1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/skmsg.h> 23 #include <linux/perf_event.h> 24 #include <linux/bsearch.h> 25 #include <linux/kobject.h> 26 #include <linux/sysfs.h> 27 #include <net/sock.h> 28 #include "../tools/lib/bpf/relo_core.h" 29 30 /* BTF (BPF Type Format) is the meta data format which describes 31 * the data types of BPF program/map. Hence, it basically focus 32 * on the C programming language which the modern BPF is primary 33 * using. 34 * 35 * ELF Section: 36 * ~~~~~~~~~~~ 37 * The BTF data is stored under the ".BTF" ELF section 38 * 39 * struct btf_type: 40 * ~~~~~~~~~~~~~~~ 41 * Each 'struct btf_type' object describes a C data type. 42 * Depending on the type it is describing, a 'struct btf_type' 43 * object may be followed by more data. F.e. 44 * To describe an array, 'struct btf_type' is followed by 45 * 'struct btf_array'. 46 * 47 * 'struct btf_type' and any extra data following it are 48 * 4 bytes aligned. 49 * 50 * Type section: 51 * ~~~~~~~~~~~~~ 52 * The BTF type section contains a list of 'struct btf_type' objects. 53 * Each one describes a C type. Recall from the above section 54 * that a 'struct btf_type' object could be immediately followed by extra 55 * data in order to describe some particular C types. 56 * 57 * type_id: 58 * ~~~~~~~ 59 * Each btf_type object is identified by a type_id. The type_id 60 * is implicitly implied by the location of the btf_type object in 61 * the BTF type section. The first one has type_id 1. The second 62 * one has type_id 2...etc. Hence, an earlier btf_type has 63 * a smaller type_id. 64 * 65 * A btf_type object may refer to another btf_type object by using 66 * type_id (i.e. the "type" in the "struct btf_type"). 67 * 68 * NOTE that we cannot assume any reference-order. 69 * A btf_type object can refer to an earlier btf_type object 70 * but it can also refer to a later btf_type object. 71 * 72 * For example, to describe "const void *". A btf_type 73 * object describing "const" may refer to another btf_type 74 * object describing "void *". This type-reference is done 75 * by specifying type_id: 76 * 77 * [1] CONST (anon) type_id=2 78 * [2] PTR (anon) type_id=0 79 * 80 * The above is the btf_verifier debug log: 81 * - Each line started with "[?]" is a btf_type object 82 * - [?] is the type_id of the btf_type object. 83 * - CONST/PTR is the BTF_KIND_XXX 84 * - "(anon)" is the name of the type. It just 85 * happens that CONST and PTR has no name. 86 * - type_id=XXX is the 'u32 type' in btf_type 87 * 88 * NOTE: "void" has type_id 0 89 * 90 * String section: 91 * ~~~~~~~~~~~~~~ 92 * The BTF string section contains the names used by the type section. 93 * Each string is referred by an "offset" from the beginning of the 94 * string section. 95 * 96 * Each string is '\0' terminated. 97 * 98 * The first character in the string section must be '\0' 99 * which is used to mean 'anonymous'. Some btf_type may not 100 * have a name. 101 */ 102 103 /* BTF verification: 104 * 105 * To verify BTF data, two passes are needed. 106 * 107 * Pass #1 108 * ~~~~~~~ 109 * The first pass is to collect all btf_type objects to 110 * an array: "btf->types". 111 * 112 * Depending on the C type that a btf_type is describing, 113 * a btf_type may be followed by extra data. We don't know 114 * how many btf_type is there, and more importantly we don't 115 * know where each btf_type is located in the type section. 116 * 117 * Without knowing the location of each type_id, most verifications 118 * cannot be done. e.g. an earlier btf_type may refer to a later 119 * btf_type (recall the "const void *" above), so we cannot 120 * check this type-reference in the first pass. 121 * 122 * In the first pass, it still does some verifications (e.g. 123 * checking the name is a valid offset to the string section). 124 * 125 * Pass #2 126 * ~~~~~~~ 127 * The main focus is to resolve a btf_type that is referring 128 * to another type. 129 * 130 * We have to ensure the referring type: 131 * 1) does exist in the BTF (i.e. in btf->types[]) 132 * 2) does not cause a loop: 133 * struct A { 134 * struct B b; 135 * }; 136 * 137 * struct B { 138 * struct A a; 139 * }; 140 * 141 * btf_type_needs_resolve() decides if a btf_type needs 142 * to be resolved. 143 * 144 * The needs_resolve type implements the "resolve()" ops which 145 * essentially does a DFS and detects backedge. 146 * 147 * During resolve (or DFS), different C types have different 148 * "RESOLVED" conditions. 149 * 150 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 151 * members because a member is always referring to another 152 * type. A struct's member can be treated as "RESOLVED" if 153 * it is referring to a BTF_KIND_PTR. Otherwise, the 154 * following valid C struct would be rejected: 155 * 156 * struct A { 157 * int m; 158 * struct A *a; 159 * }; 160 * 161 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 162 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 163 * detect a pointer loop, e.g.: 164 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 165 * ^ | 166 * +-----------------------------------------+ 167 * 168 */ 169 170 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 171 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 172 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 173 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 174 #define BITS_ROUNDUP_BYTES(bits) \ 175 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 176 177 #define BTF_INFO_MASK 0x9f00ffff 178 #define BTF_INT_MASK 0x0fffffff 179 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 180 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 181 182 /* 16MB for 64k structs and each has 16 members and 183 * a few MB spaces for the string section. 184 * The hard limit is S32_MAX. 185 */ 186 #define BTF_MAX_SIZE (16 * 1024 * 1024) 187 188 #define for_each_member_from(i, from, struct_type, member) \ 189 for (i = from, member = btf_type_member(struct_type) + from; \ 190 i < btf_type_vlen(struct_type); \ 191 i++, member++) 192 193 #define for_each_vsi_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 DEFINE_IDR(btf_idr); 199 DEFINE_SPINLOCK(btf_idr_lock); 200 201 enum btf_kfunc_hook { 202 BTF_KFUNC_HOOK_XDP, 203 BTF_KFUNC_HOOK_TC, 204 BTF_KFUNC_HOOK_STRUCT_OPS, 205 BTF_KFUNC_HOOK_MAX, 206 }; 207 208 enum { 209 BTF_KFUNC_SET_MAX_CNT = 32, 210 }; 211 212 struct btf_kfunc_set_tab { 213 struct btf_id_set *sets[BTF_KFUNC_HOOK_MAX][BTF_KFUNC_TYPE_MAX]; 214 }; 215 216 struct btf { 217 void *data; 218 struct btf_type **types; 219 u32 *resolved_ids; 220 u32 *resolved_sizes; 221 const char *strings; 222 void *nohdr_data; 223 struct btf_header hdr; 224 u32 nr_types; /* includes VOID for base BTF */ 225 u32 types_size; 226 u32 data_size; 227 refcount_t refcnt; 228 u32 id; 229 struct rcu_head rcu; 230 struct btf_kfunc_set_tab *kfunc_set_tab; 231 232 /* split BTF support */ 233 struct btf *base_btf; 234 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 235 u32 start_str_off; /* first string offset (0 for base BTF) */ 236 char name[MODULE_NAME_LEN]; 237 bool kernel_btf; 238 }; 239 240 enum verifier_phase { 241 CHECK_META, 242 CHECK_TYPE, 243 }; 244 245 struct resolve_vertex { 246 const struct btf_type *t; 247 u32 type_id; 248 u16 next_member; 249 }; 250 251 enum visit_state { 252 NOT_VISITED, 253 VISITED, 254 RESOLVED, 255 }; 256 257 enum resolve_mode { 258 RESOLVE_TBD, /* To Be Determined */ 259 RESOLVE_PTR, /* Resolving for Pointer */ 260 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 261 * or array 262 */ 263 }; 264 265 #define MAX_RESOLVE_DEPTH 32 266 267 struct btf_sec_info { 268 u32 off; 269 u32 len; 270 }; 271 272 struct btf_verifier_env { 273 struct btf *btf; 274 u8 *visit_states; 275 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 276 struct bpf_verifier_log log; 277 u32 log_type_id; 278 u32 top_stack; 279 enum verifier_phase phase; 280 enum resolve_mode resolve_mode; 281 }; 282 283 static const char * const btf_kind_str[NR_BTF_KINDS] = { 284 [BTF_KIND_UNKN] = "UNKNOWN", 285 [BTF_KIND_INT] = "INT", 286 [BTF_KIND_PTR] = "PTR", 287 [BTF_KIND_ARRAY] = "ARRAY", 288 [BTF_KIND_STRUCT] = "STRUCT", 289 [BTF_KIND_UNION] = "UNION", 290 [BTF_KIND_ENUM] = "ENUM", 291 [BTF_KIND_FWD] = "FWD", 292 [BTF_KIND_TYPEDEF] = "TYPEDEF", 293 [BTF_KIND_VOLATILE] = "VOLATILE", 294 [BTF_KIND_CONST] = "CONST", 295 [BTF_KIND_RESTRICT] = "RESTRICT", 296 [BTF_KIND_FUNC] = "FUNC", 297 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 298 [BTF_KIND_VAR] = "VAR", 299 [BTF_KIND_DATASEC] = "DATASEC", 300 [BTF_KIND_FLOAT] = "FLOAT", 301 [BTF_KIND_DECL_TAG] = "DECL_TAG", 302 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 303 }; 304 305 const char *btf_type_str(const struct btf_type *t) 306 { 307 return btf_kind_str[BTF_INFO_KIND(t->info)]; 308 } 309 310 /* Chunk size we use in safe copy of data to be shown. */ 311 #define BTF_SHOW_OBJ_SAFE_SIZE 32 312 313 /* 314 * This is the maximum size of a base type value (equivalent to a 315 * 128-bit int); if we are at the end of our safe buffer and have 316 * less than 16 bytes space we can't be assured of being able 317 * to copy the next type safely, so in such cases we will initiate 318 * a new copy. 319 */ 320 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 321 322 /* Type name size */ 323 #define BTF_SHOW_NAME_SIZE 80 324 325 /* 326 * Common data to all BTF show operations. Private show functions can add 327 * their own data to a structure containing a struct btf_show and consult it 328 * in the show callback. See btf_type_show() below. 329 * 330 * One challenge with showing nested data is we want to skip 0-valued 331 * data, but in order to figure out whether a nested object is all zeros 332 * we need to walk through it. As a result, we need to make two passes 333 * when handling structs, unions and arrays; the first path simply looks 334 * for nonzero data, while the second actually does the display. The first 335 * pass is signalled by show->state.depth_check being set, and if we 336 * encounter a non-zero value we set show->state.depth_to_show to 337 * the depth at which we encountered it. When we have completed the 338 * first pass, we will know if anything needs to be displayed if 339 * depth_to_show > depth. See btf_[struct,array]_show() for the 340 * implementation of this. 341 * 342 * Another problem is we want to ensure the data for display is safe to 343 * access. To support this, the anonymous "struct {} obj" tracks the data 344 * object and our safe copy of it. We copy portions of the data needed 345 * to the object "copy" buffer, but because its size is limited to 346 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 347 * traverse larger objects for display. 348 * 349 * The various data type show functions all start with a call to 350 * btf_show_start_type() which returns a pointer to the safe copy 351 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 352 * raw data itself). btf_show_obj_safe() is responsible for 353 * using copy_from_kernel_nofault() to update the safe data if necessary 354 * as we traverse the object's data. skbuff-like semantics are 355 * used: 356 * 357 * - obj.head points to the start of the toplevel object for display 358 * - obj.size is the size of the toplevel object 359 * - obj.data points to the current point in the original data at 360 * which our safe data starts. obj.data will advance as we copy 361 * portions of the data. 362 * 363 * In most cases a single copy will suffice, but larger data structures 364 * such as "struct task_struct" will require many copies. The logic in 365 * btf_show_obj_safe() handles the logic that determines if a new 366 * copy_from_kernel_nofault() is needed. 367 */ 368 struct btf_show { 369 u64 flags; 370 void *target; /* target of show operation (seq file, buffer) */ 371 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 372 const struct btf *btf; 373 /* below are used during iteration */ 374 struct { 375 u8 depth; 376 u8 depth_to_show; 377 u8 depth_check; 378 u8 array_member:1, 379 array_terminated:1; 380 u16 array_encoding; 381 u32 type_id; 382 int status; /* non-zero for error */ 383 const struct btf_type *type; 384 const struct btf_member *member; 385 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 386 } state; 387 struct { 388 u32 size; 389 void *head; 390 void *data; 391 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 392 } obj; 393 }; 394 395 struct btf_kind_operations { 396 s32 (*check_meta)(struct btf_verifier_env *env, 397 const struct btf_type *t, 398 u32 meta_left); 399 int (*resolve)(struct btf_verifier_env *env, 400 const struct resolve_vertex *v); 401 int (*check_member)(struct btf_verifier_env *env, 402 const struct btf_type *struct_type, 403 const struct btf_member *member, 404 const struct btf_type *member_type); 405 int (*check_kflag_member)(struct btf_verifier_env *env, 406 const struct btf_type *struct_type, 407 const struct btf_member *member, 408 const struct btf_type *member_type); 409 void (*log_details)(struct btf_verifier_env *env, 410 const struct btf_type *t); 411 void (*show)(const struct btf *btf, const struct btf_type *t, 412 u32 type_id, void *data, u8 bits_offsets, 413 struct btf_show *show); 414 }; 415 416 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 417 static struct btf_type btf_void; 418 419 static int btf_resolve(struct btf_verifier_env *env, 420 const struct btf_type *t, u32 type_id); 421 422 static int btf_func_check(struct btf_verifier_env *env, 423 const struct btf_type *t); 424 425 static bool btf_type_is_modifier(const struct btf_type *t) 426 { 427 /* Some of them is not strictly a C modifier 428 * but they are grouped into the same bucket 429 * for BTF concern: 430 * A type (t) that refers to another 431 * type through t->type AND its size cannot 432 * be determined without following the t->type. 433 * 434 * ptr does not fall into this bucket 435 * because its size is always sizeof(void *). 436 */ 437 switch (BTF_INFO_KIND(t->info)) { 438 case BTF_KIND_TYPEDEF: 439 case BTF_KIND_VOLATILE: 440 case BTF_KIND_CONST: 441 case BTF_KIND_RESTRICT: 442 case BTF_KIND_TYPE_TAG: 443 return true; 444 } 445 446 return false; 447 } 448 449 bool btf_type_is_void(const struct btf_type *t) 450 { 451 return t == &btf_void; 452 } 453 454 static bool btf_type_is_fwd(const struct btf_type *t) 455 { 456 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 457 } 458 459 static bool btf_type_nosize(const struct btf_type *t) 460 { 461 return btf_type_is_void(t) || btf_type_is_fwd(t) || 462 btf_type_is_func(t) || btf_type_is_func_proto(t); 463 } 464 465 static bool btf_type_nosize_or_null(const struct btf_type *t) 466 { 467 return !t || btf_type_nosize(t); 468 } 469 470 static bool __btf_type_is_struct(const struct btf_type *t) 471 { 472 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT; 473 } 474 475 static bool btf_type_is_array(const struct btf_type *t) 476 { 477 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 478 } 479 480 static bool btf_type_is_datasec(const struct btf_type *t) 481 { 482 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 483 } 484 485 static bool btf_type_is_decl_tag(const struct btf_type *t) 486 { 487 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 488 } 489 490 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 491 { 492 return btf_type_is_func(t) || btf_type_is_struct(t) || 493 btf_type_is_var(t) || btf_type_is_typedef(t); 494 } 495 496 u32 btf_nr_types(const struct btf *btf) 497 { 498 u32 total = 0; 499 500 while (btf) { 501 total += btf->nr_types; 502 btf = btf->base_btf; 503 } 504 505 return total; 506 } 507 508 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 509 { 510 const struct btf_type *t; 511 const char *tname; 512 u32 i, total; 513 514 total = btf_nr_types(btf); 515 for (i = 1; i < total; i++) { 516 t = btf_type_by_id(btf, i); 517 if (BTF_INFO_KIND(t->info) != kind) 518 continue; 519 520 tname = btf_name_by_offset(btf, t->name_off); 521 if (!strcmp(tname, name)) 522 return i; 523 } 524 525 return -ENOENT; 526 } 527 528 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 529 u32 id, u32 *res_id) 530 { 531 const struct btf_type *t = btf_type_by_id(btf, id); 532 533 while (btf_type_is_modifier(t)) { 534 id = t->type; 535 t = btf_type_by_id(btf, t->type); 536 } 537 538 if (res_id) 539 *res_id = id; 540 541 return t; 542 } 543 544 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 545 u32 id, u32 *res_id) 546 { 547 const struct btf_type *t; 548 549 t = btf_type_skip_modifiers(btf, id, NULL); 550 if (!btf_type_is_ptr(t)) 551 return NULL; 552 553 return btf_type_skip_modifiers(btf, t->type, res_id); 554 } 555 556 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 557 u32 id, u32 *res_id) 558 { 559 const struct btf_type *ptype; 560 561 ptype = btf_type_resolve_ptr(btf, id, res_id); 562 if (ptype && btf_type_is_func_proto(ptype)) 563 return ptype; 564 565 return NULL; 566 } 567 568 /* Types that act only as a source, not sink or intermediate 569 * type when resolving. 570 */ 571 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 572 { 573 return btf_type_is_var(t) || 574 btf_type_is_decl_tag(t) || 575 btf_type_is_datasec(t); 576 } 577 578 /* What types need to be resolved? 579 * 580 * btf_type_is_modifier() is an obvious one. 581 * 582 * btf_type_is_struct() because its member refers to 583 * another type (through member->type). 584 * 585 * btf_type_is_var() because the variable refers to 586 * another type. btf_type_is_datasec() holds multiple 587 * btf_type_is_var() types that need resolving. 588 * 589 * btf_type_is_array() because its element (array->type) 590 * refers to another type. Array can be thought of a 591 * special case of struct while array just has the same 592 * member-type repeated by array->nelems of times. 593 */ 594 static bool btf_type_needs_resolve(const struct btf_type *t) 595 { 596 return btf_type_is_modifier(t) || 597 btf_type_is_ptr(t) || 598 btf_type_is_struct(t) || 599 btf_type_is_array(t) || 600 btf_type_is_var(t) || 601 btf_type_is_func(t) || 602 btf_type_is_decl_tag(t) || 603 btf_type_is_datasec(t); 604 } 605 606 /* t->size can be used */ 607 static bool btf_type_has_size(const struct btf_type *t) 608 { 609 switch (BTF_INFO_KIND(t->info)) { 610 case BTF_KIND_INT: 611 case BTF_KIND_STRUCT: 612 case BTF_KIND_UNION: 613 case BTF_KIND_ENUM: 614 case BTF_KIND_DATASEC: 615 case BTF_KIND_FLOAT: 616 return true; 617 } 618 619 return false; 620 } 621 622 static const char *btf_int_encoding_str(u8 encoding) 623 { 624 if (encoding == 0) 625 return "(none)"; 626 else if (encoding == BTF_INT_SIGNED) 627 return "SIGNED"; 628 else if (encoding == BTF_INT_CHAR) 629 return "CHAR"; 630 else if (encoding == BTF_INT_BOOL) 631 return "BOOL"; 632 else 633 return "UNKN"; 634 } 635 636 static u32 btf_type_int(const struct btf_type *t) 637 { 638 return *(u32 *)(t + 1); 639 } 640 641 static const struct btf_array *btf_type_array(const struct btf_type *t) 642 { 643 return (const struct btf_array *)(t + 1); 644 } 645 646 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 647 { 648 return (const struct btf_enum *)(t + 1); 649 } 650 651 static const struct btf_var *btf_type_var(const struct btf_type *t) 652 { 653 return (const struct btf_var *)(t + 1); 654 } 655 656 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 657 { 658 return (const struct btf_decl_tag *)(t + 1); 659 } 660 661 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 662 { 663 return kind_ops[BTF_INFO_KIND(t->info)]; 664 } 665 666 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 667 { 668 if (!BTF_STR_OFFSET_VALID(offset)) 669 return false; 670 671 while (offset < btf->start_str_off) 672 btf = btf->base_btf; 673 674 offset -= btf->start_str_off; 675 return offset < btf->hdr.str_len; 676 } 677 678 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 679 { 680 if ((first ? !isalpha(c) : 681 !isalnum(c)) && 682 c != '_' && 683 ((c == '.' && !dot_ok) || 684 c != '.')) 685 return false; 686 return true; 687 } 688 689 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 690 { 691 while (offset < btf->start_str_off) 692 btf = btf->base_btf; 693 694 offset -= btf->start_str_off; 695 if (offset < btf->hdr.str_len) 696 return &btf->strings[offset]; 697 698 return NULL; 699 } 700 701 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 702 { 703 /* offset must be valid */ 704 const char *src = btf_str_by_offset(btf, offset); 705 const char *src_limit; 706 707 if (!__btf_name_char_ok(*src, true, dot_ok)) 708 return false; 709 710 /* set a limit on identifier length */ 711 src_limit = src + KSYM_NAME_LEN; 712 src++; 713 while (*src && src < src_limit) { 714 if (!__btf_name_char_ok(*src, false, dot_ok)) 715 return false; 716 src++; 717 } 718 719 return !*src; 720 } 721 722 /* Only C-style identifier is permitted. This can be relaxed if 723 * necessary. 724 */ 725 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 726 { 727 return __btf_name_valid(btf, offset, false); 728 } 729 730 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 731 { 732 return __btf_name_valid(btf, offset, true); 733 } 734 735 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 736 { 737 const char *name; 738 739 if (!offset) 740 return "(anon)"; 741 742 name = btf_str_by_offset(btf, offset); 743 return name ?: "(invalid-name-offset)"; 744 } 745 746 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 747 { 748 return btf_str_by_offset(btf, offset); 749 } 750 751 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 752 { 753 while (type_id < btf->start_id) 754 btf = btf->base_btf; 755 756 type_id -= btf->start_id; 757 if (type_id >= btf->nr_types) 758 return NULL; 759 return btf->types[type_id]; 760 } 761 762 /* 763 * Regular int is not a bit field and it must be either 764 * u8/u16/u32/u64 or __int128. 765 */ 766 static bool btf_type_int_is_regular(const struct btf_type *t) 767 { 768 u8 nr_bits, nr_bytes; 769 u32 int_data; 770 771 int_data = btf_type_int(t); 772 nr_bits = BTF_INT_BITS(int_data); 773 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 774 if (BITS_PER_BYTE_MASKED(nr_bits) || 775 BTF_INT_OFFSET(int_data) || 776 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 777 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 778 nr_bytes != (2 * sizeof(u64)))) { 779 return false; 780 } 781 782 return true; 783 } 784 785 /* 786 * Check that given struct member is a regular int with expected 787 * offset and size. 788 */ 789 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 790 const struct btf_member *m, 791 u32 expected_offset, u32 expected_size) 792 { 793 const struct btf_type *t; 794 u32 id, int_data; 795 u8 nr_bits; 796 797 id = m->type; 798 t = btf_type_id_size(btf, &id, NULL); 799 if (!t || !btf_type_is_int(t)) 800 return false; 801 802 int_data = btf_type_int(t); 803 nr_bits = BTF_INT_BITS(int_data); 804 if (btf_type_kflag(s)) { 805 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 806 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 807 808 /* if kflag set, int should be a regular int and 809 * bit offset should be at byte boundary. 810 */ 811 return !bitfield_size && 812 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 813 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 814 } 815 816 if (BTF_INT_OFFSET(int_data) || 817 BITS_PER_BYTE_MASKED(m->offset) || 818 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 819 BITS_PER_BYTE_MASKED(nr_bits) || 820 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 821 return false; 822 823 return true; 824 } 825 826 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 827 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 828 u32 id) 829 { 830 const struct btf_type *t = btf_type_by_id(btf, id); 831 832 while (btf_type_is_modifier(t) && 833 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 834 t = btf_type_by_id(btf, t->type); 835 } 836 837 return t; 838 } 839 840 #define BTF_SHOW_MAX_ITER 10 841 842 #define BTF_KIND_BIT(kind) (1ULL << kind) 843 844 /* 845 * Populate show->state.name with type name information. 846 * Format of type name is 847 * 848 * [.member_name = ] (type_name) 849 */ 850 static const char *btf_show_name(struct btf_show *show) 851 { 852 /* BTF_MAX_ITER array suffixes "[]" */ 853 const char *array_suffixes = "[][][][][][][][][][]"; 854 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 855 /* BTF_MAX_ITER pointer suffixes "*" */ 856 const char *ptr_suffixes = "**********"; 857 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 858 const char *name = NULL, *prefix = "", *parens = ""; 859 const struct btf_member *m = show->state.member; 860 const struct btf_type *t; 861 const struct btf_array *array; 862 u32 id = show->state.type_id; 863 const char *member = NULL; 864 bool show_member = false; 865 u64 kinds = 0; 866 int i; 867 868 show->state.name[0] = '\0'; 869 870 /* 871 * Don't show type name if we're showing an array member; 872 * in that case we show the array type so don't need to repeat 873 * ourselves for each member. 874 */ 875 if (show->state.array_member) 876 return ""; 877 878 /* Retrieve member name, if any. */ 879 if (m) { 880 member = btf_name_by_offset(show->btf, m->name_off); 881 show_member = strlen(member) > 0; 882 id = m->type; 883 } 884 885 /* 886 * Start with type_id, as we have resolved the struct btf_type * 887 * via btf_modifier_show() past the parent typedef to the child 888 * struct, int etc it is defined as. In such cases, the type_id 889 * still represents the starting type while the struct btf_type * 890 * in our show->state points at the resolved type of the typedef. 891 */ 892 t = btf_type_by_id(show->btf, id); 893 if (!t) 894 return ""; 895 896 /* 897 * The goal here is to build up the right number of pointer and 898 * array suffixes while ensuring the type name for a typedef 899 * is represented. Along the way we accumulate a list of 900 * BTF kinds we have encountered, since these will inform later 901 * display; for example, pointer types will not require an 902 * opening "{" for struct, we will just display the pointer value. 903 * 904 * We also want to accumulate the right number of pointer or array 905 * indices in the format string while iterating until we get to 906 * the typedef/pointee/array member target type. 907 * 908 * We start by pointing at the end of pointer and array suffix 909 * strings; as we accumulate pointers and arrays we move the pointer 910 * or array string backwards so it will show the expected number of 911 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 912 * and/or arrays and typedefs are supported as a precaution. 913 * 914 * We also want to get typedef name while proceeding to resolve 915 * type it points to so that we can add parentheses if it is a 916 * "typedef struct" etc. 917 */ 918 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 919 920 switch (BTF_INFO_KIND(t->info)) { 921 case BTF_KIND_TYPEDEF: 922 if (!name) 923 name = btf_name_by_offset(show->btf, 924 t->name_off); 925 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 926 id = t->type; 927 break; 928 case BTF_KIND_ARRAY: 929 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 930 parens = "["; 931 if (!t) 932 return ""; 933 array = btf_type_array(t); 934 if (array_suffix > array_suffixes) 935 array_suffix -= 2; 936 id = array->type; 937 break; 938 case BTF_KIND_PTR: 939 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 940 if (ptr_suffix > ptr_suffixes) 941 ptr_suffix -= 1; 942 id = t->type; 943 break; 944 default: 945 id = 0; 946 break; 947 } 948 if (!id) 949 break; 950 t = btf_type_skip_qualifiers(show->btf, id); 951 } 952 /* We may not be able to represent this type; bail to be safe */ 953 if (i == BTF_SHOW_MAX_ITER) 954 return ""; 955 956 if (!name) 957 name = btf_name_by_offset(show->btf, t->name_off); 958 959 switch (BTF_INFO_KIND(t->info)) { 960 case BTF_KIND_STRUCT: 961 case BTF_KIND_UNION: 962 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 963 "struct" : "union"; 964 /* if it's an array of struct/union, parens is already set */ 965 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 966 parens = "{"; 967 break; 968 case BTF_KIND_ENUM: 969 prefix = "enum"; 970 break; 971 default: 972 break; 973 } 974 975 /* pointer does not require parens */ 976 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 977 parens = ""; 978 /* typedef does not require struct/union/enum prefix */ 979 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 980 prefix = ""; 981 982 if (!name) 983 name = ""; 984 985 /* Even if we don't want type name info, we want parentheses etc */ 986 if (show->flags & BTF_SHOW_NONAME) 987 snprintf(show->state.name, sizeof(show->state.name), "%s", 988 parens); 989 else 990 snprintf(show->state.name, sizeof(show->state.name), 991 "%s%s%s(%s%s%s%s%s%s)%s", 992 /* first 3 strings comprise ".member = " */ 993 show_member ? "." : "", 994 show_member ? member : "", 995 show_member ? " = " : "", 996 /* ...next is our prefix (struct, enum, etc) */ 997 prefix, 998 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 999 /* ...this is the type name itself */ 1000 name, 1001 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1002 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1003 array_suffix, parens); 1004 1005 return show->state.name; 1006 } 1007 1008 static const char *__btf_show_indent(struct btf_show *show) 1009 { 1010 const char *indents = " "; 1011 const char *indent = &indents[strlen(indents)]; 1012 1013 if ((indent - show->state.depth) >= indents) 1014 return indent - show->state.depth; 1015 return indents; 1016 } 1017 1018 static const char *btf_show_indent(struct btf_show *show) 1019 { 1020 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1021 } 1022 1023 static const char *btf_show_newline(struct btf_show *show) 1024 { 1025 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1026 } 1027 1028 static const char *btf_show_delim(struct btf_show *show) 1029 { 1030 if (show->state.depth == 0) 1031 return ""; 1032 1033 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1034 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1035 return "|"; 1036 1037 return ","; 1038 } 1039 1040 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1041 { 1042 va_list args; 1043 1044 if (!show->state.depth_check) { 1045 va_start(args, fmt); 1046 show->showfn(show, fmt, args); 1047 va_end(args); 1048 } 1049 } 1050 1051 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1052 * format specifiers to the format specifier passed in; these do the work of 1053 * adding indentation, delimiters etc while the caller simply has to specify 1054 * the type value(s) in the format specifier + value(s). 1055 */ 1056 #define btf_show_type_value(show, fmt, value) \ 1057 do { \ 1058 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \ 1059 show->state.depth == 0) { \ 1060 btf_show(show, "%s%s" fmt "%s%s", \ 1061 btf_show_indent(show), \ 1062 btf_show_name(show), \ 1063 value, btf_show_delim(show), \ 1064 btf_show_newline(show)); \ 1065 if (show->state.depth > show->state.depth_to_show) \ 1066 show->state.depth_to_show = show->state.depth; \ 1067 } \ 1068 } while (0) 1069 1070 #define btf_show_type_values(show, fmt, ...) \ 1071 do { \ 1072 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1073 btf_show_name(show), \ 1074 __VA_ARGS__, btf_show_delim(show), \ 1075 btf_show_newline(show)); \ 1076 if (show->state.depth > show->state.depth_to_show) \ 1077 show->state.depth_to_show = show->state.depth; \ 1078 } while (0) 1079 1080 /* How much is left to copy to safe buffer after @data? */ 1081 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1082 { 1083 return show->obj.head + show->obj.size - data; 1084 } 1085 1086 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1087 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1088 { 1089 return data >= show->obj.data && 1090 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1091 } 1092 1093 /* 1094 * If object pointed to by @data of @size falls within our safe buffer, return 1095 * the equivalent pointer to the same safe data. Assumes 1096 * copy_from_kernel_nofault() has already happened and our safe buffer is 1097 * populated. 1098 */ 1099 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1100 { 1101 if (btf_show_obj_is_safe(show, data, size)) 1102 return show->obj.safe + (data - show->obj.data); 1103 return NULL; 1104 } 1105 1106 /* 1107 * Return a safe-to-access version of data pointed to by @data. 1108 * We do this by copying the relevant amount of information 1109 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1110 * 1111 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1112 * safe copy is needed. 1113 * 1114 * Otherwise we need to determine if we have the required amount 1115 * of data (determined by the @data pointer and the size of the 1116 * largest base type we can encounter (represented by 1117 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1118 * that we will be able to print some of the current object, 1119 * and if more is needed a copy will be triggered. 1120 * Some objects such as structs will not fit into the buffer; 1121 * in such cases additional copies when we iterate over their 1122 * members may be needed. 1123 * 1124 * btf_show_obj_safe() is used to return a safe buffer for 1125 * btf_show_start_type(); this ensures that as we recurse into 1126 * nested types we always have safe data for the given type. 1127 * This approach is somewhat wasteful; it's possible for example 1128 * that when iterating over a large union we'll end up copying the 1129 * same data repeatedly, but the goal is safety not performance. 1130 * We use stack data as opposed to per-CPU buffers because the 1131 * iteration over a type can take some time, and preemption handling 1132 * would greatly complicate use of the safe buffer. 1133 */ 1134 static void *btf_show_obj_safe(struct btf_show *show, 1135 const struct btf_type *t, 1136 void *data) 1137 { 1138 const struct btf_type *rt; 1139 int size_left, size; 1140 void *safe = NULL; 1141 1142 if (show->flags & BTF_SHOW_UNSAFE) 1143 return data; 1144 1145 rt = btf_resolve_size(show->btf, t, &size); 1146 if (IS_ERR(rt)) { 1147 show->state.status = PTR_ERR(rt); 1148 return NULL; 1149 } 1150 1151 /* 1152 * Is this toplevel object? If so, set total object size and 1153 * initialize pointers. Otherwise check if we still fall within 1154 * our safe object data. 1155 */ 1156 if (show->state.depth == 0) { 1157 show->obj.size = size; 1158 show->obj.head = data; 1159 } else { 1160 /* 1161 * If the size of the current object is > our remaining 1162 * safe buffer we _may_ need to do a new copy. However 1163 * consider the case of a nested struct; it's size pushes 1164 * us over the safe buffer limit, but showing any individual 1165 * struct members does not. In such cases, we don't need 1166 * to initiate a fresh copy yet; however we definitely need 1167 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1168 * in our buffer, regardless of the current object size. 1169 * The logic here is that as we resolve types we will 1170 * hit a base type at some point, and we need to be sure 1171 * the next chunk of data is safely available to display 1172 * that type info safely. We cannot rely on the size of 1173 * the current object here because it may be much larger 1174 * than our current buffer (e.g. task_struct is 8k). 1175 * All we want to do here is ensure that we can print the 1176 * next basic type, which we can if either 1177 * - the current type size is within the safe buffer; or 1178 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1179 * the safe buffer. 1180 */ 1181 safe = __btf_show_obj_safe(show, data, 1182 min(size, 1183 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1184 } 1185 1186 /* 1187 * We need a new copy to our safe object, either because we haven't 1188 * yet copied and are initializing safe data, or because the data 1189 * we want falls outside the boundaries of the safe object. 1190 */ 1191 if (!safe) { 1192 size_left = btf_show_obj_size_left(show, data); 1193 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1194 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1195 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1196 data, size_left); 1197 if (!show->state.status) { 1198 show->obj.data = data; 1199 safe = show->obj.safe; 1200 } 1201 } 1202 1203 return safe; 1204 } 1205 1206 /* 1207 * Set the type we are starting to show and return a safe data pointer 1208 * to be used for showing the associated data. 1209 */ 1210 static void *btf_show_start_type(struct btf_show *show, 1211 const struct btf_type *t, 1212 u32 type_id, void *data) 1213 { 1214 show->state.type = t; 1215 show->state.type_id = type_id; 1216 show->state.name[0] = '\0'; 1217 1218 return btf_show_obj_safe(show, t, data); 1219 } 1220 1221 static void btf_show_end_type(struct btf_show *show) 1222 { 1223 show->state.type = NULL; 1224 show->state.type_id = 0; 1225 show->state.name[0] = '\0'; 1226 } 1227 1228 static void *btf_show_start_aggr_type(struct btf_show *show, 1229 const struct btf_type *t, 1230 u32 type_id, void *data) 1231 { 1232 void *safe_data = btf_show_start_type(show, t, type_id, data); 1233 1234 if (!safe_data) 1235 return safe_data; 1236 1237 btf_show(show, "%s%s%s", btf_show_indent(show), 1238 btf_show_name(show), 1239 btf_show_newline(show)); 1240 show->state.depth++; 1241 return safe_data; 1242 } 1243 1244 static void btf_show_end_aggr_type(struct btf_show *show, 1245 const char *suffix) 1246 { 1247 show->state.depth--; 1248 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1249 btf_show_delim(show), btf_show_newline(show)); 1250 btf_show_end_type(show); 1251 } 1252 1253 static void btf_show_start_member(struct btf_show *show, 1254 const struct btf_member *m) 1255 { 1256 show->state.member = m; 1257 } 1258 1259 static void btf_show_start_array_member(struct btf_show *show) 1260 { 1261 show->state.array_member = 1; 1262 btf_show_start_member(show, NULL); 1263 } 1264 1265 static void btf_show_end_member(struct btf_show *show) 1266 { 1267 show->state.member = NULL; 1268 } 1269 1270 static void btf_show_end_array_member(struct btf_show *show) 1271 { 1272 show->state.array_member = 0; 1273 btf_show_end_member(show); 1274 } 1275 1276 static void *btf_show_start_array_type(struct btf_show *show, 1277 const struct btf_type *t, 1278 u32 type_id, 1279 u16 array_encoding, 1280 void *data) 1281 { 1282 show->state.array_encoding = array_encoding; 1283 show->state.array_terminated = 0; 1284 return btf_show_start_aggr_type(show, t, type_id, data); 1285 } 1286 1287 static void btf_show_end_array_type(struct btf_show *show) 1288 { 1289 show->state.array_encoding = 0; 1290 show->state.array_terminated = 0; 1291 btf_show_end_aggr_type(show, "]"); 1292 } 1293 1294 static void *btf_show_start_struct_type(struct btf_show *show, 1295 const struct btf_type *t, 1296 u32 type_id, 1297 void *data) 1298 { 1299 return btf_show_start_aggr_type(show, t, type_id, data); 1300 } 1301 1302 static void btf_show_end_struct_type(struct btf_show *show) 1303 { 1304 btf_show_end_aggr_type(show, "}"); 1305 } 1306 1307 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1308 const char *fmt, ...) 1309 { 1310 va_list args; 1311 1312 va_start(args, fmt); 1313 bpf_verifier_vlog(log, fmt, args); 1314 va_end(args); 1315 } 1316 1317 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1318 const char *fmt, ...) 1319 { 1320 struct bpf_verifier_log *log = &env->log; 1321 va_list args; 1322 1323 if (!bpf_verifier_log_needed(log)) 1324 return; 1325 1326 va_start(args, fmt); 1327 bpf_verifier_vlog(log, fmt, args); 1328 va_end(args); 1329 } 1330 1331 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1332 const struct btf_type *t, 1333 bool log_details, 1334 const char *fmt, ...) 1335 { 1336 struct bpf_verifier_log *log = &env->log; 1337 u8 kind = BTF_INFO_KIND(t->info); 1338 struct btf *btf = env->btf; 1339 va_list args; 1340 1341 if (!bpf_verifier_log_needed(log)) 1342 return; 1343 1344 /* btf verifier prints all types it is processing via 1345 * btf_verifier_log_type(..., fmt = NULL). 1346 * Skip those prints for in-kernel BTF verification. 1347 */ 1348 if (log->level == BPF_LOG_KERNEL && !fmt) 1349 return; 1350 1351 __btf_verifier_log(log, "[%u] %s %s%s", 1352 env->log_type_id, 1353 btf_kind_str[kind], 1354 __btf_name_by_offset(btf, t->name_off), 1355 log_details ? " " : ""); 1356 1357 if (log_details) 1358 btf_type_ops(t)->log_details(env, t); 1359 1360 if (fmt && *fmt) { 1361 __btf_verifier_log(log, " "); 1362 va_start(args, fmt); 1363 bpf_verifier_vlog(log, fmt, args); 1364 va_end(args); 1365 } 1366 1367 __btf_verifier_log(log, "\n"); 1368 } 1369 1370 #define btf_verifier_log_type(env, t, ...) \ 1371 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1372 #define btf_verifier_log_basic(env, t, ...) \ 1373 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1374 1375 __printf(4, 5) 1376 static void btf_verifier_log_member(struct btf_verifier_env *env, 1377 const struct btf_type *struct_type, 1378 const struct btf_member *member, 1379 const char *fmt, ...) 1380 { 1381 struct bpf_verifier_log *log = &env->log; 1382 struct btf *btf = env->btf; 1383 va_list args; 1384 1385 if (!bpf_verifier_log_needed(log)) 1386 return; 1387 1388 if (log->level == BPF_LOG_KERNEL && !fmt) 1389 return; 1390 /* The CHECK_META phase already did a btf dump. 1391 * 1392 * If member is logged again, it must hit an error in 1393 * parsing this member. It is useful to print out which 1394 * struct this member belongs to. 1395 */ 1396 if (env->phase != CHECK_META) 1397 btf_verifier_log_type(env, struct_type, NULL); 1398 1399 if (btf_type_kflag(struct_type)) 1400 __btf_verifier_log(log, 1401 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1402 __btf_name_by_offset(btf, member->name_off), 1403 member->type, 1404 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1405 BTF_MEMBER_BIT_OFFSET(member->offset)); 1406 else 1407 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1408 __btf_name_by_offset(btf, member->name_off), 1409 member->type, member->offset); 1410 1411 if (fmt && *fmt) { 1412 __btf_verifier_log(log, " "); 1413 va_start(args, fmt); 1414 bpf_verifier_vlog(log, fmt, args); 1415 va_end(args); 1416 } 1417 1418 __btf_verifier_log(log, "\n"); 1419 } 1420 1421 __printf(4, 5) 1422 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1423 const struct btf_type *datasec_type, 1424 const struct btf_var_secinfo *vsi, 1425 const char *fmt, ...) 1426 { 1427 struct bpf_verifier_log *log = &env->log; 1428 va_list args; 1429 1430 if (!bpf_verifier_log_needed(log)) 1431 return; 1432 if (log->level == BPF_LOG_KERNEL && !fmt) 1433 return; 1434 if (env->phase != CHECK_META) 1435 btf_verifier_log_type(env, datasec_type, NULL); 1436 1437 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1438 vsi->type, vsi->offset, vsi->size); 1439 if (fmt && *fmt) { 1440 __btf_verifier_log(log, " "); 1441 va_start(args, fmt); 1442 bpf_verifier_vlog(log, fmt, args); 1443 va_end(args); 1444 } 1445 1446 __btf_verifier_log(log, "\n"); 1447 } 1448 1449 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1450 u32 btf_data_size) 1451 { 1452 struct bpf_verifier_log *log = &env->log; 1453 const struct btf *btf = env->btf; 1454 const struct btf_header *hdr; 1455 1456 if (!bpf_verifier_log_needed(log)) 1457 return; 1458 1459 if (log->level == BPF_LOG_KERNEL) 1460 return; 1461 hdr = &btf->hdr; 1462 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1463 __btf_verifier_log(log, "version: %u\n", hdr->version); 1464 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1465 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1466 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1467 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1468 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1469 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1470 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1471 } 1472 1473 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1474 { 1475 struct btf *btf = env->btf; 1476 1477 if (btf->types_size == btf->nr_types) { 1478 /* Expand 'types' array */ 1479 1480 struct btf_type **new_types; 1481 u32 expand_by, new_size; 1482 1483 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1484 btf_verifier_log(env, "Exceeded max num of types"); 1485 return -E2BIG; 1486 } 1487 1488 expand_by = max_t(u32, btf->types_size >> 2, 16); 1489 new_size = min_t(u32, BTF_MAX_TYPE, 1490 btf->types_size + expand_by); 1491 1492 new_types = kvcalloc(new_size, sizeof(*new_types), 1493 GFP_KERNEL | __GFP_NOWARN); 1494 if (!new_types) 1495 return -ENOMEM; 1496 1497 if (btf->nr_types == 0) { 1498 if (!btf->base_btf) { 1499 /* lazily init VOID type */ 1500 new_types[0] = &btf_void; 1501 btf->nr_types++; 1502 } 1503 } else { 1504 memcpy(new_types, btf->types, 1505 sizeof(*btf->types) * btf->nr_types); 1506 } 1507 1508 kvfree(btf->types); 1509 btf->types = new_types; 1510 btf->types_size = new_size; 1511 } 1512 1513 btf->types[btf->nr_types++] = t; 1514 1515 return 0; 1516 } 1517 1518 static int btf_alloc_id(struct btf *btf) 1519 { 1520 int id; 1521 1522 idr_preload(GFP_KERNEL); 1523 spin_lock_bh(&btf_idr_lock); 1524 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1525 if (id > 0) 1526 btf->id = id; 1527 spin_unlock_bh(&btf_idr_lock); 1528 idr_preload_end(); 1529 1530 if (WARN_ON_ONCE(!id)) 1531 return -ENOSPC; 1532 1533 return id > 0 ? 0 : id; 1534 } 1535 1536 static void btf_free_id(struct btf *btf) 1537 { 1538 unsigned long flags; 1539 1540 /* 1541 * In map-in-map, calling map_delete_elem() on outer 1542 * map will call bpf_map_put on the inner map. 1543 * It will then eventually call btf_free_id() 1544 * on the inner map. Some of the map_delete_elem() 1545 * implementation may have irq disabled, so 1546 * we need to use the _irqsave() version instead 1547 * of the _bh() version. 1548 */ 1549 spin_lock_irqsave(&btf_idr_lock, flags); 1550 idr_remove(&btf_idr, btf->id); 1551 spin_unlock_irqrestore(&btf_idr_lock, flags); 1552 } 1553 1554 static void btf_free_kfunc_set_tab(struct btf *btf) 1555 { 1556 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1557 int hook, type; 1558 1559 if (!tab) 1560 return; 1561 /* For module BTF, we directly assign the sets being registered, so 1562 * there is nothing to free except kfunc_set_tab. 1563 */ 1564 if (btf_is_module(btf)) 1565 goto free_tab; 1566 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) { 1567 for (type = 0; type < ARRAY_SIZE(tab->sets[0]); type++) 1568 kfree(tab->sets[hook][type]); 1569 } 1570 free_tab: 1571 kfree(tab); 1572 btf->kfunc_set_tab = NULL; 1573 } 1574 1575 static void btf_free(struct btf *btf) 1576 { 1577 btf_free_kfunc_set_tab(btf); 1578 kvfree(btf->types); 1579 kvfree(btf->resolved_sizes); 1580 kvfree(btf->resolved_ids); 1581 kvfree(btf->data); 1582 kfree(btf); 1583 } 1584 1585 static void btf_free_rcu(struct rcu_head *rcu) 1586 { 1587 struct btf *btf = container_of(rcu, struct btf, rcu); 1588 1589 btf_free(btf); 1590 } 1591 1592 void btf_get(struct btf *btf) 1593 { 1594 refcount_inc(&btf->refcnt); 1595 } 1596 1597 void btf_put(struct btf *btf) 1598 { 1599 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1600 btf_free_id(btf); 1601 call_rcu(&btf->rcu, btf_free_rcu); 1602 } 1603 } 1604 1605 static int env_resolve_init(struct btf_verifier_env *env) 1606 { 1607 struct btf *btf = env->btf; 1608 u32 nr_types = btf->nr_types; 1609 u32 *resolved_sizes = NULL; 1610 u32 *resolved_ids = NULL; 1611 u8 *visit_states = NULL; 1612 1613 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1614 GFP_KERNEL | __GFP_NOWARN); 1615 if (!resolved_sizes) 1616 goto nomem; 1617 1618 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1619 GFP_KERNEL | __GFP_NOWARN); 1620 if (!resolved_ids) 1621 goto nomem; 1622 1623 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1624 GFP_KERNEL | __GFP_NOWARN); 1625 if (!visit_states) 1626 goto nomem; 1627 1628 btf->resolved_sizes = resolved_sizes; 1629 btf->resolved_ids = resolved_ids; 1630 env->visit_states = visit_states; 1631 1632 return 0; 1633 1634 nomem: 1635 kvfree(resolved_sizes); 1636 kvfree(resolved_ids); 1637 kvfree(visit_states); 1638 return -ENOMEM; 1639 } 1640 1641 static void btf_verifier_env_free(struct btf_verifier_env *env) 1642 { 1643 kvfree(env->visit_states); 1644 kfree(env); 1645 } 1646 1647 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1648 const struct btf_type *next_type) 1649 { 1650 switch (env->resolve_mode) { 1651 case RESOLVE_TBD: 1652 /* int, enum or void is a sink */ 1653 return !btf_type_needs_resolve(next_type); 1654 case RESOLVE_PTR: 1655 /* int, enum, void, struct, array, func or func_proto is a sink 1656 * for ptr 1657 */ 1658 return !btf_type_is_modifier(next_type) && 1659 !btf_type_is_ptr(next_type); 1660 case RESOLVE_STRUCT_OR_ARRAY: 1661 /* int, enum, void, ptr, func or func_proto is a sink 1662 * for struct and array 1663 */ 1664 return !btf_type_is_modifier(next_type) && 1665 !btf_type_is_array(next_type) && 1666 !btf_type_is_struct(next_type); 1667 default: 1668 BUG(); 1669 } 1670 } 1671 1672 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1673 u32 type_id) 1674 { 1675 /* base BTF types should be resolved by now */ 1676 if (type_id < env->btf->start_id) 1677 return true; 1678 1679 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1680 } 1681 1682 static int env_stack_push(struct btf_verifier_env *env, 1683 const struct btf_type *t, u32 type_id) 1684 { 1685 const struct btf *btf = env->btf; 1686 struct resolve_vertex *v; 1687 1688 if (env->top_stack == MAX_RESOLVE_DEPTH) 1689 return -E2BIG; 1690 1691 if (type_id < btf->start_id 1692 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1693 return -EEXIST; 1694 1695 env->visit_states[type_id - btf->start_id] = VISITED; 1696 1697 v = &env->stack[env->top_stack++]; 1698 v->t = t; 1699 v->type_id = type_id; 1700 v->next_member = 0; 1701 1702 if (env->resolve_mode == RESOLVE_TBD) { 1703 if (btf_type_is_ptr(t)) 1704 env->resolve_mode = RESOLVE_PTR; 1705 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1706 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1707 } 1708 1709 return 0; 1710 } 1711 1712 static void env_stack_set_next_member(struct btf_verifier_env *env, 1713 u16 next_member) 1714 { 1715 env->stack[env->top_stack - 1].next_member = next_member; 1716 } 1717 1718 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1719 u32 resolved_type_id, 1720 u32 resolved_size) 1721 { 1722 u32 type_id = env->stack[--(env->top_stack)].type_id; 1723 struct btf *btf = env->btf; 1724 1725 type_id -= btf->start_id; /* adjust to local type id */ 1726 btf->resolved_sizes[type_id] = resolved_size; 1727 btf->resolved_ids[type_id] = resolved_type_id; 1728 env->visit_states[type_id] = RESOLVED; 1729 } 1730 1731 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1732 { 1733 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1734 } 1735 1736 /* Resolve the size of a passed-in "type" 1737 * 1738 * type: is an array (e.g. u32 array[x][y]) 1739 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1740 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1741 * corresponds to the return type. 1742 * *elem_type: u32 1743 * *elem_id: id of u32 1744 * *total_nelems: (x * y). Hence, individual elem size is 1745 * (*type_size / *total_nelems) 1746 * *type_id: id of type if it's changed within the function, 0 if not 1747 * 1748 * type: is not an array (e.g. const struct X) 1749 * return type: type "struct X" 1750 * *type_size: sizeof(struct X) 1751 * *elem_type: same as return type ("struct X") 1752 * *elem_id: 0 1753 * *total_nelems: 1 1754 * *type_id: id of type if it's changed within the function, 0 if not 1755 */ 1756 static const struct btf_type * 1757 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1758 u32 *type_size, const struct btf_type **elem_type, 1759 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1760 { 1761 const struct btf_type *array_type = NULL; 1762 const struct btf_array *array = NULL; 1763 u32 i, size, nelems = 1, id = 0; 1764 1765 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1766 switch (BTF_INFO_KIND(type->info)) { 1767 /* type->size can be used */ 1768 case BTF_KIND_INT: 1769 case BTF_KIND_STRUCT: 1770 case BTF_KIND_UNION: 1771 case BTF_KIND_ENUM: 1772 case BTF_KIND_FLOAT: 1773 size = type->size; 1774 goto resolved; 1775 1776 case BTF_KIND_PTR: 1777 size = sizeof(void *); 1778 goto resolved; 1779 1780 /* Modifiers */ 1781 case BTF_KIND_TYPEDEF: 1782 case BTF_KIND_VOLATILE: 1783 case BTF_KIND_CONST: 1784 case BTF_KIND_RESTRICT: 1785 case BTF_KIND_TYPE_TAG: 1786 id = type->type; 1787 type = btf_type_by_id(btf, type->type); 1788 break; 1789 1790 case BTF_KIND_ARRAY: 1791 if (!array_type) 1792 array_type = type; 1793 array = btf_type_array(type); 1794 if (nelems && array->nelems > U32_MAX / nelems) 1795 return ERR_PTR(-EINVAL); 1796 nelems *= array->nelems; 1797 type = btf_type_by_id(btf, array->type); 1798 break; 1799 1800 /* type without size */ 1801 default: 1802 return ERR_PTR(-EINVAL); 1803 } 1804 } 1805 1806 return ERR_PTR(-EINVAL); 1807 1808 resolved: 1809 if (nelems && size > U32_MAX / nelems) 1810 return ERR_PTR(-EINVAL); 1811 1812 *type_size = nelems * size; 1813 if (total_nelems) 1814 *total_nelems = nelems; 1815 if (elem_type) 1816 *elem_type = type; 1817 if (elem_id) 1818 *elem_id = array ? array->type : 0; 1819 if (type_id && id) 1820 *type_id = id; 1821 1822 return array_type ? : type; 1823 } 1824 1825 const struct btf_type * 1826 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1827 u32 *type_size) 1828 { 1829 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1830 } 1831 1832 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1833 { 1834 while (type_id < btf->start_id) 1835 btf = btf->base_btf; 1836 1837 return btf->resolved_ids[type_id - btf->start_id]; 1838 } 1839 1840 /* The input param "type_id" must point to a needs_resolve type */ 1841 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1842 u32 *type_id) 1843 { 1844 *type_id = btf_resolved_type_id(btf, *type_id); 1845 return btf_type_by_id(btf, *type_id); 1846 } 1847 1848 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1849 { 1850 while (type_id < btf->start_id) 1851 btf = btf->base_btf; 1852 1853 return btf->resolved_sizes[type_id - btf->start_id]; 1854 } 1855 1856 const struct btf_type *btf_type_id_size(const struct btf *btf, 1857 u32 *type_id, u32 *ret_size) 1858 { 1859 const struct btf_type *size_type; 1860 u32 size_type_id = *type_id; 1861 u32 size = 0; 1862 1863 size_type = btf_type_by_id(btf, size_type_id); 1864 if (btf_type_nosize_or_null(size_type)) 1865 return NULL; 1866 1867 if (btf_type_has_size(size_type)) { 1868 size = size_type->size; 1869 } else if (btf_type_is_array(size_type)) { 1870 size = btf_resolved_type_size(btf, size_type_id); 1871 } else if (btf_type_is_ptr(size_type)) { 1872 size = sizeof(void *); 1873 } else { 1874 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1875 !btf_type_is_var(size_type))) 1876 return NULL; 1877 1878 size_type_id = btf_resolved_type_id(btf, size_type_id); 1879 size_type = btf_type_by_id(btf, size_type_id); 1880 if (btf_type_nosize_or_null(size_type)) 1881 return NULL; 1882 else if (btf_type_has_size(size_type)) 1883 size = size_type->size; 1884 else if (btf_type_is_array(size_type)) 1885 size = btf_resolved_type_size(btf, size_type_id); 1886 else if (btf_type_is_ptr(size_type)) 1887 size = sizeof(void *); 1888 else 1889 return NULL; 1890 } 1891 1892 *type_id = size_type_id; 1893 if (ret_size) 1894 *ret_size = size; 1895 1896 return size_type; 1897 } 1898 1899 static int btf_df_check_member(struct btf_verifier_env *env, 1900 const struct btf_type *struct_type, 1901 const struct btf_member *member, 1902 const struct btf_type *member_type) 1903 { 1904 btf_verifier_log_basic(env, struct_type, 1905 "Unsupported check_member"); 1906 return -EINVAL; 1907 } 1908 1909 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 1910 const struct btf_type *struct_type, 1911 const struct btf_member *member, 1912 const struct btf_type *member_type) 1913 { 1914 btf_verifier_log_basic(env, struct_type, 1915 "Unsupported check_kflag_member"); 1916 return -EINVAL; 1917 } 1918 1919 /* Used for ptr, array struct/union and float type members. 1920 * int, enum and modifier types have their specific callback functions. 1921 */ 1922 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 1923 const struct btf_type *struct_type, 1924 const struct btf_member *member, 1925 const struct btf_type *member_type) 1926 { 1927 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 1928 btf_verifier_log_member(env, struct_type, member, 1929 "Invalid member bitfield_size"); 1930 return -EINVAL; 1931 } 1932 1933 /* bitfield size is 0, so member->offset represents bit offset only. 1934 * It is safe to call non kflag check_member variants. 1935 */ 1936 return btf_type_ops(member_type)->check_member(env, struct_type, 1937 member, 1938 member_type); 1939 } 1940 1941 static int btf_df_resolve(struct btf_verifier_env *env, 1942 const struct resolve_vertex *v) 1943 { 1944 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 1945 return -EINVAL; 1946 } 1947 1948 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 1949 u32 type_id, void *data, u8 bits_offsets, 1950 struct btf_show *show) 1951 { 1952 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 1953 } 1954 1955 static int btf_int_check_member(struct btf_verifier_env *env, 1956 const struct btf_type *struct_type, 1957 const struct btf_member *member, 1958 const struct btf_type *member_type) 1959 { 1960 u32 int_data = btf_type_int(member_type); 1961 u32 struct_bits_off = member->offset; 1962 u32 struct_size = struct_type->size; 1963 u32 nr_copy_bits; 1964 u32 bytes_offset; 1965 1966 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 1967 btf_verifier_log_member(env, struct_type, member, 1968 "bits_offset exceeds U32_MAX"); 1969 return -EINVAL; 1970 } 1971 1972 struct_bits_off += BTF_INT_OFFSET(int_data); 1973 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1974 nr_copy_bits = BTF_INT_BITS(int_data) + 1975 BITS_PER_BYTE_MASKED(struct_bits_off); 1976 1977 if (nr_copy_bits > BITS_PER_U128) { 1978 btf_verifier_log_member(env, struct_type, member, 1979 "nr_copy_bits exceeds 128"); 1980 return -EINVAL; 1981 } 1982 1983 if (struct_size < bytes_offset || 1984 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 1985 btf_verifier_log_member(env, struct_type, member, 1986 "Member exceeds struct_size"); 1987 return -EINVAL; 1988 } 1989 1990 return 0; 1991 } 1992 1993 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 1994 const struct btf_type *struct_type, 1995 const struct btf_member *member, 1996 const struct btf_type *member_type) 1997 { 1998 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 1999 u32 int_data = btf_type_int(member_type); 2000 u32 struct_size = struct_type->size; 2001 u32 nr_copy_bits; 2002 2003 /* a regular int type is required for the kflag int member */ 2004 if (!btf_type_int_is_regular(member_type)) { 2005 btf_verifier_log_member(env, struct_type, member, 2006 "Invalid member base type"); 2007 return -EINVAL; 2008 } 2009 2010 /* check sanity of bitfield size */ 2011 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2012 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2013 nr_int_data_bits = BTF_INT_BITS(int_data); 2014 if (!nr_bits) { 2015 /* Not a bitfield member, member offset must be at byte 2016 * boundary. 2017 */ 2018 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2019 btf_verifier_log_member(env, struct_type, member, 2020 "Invalid member offset"); 2021 return -EINVAL; 2022 } 2023 2024 nr_bits = nr_int_data_bits; 2025 } else if (nr_bits > nr_int_data_bits) { 2026 btf_verifier_log_member(env, struct_type, member, 2027 "Invalid member bitfield_size"); 2028 return -EINVAL; 2029 } 2030 2031 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2032 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2033 if (nr_copy_bits > BITS_PER_U128) { 2034 btf_verifier_log_member(env, struct_type, member, 2035 "nr_copy_bits exceeds 128"); 2036 return -EINVAL; 2037 } 2038 2039 if (struct_size < bytes_offset || 2040 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2041 btf_verifier_log_member(env, struct_type, member, 2042 "Member exceeds struct_size"); 2043 return -EINVAL; 2044 } 2045 2046 return 0; 2047 } 2048 2049 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2050 const struct btf_type *t, 2051 u32 meta_left) 2052 { 2053 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2054 u16 encoding; 2055 2056 if (meta_left < meta_needed) { 2057 btf_verifier_log_basic(env, t, 2058 "meta_left:%u meta_needed:%u", 2059 meta_left, meta_needed); 2060 return -EINVAL; 2061 } 2062 2063 if (btf_type_vlen(t)) { 2064 btf_verifier_log_type(env, t, "vlen != 0"); 2065 return -EINVAL; 2066 } 2067 2068 if (btf_type_kflag(t)) { 2069 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2070 return -EINVAL; 2071 } 2072 2073 int_data = btf_type_int(t); 2074 if (int_data & ~BTF_INT_MASK) { 2075 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2076 int_data); 2077 return -EINVAL; 2078 } 2079 2080 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2081 2082 if (nr_bits > BITS_PER_U128) { 2083 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2084 BITS_PER_U128); 2085 return -EINVAL; 2086 } 2087 2088 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2089 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2090 return -EINVAL; 2091 } 2092 2093 /* 2094 * Only one of the encoding bits is allowed and it 2095 * should be sufficient for the pretty print purpose (i.e. decoding). 2096 * Multiple bits can be allowed later if it is found 2097 * to be insufficient. 2098 */ 2099 encoding = BTF_INT_ENCODING(int_data); 2100 if (encoding && 2101 encoding != BTF_INT_SIGNED && 2102 encoding != BTF_INT_CHAR && 2103 encoding != BTF_INT_BOOL) { 2104 btf_verifier_log_type(env, t, "Unsupported encoding"); 2105 return -ENOTSUPP; 2106 } 2107 2108 btf_verifier_log_type(env, t, NULL); 2109 2110 return meta_needed; 2111 } 2112 2113 static void btf_int_log(struct btf_verifier_env *env, 2114 const struct btf_type *t) 2115 { 2116 int int_data = btf_type_int(t); 2117 2118 btf_verifier_log(env, 2119 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2120 t->size, BTF_INT_OFFSET(int_data), 2121 BTF_INT_BITS(int_data), 2122 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2123 } 2124 2125 static void btf_int128_print(struct btf_show *show, void *data) 2126 { 2127 /* data points to a __int128 number. 2128 * Suppose 2129 * int128_num = *(__int128 *)data; 2130 * The below formulas shows what upper_num and lower_num represents: 2131 * upper_num = int128_num >> 64; 2132 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2133 */ 2134 u64 upper_num, lower_num; 2135 2136 #ifdef __BIG_ENDIAN_BITFIELD 2137 upper_num = *(u64 *)data; 2138 lower_num = *(u64 *)(data + 8); 2139 #else 2140 upper_num = *(u64 *)(data + 8); 2141 lower_num = *(u64 *)data; 2142 #endif 2143 if (upper_num == 0) 2144 btf_show_type_value(show, "0x%llx", lower_num); 2145 else 2146 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2147 lower_num); 2148 } 2149 2150 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2151 u16 right_shift_bits) 2152 { 2153 u64 upper_num, lower_num; 2154 2155 #ifdef __BIG_ENDIAN_BITFIELD 2156 upper_num = print_num[0]; 2157 lower_num = print_num[1]; 2158 #else 2159 upper_num = print_num[1]; 2160 lower_num = print_num[0]; 2161 #endif 2162 2163 /* shake out un-needed bits by shift/or operations */ 2164 if (left_shift_bits >= 64) { 2165 upper_num = lower_num << (left_shift_bits - 64); 2166 lower_num = 0; 2167 } else { 2168 upper_num = (upper_num << left_shift_bits) | 2169 (lower_num >> (64 - left_shift_bits)); 2170 lower_num = lower_num << left_shift_bits; 2171 } 2172 2173 if (right_shift_bits >= 64) { 2174 lower_num = upper_num >> (right_shift_bits - 64); 2175 upper_num = 0; 2176 } else { 2177 lower_num = (lower_num >> right_shift_bits) | 2178 (upper_num << (64 - right_shift_bits)); 2179 upper_num = upper_num >> right_shift_bits; 2180 } 2181 2182 #ifdef __BIG_ENDIAN_BITFIELD 2183 print_num[0] = upper_num; 2184 print_num[1] = lower_num; 2185 #else 2186 print_num[0] = lower_num; 2187 print_num[1] = upper_num; 2188 #endif 2189 } 2190 2191 static void btf_bitfield_show(void *data, u8 bits_offset, 2192 u8 nr_bits, struct btf_show *show) 2193 { 2194 u16 left_shift_bits, right_shift_bits; 2195 u8 nr_copy_bytes; 2196 u8 nr_copy_bits; 2197 u64 print_num[2] = {}; 2198 2199 nr_copy_bits = nr_bits + bits_offset; 2200 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2201 2202 memcpy(print_num, data, nr_copy_bytes); 2203 2204 #ifdef __BIG_ENDIAN_BITFIELD 2205 left_shift_bits = bits_offset; 2206 #else 2207 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2208 #endif 2209 right_shift_bits = BITS_PER_U128 - nr_bits; 2210 2211 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2212 btf_int128_print(show, print_num); 2213 } 2214 2215 2216 static void btf_int_bits_show(const struct btf *btf, 2217 const struct btf_type *t, 2218 void *data, u8 bits_offset, 2219 struct btf_show *show) 2220 { 2221 u32 int_data = btf_type_int(t); 2222 u8 nr_bits = BTF_INT_BITS(int_data); 2223 u8 total_bits_offset; 2224 2225 /* 2226 * bits_offset is at most 7. 2227 * BTF_INT_OFFSET() cannot exceed 128 bits. 2228 */ 2229 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2230 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2231 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2232 btf_bitfield_show(data, bits_offset, nr_bits, show); 2233 } 2234 2235 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2236 u32 type_id, void *data, u8 bits_offset, 2237 struct btf_show *show) 2238 { 2239 u32 int_data = btf_type_int(t); 2240 u8 encoding = BTF_INT_ENCODING(int_data); 2241 bool sign = encoding & BTF_INT_SIGNED; 2242 u8 nr_bits = BTF_INT_BITS(int_data); 2243 void *safe_data; 2244 2245 safe_data = btf_show_start_type(show, t, type_id, data); 2246 if (!safe_data) 2247 return; 2248 2249 if (bits_offset || BTF_INT_OFFSET(int_data) || 2250 BITS_PER_BYTE_MASKED(nr_bits)) { 2251 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2252 goto out; 2253 } 2254 2255 switch (nr_bits) { 2256 case 128: 2257 btf_int128_print(show, safe_data); 2258 break; 2259 case 64: 2260 if (sign) 2261 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2262 else 2263 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2264 break; 2265 case 32: 2266 if (sign) 2267 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2268 else 2269 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2270 break; 2271 case 16: 2272 if (sign) 2273 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2274 else 2275 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2276 break; 2277 case 8: 2278 if (show->state.array_encoding == BTF_INT_CHAR) { 2279 /* check for null terminator */ 2280 if (show->state.array_terminated) 2281 break; 2282 if (*(char *)data == '\0') { 2283 show->state.array_terminated = 1; 2284 break; 2285 } 2286 if (isprint(*(char *)data)) { 2287 btf_show_type_value(show, "'%c'", 2288 *(char *)safe_data); 2289 break; 2290 } 2291 } 2292 if (sign) 2293 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2294 else 2295 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2296 break; 2297 default: 2298 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2299 break; 2300 } 2301 out: 2302 btf_show_end_type(show); 2303 } 2304 2305 static const struct btf_kind_operations int_ops = { 2306 .check_meta = btf_int_check_meta, 2307 .resolve = btf_df_resolve, 2308 .check_member = btf_int_check_member, 2309 .check_kflag_member = btf_int_check_kflag_member, 2310 .log_details = btf_int_log, 2311 .show = btf_int_show, 2312 }; 2313 2314 static int btf_modifier_check_member(struct btf_verifier_env *env, 2315 const struct btf_type *struct_type, 2316 const struct btf_member *member, 2317 const struct btf_type *member_type) 2318 { 2319 const struct btf_type *resolved_type; 2320 u32 resolved_type_id = member->type; 2321 struct btf_member resolved_member; 2322 struct btf *btf = env->btf; 2323 2324 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2325 if (!resolved_type) { 2326 btf_verifier_log_member(env, struct_type, member, 2327 "Invalid member"); 2328 return -EINVAL; 2329 } 2330 2331 resolved_member = *member; 2332 resolved_member.type = resolved_type_id; 2333 2334 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2335 &resolved_member, 2336 resolved_type); 2337 } 2338 2339 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2340 const struct btf_type *struct_type, 2341 const struct btf_member *member, 2342 const struct btf_type *member_type) 2343 { 2344 const struct btf_type *resolved_type; 2345 u32 resolved_type_id = member->type; 2346 struct btf_member resolved_member; 2347 struct btf *btf = env->btf; 2348 2349 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2350 if (!resolved_type) { 2351 btf_verifier_log_member(env, struct_type, member, 2352 "Invalid member"); 2353 return -EINVAL; 2354 } 2355 2356 resolved_member = *member; 2357 resolved_member.type = resolved_type_id; 2358 2359 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2360 &resolved_member, 2361 resolved_type); 2362 } 2363 2364 static int btf_ptr_check_member(struct btf_verifier_env *env, 2365 const struct btf_type *struct_type, 2366 const struct btf_member *member, 2367 const struct btf_type *member_type) 2368 { 2369 u32 struct_size, struct_bits_off, bytes_offset; 2370 2371 struct_size = struct_type->size; 2372 struct_bits_off = member->offset; 2373 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2374 2375 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2376 btf_verifier_log_member(env, struct_type, member, 2377 "Member is not byte aligned"); 2378 return -EINVAL; 2379 } 2380 2381 if (struct_size - bytes_offset < sizeof(void *)) { 2382 btf_verifier_log_member(env, struct_type, member, 2383 "Member exceeds struct_size"); 2384 return -EINVAL; 2385 } 2386 2387 return 0; 2388 } 2389 2390 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2391 const struct btf_type *t, 2392 u32 meta_left) 2393 { 2394 const char *value; 2395 2396 if (btf_type_vlen(t)) { 2397 btf_verifier_log_type(env, t, "vlen != 0"); 2398 return -EINVAL; 2399 } 2400 2401 if (btf_type_kflag(t)) { 2402 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2403 return -EINVAL; 2404 } 2405 2406 if (!BTF_TYPE_ID_VALID(t->type)) { 2407 btf_verifier_log_type(env, t, "Invalid type_id"); 2408 return -EINVAL; 2409 } 2410 2411 /* typedef/type_tag type must have a valid name, and other ref types, 2412 * volatile, const, restrict, should have a null name. 2413 */ 2414 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2415 if (!t->name_off || 2416 !btf_name_valid_identifier(env->btf, t->name_off)) { 2417 btf_verifier_log_type(env, t, "Invalid name"); 2418 return -EINVAL; 2419 } 2420 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2421 value = btf_name_by_offset(env->btf, t->name_off); 2422 if (!value || !value[0]) { 2423 btf_verifier_log_type(env, t, "Invalid name"); 2424 return -EINVAL; 2425 } 2426 } else { 2427 if (t->name_off) { 2428 btf_verifier_log_type(env, t, "Invalid name"); 2429 return -EINVAL; 2430 } 2431 } 2432 2433 btf_verifier_log_type(env, t, NULL); 2434 2435 return 0; 2436 } 2437 2438 static int btf_modifier_resolve(struct btf_verifier_env *env, 2439 const struct resolve_vertex *v) 2440 { 2441 const struct btf_type *t = v->t; 2442 const struct btf_type *next_type; 2443 u32 next_type_id = t->type; 2444 struct btf *btf = env->btf; 2445 2446 next_type = btf_type_by_id(btf, next_type_id); 2447 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2448 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2449 return -EINVAL; 2450 } 2451 2452 if (!env_type_is_resolve_sink(env, next_type) && 2453 !env_type_is_resolved(env, next_type_id)) 2454 return env_stack_push(env, next_type, next_type_id); 2455 2456 /* Figure out the resolved next_type_id with size. 2457 * They will be stored in the current modifier's 2458 * resolved_ids and resolved_sizes such that it can 2459 * save us a few type-following when we use it later (e.g. in 2460 * pretty print). 2461 */ 2462 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2463 if (env_type_is_resolved(env, next_type_id)) 2464 next_type = btf_type_id_resolve(btf, &next_type_id); 2465 2466 /* "typedef void new_void", "const void"...etc */ 2467 if (!btf_type_is_void(next_type) && 2468 !btf_type_is_fwd(next_type) && 2469 !btf_type_is_func_proto(next_type)) { 2470 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2471 return -EINVAL; 2472 } 2473 } 2474 2475 env_stack_pop_resolved(env, next_type_id, 0); 2476 2477 return 0; 2478 } 2479 2480 static int btf_var_resolve(struct btf_verifier_env *env, 2481 const struct resolve_vertex *v) 2482 { 2483 const struct btf_type *next_type; 2484 const struct btf_type *t = v->t; 2485 u32 next_type_id = t->type; 2486 struct btf *btf = env->btf; 2487 2488 next_type = btf_type_by_id(btf, next_type_id); 2489 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2490 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2491 return -EINVAL; 2492 } 2493 2494 if (!env_type_is_resolve_sink(env, next_type) && 2495 !env_type_is_resolved(env, next_type_id)) 2496 return env_stack_push(env, next_type, next_type_id); 2497 2498 if (btf_type_is_modifier(next_type)) { 2499 const struct btf_type *resolved_type; 2500 u32 resolved_type_id; 2501 2502 resolved_type_id = next_type_id; 2503 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2504 2505 if (btf_type_is_ptr(resolved_type) && 2506 !env_type_is_resolve_sink(env, resolved_type) && 2507 !env_type_is_resolved(env, resolved_type_id)) 2508 return env_stack_push(env, resolved_type, 2509 resolved_type_id); 2510 } 2511 2512 /* We must resolve to something concrete at this point, no 2513 * forward types or similar that would resolve to size of 2514 * zero is allowed. 2515 */ 2516 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2517 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2518 return -EINVAL; 2519 } 2520 2521 env_stack_pop_resolved(env, next_type_id, 0); 2522 2523 return 0; 2524 } 2525 2526 static int btf_ptr_resolve(struct btf_verifier_env *env, 2527 const struct resolve_vertex *v) 2528 { 2529 const struct btf_type *next_type; 2530 const struct btf_type *t = v->t; 2531 u32 next_type_id = t->type; 2532 struct btf *btf = env->btf; 2533 2534 next_type = btf_type_by_id(btf, next_type_id); 2535 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2536 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2537 return -EINVAL; 2538 } 2539 2540 if (!env_type_is_resolve_sink(env, next_type) && 2541 !env_type_is_resolved(env, next_type_id)) 2542 return env_stack_push(env, next_type, next_type_id); 2543 2544 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2545 * the modifier may have stopped resolving when it was resolved 2546 * to a ptr (last-resolved-ptr). 2547 * 2548 * We now need to continue from the last-resolved-ptr to 2549 * ensure the last-resolved-ptr will not referring back to 2550 * the current ptr (t). 2551 */ 2552 if (btf_type_is_modifier(next_type)) { 2553 const struct btf_type *resolved_type; 2554 u32 resolved_type_id; 2555 2556 resolved_type_id = next_type_id; 2557 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2558 2559 if (btf_type_is_ptr(resolved_type) && 2560 !env_type_is_resolve_sink(env, resolved_type) && 2561 !env_type_is_resolved(env, resolved_type_id)) 2562 return env_stack_push(env, resolved_type, 2563 resolved_type_id); 2564 } 2565 2566 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2567 if (env_type_is_resolved(env, next_type_id)) 2568 next_type = btf_type_id_resolve(btf, &next_type_id); 2569 2570 if (!btf_type_is_void(next_type) && 2571 !btf_type_is_fwd(next_type) && 2572 !btf_type_is_func_proto(next_type)) { 2573 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2574 return -EINVAL; 2575 } 2576 } 2577 2578 env_stack_pop_resolved(env, next_type_id, 0); 2579 2580 return 0; 2581 } 2582 2583 static void btf_modifier_show(const struct btf *btf, 2584 const struct btf_type *t, 2585 u32 type_id, void *data, 2586 u8 bits_offset, struct btf_show *show) 2587 { 2588 if (btf->resolved_ids) 2589 t = btf_type_id_resolve(btf, &type_id); 2590 else 2591 t = btf_type_skip_modifiers(btf, type_id, NULL); 2592 2593 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2594 } 2595 2596 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2597 u32 type_id, void *data, u8 bits_offset, 2598 struct btf_show *show) 2599 { 2600 t = btf_type_id_resolve(btf, &type_id); 2601 2602 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2603 } 2604 2605 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2606 u32 type_id, void *data, u8 bits_offset, 2607 struct btf_show *show) 2608 { 2609 void *safe_data; 2610 2611 safe_data = btf_show_start_type(show, t, type_id, data); 2612 if (!safe_data) 2613 return; 2614 2615 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2616 if (show->flags & BTF_SHOW_PTR_RAW) 2617 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2618 else 2619 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2620 btf_show_end_type(show); 2621 } 2622 2623 static void btf_ref_type_log(struct btf_verifier_env *env, 2624 const struct btf_type *t) 2625 { 2626 btf_verifier_log(env, "type_id=%u", t->type); 2627 } 2628 2629 static struct btf_kind_operations modifier_ops = { 2630 .check_meta = btf_ref_type_check_meta, 2631 .resolve = btf_modifier_resolve, 2632 .check_member = btf_modifier_check_member, 2633 .check_kflag_member = btf_modifier_check_kflag_member, 2634 .log_details = btf_ref_type_log, 2635 .show = btf_modifier_show, 2636 }; 2637 2638 static struct btf_kind_operations ptr_ops = { 2639 .check_meta = btf_ref_type_check_meta, 2640 .resolve = btf_ptr_resolve, 2641 .check_member = btf_ptr_check_member, 2642 .check_kflag_member = btf_generic_check_kflag_member, 2643 .log_details = btf_ref_type_log, 2644 .show = btf_ptr_show, 2645 }; 2646 2647 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2648 const struct btf_type *t, 2649 u32 meta_left) 2650 { 2651 if (btf_type_vlen(t)) { 2652 btf_verifier_log_type(env, t, "vlen != 0"); 2653 return -EINVAL; 2654 } 2655 2656 if (t->type) { 2657 btf_verifier_log_type(env, t, "type != 0"); 2658 return -EINVAL; 2659 } 2660 2661 /* fwd type must have a valid name */ 2662 if (!t->name_off || 2663 !btf_name_valid_identifier(env->btf, t->name_off)) { 2664 btf_verifier_log_type(env, t, "Invalid name"); 2665 return -EINVAL; 2666 } 2667 2668 btf_verifier_log_type(env, t, NULL); 2669 2670 return 0; 2671 } 2672 2673 static void btf_fwd_type_log(struct btf_verifier_env *env, 2674 const struct btf_type *t) 2675 { 2676 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2677 } 2678 2679 static struct btf_kind_operations fwd_ops = { 2680 .check_meta = btf_fwd_check_meta, 2681 .resolve = btf_df_resolve, 2682 .check_member = btf_df_check_member, 2683 .check_kflag_member = btf_df_check_kflag_member, 2684 .log_details = btf_fwd_type_log, 2685 .show = btf_df_show, 2686 }; 2687 2688 static int btf_array_check_member(struct btf_verifier_env *env, 2689 const struct btf_type *struct_type, 2690 const struct btf_member *member, 2691 const struct btf_type *member_type) 2692 { 2693 u32 struct_bits_off = member->offset; 2694 u32 struct_size, bytes_offset; 2695 u32 array_type_id, array_size; 2696 struct btf *btf = env->btf; 2697 2698 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2699 btf_verifier_log_member(env, struct_type, member, 2700 "Member is not byte aligned"); 2701 return -EINVAL; 2702 } 2703 2704 array_type_id = member->type; 2705 btf_type_id_size(btf, &array_type_id, &array_size); 2706 struct_size = struct_type->size; 2707 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2708 if (struct_size - bytes_offset < array_size) { 2709 btf_verifier_log_member(env, struct_type, member, 2710 "Member exceeds struct_size"); 2711 return -EINVAL; 2712 } 2713 2714 return 0; 2715 } 2716 2717 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2718 const struct btf_type *t, 2719 u32 meta_left) 2720 { 2721 const struct btf_array *array = btf_type_array(t); 2722 u32 meta_needed = sizeof(*array); 2723 2724 if (meta_left < meta_needed) { 2725 btf_verifier_log_basic(env, t, 2726 "meta_left:%u meta_needed:%u", 2727 meta_left, meta_needed); 2728 return -EINVAL; 2729 } 2730 2731 /* array type should not have a name */ 2732 if (t->name_off) { 2733 btf_verifier_log_type(env, t, "Invalid name"); 2734 return -EINVAL; 2735 } 2736 2737 if (btf_type_vlen(t)) { 2738 btf_verifier_log_type(env, t, "vlen != 0"); 2739 return -EINVAL; 2740 } 2741 2742 if (btf_type_kflag(t)) { 2743 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2744 return -EINVAL; 2745 } 2746 2747 if (t->size) { 2748 btf_verifier_log_type(env, t, "size != 0"); 2749 return -EINVAL; 2750 } 2751 2752 /* Array elem type and index type cannot be in type void, 2753 * so !array->type and !array->index_type are not allowed. 2754 */ 2755 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2756 btf_verifier_log_type(env, t, "Invalid elem"); 2757 return -EINVAL; 2758 } 2759 2760 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2761 btf_verifier_log_type(env, t, "Invalid index"); 2762 return -EINVAL; 2763 } 2764 2765 btf_verifier_log_type(env, t, NULL); 2766 2767 return meta_needed; 2768 } 2769 2770 static int btf_array_resolve(struct btf_verifier_env *env, 2771 const struct resolve_vertex *v) 2772 { 2773 const struct btf_array *array = btf_type_array(v->t); 2774 const struct btf_type *elem_type, *index_type; 2775 u32 elem_type_id, index_type_id; 2776 struct btf *btf = env->btf; 2777 u32 elem_size; 2778 2779 /* Check array->index_type */ 2780 index_type_id = array->index_type; 2781 index_type = btf_type_by_id(btf, index_type_id); 2782 if (btf_type_nosize_or_null(index_type) || 2783 btf_type_is_resolve_source_only(index_type)) { 2784 btf_verifier_log_type(env, v->t, "Invalid index"); 2785 return -EINVAL; 2786 } 2787 2788 if (!env_type_is_resolve_sink(env, index_type) && 2789 !env_type_is_resolved(env, index_type_id)) 2790 return env_stack_push(env, index_type, index_type_id); 2791 2792 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2793 if (!index_type || !btf_type_is_int(index_type) || 2794 !btf_type_int_is_regular(index_type)) { 2795 btf_verifier_log_type(env, v->t, "Invalid index"); 2796 return -EINVAL; 2797 } 2798 2799 /* Check array->type */ 2800 elem_type_id = array->type; 2801 elem_type = btf_type_by_id(btf, elem_type_id); 2802 if (btf_type_nosize_or_null(elem_type) || 2803 btf_type_is_resolve_source_only(elem_type)) { 2804 btf_verifier_log_type(env, v->t, 2805 "Invalid elem"); 2806 return -EINVAL; 2807 } 2808 2809 if (!env_type_is_resolve_sink(env, elem_type) && 2810 !env_type_is_resolved(env, elem_type_id)) 2811 return env_stack_push(env, elem_type, elem_type_id); 2812 2813 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2814 if (!elem_type) { 2815 btf_verifier_log_type(env, v->t, "Invalid elem"); 2816 return -EINVAL; 2817 } 2818 2819 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2820 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2821 return -EINVAL; 2822 } 2823 2824 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2825 btf_verifier_log_type(env, v->t, 2826 "Array size overflows U32_MAX"); 2827 return -EINVAL; 2828 } 2829 2830 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2831 2832 return 0; 2833 } 2834 2835 static void btf_array_log(struct btf_verifier_env *env, 2836 const struct btf_type *t) 2837 { 2838 const struct btf_array *array = btf_type_array(t); 2839 2840 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2841 array->type, array->index_type, array->nelems); 2842 } 2843 2844 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2845 u32 type_id, void *data, u8 bits_offset, 2846 struct btf_show *show) 2847 { 2848 const struct btf_array *array = btf_type_array(t); 2849 const struct btf_kind_operations *elem_ops; 2850 const struct btf_type *elem_type; 2851 u32 i, elem_size = 0, elem_type_id; 2852 u16 encoding = 0; 2853 2854 elem_type_id = array->type; 2855 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2856 if (elem_type && btf_type_has_size(elem_type)) 2857 elem_size = elem_type->size; 2858 2859 if (elem_type && btf_type_is_int(elem_type)) { 2860 u32 int_type = btf_type_int(elem_type); 2861 2862 encoding = BTF_INT_ENCODING(int_type); 2863 2864 /* 2865 * BTF_INT_CHAR encoding never seems to be set for 2866 * char arrays, so if size is 1 and element is 2867 * printable as a char, we'll do that. 2868 */ 2869 if (elem_size == 1) 2870 encoding = BTF_INT_CHAR; 2871 } 2872 2873 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2874 return; 2875 2876 if (!elem_type) 2877 goto out; 2878 elem_ops = btf_type_ops(elem_type); 2879 2880 for (i = 0; i < array->nelems; i++) { 2881 2882 btf_show_start_array_member(show); 2883 2884 elem_ops->show(btf, elem_type, elem_type_id, data, 2885 bits_offset, show); 2886 data += elem_size; 2887 2888 btf_show_end_array_member(show); 2889 2890 if (show->state.array_terminated) 2891 break; 2892 } 2893 out: 2894 btf_show_end_array_type(show); 2895 } 2896 2897 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 2898 u32 type_id, void *data, u8 bits_offset, 2899 struct btf_show *show) 2900 { 2901 const struct btf_member *m = show->state.member; 2902 2903 /* 2904 * First check if any members would be shown (are non-zero). 2905 * See comments above "struct btf_show" definition for more 2906 * details on how this works at a high-level. 2907 */ 2908 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 2909 if (!show->state.depth_check) { 2910 show->state.depth_check = show->state.depth + 1; 2911 show->state.depth_to_show = 0; 2912 } 2913 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2914 show->state.member = m; 2915 2916 if (show->state.depth_check != show->state.depth + 1) 2917 return; 2918 show->state.depth_check = 0; 2919 2920 if (show->state.depth_to_show <= show->state.depth) 2921 return; 2922 /* 2923 * Reaching here indicates we have recursed and found 2924 * non-zero array member(s). 2925 */ 2926 } 2927 __btf_array_show(btf, t, type_id, data, bits_offset, show); 2928 } 2929 2930 static struct btf_kind_operations array_ops = { 2931 .check_meta = btf_array_check_meta, 2932 .resolve = btf_array_resolve, 2933 .check_member = btf_array_check_member, 2934 .check_kflag_member = btf_generic_check_kflag_member, 2935 .log_details = btf_array_log, 2936 .show = btf_array_show, 2937 }; 2938 2939 static int btf_struct_check_member(struct btf_verifier_env *env, 2940 const struct btf_type *struct_type, 2941 const struct btf_member *member, 2942 const struct btf_type *member_type) 2943 { 2944 u32 struct_bits_off = member->offset; 2945 u32 struct_size, bytes_offset; 2946 2947 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2948 btf_verifier_log_member(env, struct_type, member, 2949 "Member is not byte aligned"); 2950 return -EINVAL; 2951 } 2952 2953 struct_size = struct_type->size; 2954 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2955 if (struct_size - bytes_offset < member_type->size) { 2956 btf_verifier_log_member(env, struct_type, member, 2957 "Member exceeds struct_size"); 2958 return -EINVAL; 2959 } 2960 2961 return 0; 2962 } 2963 2964 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 2965 const struct btf_type *t, 2966 u32 meta_left) 2967 { 2968 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 2969 const struct btf_member *member; 2970 u32 meta_needed, last_offset; 2971 struct btf *btf = env->btf; 2972 u32 struct_size = t->size; 2973 u32 offset; 2974 u16 i; 2975 2976 meta_needed = btf_type_vlen(t) * sizeof(*member); 2977 if (meta_left < meta_needed) { 2978 btf_verifier_log_basic(env, t, 2979 "meta_left:%u meta_needed:%u", 2980 meta_left, meta_needed); 2981 return -EINVAL; 2982 } 2983 2984 /* struct type either no name or a valid one */ 2985 if (t->name_off && 2986 !btf_name_valid_identifier(env->btf, t->name_off)) { 2987 btf_verifier_log_type(env, t, "Invalid name"); 2988 return -EINVAL; 2989 } 2990 2991 btf_verifier_log_type(env, t, NULL); 2992 2993 last_offset = 0; 2994 for_each_member(i, t, member) { 2995 if (!btf_name_offset_valid(btf, member->name_off)) { 2996 btf_verifier_log_member(env, t, member, 2997 "Invalid member name_offset:%u", 2998 member->name_off); 2999 return -EINVAL; 3000 } 3001 3002 /* struct member either no name or a valid one */ 3003 if (member->name_off && 3004 !btf_name_valid_identifier(btf, member->name_off)) { 3005 btf_verifier_log_member(env, t, member, "Invalid name"); 3006 return -EINVAL; 3007 } 3008 /* A member cannot be in type void */ 3009 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3010 btf_verifier_log_member(env, t, member, 3011 "Invalid type_id"); 3012 return -EINVAL; 3013 } 3014 3015 offset = __btf_member_bit_offset(t, member); 3016 if (is_union && offset) { 3017 btf_verifier_log_member(env, t, member, 3018 "Invalid member bits_offset"); 3019 return -EINVAL; 3020 } 3021 3022 /* 3023 * ">" instead of ">=" because the last member could be 3024 * "char a[0];" 3025 */ 3026 if (last_offset > offset) { 3027 btf_verifier_log_member(env, t, member, 3028 "Invalid member bits_offset"); 3029 return -EINVAL; 3030 } 3031 3032 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3033 btf_verifier_log_member(env, t, member, 3034 "Member bits_offset exceeds its struct size"); 3035 return -EINVAL; 3036 } 3037 3038 btf_verifier_log_member(env, t, member, NULL); 3039 last_offset = offset; 3040 } 3041 3042 return meta_needed; 3043 } 3044 3045 static int btf_struct_resolve(struct btf_verifier_env *env, 3046 const struct resolve_vertex *v) 3047 { 3048 const struct btf_member *member; 3049 int err; 3050 u16 i; 3051 3052 /* Before continue resolving the next_member, 3053 * ensure the last member is indeed resolved to a 3054 * type with size info. 3055 */ 3056 if (v->next_member) { 3057 const struct btf_type *last_member_type; 3058 const struct btf_member *last_member; 3059 u16 last_member_type_id; 3060 3061 last_member = btf_type_member(v->t) + v->next_member - 1; 3062 last_member_type_id = last_member->type; 3063 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3064 last_member_type_id))) 3065 return -EINVAL; 3066 3067 last_member_type = btf_type_by_id(env->btf, 3068 last_member_type_id); 3069 if (btf_type_kflag(v->t)) 3070 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3071 last_member, 3072 last_member_type); 3073 else 3074 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3075 last_member, 3076 last_member_type); 3077 if (err) 3078 return err; 3079 } 3080 3081 for_each_member_from(i, v->next_member, v->t, member) { 3082 u32 member_type_id = member->type; 3083 const struct btf_type *member_type = btf_type_by_id(env->btf, 3084 member_type_id); 3085 3086 if (btf_type_nosize_or_null(member_type) || 3087 btf_type_is_resolve_source_only(member_type)) { 3088 btf_verifier_log_member(env, v->t, member, 3089 "Invalid member"); 3090 return -EINVAL; 3091 } 3092 3093 if (!env_type_is_resolve_sink(env, member_type) && 3094 !env_type_is_resolved(env, member_type_id)) { 3095 env_stack_set_next_member(env, i + 1); 3096 return env_stack_push(env, member_type, member_type_id); 3097 } 3098 3099 if (btf_type_kflag(v->t)) 3100 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3101 member, 3102 member_type); 3103 else 3104 err = btf_type_ops(member_type)->check_member(env, v->t, 3105 member, 3106 member_type); 3107 if (err) 3108 return err; 3109 } 3110 3111 env_stack_pop_resolved(env, 0, 0); 3112 3113 return 0; 3114 } 3115 3116 static void btf_struct_log(struct btf_verifier_env *env, 3117 const struct btf_type *t) 3118 { 3119 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3120 } 3121 3122 static int btf_find_struct_field(const struct btf *btf, const struct btf_type *t, 3123 const char *name, int sz, int align) 3124 { 3125 const struct btf_member *member; 3126 u32 i, off = -ENOENT; 3127 3128 for_each_member(i, t, member) { 3129 const struct btf_type *member_type = btf_type_by_id(btf, 3130 member->type); 3131 if (!__btf_type_is_struct(member_type)) 3132 continue; 3133 if (member_type->size != sz) 3134 continue; 3135 if (strcmp(__btf_name_by_offset(btf, member_type->name_off), name)) 3136 continue; 3137 if (off != -ENOENT) 3138 /* only one such field is allowed */ 3139 return -E2BIG; 3140 off = __btf_member_bit_offset(t, member); 3141 if (off % 8) 3142 /* valid C code cannot generate such BTF */ 3143 return -EINVAL; 3144 off /= 8; 3145 if (off % align) 3146 return -EINVAL; 3147 } 3148 return off; 3149 } 3150 3151 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3152 const char *name, int sz, int align) 3153 { 3154 const struct btf_var_secinfo *vsi; 3155 u32 i, off = -ENOENT; 3156 3157 for_each_vsi(i, t, vsi) { 3158 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3159 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3160 3161 if (!__btf_type_is_struct(var_type)) 3162 continue; 3163 if (var_type->size != sz) 3164 continue; 3165 if (vsi->size != sz) 3166 continue; 3167 if (strcmp(__btf_name_by_offset(btf, var_type->name_off), name)) 3168 continue; 3169 if (off != -ENOENT) 3170 /* only one such field is allowed */ 3171 return -E2BIG; 3172 off = vsi->offset; 3173 if (off % align) 3174 return -EINVAL; 3175 } 3176 return off; 3177 } 3178 3179 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3180 const char *name, int sz, int align) 3181 { 3182 3183 if (__btf_type_is_struct(t)) 3184 return btf_find_struct_field(btf, t, name, sz, align); 3185 else if (btf_type_is_datasec(t)) 3186 return btf_find_datasec_var(btf, t, name, sz, align); 3187 return -EINVAL; 3188 } 3189 3190 /* find 'struct bpf_spin_lock' in map value. 3191 * return >= 0 offset if found 3192 * and < 0 in case of error 3193 */ 3194 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t) 3195 { 3196 return btf_find_field(btf, t, "bpf_spin_lock", 3197 sizeof(struct bpf_spin_lock), 3198 __alignof__(struct bpf_spin_lock)); 3199 } 3200 3201 int btf_find_timer(const struct btf *btf, const struct btf_type *t) 3202 { 3203 return btf_find_field(btf, t, "bpf_timer", 3204 sizeof(struct bpf_timer), 3205 __alignof__(struct bpf_timer)); 3206 } 3207 3208 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3209 u32 type_id, void *data, u8 bits_offset, 3210 struct btf_show *show) 3211 { 3212 const struct btf_member *member; 3213 void *safe_data; 3214 u32 i; 3215 3216 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3217 if (!safe_data) 3218 return; 3219 3220 for_each_member(i, t, member) { 3221 const struct btf_type *member_type = btf_type_by_id(btf, 3222 member->type); 3223 const struct btf_kind_operations *ops; 3224 u32 member_offset, bitfield_size; 3225 u32 bytes_offset; 3226 u8 bits8_offset; 3227 3228 btf_show_start_member(show, member); 3229 3230 member_offset = __btf_member_bit_offset(t, member); 3231 bitfield_size = __btf_member_bitfield_size(t, member); 3232 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3233 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3234 if (bitfield_size) { 3235 safe_data = btf_show_start_type(show, member_type, 3236 member->type, 3237 data + bytes_offset); 3238 if (safe_data) 3239 btf_bitfield_show(safe_data, 3240 bits8_offset, 3241 bitfield_size, show); 3242 btf_show_end_type(show); 3243 } else { 3244 ops = btf_type_ops(member_type); 3245 ops->show(btf, member_type, member->type, 3246 data + bytes_offset, bits8_offset, show); 3247 } 3248 3249 btf_show_end_member(show); 3250 } 3251 3252 btf_show_end_struct_type(show); 3253 } 3254 3255 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3256 u32 type_id, void *data, u8 bits_offset, 3257 struct btf_show *show) 3258 { 3259 const struct btf_member *m = show->state.member; 3260 3261 /* 3262 * First check if any members would be shown (are non-zero). 3263 * See comments above "struct btf_show" definition for more 3264 * details on how this works at a high-level. 3265 */ 3266 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3267 if (!show->state.depth_check) { 3268 show->state.depth_check = show->state.depth + 1; 3269 show->state.depth_to_show = 0; 3270 } 3271 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3272 /* Restore saved member data here */ 3273 show->state.member = m; 3274 if (show->state.depth_check != show->state.depth + 1) 3275 return; 3276 show->state.depth_check = 0; 3277 3278 if (show->state.depth_to_show <= show->state.depth) 3279 return; 3280 /* 3281 * Reaching here indicates we have recursed and found 3282 * non-zero child values. 3283 */ 3284 } 3285 3286 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3287 } 3288 3289 static struct btf_kind_operations struct_ops = { 3290 .check_meta = btf_struct_check_meta, 3291 .resolve = btf_struct_resolve, 3292 .check_member = btf_struct_check_member, 3293 .check_kflag_member = btf_generic_check_kflag_member, 3294 .log_details = btf_struct_log, 3295 .show = btf_struct_show, 3296 }; 3297 3298 static int btf_enum_check_member(struct btf_verifier_env *env, 3299 const struct btf_type *struct_type, 3300 const struct btf_member *member, 3301 const struct btf_type *member_type) 3302 { 3303 u32 struct_bits_off = member->offset; 3304 u32 struct_size, bytes_offset; 3305 3306 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3307 btf_verifier_log_member(env, struct_type, member, 3308 "Member is not byte aligned"); 3309 return -EINVAL; 3310 } 3311 3312 struct_size = struct_type->size; 3313 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3314 if (struct_size - bytes_offset < member_type->size) { 3315 btf_verifier_log_member(env, struct_type, member, 3316 "Member exceeds struct_size"); 3317 return -EINVAL; 3318 } 3319 3320 return 0; 3321 } 3322 3323 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 3324 const struct btf_type *struct_type, 3325 const struct btf_member *member, 3326 const struct btf_type *member_type) 3327 { 3328 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 3329 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 3330 3331 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 3332 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 3333 if (!nr_bits) { 3334 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3335 btf_verifier_log_member(env, struct_type, member, 3336 "Member is not byte aligned"); 3337 return -EINVAL; 3338 } 3339 3340 nr_bits = int_bitsize; 3341 } else if (nr_bits > int_bitsize) { 3342 btf_verifier_log_member(env, struct_type, member, 3343 "Invalid member bitfield_size"); 3344 return -EINVAL; 3345 } 3346 3347 struct_size = struct_type->size; 3348 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 3349 if (struct_size < bytes_end) { 3350 btf_verifier_log_member(env, struct_type, member, 3351 "Member exceeds struct_size"); 3352 return -EINVAL; 3353 } 3354 3355 return 0; 3356 } 3357 3358 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 3359 const struct btf_type *t, 3360 u32 meta_left) 3361 { 3362 const struct btf_enum *enums = btf_type_enum(t); 3363 struct btf *btf = env->btf; 3364 u16 i, nr_enums; 3365 u32 meta_needed; 3366 3367 nr_enums = btf_type_vlen(t); 3368 meta_needed = nr_enums * sizeof(*enums); 3369 3370 if (meta_left < meta_needed) { 3371 btf_verifier_log_basic(env, t, 3372 "meta_left:%u meta_needed:%u", 3373 meta_left, meta_needed); 3374 return -EINVAL; 3375 } 3376 3377 if (btf_type_kflag(t)) { 3378 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3379 return -EINVAL; 3380 } 3381 3382 if (t->size > 8 || !is_power_of_2(t->size)) { 3383 btf_verifier_log_type(env, t, "Unexpected size"); 3384 return -EINVAL; 3385 } 3386 3387 /* enum type either no name or a valid one */ 3388 if (t->name_off && 3389 !btf_name_valid_identifier(env->btf, t->name_off)) { 3390 btf_verifier_log_type(env, t, "Invalid name"); 3391 return -EINVAL; 3392 } 3393 3394 btf_verifier_log_type(env, t, NULL); 3395 3396 for (i = 0; i < nr_enums; i++) { 3397 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 3398 btf_verifier_log(env, "\tInvalid name_offset:%u", 3399 enums[i].name_off); 3400 return -EINVAL; 3401 } 3402 3403 /* enum member must have a valid name */ 3404 if (!enums[i].name_off || 3405 !btf_name_valid_identifier(btf, enums[i].name_off)) { 3406 btf_verifier_log_type(env, t, "Invalid name"); 3407 return -EINVAL; 3408 } 3409 3410 if (env->log.level == BPF_LOG_KERNEL) 3411 continue; 3412 btf_verifier_log(env, "\t%s val=%d\n", 3413 __btf_name_by_offset(btf, enums[i].name_off), 3414 enums[i].val); 3415 } 3416 3417 return meta_needed; 3418 } 3419 3420 static void btf_enum_log(struct btf_verifier_env *env, 3421 const struct btf_type *t) 3422 { 3423 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3424 } 3425 3426 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 3427 u32 type_id, void *data, u8 bits_offset, 3428 struct btf_show *show) 3429 { 3430 const struct btf_enum *enums = btf_type_enum(t); 3431 u32 i, nr_enums = btf_type_vlen(t); 3432 void *safe_data; 3433 int v; 3434 3435 safe_data = btf_show_start_type(show, t, type_id, data); 3436 if (!safe_data) 3437 return; 3438 3439 v = *(int *)safe_data; 3440 3441 for (i = 0; i < nr_enums; i++) { 3442 if (v != enums[i].val) 3443 continue; 3444 3445 btf_show_type_value(show, "%s", 3446 __btf_name_by_offset(btf, 3447 enums[i].name_off)); 3448 3449 btf_show_end_type(show); 3450 return; 3451 } 3452 3453 btf_show_type_value(show, "%d", v); 3454 btf_show_end_type(show); 3455 } 3456 3457 static struct btf_kind_operations enum_ops = { 3458 .check_meta = btf_enum_check_meta, 3459 .resolve = btf_df_resolve, 3460 .check_member = btf_enum_check_member, 3461 .check_kflag_member = btf_enum_check_kflag_member, 3462 .log_details = btf_enum_log, 3463 .show = btf_enum_show, 3464 }; 3465 3466 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 3467 const struct btf_type *t, 3468 u32 meta_left) 3469 { 3470 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 3471 3472 if (meta_left < meta_needed) { 3473 btf_verifier_log_basic(env, t, 3474 "meta_left:%u meta_needed:%u", 3475 meta_left, meta_needed); 3476 return -EINVAL; 3477 } 3478 3479 if (t->name_off) { 3480 btf_verifier_log_type(env, t, "Invalid name"); 3481 return -EINVAL; 3482 } 3483 3484 if (btf_type_kflag(t)) { 3485 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3486 return -EINVAL; 3487 } 3488 3489 btf_verifier_log_type(env, t, NULL); 3490 3491 return meta_needed; 3492 } 3493 3494 static void btf_func_proto_log(struct btf_verifier_env *env, 3495 const struct btf_type *t) 3496 { 3497 const struct btf_param *args = (const struct btf_param *)(t + 1); 3498 u16 nr_args = btf_type_vlen(t), i; 3499 3500 btf_verifier_log(env, "return=%u args=(", t->type); 3501 if (!nr_args) { 3502 btf_verifier_log(env, "void"); 3503 goto done; 3504 } 3505 3506 if (nr_args == 1 && !args[0].type) { 3507 /* Only one vararg */ 3508 btf_verifier_log(env, "vararg"); 3509 goto done; 3510 } 3511 3512 btf_verifier_log(env, "%u %s", args[0].type, 3513 __btf_name_by_offset(env->btf, 3514 args[0].name_off)); 3515 for (i = 1; i < nr_args - 1; i++) 3516 btf_verifier_log(env, ", %u %s", args[i].type, 3517 __btf_name_by_offset(env->btf, 3518 args[i].name_off)); 3519 3520 if (nr_args > 1) { 3521 const struct btf_param *last_arg = &args[nr_args - 1]; 3522 3523 if (last_arg->type) 3524 btf_verifier_log(env, ", %u %s", last_arg->type, 3525 __btf_name_by_offset(env->btf, 3526 last_arg->name_off)); 3527 else 3528 btf_verifier_log(env, ", vararg"); 3529 } 3530 3531 done: 3532 btf_verifier_log(env, ")"); 3533 } 3534 3535 static struct btf_kind_operations func_proto_ops = { 3536 .check_meta = btf_func_proto_check_meta, 3537 .resolve = btf_df_resolve, 3538 /* 3539 * BTF_KIND_FUNC_PROTO cannot be directly referred by 3540 * a struct's member. 3541 * 3542 * It should be a function pointer instead. 3543 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 3544 * 3545 * Hence, there is no btf_func_check_member(). 3546 */ 3547 .check_member = btf_df_check_member, 3548 .check_kflag_member = btf_df_check_kflag_member, 3549 .log_details = btf_func_proto_log, 3550 .show = btf_df_show, 3551 }; 3552 3553 static s32 btf_func_check_meta(struct btf_verifier_env *env, 3554 const struct btf_type *t, 3555 u32 meta_left) 3556 { 3557 if (!t->name_off || 3558 !btf_name_valid_identifier(env->btf, t->name_off)) { 3559 btf_verifier_log_type(env, t, "Invalid name"); 3560 return -EINVAL; 3561 } 3562 3563 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 3564 btf_verifier_log_type(env, t, "Invalid func linkage"); 3565 return -EINVAL; 3566 } 3567 3568 if (btf_type_kflag(t)) { 3569 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3570 return -EINVAL; 3571 } 3572 3573 btf_verifier_log_type(env, t, NULL); 3574 3575 return 0; 3576 } 3577 3578 static int btf_func_resolve(struct btf_verifier_env *env, 3579 const struct resolve_vertex *v) 3580 { 3581 const struct btf_type *t = v->t; 3582 u32 next_type_id = t->type; 3583 int err; 3584 3585 err = btf_func_check(env, t); 3586 if (err) 3587 return err; 3588 3589 env_stack_pop_resolved(env, next_type_id, 0); 3590 return 0; 3591 } 3592 3593 static struct btf_kind_operations func_ops = { 3594 .check_meta = btf_func_check_meta, 3595 .resolve = btf_func_resolve, 3596 .check_member = btf_df_check_member, 3597 .check_kflag_member = btf_df_check_kflag_member, 3598 .log_details = btf_ref_type_log, 3599 .show = btf_df_show, 3600 }; 3601 3602 static s32 btf_var_check_meta(struct btf_verifier_env *env, 3603 const struct btf_type *t, 3604 u32 meta_left) 3605 { 3606 const struct btf_var *var; 3607 u32 meta_needed = sizeof(*var); 3608 3609 if (meta_left < meta_needed) { 3610 btf_verifier_log_basic(env, t, 3611 "meta_left:%u meta_needed:%u", 3612 meta_left, meta_needed); 3613 return -EINVAL; 3614 } 3615 3616 if (btf_type_vlen(t)) { 3617 btf_verifier_log_type(env, t, "vlen != 0"); 3618 return -EINVAL; 3619 } 3620 3621 if (btf_type_kflag(t)) { 3622 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3623 return -EINVAL; 3624 } 3625 3626 if (!t->name_off || 3627 !__btf_name_valid(env->btf, t->name_off, true)) { 3628 btf_verifier_log_type(env, t, "Invalid name"); 3629 return -EINVAL; 3630 } 3631 3632 /* A var cannot be in type void */ 3633 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 3634 btf_verifier_log_type(env, t, "Invalid type_id"); 3635 return -EINVAL; 3636 } 3637 3638 var = btf_type_var(t); 3639 if (var->linkage != BTF_VAR_STATIC && 3640 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 3641 btf_verifier_log_type(env, t, "Linkage not supported"); 3642 return -EINVAL; 3643 } 3644 3645 btf_verifier_log_type(env, t, NULL); 3646 3647 return meta_needed; 3648 } 3649 3650 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 3651 { 3652 const struct btf_var *var = btf_type_var(t); 3653 3654 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 3655 } 3656 3657 static const struct btf_kind_operations var_ops = { 3658 .check_meta = btf_var_check_meta, 3659 .resolve = btf_var_resolve, 3660 .check_member = btf_df_check_member, 3661 .check_kflag_member = btf_df_check_kflag_member, 3662 .log_details = btf_var_log, 3663 .show = btf_var_show, 3664 }; 3665 3666 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 3667 const struct btf_type *t, 3668 u32 meta_left) 3669 { 3670 const struct btf_var_secinfo *vsi; 3671 u64 last_vsi_end_off = 0, sum = 0; 3672 u32 i, meta_needed; 3673 3674 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 3675 if (meta_left < meta_needed) { 3676 btf_verifier_log_basic(env, t, 3677 "meta_left:%u meta_needed:%u", 3678 meta_left, meta_needed); 3679 return -EINVAL; 3680 } 3681 3682 if (!t->size) { 3683 btf_verifier_log_type(env, t, "size == 0"); 3684 return -EINVAL; 3685 } 3686 3687 if (btf_type_kflag(t)) { 3688 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3689 return -EINVAL; 3690 } 3691 3692 if (!t->name_off || 3693 !btf_name_valid_section(env->btf, t->name_off)) { 3694 btf_verifier_log_type(env, t, "Invalid name"); 3695 return -EINVAL; 3696 } 3697 3698 btf_verifier_log_type(env, t, NULL); 3699 3700 for_each_vsi(i, t, vsi) { 3701 /* A var cannot be in type void */ 3702 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 3703 btf_verifier_log_vsi(env, t, vsi, 3704 "Invalid type_id"); 3705 return -EINVAL; 3706 } 3707 3708 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 3709 btf_verifier_log_vsi(env, t, vsi, 3710 "Invalid offset"); 3711 return -EINVAL; 3712 } 3713 3714 if (!vsi->size || vsi->size > t->size) { 3715 btf_verifier_log_vsi(env, t, vsi, 3716 "Invalid size"); 3717 return -EINVAL; 3718 } 3719 3720 last_vsi_end_off = vsi->offset + vsi->size; 3721 if (last_vsi_end_off > t->size) { 3722 btf_verifier_log_vsi(env, t, vsi, 3723 "Invalid offset+size"); 3724 return -EINVAL; 3725 } 3726 3727 btf_verifier_log_vsi(env, t, vsi, NULL); 3728 sum += vsi->size; 3729 } 3730 3731 if (t->size < sum) { 3732 btf_verifier_log_type(env, t, "Invalid btf_info size"); 3733 return -EINVAL; 3734 } 3735 3736 return meta_needed; 3737 } 3738 3739 static int btf_datasec_resolve(struct btf_verifier_env *env, 3740 const struct resolve_vertex *v) 3741 { 3742 const struct btf_var_secinfo *vsi; 3743 struct btf *btf = env->btf; 3744 u16 i; 3745 3746 for_each_vsi_from(i, v->next_member, v->t, vsi) { 3747 u32 var_type_id = vsi->type, type_id, type_size = 0; 3748 const struct btf_type *var_type = btf_type_by_id(env->btf, 3749 var_type_id); 3750 if (!var_type || !btf_type_is_var(var_type)) { 3751 btf_verifier_log_vsi(env, v->t, vsi, 3752 "Not a VAR kind member"); 3753 return -EINVAL; 3754 } 3755 3756 if (!env_type_is_resolve_sink(env, var_type) && 3757 !env_type_is_resolved(env, var_type_id)) { 3758 env_stack_set_next_member(env, i + 1); 3759 return env_stack_push(env, var_type, var_type_id); 3760 } 3761 3762 type_id = var_type->type; 3763 if (!btf_type_id_size(btf, &type_id, &type_size)) { 3764 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 3765 return -EINVAL; 3766 } 3767 3768 if (vsi->size < type_size) { 3769 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 3770 return -EINVAL; 3771 } 3772 } 3773 3774 env_stack_pop_resolved(env, 0, 0); 3775 return 0; 3776 } 3777 3778 static void btf_datasec_log(struct btf_verifier_env *env, 3779 const struct btf_type *t) 3780 { 3781 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3782 } 3783 3784 static void btf_datasec_show(const struct btf *btf, 3785 const struct btf_type *t, u32 type_id, 3786 void *data, u8 bits_offset, 3787 struct btf_show *show) 3788 { 3789 const struct btf_var_secinfo *vsi; 3790 const struct btf_type *var; 3791 u32 i; 3792 3793 if (!btf_show_start_type(show, t, type_id, data)) 3794 return; 3795 3796 btf_show_type_value(show, "section (\"%s\") = {", 3797 __btf_name_by_offset(btf, t->name_off)); 3798 for_each_vsi(i, t, vsi) { 3799 var = btf_type_by_id(btf, vsi->type); 3800 if (i) 3801 btf_show(show, ","); 3802 btf_type_ops(var)->show(btf, var, vsi->type, 3803 data + vsi->offset, bits_offset, show); 3804 } 3805 btf_show_end_type(show); 3806 } 3807 3808 static const struct btf_kind_operations datasec_ops = { 3809 .check_meta = btf_datasec_check_meta, 3810 .resolve = btf_datasec_resolve, 3811 .check_member = btf_df_check_member, 3812 .check_kflag_member = btf_df_check_kflag_member, 3813 .log_details = btf_datasec_log, 3814 .show = btf_datasec_show, 3815 }; 3816 3817 static s32 btf_float_check_meta(struct btf_verifier_env *env, 3818 const struct btf_type *t, 3819 u32 meta_left) 3820 { 3821 if (btf_type_vlen(t)) { 3822 btf_verifier_log_type(env, t, "vlen != 0"); 3823 return -EINVAL; 3824 } 3825 3826 if (btf_type_kflag(t)) { 3827 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3828 return -EINVAL; 3829 } 3830 3831 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 3832 t->size != 16) { 3833 btf_verifier_log_type(env, t, "Invalid type_size"); 3834 return -EINVAL; 3835 } 3836 3837 btf_verifier_log_type(env, t, NULL); 3838 3839 return 0; 3840 } 3841 3842 static int btf_float_check_member(struct btf_verifier_env *env, 3843 const struct btf_type *struct_type, 3844 const struct btf_member *member, 3845 const struct btf_type *member_type) 3846 { 3847 u64 start_offset_bytes; 3848 u64 end_offset_bytes; 3849 u64 misalign_bits; 3850 u64 align_bytes; 3851 u64 align_bits; 3852 3853 /* Different architectures have different alignment requirements, so 3854 * here we check only for the reasonable minimum. This way we ensure 3855 * that types after CO-RE can pass the kernel BTF verifier. 3856 */ 3857 align_bytes = min_t(u64, sizeof(void *), member_type->size); 3858 align_bits = align_bytes * BITS_PER_BYTE; 3859 div64_u64_rem(member->offset, align_bits, &misalign_bits); 3860 if (misalign_bits) { 3861 btf_verifier_log_member(env, struct_type, member, 3862 "Member is not properly aligned"); 3863 return -EINVAL; 3864 } 3865 3866 start_offset_bytes = member->offset / BITS_PER_BYTE; 3867 end_offset_bytes = start_offset_bytes + member_type->size; 3868 if (end_offset_bytes > struct_type->size) { 3869 btf_verifier_log_member(env, struct_type, member, 3870 "Member exceeds struct_size"); 3871 return -EINVAL; 3872 } 3873 3874 return 0; 3875 } 3876 3877 static void btf_float_log(struct btf_verifier_env *env, 3878 const struct btf_type *t) 3879 { 3880 btf_verifier_log(env, "size=%u", t->size); 3881 } 3882 3883 static const struct btf_kind_operations float_ops = { 3884 .check_meta = btf_float_check_meta, 3885 .resolve = btf_df_resolve, 3886 .check_member = btf_float_check_member, 3887 .check_kflag_member = btf_generic_check_kflag_member, 3888 .log_details = btf_float_log, 3889 .show = btf_df_show, 3890 }; 3891 3892 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 3893 const struct btf_type *t, 3894 u32 meta_left) 3895 { 3896 const struct btf_decl_tag *tag; 3897 u32 meta_needed = sizeof(*tag); 3898 s32 component_idx; 3899 const char *value; 3900 3901 if (meta_left < meta_needed) { 3902 btf_verifier_log_basic(env, t, 3903 "meta_left:%u meta_needed:%u", 3904 meta_left, meta_needed); 3905 return -EINVAL; 3906 } 3907 3908 value = btf_name_by_offset(env->btf, t->name_off); 3909 if (!value || !value[0]) { 3910 btf_verifier_log_type(env, t, "Invalid value"); 3911 return -EINVAL; 3912 } 3913 3914 if (btf_type_vlen(t)) { 3915 btf_verifier_log_type(env, t, "vlen != 0"); 3916 return -EINVAL; 3917 } 3918 3919 if (btf_type_kflag(t)) { 3920 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 3921 return -EINVAL; 3922 } 3923 3924 component_idx = btf_type_decl_tag(t)->component_idx; 3925 if (component_idx < -1) { 3926 btf_verifier_log_type(env, t, "Invalid component_idx"); 3927 return -EINVAL; 3928 } 3929 3930 btf_verifier_log_type(env, t, NULL); 3931 3932 return meta_needed; 3933 } 3934 3935 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 3936 const struct resolve_vertex *v) 3937 { 3938 const struct btf_type *next_type; 3939 const struct btf_type *t = v->t; 3940 u32 next_type_id = t->type; 3941 struct btf *btf = env->btf; 3942 s32 component_idx; 3943 u32 vlen; 3944 3945 next_type = btf_type_by_id(btf, next_type_id); 3946 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 3947 btf_verifier_log_type(env, v->t, "Invalid type_id"); 3948 return -EINVAL; 3949 } 3950 3951 if (!env_type_is_resolve_sink(env, next_type) && 3952 !env_type_is_resolved(env, next_type_id)) 3953 return env_stack_push(env, next_type, next_type_id); 3954 3955 component_idx = btf_type_decl_tag(t)->component_idx; 3956 if (component_idx != -1) { 3957 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 3958 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 3959 return -EINVAL; 3960 } 3961 3962 if (btf_type_is_struct(next_type)) { 3963 vlen = btf_type_vlen(next_type); 3964 } else { 3965 /* next_type should be a function */ 3966 next_type = btf_type_by_id(btf, next_type->type); 3967 vlen = btf_type_vlen(next_type); 3968 } 3969 3970 if ((u32)component_idx >= vlen) { 3971 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 3972 return -EINVAL; 3973 } 3974 } 3975 3976 env_stack_pop_resolved(env, next_type_id, 0); 3977 3978 return 0; 3979 } 3980 3981 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 3982 { 3983 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 3984 btf_type_decl_tag(t)->component_idx); 3985 } 3986 3987 static const struct btf_kind_operations decl_tag_ops = { 3988 .check_meta = btf_decl_tag_check_meta, 3989 .resolve = btf_decl_tag_resolve, 3990 .check_member = btf_df_check_member, 3991 .check_kflag_member = btf_df_check_kflag_member, 3992 .log_details = btf_decl_tag_log, 3993 .show = btf_df_show, 3994 }; 3995 3996 static int btf_func_proto_check(struct btf_verifier_env *env, 3997 const struct btf_type *t) 3998 { 3999 const struct btf_type *ret_type; 4000 const struct btf_param *args; 4001 const struct btf *btf; 4002 u16 nr_args, i; 4003 int err; 4004 4005 btf = env->btf; 4006 args = (const struct btf_param *)(t + 1); 4007 nr_args = btf_type_vlen(t); 4008 4009 /* Check func return type which could be "void" (t->type == 0) */ 4010 if (t->type) { 4011 u32 ret_type_id = t->type; 4012 4013 ret_type = btf_type_by_id(btf, ret_type_id); 4014 if (!ret_type) { 4015 btf_verifier_log_type(env, t, "Invalid return type"); 4016 return -EINVAL; 4017 } 4018 4019 if (btf_type_needs_resolve(ret_type) && 4020 !env_type_is_resolved(env, ret_type_id)) { 4021 err = btf_resolve(env, ret_type, ret_type_id); 4022 if (err) 4023 return err; 4024 } 4025 4026 /* Ensure the return type is a type that has a size */ 4027 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4028 btf_verifier_log_type(env, t, "Invalid return type"); 4029 return -EINVAL; 4030 } 4031 } 4032 4033 if (!nr_args) 4034 return 0; 4035 4036 /* Last func arg type_id could be 0 if it is a vararg */ 4037 if (!args[nr_args - 1].type) { 4038 if (args[nr_args - 1].name_off) { 4039 btf_verifier_log_type(env, t, "Invalid arg#%u", 4040 nr_args); 4041 return -EINVAL; 4042 } 4043 nr_args--; 4044 } 4045 4046 err = 0; 4047 for (i = 0; i < nr_args; i++) { 4048 const struct btf_type *arg_type; 4049 u32 arg_type_id; 4050 4051 arg_type_id = args[i].type; 4052 arg_type = btf_type_by_id(btf, arg_type_id); 4053 if (!arg_type) { 4054 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4055 err = -EINVAL; 4056 break; 4057 } 4058 4059 if (args[i].name_off && 4060 (!btf_name_offset_valid(btf, args[i].name_off) || 4061 !btf_name_valid_identifier(btf, args[i].name_off))) { 4062 btf_verifier_log_type(env, t, 4063 "Invalid arg#%u", i + 1); 4064 err = -EINVAL; 4065 break; 4066 } 4067 4068 if (btf_type_needs_resolve(arg_type) && 4069 !env_type_is_resolved(env, arg_type_id)) { 4070 err = btf_resolve(env, arg_type, arg_type_id); 4071 if (err) 4072 break; 4073 } 4074 4075 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4076 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4077 err = -EINVAL; 4078 break; 4079 } 4080 } 4081 4082 return err; 4083 } 4084 4085 static int btf_func_check(struct btf_verifier_env *env, 4086 const struct btf_type *t) 4087 { 4088 const struct btf_type *proto_type; 4089 const struct btf_param *args; 4090 const struct btf *btf; 4091 u16 nr_args, i; 4092 4093 btf = env->btf; 4094 proto_type = btf_type_by_id(btf, t->type); 4095 4096 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4097 btf_verifier_log_type(env, t, "Invalid type_id"); 4098 return -EINVAL; 4099 } 4100 4101 args = (const struct btf_param *)(proto_type + 1); 4102 nr_args = btf_type_vlen(proto_type); 4103 for (i = 0; i < nr_args; i++) { 4104 if (!args[i].name_off && args[i].type) { 4105 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4106 return -EINVAL; 4107 } 4108 } 4109 4110 return 0; 4111 } 4112 4113 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4114 [BTF_KIND_INT] = &int_ops, 4115 [BTF_KIND_PTR] = &ptr_ops, 4116 [BTF_KIND_ARRAY] = &array_ops, 4117 [BTF_KIND_STRUCT] = &struct_ops, 4118 [BTF_KIND_UNION] = &struct_ops, 4119 [BTF_KIND_ENUM] = &enum_ops, 4120 [BTF_KIND_FWD] = &fwd_ops, 4121 [BTF_KIND_TYPEDEF] = &modifier_ops, 4122 [BTF_KIND_VOLATILE] = &modifier_ops, 4123 [BTF_KIND_CONST] = &modifier_ops, 4124 [BTF_KIND_RESTRICT] = &modifier_ops, 4125 [BTF_KIND_FUNC] = &func_ops, 4126 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4127 [BTF_KIND_VAR] = &var_ops, 4128 [BTF_KIND_DATASEC] = &datasec_ops, 4129 [BTF_KIND_FLOAT] = &float_ops, 4130 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4131 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4132 }; 4133 4134 static s32 btf_check_meta(struct btf_verifier_env *env, 4135 const struct btf_type *t, 4136 u32 meta_left) 4137 { 4138 u32 saved_meta_left = meta_left; 4139 s32 var_meta_size; 4140 4141 if (meta_left < sizeof(*t)) { 4142 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4143 env->log_type_id, meta_left, sizeof(*t)); 4144 return -EINVAL; 4145 } 4146 meta_left -= sizeof(*t); 4147 4148 if (t->info & ~BTF_INFO_MASK) { 4149 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4150 env->log_type_id, t->info); 4151 return -EINVAL; 4152 } 4153 4154 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4155 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4156 btf_verifier_log(env, "[%u] Invalid kind:%u", 4157 env->log_type_id, BTF_INFO_KIND(t->info)); 4158 return -EINVAL; 4159 } 4160 4161 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4162 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4163 env->log_type_id, t->name_off); 4164 return -EINVAL; 4165 } 4166 4167 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4168 if (var_meta_size < 0) 4169 return var_meta_size; 4170 4171 meta_left -= var_meta_size; 4172 4173 return saved_meta_left - meta_left; 4174 } 4175 4176 static int btf_check_all_metas(struct btf_verifier_env *env) 4177 { 4178 struct btf *btf = env->btf; 4179 struct btf_header *hdr; 4180 void *cur, *end; 4181 4182 hdr = &btf->hdr; 4183 cur = btf->nohdr_data + hdr->type_off; 4184 end = cur + hdr->type_len; 4185 4186 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4187 while (cur < end) { 4188 struct btf_type *t = cur; 4189 s32 meta_size; 4190 4191 meta_size = btf_check_meta(env, t, end - cur); 4192 if (meta_size < 0) 4193 return meta_size; 4194 4195 btf_add_type(env, t); 4196 cur += meta_size; 4197 env->log_type_id++; 4198 } 4199 4200 return 0; 4201 } 4202 4203 static bool btf_resolve_valid(struct btf_verifier_env *env, 4204 const struct btf_type *t, 4205 u32 type_id) 4206 { 4207 struct btf *btf = env->btf; 4208 4209 if (!env_type_is_resolved(env, type_id)) 4210 return false; 4211 4212 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 4213 return !btf_resolved_type_id(btf, type_id) && 4214 !btf_resolved_type_size(btf, type_id); 4215 4216 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 4217 return btf_resolved_type_id(btf, type_id) && 4218 !btf_resolved_type_size(btf, type_id); 4219 4220 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 4221 btf_type_is_var(t)) { 4222 t = btf_type_id_resolve(btf, &type_id); 4223 return t && 4224 !btf_type_is_modifier(t) && 4225 !btf_type_is_var(t) && 4226 !btf_type_is_datasec(t); 4227 } 4228 4229 if (btf_type_is_array(t)) { 4230 const struct btf_array *array = btf_type_array(t); 4231 const struct btf_type *elem_type; 4232 u32 elem_type_id = array->type; 4233 u32 elem_size; 4234 4235 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 4236 return elem_type && !btf_type_is_modifier(elem_type) && 4237 (array->nelems * elem_size == 4238 btf_resolved_type_size(btf, type_id)); 4239 } 4240 4241 return false; 4242 } 4243 4244 static int btf_resolve(struct btf_verifier_env *env, 4245 const struct btf_type *t, u32 type_id) 4246 { 4247 u32 save_log_type_id = env->log_type_id; 4248 const struct resolve_vertex *v; 4249 int err = 0; 4250 4251 env->resolve_mode = RESOLVE_TBD; 4252 env_stack_push(env, t, type_id); 4253 while (!err && (v = env_stack_peak(env))) { 4254 env->log_type_id = v->type_id; 4255 err = btf_type_ops(v->t)->resolve(env, v); 4256 } 4257 4258 env->log_type_id = type_id; 4259 if (err == -E2BIG) { 4260 btf_verifier_log_type(env, t, 4261 "Exceeded max resolving depth:%u", 4262 MAX_RESOLVE_DEPTH); 4263 } else if (err == -EEXIST) { 4264 btf_verifier_log_type(env, t, "Loop detected"); 4265 } 4266 4267 /* Final sanity check */ 4268 if (!err && !btf_resolve_valid(env, t, type_id)) { 4269 btf_verifier_log_type(env, t, "Invalid resolve state"); 4270 err = -EINVAL; 4271 } 4272 4273 env->log_type_id = save_log_type_id; 4274 return err; 4275 } 4276 4277 static int btf_check_all_types(struct btf_verifier_env *env) 4278 { 4279 struct btf *btf = env->btf; 4280 const struct btf_type *t; 4281 u32 type_id, i; 4282 int err; 4283 4284 err = env_resolve_init(env); 4285 if (err) 4286 return err; 4287 4288 env->phase++; 4289 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 4290 type_id = btf->start_id + i; 4291 t = btf_type_by_id(btf, type_id); 4292 4293 env->log_type_id = type_id; 4294 if (btf_type_needs_resolve(t) && 4295 !env_type_is_resolved(env, type_id)) { 4296 err = btf_resolve(env, t, type_id); 4297 if (err) 4298 return err; 4299 } 4300 4301 if (btf_type_is_func_proto(t)) { 4302 err = btf_func_proto_check(env, t); 4303 if (err) 4304 return err; 4305 } 4306 } 4307 4308 return 0; 4309 } 4310 4311 static int btf_parse_type_sec(struct btf_verifier_env *env) 4312 { 4313 const struct btf_header *hdr = &env->btf->hdr; 4314 int err; 4315 4316 /* Type section must align to 4 bytes */ 4317 if (hdr->type_off & (sizeof(u32) - 1)) { 4318 btf_verifier_log(env, "Unaligned type_off"); 4319 return -EINVAL; 4320 } 4321 4322 if (!env->btf->base_btf && !hdr->type_len) { 4323 btf_verifier_log(env, "No type found"); 4324 return -EINVAL; 4325 } 4326 4327 err = btf_check_all_metas(env); 4328 if (err) 4329 return err; 4330 4331 return btf_check_all_types(env); 4332 } 4333 4334 static int btf_parse_str_sec(struct btf_verifier_env *env) 4335 { 4336 const struct btf_header *hdr; 4337 struct btf *btf = env->btf; 4338 const char *start, *end; 4339 4340 hdr = &btf->hdr; 4341 start = btf->nohdr_data + hdr->str_off; 4342 end = start + hdr->str_len; 4343 4344 if (end != btf->data + btf->data_size) { 4345 btf_verifier_log(env, "String section is not at the end"); 4346 return -EINVAL; 4347 } 4348 4349 btf->strings = start; 4350 4351 if (btf->base_btf && !hdr->str_len) 4352 return 0; 4353 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 4354 btf_verifier_log(env, "Invalid string section"); 4355 return -EINVAL; 4356 } 4357 if (!btf->base_btf && start[0]) { 4358 btf_verifier_log(env, "Invalid string section"); 4359 return -EINVAL; 4360 } 4361 4362 return 0; 4363 } 4364 4365 static const size_t btf_sec_info_offset[] = { 4366 offsetof(struct btf_header, type_off), 4367 offsetof(struct btf_header, str_off), 4368 }; 4369 4370 static int btf_sec_info_cmp(const void *a, const void *b) 4371 { 4372 const struct btf_sec_info *x = a; 4373 const struct btf_sec_info *y = b; 4374 4375 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 4376 } 4377 4378 static int btf_check_sec_info(struct btf_verifier_env *env, 4379 u32 btf_data_size) 4380 { 4381 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 4382 u32 total, expected_total, i; 4383 const struct btf_header *hdr; 4384 const struct btf *btf; 4385 4386 btf = env->btf; 4387 hdr = &btf->hdr; 4388 4389 /* Populate the secs from hdr */ 4390 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 4391 secs[i] = *(struct btf_sec_info *)((void *)hdr + 4392 btf_sec_info_offset[i]); 4393 4394 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 4395 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 4396 4397 /* Check for gaps and overlap among sections */ 4398 total = 0; 4399 expected_total = btf_data_size - hdr->hdr_len; 4400 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 4401 if (expected_total < secs[i].off) { 4402 btf_verifier_log(env, "Invalid section offset"); 4403 return -EINVAL; 4404 } 4405 if (total < secs[i].off) { 4406 /* gap */ 4407 btf_verifier_log(env, "Unsupported section found"); 4408 return -EINVAL; 4409 } 4410 if (total > secs[i].off) { 4411 btf_verifier_log(env, "Section overlap found"); 4412 return -EINVAL; 4413 } 4414 if (expected_total - total < secs[i].len) { 4415 btf_verifier_log(env, 4416 "Total section length too long"); 4417 return -EINVAL; 4418 } 4419 total += secs[i].len; 4420 } 4421 4422 /* There is data other than hdr and known sections */ 4423 if (expected_total != total) { 4424 btf_verifier_log(env, "Unsupported section found"); 4425 return -EINVAL; 4426 } 4427 4428 return 0; 4429 } 4430 4431 static int btf_parse_hdr(struct btf_verifier_env *env) 4432 { 4433 u32 hdr_len, hdr_copy, btf_data_size; 4434 const struct btf_header *hdr; 4435 struct btf *btf; 4436 int err; 4437 4438 btf = env->btf; 4439 btf_data_size = btf->data_size; 4440 4441 if (btf_data_size < 4442 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 4443 btf_verifier_log(env, "hdr_len not found"); 4444 return -EINVAL; 4445 } 4446 4447 hdr = btf->data; 4448 hdr_len = hdr->hdr_len; 4449 if (btf_data_size < hdr_len) { 4450 btf_verifier_log(env, "btf_header not found"); 4451 return -EINVAL; 4452 } 4453 4454 /* Ensure the unsupported header fields are zero */ 4455 if (hdr_len > sizeof(btf->hdr)) { 4456 u8 *expected_zero = btf->data + sizeof(btf->hdr); 4457 u8 *end = btf->data + hdr_len; 4458 4459 for (; expected_zero < end; expected_zero++) { 4460 if (*expected_zero) { 4461 btf_verifier_log(env, "Unsupported btf_header"); 4462 return -E2BIG; 4463 } 4464 } 4465 } 4466 4467 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 4468 memcpy(&btf->hdr, btf->data, hdr_copy); 4469 4470 hdr = &btf->hdr; 4471 4472 btf_verifier_log_hdr(env, btf_data_size); 4473 4474 if (hdr->magic != BTF_MAGIC) { 4475 btf_verifier_log(env, "Invalid magic"); 4476 return -EINVAL; 4477 } 4478 4479 if (hdr->version != BTF_VERSION) { 4480 btf_verifier_log(env, "Unsupported version"); 4481 return -ENOTSUPP; 4482 } 4483 4484 if (hdr->flags) { 4485 btf_verifier_log(env, "Unsupported flags"); 4486 return -ENOTSUPP; 4487 } 4488 4489 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 4490 btf_verifier_log(env, "No data"); 4491 return -EINVAL; 4492 } 4493 4494 err = btf_check_sec_info(env, btf_data_size); 4495 if (err) 4496 return err; 4497 4498 return 0; 4499 } 4500 4501 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 4502 u32 log_level, char __user *log_ubuf, u32 log_size) 4503 { 4504 struct btf_verifier_env *env = NULL; 4505 struct bpf_verifier_log *log; 4506 struct btf *btf = NULL; 4507 u8 *data; 4508 int err; 4509 4510 if (btf_data_size > BTF_MAX_SIZE) 4511 return ERR_PTR(-E2BIG); 4512 4513 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4514 if (!env) 4515 return ERR_PTR(-ENOMEM); 4516 4517 log = &env->log; 4518 if (log_level || log_ubuf || log_size) { 4519 /* user requested verbose verifier output 4520 * and supplied buffer to store the verification trace 4521 */ 4522 log->level = log_level; 4523 log->ubuf = log_ubuf; 4524 log->len_total = log_size; 4525 4526 /* log attributes have to be sane */ 4527 if (!bpf_verifier_log_attr_valid(log)) { 4528 err = -EINVAL; 4529 goto errout; 4530 } 4531 } 4532 4533 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4534 if (!btf) { 4535 err = -ENOMEM; 4536 goto errout; 4537 } 4538 env->btf = btf; 4539 4540 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 4541 if (!data) { 4542 err = -ENOMEM; 4543 goto errout; 4544 } 4545 4546 btf->data = data; 4547 btf->data_size = btf_data_size; 4548 4549 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 4550 err = -EFAULT; 4551 goto errout; 4552 } 4553 4554 err = btf_parse_hdr(env); 4555 if (err) 4556 goto errout; 4557 4558 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4559 4560 err = btf_parse_str_sec(env); 4561 if (err) 4562 goto errout; 4563 4564 err = btf_parse_type_sec(env); 4565 if (err) 4566 goto errout; 4567 4568 if (log->level && bpf_verifier_log_full(log)) { 4569 err = -ENOSPC; 4570 goto errout; 4571 } 4572 4573 btf_verifier_env_free(env); 4574 refcount_set(&btf->refcnt, 1); 4575 return btf; 4576 4577 errout: 4578 btf_verifier_env_free(env); 4579 if (btf) 4580 btf_free(btf); 4581 return ERR_PTR(err); 4582 } 4583 4584 extern char __weak __start_BTF[]; 4585 extern char __weak __stop_BTF[]; 4586 extern struct btf *btf_vmlinux; 4587 4588 #define BPF_MAP_TYPE(_id, _ops) 4589 #define BPF_LINK_TYPE(_id, _name) 4590 static union { 4591 struct bpf_ctx_convert { 4592 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4593 prog_ctx_type _id##_prog; \ 4594 kern_ctx_type _id##_kern; 4595 #include <linux/bpf_types.h> 4596 #undef BPF_PROG_TYPE 4597 } *__t; 4598 /* 't' is written once under lock. Read many times. */ 4599 const struct btf_type *t; 4600 } bpf_ctx_convert; 4601 enum { 4602 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4603 __ctx_convert##_id, 4604 #include <linux/bpf_types.h> 4605 #undef BPF_PROG_TYPE 4606 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 4607 }; 4608 static u8 bpf_ctx_convert_map[] = { 4609 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 4610 [_id] = __ctx_convert##_id, 4611 #include <linux/bpf_types.h> 4612 #undef BPF_PROG_TYPE 4613 0, /* avoid empty array */ 4614 }; 4615 #undef BPF_MAP_TYPE 4616 #undef BPF_LINK_TYPE 4617 4618 static const struct btf_member * 4619 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 4620 const struct btf_type *t, enum bpf_prog_type prog_type, 4621 int arg) 4622 { 4623 const struct btf_type *conv_struct; 4624 const struct btf_type *ctx_struct; 4625 const struct btf_member *ctx_type; 4626 const char *tname, *ctx_tname; 4627 4628 conv_struct = bpf_ctx_convert.t; 4629 if (!conv_struct) { 4630 bpf_log(log, "btf_vmlinux is malformed\n"); 4631 return NULL; 4632 } 4633 t = btf_type_by_id(btf, t->type); 4634 while (btf_type_is_modifier(t)) 4635 t = btf_type_by_id(btf, t->type); 4636 if (!btf_type_is_struct(t)) { 4637 /* Only pointer to struct is supported for now. 4638 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 4639 * is not supported yet. 4640 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 4641 */ 4642 return NULL; 4643 } 4644 tname = btf_name_by_offset(btf, t->name_off); 4645 if (!tname) { 4646 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 4647 return NULL; 4648 } 4649 /* prog_type is valid bpf program type. No need for bounds check. */ 4650 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 4651 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 4652 * Like 'struct __sk_buff' 4653 */ 4654 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 4655 if (!ctx_struct) 4656 /* should not happen */ 4657 return NULL; 4658 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 4659 if (!ctx_tname) { 4660 /* should not happen */ 4661 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 4662 return NULL; 4663 } 4664 /* only compare that prog's ctx type name is the same as 4665 * kernel expects. No need to compare field by field. 4666 * It's ok for bpf prog to do: 4667 * struct __sk_buff {}; 4668 * int socket_filter_bpf_prog(struct __sk_buff *skb) 4669 * { // no fields of skb are ever used } 4670 */ 4671 if (strcmp(ctx_tname, tname)) 4672 return NULL; 4673 return ctx_type; 4674 } 4675 4676 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = { 4677 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) 4678 #define BPF_LINK_TYPE(_id, _name) 4679 #define BPF_MAP_TYPE(_id, _ops) \ 4680 [_id] = &_ops, 4681 #include <linux/bpf_types.h> 4682 #undef BPF_PROG_TYPE 4683 #undef BPF_LINK_TYPE 4684 #undef BPF_MAP_TYPE 4685 }; 4686 4687 static int btf_vmlinux_map_ids_init(const struct btf *btf, 4688 struct bpf_verifier_log *log) 4689 { 4690 const struct bpf_map_ops *ops; 4691 int i, btf_id; 4692 4693 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) { 4694 ops = btf_vmlinux_map_ops[i]; 4695 if (!ops || (!ops->map_btf_name && !ops->map_btf_id)) 4696 continue; 4697 if (!ops->map_btf_name || !ops->map_btf_id) { 4698 bpf_log(log, "map type %d is misconfigured\n", i); 4699 return -EINVAL; 4700 } 4701 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name, 4702 BTF_KIND_STRUCT); 4703 if (btf_id < 0) 4704 return btf_id; 4705 *ops->map_btf_id = btf_id; 4706 } 4707 4708 return 0; 4709 } 4710 4711 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 4712 struct btf *btf, 4713 const struct btf_type *t, 4714 enum bpf_prog_type prog_type, 4715 int arg) 4716 { 4717 const struct btf_member *prog_ctx_type, *kern_ctx_type; 4718 4719 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 4720 if (!prog_ctx_type) 4721 return -ENOENT; 4722 kern_ctx_type = prog_ctx_type + 1; 4723 return kern_ctx_type->type; 4724 } 4725 4726 BTF_ID_LIST(bpf_ctx_convert_btf_id) 4727 BTF_ID(struct, bpf_ctx_convert) 4728 4729 struct btf *btf_parse_vmlinux(void) 4730 { 4731 struct btf_verifier_env *env = NULL; 4732 struct bpf_verifier_log *log; 4733 struct btf *btf = NULL; 4734 int err; 4735 4736 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4737 if (!env) 4738 return ERR_PTR(-ENOMEM); 4739 4740 log = &env->log; 4741 log->level = BPF_LOG_KERNEL; 4742 4743 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4744 if (!btf) { 4745 err = -ENOMEM; 4746 goto errout; 4747 } 4748 env->btf = btf; 4749 4750 btf->data = __start_BTF; 4751 btf->data_size = __stop_BTF - __start_BTF; 4752 btf->kernel_btf = true; 4753 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 4754 4755 err = btf_parse_hdr(env); 4756 if (err) 4757 goto errout; 4758 4759 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4760 4761 err = btf_parse_str_sec(env); 4762 if (err) 4763 goto errout; 4764 4765 err = btf_check_all_metas(env); 4766 if (err) 4767 goto errout; 4768 4769 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 4770 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 4771 4772 /* find bpf map structs for map_ptr access checking */ 4773 err = btf_vmlinux_map_ids_init(btf, log); 4774 if (err < 0) 4775 goto errout; 4776 4777 bpf_struct_ops_init(btf, log); 4778 4779 refcount_set(&btf->refcnt, 1); 4780 4781 err = btf_alloc_id(btf); 4782 if (err) 4783 goto errout; 4784 4785 btf_verifier_env_free(env); 4786 return btf; 4787 4788 errout: 4789 btf_verifier_env_free(env); 4790 if (btf) { 4791 kvfree(btf->types); 4792 kfree(btf); 4793 } 4794 return ERR_PTR(err); 4795 } 4796 4797 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 4798 4799 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 4800 { 4801 struct btf_verifier_env *env = NULL; 4802 struct bpf_verifier_log *log; 4803 struct btf *btf = NULL, *base_btf; 4804 int err; 4805 4806 base_btf = bpf_get_btf_vmlinux(); 4807 if (IS_ERR(base_btf)) 4808 return base_btf; 4809 if (!base_btf) 4810 return ERR_PTR(-EINVAL); 4811 4812 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 4813 if (!env) 4814 return ERR_PTR(-ENOMEM); 4815 4816 log = &env->log; 4817 log->level = BPF_LOG_KERNEL; 4818 4819 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 4820 if (!btf) { 4821 err = -ENOMEM; 4822 goto errout; 4823 } 4824 env->btf = btf; 4825 4826 btf->base_btf = base_btf; 4827 btf->start_id = base_btf->nr_types; 4828 btf->start_str_off = base_btf->hdr.str_len; 4829 btf->kernel_btf = true; 4830 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 4831 4832 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 4833 if (!btf->data) { 4834 err = -ENOMEM; 4835 goto errout; 4836 } 4837 memcpy(btf->data, data, data_size); 4838 btf->data_size = data_size; 4839 4840 err = btf_parse_hdr(env); 4841 if (err) 4842 goto errout; 4843 4844 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 4845 4846 err = btf_parse_str_sec(env); 4847 if (err) 4848 goto errout; 4849 4850 err = btf_check_all_metas(env); 4851 if (err) 4852 goto errout; 4853 4854 btf_verifier_env_free(env); 4855 refcount_set(&btf->refcnt, 1); 4856 return btf; 4857 4858 errout: 4859 btf_verifier_env_free(env); 4860 if (btf) { 4861 kvfree(btf->data); 4862 kvfree(btf->types); 4863 kfree(btf); 4864 } 4865 return ERR_PTR(err); 4866 } 4867 4868 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 4869 4870 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 4871 { 4872 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4873 4874 if (tgt_prog) 4875 return tgt_prog->aux->btf; 4876 else 4877 return prog->aux->attach_btf; 4878 } 4879 4880 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 4881 { 4882 /* t comes in already as a pointer */ 4883 t = btf_type_by_id(btf, t->type); 4884 4885 /* allow const */ 4886 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 4887 t = btf_type_by_id(btf, t->type); 4888 4889 return btf_type_is_int(t); 4890 } 4891 4892 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 4893 const struct bpf_prog *prog, 4894 struct bpf_insn_access_aux *info) 4895 { 4896 const struct btf_type *t = prog->aux->attach_func_proto; 4897 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 4898 struct btf *btf = bpf_prog_get_target_btf(prog); 4899 const char *tname = prog->aux->attach_func_name; 4900 struct bpf_verifier_log *log = info->log; 4901 const struct btf_param *args; 4902 const char *tag_value; 4903 u32 nr_args, arg; 4904 int i, ret; 4905 4906 if (off % 8) { 4907 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 4908 tname, off); 4909 return false; 4910 } 4911 arg = off / 8; 4912 args = (const struct btf_param *)(t + 1); 4913 /* if (t == NULL) Fall back to default BPF prog with 4914 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 4915 */ 4916 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 4917 if (prog->aux->attach_btf_trace) { 4918 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 4919 args++; 4920 nr_args--; 4921 } 4922 4923 if (arg > nr_args) { 4924 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4925 tname, arg + 1); 4926 return false; 4927 } 4928 4929 if (arg == nr_args) { 4930 switch (prog->expected_attach_type) { 4931 case BPF_LSM_MAC: 4932 case BPF_TRACE_FEXIT: 4933 /* When LSM programs are attached to void LSM hooks 4934 * they use FEXIT trampolines and when attached to 4935 * int LSM hooks, they use MODIFY_RETURN trampolines. 4936 * 4937 * While the LSM programs are BPF_MODIFY_RETURN-like 4938 * the check: 4939 * 4940 * if (ret_type != 'int') 4941 * return -EINVAL; 4942 * 4943 * is _not_ done here. This is still safe as LSM hooks 4944 * have only void and int return types. 4945 */ 4946 if (!t) 4947 return true; 4948 t = btf_type_by_id(btf, t->type); 4949 break; 4950 case BPF_MODIFY_RETURN: 4951 /* For now the BPF_MODIFY_RETURN can only be attached to 4952 * functions that return an int. 4953 */ 4954 if (!t) 4955 return false; 4956 4957 t = btf_type_skip_modifiers(btf, t->type, NULL); 4958 if (!btf_type_is_small_int(t)) { 4959 bpf_log(log, 4960 "ret type %s not allowed for fmod_ret\n", 4961 btf_kind_str[BTF_INFO_KIND(t->info)]); 4962 return false; 4963 } 4964 break; 4965 default: 4966 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 4967 tname, arg + 1); 4968 return false; 4969 } 4970 } else { 4971 if (!t) 4972 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 4973 return true; 4974 t = btf_type_by_id(btf, args[arg].type); 4975 } 4976 4977 /* skip modifiers */ 4978 while (btf_type_is_modifier(t)) 4979 t = btf_type_by_id(btf, t->type); 4980 if (btf_type_is_small_int(t) || btf_type_is_enum(t)) 4981 /* accessing a scalar */ 4982 return true; 4983 if (!btf_type_is_ptr(t)) { 4984 bpf_log(log, 4985 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 4986 tname, arg, 4987 __btf_name_by_offset(btf, t->name_off), 4988 btf_kind_str[BTF_INFO_KIND(t->info)]); 4989 return false; 4990 } 4991 4992 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 4993 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 4994 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 4995 u32 type, flag; 4996 4997 type = base_type(ctx_arg_info->reg_type); 4998 flag = type_flag(ctx_arg_info->reg_type); 4999 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 5000 (flag & PTR_MAYBE_NULL)) { 5001 info->reg_type = ctx_arg_info->reg_type; 5002 return true; 5003 } 5004 } 5005 5006 if (t->type == 0) 5007 /* This is a pointer to void. 5008 * It is the same as scalar from the verifier safety pov. 5009 * No further pointer walking is allowed. 5010 */ 5011 return true; 5012 5013 if (is_int_ptr(btf, t)) 5014 return true; 5015 5016 /* this is a pointer to another type */ 5017 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 5018 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 5019 5020 if (ctx_arg_info->offset == off) { 5021 if (!ctx_arg_info->btf_id) { 5022 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 5023 return false; 5024 } 5025 5026 info->reg_type = ctx_arg_info->reg_type; 5027 info->btf = btf_vmlinux; 5028 info->btf_id = ctx_arg_info->btf_id; 5029 return true; 5030 } 5031 } 5032 5033 info->reg_type = PTR_TO_BTF_ID; 5034 if (tgt_prog) { 5035 enum bpf_prog_type tgt_type; 5036 5037 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 5038 tgt_type = tgt_prog->aux->saved_dst_prog_type; 5039 else 5040 tgt_type = tgt_prog->type; 5041 5042 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 5043 if (ret > 0) { 5044 info->btf = btf_vmlinux; 5045 info->btf_id = ret; 5046 return true; 5047 } else { 5048 return false; 5049 } 5050 } 5051 5052 info->btf = btf; 5053 info->btf_id = t->type; 5054 t = btf_type_by_id(btf, t->type); 5055 5056 if (btf_type_is_type_tag(t)) { 5057 tag_value = __btf_name_by_offset(btf, t->name_off); 5058 if (strcmp(tag_value, "user") == 0) 5059 info->reg_type |= MEM_USER; 5060 } 5061 5062 /* skip modifiers */ 5063 while (btf_type_is_modifier(t)) { 5064 info->btf_id = t->type; 5065 t = btf_type_by_id(btf, t->type); 5066 } 5067 if (!btf_type_is_struct(t)) { 5068 bpf_log(log, 5069 "func '%s' arg%d type %s is not a struct\n", 5070 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]); 5071 return false; 5072 } 5073 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 5074 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)], 5075 __btf_name_by_offset(btf, t->name_off)); 5076 return true; 5077 } 5078 5079 enum bpf_struct_walk_result { 5080 /* < 0 error */ 5081 WALK_SCALAR = 0, 5082 WALK_PTR, 5083 WALK_STRUCT, 5084 }; 5085 5086 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 5087 const struct btf_type *t, int off, int size, 5088 u32 *next_btf_id, enum bpf_type_flag *flag) 5089 { 5090 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 5091 const struct btf_type *mtype, *elem_type = NULL; 5092 const struct btf_member *member; 5093 const char *tname, *mname, *tag_value; 5094 u32 vlen, elem_id, mid; 5095 5096 again: 5097 tname = __btf_name_by_offset(btf, t->name_off); 5098 if (!btf_type_is_struct(t)) { 5099 bpf_log(log, "Type '%s' is not a struct\n", tname); 5100 return -EINVAL; 5101 } 5102 5103 vlen = btf_type_vlen(t); 5104 if (off + size > t->size) { 5105 /* If the last element is a variable size array, we may 5106 * need to relax the rule. 5107 */ 5108 struct btf_array *array_elem; 5109 5110 if (vlen == 0) 5111 goto error; 5112 5113 member = btf_type_member(t) + vlen - 1; 5114 mtype = btf_type_skip_modifiers(btf, member->type, 5115 NULL); 5116 if (!btf_type_is_array(mtype)) 5117 goto error; 5118 5119 array_elem = (struct btf_array *)(mtype + 1); 5120 if (array_elem->nelems != 0) 5121 goto error; 5122 5123 moff = __btf_member_bit_offset(t, member) / 8; 5124 if (off < moff) 5125 goto error; 5126 5127 /* Only allow structure for now, can be relaxed for 5128 * other types later. 5129 */ 5130 t = btf_type_skip_modifiers(btf, array_elem->type, 5131 NULL); 5132 if (!btf_type_is_struct(t)) 5133 goto error; 5134 5135 off = (off - moff) % t->size; 5136 goto again; 5137 5138 error: 5139 bpf_log(log, "access beyond struct %s at off %u size %u\n", 5140 tname, off, size); 5141 return -EACCES; 5142 } 5143 5144 for_each_member(i, t, member) { 5145 /* offset of the field in bytes */ 5146 moff = __btf_member_bit_offset(t, member) / 8; 5147 if (off + size <= moff) 5148 /* won't find anything, field is already too far */ 5149 break; 5150 5151 if (__btf_member_bitfield_size(t, member)) { 5152 u32 end_bit = __btf_member_bit_offset(t, member) + 5153 __btf_member_bitfield_size(t, member); 5154 5155 /* off <= moff instead of off == moff because clang 5156 * does not generate a BTF member for anonymous 5157 * bitfield like the ":16" here: 5158 * struct { 5159 * int :16; 5160 * int x:8; 5161 * }; 5162 */ 5163 if (off <= moff && 5164 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 5165 return WALK_SCALAR; 5166 5167 /* off may be accessing a following member 5168 * 5169 * or 5170 * 5171 * Doing partial access at either end of this 5172 * bitfield. Continue on this case also to 5173 * treat it as not accessing this bitfield 5174 * and eventually error out as field not 5175 * found to keep it simple. 5176 * It could be relaxed if there was a legit 5177 * partial access case later. 5178 */ 5179 continue; 5180 } 5181 5182 /* In case of "off" is pointing to holes of a struct */ 5183 if (off < moff) 5184 break; 5185 5186 /* type of the field */ 5187 mid = member->type; 5188 mtype = btf_type_by_id(btf, member->type); 5189 mname = __btf_name_by_offset(btf, member->name_off); 5190 5191 mtype = __btf_resolve_size(btf, mtype, &msize, 5192 &elem_type, &elem_id, &total_nelems, 5193 &mid); 5194 if (IS_ERR(mtype)) { 5195 bpf_log(log, "field %s doesn't have size\n", mname); 5196 return -EFAULT; 5197 } 5198 5199 mtrue_end = moff + msize; 5200 if (off >= mtrue_end) 5201 /* no overlap with member, keep iterating */ 5202 continue; 5203 5204 if (btf_type_is_array(mtype)) { 5205 u32 elem_idx; 5206 5207 /* __btf_resolve_size() above helps to 5208 * linearize a multi-dimensional array. 5209 * 5210 * The logic here is treating an array 5211 * in a struct as the following way: 5212 * 5213 * struct outer { 5214 * struct inner array[2][2]; 5215 * }; 5216 * 5217 * looks like: 5218 * 5219 * struct outer { 5220 * struct inner array_elem0; 5221 * struct inner array_elem1; 5222 * struct inner array_elem2; 5223 * struct inner array_elem3; 5224 * }; 5225 * 5226 * When accessing outer->array[1][0], it moves 5227 * moff to "array_elem2", set mtype to 5228 * "struct inner", and msize also becomes 5229 * sizeof(struct inner). Then most of the 5230 * remaining logic will fall through without 5231 * caring the current member is an array or 5232 * not. 5233 * 5234 * Unlike mtype/msize/moff, mtrue_end does not 5235 * change. The naming difference ("_true") tells 5236 * that it is not always corresponding to 5237 * the current mtype/msize/moff. 5238 * It is the true end of the current 5239 * member (i.e. array in this case). That 5240 * will allow an int array to be accessed like 5241 * a scratch space, 5242 * i.e. allow access beyond the size of 5243 * the array's element as long as it is 5244 * within the mtrue_end boundary. 5245 */ 5246 5247 /* skip empty array */ 5248 if (moff == mtrue_end) 5249 continue; 5250 5251 msize /= total_nelems; 5252 elem_idx = (off - moff) / msize; 5253 moff += elem_idx * msize; 5254 mtype = elem_type; 5255 mid = elem_id; 5256 } 5257 5258 /* the 'off' we're looking for is either equal to start 5259 * of this field or inside of this struct 5260 */ 5261 if (btf_type_is_struct(mtype)) { 5262 /* our field must be inside that union or struct */ 5263 t = mtype; 5264 5265 /* return if the offset matches the member offset */ 5266 if (off == moff) { 5267 *next_btf_id = mid; 5268 return WALK_STRUCT; 5269 } 5270 5271 /* adjust offset we're looking for */ 5272 off -= moff; 5273 goto again; 5274 } 5275 5276 if (btf_type_is_ptr(mtype)) { 5277 const struct btf_type *stype, *t; 5278 enum bpf_type_flag tmp_flag = 0; 5279 u32 id; 5280 5281 if (msize != size || off != moff) { 5282 bpf_log(log, 5283 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 5284 mname, moff, tname, off, size); 5285 return -EACCES; 5286 } 5287 5288 /* check __user tag */ 5289 t = btf_type_by_id(btf, mtype->type); 5290 if (btf_type_is_type_tag(t)) { 5291 tag_value = __btf_name_by_offset(btf, t->name_off); 5292 if (strcmp(tag_value, "user") == 0) 5293 tmp_flag = MEM_USER; 5294 } 5295 5296 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 5297 if (btf_type_is_struct(stype)) { 5298 *next_btf_id = id; 5299 *flag = tmp_flag; 5300 return WALK_PTR; 5301 } 5302 } 5303 5304 /* Allow more flexible access within an int as long as 5305 * it is within mtrue_end. 5306 * Since mtrue_end could be the end of an array, 5307 * that also allows using an array of int as a scratch 5308 * space. e.g. skb->cb[]. 5309 */ 5310 if (off + size > mtrue_end) { 5311 bpf_log(log, 5312 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 5313 mname, mtrue_end, tname, off, size); 5314 return -EACCES; 5315 } 5316 5317 return WALK_SCALAR; 5318 } 5319 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 5320 return -EINVAL; 5321 } 5322 5323 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf, 5324 const struct btf_type *t, int off, int size, 5325 enum bpf_access_type atype __maybe_unused, 5326 u32 *next_btf_id, enum bpf_type_flag *flag) 5327 { 5328 enum bpf_type_flag tmp_flag = 0; 5329 int err; 5330 u32 id; 5331 5332 do { 5333 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); 5334 5335 switch (err) { 5336 case WALK_PTR: 5337 /* If we found the pointer or scalar on t+off, 5338 * we're done. 5339 */ 5340 *next_btf_id = id; 5341 *flag = tmp_flag; 5342 return PTR_TO_BTF_ID; 5343 case WALK_SCALAR: 5344 return SCALAR_VALUE; 5345 case WALK_STRUCT: 5346 /* We found nested struct, so continue the search 5347 * by diving in it. At this point the offset is 5348 * aligned with the new type, so set it to 0. 5349 */ 5350 t = btf_type_by_id(btf, id); 5351 off = 0; 5352 break; 5353 default: 5354 /* It's either error or unknown return value.. 5355 * scream and leave. 5356 */ 5357 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 5358 return -EINVAL; 5359 return err; 5360 } 5361 } while (t); 5362 5363 return -EINVAL; 5364 } 5365 5366 /* Check that two BTF types, each specified as an BTF object + id, are exactly 5367 * the same. Trivial ID check is not enough due to module BTFs, because we can 5368 * end up with two different module BTFs, but IDs point to the common type in 5369 * vmlinux BTF. 5370 */ 5371 static bool btf_types_are_same(const struct btf *btf1, u32 id1, 5372 const struct btf *btf2, u32 id2) 5373 { 5374 if (id1 != id2) 5375 return false; 5376 if (btf1 == btf2) 5377 return true; 5378 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 5379 } 5380 5381 bool btf_struct_ids_match(struct bpf_verifier_log *log, 5382 const struct btf *btf, u32 id, int off, 5383 const struct btf *need_btf, u32 need_type_id) 5384 { 5385 const struct btf_type *type; 5386 enum bpf_type_flag flag; 5387 int err; 5388 5389 /* Are we already done? */ 5390 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 5391 return true; 5392 5393 again: 5394 type = btf_type_by_id(btf, id); 5395 if (!type) 5396 return false; 5397 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); 5398 if (err != WALK_STRUCT) 5399 return false; 5400 5401 /* We found nested struct object. If it matches 5402 * the requested ID, we're done. Otherwise let's 5403 * continue the search with offset 0 in the new 5404 * type. 5405 */ 5406 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 5407 off = 0; 5408 goto again; 5409 } 5410 5411 return true; 5412 } 5413 5414 static int __get_type_size(struct btf *btf, u32 btf_id, 5415 const struct btf_type **bad_type) 5416 { 5417 const struct btf_type *t; 5418 5419 if (!btf_id) 5420 /* void */ 5421 return 0; 5422 t = btf_type_by_id(btf, btf_id); 5423 while (t && btf_type_is_modifier(t)) 5424 t = btf_type_by_id(btf, t->type); 5425 if (!t) { 5426 *bad_type = btf_type_by_id(btf, 0); 5427 return -EINVAL; 5428 } 5429 if (btf_type_is_ptr(t)) 5430 /* kernel size of pointer. Not BPF's size of pointer*/ 5431 return sizeof(void *); 5432 if (btf_type_is_int(t) || btf_type_is_enum(t)) 5433 return t->size; 5434 *bad_type = t; 5435 return -EINVAL; 5436 } 5437 5438 int btf_distill_func_proto(struct bpf_verifier_log *log, 5439 struct btf *btf, 5440 const struct btf_type *func, 5441 const char *tname, 5442 struct btf_func_model *m) 5443 { 5444 const struct btf_param *args; 5445 const struct btf_type *t; 5446 u32 i, nargs; 5447 int ret; 5448 5449 if (!func) { 5450 /* BTF function prototype doesn't match the verifier types. 5451 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 5452 */ 5453 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) 5454 m->arg_size[i] = 8; 5455 m->ret_size = 8; 5456 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 5457 return 0; 5458 } 5459 args = (const struct btf_param *)(func + 1); 5460 nargs = btf_type_vlen(func); 5461 if (nargs >= MAX_BPF_FUNC_ARGS) { 5462 bpf_log(log, 5463 "The function %s has %d arguments. Too many.\n", 5464 tname, nargs); 5465 return -EINVAL; 5466 } 5467 ret = __get_type_size(btf, func->type, &t); 5468 if (ret < 0) { 5469 bpf_log(log, 5470 "The function %s return type %s is unsupported.\n", 5471 tname, btf_kind_str[BTF_INFO_KIND(t->info)]); 5472 return -EINVAL; 5473 } 5474 m->ret_size = ret; 5475 5476 for (i = 0; i < nargs; i++) { 5477 if (i == nargs - 1 && args[i].type == 0) { 5478 bpf_log(log, 5479 "The function %s with variable args is unsupported.\n", 5480 tname); 5481 return -EINVAL; 5482 } 5483 ret = __get_type_size(btf, args[i].type, &t); 5484 if (ret < 0) { 5485 bpf_log(log, 5486 "The function %s arg%d type %s is unsupported.\n", 5487 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]); 5488 return -EINVAL; 5489 } 5490 if (ret == 0) { 5491 bpf_log(log, 5492 "The function %s has malformed void argument.\n", 5493 tname); 5494 return -EINVAL; 5495 } 5496 m->arg_size[i] = ret; 5497 } 5498 m->nr_args = nargs; 5499 return 0; 5500 } 5501 5502 /* Compare BTFs of two functions assuming only scalars and pointers to context. 5503 * t1 points to BTF_KIND_FUNC in btf1 5504 * t2 points to BTF_KIND_FUNC in btf2 5505 * Returns: 5506 * EINVAL - function prototype mismatch 5507 * EFAULT - verifier bug 5508 * 0 - 99% match. The last 1% is validated by the verifier. 5509 */ 5510 static int btf_check_func_type_match(struct bpf_verifier_log *log, 5511 struct btf *btf1, const struct btf_type *t1, 5512 struct btf *btf2, const struct btf_type *t2) 5513 { 5514 const struct btf_param *args1, *args2; 5515 const char *fn1, *fn2, *s1, *s2; 5516 u32 nargs1, nargs2, i; 5517 5518 fn1 = btf_name_by_offset(btf1, t1->name_off); 5519 fn2 = btf_name_by_offset(btf2, t2->name_off); 5520 5521 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 5522 bpf_log(log, "%s() is not a global function\n", fn1); 5523 return -EINVAL; 5524 } 5525 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 5526 bpf_log(log, "%s() is not a global function\n", fn2); 5527 return -EINVAL; 5528 } 5529 5530 t1 = btf_type_by_id(btf1, t1->type); 5531 if (!t1 || !btf_type_is_func_proto(t1)) 5532 return -EFAULT; 5533 t2 = btf_type_by_id(btf2, t2->type); 5534 if (!t2 || !btf_type_is_func_proto(t2)) 5535 return -EFAULT; 5536 5537 args1 = (const struct btf_param *)(t1 + 1); 5538 nargs1 = btf_type_vlen(t1); 5539 args2 = (const struct btf_param *)(t2 + 1); 5540 nargs2 = btf_type_vlen(t2); 5541 5542 if (nargs1 != nargs2) { 5543 bpf_log(log, "%s() has %d args while %s() has %d args\n", 5544 fn1, nargs1, fn2, nargs2); 5545 return -EINVAL; 5546 } 5547 5548 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5549 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5550 if (t1->info != t2->info) { 5551 bpf_log(log, 5552 "Return type %s of %s() doesn't match type %s of %s()\n", 5553 btf_type_str(t1), fn1, 5554 btf_type_str(t2), fn2); 5555 return -EINVAL; 5556 } 5557 5558 for (i = 0; i < nargs1; i++) { 5559 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 5560 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 5561 5562 if (t1->info != t2->info) { 5563 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 5564 i, fn1, btf_type_str(t1), 5565 fn2, btf_type_str(t2)); 5566 return -EINVAL; 5567 } 5568 if (btf_type_has_size(t1) && t1->size != t2->size) { 5569 bpf_log(log, 5570 "arg%d in %s() has size %d while %s() has %d\n", 5571 i, fn1, t1->size, 5572 fn2, t2->size); 5573 return -EINVAL; 5574 } 5575 5576 /* global functions are validated with scalars and pointers 5577 * to context only. And only global functions can be replaced. 5578 * Hence type check only those types. 5579 */ 5580 if (btf_type_is_int(t1) || btf_type_is_enum(t1)) 5581 continue; 5582 if (!btf_type_is_ptr(t1)) { 5583 bpf_log(log, 5584 "arg%d in %s() has unrecognized type\n", 5585 i, fn1); 5586 return -EINVAL; 5587 } 5588 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 5589 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 5590 if (!btf_type_is_struct(t1)) { 5591 bpf_log(log, 5592 "arg%d in %s() is not a pointer to context\n", 5593 i, fn1); 5594 return -EINVAL; 5595 } 5596 if (!btf_type_is_struct(t2)) { 5597 bpf_log(log, 5598 "arg%d in %s() is not a pointer to context\n", 5599 i, fn2); 5600 return -EINVAL; 5601 } 5602 /* This is an optional check to make program writing easier. 5603 * Compare names of structs and report an error to the user. 5604 * btf_prepare_func_args() already checked that t2 struct 5605 * is a context type. btf_prepare_func_args() will check 5606 * later that t1 struct is a context type as well. 5607 */ 5608 s1 = btf_name_by_offset(btf1, t1->name_off); 5609 s2 = btf_name_by_offset(btf2, t2->name_off); 5610 if (strcmp(s1, s2)) { 5611 bpf_log(log, 5612 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 5613 i, fn1, s1, fn2, s2); 5614 return -EINVAL; 5615 } 5616 } 5617 return 0; 5618 } 5619 5620 /* Compare BTFs of given program with BTF of target program */ 5621 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 5622 struct btf *btf2, const struct btf_type *t2) 5623 { 5624 struct btf *btf1 = prog->aux->btf; 5625 const struct btf_type *t1; 5626 u32 btf_id = 0; 5627 5628 if (!prog->aux->func_info) { 5629 bpf_log(log, "Program extension requires BTF\n"); 5630 return -EINVAL; 5631 } 5632 5633 btf_id = prog->aux->func_info[0].type_id; 5634 if (!btf_id) 5635 return -EFAULT; 5636 5637 t1 = btf_type_by_id(btf1, btf_id); 5638 if (!t1 || !btf_type_is_func(t1)) 5639 return -EFAULT; 5640 5641 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 5642 } 5643 5644 static u32 *reg2btf_ids[__BPF_REG_TYPE_MAX] = { 5645 #ifdef CONFIG_NET 5646 [PTR_TO_SOCKET] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK], 5647 [PTR_TO_SOCK_COMMON] = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON], 5648 [PTR_TO_TCP_SOCK] = &btf_sock_ids[BTF_SOCK_TYPE_TCP], 5649 #endif 5650 }; 5651 5652 /* Returns true if struct is composed of scalars, 4 levels of nesting allowed */ 5653 static bool __btf_type_is_scalar_struct(struct bpf_verifier_log *log, 5654 const struct btf *btf, 5655 const struct btf_type *t, int rec) 5656 { 5657 const struct btf_type *member_type; 5658 const struct btf_member *member; 5659 u32 i; 5660 5661 if (!btf_type_is_struct(t)) 5662 return false; 5663 5664 for_each_member(i, t, member) { 5665 const struct btf_array *array; 5666 5667 member_type = btf_type_skip_modifiers(btf, member->type, NULL); 5668 if (btf_type_is_struct(member_type)) { 5669 if (rec >= 3) { 5670 bpf_log(log, "max struct nesting depth exceeded\n"); 5671 return false; 5672 } 5673 if (!__btf_type_is_scalar_struct(log, btf, member_type, rec + 1)) 5674 return false; 5675 continue; 5676 } 5677 if (btf_type_is_array(member_type)) { 5678 array = btf_type_array(member_type); 5679 if (!array->nelems) 5680 return false; 5681 member_type = btf_type_skip_modifiers(btf, array->type, NULL); 5682 if (!btf_type_is_scalar(member_type)) 5683 return false; 5684 continue; 5685 } 5686 if (!btf_type_is_scalar(member_type)) 5687 return false; 5688 } 5689 return true; 5690 } 5691 5692 static bool is_kfunc_arg_mem_size(const struct btf *btf, 5693 const struct btf_param *arg, 5694 const struct bpf_reg_state *reg) 5695 { 5696 int len, sfx_len = sizeof("__sz") - 1; 5697 const struct btf_type *t; 5698 const char *param_name; 5699 5700 t = btf_type_skip_modifiers(btf, arg->type, NULL); 5701 if (!btf_type_is_scalar(t) || reg->type != SCALAR_VALUE) 5702 return false; 5703 5704 /* In the future, this can be ported to use BTF tagging */ 5705 param_name = btf_name_by_offset(btf, arg->name_off); 5706 if (str_is_empty(param_name)) 5707 return false; 5708 len = strlen(param_name); 5709 if (len < sfx_len) 5710 return false; 5711 param_name += len - sfx_len; 5712 if (strncmp(param_name, "__sz", sfx_len)) 5713 return false; 5714 5715 return true; 5716 } 5717 5718 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 5719 const struct btf *btf, u32 func_id, 5720 struct bpf_reg_state *regs, 5721 bool ptr_to_mem_ok) 5722 { 5723 struct bpf_verifier_log *log = &env->log; 5724 u32 i, nargs, ref_id, ref_obj_id = 0; 5725 bool is_kfunc = btf_is_kernel(btf); 5726 const char *func_name, *ref_tname; 5727 const struct btf_type *t, *ref_t; 5728 const struct btf_param *args; 5729 int ref_regno = 0; 5730 bool rel = false; 5731 5732 t = btf_type_by_id(btf, func_id); 5733 if (!t || !btf_type_is_func(t)) { 5734 /* These checks were already done by the verifier while loading 5735 * struct bpf_func_info or in add_kfunc_call(). 5736 */ 5737 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 5738 func_id); 5739 return -EFAULT; 5740 } 5741 func_name = btf_name_by_offset(btf, t->name_off); 5742 5743 t = btf_type_by_id(btf, t->type); 5744 if (!t || !btf_type_is_func_proto(t)) { 5745 bpf_log(log, "Invalid BTF of func %s\n", func_name); 5746 return -EFAULT; 5747 } 5748 args = (const struct btf_param *)(t + 1); 5749 nargs = btf_type_vlen(t); 5750 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 5751 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 5752 MAX_BPF_FUNC_REG_ARGS); 5753 return -EINVAL; 5754 } 5755 5756 /* check that BTF function arguments match actual types that the 5757 * verifier sees. 5758 */ 5759 for (i = 0; i < nargs; i++) { 5760 u32 regno = i + 1; 5761 struct bpf_reg_state *reg = ®s[regno]; 5762 5763 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5764 if (btf_type_is_scalar(t)) { 5765 if (reg->type == SCALAR_VALUE) 5766 continue; 5767 bpf_log(log, "R%d is not a scalar\n", regno); 5768 return -EINVAL; 5769 } 5770 5771 if (!btf_type_is_ptr(t)) { 5772 bpf_log(log, "Unrecognized arg#%d type %s\n", 5773 i, btf_type_str(t)); 5774 return -EINVAL; 5775 } 5776 5777 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 5778 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 5779 if (btf_get_prog_ctx_type(log, btf, t, 5780 env->prog->type, i)) { 5781 /* If function expects ctx type in BTF check that caller 5782 * is passing PTR_TO_CTX. 5783 */ 5784 if (reg->type != PTR_TO_CTX) { 5785 bpf_log(log, 5786 "arg#%d expected pointer to ctx, but got %s\n", 5787 i, btf_type_str(t)); 5788 return -EINVAL; 5789 } 5790 if (check_ptr_off_reg(env, reg, regno)) 5791 return -EINVAL; 5792 } else if (is_kfunc && (reg->type == PTR_TO_BTF_ID || 5793 (reg2btf_ids[base_type(reg->type)] && !type_flag(reg->type)))) { 5794 const struct btf_type *reg_ref_t; 5795 const struct btf *reg_btf; 5796 const char *reg_ref_tname; 5797 u32 reg_ref_id; 5798 5799 if (!btf_type_is_struct(ref_t)) { 5800 bpf_log(log, "kernel function %s args#%d pointer type %s %s is not supported\n", 5801 func_name, i, btf_type_str(ref_t), 5802 ref_tname); 5803 return -EINVAL; 5804 } 5805 5806 if (reg->type == PTR_TO_BTF_ID) { 5807 reg_btf = reg->btf; 5808 reg_ref_id = reg->btf_id; 5809 /* Ensure only one argument is referenced PTR_TO_BTF_ID */ 5810 if (reg->ref_obj_id) { 5811 if (ref_obj_id) { 5812 bpf_log(log, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n", 5813 regno, reg->ref_obj_id, ref_obj_id); 5814 return -EFAULT; 5815 } 5816 ref_regno = regno; 5817 ref_obj_id = reg->ref_obj_id; 5818 } 5819 } else { 5820 reg_btf = btf_vmlinux; 5821 reg_ref_id = *reg2btf_ids[base_type(reg->type)]; 5822 } 5823 5824 reg_ref_t = btf_type_skip_modifiers(reg_btf, reg_ref_id, 5825 ®_ref_id); 5826 reg_ref_tname = btf_name_by_offset(reg_btf, 5827 reg_ref_t->name_off); 5828 if (!btf_struct_ids_match(log, reg_btf, reg_ref_id, 5829 reg->off, btf, ref_id)) { 5830 bpf_log(log, "kernel function %s args#%d expected pointer to %s %s but R%d has a pointer to %s %s\n", 5831 func_name, i, 5832 btf_type_str(ref_t), ref_tname, 5833 regno, btf_type_str(reg_ref_t), 5834 reg_ref_tname); 5835 return -EINVAL; 5836 } 5837 } else if (ptr_to_mem_ok) { 5838 const struct btf_type *resolve_ret; 5839 u32 type_size; 5840 5841 if (is_kfunc) { 5842 bool arg_mem_size = i + 1 < nargs && is_kfunc_arg_mem_size(btf, &args[i + 1], ®s[regno + 1]); 5843 5844 /* Permit pointer to mem, but only when argument 5845 * type is pointer to scalar, or struct composed 5846 * (recursively) of scalars. 5847 * When arg_mem_size is true, the pointer can be 5848 * void *. 5849 */ 5850 if (!btf_type_is_scalar(ref_t) && 5851 !__btf_type_is_scalar_struct(log, btf, ref_t, 0) && 5852 (arg_mem_size ? !btf_type_is_void(ref_t) : 1)) { 5853 bpf_log(log, 5854 "arg#%d pointer type %s %s must point to %sscalar, or struct with scalar\n", 5855 i, btf_type_str(ref_t), ref_tname, arg_mem_size ? "void, " : ""); 5856 return -EINVAL; 5857 } 5858 5859 /* Check for mem, len pair */ 5860 if (arg_mem_size) { 5861 if (check_kfunc_mem_size_reg(env, ®s[regno + 1], regno + 1)) { 5862 bpf_log(log, "arg#%d arg#%d memory, len pair leads to invalid memory access\n", 5863 i, i + 1); 5864 return -EINVAL; 5865 } 5866 i++; 5867 continue; 5868 } 5869 } 5870 5871 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 5872 if (IS_ERR(resolve_ret)) { 5873 bpf_log(log, 5874 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 5875 i, btf_type_str(ref_t), ref_tname, 5876 PTR_ERR(resolve_ret)); 5877 return -EINVAL; 5878 } 5879 5880 if (check_mem_reg(env, reg, regno, type_size)) 5881 return -EINVAL; 5882 } else { 5883 bpf_log(log, "reg type unsupported for arg#%d %sfunction %s#%d\n", i, 5884 is_kfunc ? "kernel " : "", func_name, func_id); 5885 return -EINVAL; 5886 } 5887 } 5888 5889 /* Either both are set, or neither */ 5890 WARN_ON_ONCE((ref_obj_id && !ref_regno) || (!ref_obj_id && ref_regno)); 5891 if (is_kfunc) { 5892 rel = btf_kfunc_id_set_contains(btf, resolve_prog_type(env->prog), 5893 BTF_KFUNC_TYPE_RELEASE, func_id); 5894 /* We already made sure ref_obj_id is set only for one argument */ 5895 if (rel && !ref_obj_id) { 5896 bpf_log(log, "release kernel function %s expects refcounted PTR_TO_BTF_ID\n", 5897 func_name); 5898 return -EINVAL; 5899 } 5900 /* Allow (!rel && ref_obj_id), so that passing such referenced PTR_TO_BTF_ID to 5901 * other kfuncs works 5902 */ 5903 } 5904 /* returns argument register number > 0 in case of reference release kfunc */ 5905 return rel ? ref_regno : 0; 5906 } 5907 5908 /* Compare BTF of a function with given bpf_reg_state. 5909 * Returns: 5910 * EFAULT - there is a verifier bug. Abort verification. 5911 * EINVAL - there is a type mismatch or BTF is not available. 5912 * 0 - BTF matches with what bpf_reg_state expects. 5913 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 5914 */ 5915 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 5916 struct bpf_reg_state *regs) 5917 { 5918 struct bpf_prog *prog = env->prog; 5919 struct btf *btf = prog->aux->btf; 5920 bool is_global; 5921 u32 btf_id; 5922 int err; 5923 5924 if (!prog->aux->func_info) 5925 return -EINVAL; 5926 5927 btf_id = prog->aux->func_info[subprog].type_id; 5928 if (!btf_id) 5929 return -EFAULT; 5930 5931 if (prog->aux->func_info_aux[subprog].unreliable) 5932 return -EINVAL; 5933 5934 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 5935 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global); 5936 5937 /* Compiler optimizations can remove arguments from static functions 5938 * or mismatched type can be passed into a global function. 5939 * In such cases mark the function as unreliable from BTF point of view. 5940 */ 5941 if (err) 5942 prog->aux->func_info_aux[subprog].unreliable = true; 5943 return err; 5944 } 5945 5946 int btf_check_kfunc_arg_match(struct bpf_verifier_env *env, 5947 const struct btf *btf, u32 func_id, 5948 struct bpf_reg_state *regs) 5949 { 5950 return btf_check_func_arg_match(env, btf, func_id, regs, true); 5951 } 5952 5953 /* Convert BTF of a function into bpf_reg_state if possible 5954 * Returns: 5955 * EFAULT - there is a verifier bug. Abort verification. 5956 * EINVAL - cannot convert BTF. 5957 * 0 - Successfully converted BTF into bpf_reg_state 5958 * (either PTR_TO_CTX or SCALAR_VALUE). 5959 */ 5960 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 5961 struct bpf_reg_state *regs) 5962 { 5963 struct bpf_verifier_log *log = &env->log; 5964 struct bpf_prog *prog = env->prog; 5965 enum bpf_prog_type prog_type = prog->type; 5966 struct btf *btf = prog->aux->btf; 5967 const struct btf_param *args; 5968 const struct btf_type *t, *ref_t; 5969 u32 i, nargs, btf_id; 5970 const char *tname; 5971 5972 if (!prog->aux->func_info || 5973 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 5974 bpf_log(log, "Verifier bug\n"); 5975 return -EFAULT; 5976 } 5977 5978 btf_id = prog->aux->func_info[subprog].type_id; 5979 if (!btf_id) { 5980 bpf_log(log, "Global functions need valid BTF\n"); 5981 return -EFAULT; 5982 } 5983 5984 t = btf_type_by_id(btf, btf_id); 5985 if (!t || !btf_type_is_func(t)) { 5986 /* These checks were already done by the verifier while loading 5987 * struct bpf_func_info 5988 */ 5989 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 5990 subprog); 5991 return -EFAULT; 5992 } 5993 tname = btf_name_by_offset(btf, t->name_off); 5994 5995 if (log->level & BPF_LOG_LEVEL) 5996 bpf_log(log, "Validating %s() func#%d...\n", 5997 tname, subprog); 5998 5999 if (prog->aux->func_info_aux[subprog].unreliable) { 6000 bpf_log(log, "Verifier bug in function %s()\n", tname); 6001 return -EFAULT; 6002 } 6003 if (prog_type == BPF_PROG_TYPE_EXT) 6004 prog_type = prog->aux->dst_prog->type; 6005 6006 t = btf_type_by_id(btf, t->type); 6007 if (!t || !btf_type_is_func_proto(t)) { 6008 bpf_log(log, "Invalid type of function %s()\n", tname); 6009 return -EFAULT; 6010 } 6011 args = (const struct btf_param *)(t + 1); 6012 nargs = btf_type_vlen(t); 6013 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6014 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 6015 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 6016 return -EINVAL; 6017 } 6018 /* check that function returns int */ 6019 t = btf_type_by_id(btf, t->type); 6020 while (btf_type_is_modifier(t)) 6021 t = btf_type_by_id(btf, t->type); 6022 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) { 6023 bpf_log(log, 6024 "Global function %s() doesn't return scalar. Only those are supported.\n", 6025 tname); 6026 return -EINVAL; 6027 } 6028 /* Convert BTF function arguments into verifier types. 6029 * Only PTR_TO_CTX and SCALAR are supported atm. 6030 */ 6031 for (i = 0; i < nargs; i++) { 6032 struct bpf_reg_state *reg = ®s[i + 1]; 6033 6034 t = btf_type_by_id(btf, args[i].type); 6035 while (btf_type_is_modifier(t)) 6036 t = btf_type_by_id(btf, t->type); 6037 if (btf_type_is_int(t) || btf_type_is_enum(t)) { 6038 reg->type = SCALAR_VALUE; 6039 continue; 6040 } 6041 if (btf_type_is_ptr(t)) { 6042 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6043 reg->type = PTR_TO_CTX; 6044 continue; 6045 } 6046 6047 t = btf_type_skip_modifiers(btf, t->type, NULL); 6048 6049 ref_t = btf_resolve_size(btf, t, ®->mem_size); 6050 if (IS_ERR(ref_t)) { 6051 bpf_log(log, 6052 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6053 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 6054 PTR_ERR(ref_t)); 6055 return -EINVAL; 6056 } 6057 6058 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 6059 reg->id = ++env->id_gen; 6060 6061 continue; 6062 } 6063 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 6064 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname); 6065 return -EINVAL; 6066 } 6067 return 0; 6068 } 6069 6070 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 6071 struct btf_show *show) 6072 { 6073 const struct btf_type *t = btf_type_by_id(btf, type_id); 6074 6075 show->btf = btf; 6076 memset(&show->state, 0, sizeof(show->state)); 6077 memset(&show->obj, 0, sizeof(show->obj)); 6078 6079 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 6080 } 6081 6082 static void btf_seq_show(struct btf_show *show, const char *fmt, 6083 va_list args) 6084 { 6085 seq_vprintf((struct seq_file *)show->target, fmt, args); 6086 } 6087 6088 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 6089 void *obj, struct seq_file *m, u64 flags) 6090 { 6091 struct btf_show sseq; 6092 6093 sseq.target = m; 6094 sseq.showfn = btf_seq_show; 6095 sseq.flags = flags; 6096 6097 btf_type_show(btf, type_id, obj, &sseq); 6098 6099 return sseq.state.status; 6100 } 6101 6102 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 6103 struct seq_file *m) 6104 { 6105 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 6106 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 6107 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 6108 } 6109 6110 struct btf_show_snprintf { 6111 struct btf_show show; 6112 int len_left; /* space left in string */ 6113 int len; /* length we would have written */ 6114 }; 6115 6116 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 6117 va_list args) 6118 { 6119 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 6120 int len; 6121 6122 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 6123 6124 if (len < 0) { 6125 ssnprintf->len_left = 0; 6126 ssnprintf->len = len; 6127 } else if (len > ssnprintf->len_left) { 6128 /* no space, drive on to get length we would have written */ 6129 ssnprintf->len_left = 0; 6130 ssnprintf->len += len; 6131 } else { 6132 ssnprintf->len_left -= len; 6133 ssnprintf->len += len; 6134 show->target += len; 6135 } 6136 } 6137 6138 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 6139 char *buf, int len, u64 flags) 6140 { 6141 struct btf_show_snprintf ssnprintf; 6142 6143 ssnprintf.show.target = buf; 6144 ssnprintf.show.flags = flags; 6145 ssnprintf.show.showfn = btf_snprintf_show; 6146 ssnprintf.len_left = len; 6147 ssnprintf.len = 0; 6148 6149 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 6150 6151 /* If we encountered an error, return it. */ 6152 if (ssnprintf.show.state.status) 6153 return ssnprintf.show.state.status; 6154 6155 /* Otherwise return length we would have written */ 6156 return ssnprintf.len; 6157 } 6158 6159 #ifdef CONFIG_PROC_FS 6160 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 6161 { 6162 const struct btf *btf = filp->private_data; 6163 6164 seq_printf(m, "btf_id:\t%u\n", btf->id); 6165 } 6166 #endif 6167 6168 static int btf_release(struct inode *inode, struct file *filp) 6169 { 6170 btf_put(filp->private_data); 6171 return 0; 6172 } 6173 6174 const struct file_operations btf_fops = { 6175 #ifdef CONFIG_PROC_FS 6176 .show_fdinfo = bpf_btf_show_fdinfo, 6177 #endif 6178 .release = btf_release, 6179 }; 6180 6181 static int __btf_new_fd(struct btf *btf) 6182 { 6183 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 6184 } 6185 6186 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 6187 { 6188 struct btf *btf; 6189 int ret; 6190 6191 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 6192 attr->btf_size, attr->btf_log_level, 6193 u64_to_user_ptr(attr->btf_log_buf), 6194 attr->btf_log_size); 6195 if (IS_ERR(btf)) 6196 return PTR_ERR(btf); 6197 6198 ret = btf_alloc_id(btf); 6199 if (ret) { 6200 btf_free(btf); 6201 return ret; 6202 } 6203 6204 /* 6205 * The BTF ID is published to the userspace. 6206 * All BTF free must go through call_rcu() from 6207 * now on (i.e. free by calling btf_put()). 6208 */ 6209 6210 ret = __btf_new_fd(btf); 6211 if (ret < 0) 6212 btf_put(btf); 6213 6214 return ret; 6215 } 6216 6217 struct btf *btf_get_by_fd(int fd) 6218 { 6219 struct btf *btf; 6220 struct fd f; 6221 6222 f = fdget(fd); 6223 6224 if (!f.file) 6225 return ERR_PTR(-EBADF); 6226 6227 if (f.file->f_op != &btf_fops) { 6228 fdput(f); 6229 return ERR_PTR(-EINVAL); 6230 } 6231 6232 btf = f.file->private_data; 6233 refcount_inc(&btf->refcnt); 6234 fdput(f); 6235 6236 return btf; 6237 } 6238 6239 int btf_get_info_by_fd(const struct btf *btf, 6240 const union bpf_attr *attr, 6241 union bpf_attr __user *uattr) 6242 { 6243 struct bpf_btf_info __user *uinfo; 6244 struct bpf_btf_info info; 6245 u32 info_copy, btf_copy; 6246 void __user *ubtf; 6247 char __user *uname; 6248 u32 uinfo_len, uname_len, name_len; 6249 int ret = 0; 6250 6251 uinfo = u64_to_user_ptr(attr->info.info); 6252 uinfo_len = attr->info.info_len; 6253 6254 info_copy = min_t(u32, uinfo_len, sizeof(info)); 6255 memset(&info, 0, sizeof(info)); 6256 if (copy_from_user(&info, uinfo, info_copy)) 6257 return -EFAULT; 6258 6259 info.id = btf->id; 6260 ubtf = u64_to_user_ptr(info.btf); 6261 btf_copy = min_t(u32, btf->data_size, info.btf_size); 6262 if (copy_to_user(ubtf, btf->data, btf_copy)) 6263 return -EFAULT; 6264 info.btf_size = btf->data_size; 6265 6266 info.kernel_btf = btf->kernel_btf; 6267 6268 uname = u64_to_user_ptr(info.name); 6269 uname_len = info.name_len; 6270 if (!uname ^ !uname_len) 6271 return -EINVAL; 6272 6273 name_len = strlen(btf->name); 6274 info.name_len = name_len; 6275 6276 if (uname) { 6277 if (uname_len >= name_len + 1) { 6278 if (copy_to_user(uname, btf->name, name_len + 1)) 6279 return -EFAULT; 6280 } else { 6281 char zero = '\0'; 6282 6283 if (copy_to_user(uname, btf->name, uname_len - 1)) 6284 return -EFAULT; 6285 if (put_user(zero, uname + uname_len - 1)) 6286 return -EFAULT; 6287 /* let user-space know about too short buffer */ 6288 ret = -ENOSPC; 6289 } 6290 } 6291 6292 if (copy_to_user(uinfo, &info, info_copy) || 6293 put_user(info_copy, &uattr->info.info_len)) 6294 return -EFAULT; 6295 6296 return ret; 6297 } 6298 6299 int btf_get_fd_by_id(u32 id) 6300 { 6301 struct btf *btf; 6302 int fd; 6303 6304 rcu_read_lock(); 6305 btf = idr_find(&btf_idr, id); 6306 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 6307 btf = ERR_PTR(-ENOENT); 6308 rcu_read_unlock(); 6309 6310 if (IS_ERR(btf)) 6311 return PTR_ERR(btf); 6312 6313 fd = __btf_new_fd(btf); 6314 if (fd < 0) 6315 btf_put(btf); 6316 6317 return fd; 6318 } 6319 6320 u32 btf_obj_id(const struct btf *btf) 6321 { 6322 return btf->id; 6323 } 6324 6325 bool btf_is_kernel(const struct btf *btf) 6326 { 6327 return btf->kernel_btf; 6328 } 6329 6330 bool btf_is_module(const struct btf *btf) 6331 { 6332 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 6333 } 6334 6335 static int btf_id_cmp_func(const void *a, const void *b) 6336 { 6337 const int *pa = a, *pb = b; 6338 6339 return *pa - *pb; 6340 } 6341 6342 bool btf_id_set_contains(const struct btf_id_set *set, u32 id) 6343 { 6344 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL; 6345 } 6346 6347 enum { 6348 BTF_MODULE_F_LIVE = (1 << 0), 6349 }; 6350 6351 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6352 struct btf_module { 6353 struct list_head list; 6354 struct module *module; 6355 struct btf *btf; 6356 struct bin_attribute *sysfs_attr; 6357 int flags; 6358 }; 6359 6360 static LIST_HEAD(btf_modules); 6361 static DEFINE_MUTEX(btf_module_mutex); 6362 6363 static ssize_t 6364 btf_module_read(struct file *file, struct kobject *kobj, 6365 struct bin_attribute *bin_attr, 6366 char *buf, loff_t off, size_t len) 6367 { 6368 const struct btf *btf = bin_attr->private; 6369 6370 memcpy(buf, btf->data + off, len); 6371 return len; 6372 } 6373 6374 static void purge_cand_cache(struct btf *btf); 6375 6376 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 6377 void *module) 6378 { 6379 struct btf_module *btf_mod, *tmp; 6380 struct module *mod = module; 6381 struct btf *btf; 6382 int err = 0; 6383 6384 if (mod->btf_data_size == 0 || 6385 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 6386 op != MODULE_STATE_GOING)) 6387 goto out; 6388 6389 switch (op) { 6390 case MODULE_STATE_COMING: 6391 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 6392 if (!btf_mod) { 6393 err = -ENOMEM; 6394 goto out; 6395 } 6396 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 6397 if (IS_ERR(btf)) { 6398 pr_warn("failed to validate module [%s] BTF: %ld\n", 6399 mod->name, PTR_ERR(btf)); 6400 kfree(btf_mod); 6401 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 6402 err = PTR_ERR(btf); 6403 goto out; 6404 } 6405 err = btf_alloc_id(btf); 6406 if (err) { 6407 btf_free(btf); 6408 kfree(btf_mod); 6409 goto out; 6410 } 6411 6412 purge_cand_cache(NULL); 6413 mutex_lock(&btf_module_mutex); 6414 btf_mod->module = module; 6415 btf_mod->btf = btf; 6416 list_add(&btf_mod->list, &btf_modules); 6417 mutex_unlock(&btf_module_mutex); 6418 6419 if (IS_ENABLED(CONFIG_SYSFS)) { 6420 struct bin_attribute *attr; 6421 6422 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 6423 if (!attr) 6424 goto out; 6425 6426 sysfs_bin_attr_init(attr); 6427 attr->attr.name = btf->name; 6428 attr->attr.mode = 0444; 6429 attr->size = btf->data_size; 6430 attr->private = btf; 6431 attr->read = btf_module_read; 6432 6433 err = sysfs_create_bin_file(btf_kobj, attr); 6434 if (err) { 6435 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 6436 mod->name, err); 6437 kfree(attr); 6438 err = 0; 6439 goto out; 6440 } 6441 6442 btf_mod->sysfs_attr = attr; 6443 } 6444 6445 break; 6446 case MODULE_STATE_LIVE: 6447 mutex_lock(&btf_module_mutex); 6448 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6449 if (btf_mod->module != module) 6450 continue; 6451 6452 btf_mod->flags |= BTF_MODULE_F_LIVE; 6453 break; 6454 } 6455 mutex_unlock(&btf_module_mutex); 6456 break; 6457 case MODULE_STATE_GOING: 6458 mutex_lock(&btf_module_mutex); 6459 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6460 if (btf_mod->module != module) 6461 continue; 6462 6463 list_del(&btf_mod->list); 6464 if (btf_mod->sysfs_attr) 6465 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 6466 purge_cand_cache(btf_mod->btf); 6467 btf_put(btf_mod->btf); 6468 kfree(btf_mod->sysfs_attr); 6469 kfree(btf_mod); 6470 break; 6471 } 6472 mutex_unlock(&btf_module_mutex); 6473 break; 6474 } 6475 out: 6476 return notifier_from_errno(err); 6477 } 6478 6479 static struct notifier_block btf_module_nb = { 6480 .notifier_call = btf_module_notify, 6481 }; 6482 6483 static int __init btf_module_init(void) 6484 { 6485 register_module_notifier(&btf_module_nb); 6486 return 0; 6487 } 6488 6489 fs_initcall(btf_module_init); 6490 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 6491 6492 struct module *btf_try_get_module(const struct btf *btf) 6493 { 6494 struct module *res = NULL; 6495 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6496 struct btf_module *btf_mod, *tmp; 6497 6498 mutex_lock(&btf_module_mutex); 6499 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6500 if (btf_mod->btf != btf) 6501 continue; 6502 6503 /* We must only consider module whose __init routine has 6504 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 6505 * which is set from the notifier callback for 6506 * MODULE_STATE_LIVE. 6507 */ 6508 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 6509 res = btf_mod->module; 6510 6511 break; 6512 } 6513 mutex_unlock(&btf_module_mutex); 6514 #endif 6515 6516 return res; 6517 } 6518 6519 /* Returns struct btf corresponding to the struct module 6520 * 6521 * This function can return NULL or ERR_PTR. Note that caller must 6522 * release reference for struct btf iff btf_is_module is true. 6523 */ 6524 static struct btf *btf_get_module_btf(const struct module *module) 6525 { 6526 struct btf *btf = NULL; 6527 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6528 struct btf_module *btf_mod, *tmp; 6529 #endif 6530 6531 if (!module) 6532 return bpf_get_btf_vmlinux(); 6533 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 6534 mutex_lock(&btf_module_mutex); 6535 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 6536 if (btf_mod->module != module) 6537 continue; 6538 6539 btf_get(btf_mod->btf); 6540 btf = btf_mod->btf; 6541 break; 6542 } 6543 mutex_unlock(&btf_module_mutex); 6544 #endif 6545 6546 return btf; 6547 } 6548 6549 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 6550 { 6551 struct btf *btf; 6552 long ret; 6553 6554 if (flags) 6555 return -EINVAL; 6556 6557 if (name_sz <= 1 || name[name_sz - 1]) 6558 return -EINVAL; 6559 6560 btf = bpf_get_btf_vmlinux(); 6561 if (IS_ERR(btf)) 6562 return PTR_ERR(btf); 6563 6564 ret = btf_find_by_name_kind(btf, name, kind); 6565 /* ret is never zero, since btf_find_by_name_kind returns 6566 * positive btf_id or negative error. 6567 */ 6568 if (ret < 0) { 6569 struct btf *mod_btf; 6570 int id; 6571 6572 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 6573 spin_lock_bh(&btf_idr_lock); 6574 idr_for_each_entry(&btf_idr, mod_btf, id) { 6575 if (!btf_is_module(mod_btf)) 6576 continue; 6577 /* linear search could be slow hence unlock/lock 6578 * the IDR to avoiding holding it for too long 6579 */ 6580 btf_get(mod_btf); 6581 spin_unlock_bh(&btf_idr_lock); 6582 ret = btf_find_by_name_kind(mod_btf, name, kind); 6583 if (ret > 0) { 6584 int btf_obj_fd; 6585 6586 btf_obj_fd = __btf_new_fd(mod_btf); 6587 if (btf_obj_fd < 0) { 6588 btf_put(mod_btf); 6589 return btf_obj_fd; 6590 } 6591 return ret | (((u64)btf_obj_fd) << 32); 6592 } 6593 spin_lock_bh(&btf_idr_lock); 6594 btf_put(mod_btf); 6595 } 6596 spin_unlock_bh(&btf_idr_lock); 6597 } 6598 return ret; 6599 } 6600 6601 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 6602 .func = bpf_btf_find_by_name_kind, 6603 .gpl_only = false, 6604 .ret_type = RET_INTEGER, 6605 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 6606 .arg2_type = ARG_CONST_SIZE, 6607 .arg3_type = ARG_ANYTHING, 6608 .arg4_type = ARG_ANYTHING, 6609 }; 6610 6611 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 6612 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 6613 BTF_TRACING_TYPE_xxx 6614 #undef BTF_TRACING_TYPE 6615 6616 /* Kernel Function (kfunc) BTF ID set registration API */ 6617 6618 static int __btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 6619 enum btf_kfunc_type type, 6620 struct btf_id_set *add_set, bool vmlinux_set) 6621 { 6622 struct btf_kfunc_set_tab *tab; 6623 struct btf_id_set *set; 6624 u32 set_cnt; 6625 int ret; 6626 6627 if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) { 6628 ret = -EINVAL; 6629 goto end; 6630 } 6631 6632 if (!add_set->cnt) 6633 return 0; 6634 6635 tab = btf->kfunc_set_tab; 6636 if (!tab) { 6637 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 6638 if (!tab) 6639 return -ENOMEM; 6640 btf->kfunc_set_tab = tab; 6641 } 6642 6643 set = tab->sets[hook][type]; 6644 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 6645 * for module sets. 6646 */ 6647 if (WARN_ON_ONCE(set && !vmlinux_set)) { 6648 ret = -EINVAL; 6649 goto end; 6650 } 6651 6652 /* We don't need to allocate, concatenate, and sort module sets, because 6653 * only one is allowed per hook. Hence, we can directly assign the 6654 * pointer and return. 6655 */ 6656 if (!vmlinux_set) { 6657 tab->sets[hook][type] = add_set; 6658 return 0; 6659 } 6660 6661 /* In case of vmlinux sets, there may be more than one set being 6662 * registered per hook. To create a unified set, we allocate a new set 6663 * and concatenate all individual sets being registered. While each set 6664 * is individually sorted, they may become unsorted when concatenated, 6665 * hence re-sorting the final set again is required to make binary 6666 * searching the set using btf_id_set_contains function work. 6667 */ 6668 set_cnt = set ? set->cnt : 0; 6669 6670 if (set_cnt > U32_MAX - add_set->cnt) { 6671 ret = -EOVERFLOW; 6672 goto end; 6673 } 6674 6675 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 6676 ret = -E2BIG; 6677 goto end; 6678 } 6679 6680 /* Grow set */ 6681 set = krealloc(tab->sets[hook][type], 6682 offsetof(struct btf_id_set, ids[set_cnt + add_set->cnt]), 6683 GFP_KERNEL | __GFP_NOWARN); 6684 if (!set) { 6685 ret = -ENOMEM; 6686 goto end; 6687 } 6688 6689 /* For newly allocated set, initialize set->cnt to 0 */ 6690 if (!tab->sets[hook][type]) 6691 set->cnt = 0; 6692 tab->sets[hook][type] = set; 6693 6694 /* Concatenate the two sets */ 6695 memcpy(set->ids + set->cnt, add_set->ids, add_set->cnt * sizeof(set->ids[0])); 6696 set->cnt += add_set->cnt; 6697 6698 sort(set->ids, set->cnt, sizeof(set->ids[0]), btf_id_cmp_func, NULL); 6699 6700 return 0; 6701 end: 6702 btf_free_kfunc_set_tab(btf); 6703 return ret; 6704 } 6705 6706 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 6707 const struct btf_kfunc_id_set *kset) 6708 { 6709 bool vmlinux_set = !btf_is_module(btf); 6710 int type, ret = 0; 6711 6712 for (type = 0; type < ARRAY_SIZE(kset->sets); type++) { 6713 if (!kset->sets[type]) 6714 continue; 6715 6716 ret = __btf_populate_kfunc_set(btf, hook, type, kset->sets[type], vmlinux_set); 6717 if (ret) 6718 break; 6719 } 6720 return ret; 6721 } 6722 6723 static bool __btf_kfunc_id_set_contains(const struct btf *btf, 6724 enum btf_kfunc_hook hook, 6725 enum btf_kfunc_type type, 6726 u32 kfunc_btf_id) 6727 { 6728 struct btf_id_set *set; 6729 6730 if (hook >= BTF_KFUNC_HOOK_MAX || type >= BTF_KFUNC_TYPE_MAX) 6731 return false; 6732 if (!btf->kfunc_set_tab) 6733 return false; 6734 set = btf->kfunc_set_tab->sets[hook][type]; 6735 if (!set) 6736 return false; 6737 return btf_id_set_contains(set, kfunc_btf_id); 6738 } 6739 6740 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 6741 { 6742 switch (prog_type) { 6743 case BPF_PROG_TYPE_XDP: 6744 return BTF_KFUNC_HOOK_XDP; 6745 case BPF_PROG_TYPE_SCHED_CLS: 6746 return BTF_KFUNC_HOOK_TC; 6747 case BPF_PROG_TYPE_STRUCT_OPS: 6748 return BTF_KFUNC_HOOK_STRUCT_OPS; 6749 default: 6750 return BTF_KFUNC_HOOK_MAX; 6751 } 6752 } 6753 6754 /* Caution: 6755 * Reference to the module (obtained using btf_try_get_module) corresponding to 6756 * the struct btf *MUST* be held when calling this function from verifier 6757 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 6758 * keeping the reference for the duration of the call provides the necessary 6759 * protection for looking up a well-formed btf->kfunc_set_tab. 6760 */ 6761 bool btf_kfunc_id_set_contains(const struct btf *btf, 6762 enum bpf_prog_type prog_type, 6763 enum btf_kfunc_type type, u32 kfunc_btf_id) 6764 { 6765 enum btf_kfunc_hook hook; 6766 6767 hook = bpf_prog_type_to_kfunc_hook(prog_type); 6768 return __btf_kfunc_id_set_contains(btf, hook, type, kfunc_btf_id); 6769 } 6770 6771 /* This function must be invoked only from initcalls/module init functions */ 6772 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 6773 const struct btf_kfunc_id_set *kset) 6774 { 6775 enum btf_kfunc_hook hook; 6776 struct btf *btf; 6777 int ret; 6778 6779 btf = btf_get_module_btf(kset->owner); 6780 if (!btf) { 6781 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 6782 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 6783 return -ENOENT; 6784 } 6785 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 6786 pr_err("missing module BTF, cannot register kfuncs\n"); 6787 return -ENOENT; 6788 } 6789 return 0; 6790 } 6791 if (IS_ERR(btf)) 6792 return PTR_ERR(btf); 6793 6794 hook = bpf_prog_type_to_kfunc_hook(prog_type); 6795 ret = btf_populate_kfunc_set(btf, hook, kset); 6796 /* reference is only taken for module BTF */ 6797 if (btf_is_module(btf)) 6798 btf_put(btf); 6799 return ret; 6800 } 6801 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 6802 6803 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 6804 6805 static 6806 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 6807 const struct btf *targ_btf, __u32 targ_id, 6808 int level) 6809 { 6810 const struct btf_type *local_type, *targ_type; 6811 int depth = 32; /* max recursion depth */ 6812 6813 /* caller made sure that names match (ignoring flavor suffix) */ 6814 local_type = btf_type_by_id(local_btf, local_id); 6815 targ_type = btf_type_by_id(targ_btf, targ_id); 6816 if (btf_kind(local_type) != btf_kind(targ_type)) 6817 return 0; 6818 6819 recur: 6820 depth--; 6821 if (depth < 0) 6822 return -EINVAL; 6823 6824 local_type = btf_type_skip_modifiers(local_btf, local_id, &local_id); 6825 targ_type = btf_type_skip_modifiers(targ_btf, targ_id, &targ_id); 6826 if (!local_type || !targ_type) 6827 return -EINVAL; 6828 6829 if (btf_kind(local_type) != btf_kind(targ_type)) 6830 return 0; 6831 6832 switch (btf_kind(local_type)) { 6833 case BTF_KIND_UNKN: 6834 case BTF_KIND_STRUCT: 6835 case BTF_KIND_UNION: 6836 case BTF_KIND_ENUM: 6837 case BTF_KIND_FWD: 6838 return 1; 6839 case BTF_KIND_INT: 6840 /* just reject deprecated bitfield-like integers; all other 6841 * integers are by default compatible between each other 6842 */ 6843 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 6844 case BTF_KIND_PTR: 6845 local_id = local_type->type; 6846 targ_id = targ_type->type; 6847 goto recur; 6848 case BTF_KIND_ARRAY: 6849 local_id = btf_array(local_type)->type; 6850 targ_id = btf_array(targ_type)->type; 6851 goto recur; 6852 case BTF_KIND_FUNC_PROTO: { 6853 struct btf_param *local_p = btf_params(local_type); 6854 struct btf_param *targ_p = btf_params(targ_type); 6855 __u16 local_vlen = btf_vlen(local_type); 6856 __u16 targ_vlen = btf_vlen(targ_type); 6857 int i, err; 6858 6859 if (local_vlen != targ_vlen) 6860 return 0; 6861 6862 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 6863 if (level <= 0) 6864 return -EINVAL; 6865 6866 btf_type_skip_modifiers(local_btf, local_p->type, &local_id); 6867 btf_type_skip_modifiers(targ_btf, targ_p->type, &targ_id); 6868 err = __bpf_core_types_are_compat(local_btf, local_id, 6869 targ_btf, targ_id, 6870 level - 1); 6871 if (err <= 0) 6872 return err; 6873 } 6874 6875 /* tail recurse for return type check */ 6876 btf_type_skip_modifiers(local_btf, local_type->type, &local_id); 6877 btf_type_skip_modifiers(targ_btf, targ_type->type, &targ_id); 6878 goto recur; 6879 } 6880 default: 6881 return 0; 6882 } 6883 } 6884 6885 /* Check local and target types for compatibility. This check is used for 6886 * type-based CO-RE relocations and follow slightly different rules than 6887 * field-based relocations. This function assumes that root types were already 6888 * checked for name match. Beyond that initial root-level name check, names 6889 * are completely ignored. Compatibility rules are as follows: 6890 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 6891 * kind should match for local and target types (i.e., STRUCT is not 6892 * compatible with UNION); 6893 * - for ENUMs, the size is ignored; 6894 * - for INT, size and signedness are ignored; 6895 * - for ARRAY, dimensionality is ignored, element types are checked for 6896 * compatibility recursively; 6897 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 6898 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 6899 * - FUNC_PROTOs are compatible if they have compatible signature: same 6900 * number of input args and compatible return and argument types. 6901 * These rules are not set in stone and probably will be adjusted as we get 6902 * more experience with using BPF CO-RE relocations. 6903 */ 6904 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 6905 const struct btf *targ_btf, __u32 targ_id) 6906 { 6907 return __bpf_core_types_are_compat(local_btf, local_id, 6908 targ_btf, targ_id, 6909 MAX_TYPES_ARE_COMPAT_DEPTH); 6910 } 6911 6912 static bool bpf_core_is_flavor_sep(const char *s) 6913 { 6914 /* check X___Y name pattern, where X and Y are not underscores */ 6915 return s[0] != '_' && /* X */ 6916 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 6917 s[4] != '_'; /* Y */ 6918 } 6919 6920 size_t bpf_core_essential_name_len(const char *name) 6921 { 6922 size_t n = strlen(name); 6923 int i; 6924 6925 for (i = n - 5; i >= 0; i--) { 6926 if (bpf_core_is_flavor_sep(name + i)) 6927 return i + 1; 6928 } 6929 return n; 6930 } 6931 6932 struct bpf_cand_cache { 6933 const char *name; 6934 u32 name_len; 6935 u16 kind; 6936 u16 cnt; 6937 struct { 6938 const struct btf *btf; 6939 u32 id; 6940 } cands[]; 6941 }; 6942 6943 static void bpf_free_cands(struct bpf_cand_cache *cands) 6944 { 6945 if (!cands->cnt) 6946 /* empty candidate array was allocated on stack */ 6947 return; 6948 kfree(cands); 6949 } 6950 6951 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 6952 { 6953 kfree(cands->name); 6954 kfree(cands); 6955 } 6956 6957 #define VMLINUX_CAND_CACHE_SIZE 31 6958 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 6959 6960 #define MODULE_CAND_CACHE_SIZE 31 6961 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 6962 6963 static DEFINE_MUTEX(cand_cache_mutex); 6964 6965 static void __print_cand_cache(struct bpf_verifier_log *log, 6966 struct bpf_cand_cache **cache, 6967 int cache_size) 6968 { 6969 struct bpf_cand_cache *cc; 6970 int i, j; 6971 6972 for (i = 0; i < cache_size; i++) { 6973 cc = cache[i]; 6974 if (!cc) 6975 continue; 6976 bpf_log(log, "[%d]%s(", i, cc->name); 6977 for (j = 0; j < cc->cnt; j++) { 6978 bpf_log(log, "%d", cc->cands[j].id); 6979 if (j < cc->cnt - 1) 6980 bpf_log(log, " "); 6981 } 6982 bpf_log(log, "), "); 6983 } 6984 } 6985 6986 static void print_cand_cache(struct bpf_verifier_log *log) 6987 { 6988 mutex_lock(&cand_cache_mutex); 6989 bpf_log(log, "vmlinux_cand_cache:"); 6990 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 6991 bpf_log(log, "\nmodule_cand_cache:"); 6992 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 6993 bpf_log(log, "\n"); 6994 mutex_unlock(&cand_cache_mutex); 6995 } 6996 6997 static u32 hash_cands(struct bpf_cand_cache *cands) 6998 { 6999 return jhash(cands->name, cands->name_len, 0); 7000 } 7001 7002 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 7003 struct bpf_cand_cache **cache, 7004 int cache_size) 7005 { 7006 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 7007 7008 if (cc && cc->name_len == cands->name_len && 7009 !strncmp(cc->name, cands->name, cands->name_len)) 7010 return cc; 7011 return NULL; 7012 } 7013 7014 static size_t sizeof_cands(int cnt) 7015 { 7016 return offsetof(struct bpf_cand_cache, cands[cnt]); 7017 } 7018 7019 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 7020 struct bpf_cand_cache **cache, 7021 int cache_size) 7022 { 7023 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 7024 7025 if (*cc) { 7026 bpf_free_cands_from_cache(*cc); 7027 *cc = NULL; 7028 } 7029 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 7030 if (!new_cands) { 7031 bpf_free_cands(cands); 7032 return ERR_PTR(-ENOMEM); 7033 } 7034 /* strdup the name, since it will stay in cache. 7035 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 7036 */ 7037 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 7038 bpf_free_cands(cands); 7039 if (!new_cands->name) { 7040 kfree(new_cands); 7041 return ERR_PTR(-ENOMEM); 7042 } 7043 *cc = new_cands; 7044 return new_cands; 7045 } 7046 7047 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7048 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 7049 int cache_size) 7050 { 7051 struct bpf_cand_cache *cc; 7052 int i, j; 7053 7054 for (i = 0; i < cache_size; i++) { 7055 cc = cache[i]; 7056 if (!cc) 7057 continue; 7058 if (!btf) { 7059 /* when new module is loaded purge all of module_cand_cache, 7060 * since new module might have candidates with the name 7061 * that matches cached cands. 7062 */ 7063 bpf_free_cands_from_cache(cc); 7064 cache[i] = NULL; 7065 continue; 7066 } 7067 /* when module is unloaded purge cache entries 7068 * that match module's btf 7069 */ 7070 for (j = 0; j < cc->cnt; j++) 7071 if (cc->cands[j].btf == btf) { 7072 bpf_free_cands_from_cache(cc); 7073 cache[i] = NULL; 7074 break; 7075 } 7076 } 7077 7078 } 7079 7080 static void purge_cand_cache(struct btf *btf) 7081 { 7082 mutex_lock(&cand_cache_mutex); 7083 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7084 mutex_unlock(&cand_cache_mutex); 7085 } 7086 #endif 7087 7088 static struct bpf_cand_cache * 7089 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 7090 int targ_start_id) 7091 { 7092 struct bpf_cand_cache *new_cands; 7093 const struct btf_type *t; 7094 const char *targ_name; 7095 size_t targ_essent_len; 7096 int n, i; 7097 7098 n = btf_nr_types(targ_btf); 7099 for (i = targ_start_id; i < n; i++) { 7100 t = btf_type_by_id(targ_btf, i); 7101 if (btf_kind(t) != cands->kind) 7102 continue; 7103 7104 targ_name = btf_name_by_offset(targ_btf, t->name_off); 7105 if (!targ_name) 7106 continue; 7107 7108 /* the resched point is before strncmp to make sure that search 7109 * for non-existing name will have a chance to schedule(). 7110 */ 7111 cond_resched(); 7112 7113 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 7114 continue; 7115 7116 targ_essent_len = bpf_core_essential_name_len(targ_name); 7117 if (targ_essent_len != cands->name_len) 7118 continue; 7119 7120 /* most of the time there is only one candidate for a given kind+name pair */ 7121 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 7122 if (!new_cands) { 7123 bpf_free_cands(cands); 7124 return ERR_PTR(-ENOMEM); 7125 } 7126 7127 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 7128 bpf_free_cands(cands); 7129 cands = new_cands; 7130 cands->cands[cands->cnt].btf = targ_btf; 7131 cands->cands[cands->cnt].id = i; 7132 cands->cnt++; 7133 } 7134 return cands; 7135 } 7136 7137 static struct bpf_cand_cache * 7138 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 7139 { 7140 struct bpf_cand_cache *cands, *cc, local_cand = {}; 7141 const struct btf *local_btf = ctx->btf; 7142 const struct btf_type *local_type; 7143 const struct btf *main_btf; 7144 size_t local_essent_len; 7145 struct btf *mod_btf; 7146 const char *name; 7147 int id; 7148 7149 main_btf = bpf_get_btf_vmlinux(); 7150 if (IS_ERR(main_btf)) 7151 return ERR_CAST(main_btf); 7152 7153 local_type = btf_type_by_id(local_btf, local_type_id); 7154 if (!local_type) 7155 return ERR_PTR(-EINVAL); 7156 7157 name = btf_name_by_offset(local_btf, local_type->name_off); 7158 if (str_is_empty(name)) 7159 return ERR_PTR(-EINVAL); 7160 local_essent_len = bpf_core_essential_name_len(name); 7161 7162 cands = &local_cand; 7163 cands->name = name; 7164 cands->kind = btf_kind(local_type); 7165 cands->name_len = local_essent_len; 7166 7167 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7168 /* cands is a pointer to stack here */ 7169 if (cc) { 7170 if (cc->cnt) 7171 return cc; 7172 goto check_modules; 7173 } 7174 7175 /* Attempt to find target candidates in vmlinux BTF first */ 7176 cands = bpf_core_add_cands(cands, main_btf, 1); 7177 if (IS_ERR(cands)) 7178 return ERR_CAST(cands); 7179 7180 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 7181 7182 /* populate cache even when cands->cnt == 0 */ 7183 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 7184 if (IS_ERR(cc)) 7185 return ERR_CAST(cc); 7186 7187 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 7188 if (cc->cnt) 7189 return cc; 7190 7191 check_modules: 7192 /* cands is a pointer to stack here and cands->cnt == 0 */ 7193 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7194 if (cc) 7195 /* if cache has it return it even if cc->cnt == 0 */ 7196 return cc; 7197 7198 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 7199 spin_lock_bh(&btf_idr_lock); 7200 idr_for_each_entry(&btf_idr, mod_btf, id) { 7201 if (!btf_is_module(mod_btf)) 7202 continue; 7203 /* linear search could be slow hence unlock/lock 7204 * the IDR to avoiding holding it for too long 7205 */ 7206 btf_get(mod_btf); 7207 spin_unlock_bh(&btf_idr_lock); 7208 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 7209 if (IS_ERR(cands)) { 7210 btf_put(mod_btf); 7211 return ERR_CAST(cands); 7212 } 7213 spin_lock_bh(&btf_idr_lock); 7214 btf_put(mod_btf); 7215 } 7216 spin_unlock_bh(&btf_idr_lock); 7217 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 7218 * or pointer to stack if cands->cnd == 0. 7219 * Copy it into the cache even when cands->cnt == 0 and 7220 * return the result. 7221 */ 7222 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 7223 } 7224 7225 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 7226 int relo_idx, void *insn) 7227 { 7228 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 7229 struct bpf_core_cand_list cands = {}; 7230 struct bpf_core_relo_res targ_res; 7231 struct bpf_core_spec *specs; 7232 int err; 7233 7234 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 7235 * into arrays of btf_ids of struct fields and array indices. 7236 */ 7237 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 7238 if (!specs) 7239 return -ENOMEM; 7240 7241 if (need_cands) { 7242 struct bpf_cand_cache *cc; 7243 int i; 7244 7245 mutex_lock(&cand_cache_mutex); 7246 cc = bpf_core_find_cands(ctx, relo->type_id); 7247 if (IS_ERR(cc)) { 7248 bpf_log(ctx->log, "target candidate search failed for %d\n", 7249 relo->type_id); 7250 err = PTR_ERR(cc); 7251 goto out; 7252 } 7253 if (cc->cnt) { 7254 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 7255 if (!cands.cands) { 7256 err = -ENOMEM; 7257 goto out; 7258 } 7259 } 7260 for (i = 0; i < cc->cnt; i++) { 7261 bpf_log(ctx->log, 7262 "CO-RE relocating %s %s: found target candidate [%d]\n", 7263 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 7264 cands.cands[i].btf = cc->cands[i].btf; 7265 cands.cands[i].id = cc->cands[i].id; 7266 } 7267 cands.len = cc->cnt; 7268 /* cand_cache_mutex needs to span the cache lookup and 7269 * copy of btf pointer into bpf_core_cand_list, 7270 * since module can be unloaded while bpf_core_calc_relo_insn 7271 * is working with module's btf. 7272 */ 7273 } 7274 7275 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 7276 &targ_res); 7277 if (err) 7278 goto out; 7279 7280 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 7281 &targ_res); 7282 7283 out: 7284 kfree(specs); 7285 if (need_cands) { 7286 kfree(cands.cands); 7287 mutex_unlock(&cand_cache_mutex); 7288 if (ctx->log->level & BPF_LOG_LEVEL2) 7289 print_cand_cache(ctx->log); 7290 } 7291 return err; 7292 } 7293