struct btf *btf,
5655 					const struct btf_type *t, int rec)
5656 {
5657 	const struct btf_type *member_type;
5658 	const struct btf_member *member;
5659 	u32 i;
5660 
5661 	if (!btf_type_is_struct(t))
5662 		return false;
5663 
5664 	for_each_member(i, t, member) {
5665 		const struct btf_array *array;
5666 
5667 		member_type = btf_type_skip_modifiers(btf, member->type, NULL);
5668 		if (btf_type_is_struct(member_type)) {
5669 			if (rec >= 3) {
5670 				bpf_log(log, "max struct nesting depth exceeded\n");
5671 				return false;
5672 			}
5673 			if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1))
5674 				return false;
5675 			continue;
5676 		}
5677 		if (btf_type_is_array(member_type)) {
5678 			array = btf_type_array(member_type);
5679 			if (!array->nelems)
5680 				return false;
5681 			member_type = btf_type_skip_modifiers(btf, array->type, NULL);
5682 			if (!btf_type_is_scalar(member_type))
5683 				return false;
5684 			continue;
5685 		}
5686 		if (!btf_type_is_scalar(member_type))
5687 			return false;
5688 	}
5689 	return true;
5690 }
5691 
5692 static bool is_kfunc_arg_mem_size(const struct btf *btf,
5693 				  const struct btf_param *arg,
5694 				  const struct bpf_reg_state *reg)
5695 {
5696 	int len, sfx_len = sizeof("__sz") - 1;
5697 	const struct btf_type *t;
5698 	const char *param_name;
5699 
5700 	t = btf_type_skip_modifiers(btf, arg->type, NULL);
5701 	if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE)
5702 		return false;
5703 
5704 	/* In the future, this can be ported to use BTF tagging */
5705 	param_name = btf_name_by_offset(btf, arg->name_off);
5706 	if (str_is_empty(param_name))
5707 		return false;
5708 	len = strlen(param_name);
5709 	if (len < sfx_len)
5710 		return false;
5711 	param_name += len - sfx_len;
5712 	if (strncmp(param_name, "__sz", sfx_len))
5713 		return false;
5714 
5715 	return true;
5716 }
5717 
5718 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
5719 				    const struct btf *btf, u32 func_id,
5720 				    struct bpf_reg_state *regs,
5721 				    bool ptr_to_mem_ok)
5722 {
5723 	struct bpf_verifier_log *log = &env->log;
5724 	u32 i, nargs, ref_id, ref_obj_id = 0;
5725 	bool is_kfunc = btf_is_kernel(btf);
5726 	const char *func_name, *ref_tname;
5727 	const struct btf_type *t, *ref_t;
5728 	const struct btf_param *args;
5729 	int ref_regno = 0;
5730 	bool rel = false;
5731 
5732 	t = btf_type_by_id(btf, func_id);
5733 	if (!t || !btf_type_is_func(t)) {
5734 		/* These checks were already done by the verifier while loading
5735 		 * struct bpf_func_info or in add_kfunc_call().
5736 		 */
5737 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
5738 			func_id);
5739 		return -EFAULT;
5740 	}
5741 	func_name = btf_name_by_offset(btf, t->name_off);
5742 
5743 	t = btf_type_by_id(btf, t->type);
5744 	if (!t || !btf_type_is_func_proto(t)) {
5745 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
5746 		return -EFAULT;
5747 	}
5748 	args = (const struct btf_param *)(t + 1);
5749 	nargs = btf_type_vlen(t);
5750 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
5751 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
5752 			MAX_BPF_FUNC_REG_ARGS);
5753 		return -EINVAL;
5754 	}
5755 
5756 	/* check that BTF function arguments match actual types that the
5757 	 * verifier sees.
5758 	 */
5759 	for (i = 0; i < nargs; i++) {
5760 		u32 regno = i + 1;
5761 		struct bpf_reg_state *reg = &regs[regno];
5762 
5763 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5764 		if (btf_type_is_scalar(t)) {
5765 			if (reg->type == SCALAR_VALUE)
5766 				continue;
5767 			bpf_log(log, "R%d is not a scalar\n", regno);
5768 			return -EINVAL;
5769 		}
5770 
5771 		if (!btf_type_is_ptr(t)) {
5772 			bpf_log(log, "Unrecognized arg#%d type %s\n",
5773 				i, btf_type_str(t));
5774 			return -EINVAL;
5775 		}
5776 
5777 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
5778 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
5779 		if (btf_get_prog_ctx_type(log, btf, t,
5780 					  env->prog->type, i)) {
5781 			/* If function expects ctx type in BTF check that caller
5782 			 * is passing PTR_TO_CTX.
5783 			 */
5784 			if (reg->type != PTR_TO_CTX) {
5785 				bpf_log(log,
5786 					"arg#%d expected pointer to ctx, but got %s\n",
5787 					i, btf_type_str(t));
5788 				return -EINVAL;
5789 			}
5790 			if (check_ptr_off_reg(env, reg, regno))
5791 				return -EINVAL;
5792 		} else if (is_kfunc && (reg->type == PTR_TO_BTF_ID ||
5793 			   (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) {
5794 			const struct btf_type *reg_ref_t;
5795 			const struct btf *reg_btf;
5796 			const char *reg_ref_tname;
5797 			u32 reg_ref_id;
5798 
5799 			if (!btf_type_is_struct(ref_t)) {
5800 				bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n",
5801 					func_name, i, btf_type_str(ref_t),
5802 					ref_tname);
5803 				return -EINVAL;
5804 			}
5805 
5806 			if (reg->type == PTR_TO_BTF_ID) {
5807 				reg_btf = reg->btf;
5808 				reg_ref_id = reg->btf_id;
5809 				/* Ensure only one argument is referenced PTR_TO_BTF_ID */
5810 				if (reg->ref_obj_id) {
5811 					if (ref_obj_id) {
5812 						bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
5813 							regno, reg->ref_obj_id, ref_obj_id);
5814 						return -EFAULT;
5815 					}
5816 					ref_regno = regno;
5817 					ref_obj_id = reg->ref_obj_id;
5818 				}
5819 			} else {
5820 				reg_btf = btf_vmlinux;
5821 				reg_ref_id = *reg2btf_ids[base_type(reg->type)];
5822 			}
5823 
5824 			reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id,
5825 							    &reg_ref_id);
5826 			reg_ref_tname = btf_name_by_offset(reg_btf,
5827 							   reg_ref_t->name_off);
5828 			if (!btf_struct_ids_match(log, reg_btf, reg_ref_id,
5829 						  reg->off, btf, ref_id)) {
5830 				bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n",
5831 					func_name, i,
5832 					btf_type_str(ref_t), ref_tname,
5833 					regno, btf_type_str(reg_ref_t),
5834 					reg_ref_tname);
5835 				return -EINVAL;
5836 			}
5837 		} else if (ptr_to_mem_ok) {
5838 			const struct btf_type *resolve_ret;
5839 			u32 type_size;
5840 
5841 			if (is_kfunc) {
5842 				bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], &regs[regno + 1]);
5843 
5844 				/* Permit pointer to mem, but only when argument
5845 				 * type is pointer to scalar, or struct composed
5846 				 * (recursively) of scalars.
5847 				 * When arg_mem_size is true, the pointer can be
5848 				 * void *.
5849 				 */
5850 				if (!btf_type_is_scalar(ref_t) &&
5851 				    !__btf_type_is_scalar_struct(log, btf, ref_t, 0) &&
5852 				    (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) {
5853 					bpf_log(log,
5854 						"arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n",
5855 						i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : "");
5856 					return -EINVAL;
5857 				}
5858 
5859 				/* Check for mem, len pair */
5860 				if (arg_mem_size) {
5861 					if (check_kfunc_mem_size_reg(env, &regs[regno + 1], regno + 1)) {
5862 						bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n",
5863 							i, i + 1);
5864 						return -EINVAL;
5865 					}
5866 					i++;
5867 					continue;
5868 				}
5869 			}
5870 
5871 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
5872 			if (IS_ERR(resolve_ret)) {
5873 				bpf_log(log,
5874 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
5875 					i, btf_type_str(ref_t), ref_tname,
5876 					PTR_ERR(resolve_ret));
5877 				return -EINVAL;
5878 			}
5879 
5880 			if (check_mem_reg(env, reg, regno, type_size))
5881 				return -EINVAL;
5882 		} else {
5883 			bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i,
5884 				is_kfunc ? "kernel " : "", func_name, func_id);
5885 			return -EINVAL;
5886 		}
5887 	}
5888 
5889 	/* Either both are set, or neither */
5890 	WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno));
5891 	if (is_kfunc) {
5892 		rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog),
5893 						BTF_KFUNC_TYPE_RELEASE, func_id);
5894 		/* We already made sure ref_obj_id is set only for one argument */
5895 		if (rel && !ref_obj_id) {
5896 			bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n",
5897 				func_name);
5898 			return -EINVAL;
5899 		}
5900 		/* Allow (!rel && ref_obj_id), so that passing such referenced PTR_TO_BTF_ID to
5901 		 * other kfuncs works
5902 		 */
5903 	}
5904 	/* returns argument register number > 0 in case of reference release kfunc */
5905 	return rel ? ref_regno : 0;
5906 }
5907 
5908 /* Compare BTF of a function with given bpf_reg_state.
5909  * Returns:
5910  * EFAULT - there is a verifier bug. Abort verification.
5911  * EINVAL - there is a type mismatch or BTF is not available.
5912  * 0 - BTF matches with what bpf_reg_state expects.
5913  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5914  */
5915 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
5916 				struct bpf_reg_state *regs)
5917 {
5918 	struct bpf_prog *prog = env->prog;
5919 	struct btf *btf = prog->aux->btf;
5920 	bool is_global;
5921 	u32 btf_id;
5922 	int err;
5923 
5924 	if (!prog->aux->func_info)
5925 		return -EINVAL;
5926 
5927 	btf_id = prog->aux->func_info[subprog].type_id;
5928 	if (!btf_id)
5929 		return -EFAULT;
5930 
5931 	if (prog->aux->func_info_aux[subprog].unreliable)
5932 		return -EINVAL;
5933 
5934 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5935 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global);
5936 
5937 	/* Compiler optimizations can remove arguments from static functions
5938 	 * or mismatched type can be passed into a global function.
5939 	 * In such cases mark the function as unreliable from BTF point of view.
5940 	 */
5941 	if (err)
5942 		prog->aux->func_info_aux[subprog].unreliable = true;
5943 	return err;
5944 }
5945 
5946 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env,
5947 			      const struct btf *btf, u32 func_id,
5948 			      struct bpf_reg_state *regs)
5949 {
5950 	return btf_check_func_arg_match(env, btf, func_id, regs, true);
5951 }
5952 
5953 /* Convert BTF of a function into bpf_reg_state if possible
5954  * Returns:
5955  * EFAULT - there is a verifier bug. Abort verification.
5956  * EINVAL - cannot convert BTF.
5957  * 0 - Successfully converted BTF into bpf_reg_state
5958  * (either PTR_TO_CTX or SCALAR_VALUE).
5959  */
5960 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5961 			  struct bpf_reg_state *regs)
5962 {
5963 	struct bpf_verifier_log *log = &env->log;
5964 	struct bpf_prog *prog = env->prog;
5965 	enum bpf_prog_type prog_type = prog->type;
5966 	struct btf *btf = prog->aux->btf;
5967 	const struct btf_param *args;
5968 	const struct btf_type *t, *ref_t;
5969 	u32 i, nargs, btf_id;
5970 	const char *tname;
5971 
5972 	if (!prog->aux->func_info ||
5973 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5974 		bpf_log(log, "Verifier bug\n");
5975 		return -EFAULT;
5976 	}
5977 
5978 	btf_id = prog->aux->func_info[subprog].type_id;
5979 	if (!btf_id) {
5980 		bpf_log(log, "Global functions need valid BTF\n");
5981 		return -EFAULT;
5982 	}
5983 
5984 	t = btf_type_by_id(btf, btf_id);
5985 	if (!t || !btf_type_is_func(t)) {
5986 		/* These checks were already done by the verifier while loading
5987 		 * struct bpf_func_info
5988 		 */
5989 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5990 			subprog);
5991 		return -EFAULT;
5992 	}
5993 	tname = btf_name_by_offset(btf, t->name_off);
5994 
5995 	if (log->level & BPF_LOG_LEVEL)
5996 		bpf_log(log, "Validating %s() func#%d...\n",
5997 			tname, subprog);
5998 
5999 	if (prog->aux->func_info_aux[subprog].unreliable) {
6000 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6001 		return -EFAULT;
6002 	}
6003 	if (prog_type == BPF_PROG_TYPE_EXT)
6004 		prog_type = prog->aux->dst_prog->type;
6005 
6006 	t = btf_type_by_id(btf, t->type);
6007 	if (!t || !btf_type_is_func_proto(t)) {
6008 		bpf_log(log, "Invalid type of function %s()\n", tname);
6009 		return -EFAULT;
6010 	}
6011 	args = (const struct btf_param *)(t + 1);
6012 	nargs = btf_type_vlen(t);
6013 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6014 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6015 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6016 		return -EINVAL;
6017 	}
6018 	/* check that function returns int */
6019 	t = btf_type_by_id(btf, t->type);
6020 	while (btf_type_is_modifier(t))
6021 		t = btf_type_by_id(btf, t->type);
6022 	if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
6023 		bpf_log(log,
6024 			"Global function %s() doesn't return scalar. Only those are supported.\n",
6025 			tname);
6026 		return -EINVAL;
6027 	}
6028 	/* Convert BTF function arguments into verifier types.
6029 	 * Only PTR_TO_CTX and SCALAR are supported atm.
6030 	 */
6031 	for (i = 0; i < nargs; i++) {
6032 		struct bpf_reg_state *reg = &regs[i + 1];
6033 
6034 		t = btf_type_by_id(btf, args[i].type);
6035 		while (btf_type_is_modifier(t))
6036 			t = btf_type_by_id(btf, t->type);
6037 		if (btf_type_is_int(t) || btf_type_is_enum(t)) {
6038 			reg->type = SCALAR_VALUE;
6039 			continue;
6040 		}
6041 		if (btf_type_is_ptr(t)) {
6042 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6043 				reg->type = PTR_TO_CTX;
6044 				continue;
6045 			}
6046 
6047 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6048 
6049 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6050 			if (IS_ERR(ref_t)) {
6051 				bpf_log(log,
6052 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6053 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6054 					PTR_ERR(ref_t));
6055 				return -EINVAL;
6056 			}
6057 
6058 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6059 			reg->id = ++env->id_gen;
6060 
6061 			continue;
6062 		}
6063 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6064 			i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
6065 		return -EINVAL;
6066 	}
6067 	return 0;
6068 }
6069 
6070 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6071 			  struct btf_show *show)
6072 {
6073 	const struct btf_type *t = btf_type_by_id(btf, type_id);
6074 
6075 	show->btf = btf;
6076 	memset(&show->state, 0, sizeof(show->state));
6077 	memset(&show->obj, 0, sizeof(show->obj));
6078 
6079 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6080 }
6081 
6082 static void btf_seq_show(struct btf_show *show, const char *fmt,
6083 			 va_list args)
6084 {
6085 	seq_vprintf((struct seq_file *)show->target, fmt, args);
6086 }
6087 
6088 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6089 			    void *obj, struct seq_file *m, u64 flags)
6090 {
6091 	struct btf_show sseq;
6092 
6093 	sseq.target = m;
6094 	sseq.showfn = btf_seq_show;
6095 	sseq.flags = flags;
6096 
6097 	btf_type_show(btf, type_id, obj, &sseq);
6098 
6099 	return sseq.state.status;
6100 }
6101 
6102 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6103 		       struct seq_file *m)
6104 {
6105 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6106 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6107 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6108 }
6109 
6110 struct btf_show_snprintf {
6111 	struct btf_show show;
6112 	int len_left;		/* space left in string */
6113 	int len;		/* length we would have written */
6114 };
6115 
6116 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6117 			      va_list args)
6118 {
6119 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6120 	int len;
6121 
6122 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
6123 
6124 	if (len < 0) {
6125 		ssnprintf->len_left = 0;
6126 		ssnprintf->len = len;
6127 	} else if (len > ssnprintf->len_left) {
6128 		/* no space, drive on to get length we would have written */
6129 		ssnprintf->len_left = 0;
6130 		ssnprintf->len += len;
6131 	} else {
6132 		ssnprintf->len_left -= len;
6133 		ssnprintf->len += len;
6134 		show->target += len;
6135 	}
6136 }
6137 
6138 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
6139 			   char *buf, int len, u64 flags)
6140 {
6141 	struct btf_show_snprintf ssnprintf;
6142 
6143 	ssnprintf.show.target = buf;
6144 	ssnprintf.show.flags = flags;
6145 	ssnprintf.show.showfn = btf_snprintf_show;
6146 	ssnprintf.len_left = len;
6147 	ssnprintf.len = 0;
6148 
6149 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
6150 
6151 	/* If we encountered an error, return it. */
6152 	if (ssnprintf.show.state.status)
6153 		return ssnprintf.show.state.status;
6154 
6155 	/* Otherwise return length we would have written */
6156 	return ssnprintf.len;
6157 }
6158 
6159 #ifdef CONFIG_PROC_FS
6160 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
6161 {
6162 	const struct btf *btf = filp->private_data;
6163 
6164 	seq_printf(m, "btf_id:\t%u\n", btf->id);
6165 }
6166 #endif
6167 
6168 static int btf_release(struct inode *inode, struct file *filp)
6169 {
6170 	btf_put(filp->private_data);
6171 	return 0;
6172 }
6173 
6174 const struct file_operations btf_fops = {
6175 #ifdef CONFIG_PROC_FS
6176 	.show_fdinfo	= bpf_btf_show_fdinfo,
6177 #endif
6178 	.release	= btf_release,
6179 };
6180 
6181 static int __btf_new_fd(struct btf *btf)
6182 {
6183 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
6184 }
6185 
6186 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
6187 {
6188 	struct btf *btf;
6189 	int ret;
6190 
6191 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
6192 			attr->btf_size, attr->btf_log_level,
6193 			u64_to_user_ptr(attr->btf_log_buf),
6194 			attr->btf_log_size);
6195 	if (IS_ERR(btf))
6196 		return PTR_ERR(btf);
6197 
6198 	ret = btf_alloc_id(btf);
6199 	if (ret) {
6200 		btf_free(btf);
6201 		return ret;
6202 	}
6203 
6204 	/*
6205 	 * The BTF ID is published to the userspace.
6206 	 * All BTF free must go through call_rcu() from
6207 	 * now on (i.e. free by calling btf_put()).
6208 	 */
6209 
6210 	ret = __btf_new_fd(btf);
6211 	if (ret < 0)
6212 		btf_put(btf);
6213 
6214 	return ret;
6215 }
6216 
6217 struct btf *btf_get_by_fd(int fd)
6218 {
6219 	struct btf *btf;
6220 	struct fd f;
6221 
6222 	f = fdget(fd);
6223 
6224 	if (!f.file)
6225 		return ERR_PTR(-EBADF);
6226 
6227 	if (f.file->f_op != &btf_fops) {
6228 		fdput(f);
6229 		return ERR_PTR(-EINVAL);
6230 	}
6231 
6232 	btf = f.file->private_data;
6233 	refcount_inc(&btf->refcnt);
6234 	fdput(f);
6235 
6236 	return btf;
6237 }
6238 
6239 int btf_get_info_by_fd(const struct btf *btf,
6240 		       const union bpf_attr *attr,
6241 		       union bpf_attr __user *uattr)
6242 {
6243 	struct bpf_btf_info __user *uinfo;
6244 	struct bpf_btf_info info;
6245 	u32 info_copy, btf_copy;
6246 	void __user *ubtf;
6247 	char __user *uname;
6248 	u32 uinfo_len, uname_len, name_len;
6249 	int ret = 0;
6250 
6251 	uinfo = u64_to_user_ptr(attr->info.info);
6252 	uinfo_len = attr->info.info_len;
6253 
6254 	info_copy = min_t(u32, uinfo_len, sizeof(info));
6255 	memset(&info, 0, sizeof(info));
6256 	if (copy_from_user(&info, uinfo, info_copy))
6257 		return -EFAULT;
6258 
6259 	info.id = btf->id;
6260 	ubtf = u64_to_user_ptr(info.btf);
6261 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
6262 	if (copy_to_user(ubtf, btf->data, btf_copy))
6263 		return -EFAULT;
6264 	info.btf_size = btf->data_size;
6265 
6266 	info.kernel_btf = btf->kernel_btf;
6267 
6268 	uname = u64_to_user_ptr(info.name);
6269 	uname_len = info.name_len;
6270 	if (!uname ^ !uname_len)
6271 		return -EINVAL;
6272 
6273 	name_len = strlen(btf->name);
6274 	info.name_len = name_len;
6275 
6276 	if (uname) {
6277 		if (uname_len >= name_len + 1) {
6278 			if (copy_to_user(uname, btf->name, name_len + 1))
6279 				return -EFAULT;
6280 		} else {
6281 			char zero = '\0';
6282 
6283 			if (copy_to_user(uname, btf->name, uname_len - 1))
6284 				return -EFAULT;
6285 			if (put_user(zero, uname + uname_len - 1))
6286 				return -EFAULT;
6287 			/* let user-space know about too short buffer */
6288 			ret = -ENOSPC;
6289 		}
6290 	}
6291 
6292 	if (copy_to_user(uinfo, &info, info_copy) ||
6293 	    put_user(info_copy, &uattr->info.info_len))
6294 		return -EFAULT;
6295 
6296 	return ret;
6297 }
6298 
6299 int btf_get_fd_by_id(u32 id)
6300 {
6301 	struct btf *btf;
6302 	int fd;
6303 
6304 	rcu_read_lock();
6305 	btf = idr_find(&btf_idr, id);
6306 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
6307 		btf = ERR_PTR(-ENOENT);
6308 	rcu_read_unlock();
6309 
6310 	if (IS_ERR(btf))
6311 		return PTR_ERR(btf);
6312 
6313 	fd = __btf_new_fd(btf);
6314 	if (fd < 0)
6315 		btf_put(btf);
6316 
6317 	return fd;
6318 }
6319 
6320 u32 btf_obj_id(const struct btf *btf)
6321 {
6322 	return btf->id;
6323 }
6324 
6325 bool btf_is_kernel(const struct btf *btf)
6326 {
6327 	return btf->kernel_btf;
6328 }
6329 
6330 bool btf_is_module(const struct btf *btf)
6331 {
6332 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
6333 }
6334 
6335 static int btf_id_cmp_func(const void *a, const void *b)
6336 {
6337 	const int *pa = a, *pb = b;
6338 
6339 	return *pa - *pb;
6340 }
6341 
6342 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
6343 {
6344 	return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
6345 }
6346 
6347 enum {
6348 	BTF_MODULE_F_LIVE = (1 << 0),
6349 };
6350 
6351 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6352 struct btf_module {
6353 	struct list_head list;
6354 	struct module *module;
6355 	struct btf *btf;
6356 	struct bin_attribute *sysfs_attr;
6357 	int flags;
6358 };
6359 
6360 static LIST_HEAD(btf_modules);
6361 static DEFINE_MUTEX(btf_module_mutex);
6362 
6363 static ssize_t
6364 btf_module_read(struct file *file, struct kobject *kobj,
6365 		struct bin_attribute *bin_attr,
6366 		char *buf, loff_t off, size_t len)
6367 {
6368 	const struct btf *btf = bin_attr->private;
6369 
6370 	memcpy(buf, btf->data + off, len);
6371 	return len;
6372 }
6373 
6374 static void purge_cand_cache(struct btf *btf);
6375 
6376 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
6377 			     void *module)
6378 {
6379 	struct btf_module *btf_mod, *tmp;
6380 	struct module *mod = module;
6381 	struct btf *btf;
6382 	int err = 0;
6383 
6384 	if (mod->btf_data_size == 0 ||
6385 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
6386 	     op != MODULE_STATE_GOING))
6387 		goto out;
6388 
6389 	switch (op) {
6390 	case MODULE_STATE_COMING:
6391 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
6392 		if (!btf_mod) {
6393 			err = -ENOMEM;
6394 			goto out;
6395 		}
6396 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
6397 		if (IS_ERR(btf)) {
6398 			pr_warn("failed to validate module [%s] BTF: %ld\n",
6399 				mod->name, PTR_ERR(btf));
6400 			kfree(btf_mod);
6401 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
6402 				err = PTR_ERR(btf);
6403 			goto out;
6404 		}
6405 		err = btf_alloc_id(btf);
6406 		if (err) {
6407 			btf_free(btf);
6408 			kfree(btf_mod);
6409 			goto out;
6410 		}
6411 
6412 		purge_cand_cache(NULL);
6413 		mutex_lock(&btf_module_mutex);
6414 		btf_mod->module = module;
6415 		btf_mod->btf = btf;
6416 		list_add(&btf_mod->list, &btf_modules);
6417 		mutex_unlock(&btf_module_mutex);
6418 
6419 		if (IS_ENABLED(CONFIG_SYSFS)) {
6420 			struct bin_attribute *attr;
6421 
6422 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
6423 			if (!attr)
6424 				goto out;
6425 
6426 			sysfs_bin_attr_init(attr);
6427 			attr->attr.name = btf->name;
6428 			attr->attr.mode = 0444;
6429 			attr->size = btf->data_size;
6430 			attr->private = btf;
6431 			attr->read = btf_module_read;
6432 
6433 			err = sysfs_create_bin_file(btf_kobj, attr);
6434 			if (err) {
6435 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
6436 					mod->name, err);
6437 				kfree(attr);
6438 				err = 0;
6439 				goto out;
6440 			}
6441 
6442 			btf_mod->sysfs_attr = attr;
6443 		}
6444 
6445 		break;
6446 	case MODULE_STATE_LIVE:
6447 		mutex_lock(&btf_module_mutex);
6448 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6449 			if (btf_mod->module != module)
6450 				continue;
6451 
6452 			btf_mod->flags |= BTF_MODULE_F_LIVE;
6453 			break;
6454 		}
6455 		mutex_unlock(&btf_module_mutex);
6456 		break;
6457 	case MODULE_STATE_GOING:
6458 		mutex_lock(&btf_module_mutex);
6459 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6460 			if (btf_mod->module != module)
6461 				continue;
6462 
6463 			list_del(&btf_mod->list);
6464 			if (btf_mod->sysfs_attr)
6465 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
6466 			purge_cand_cache(btf_mod->btf);
6467 			btf_put(btf_mod->btf);
6468 			kfree(btf_mod->sysfs_attr);
6469 			kfree(btf_mod);
6470 			break;
6471 		}
6472 		mutex_unlock(&btf_module_mutex);
6473 		break;
6474 	}
6475 out:
6476 	return notifier_from_errno(err);
6477 }
6478 
6479 static struct notifier_block btf_module_nb = {
6480 	.notifier_call = btf_module_notify,
6481 };
6482 
6483 static int __init btf_module_init(void)
6484 {
6485 	register_module_notifier(&btf_module_nb);
6486 	return 0;
6487 }
6488 
6489 fs_initcall(btf_module_init);
6490 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6491 
6492 struct module *btf_try_get_module(const struct btf *btf)
6493 {
6494 	struct module *res = NULL;
6495 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6496 	struct btf_module *btf_mod, *tmp;
6497 
6498 	mutex_lock(&btf_module_mutex);
6499 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6500 		if (btf_mod->btf != btf)
6501 			continue;
6502 
6503 		/* We must only consider module whose __init routine has
6504 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
6505 		 * which is set from the notifier callback for
6506 		 * MODULE_STATE_LIVE.
6507 		 */
6508 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
6509 			res = btf_mod->module;
6510 
6511 		break;
6512 	}
6513 	mutex_unlock(&btf_module_mutex);
6514 #endif
6515 
6516 	return res;
6517 }
6518 
6519 /* Returns struct btf corresponding to the struct module
6520  *
6521  * This function can return NULL or ERR_PTR. Note that caller must
6522  * release reference for struct btf iff btf_is_module is true.
6523  */
6524 static struct btf *btf_get_module_btf(const struct module *module)
6525 {
6526 	struct btf *btf = NULL;
6527 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6528 	struct btf_module *btf_mod, *tmp;
6529 #endif
6530 
6531 	if (!module)
6532 		return bpf_get_btf_vmlinux();
6533 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6534 	mutex_lock(&btf_module_mutex);
6535 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
6536 		if (btf_mod->module != module)
6537 			continue;
6538 
6539 		btf_get(btf_mod->btf);
6540 		btf = btf_mod->btf;
6541 		break;
6542 	}
6543 	mutex_unlock(&btf_module_mutex);
6544 #endif
6545 
6546 	return btf;
6547 }
6548 
6549 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
6550 {
6551 	struct btf *btf;
6552 	long ret;
6553 
6554 	if (flags)
6555 		return -EINVAL;
6556 
6557 	if (name_sz <= 1 || name[name_sz - 1])
6558 		return -EINVAL;
6559 
6560 	btf = bpf_get_btf_vmlinux();
6561 	if (IS_ERR(btf))
6562 		return PTR_ERR(btf);
6563 
6564 	ret = btf_find_by_name_kind(btf, name, kind);
6565 	/* ret is never zero, since btf_find_by_name_kind returns
6566 	 * positive btf_id or negative error.
6567 	 */
6568 	if (ret < 0) {
6569 		struct btf *mod_btf;
6570 		int id;
6571 
6572 		/* If name is not found in vmlinux's BTF then search in module's BTFs */
6573 		spin_lock_bh(&btf_idr_lock);
6574 		idr_for_each_entry(&btf_idr, mod_btf, id) {
6575 			if (!btf_is_module(mod_btf))
6576 				continue;
6577 			/* linear search could be slow hence unlock/lock
6578 			 * the IDR to avoiding holding it for too long
6579 			 */
6580 			btf_get(mod_btf);
6581 			spin_unlock_bh(&btf_idr_lock);
6582 			ret = btf_find_by_name_kind(mod_btf, name, kind);
6583 			if (ret > 0) {
6584 				int btf_obj_fd;
6585 
6586 				btf_obj_fd = __btf_new_fd(mod_btf);
6587 				if (btf_obj_fd < 0) {
6588 					btf_put(mod_btf);
6589 					return btf_obj_fd;
6590 				}
6591 				return ret | (((u64)btf_obj_fd) << 32);
6592 			}
6593 			spin_lock_bh(&btf_idr_lock);
6594 			btf_put(mod_btf);
6595 		}
6596 		spin_unlock_bh(&btf_idr_lock);
6597 	}
6598 	return ret;
6599 }
6600 
6601 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
6602 	.func		= bpf_btf_find_by_name_kind,
6603 	.gpl_only	= false,
6604 	.ret_type	= RET_INTEGER,
6605 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6606 	.arg2_type	= ARG_CONST_SIZE,
6607 	.arg3_type	= ARG_ANYTHING,
6608 	.arg4_type	= ARG_ANYTHING,
6609 };
6610 
6611 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
6612 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
6613 BTF_TRACING_TYPE_xxx
6614 #undef BTF_TRACING_TYPE
6615 
6616 /* Kernel Function (kfunc) BTF ID set registration API */
6617 
6618 static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
6619 				    enum btf_kfunc_type type,
6620 				    struct btf_id_set *add_set, bool vmlinux_set)
6621 {
6622 	struct btf_kfunc_set_tab *tab;
6623 	struct btf_id_set *set;
6624 	u32 set_cnt;
6625 	int ret;
6626 
6627 	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) {
6628 		ret = -EINVAL;
6629 		goto end;
6630 	}
6631 
6632 	if (!add_set->cnt)
6633 		return 0;
6634 
6635 	tab = btf->kfunc_set_tab;
6636 	if (!tab) {
6637 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
6638 		if (!tab)
6639 			return -ENOMEM;
6640 		btf->kfunc_set_tab = tab;
6641 	}
6642 
6643 	set = tab->sets[hook][type];
6644 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
6645 	 * for module sets.
6646 	 */
6647 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
6648 		ret = -EINVAL;
6649 		goto end;
6650 	}
6651 
6652 	/* We don't need to allocate, concatenate, and sort module sets, because
6653 	 * only one is allowed per hook. Hence, we can directly assign the
6654 	 * pointer and return.
6655 	 */
6656 	if (!vmlinux_set) {
6657 		tab->sets[hook][type] = add_set;
6658 		return 0;
6659 	}
6660 
6661 	/* In case of vmlinux sets, there may be more than one set being
6662 	 * registered per hook. To create a unified set, we allocate a new set
6663 	 * and concatenate all individual sets being registered. While each set
6664 	 * is individually sorted, they may become unsorted when concatenated,
6665 	 * hence re-sorting the final set again is required to make binary
6666 	 * searching the set using btf_id_set_contains function work.
6667 	 */
6668 	set_cnt = set ? set->cnt : 0;
6669 
6670 	if (set_cnt > U32_MAX - add_set->cnt) {
6671 		ret = -EOVERFLOW;
6672 		goto end;
6673 	}
6674 
6675 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
6676 		ret = -E2BIG;
6677 		goto end;
6678 	}
6679 
6680 	/* Grow set */
6681 	set = krealloc(tab->sets[hook][type],
6682 		       offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]),
6683 		       GFP_KERNEL | __GFP_NOWARN);
6684 	if (!set) {
6685 		ret = -ENOMEM;
6686 		goto end;
6687 	}
6688 
6689 	/* For newly allocated set, initialize set->cnt to 0 */
6690 	if (!tab->sets[hook][type])
6691 		set->cnt = 0;
6692 	tab->sets[hook][type] = set;
6693 
6694 	/* Concatenate the two sets */
6695 	memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0]));
6696 	set->cnt += add_set->cnt;
6697 
6698 	sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL);
6699 
6700 	return 0;
6701 end:
6702 	btf_free_kfunc_set_tab(btf);
6703 	return ret;
6704 }
6705 
6706 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
6707 				  const struct btf_kfunc_id_set *kset)
6708 {
6709 	bool vmlinux_set = !btf_is_module(btf);
6710 	int type, ret = 0;
6711 
6712 	for (type = 0; type < ARRAY_SIZE(kset->sets); type++) {
6713 		if (!kset->sets[type])
6714 			continue;
6715 
6716 		ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set);
6717 		if (ret)
6718 			break;
6719 	}
6720 	return ret;
6721 }
6722 
6723 static bool __btf_kfunc_id_set_contains(const struct btf *btf,
6724 					enum btf_kfunc_hook hook,
6725 					enum btf_kfunc_type type,
6726 					u32 kfunc_btf_id)
6727 {
6728 	struct btf_id_set *set;
6729 
6730 	if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX)
6731 		return false;
6732 	if (!btf->kfunc_set_tab)
6733 		return false;
6734 	set = btf->kfunc_set_tab->sets[hook][type];
6735 	if (!set)
6736 		return false;
6737 	return btf_id_set_contains(set, kfunc_btf_id);
6738 }
6739 
6740 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
6741 {
6742 	switch (prog_type) {
6743 	case BPF_PROG_TYPE_XDP:
6744 		return BTF_KFUNC_HOOK_XDP;
6745 	case BPF_PROG_TYPE_SCHED_CLS:
6746 		return BTF_KFUNC_HOOK_TC;
6747 	case BPF_PROG_TYPE_STRUCT_OPS:
6748 		return BTF_KFUNC_HOOK_STRUCT_OPS;
6749 	default:
6750 		return BTF_KFUNC_HOOK_MAX;
6751 	}
6752 }
6753 
6754 /* Caution:
6755  * Reference to the module (obtained using btf_try_get_module) corresponding to
6756  * the struct btf *MUST* be held when calling this function from verifier
6757  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
6758  * keeping the reference for the duration of the call provides the necessary
6759  * protection for looking up a well-formed btf->kfunc_set_tab.
6760  */
6761 bool btf_kfunc_id_set_contains(const struct btf *btf,
6762 			       enum bpf_prog_type prog_type,
6763 			       enum btf_kfunc_type type, u32 kfunc_btf_id)
6764 {
6765 	enum btf_kfunc_hook hook;
6766 
6767 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
6768 	return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id);
6769 }
6770 
6771 /* This function must be invoked only from initcalls/module init functions */
6772 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
6773 			      const struct btf_kfunc_id_set *kset)
6774 {
6775 	enum btf_kfunc_hook hook;
6776 	struct btf *btf;
6777 	int ret;
6778 
6779 	btf = btf_get_module_btf(kset->owner);
6780 	if (!btf) {
6781 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
6782 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
6783 			return -ENOENT;
6784 		}
6785 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
6786 			pr_err("missing module BTF, cannot register kfuncs\n");
6787 			return -ENOENT;
6788 		}
6789 		return 0;
6790 	}
6791 	if (IS_ERR(btf))
6792 		return PTR_ERR(btf);
6793 
6794 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
6795 	ret = btf_populate_kfunc_set(btf, hook, kset);
6796 	/* reference is only taken for module BTF */
6797 	if (btf_is_module(btf))
6798 		btf_put(btf);
6799 	return ret;
6800 }
6801 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
6802 
6803 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
6804 
6805 static
6806 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6807 				const struct btf *targ_btf, __u32 targ_id,
6808 				int level)
6809 {
6810 	const struct btf_type *local_type, *targ_type;
6811 	int depth = 32; /* max recursion depth */
6812 
6813 	/* caller made sure that names match (ignoring flavor suffix) */
6814 	local_type = btf_type_by_id(local_btf, local_id);
6815 	targ_type = btf_type_by_id(targ_btf, targ_id);
6816 	if (btf_kind(local_type) != btf_kind(targ_type))
6817 		return 0;
6818 
6819 recur:
6820 	depth--;
6821 	if (depth < 0)
6822 		return -EINVAL;
6823 
6824 	local_type = btf_type_skip_modifiers(local_btf, local_id, &local_id);
6825 	targ_type = btf_type_skip_modifiers(targ_btf, targ_id, &targ_id);
6826 	if (!local_type || !targ_type)
6827 		return -EINVAL;
6828 
6829 	if (btf_kind(local_type) != btf_kind(targ_type))
6830 		return 0;
6831 
6832 	switch (btf_kind(local_type)) {
6833 	case BTF_KIND_UNKN:
6834 	case BTF_KIND_STRUCT:
6835 	case BTF_KIND_UNION:
6836 	case BTF_KIND_ENUM:
6837 	case BTF_KIND_FWD:
6838 		return 1;
6839 	case BTF_KIND_INT:
6840 		/* just reject deprecated bitfield-like integers; all other
6841 		 * integers are by default compatible between each other
6842 		 */
6843 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
6844 	case BTF_KIND_PTR:
6845 		local_id = local_type->type;
6846 		targ_id = targ_type->type;
6847 		goto recur;
6848 	case BTF_KIND_ARRAY:
6849 		local_id = btf_array(local_type)->type;
6850 		targ_id = btf_array(targ_type)->type;
6851 		goto recur;
6852 	case BTF_KIND_FUNC_PROTO: {
6853 		struct btf_param *local_p = btf_params(local_type);
6854 		struct btf_param *targ_p = btf_params(targ_type);
6855 		__u16 local_vlen = btf_vlen(local_type);
6856 		__u16 targ_vlen = btf_vlen(targ_type);
6857 		int i, err;
6858 
6859 		if (local_vlen != targ_vlen)
6860 			return 0;
6861 
6862 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
6863 			if (level <= 0)
6864 				return -EINVAL;
6865 
6866 			btf_type_skip_modifiers(local_btf, local_p->type, &local_id);
6867 			btf_type_skip_modifiers(targ_btf, targ_p->type, &targ_id);
6868 			err = __bpf_core_types_are_compat(local_btf, local_id,
6869 							  targ_btf, targ_id,
6870 							  level - 1);
6871 			if (err <= 0)
6872 				return err;
6873 		}
6874 
6875 		/* tail recurse for return type check */
6876 		btf_type_skip_modifiers(local_btf, local_type->type, &local_id);
6877 		btf_type_skip_modifiers(targ_btf, targ_type->type, &targ_id);
6878 		goto recur;
6879 	}
6880 	default:
6881 		return 0;
6882 	}
6883 }
6884 
6885 /* Check local and target types for compatibility. This check is used for
6886  * type-based CO-RE relocations and follow slightly different rules than
6887  * field-based relocations. This function assumes that root types were already
6888  * checked for name match. Beyond that initial root-level name check, names
6889  * are completely ignored. Compatibility rules are as follows:
6890  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
6891  *     kind should match for local and target types (i.e., STRUCT is not
6892  *     compatible with UNION);
6893  *   - for ENUMs, the size is ignored;
6894  *   - for INT, size and signedness are ignored;
6895  *   - for ARRAY, dimensionality is ignored, element types are checked for
6896  *     compatibility recursively;
6897  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
6898  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
6899  *   - FUNC_PROTOs are compatible if they have compatible signature: same
6900  *     number of input args and compatible return and argument types.
6901  * These rules are not set in stone and probably will be adjusted as we get
6902  * more experience with using BPF CO-RE relocations.
6903  */
6904 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
6905 			      const struct btf *targ_btf, __u32 targ_id)
6906 {
6907 	return __bpf_core_types_are_compat(local_btf, local_id,
6908 					   targ_btf, targ_id,
6909 					   MAX_TYPES_ARE_COMPAT_DEPTH);
6910 }
6911 
6912 static bool bpf_core_is_flavor_sep(const char *s)
6913 {
6914 	/* check X___Y name pattern, where X and Y are not underscores */
6915 	return s[0] != '_' &&				      /* X */
6916 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
6917 	       s[4] != '_';				      /* Y */
6918 }
6919 
6920 size_t bpf_core_essential_name_len(const char *name)
6921 {
6922 	size_t n = strlen(name);
6923 	int i;
6924 
6925 	for (i = n - 5; i >= 0; i--) {
6926 		if (bpf_core_is_flavor_sep(name + i))
6927 			return i + 1;
6928 	}
6929 	return n;
6930 }
6931 
6932 struct bpf_cand_cache {
6933 	const char *name;
6934 	u32 name_len;
6935 	u16 kind;
6936 	u16 cnt;
6937 	struct {
6938 		const struct btf *btf;
6939 		u32 id;
6940 	} cands[];
6941 };
6942 
6943 static void bpf_free_cands(struct bpf_cand_cache *cands)
6944 {
6945 	if (!cands->cnt)
6946 		/* empty candidate array was allocated on stack */
6947 		return;
6948 	kfree(cands);
6949 }
6950 
6951 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
6952 {
6953 	kfree(cands->name);
6954 	kfree(cands);
6955 }
6956 
6957 #define VMLINUX_CAND_CACHE_SIZE 31
6958 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
6959 
6960 #define MODULE_CAND_CACHE_SIZE 31
6961 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
6962 
6963 static DEFINE_MUTEX(cand_cache_mutex);
6964 
6965 static void __print_cand_cache(struct bpf_verifier_log *log,
6966 			       struct bpf_cand_cache **cache,
6967 			       int cache_size)
6968 {
6969 	struct bpf_cand_cache *cc;
6970 	int i, j;
6971 
6972 	for (i = 0; i < cache_size; i++) {
6973 		cc = cache[i];
6974 		if (!cc)
6975 			continue;
6976 		bpf_log(log, "[%d]%s(", i, cc->name);
6977 		for (j = 0; j < cc->cnt; j++) {
6978 			bpf_log(log, "%d", cc->cands[j].id);
6979 			if (j < cc->cnt - 1)
6980 				bpf_log(log, " ");
6981 		}
6982 		bpf_log(log, "), ");
6983 	}
6984 }
6985 
6986 static void print_cand_cache(struct bpf_verifier_log *log)
6987 {
6988 	mutex_lock(&cand_cache_mutex);
6989 	bpf_log(log, "vmlinux_cand_cache:");
6990 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
6991 	bpf_log(log, "\nmodule_cand_cache:");
6992 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
6993 	bpf_log(log, "\n");
6994 	mutex_unlock(&cand_cache_mutex);
6995 }
6996 
6997 static u32 hash_cands(struct bpf_cand_cache *cands)
6998 {
6999 	return jhash(cands->name, cands->name_len, 0);
7000 }
7001 
7002 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7003 					       struct bpf_cand_cache **cache,
7004 					       int cache_size)
7005 {
7006 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7007 
7008 	if (cc && cc->name_len == cands->name_len &&
7009 	    !strncmp(cc->name, cands->name, cands->name_len))
7010 		return cc;
7011 	return NULL;
7012 }
7013 
7014 static size_t sizeof_cands(int cnt)
7015 {
7016 	return offsetof(struct bpf_cand_cache, cands[cnt]);
7017 }
7018 
7019 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7020 						  struct bpf_cand_cache **cache,
7021 						  int cache_size)
7022 {
7023 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7024 
7025 	if (*cc) {
7026 		bpf_free_cands_from_cache(*cc);
7027 		*cc = NULL;
7028 	}
7029 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7030 	if (!new_cands) {
7031 		bpf_free_cands(cands);
7032 		return ERR_PTR(-ENOMEM);
7033 	}
7034 	/* strdup the name, since it will stay in cache.
7035 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7036 	 */
7037 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7038 	bpf_free_cands(cands);
7039 	if (!new_cands->name) {
7040 		kfree(new_cands);
7041 		return ERR_PTR(-ENOMEM);
7042 	}
7043 	*cc = new_cands;
7044 	return new_cands;
7045 }
7046 
7047 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7048 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7049 			       int cache_size)
7050 {
7051 	struct bpf_cand_cache *cc;
7052 	int i, j;
7053 
7054 	for (i = 0; i < cache_size; i++) {
7055 		cc = cache[i];
7056 		if (!cc)
7057 			continue;
7058 		if (!btf) {
7059 			/* when new module is loaded purge all of module_cand_cache,
7060 			 * since new module might have candidates with the name
7061 			 * that matches cached cands.
7062 			 */
7063 			bpf_free_cands_from_cache(cc);
7064 			cache[i] = NULL;
7065 			continue;
7066 		}
7067 		/* when module is unloaded purge cache entries
7068 		 * that match module's btf
7069 		 */
7070 		for (j = 0; j < cc->cnt; j++)
7071 			if (cc->cands[j].btf == btf) {
7072 				bpf_free_cands_from_cache(cc);
7073 				cache[i] = NULL;
7074 				break;
7075 			}
7076 	}
7077 
7078 }
7079 
7080 static void purge_cand_cache(struct btf *btf)
7081 {
7082 	mutex_lock(&cand_cache_mutex);
7083 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7084 	mutex_unlock(&cand_cache_mutex);
7085 }
7086 #endif
7087 
7088 static struct bpf_cand_cache *
7089 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
7090 		   int targ_start_id)
7091 {
7092 	struct bpf_cand_cache *new_cands;
7093 	const struct btf_type *t;
7094 	const char *targ_name;
7095 	size_t targ_essent_len;
7096 	int n, i;
7097 
7098 	n = btf_nr_types(targ_btf);
7099 	for (i = targ_start_id; i < n; i++) {
7100 		t = btf_type_by_id(targ_btf, i);
7101 		if (btf_kind(t) != cands->kind)
7102 			continue;
7103 
7104 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
7105 		if (!targ_name)
7106 			continue;
7107 
7108 		/* the resched point is before strncmp to make sure that search
7109 		 * for non-existing name will have a chance to schedule().
7110 		 */
7111 		cond_resched();
7112 
7113 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
7114 			continue;
7115 
7116 		targ_essent_len = bpf_core_essential_name_len(targ_name);
7117 		if (targ_essent_len != cands->name_len)
7118 			continue;
7119 
7120 		/* most of the time there is only one candidate for a given kind+name pair */
7121 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
7122 		if (!new_cands) {
7123 			bpf_free_cands(cands);
7124 			return ERR_PTR(-ENOMEM);
7125 		}
7126 
7127 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
7128 		bpf_free_cands(cands);
7129 		cands = new_cands;
7130 		cands->cands[cands->cnt].btf = targ_btf;
7131 		cands->cands[cands->cnt].id = i;
7132 		cands->cnt++;
7133 	}
7134 	return cands;
7135 }
7136 
7137 static struct bpf_cand_cache *
7138 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
7139 {
7140 	struct bpf_cand_cache *cands, *cc, local_cand = {};
7141 	const struct btf *local_btf = ctx->btf;
7142 	const struct btf_type *local_type;
7143 	const struct btf *main_btf;
7144 	size_t local_essent_len;
7145 	struct btf *mod_btf;
7146 	const char *name;
7147 	int id;
7148 
7149 	main_btf = bpf_get_btf_vmlinux();
7150 	if (IS_ERR(main_btf))
7151 		return ERR_CAST(main_btf);
7152 
7153 	local_type = btf_type_by_id(local_btf, local_type_id);
7154 	if (!local_type)
7155 		return ERR_PTR(-EINVAL);
7156 
7157 	name = btf_name_by_offset(local_btf, local_type->name_off);
7158 	if (str_is_empty(name))
7159 		return ERR_PTR(-EINVAL);
7160 	local_essent_len = bpf_core_essential_name_len(name);
7161 
7162 	cands = &local_cand;
7163 	cands->name = name;
7164 	cands->kind = btf_kind(local_type);
7165 	cands->name_len = local_essent_len;
7166 
7167 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7168 	/* cands is a pointer to stack here */
7169 	if (cc) {
7170 		if (cc->cnt)
7171 			return cc;
7172 		goto check_modules;
7173 	}
7174 
7175 	/* Attempt to find target candidates in vmlinux BTF first */
7176 	cands = bpf_core_add_cands(cands, main_btf, 1);
7177 	if (IS_ERR(cands))
7178 		return ERR_CAST(cands);
7179 
7180 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
7181 
7182 	/* populate cache even when cands->cnt == 0 */
7183 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7184 	if (IS_ERR(cc))
7185 		return ERR_CAST(cc);
7186 
7187 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
7188 	if (cc->cnt)
7189 		return cc;
7190 
7191 check_modules:
7192 	/* cands is a pointer to stack here and cands->cnt == 0 */
7193 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7194 	if (cc)
7195 		/* if cache has it return it even if cc->cnt == 0 */
7196 		return cc;
7197 
7198 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
7199 	spin_lock_bh(&btf_idr_lock);
7200 	idr_for_each_entry(&btf_idr, mod_btf, id) {
7201 		if (!btf_is_module(mod_btf))
7202 			continue;
7203 		/* linear search could be slow hence unlock/lock
7204 		 * the IDR to avoiding holding it for too long
7205 		 */
7206 		btf_get(mod_btf);
7207 		spin_unlock_bh(&btf_idr_lock);
7208 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
7209 		if (IS_ERR(cands)) {
7210 			btf_put(mod_btf);
7211 			return ERR_CAST(cands);
7212 		}
7213 		spin_lock_bh(&btf_idr_lock);
7214 		btf_put(mod_btf);
7215 	}
7216 	spin_unlock_bh(&btf_idr_lock);
7217 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
7218 	 * or pointer to stack if cands->cnd == 0.
7219 	 * Copy it into the cache even when cands->cnt == 0 and
7220 	 * return the result.
7221 	 */
7222 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7223 }
7224 
7225 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
7226 		   int relo_idx, void *insn)
7227 {
7228 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
7229 	struct bpf_core_cand_list cands = {};
7230 	struct bpf_core_relo_res targ_res;
7231 	struct bpf_core_spec *specs;
7232 	int err;
7233 
7234 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
7235 	 * into arrays of btf_ids of struct fields and array indices.
7236 	 */
7237 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
7238 	if (!specs)
7239 		return -ENOMEM;
7240 
7241 	if (need_cands) {
7242 		struct bpf_cand_cache *cc;
7243 		int i;
7244 
7245 		mutex_lock(&cand_cache_mutex);
7246 		cc = bpf_core_find_cands(ctx, relo->type_id);
7247 		if (IS_ERR(cc)) {
7248 			bpf_log(ctx->log, "target candidate search failed for %d\n",
7249 				relo->type_id);
7250 			err = PTR_ERR(cc);
7251 			goto out;
7252 		}
7253 		if (cc->cnt) {
7254 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
7255 			if (!cands.cands) {
7256 				err = -ENOMEM;
7257 				goto out;
7258 			}
7259 		}
7260 		for (i = 0; i < cc->cnt; i++) {
7261 			bpf_log(ctx->log,
7262 				"CO-RE relocating %s %s: found target candidate [%d]\n",
7263 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
7264 			cands.cands[i].btf = cc->cands[i].btf;
7265 			cands.cands[i].id = cc->cands[i].id;
7266 		}
7267 		cands.len = cc->cnt;
7268 		/* cand_cache_mutex needs to span the cache lookup and
7269 		 * copy of btf pointer into bpf_core_cand_list,
7270 		 * since module can be unloaded while bpf_core_calc_relo_insn
7271 		 * is working with module's btf.
7272 		 */
7273 	}
7274 
7275 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
7276 				      &targ_res);
7277 	if (err)
7278 		goto out;
7279 
7280 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
7281 				  &targ_res);
7282 
7283 out:
7284 	kfree(specs);
7285 	if (need_cands) {
7286 		kfree(cands.cands);
7287 		mutex_unlock(&cand_cache_mutex);
7288 		if (ctx->log->level & BPF_LOG_LEVEL2)
7289 			print_cand_cache(ctx->log);
7290 	}
7291 	return err;
7292 }
7293