1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 29 #include <net/netfilter/nf_bpf_link.h> 30 31 #include <net/sock.h> 32 #include <net/xdp.h> 33 #include "../tools/lib/bpf/relo_core.h" 34 35 /* BTF (BPF Type Format) is the meta data format which describes 36 * the data types of BPF program/map. Hence, it basically focus 37 * on the C programming language which the modern BPF is primary 38 * using. 39 * 40 * ELF Section: 41 * ~~~~~~~~~~~ 42 * The BTF data is stored under the ".BTF" ELF section 43 * 44 * struct btf_type: 45 * ~~~~~~~~~~~~~~~ 46 * Each 'struct btf_type' object describes a C data type. 47 * Depending on the type it is describing, a 'struct btf_type' 48 * object may be followed by more data. F.e. 49 * To describe an array, 'struct btf_type' is followed by 50 * 'struct btf_array'. 51 * 52 * 'struct btf_type' and any extra data following it are 53 * 4 bytes aligned. 54 * 55 * Type section: 56 * ~~~~~~~~~~~~~ 57 * The BTF type section contains a list of 'struct btf_type' objects. 58 * Each one describes a C type. Recall from the above section 59 * that a 'struct btf_type' object could be immediately followed by extra 60 * data in order to describe some particular C types. 61 * 62 * type_id: 63 * ~~~~~~~ 64 * Each btf_type object is identified by a type_id. The type_id 65 * is implicitly implied by the location of the btf_type object in 66 * the BTF type section. The first one has type_id 1. The second 67 * one has type_id 2...etc. Hence, an earlier btf_type has 68 * a smaller type_id. 69 * 70 * A btf_type object may refer to another btf_type object by using 71 * type_id (i.e. the "type" in the "struct btf_type"). 72 * 73 * NOTE that we cannot assume any reference-order. 74 * A btf_type object can refer to an earlier btf_type object 75 * but it can also refer to a later btf_type object. 76 * 77 * For example, to describe "const void *". A btf_type 78 * object describing "const" may refer to another btf_type 79 * object describing "void *". This type-reference is done 80 * by specifying type_id: 81 * 82 * [1] CONST (anon) type_id=2 83 * [2] PTR (anon) type_id=0 84 * 85 * The above is the btf_verifier debug log: 86 * - Each line started with "[?]" is a btf_type object 87 * - [?] is the type_id of the btf_type object. 88 * - CONST/PTR is the BTF_KIND_XXX 89 * - "(anon)" is the name of the type. It just 90 * happens that CONST and PTR has no name. 91 * - type_id=XXX is the 'u32 type' in btf_type 92 * 93 * NOTE: "void" has type_id 0 94 * 95 * String section: 96 * ~~~~~~~~~~~~~~ 97 * The BTF string section contains the names used by the type section. 98 * Each string is referred by an "offset" from the beginning of the 99 * string section. 100 * 101 * Each string is '\0' terminated. 102 * 103 * The first character in the string section must be '\0' 104 * which is used to mean 'anonymous'. Some btf_type may not 105 * have a name. 106 */ 107 108 /* BTF verification: 109 * 110 * To verify BTF data, two passes are needed. 111 * 112 * Pass #1 113 * ~~~~~~~ 114 * The first pass is to collect all btf_type objects to 115 * an array: "btf->types". 116 * 117 * Depending on the C type that a btf_type is describing, 118 * a btf_type may be followed by extra data. We don't know 119 * how many btf_type is there, and more importantly we don't 120 * know where each btf_type is located in the type section. 121 * 122 * Without knowing the location of each type_id, most verifications 123 * cannot be done. e.g. an earlier btf_type may refer to a later 124 * btf_type (recall the "const void *" above), so we cannot 125 * check this type-reference in the first pass. 126 * 127 * In the first pass, it still does some verifications (e.g. 128 * checking the name is a valid offset to the string section). 129 * 130 * Pass #2 131 * ~~~~~~~ 132 * The main focus is to resolve a btf_type that is referring 133 * to another type. 134 * 135 * We have to ensure the referring type: 136 * 1) does exist in the BTF (i.e. in btf->types[]) 137 * 2) does not cause a loop: 138 * struct A { 139 * struct B b; 140 * }; 141 * 142 * struct B { 143 * struct A a; 144 * }; 145 * 146 * btf_type_needs_resolve() decides if a btf_type needs 147 * to be resolved. 148 * 149 * The needs_resolve type implements the "resolve()" ops which 150 * essentially does a DFS and detects backedge. 151 * 152 * During resolve (or DFS), different C types have different 153 * "RESOLVED" conditions. 154 * 155 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 156 * members because a member is always referring to another 157 * type. A struct's member can be treated as "RESOLVED" if 158 * it is referring to a BTF_KIND_PTR. Otherwise, the 159 * following valid C struct would be rejected: 160 * 161 * struct A { 162 * int m; 163 * struct A *a; 164 * }; 165 * 166 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 167 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 168 * detect a pointer loop, e.g.: 169 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 170 * ^ | 171 * +-----------------------------------------+ 172 * 173 */ 174 175 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 176 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 177 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 178 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 179 #define BITS_ROUNDUP_BYTES(bits) \ 180 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 181 182 #define BTF_INFO_MASK 0x9f00ffff 183 #define BTF_INT_MASK 0x0fffffff 184 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 185 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 186 187 /* 16MB for 64k structs and each has 16 members and 188 * a few MB spaces for the string section. 189 * The hard limit is S32_MAX. 190 */ 191 #define BTF_MAX_SIZE (16 * 1024 * 1024) 192 193 #define for_each_member_from(i, from, struct_type, member) \ 194 for (i = from, member = btf_type_member(struct_type) + from; \ 195 i < btf_type_vlen(struct_type); \ 196 i++, member++) 197 198 #define for_each_vsi_from(i, from, struct_type, member) \ 199 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 200 i < btf_type_vlen(struct_type); \ 201 i++, member++) 202 203 DEFINE_IDR(btf_idr); 204 DEFINE_SPINLOCK(btf_idr_lock); 205 206 enum btf_kfunc_hook { 207 BTF_KFUNC_HOOK_COMMON, 208 BTF_KFUNC_HOOK_XDP, 209 BTF_KFUNC_HOOK_TC, 210 BTF_KFUNC_HOOK_STRUCT_OPS, 211 BTF_KFUNC_HOOK_TRACING, 212 BTF_KFUNC_HOOK_SYSCALL, 213 BTF_KFUNC_HOOK_FMODRET, 214 BTF_KFUNC_HOOK_CGROUP_SKB, 215 BTF_KFUNC_HOOK_SCHED_ACT, 216 BTF_KFUNC_HOOK_SK_SKB, 217 BTF_KFUNC_HOOK_SOCKET_FILTER, 218 BTF_KFUNC_HOOK_LWT, 219 BTF_KFUNC_HOOK_NETFILTER, 220 BTF_KFUNC_HOOK_MAX, 221 }; 222 223 enum { 224 BTF_KFUNC_SET_MAX_CNT = 256, 225 BTF_DTOR_KFUNC_MAX_CNT = 256, 226 BTF_KFUNC_FILTER_MAX_CNT = 16, 227 }; 228 229 struct btf_kfunc_hook_filter { 230 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT]; 231 u32 nr_filters; 232 }; 233 234 struct btf_kfunc_set_tab { 235 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 236 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX]; 237 }; 238 239 struct btf_id_dtor_kfunc_tab { 240 u32 cnt; 241 struct btf_id_dtor_kfunc dtors[]; 242 }; 243 244 struct btf { 245 void *data; 246 struct btf_type **types; 247 u32 *resolved_ids; 248 u32 *resolved_sizes; 249 const char *strings; 250 void *nohdr_data; 251 struct btf_header hdr; 252 u32 nr_types; /* includes VOID for base BTF */ 253 u32 types_size; 254 u32 data_size; 255 refcount_t refcnt; 256 u32 id; 257 struct rcu_head rcu; 258 struct btf_kfunc_set_tab *kfunc_set_tab; 259 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 260 struct btf_struct_metas *struct_meta_tab; 261 262 /* split BTF support */ 263 struct btf *base_btf; 264 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 265 u32 start_str_off; /* first string offset (0 for base BTF) */ 266 char name[MODULE_NAME_LEN]; 267 bool kernel_btf; 268 }; 269 270 enum verifier_phase { 271 CHECK_META, 272 CHECK_TYPE, 273 }; 274 275 struct resolve_vertex { 276 const struct btf_type *t; 277 u32 type_id; 278 u16 next_member; 279 }; 280 281 enum visit_state { 282 NOT_VISITED, 283 VISITED, 284 RESOLVED, 285 }; 286 287 enum resolve_mode { 288 RESOLVE_TBD, /* To Be Determined */ 289 RESOLVE_PTR, /* Resolving for Pointer */ 290 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 291 * or array 292 */ 293 }; 294 295 #define MAX_RESOLVE_DEPTH 32 296 297 struct btf_sec_info { 298 u32 off; 299 u32 len; 300 }; 301 302 struct btf_verifier_env { 303 struct btf *btf; 304 u8 *visit_states; 305 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 306 struct bpf_verifier_log log; 307 u32 log_type_id; 308 u32 top_stack; 309 enum verifier_phase phase; 310 enum resolve_mode resolve_mode; 311 }; 312 313 static const char * const btf_kind_str[NR_BTF_KINDS] = { 314 [BTF_KIND_UNKN] = "UNKNOWN", 315 [BTF_KIND_INT] = "INT", 316 [BTF_KIND_PTR] = "PTR", 317 [BTF_KIND_ARRAY] = "ARRAY", 318 [BTF_KIND_STRUCT] = "STRUCT", 319 [BTF_KIND_UNION] = "UNION", 320 [BTF_KIND_ENUM] = "ENUM", 321 [BTF_KIND_FWD] = "FWD", 322 [BTF_KIND_TYPEDEF] = "TYPEDEF", 323 [BTF_KIND_VOLATILE] = "VOLATILE", 324 [BTF_KIND_CONST] = "CONST", 325 [BTF_KIND_RESTRICT] = "RESTRICT", 326 [BTF_KIND_FUNC] = "FUNC", 327 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 328 [BTF_KIND_VAR] = "VAR", 329 [BTF_KIND_DATASEC] = "DATASEC", 330 [BTF_KIND_FLOAT] = "FLOAT", 331 [BTF_KIND_DECL_TAG] = "DECL_TAG", 332 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 333 [BTF_KIND_ENUM64] = "ENUM64", 334 }; 335 336 const char *btf_type_str(const struct btf_type *t) 337 { 338 return btf_kind_str[BTF_INFO_KIND(t->info)]; 339 } 340 341 /* Chunk size we use in safe copy of data to be shown. */ 342 #define BTF_SHOW_OBJ_SAFE_SIZE 32 343 344 /* 345 * This is the maximum size of a base type value (equivalent to a 346 * 128-bit int); if we are at the end of our safe buffer and have 347 * less than 16 bytes space we can't be assured of being able 348 * to copy the next type safely, so in such cases we will initiate 349 * a new copy. 350 */ 351 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 352 353 /* Type name size */ 354 #define BTF_SHOW_NAME_SIZE 80 355 356 /* 357 * The suffix of a type that indicates it cannot alias another type when 358 * comparing BTF IDs for kfunc invocations. 359 */ 360 #define NOCAST_ALIAS_SUFFIX "___init" 361 362 /* 363 * Common data to all BTF show operations. Private show functions can add 364 * their own data to a structure containing a struct btf_show and consult it 365 * in the show callback. See btf_type_show() below. 366 * 367 * One challenge with showing nested data is we want to skip 0-valued 368 * data, but in order to figure out whether a nested object is all zeros 369 * we need to walk through it. As a result, we need to make two passes 370 * when handling structs, unions and arrays; the first path simply looks 371 * for nonzero data, while the second actually does the display. The first 372 * pass is signalled by show->state.depth_check being set, and if we 373 * encounter a non-zero value we set show->state.depth_to_show to 374 * the depth at which we encountered it. When we have completed the 375 * first pass, we will know if anything needs to be displayed if 376 * depth_to_show > depth. See btf_[struct,array]_show() for the 377 * implementation of this. 378 * 379 * Another problem is we want to ensure the data for display is safe to 380 * access. To support this, the anonymous "struct {} obj" tracks the data 381 * object and our safe copy of it. We copy portions of the data needed 382 * to the object "copy" buffer, but because its size is limited to 383 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 384 * traverse larger objects for display. 385 * 386 * The various data type show functions all start with a call to 387 * btf_show_start_type() which returns a pointer to the safe copy 388 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 389 * raw data itself). btf_show_obj_safe() is responsible for 390 * using copy_from_kernel_nofault() to update the safe data if necessary 391 * as we traverse the object's data. skbuff-like semantics are 392 * used: 393 * 394 * - obj.head points to the start of the toplevel object for display 395 * - obj.size is the size of the toplevel object 396 * - obj.data points to the current point in the original data at 397 * which our safe data starts. obj.data will advance as we copy 398 * portions of the data. 399 * 400 * In most cases a single copy will suffice, but larger data structures 401 * such as "struct task_struct" will require many copies. The logic in 402 * btf_show_obj_safe() handles the logic that determines if a new 403 * copy_from_kernel_nofault() is needed. 404 */ 405 struct btf_show { 406 u64 flags; 407 void *target; /* target of show operation (seq file, buffer) */ 408 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 409 const struct btf *btf; 410 /* below are used during iteration */ 411 struct { 412 u8 depth; 413 u8 depth_to_show; 414 u8 depth_check; 415 u8 array_member:1, 416 array_terminated:1; 417 u16 array_encoding; 418 u32 type_id; 419 int status; /* non-zero for error */ 420 const struct btf_type *type; 421 const struct btf_member *member; 422 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 423 } state; 424 struct { 425 u32 size; 426 void *head; 427 void *data; 428 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 429 } obj; 430 }; 431 432 struct btf_kind_operations { 433 s32 (*check_meta)(struct btf_verifier_env *env, 434 const struct btf_type *t, 435 u32 meta_left); 436 int (*resolve)(struct btf_verifier_env *env, 437 const struct resolve_vertex *v); 438 int (*check_member)(struct btf_verifier_env *env, 439 const struct btf_type *struct_type, 440 const struct btf_member *member, 441 const struct btf_type *member_type); 442 int (*check_kflag_member)(struct btf_verifier_env *env, 443 const struct btf_type *struct_type, 444 const struct btf_member *member, 445 const struct btf_type *member_type); 446 void (*log_details)(struct btf_verifier_env *env, 447 const struct btf_type *t); 448 void (*show)(const struct btf *btf, const struct btf_type *t, 449 u32 type_id, void *data, u8 bits_offsets, 450 struct btf_show *show); 451 }; 452 453 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 454 static struct btf_type btf_void; 455 456 static int btf_resolve(struct btf_verifier_env *env, 457 const struct btf_type *t, u32 type_id); 458 459 static int btf_func_check(struct btf_verifier_env *env, 460 const struct btf_type *t); 461 462 static bool btf_type_is_modifier(const struct btf_type *t) 463 { 464 /* Some of them is not strictly a C modifier 465 * but they are grouped into the same bucket 466 * for BTF concern: 467 * A type (t) that refers to another 468 * type through t->type AND its size cannot 469 * be determined without following the t->type. 470 * 471 * ptr does not fall into this bucket 472 * because its size is always sizeof(void *). 473 */ 474 switch (BTF_INFO_KIND(t->info)) { 475 case BTF_KIND_TYPEDEF: 476 case BTF_KIND_VOLATILE: 477 case BTF_KIND_CONST: 478 case BTF_KIND_RESTRICT: 479 case BTF_KIND_TYPE_TAG: 480 return true; 481 } 482 483 return false; 484 } 485 486 bool btf_type_is_void(const struct btf_type *t) 487 { 488 return t == &btf_void; 489 } 490 491 static bool btf_type_is_fwd(const struct btf_type *t) 492 { 493 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 494 } 495 496 static bool btf_type_is_datasec(const struct btf_type *t) 497 { 498 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 499 } 500 501 static bool btf_type_is_decl_tag(const struct btf_type *t) 502 { 503 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 504 } 505 506 static bool btf_type_nosize(const struct btf_type *t) 507 { 508 return btf_type_is_void(t) || btf_type_is_fwd(t) || 509 btf_type_is_func(t) || btf_type_is_func_proto(t) || 510 btf_type_is_decl_tag(t); 511 } 512 513 static bool btf_type_nosize_or_null(const struct btf_type *t) 514 { 515 return !t || btf_type_nosize(t); 516 } 517 518 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 519 { 520 return btf_type_is_func(t) || btf_type_is_struct(t) || 521 btf_type_is_var(t) || btf_type_is_typedef(t); 522 } 523 524 u32 btf_nr_types(const struct btf *btf) 525 { 526 u32 total = 0; 527 528 while (btf) { 529 total += btf->nr_types; 530 btf = btf->base_btf; 531 } 532 533 return total; 534 } 535 536 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 537 { 538 const struct btf_type *t; 539 const char *tname; 540 u32 i, total; 541 542 total = btf_nr_types(btf); 543 for (i = 1; i < total; i++) { 544 t = btf_type_by_id(btf, i); 545 if (BTF_INFO_KIND(t->info) != kind) 546 continue; 547 548 tname = btf_name_by_offset(btf, t->name_off); 549 if (!strcmp(tname, name)) 550 return i; 551 } 552 553 return -ENOENT; 554 } 555 556 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 557 { 558 struct btf *btf; 559 s32 ret; 560 int id; 561 562 btf = bpf_get_btf_vmlinux(); 563 if (IS_ERR(btf)) 564 return PTR_ERR(btf); 565 if (!btf) 566 return -EINVAL; 567 568 ret = btf_find_by_name_kind(btf, name, kind); 569 /* ret is never zero, since btf_find_by_name_kind returns 570 * positive btf_id or negative error. 571 */ 572 if (ret > 0) { 573 btf_get(btf); 574 *btf_p = btf; 575 return ret; 576 } 577 578 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 579 spin_lock_bh(&btf_idr_lock); 580 idr_for_each_entry(&btf_idr, btf, id) { 581 if (!btf_is_module(btf)) 582 continue; 583 /* linear search could be slow hence unlock/lock 584 * the IDR to avoiding holding it for too long 585 */ 586 btf_get(btf); 587 spin_unlock_bh(&btf_idr_lock); 588 ret = btf_find_by_name_kind(btf, name, kind); 589 if (ret > 0) { 590 *btf_p = btf; 591 return ret; 592 } 593 btf_put(btf); 594 spin_lock_bh(&btf_idr_lock); 595 } 596 spin_unlock_bh(&btf_idr_lock); 597 return ret; 598 } 599 600 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 601 u32 id, u32 *res_id) 602 { 603 const struct btf_type *t = btf_type_by_id(btf, id); 604 605 while (btf_type_is_modifier(t)) { 606 id = t->type; 607 t = btf_type_by_id(btf, t->type); 608 } 609 610 if (res_id) 611 *res_id = id; 612 613 return t; 614 } 615 616 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 617 u32 id, u32 *res_id) 618 { 619 const struct btf_type *t; 620 621 t = btf_type_skip_modifiers(btf, id, NULL); 622 if (!btf_type_is_ptr(t)) 623 return NULL; 624 625 return btf_type_skip_modifiers(btf, t->type, res_id); 626 } 627 628 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 629 u32 id, u32 *res_id) 630 { 631 const struct btf_type *ptype; 632 633 ptype = btf_type_resolve_ptr(btf, id, res_id); 634 if (ptype && btf_type_is_func_proto(ptype)) 635 return ptype; 636 637 return NULL; 638 } 639 640 /* Types that act only as a source, not sink or intermediate 641 * type when resolving. 642 */ 643 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 644 { 645 return btf_type_is_var(t) || 646 btf_type_is_decl_tag(t) || 647 btf_type_is_datasec(t); 648 } 649 650 /* What types need to be resolved? 651 * 652 * btf_type_is_modifier() is an obvious one. 653 * 654 * btf_type_is_struct() because its member refers to 655 * another type (through member->type). 656 * 657 * btf_type_is_var() because the variable refers to 658 * another type. btf_type_is_datasec() holds multiple 659 * btf_type_is_var() types that need resolving. 660 * 661 * btf_type_is_array() because its element (array->type) 662 * refers to another type. Array can be thought of a 663 * special case of struct while array just has the same 664 * member-type repeated by array->nelems of times. 665 */ 666 static bool btf_type_needs_resolve(const struct btf_type *t) 667 { 668 return btf_type_is_modifier(t) || 669 btf_type_is_ptr(t) || 670 btf_type_is_struct(t) || 671 btf_type_is_array(t) || 672 btf_type_is_var(t) || 673 btf_type_is_func(t) || 674 btf_type_is_decl_tag(t) || 675 btf_type_is_datasec(t); 676 } 677 678 /* t->size can be used */ 679 static bool btf_type_has_size(const struct btf_type *t) 680 { 681 switch (BTF_INFO_KIND(t->info)) { 682 case BTF_KIND_INT: 683 case BTF_KIND_STRUCT: 684 case BTF_KIND_UNION: 685 case BTF_KIND_ENUM: 686 case BTF_KIND_DATASEC: 687 case BTF_KIND_FLOAT: 688 case BTF_KIND_ENUM64: 689 return true; 690 } 691 692 return false; 693 } 694 695 static const char *btf_int_encoding_str(u8 encoding) 696 { 697 if (encoding == 0) 698 return "(none)"; 699 else if (encoding == BTF_INT_SIGNED) 700 return "SIGNED"; 701 else if (encoding == BTF_INT_CHAR) 702 return "CHAR"; 703 else if (encoding == BTF_INT_BOOL) 704 return "BOOL"; 705 else 706 return "UNKN"; 707 } 708 709 static u32 btf_type_int(const struct btf_type *t) 710 { 711 return *(u32 *)(t + 1); 712 } 713 714 static const struct btf_array *btf_type_array(const struct btf_type *t) 715 { 716 return (const struct btf_array *)(t + 1); 717 } 718 719 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 720 { 721 return (const struct btf_enum *)(t + 1); 722 } 723 724 static const struct btf_var *btf_type_var(const struct btf_type *t) 725 { 726 return (const struct btf_var *)(t + 1); 727 } 728 729 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 730 { 731 return (const struct btf_decl_tag *)(t + 1); 732 } 733 734 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 735 { 736 return (const struct btf_enum64 *)(t + 1); 737 } 738 739 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 740 { 741 return kind_ops[BTF_INFO_KIND(t->info)]; 742 } 743 744 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 745 { 746 if (!BTF_STR_OFFSET_VALID(offset)) 747 return false; 748 749 while (offset < btf->start_str_off) 750 btf = btf->base_btf; 751 752 offset -= btf->start_str_off; 753 return offset < btf->hdr.str_len; 754 } 755 756 static bool __btf_name_char_ok(char c, bool first) 757 { 758 if ((first ? !isalpha(c) : 759 !isalnum(c)) && 760 c != '_' && 761 c != '.') 762 return false; 763 return true; 764 } 765 766 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 767 { 768 while (offset < btf->start_str_off) 769 btf = btf->base_btf; 770 771 offset -= btf->start_str_off; 772 if (offset < btf->hdr.str_len) 773 return &btf->strings[offset]; 774 775 return NULL; 776 } 777 778 static bool __btf_name_valid(const struct btf *btf, u32 offset) 779 { 780 /* offset must be valid */ 781 const char *src = btf_str_by_offset(btf, offset); 782 const char *src_limit; 783 784 if (!__btf_name_char_ok(*src, true)) 785 return false; 786 787 /* set a limit on identifier length */ 788 src_limit = src + KSYM_NAME_LEN; 789 src++; 790 while (*src && src < src_limit) { 791 if (!__btf_name_char_ok(*src, false)) 792 return false; 793 src++; 794 } 795 796 return !*src; 797 } 798 799 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 800 { 801 return __btf_name_valid(btf, offset); 802 } 803 804 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 805 { 806 return __btf_name_valid(btf, offset); 807 } 808 809 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 810 { 811 const char *name; 812 813 if (!offset) 814 return "(anon)"; 815 816 name = btf_str_by_offset(btf, offset); 817 return name ?: "(invalid-name-offset)"; 818 } 819 820 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 821 { 822 return btf_str_by_offset(btf, offset); 823 } 824 825 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 826 { 827 while (type_id < btf->start_id) 828 btf = btf->base_btf; 829 830 type_id -= btf->start_id; 831 if (type_id >= btf->nr_types) 832 return NULL; 833 return btf->types[type_id]; 834 } 835 EXPORT_SYMBOL_GPL(btf_type_by_id); 836 837 /* 838 * Regular int is not a bit field and it must be either 839 * u8/u16/u32/u64 or __int128. 840 */ 841 static bool btf_type_int_is_regular(const struct btf_type *t) 842 { 843 u8 nr_bits, nr_bytes; 844 u32 int_data; 845 846 int_data = btf_type_int(t); 847 nr_bits = BTF_INT_BITS(int_data); 848 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 849 if (BITS_PER_BYTE_MASKED(nr_bits) || 850 BTF_INT_OFFSET(int_data) || 851 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 852 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 853 nr_bytes != (2 * sizeof(u64)))) { 854 return false; 855 } 856 857 return true; 858 } 859 860 /* 861 * Check that given struct member is a regular int with expected 862 * offset and size. 863 */ 864 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 865 const struct btf_member *m, 866 u32 expected_offset, u32 expected_size) 867 { 868 const struct btf_type *t; 869 u32 id, int_data; 870 u8 nr_bits; 871 872 id = m->type; 873 t = btf_type_id_size(btf, &id, NULL); 874 if (!t || !btf_type_is_int(t)) 875 return false; 876 877 int_data = btf_type_int(t); 878 nr_bits = BTF_INT_BITS(int_data); 879 if (btf_type_kflag(s)) { 880 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 881 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 882 883 /* if kflag set, int should be a regular int and 884 * bit offset should be at byte boundary. 885 */ 886 return !bitfield_size && 887 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 888 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 889 } 890 891 if (BTF_INT_OFFSET(int_data) || 892 BITS_PER_BYTE_MASKED(m->offset) || 893 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 894 BITS_PER_BYTE_MASKED(nr_bits) || 895 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 896 return false; 897 898 return true; 899 } 900 901 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 902 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 903 u32 id) 904 { 905 const struct btf_type *t = btf_type_by_id(btf, id); 906 907 while (btf_type_is_modifier(t) && 908 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 909 t = btf_type_by_id(btf, t->type); 910 } 911 912 return t; 913 } 914 915 #define BTF_SHOW_MAX_ITER 10 916 917 #define BTF_KIND_BIT(kind) (1ULL << kind) 918 919 /* 920 * Populate show->state.name with type name information. 921 * Format of type name is 922 * 923 * [.member_name = ] (type_name) 924 */ 925 static const char *btf_show_name(struct btf_show *show) 926 { 927 /* BTF_MAX_ITER array suffixes "[]" */ 928 const char *array_suffixes = "[][][][][][][][][][]"; 929 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 930 /* BTF_MAX_ITER pointer suffixes "*" */ 931 const char *ptr_suffixes = "**********"; 932 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 933 const char *name = NULL, *prefix = "", *parens = ""; 934 const struct btf_member *m = show->state.member; 935 const struct btf_type *t; 936 const struct btf_array *array; 937 u32 id = show->state.type_id; 938 const char *member = NULL; 939 bool show_member = false; 940 u64 kinds = 0; 941 int i; 942 943 show->state.name[0] = '\0'; 944 945 /* 946 * Don't show type name if we're showing an array member; 947 * in that case we show the array type so don't need to repeat 948 * ourselves for each member. 949 */ 950 if (show->state.array_member) 951 return ""; 952 953 /* Retrieve member name, if any. */ 954 if (m) { 955 member = btf_name_by_offset(show->btf, m->name_off); 956 show_member = strlen(member) > 0; 957 id = m->type; 958 } 959 960 /* 961 * Start with type_id, as we have resolved the struct btf_type * 962 * via btf_modifier_show() past the parent typedef to the child 963 * struct, int etc it is defined as. In such cases, the type_id 964 * still represents the starting type while the struct btf_type * 965 * in our show->state points at the resolved type of the typedef. 966 */ 967 t = btf_type_by_id(show->btf, id); 968 if (!t) 969 return ""; 970 971 /* 972 * The goal here is to build up the right number of pointer and 973 * array suffixes while ensuring the type name for a typedef 974 * is represented. Along the way we accumulate a list of 975 * BTF kinds we have encountered, since these will inform later 976 * display; for example, pointer types will not require an 977 * opening "{" for struct, we will just display the pointer value. 978 * 979 * We also want to accumulate the right number of pointer or array 980 * indices in the format string while iterating until we get to 981 * the typedef/pointee/array member target type. 982 * 983 * We start by pointing at the end of pointer and array suffix 984 * strings; as we accumulate pointers and arrays we move the pointer 985 * or array string backwards so it will show the expected number of 986 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 987 * and/or arrays and typedefs are supported as a precaution. 988 * 989 * We also want to get typedef name while proceeding to resolve 990 * type it points to so that we can add parentheses if it is a 991 * "typedef struct" etc. 992 */ 993 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 994 995 switch (BTF_INFO_KIND(t->info)) { 996 case BTF_KIND_TYPEDEF: 997 if (!name) 998 name = btf_name_by_offset(show->btf, 999 t->name_off); 1000 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 1001 id = t->type; 1002 break; 1003 case BTF_KIND_ARRAY: 1004 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 1005 parens = "["; 1006 if (!t) 1007 return ""; 1008 array = btf_type_array(t); 1009 if (array_suffix > array_suffixes) 1010 array_suffix -= 2; 1011 id = array->type; 1012 break; 1013 case BTF_KIND_PTR: 1014 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1015 if (ptr_suffix > ptr_suffixes) 1016 ptr_suffix -= 1; 1017 id = t->type; 1018 break; 1019 default: 1020 id = 0; 1021 break; 1022 } 1023 if (!id) 1024 break; 1025 t = btf_type_skip_qualifiers(show->btf, id); 1026 } 1027 /* We may not be able to represent this type; bail to be safe */ 1028 if (i == BTF_SHOW_MAX_ITER) 1029 return ""; 1030 1031 if (!name) 1032 name = btf_name_by_offset(show->btf, t->name_off); 1033 1034 switch (BTF_INFO_KIND(t->info)) { 1035 case BTF_KIND_STRUCT: 1036 case BTF_KIND_UNION: 1037 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1038 "struct" : "union"; 1039 /* if it's an array of struct/union, parens is already set */ 1040 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1041 parens = "{"; 1042 break; 1043 case BTF_KIND_ENUM: 1044 case BTF_KIND_ENUM64: 1045 prefix = "enum"; 1046 break; 1047 default: 1048 break; 1049 } 1050 1051 /* pointer does not require parens */ 1052 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1053 parens = ""; 1054 /* typedef does not require struct/union/enum prefix */ 1055 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1056 prefix = ""; 1057 1058 if (!name) 1059 name = ""; 1060 1061 /* Even if we don't want type name info, we want parentheses etc */ 1062 if (show->flags & BTF_SHOW_NONAME) 1063 snprintf(show->state.name, sizeof(show->state.name), "%s", 1064 parens); 1065 else 1066 snprintf(show->state.name, sizeof(show->state.name), 1067 "%s%s%s(%s%s%s%s%s%s)%s", 1068 /* first 3 strings comprise ".member = " */ 1069 show_member ? "." : "", 1070 show_member ? member : "", 1071 show_member ? " = " : "", 1072 /* ...next is our prefix (struct, enum, etc) */ 1073 prefix, 1074 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1075 /* ...this is the type name itself */ 1076 name, 1077 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1078 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1079 array_suffix, parens); 1080 1081 return show->state.name; 1082 } 1083 1084 static const char *__btf_show_indent(struct btf_show *show) 1085 { 1086 const char *indents = " "; 1087 const char *indent = &indents[strlen(indents)]; 1088 1089 if ((indent - show->state.depth) >= indents) 1090 return indent - show->state.depth; 1091 return indents; 1092 } 1093 1094 static const char *btf_show_indent(struct btf_show *show) 1095 { 1096 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1097 } 1098 1099 static const char *btf_show_newline(struct btf_show *show) 1100 { 1101 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1102 } 1103 1104 static const char *btf_show_delim(struct btf_show *show) 1105 { 1106 if (show->state.depth == 0) 1107 return ""; 1108 1109 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1110 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1111 return "|"; 1112 1113 return ","; 1114 } 1115 1116 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1117 { 1118 va_list args; 1119 1120 if (!show->state.depth_check) { 1121 va_start(args, fmt); 1122 show->showfn(show, fmt, args); 1123 va_end(args); 1124 } 1125 } 1126 1127 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1128 * format specifiers to the format specifier passed in; these do the work of 1129 * adding indentation, delimiters etc while the caller simply has to specify 1130 * the type value(s) in the format specifier + value(s). 1131 */ 1132 #define btf_show_type_value(show, fmt, value) \ 1133 do { \ 1134 if ((value) != (__typeof__(value))0 || \ 1135 (show->flags & BTF_SHOW_ZERO) || \ 1136 show->state.depth == 0) { \ 1137 btf_show(show, "%s%s" fmt "%s%s", \ 1138 btf_show_indent(show), \ 1139 btf_show_name(show), \ 1140 value, btf_show_delim(show), \ 1141 btf_show_newline(show)); \ 1142 if (show->state.depth > show->state.depth_to_show) \ 1143 show->state.depth_to_show = show->state.depth; \ 1144 } \ 1145 } while (0) 1146 1147 #define btf_show_type_values(show, fmt, ...) \ 1148 do { \ 1149 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1150 btf_show_name(show), \ 1151 __VA_ARGS__, btf_show_delim(show), \ 1152 btf_show_newline(show)); \ 1153 if (show->state.depth > show->state.depth_to_show) \ 1154 show->state.depth_to_show = show->state.depth; \ 1155 } while (0) 1156 1157 /* How much is left to copy to safe buffer after @data? */ 1158 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1159 { 1160 return show->obj.head + show->obj.size - data; 1161 } 1162 1163 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1164 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1165 { 1166 return data >= show->obj.data && 1167 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1168 } 1169 1170 /* 1171 * If object pointed to by @data of @size falls within our safe buffer, return 1172 * the equivalent pointer to the same safe data. Assumes 1173 * copy_from_kernel_nofault() has already happened and our safe buffer is 1174 * populated. 1175 */ 1176 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1177 { 1178 if (btf_show_obj_is_safe(show, data, size)) 1179 return show->obj.safe + (data - show->obj.data); 1180 return NULL; 1181 } 1182 1183 /* 1184 * Return a safe-to-access version of data pointed to by @data. 1185 * We do this by copying the relevant amount of information 1186 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1187 * 1188 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1189 * safe copy is needed. 1190 * 1191 * Otherwise we need to determine if we have the required amount 1192 * of data (determined by the @data pointer and the size of the 1193 * largest base type we can encounter (represented by 1194 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1195 * that we will be able to print some of the current object, 1196 * and if more is needed a copy will be triggered. 1197 * Some objects such as structs will not fit into the buffer; 1198 * in such cases additional copies when we iterate over their 1199 * members may be needed. 1200 * 1201 * btf_show_obj_safe() is used to return a safe buffer for 1202 * btf_show_start_type(); this ensures that as we recurse into 1203 * nested types we always have safe data for the given type. 1204 * This approach is somewhat wasteful; it's possible for example 1205 * that when iterating over a large union we'll end up copying the 1206 * same data repeatedly, but the goal is safety not performance. 1207 * We use stack data as opposed to per-CPU buffers because the 1208 * iteration over a type can take some time, and preemption handling 1209 * would greatly complicate use of the safe buffer. 1210 */ 1211 static void *btf_show_obj_safe(struct btf_show *show, 1212 const struct btf_type *t, 1213 void *data) 1214 { 1215 const struct btf_type *rt; 1216 int size_left, size; 1217 void *safe = NULL; 1218 1219 if (show->flags & BTF_SHOW_UNSAFE) 1220 return data; 1221 1222 rt = btf_resolve_size(show->btf, t, &size); 1223 if (IS_ERR(rt)) { 1224 show->state.status = PTR_ERR(rt); 1225 return NULL; 1226 } 1227 1228 /* 1229 * Is this toplevel object? If so, set total object size and 1230 * initialize pointers. Otherwise check if we still fall within 1231 * our safe object data. 1232 */ 1233 if (show->state.depth == 0) { 1234 show->obj.size = size; 1235 show->obj.head = data; 1236 } else { 1237 /* 1238 * If the size of the current object is > our remaining 1239 * safe buffer we _may_ need to do a new copy. However 1240 * consider the case of a nested struct; it's size pushes 1241 * us over the safe buffer limit, but showing any individual 1242 * struct members does not. In such cases, we don't need 1243 * to initiate a fresh copy yet; however we definitely need 1244 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1245 * in our buffer, regardless of the current object size. 1246 * The logic here is that as we resolve types we will 1247 * hit a base type at some point, and we need to be sure 1248 * the next chunk of data is safely available to display 1249 * that type info safely. We cannot rely on the size of 1250 * the current object here because it may be much larger 1251 * than our current buffer (e.g. task_struct is 8k). 1252 * All we want to do here is ensure that we can print the 1253 * next basic type, which we can if either 1254 * - the current type size is within the safe buffer; or 1255 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1256 * the safe buffer. 1257 */ 1258 safe = __btf_show_obj_safe(show, data, 1259 min(size, 1260 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1261 } 1262 1263 /* 1264 * We need a new copy to our safe object, either because we haven't 1265 * yet copied and are initializing safe data, or because the data 1266 * we want falls outside the boundaries of the safe object. 1267 */ 1268 if (!safe) { 1269 size_left = btf_show_obj_size_left(show, data); 1270 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1271 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1272 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1273 data, size_left); 1274 if (!show->state.status) { 1275 show->obj.data = data; 1276 safe = show->obj.safe; 1277 } 1278 } 1279 1280 return safe; 1281 } 1282 1283 /* 1284 * Set the type we are starting to show and return a safe data pointer 1285 * to be used for showing the associated data. 1286 */ 1287 static void *btf_show_start_type(struct btf_show *show, 1288 const struct btf_type *t, 1289 u32 type_id, void *data) 1290 { 1291 show->state.type = t; 1292 show->state.type_id = type_id; 1293 show->state.name[0] = '\0'; 1294 1295 return btf_show_obj_safe(show, t, data); 1296 } 1297 1298 static void btf_show_end_type(struct btf_show *show) 1299 { 1300 show->state.type = NULL; 1301 show->state.type_id = 0; 1302 show->state.name[0] = '\0'; 1303 } 1304 1305 static void *btf_show_start_aggr_type(struct btf_show *show, 1306 const struct btf_type *t, 1307 u32 type_id, void *data) 1308 { 1309 void *safe_data = btf_show_start_type(show, t, type_id, data); 1310 1311 if (!safe_data) 1312 return safe_data; 1313 1314 btf_show(show, "%s%s%s", btf_show_indent(show), 1315 btf_show_name(show), 1316 btf_show_newline(show)); 1317 show->state.depth++; 1318 return safe_data; 1319 } 1320 1321 static void btf_show_end_aggr_type(struct btf_show *show, 1322 const char *suffix) 1323 { 1324 show->state.depth--; 1325 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1326 btf_show_delim(show), btf_show_newline(show)); 1327 btf_show_end_type(show); 1328 } 1329 1330 static void btf_show_start_member(struct btf_show *show, 1331 const struct btf_member *m) 1332 { 1333 show->state.member = m; 1334 } 1335 1336 static void btf_show_start_array_member(struct btf_show *show) 1337 { 1338 show->state.array_member = 1; 1339 btf_show_start_member(show, NULL); 1340 } 1341 1342 static void btf_show_end_member(struct btf_show *show) 1343 { 1344 show->state.member = NULL; 1345 } 1346 1347 static void btf_show_end_array_member(struct btf_show *show) 1348 { 1349 show->state.array_member = 0; 1350 btf_show_end_member(show); 1351 } 1352 1353 static void *btf_show_start_array_type(struct btf_show *show, 1354 const struct btf_type *t, 1355 u32 type_id, 1356 u16 array_encoding, 1357 void *data) 1358 { 1359 show->state.array_encoding = array_encoding; 1360 show->state.array_terminated = 0; 1361 return btf_show_start_aggr_type(show, t, type_id, data); 1362 } 1363 1364 static void btf_show_end_array_type(struct btf_show *show) 1365 { 1366 show->state.array_encoding = 0; 1367 show->state.array_terminated = 0; 1368 btf_show_end_aggr_type(show, "]"); 1369 } 1370 1371 static void *btf_show_start_struct_type(struct btf_show *show, 1372 const struct btf_type *t, 1373 u32 type_id, 1374 void *data) 1375 { 1376 return btf_show_start_aggr_type(show, t, type_id, data); 1377 } 1378 1379 static void btf_show_end_struct_type(struct btf_show *show) 1380 { 1381 btf_show_end_aggr_type(show, "}"); 1382 } 1383 1384 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1385 const char *fmt, ...) 1386 { 1387 va_list args; 1388 1389 va_start(args, fmt); 1390 bpf_verifier_vlog(log, fmt, args); 1391 va_end(args); 1392 } 1393 1394 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1395 const char *fmt, ...) 1396 { 1397 struct bpf_verifier_log *log = &env->log; 1398 va_list args; 1399 1400 if (!bpf_verifier_log_needed(log)) 1401 return; 1402 1403 va_start(args, fmt); 1404 bpf_verifier_vlog(log, fmt, args); 1405 va_end(args); 1406 } 1407 1408 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1409 const struct btf_type *t, 1410 bool log_details, 1411 const char *fmt, ...) 1412 { 1413 struct bpf_verifier_log *log = &env->log; 1414 struct btf *btf = env->btf; 1415 va_list args; 1416 1417 if (!bpf_verifier_log_needed(log)) 1418 return; 1419 1420 if (log->level == BPF_LOG_KERNEL) { 1421 /* btf verifier prints all types it is processing via 1422 * btf_verifier_log_type(..., fmt = NULL). 1423 * Skip those prints for in-kernel BTF verification. 1424 */ 1425 if (!fmt) 1426 return; 1427 1428 /* Skip logging when loading module BTF with mismatches permitted */ 1429 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1430 return; 1431 } 1432 1433 __btf_verifier_log(log, "[%u] %s %s%s", 1434 env->log_type_id, 1435 btf_type_str(t), 1436 __btf_name_by_offset(btf, t->name_off), 1437 log_details ? " " : ""); 1438 1439 if (log_details) 1440 btf_type_ops(t)->log_details(env, t); 1441 1442 if (fmt && *fmt) { 1443 __btf_verifier_log(log, " "); 1444 va_start(args, fmt); 1445 bpf_verifier_vlog(log, fmt, args); 1446 va_end(args); 1447 } 1448 1449 __btf_verifier_log(log, "\n"); 1450 } 1451 1452 #define btf_verifier_log_type(env, t, ...) \ 1453 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1454 #define btf_verifier_log_basic(env, t, ...) \ 1455 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1456 1457 __printf(4, 5) 1458 static void btf_verifier_log_member(struct btf_verifier_env *env, 1459 const struct btf_type *struct_type, 1460 const struct btf_member *member, 1461 const char *fmt, ...) 1462 { 1463 struct bpf_verifier_log *log = &env->log; 1464 struct btf *btf = env->btf; 1465 va_list args; 1466 1467 if (!bpf_verifier_log_needed(log)) 1468 return; 1469 1470 if (log->level == BPF_LOG_KERNEL) { 1471 if (!fmt) 1472 return; 1473 1474 /* Skip logging when loading module BTF with mismatches permitted */ 1475 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1476 return; 1477 } 1478 1479 /* The CHECK_META phase already did a btf dump. 1480 * 1481 * If member is logged again, it must hit an error in 1482 * parsing this member. It is useful to print out which 1483 * struct this member belongs to. 1484 */ 1485 if (env->phase != CHECK_META) 1486 btf_verifier_log_type(env, struct_type, NULL); 1487 1488 if (btf_type_kflag(struct_type)) 1489 __btf_verifier_log(log, 1490 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1491 __btf_name_by_offset(btf, member->name_off), 1492 member->type, 1493 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1494 BTF_MEMBER_BIT_OFFSET(member->offset)); 1495 else 1496 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1497 __btf_name_by_offset(btf, member->name_off), 1498 member->type, member->offset); 1499 1500 if (fmt && *fmt) { 1501 __btf_verifier_log(log, " "); 1502 va_start(args, fmt); 1503 bpf_verifier_vlog(log, fmt, args); 1504 va_end(args); 1505 } 1506 1507 __btf_verifier_log(log, "\n"); 1508 } 1509 1510 __printf(4, 5) 1511 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1512 const struct btf_type *datasec_type, 1513 const struct btf_var_secinfo *vsi, 1514 const char *fmt, ...) 1515 { 1516 struct bpf_verifier_log *log = &env->log; 1517 va_list args; 1518 1519 if (!bpf_verifier_log_needed(log)) 1520 return; 1521 if (log->level == BPF_LOG_KERNEL && !fmt) 1522 return; 1523 if (env->phase != CHECK_META) 1524 btf_verifier_log_type(env, datasec_type, NULL); 1525 1526 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1527 vsi->type, vsi->offset, vsi->size); 1528 if (fmt && *fmt) { 1529 __btf_verifier_log(log, " "); 1530 va_start(args, fmt); 1531 bpf_verifier_vlog(log, fmt, args); 1532 va_end(args); 1533 } 1534 1535 __btf_verifier_log(log, "\n"); 1536 } 1537 1538 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1539 u32 btf_data_size) 1540 { 1541 struct bpf_verifier_log *log = &env->log; 1542 const struct btf *btf = env->btf; 1543 const struct btf_header *hdr; 1544 1545 if (!bpf_verifier_log_needed(log)) 1546 return; 1547 1548 if (log->level == BPF_LOG_KERNEL) 1549 return; 1550 hdr = &btf->hdr; 1551 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1552 __btf_verifier_log(log, "version: %u\n", hdr->version); 1553 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1554 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1555 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1556 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1557 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1558 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1559 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1560 } 1561 1562 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1563 { 1564 struct btf *btf = env->btf; 1565 1566 if (btf->types_size == btf->nr_types) { 1567 /* Expand 'types' array */ 1568 1569 struct btf_type **new_types; 1570 u32 expand_by, new_size; 1571 1572 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1573 btf_verifier_log(env, "Exceeded max num of types"); 1574 return -E2BIG; 1575 } 1576 1577 expand_by = max_t(u32, btf->types_size >> 2, 16); 1578 new_size = min_t(u32, BTF_MAX_TYPE, 1579 btf->types_size + expand_by); 1580 1581 new_types = kvcalloc(new_size, sizeof(*new_types), 1582 GFP_KERNEL | __GFP_NOWARN); 1583 if (!new_types) 1584 return -ENOMEM; 1585 1586 if (btf->nr_types == 0) { 1587 if (!btf->base_btf) { 1588 /* lazily init VOID type */ 1589 new_types[0] = &btf_void; 1590 btf->nr_types++; 1591 } 1592 } else { 1593 memcpy(new_types, btf->types, 1594 sizeof(*btf->types) * btf->nr_types); 1595 } 1596 1597 kvfree(btf->types); 1598 btf->types = new_types; 1599 btf->types_size = new_size; 1600 } 1601 1602 btf->types[btf->nr_types++] = t; 1603 1604 return 0; 1605 } 1606 1607 static int btf_alloc_id(struct btf *btf) 1608 { 1609 int id; 1610 1611 idr_preload(GFP_KERNEL); 1612 spin_lock_bh(&btf_idr_lock); 1613 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1614 if (id > 0) 1615 btf->id = id; 1616 spin_unlock_bh(&btf_idr_lock); 1617 idr_preload_end(); 1618 1619 if (WARN_ON_ONCE(!id)) 1620 return -ENOSPC; 1621 1622 return id > 0 ? 0 : id; 1623 } 1624 1625 static void btf_free_id(struct btf *btf) 1626 { 1627 unsigned long flags; 1628 1629 /* 1630 * In map-in-map, calling map_delete_elem() on outer 1631 * map will call bpf_map_put on the inner map. 1632 * It will then eventually call btf_free_id() 1633 * on the inner map. Some of the map_delete_elem() 1634 * implementation may have irq disabled, so 1635 * we need to use the _irqsave() version instead 1636 * of the _bh() version. 1637 */ 1638 spin_lock_irqsave(&btf_idr_lock, flags); 1639 idr_remove(&btf_idr, btf->id); 1640 spin_unlock_irqrestore(&btf_idr_lock, flags); 1641 } 1642 1643 static void btf_free_kfunc_set_tab(struct btf *btf) 1644 { 1645 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1646 int hook; 1647 1648 if (!tab) 1649 return; 1650 /* For module BTF, we directly assign the sets being registered, so 1651 * there is nothing to free except kfunc_set_tab. 1652 */ 1653 if (btf_is_module(btf)) 1654 goto free_tab; 1655 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1656 kfree(tab->sets[hook]); 1657 free_tab: 1658 kfree(tab); 1659 btf->kfunc_set_tab = NULL; 1660 } 1661 1662 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1663 { 1664 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1665 1666 if (!tab) 1667 return; 1668 kfree(tab); 1669 btf->dtor_kfunc_tab = NULL; 1670 } 1671 1672 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1673 { 1674 int i; 1675 1676 if (!tab) 1677 return; 1678 for (i = 0; i < tab->cnt; i++) 1679 btf_record_free(tab->types[i].record); 1680 kfree(tab); 1681 } 1682 1683 static void btf_free_struct_meta_tab(struct btf *btf) 1684 { 1685 struct btf_struct_metas *tab = btf->struct_meta_tab; 1686 1687 btf_struct_metas_free(tab); 1688 btf->struct_meta_tab = NULL; 1689 } 1690 1691 static void btf_free(struct btf *btf) 1692 { 1693 btf_free_struct_meta_tab(btf); 1694 btf_free_dtor_kfunc_tab(btf); 1695 btf_free_kfunc_set_tab(btf); 1696 kvfree(btf->types); 1697 kvfree(btf->resolved_sizes); 1698 kvfree(btf->resolved_ids); 1699 kvfree(btf->data); 1700 kfree(btf); 1701 } 1702 1703 static void btf_free_rcu(struct rcu_head *rcu) 1704 { 1705 struct btf *btf = container_of(rcu, struct btf, rcu); 1706 1707 btf_free(btf); 1708 } 1709 1710 void btf_get(struct btf *btf) 1711 { 1712 refcount_inc(&btf->refcnt); 1713 } 1714 1715 void btf_put(struct btf *btf) 1716 { 1717 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1718 btf_free_id(btf); 1719 call_rcu(&btf->rcu, btf_free_rcu); 1720 } 1721 } 1722 1723 static int env_resolve_init(struct btf_verifier_env *env) 1724 { 1725 struct btf *btf = env->btf; 1726 u32 nr_types = btf->nr_types; 1727 u32 *resolved_sizes = NULL; 1728 u32 *resolved_ids = NULL; 1729 u8 *visit_states = NULL; 1730 1731 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1732 GFP_KERNEL | __GFP_NOWARN); 1733 if (!resolved_sizes) 1734 goto nomem; 1735 1736 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1737 GFP_KERNEL | __GFP_NOWARN); 1738 if (!resolved_ids) 1739 goto nomem; 1740 1741 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1742 GFP_KERNEL | __GFP_NOWARN); 1743 if (!visit_states) 1744 goto nomem; 1745 1746 btf->resolved_sizes = resolved_sizes; 1747 btf->resolved_ids = resolved_ids; 1748 env->visit_states = visit_states; 1749 1750 return 0; 1751 1752 nomem: 1753 kvfree(resolved_sizes); 1754 kvfree(resolved_ids); 1755 kvfree(visit_states); 1756 return -ENOMEM; 1757 } 1758 1759 static void btf_verifier_env_free(struct btf_verifier_env *env) 1760 { 1761 kvfree(env->visit_states); 1762 kfree(env); 1763 } 1764 1765 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1766 const struct btf_type *next_type) 1767 { 1768 switch (env->resolve_mode) { 1769 case RESOLVE_TBD: 1770 /* int, enum or void is a sink */ 1771 return !btf_type_needs_resolve(next_type); 1772 case RESOLVE_PTR: 1773 /* int, enum, void, struct, array, func or func_proto is a sink 1774 * for ptr 1775 */ 1776 return !btf_type_is_modifier(next_type) && 1777 !btf_type_is_ptr(next_type); 1778 case RESOLVE_STRUCT_OR_ARRAY: 1779 /* int, enum, void, ptr, func or func_proto is a sink 1780 * for struct and array 1781 */ 1782 return !btf_type_is_modifier(next_type) && 1783 !btf_type_is_array(next_type) && 1784 !btf_type_is_struct(next_type); 1785 default: 1786 BUG(); 1787 } 1788 } 1789 1790 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1791 u32 type_id) 1792 { 1793 /* base BTF types should be resolved by now */ 1794 if (type_id < env->btf->start_id) 1795 return true; 1796 1797 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1798 } 1799 1800 static int env_stack_push(struct btf_verifier_env *env, 1801 const struct btf_type *t, u32 type_id) 1802 { 1803 const struct btf *btf = env->btf; 1804 struct resolve_vertex *v; 1805 1806 if (env->top_stack == MAX_RESOLVE_DEPTH) 1807 return -E2BIG; 1808 1809 if (type_id < btf->start_id 1810 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1811 return -EEXIST; 1812 1813 env->visit_states[type_id - btf->start_id] = VISITED; 1814 1815 v = &env->stack[env->top_stack++]; 1816 v->t = t; 1817 v->type_id = type_id; 1818 v->next_member = 0; 1819 1820 if (env->resolve_mode == RESOLVE_TBD) { 1821 if (btf_type_is_ptr(t)) 1822 env->resolve_mode = RESOLVE_PTR; 1823 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1824 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1825 } 1826 1827 return 0; 1828 } 1829 1830 static void env_stack_set_next_member(struct btf_verifier_env *env, 1831 u16 next_member) 1832 { 1833 env->stack[env->top_stack - 1].next_member = next_member; 1834 } 1835 1836 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1837 u32 resolved_type_id, 1838 u32 resolved_size) 1839 { 1840 u32 type_id = env->stack[--(env->top_stack)].type_id; 1841 struct btf *btf = env->btf; 1842 1843 type_id -= btf->start_id; /* adjust to local type id */ 1844 btf->resolved_sizes[type_id] = resolved_size; 1845 btf->resolved_ids[type_id] = resolved_type_id; 1846 env->visit_states[type_id] = RESOLVED; 1847 } 1848 1849 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1850 { 1851 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1852 } 1853 1854 /* Resolve the size of a passed-in "type" 1855 * 1856 * type: is an array (e.g. u32 array[x][y]) 1857 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1858 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1859 * corresponds to the return type. 1860 * *elem_type: u32 1861 * *elem_id: id of u32 1862 * *total_nelems: (x * y). Hence, individual elem size is 1863 * (*type_size / *total_nelems) 1864 * *type_id: id of type if it's changed within the function, 0 if not 1865 * 1866 * type: is not an array (e.g. const struct X) 1867 * return type: type "struct X" 1868 * *type_size: sizeof(struct X) 1869 * *elem_type: same as return type ("struct X") 1870 * *elem_id: 0 1871 * *total_nelems: 1 1872 * *type_id: id of type if it's changed within the function, 0 if not 1873 */ 1874 static const struct btf_type * 1875 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1876 u32 *type_size, const struct btf_type **elem_type, 1877 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1878 { 1879 const struct btf_type *array_type = NULL; 1880 const struct btf_array *array = NULL; 1881 u32 i, size, nelems = 1, id = 0; 1882 1883 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1884 switch (BTF_INFO_KIND(type->info)) { 1885 /* type->size can be used */ 1886 case BTF_KIND_INT: 1887 case BTF_KIND_STRUCT: 1888 case BTF_KIND_UNION: 1889 case BTF_KIND_ENUM: 1890 case BTF_KIND_FLOAT: 1891 case BTF_KIND_ENUM64: 1892 size = type->size; 1893 goto resolved; 1894 1895 case BTF_KIND_PTR: 1896 size = sizeof(void *); 1897 goto resolved; 1898 1899 /* Modifiers */ 1900 case BTF_KIND_TYPEDEF: 1901 case BTF_KIND_VOLATILE: 1902 case BTF_KIND_CONST: 1903 case BTF_KIND_RESTRICT: 1904 case BTF_KIND_TYPE_TAG: 1905 id = type->type; 1906 type = btf_type_by_id(btf, type->type); 1907 break; 1908 1909 case BTF_KIND_ARRAY: 1910 if (!array_type) 1911 array_type = type; 1912 array = btf_type_array(type); 1913 if (nelems && array->nelems > U32_MAX / nelems) 1914 return ERR_PTR(-EINVAL); 1915 nelems *= array->nelems; 1916 type = btf_type_by_id(btf, array->type); 1917 break; 1918 1919 /* type without size */ 1920 default: 1921 return ERR_PTR(-EINVAL); 1922 } 1923 } 1924 1925 return ERR_PTR(-EINVAL); 1926 1927 resolved: 1928 if (nelems && size > U32_MAX / nelems) 1929 return ERR_PTR(-EINVAL); 1930 1931 *type_size = nelems * size; 1932 if (total_nelems) 1933 *total_nelems = nelems; 1934 if (elem_type) 1935 *elem_type = type; 1936 if (elem_id) 1937 *elem_id = array ? array->type : 0; 1938 if (type_id && id) 1939 *type_id = id; 1940 1941 return array_type ? : type; 1942 } 1943 1944 const struct btf_type * 1945 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1946 u32 *type_size) 1947 { 1948 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1949 } 1950 1951 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1952 { 1953 while (type_id < btf->start_id) 1954 btf = btf->base_btf; 1955 1956 return btf->resolved_ids[type_id - btf->start_id]; 1957 } 1958 1959 /* The input param "type_id" must point to a needs_resolve type */ 1960 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1961 u32 *type_id) 1962 { 1963 *type_id = btf_resolved_type_id(btf, *type_id); 1964 return btf_type_by_id(btf, *type_id); 1965 } 1966 1967 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1968 { 1969 while (type_id < btf->start_id) 1970 btf = btf->base_btf; 1971 1972 return btf->resolved_sizes[type_id - btf->start_id]; 1973 } 1974 1975 const struct btf_type *btf_type_id_size(const struct btf *btf, 1976 u32 *type_id, u32 *ret_size) 1977 { 1978 const struct btf_type *size_type; 1979 u32 size_type_id = *type_id; 1980 u32 size = 0; 1981 1982 size_type = btf_type_by_id(btf, size_type_id); 1983 if (btf_type_nosize_or_null(size_type)) 1984 return NULL; 1985 1986 if (btf_type_has_size(size_type)) { 1987 size = size_type->size; 1988 } else if (btf_type_is_array(size_type)) { 1989 size = btf_resolved_type_size(btf, size_type_id); 1990 } else if (btf_type_is_ptr(size_type)) { 1991 size = sizeof(void *); 1992 } else { 1993 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1994 !btf_type_is_var(size_type))) 1995 return NULL; 1996 1997 size_type_id = btf_resolved_type_id(btf, size_type_id); 1998 size_type = btf_type_by_id(btf, size_type_id); 1999 if (btf_type_nosize_or_null(size_type)) 2000 return NULL; 2001 else if (btf_type_has_size(size_type)) 2002 size = size_type->size; 2003 else if (btf_type_is_array(size_type)) 2004 size = btf_resolved_type_size(btf, size_type_id); 2005 else if (btf_type_is_ptr(size_type)) 2006 size = sizeof(void *); 2007 else 2008 return NULL; 2009 } 2010 2011 *type_id = size_type_id; 2012 if (ret_size) 2013 *ret_size = size; 2014 2015 return size_type; 2016 } 2017 2018 static int btf_df_check_member(struct btf_verifier_env *env, 2019 const struct btf_type *struct_type, 2020 const struct btf_member *member, 2021 const struct btf_type *member_type) 2022 { 2023 btf_verifier_log_basic(env, struct_type, 2024 "Unsupported check_member"); 2025 return -EINVAL; 2026 } 2027 2028 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2029 const struct btf_type *struct_type, 2030 const struct btf_member *member, 2031 const struct btf_type *member_type) 2032 { 2033 btf_verifier_log_basic(env, struct_type, 2034 "Unsupported check_kflag_member"); 2035 return -EINVAL; 2036 } 2037 2038 /* Used for ptr, array struct/union and float type members. 2039 * int, enum and modifier types have their specific callback functions. 2040 */ 2041 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2042 const struct btf_type *struct_type, 2043 const struct btf_member *member, 2044 const struct btf_type *member_type) 2045 { 2046 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2047 btf_verifier_log_member(env, struct_type, member, 2048 "Invalid member bitfield_size"); 2049 return -EINVAL; 2050 } 2051 2052 /* bitfield size is 0, so member->offset represents bit offset only. 2053 * It is safe to call non kflag check_member variants. 2054 */ 2055 return btf_type_ops(member_type)->check_member(env, struct_type, 2056 member, 2057 member_type); 2058 } 2059 2060 static int btf_df_resolve(struct btf_verifier_env *env, 2061 const struct resolve_vertex *v) 2062 { 2063 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2064 return -EINVAL; 2065 } 2066 2067 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2068 u32 type_id, void *data, u8 bits_offsets, 2069 struct btf_show *show) 2070 { 2071 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2072 } 2073 2074 static int btf_int_check_member(struct btf_verifier_env *env, 2075 const struct btf_type *struct_type, 2076 const struct btf_member *member, 2077 const struct btf_type *member_type) 2078 { 2079 u32 int_data = btf_type_int(member_type); 2080 u32 struct_bits_off = member->offset; 2081 u32 struct_size = struct_type->size; 2082 u32 nr_copy_bits; 2083 u32 bytes_offset; 2084 2085 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2086 btf_verifier_log_member(env, struct_type, member, 2087 "bits_offset exceeds U32_MAX"); 2088 return -EINVAL; 2089 } 2090 2091 struct_bits_off += BTF_INT_OFFSET(int_data); 2092 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2093 nr_copy_bits = BTF_INT_BITS(int_data) + 2094 BITS_PER_BYTE_MASKED(struct_bits_off); 2095 2096 if (nr_copy_bits > BITS_PER_U128) { 2097 btf_verifier_log_member(env, struct_type, member, 2098 "nr_copy_bits exceeds 128"); 2099 return -EINVAL; 2100 } 2101 2102 if (struct_size < bytes_offset || 2103 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2104 btf_verifier_log_member(env, struct_type, member, 2105 "Member exceeds struct_size"); 2106 return -EINVAL; 2107 } 2108 2109 return 0; 2110 } 2111 2112 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2113 const struct btf_type *struct_type, 2114 const struct btf_member *member, 2115 const struct btf_type *member_type) 2116 { 2117 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2118 u32 int_data = btf_type_int(member_type); 2119 u32 struct_size = struct_type->size; 2120 u32 nr_copy_bits; 2121 2122 /* a regular int type is required for the kflag int member */ 2123 if (!btf_type_int_is_regular(member_type)) { 2124 btf_verifier_log_member(env, struct_type, member, 2125 "Invalid member base type"); 2126 return -EINVAL; 2127 } 2128 2129 /* check sanity of bitfield size */ 2130 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2131 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2132 nr_int_data_bits = BTF_INT_BITS(int_data); 2133 if (!nr_bits) { 2134 /* Not a bitfield member, member offset must be at byte 2135 * boundary. 2136 */ 2137 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2138 btf_verifier_log_member(env, struct_type, member, 2139 "Invalid member offset"); 2140 return -EINVAL; 2141 } 2142 2143 nr_bits = nr_int_data_bits; 2144 } else if (nr_bits > nr_int_data_bits) { 2145 btf_verifier_log_member(env, struct_type, member, 2146 "Invalid member bitfield_size"); 2147 return -EINVAL; 2148 } 2149 2150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2151 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2152 if (nr_copy_bits > BITS_PER_U128) { 2153 btf_verifier_log_member(env, struct_type, member, 2154 "nr_copy_bits exceeds 128"); 2155 return -EINVAL; 2156 } 2157 2158 if (struct_size < bytes_offset || 2159 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2160 btf_verifier_log_member(env, struct_type, member, 2161 "Member exceeds struct_size"); 2162 return -EINVAL; 2163 } 2164 2165 return 0; 2166 } 2167 2168 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2169 const struct btf_type *t, 2170 u32 meta_left) 2171 { 2172 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2173 u16 encoding; 2174 2175 if (meta_left < meta_needed) { 2176 btf_verifier_log_basic(env, t, 2177 "meta_left:%u meta_needed:%u", 2178 meta_left, meta_needed); 2179 return -EINVAL; 2180 } 2181 2182 if (btf_type_vlen(t)) { 2183 btf_verifier_log_type(env, t, "vlen != 0"); 2184 return -EINVAL; 2185 } 2186 2187 if (btf_type_kflag(t)) { 2188 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2189 return -EINVAL; 2190 } 2191 2192 int_data = btf_type_int(t); 2193 if (int_data & ~BTF_INT_MASK) { 2194 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2195 int_data); 2196 return -EINVAL; 2197 } 2198 2199 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2200 2201 if (nr_bits > BITS_PER_U128) { 2202 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2203 BITS_PER_U128); 2204 return -EINVAL; 2205 } 2206 2207 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2208 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2209 return -EINVAL; 2210 } 2211 2212 /* 2213 * Only one of the encoding bits is allowed and it 2214 * should be sufficient for the pretty print purpose (i.e. decoding). 2215 * Multiple bits can be allowed later if it is found 2216 * to be insufficient. 2217 */ 2218 encoding = BTF_INT_ENCODING(int_data); 2219 if (encoding && 2220 encoding != BTF_INT_SIGNED && 2221 encoding != BTF_INT_CHAR && 2222 encoding != BTF_INT_BOOL) { 2223 btf_verifier_log_type(env, t, "Unsupported encoding"); 2224 return -ENOTSUPP; 2225 } 2226 2227 btf_verifier_log_type(env, t, NULL); 2228 2229 return meta_needed; 2230 } 2231 2232 static void btf_int_log(struct btf_verifier_env *env, 2233 const struct btf_type *t) 2234 { 2235 int int_data = btf_type_int(t); 2236 2237 btf_verifier_log(env, 2238 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2239 t->size, BTF_INT_OFFSET(int_data), 2240 BTF_INT_BITS(int_data), 2241 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2242 } 2243 2244 static void btf_int128_print(struct btf_show *show, void *data) 2245 { 2246 /* data points to a __int128 number. 2247 * Suppose 2248 * int128_num = *(__int128 *)data; 2249 * The below formulas shows what upper_num and lower_num represents: 2250 * upper_num = int128_num >> 64; 2251 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2252 */ 2253 u64 upper_num, lower_num; 2254 2255 #ifdef __BIG_ENDIAN_BITFIELD 2256 upper_num = *(u64 *)data; 2257 lower_num = *(u64 *)(data + 8); 2258 #else 2259 upper_num = *(u64 *)(data + 8); 2260 lower_num = *(u64 *)data; 2261 #endif 2262 if (upper_num == 0) 2263 btf_show_type_value(show, "0x%llx", lower_num); 2264 else 2265 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2266 lower_num); 2267 } 2268 2269 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2270 u16 right_shift_bits) 2271 { 2272 u64 upper_num, lower_num; 2273 2274 #ifdef __BIG_ENDIAN_BITFIELD 2275 upper_num = print_num[0]; 2276 lower_num = print_num[1]; 2277 #else 2278 upper_num = print_num[1]; 2279 lower_num = print_num[0]; 2280 #endif 2281 2282 /* shake out un-needed bits by shift/or operations */ 2283 if (left_shift_bits >= 64) { 2284 upper_num = lower_num << (left_shift_bits - 64); 2285 lower_num = 0; 2286 } else { 2287 upper_num = (upper_num << left_shift_bits) | 2288 (lower_num >> (64 - left_shift_bits)); 2289 lower_num = lower_num << left_shift_bits; 2290 } 2291 2292 if (right_shift_bits >= 64) { 2293 lower_num = upper_num >> (right_shift_bits - 64); 2294 upper_num = 0; 2295 } else { 2296 lower_num = (lower_num >> right_shift_bits) | 2297 (upper_num << (64 - right_shift_bits)); 2298 upper_num = upper_num >> right_shift_bits; 2299 } 2300 2301 #ifdef __BIG_ENDIAN_BITFIELD 2302 print_num[0] = upper_num; 2303 print_num[1] = lower_num; 2304 #else 2305 print_num[0] = lower_num; 2306 print_num[1] = upper_num; 2307 #endif 2308 } 2309 2310 static void btf_bitfield_show(void *data, u8 bits_offset, 2311 u8 nr_bits, struct btf_show *show) 2312 { 2313 u16 left_shift_bits, right_shift_bits; 2314 u8 nr_copy_bytes; 2315 u8 nr_copy_bits; 2316 u64 print_num[2] = {}; 2317 2318 nr_copy_bits = nr_bits + bits_offset; 2319 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2320 2321 memcpy(print_num, data, nr_copy_bytes); 2322 2323 #ifdef __BIG_ENDIAN_BITFIELD 2324 left_shift_bits = bits_offset; 2325 #else 2326 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2327 #endif 2328 right_shift_bits = BITS_PER_U128 - nr_bits; 2329 2330 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2331 btf_int128_print(show, print_num); 2332 } 2333 2334 2335 static void btf_int_bits_show(const struct btf *btf, 2336 const struct btf_type *t, 2337 void *data, u8 bits_offset, 2338 struct btf_show *show) 2339 { 2340 u32 int_data = btf_type_int(t); 2341 u8 nr_bits = BTF_INT_BITS(int_data); 2342 u8 total_bits_offset; 2343 2344 /* 2345 * bits_offset is at most 7. 2346 * BTF_INT_OFFSET() cannot exceed 128 bits. 2347 */ 2348 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2349 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2350 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2351 btf_bitfield_show(data, bits_offset, nr_bits, show); 2352 } 2353 2354 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2355 u32 type_id, void *data, u8 bits_offset, 2356 struct btf_show *show) 2357 { 2358 u32 int_data = btf_type_int(t); 2359 u8 encoding = BTF_INT_ENCODING(int_data); 2360 bool sign = encoding & BTF_INT_SIGNED; 2361 u8 nr_bits = BTF_INT_BITS(int_data); 2362 void *safe_data; 2363 2364 safe_data = btf_show_start_type(show, t, type_id, data); 2365 if (!safe_data) 2366 return; 2367 2368 if (bits_offset || BTF_INT_OFFSET(int_data) || 2369 BITS_PER_BYTE_MASKED(nr_bits)) { 2370 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2371 goto out; 2372 } 2373 2374 switch (nr_bits) { 2375 case 128: 2376 btf_int128_print(show, safe_data); 2377 break; 2378 case 64: 2379 if (sign) 2380 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2381 else 2382 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2383 break; 2384 case 32: 2385 if (sign) 2386 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2387 else 2388 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2389 break; 2390 case 16: 2391 if (sign) 2392 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2393 else 2394 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2395 break; 2396 case 8: 2397 if (show->state.array_encoding == BTF_INT_CHAR) { 2398 /* check for null terminator */ 2399 if (show->state.array_terminated) 2400 break; 2401 if (*(char *)data == '\0') { 2402 show->state.array_terminated = 1; 2403 break; 2404 } 2405 if (isprint(*(char *)data)) { 2406 btf_show_type_value(show, "'%c'", 2407 *(char *)safe_data); 2408 break; 2409 } 2410 } 2411 if (sign) 2412 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2413 else 2414 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2415 break; 2416 default: 2417 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2418 break; 2419 } 2420 out: 2421 btf_show_end_type(show); 2422 } 2423 2424 static const struct btf_kind_operations int_ops = { 2425 .check_meta = btf_int_check_meta, 2426 .resolve = btf_df_resolve, 2427 .check_member = btf_int_check_member, 2428 .check_kflag_member = btf_int_check_kflag_member, 2429 .log_details = btf_int_log, 2430 .show = btf_int_show, 2431 }; 2432 2433 static int btf_modifier_check_member(struct btf_verifier_env *env, 2434 const struct btf_type *struct_type, 2435 const struct btf_member *member, 2436 const struct btf_type *member_type) 2437 { 2438 const struct btf_type *resolved_type; 2439 u32 resolved_type_id = member->type; 2440 struct btf_member resolved_member; 2441 struct btf *btf = env->btf; 2442 2443 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2444 if (!resolved_type) { 2445 btf_verifier_log_member(env, struct_type, member, 2446 "Invalid member"); 2447 return -EINVAL; 2448 } 2449 2450 resolved_member = *member; 2451 resolved_member.type = resolved_type_id; 2452 2453 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2454 &resolved_member, 2455 resolved_type); 2456 } 2457 2458 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2459 const struct btf_type *struct_type, 2460 const struct btf_member *member, 2461 const struct btf_type *member_type) 2462 { 2463 const struct btf_type *resolved_type; 2464 u32 resolved_type_id = member->type; 2465 struct btf_member resolved_member; 2466 struct btf *btf = env->btf; 2467 2468 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2469 if (!resolved_type) { 2470 btf_verifier_log_member(env, struct_type, member, 2471 "Invalid member"); 2472 return -EINVAL; 2473 } 2474 2475 resolved_member = *member; 2476 resolved_member.type = resolved_type_id; 2477 2478 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2479 &resolved_member, 2480 resolved_type); 2481 } 2482 2483 static int btf_ptr_check_member(struct btf_verifier_env *env, 2484 const struct btf_type *struct_type, 2485 const struct btf_member *member, 2486 const struct btf_type *member_type) 2487 { 2488 u32 struct_size, struct_bits_off, bytes_offset; 2489 2490 struct_size = struct_type->size; 2491 struct_bits_off = member->offset; 2492 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2493 2494 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2495 btf_verifier_log_member(env, struct_type, member, 2496 "Member is not byte aligned"); 2497 return -EINVAL; 2498 } 2499 2500 if (struct_size - bytes_offset < sizeof(void *)) { 2501 btf_verifier_log_member(env, struct_type, member, 2502 "Member exceeds struct_size"); 2503 return -EINVAL; 2504 } 2505 2506 return 0; 2507 } 2508 2509 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2510 const struct btf_type *t, 2511 u32 meta_left) 2512 { 2513 const char *value; 2514 2515 if (btf_type_vlen(t)) { 2516 btf_verifier_log_type(env, t, "vlen != 0"); 2517 return -EINVAL; 2518 } 2519 2520 if (btf_type_kflag(t)) { 2521 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2522 return -EINVAL; 2523 } 2524 2525 if (!BTF_TYPE_ID_VALID(t->type)) { 2526 btf_verifier_log_type(env, t, "Invalid type_id"); 2527 return -EINVAL; 2528 } 2529 2530 /* typedef/type_tag type must have a valid name, and other ref types, 2531 * volatile, const, restrict, should have a null name. 2532 */ 2533 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2534 if (!t->name_off || 2535 !btf_name_valid_identifier(env->btf, t->name_off)) { 2536 btf_verifier_log_type(env, t, "Invalid name"); 2537 return -EINVAL; 2538 } 2539 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2540 value = btf_name_by_offset(env->btf, t->name_off); 2541 if (!value || !value[0]) { 2542 btf_verifier_log_type(env, t, "Invalid name"); 2543 return -EINVAL; 2544 } 2545 } else { 2546 if (t->name_off) { 2547 btf_verifier_log_type(env, t, "Invalid name"); 2548 return -EINVAL; 2549 } 2550 } 2551 2552 btf_verifier_log_type(env, t, NULL); 2553 2554 return 0; 2555 } 2556 2557 static int btf_modifier_resolve(struct btf_verifier_env *env, 2558 const struct resolve_vertex *v) 2559 { 2560 const struct btf_type *t = v->t; 2561 const struct btf_type *next_type; 2562 u32 next_type_id = t->type; 2563 struct btf *btf = env->btf; 2564 2565 next_type = btf_type_by_id(btf, next_type_id); 2566 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2567 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2568 return -EINVAL; 2569 } 2570 2571 if (!env_type_is_resolve_sink(env, next_type) && 2572 !env_type_is_resolved(env, next_type_id)) 2573 return env_stack_push(env, next_type, next_type_id); 2574 2575 /* Figure out the resolved next_type_id with size. 2576 * They will be stored in the current modifier's 2577 * resolved_ids and resolved_sizes such that it can 2578 * save us a few type-following when we use it later (e.g. in 2579 * pretty print). 2580 */ 2581 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2582 if (env_type_is_resolved(env, next_type_id)) 2583 next_type = btf_type_id_resolve(btf, &next_type_id); 2584 2585 /* "typedef void new_void", "const void"...etc */ 2586 if (!btf_type_is_void(next_type) && 2587 !btf_type_is_fwd(next_type) && 2588 !btf_type_is_func_proto(next_type)) { 2589 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2590 return -EINVAL; 2591 } 2592 } 2593 2594 env_stack_pop_resolved(env, next_type_id, 0); 2595 2596 return 0; 2597 } 2598 2599 static int btf_var_resolve(struct btf_verifier_env *env, 2600 const struct resolve_vertex *v) 2601 { 2602 const struct btf_type *next_type; 2603 const struct btf_type *t = v->t; 2604 u32 next_type_id = t->type; 2605 struct btf *btf = env->btf; 2606 2607 next_type = btf_type_by_id(btf, next_type_id); 2608 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2609 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2610 return -EINVAL; 2611 } 2612 2613 if (!env_type_is_resolve_sink(env, next_type) && 2614 !env_type_is_resolved(env, next_type_id)) 2615 return env_stack_push(env, next_type, next_type_id); 2616 2617 if (btf_type_is_modifier(next_type)) { 2618 const struct btf_type *resolved_type; 2619 u32 resolved_type_id; 2620 2621 resolved_type_id = next_type_id; 2622 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2623 2624 if (btf_type_is_ptr(resolved_type) && 2625 !env_type_is_resolve_sink(env, resolved_type) && 2626 !env_type_is_resolved(env, resolved_type_id)) 2627 return env_stack_push(env, resolved_type, 2628 resolved_type_id); 2629 } 2630 2631 /* We must resolve to something concrete at this point, no 2632 * forward types or similar that would resolve to size of 2633 * zero is allowed. 2634 */ 2635 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2636 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2637 return -EINVAL; 2638 } 2639 2640 env_stack_pop_resolved(env, next_type_id, 0); 2641 2642 return 0; 2643 } 2644 2645 static int btf_ptr_resolve(struct btf_verifier_env *env, 2646 const struct resolve_vertex *v) 2647 { 2648 const struct btf_type *next_type; 2649 const struct btf_type *t = v->t; 2650 u32 next_type_id = t->type; 2651 struct btf *btf = env->btf; 2652 2653 next_type = btf_type_by_id(btf, next_type_id); 2654 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2655 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2656 return -EINVAL; 2657 } 2658 2659 if (!env_type_is_resolve_sink(env, next_type) && 2660 !env_type_is_resolved(env, next_type_id)) 2661 return env_stack_push(env, next_type, next_type_id); 2662 2663 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2664 * the modifier may have stopped resolving when it was resolved 2665 * to a ptr (last-resolved-ptr). 2666 * 2667 * We now need to continue from the last-resolved-ptr to 2668 * ensure the last-resolved-ptr will not referring back to 2669 * the current ptr (t). 2670 */ 2671 if (btf_type_is_modifier(next_type)) { 2672 const struct btf_type *resolved_type; 2673 u32 resolved_type_id; 2674 2675 resolved_type_id = next_type_id; 2676 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2677 2678 if (btf_type_is_ptr(resolved_type) && 2679 !env_type_is_resolve_sink(env, resolved_type) && 2680 !env_type_is_resolved(env, resolved_type_id)) 2681 return env_stack_push(env, resolved_type, 2682 resolved_type_id); 2683 } 2684 2685 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2686 if (env_type_is_resolved(env, next_type_id)) 2687 next_type = btf_type_id_resolve(btf, &next_type_id); 2688 2689 if (!btf_type_is_void(next_type) && 2690 !btf_type_is_fwd(next_type) && 2691 !btf_type_is_func_proto(next_type)) { 2692 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2693 return -EINVAL; 2694 } 2695 } 2696 2697 env_stack_pop_resolved(env, next_type_id, 0); 2698 2699 return 0; 2700 } 2701 2702 static void btf_modifier_show(const struct btf *btf, 2703 const struct btf_type *t, 2704 u32 type_id, void *data, 2705 u8 bits_offset, struct btf_show *show) 2706 { 2707 if (btf->resolved_ids) 2708 t = btf_type_id_resolve(btf, &type_id); 2709 else 2710 t = btf_type_skip_modifiers(btf, type_id, NULL); 2711 2712 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2713 } 2714 2715 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2716 u32 type_id, void *data, u8 bits_offset, 2717 struct btf_show *show) 2718 { 2719 t = btf_type_id_resolve(btf, &type_id); 2720 2721 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2722 } 2723 2724 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2725 u32 type_id, void *data, u8 bits_offset, 2726 struct btf_show *show) 2727 { 2728 void *safe_data; 2729 2730 safe_data = btf_show_start_type(show, t, type_id, data); 2731 if (!safe_data) 2732 return; 2733 2734 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2735 if (show->flags & BTF_SHOW_PTR_RAW) 2736 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2737 else 2738 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2739 btf_show_end_type(show); 2740 } 2741 2742 static void btf_ref_type_log(struct btf_verifier_env *env, 2743 const struct btf_type *t) 2744 { 2745 btf_verifier_log(env, "type_id=%u", t->type); 2746 } 2747 2748 static struct btf_kind_operations modifier_ops = { 2749 .check_meta = btf_ref_type_check_meta, 2750 .resolve = btf_modifier_resolve, 2751 .check_member = btf_modifier_check_member, 2752 .check_kflag_member = btf_modifier_check_kflag_member, 2753 .log_details = btf_ref_type_log, 2754 .show = btf_modifier_show, 2755 }; 2756 2757 static struct btf_kind_operations ptr_ops = { 2758 .check_meta = btf_ref_type_check_meta, 2759 .resolve = btf_ptr_resolve, 2760 .check_member = btf_ptr_check_member, 2761 .check_kflag_member = btf_generic_check_kflag_member, 2762 .log_details = btf_ref_type_log, 2763 .show = btf_ptr_show, 2764 }; 2765 2766 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2767 const struct btf_type *t, 2768 u32 meta_left) 2769 { 2770 if (btf_type_vlen(t)) { 2771 btf_verifier_log_type(env, t, "vlen != 0"); 2772 return -EINVAL; 2773 } 2774 2775 if (t->type) { 2776 btf_verifier_log_type(env, t, "type != 0"); 2777 return -EINVAL; 2778 } 2779 2780 /* fwd type must have a valid name */ 2781 if (!t->name_off || 2782 !btf_name_valid_identifier(env->btf, t->name_off)) { 2783 btf_verifier_log_type(env, t, "Invalid name"); 2784 return -EINVAL; 2785 } 2786 2787 btf_verifier_log_type(env, t, NULL); 2788 2789 return 0; 2790 } 2791 2792 static void btf_fwd_type_log(struct btf_verifier_env *env, 2793 const struct btf_type *t) 2794 { 2795 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2796 } 2797 2798 static struct btf_kind_operations fwd_ops = { 2799 .check_meta = btf_fwd_check_meta, 2800 .resolve = btf_df_resolve, 2801 .check_member = btf_df_check_member, 2802 .check_kflag_member = btf_df_check_kflag_member, 2803 .log_details = btf_fwd_type_log, 2804 .show = btf_df_show, 2805 }; 2806 2807 static int btf_array_check_member(struct btf_verifier_env *env, 2808 const struct btf_type *struct_type, 2809 const struct btf_member *member, 2810 const struct btf_type *member_type) 2811 { 2812 u32 struct_bits_off = member->offset; 2813 u32 struct_size, bytes_offset; 2814 u32 array_type_id, array_size; 2815 struct btf *btf = env->btf; 2816 2817 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2818 btf_verifier_log_member(env, struct_type, member, 2819 "Member is not byte aligned"); 2820 return -EINVAL; 2821 } 2822 2823 array_type_id = member->type; 2824 btf_type_id_size(btf, &array_type_id, &array_size); 2825 struct_size = struct_type->size; 2826 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2827 if (struct_size - bytes_offset < array_size) { 2828 btf_verifier_log_member(env, struct_type, member, 2829 "Member exceeds struct_size"); 2830 return -EINVAL; 2831 } 2832 2833 return 0; 2834 } 2835 2836 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2837 const struct btf_type *t, 2838 u32 meta_left) 2839 { 2840 const struct btf_array *array = btf_type_array(t); 2841 u32 meta_needed = sizeof(*array); 2842 2843 if (meta_left < meta_needed) { 2844 btf_verifier_log_basic(env, t, 2845 "meta_left:%u meta_needed:%u", 2846 meta_left, meta_needed); 2847 return -EINVAL; 2848 } 2849 2850 /* array type should not have a name */ 2851 if (t->name_off) { 2852 btf_verifier_log_type(env, t, "Invalid name"); 2853 return -EINVAL; 2854 } 2855 2856 if (btf_type_vlen(t)) { 2857 btf_verifier_log_type(env, t, "vlen != 0"); 2858 return -EINVAL; 2859 } 2860 2861 if (btf_type_kflag(t)) { 2862 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2863 return -EINVAL; 2864 } 2865 2866 if (t->size) { 2867 btf_verifier_log_type(env, t, "size != 0"); 2868 return -EINVAL; 2869 } 2870 2871 /* Array elem type and index type cannot be in type void, 2872 * so !array->type and !array->index_type are not allowed. 2873 */ 2874 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2875 btf_verifier_log_type(env, t, "Invalid elem"); 2876 return -EINVAL; 2877 } 2878 2879 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2880 btf_verifier_log_type(env, t, "Invalid index"); 2881 return -EINVAL; 2882 } 2883 2884 btf_verifier_log_type(env, t, NULL); 2885 2886 return meta_needed; 2887 } 2888 2889 static int btf_array_resolve(struct btf_verifier_env *env, 2890 const struct resolve_vertex *v) 2891 { 2892 const struct btf_array *array = btf_type_array(v->t); 2893 const struct btf_type *elem_type, *index_type; 2894 u32 elem_type_id, index_type_id; 2895 struct btf *btf = env->btf; 2896 u32 elem_size; 2897 2898 /* Check array->index_type */ 2899 index_type_id = array->index_type; 2900 index_type = btf_type_by_id(btf, index_type_id); 2901 if (btf_type_nosize_or_null(index_type) || 2902 btf_type_is_resolve_source_only(index_type)) { 2903 btf_verifier_log_type(env, v->t, "Invalid index"); 2904 return -EINVAL; 2905 } 2906 2907 if (!env_type_is_resolve_sink(env, index_type) && 2908 !env_type_is_resolved(env, index_type_id)) 2909 return env_stack_push(env, index_type, index_type_id); 2910 2911 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2912 if (!index_type || !btf_type_is_int(index_type) || 2913 !btf_type_int_is_regular(index_type)) { 2914 btf_verifier_log_type(env, v->t, "Invalid index"); 2915 return -EINVAL; 2916 } 2917 2918 /* Check array->type */ 2919 elem_type_id = array->type; 2920 elem_type = btf_type_by_id(btf, elem_type_id); 2921 if (btf_type_nosize_or_null(elem_type) || 2922 btf_type_is_resolve_source_only(elem_type)) { 2923 btf_verifier_log_type(env, v->t, 2924 "Invalid elem"); 2925 return -EINVAL; 2926 } 2927 2928 if (!env_type_is_resolve_sink(env, elem_type) && 2929 !env_type_is_resolved(env, elem_type_id)) 2930 return env_stack_push(env, elem_type, elem_type_id); 2931 2932 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2933 if (!elem_type) { 2934 btf_verifier_log_type(env, v->t, "Invalid elem"); 2935 return -EINVAL; 2936 } 2937 2938 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2939 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2940 return -EINVAL; 2941 } 2942 2943 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2944 btf_verifier_log_type(env, v->t, 2945 "Array size overflows U32_MAX"); 2946 return -EINVAL; 2947 } 2948 2949 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2950 2951 return 0; 2952 } 2953 2954 static void btf_array_log(struct btf_verifier_env *env, 2955 const struct btf_type *t) 2956 { 2957 const struct btf_array *array = btf_type_array(t); 2958 2959 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2960 array->type, array->index_type, array->nelems); 2961 } 2962 2963 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2964 u32 type_id, void *data, u8 bits_offset, 2965 struct btf_show *show) 2966 { 2967 const struct btf_array *array = btf_type_array(t); 2968 const struct btf_kind_operations *elem_ops; 2969 const struct btf_type *elem_type; 2970 u32 i, elem_size = 0, elem_type_id; 2971 u16 encoding = 0; 2972 2973 elem_type_id = array->type; 2974 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2975 if (elem_type && btf_type_has_size(elem_type)) 2976 elem_size = elem_type->size; 2977 2978 if (elem_type && btf_type_is_int(elem_type)) { 2979 u32 int_type = btf_type_int(elem_type); 2980 2981 encoding = BTF_INT_ENCODING(int_type); 2982 2983 /* 2984 * BTF_INT_CHAR encoding never seems to be set for 2985 * char arrays, so if size is 1 and element is 2986 * printable as a char, we'll do that. 2987 */ 2988 if (elem_size == 1) 2989 encoding = BTF_INT_CHAR; 2990 } 2991 2992 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2993 return; 2994 2995 if (!elem_type) 2996 goto out; 2997 elem_ops = btf_type_ops(elem_type); 2998 2999 for (i = 0; i < array->nelems; i++) { 3000 3001 btf_show_start_array_member(show); 3002 3003 elem_ops->show(btf, elem_type, elem_type_id, data, 3004 bits_offset, show); 3005 data += elem_size; 3006 3007 btf_show_end_array_member(show); 3008 3009 if (show->state.array_terminated) 3010 break; 3011 } 3012 out: 3013 btf_show_end_array_type(show); 3014 } 3015 3016 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3017 u32 type_id, void *data, u8 bits_offset, 3018 struct btf_show *show) 3019 { 3020 const struct btf_member *m = show->state.member; 3021 3022 /* 3023 * First check if any members would be shown (are non-zero). 3024 * See comments above "struct btf_show" definition for more 3025 * details on how this works at a high-level. 3026 */ 3027 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3028 if (!show->state.depth_check) { 3029 show->state.depth_check = show->state.depth + 1; 3030 show->state.depth_to_show = 0; 3031 } 3032 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3033 show->state.member = m; 3034 3035 if (show->state.depth_check != show->state.depth + 1) 3036 return; 3037 show->state.depth_check = 0; 3038 3039 if (show->state.depth_to_show <= show->state.depth) 3040 return; 3041 /* 3042 * Reaching here indicates we have recursed and found 3043 * non-zero array member(s). 3044 */ 3045 } 3046 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3047 } 3048 3049 static struct btf_kind_operations array_ops = { 3050 .check_meta = btf_array_check_meta, 3051 .resolve = btf_array_resolve, 3052 .check_member = btf_array_check_member, 3053 .check_kflag_member = btf_generic_check_kflag_member, 3054 .log_details = btf_array_log, 3055 .show = btf_array_show, 3056 }; 3057 3058 static int btf_struct_check_member(struct btf_verifier_env *env, 3059 const struct btf_type *struct_type, 3060 const struct btf_member *member, 3061 const struct btf_type *member_type) 3062 { 3063 u32 struct_bits_off = member->offset; 3064 u32 struct_size, bytes_offset; 3065 3066 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3067 btf_verifier_log_member(env, struct_type, member, 3068 "Member is not byte aligned"); 3069 return -EINVAL; 3070 } 3071 3072 struct_size = struct_type->size; 3073 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3074 if (struct_size - bytes_offset < member_type->size) { 3075 btf_verifier_log_member(env, struct_type, member, 3076 "Member exceeds struct_size"); 3077 return -EINVAL; 3078 } 3079 3080 return 0; 3081 } 3082 3083 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3084 const struct btf_type *t, 3085 u32 meta_left) 3086 { 3087 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3088 const struct btf_member *member; 3089 u32 meta_needed, last_offset; 3090 struct btf *btf = env->btf; 3091 u32 struct_size = t->size; 3092 u32 offset; 3093 u16 i; 3094 3095 meta_needed = btf_type_vlen(t) * sizeof(*member); 3096 if (meta_left < meta_needed) { 3097 btf_verifier_log_basic(env, t, 3098 "meta_left:%u meta_needed:%u", 3099 meta_left, meta_needed); 3100 return -EINVAL; 3101 } 3102 3103 /* struct type either no name or a valid one */ 3104 if (t->name_off && 3105 !btf_name_valid_identifier(env->btf, t->name_off)) { 3106 btf_verifier_log_type(env, t, "Invalid name"); 3107 return -EINVAL; 3108 } 3109 3110 btf_verifier_log_type(env, t, NULL); 3111 3112 last_offset = 0; 3113 for_each_member(i, t, member) { 3114 if (!btf_name_offset_valid(btf, member->name_off)) { 3115 btf_verifier_log_member(env, t, member, 3116 "Invalid member name_offset:%u", 3117 member->name_off); 3118 return -EINVAL; 3119 } 3120 3121 /* struct member either no name or a valid one */ 3122 if (member->name_off && 3123 !btf_name_valid_identifier(btf, member->name_off)) { 3124 btf_verifier_log_member(env, t, member, "Invalid name"); 3125 return -EINVAL; 3126 } 3127 /* A member cannot be in type void */ 3128 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3129 btf_verifier_log_member(env, t, member, 3130 "Invalid type_id"); 3131 return -EINVAL; 3132 } 3133 3134 offset = __btf_member_bit_offset(t, member); 3135 if (is_union && offset) { 3136 btf_verifier_log_member(env, t, member, 3137 "Invalid member bits_offset"); 3138 return -EINVAL; 3139 } 3140 3141 /* 3142 * ">" instead of ">=" because the last member could be 3143 * "char a[0];" 3144 */ 3145 if (last_offset > offset) { 3146 btf_verifier_log_member(env, t, member, 3147 "Invalid member bits_offset"); 3148 return -EINVAL; 3149 } 3150 3151 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3152 btf_verifier_log_member(env, t, member, 3153 "Member bits_offset exceeds its struct size"); 3154 return -EINVAL; 3155 } 3156 3157 btf_verifier_log_member(env, t, member, NULL); 3158 last_offset = offset; 3159 } 3160 3161 return meta_needed; 3162 } 3163 3164 static int btf_struct_resolve(struct btf_verifier_env *env, 3165 const struct resolve_vertex *v) 3166 { 3167 const struct btf_member *member; 3168 int err; 3169 u16 i; 3170 3171 /* Before continue resolving the next_member, 3172 * ensure the last member is indeed resolved to a 3173 * type with size info. 3174 */ 3175 if (v->next_member) { 3176 const struct btf_type *last_member_type; 3177 const struct btf_member *last_member; 3178 u32 last_member_type_id; 3179 3180 last_member = btf_type_member(v->t) + v->next_member - 1; 3181 last_member_type_id = last_member->type; 3182 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3183 last_member_type_id))) 3184 return -EINVAL; 3185 3186 last_member_type = btf_type_by_id(env->btf, 3187 last_member_type_id); 3188 if (btf_type_kflag(v->t)) 3189 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3190 last_member, 3191 last_member_type); 3192 else 3193 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3194 last_member, 3195 last_member_type); 3196 if (err) 3197 return err; 3198 } 3199 3200 for_each_member_from(i, v->next_member, v->t, member) { 3201 u32 member_type_id = member->type; 3202 const struct btf_type *member_type = btf_type_by_id(env->btf, 3203 member_type_id); 3204 3205 if (btf_type_nosize_or_null(member_type) || 3206 btf_type_is_resolve_source_only(member_type)) { 3207 btf_verifier_log_member(env, v->t, member, 3208 "Invalid member"); 3209 return -EINVAL; 3210 } 3211 3212 if (!env_type_is_resolve_sink(env, member_type) && 3213 !env_type_is_resolved(env, member_type_id)) { 3214 env_stack_set_next_member(env, i + 1); 3215 return env_stack_push(env, member_type, member_type_id); 3216 } 3217 3218 if (btf_type_kflag(v->t)) 3219 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3220 member, 3221 member_type); 3222 else 3223 err = btf_type_ops(member_type)->check_member(env, v->t, 3224 member, 3225 member_type); 3226 if (err) 3227 return err; 3228 } 3229 3230 env_stack_pop_resolved(env, 0, 0); 3231 3232 return 0; 3233 } 3234 3235 static void btf_struct_log(struct btf_verifier_env *env, 3236 const struct btf_type *t) 3237 { 3238 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3239 } 3240 3241 enum { 3242 BTF_FIELD_IGNORE = 0, 3243 BTF_FIELD_FOUND = 1, 3244 }; 3245 3246 struct btf_field_info { 3247 enum btf_field_type type; 3248 u32 off; 3249 union { 3250 struct { 3251 u32 type_id; 3252 } kptr; 3253 struct { 3254 const char *node_name; 3255 u32 value_btf_id; 3256 } graph_root; 3257 }; 3258 }; 3259 3260 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3261 u32 off, int sz, enum btf_field_type field_type, 3262 struct btf_field_info *info) 3263 { 3264 if (!__btf_type_is_struct(t)) 3265 return BTF_FIELD_IGNORE; 3266 if (t->size != sz) 3267 return BTF_FIELD_IGNORE; 3268 info->type = field_type; 3269 info->off = off; 3270 return BTF_FIELD_FOUND; 3271 } 3272 3273 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3274 u32 off, int sz, struct btf_field_info *info) 3275 { 3276 enum btf_field_type type; 3277 u32 res_id; 3278 3279 /* Permit modifiers on the pointer itself */ 3280 if (btf_type_is_volatile(t)) 3281 t = btf_type_by_id(btf, t->type); 3282 /* For PTR, sz is always == 8 */ 3283 if (!btf_type_is_ptr(t)) 3284 return BTF_FIELD_IGNORE; 3285 t = btf_type_by_id(btf, t->type); 3286 3287 if (!btf_type_is_type_tag(t)) 3288 return BTF_FIELD_IGNORE; 3289 /* Reject extra tags */ 3290 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3291 return -EINVAL; 3292 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3293 type = BPF_KPTR_UNREF; 3294 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3295 type = BPF_KPTR_REF; 3296 else 3297 return -EINVAL; 3298 3299 /* Get the base type */ 3300 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3301 /* Only pointer to struct is allowed */ 3302 if (!__btf_type_is_struct(t)) 3303 return -EINVAL; 3304 3305 info->type = type; 3306 info->off = off; 3307 info->kptr.type_id = res_id; 3308 return BTF_FIELD_FOUND; 3309 } 3310 3311 static const char *btf_find_decl_tag_value(const struct btf *btf, 3312 const struct btf_type *pt, 3313 int comp_idx, const char *tag_key) 3314 { 3315 int i; 3316 3317 for (i = 1; i < btf_nr_types(btf); i++) { 3318 const struct btf_type *t = btf_type_by_id(btf, i); 3319 int len = strlen(tag_key); 3320 3321 if (!btf_type_is_decl_tag(t)) 3322 continue; 3323 if (pt != btf_type_by_id(btf, t->type) || 3324 btf_type_decl_tag(t)->component_idx != comp_idx) 3325 continue; 3326 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3327 continue; 3328 return __btf_name_by_offset(btf, t->name_off) + len; 3329 } 3330 return NULL; 3331 } 3332 3333 static int 3334 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3335 const struct btf_type *t, int comp_idx, u32 off, 3336 int sz, struct btf_field_info *info, 3337 enum btf_field_type head_type) 3338 { 3339 const char *node_field_name; 3340 const char *value_type; 3341 s32 id; 3342 3343 if (!__btf_type_is_struct(t)) 3344 return BTF_FIELD_IGNORE; 3345 if (t->size != sz) 3346 return BTF_FIELD_IGNORE; 3347 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3348 if (!value_type) 3349 return -EINVAL; 3350 node_field_name = strstr(value_type, ":"); 3351 if (!node_field_name) 3352 return -EINVAL; 3353 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3354 if (!value_type) 3355 return -ENOMEM; 3356 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3357 kfree(value_type); 3358 if (id < 0) 3359 return id; 3360 node_field_name++; 3361 if (str_is_empty(node_field_name)) 3362 return -EINVAL; 3363 info->type = head_type; 3364 info->off = off; 3365 info->graph_root.value_btf_id = id; 3366 info->graph_root.node_name = node_field_name; 3367 return BTF_FIELD_FOUND; 3368 } 3369 3370 #define field_mask_test_name(field_type, field_type_str) \ 3371 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3372 type = field_type; \ 3373 goto end; \ 3374 } 3375 3376 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3377 int *align, int *sz) 3378 { 3379 int type = 0; 3380 3381 if (field_mask & BPF_SPIN_LOCK) { 3382 if (!strcmp(name, "bpf_spin_lock")) { 3383 if (*seen_mask & BPF_SPIN_LOCK) 3384 return -E2BIG; 3385 *seen_mask |= BPF_SPIN_LOCK; 3386 type = BPF_SPIN_LOCK; 3387 goto end; 3388 } 3389 } 3390 if (field_mask & BPF_TIMER) { 3391 if (!strcmp(name, "bpf_timer")) { 3392 if (*seen_mask & BPF_TIMER) 3393 return -E2BIG; 3394 *seen_mask |= BPF_TIMER; 3395 type = BPF_TIMER; 3396 goto end; 3397 } 3398 } 3399 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3400 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3401 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3402 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3403 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3404 3405 /* Only return BPF_KPTR when all other types with matchable names fail */ 3406 if (field_mask & BPF_KPTR) { 3407 type = BPF_KPTR_REF; 3408 goto end; 3409 } 3410 return 0; 3411 end: 3412 *sz = btf_field_type_size(type); 3413 *align = btf_field_type_align(type); 3414 return type; 3415 } 3416 3417 #undef field_mask_test_name 3418 3419 static int btf_find_struct_field(const struct btf *btf, 3420 const struct btf_type *t, u32 field_mask, 3421 struct btf_field_info *info, int info_cnt) 3422 { 3423 int ret, idx = 0, align, sz, field_type; 3424 const struct btf_member *member; 3425 struct btf_field_info tmp; 3426 u32 i, off, seen_mask = 0; 3427 3428 for_each_member(i, t, member) { 3429 const struct btf_type *member_type = btf_type_by_id(btf, 3430 member->type); 3431 3432 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3433 field_mask, &seen_mask, &align, &sz); 3434 if (field_type == 0) 3435 continue; 3436 if (field_type < 0) 3437 return field_type; 3438 3439 off = __btf_member_bit_offset(t, member); 3440 if (off % 8) 3441 /* valid C code cannot generate such BTF */ 3442 return -EINVAL; 3443 off /= 8; 3444 if (off % align) 3445 continue; 3446 3447 switch (field_type) { 3448 case BPF_SPIN_LOCK: 3449 case BPF_TIMER: 3450 case BPF_LIST_NODE: 3451 case BPF_RB_NODE: 3452 case BPF_REFCOUNT: 3453 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3454 idx < info_cnt ? &info[idx] : &tmp); 3455 if (ret < 0) 3456 return ret; 3457 break; 3458 case BPF_KPTR_UNREF: 3459 case BPF_KPTR_REF: 3460 ret = btf_find_kptr(btf, member_type, off, sz, 3461 idx < info_cnt ? &info[idx] : &tmp); 3462 if (ret < 0) 3463 return ret; 3464 break; 3465 case BPF_LIST_HEAD: 3466 case BPF_RB_ROOT: 3467 ret = btf_find_graph_root(btf, t, member_type, 3468 i, off, sz, 3469 idx < info_cnt ? &info[idx] : &tmp, 3470 field_type); 3471 if (ret < 0) 3472 return ret; 3473 break; 3474 default: 3475 return -EFAULT; 3476 } 3477 3478 if (ret == BTF_FIELD_IGNORE) 3479 continue; 3480 if (idx >= info_cnt) 3481 return -E2BIG; 3482 ++idx; 3483 } 3484 return idx; 3485 } 3486 3487 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3488 u32 field_mask, struct btf_field_info *info, 3489 int info_cnt) 3490 { 3491 int ret, idx = 0, align, sz, field_type; 3492 const struct btf_var_secinfo *vsi; 3493 struct btf_field_info tmp; 3494 u32 i, off, seen_mask = 0; 3495 3496 for_each_vsi(i, t, vsi) { 3497 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3498 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3499 3500 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3501 field_mask, &seen_mask, &align, &sz); 3502 if (field_type == 0) 3503 continue; 3504 if (field_type < 0) 3505 return field_type; 3506 3507 off = vsi->offset; 3508 if (vsi->size != sz) 3509 continue; 3510 if (off % align) 3511 continue; 3512 3513 switch (field_type) { 3514 case BPF_SPIN_LOCK: 3515 case BPF_TIMER: 3516 case BPF_LIST_NODE: 3517 case BPF_RB_NODE: 3518 case BPF_REFCOUNT: 3519 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3520 idx < info_cnt ? &info[idx] : &tmp); 3521 if (ret < 0) 3522 return ret; 3523 break; 3524 case BPF_KPTR_UNREF: 3525 case BPF_KPTR_REF: 3526 ret = btf_find_kptr(btf, var_type, off, sz, 3527 idx < info_cnt ? &info[idx] : &tmp); 3528 if (ret < 0) 3529 return ret; 3530 break; 3531 case BPF_LIST_HEAD: 3532 case BPF_RB_ROOT: 3533 ret = btf_find_graph_root(btf, var, var_type, 3534 -1, off, sz, 3535 idx < info_cnt ? &info[idx] : &tmp, 3536 field_type); 3537 if (ret < 0) 3538 return ret; 3539 break; 3540 default: 3541 return -EFAULT; 3542 } 3543 3544 if (ret == BTF_FIELD_IGNORE) 3545 continue; 3546 if (idx >= info_cnt) 3547 return -E2BIG; 3548 ++idx; 3549 } 3550 return idx; 3551 } 3552 3553 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3554 u32 field_mask, struct btf_field_info *info, 3555 int info_cnt) 3556 { 3557 if (__btf_type_is_struct(t)) 3558 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3559 else if (btf_type_is_datasec(t)) 3560 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3561 return -EINVAL; 3562 } 3563 3564 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3565 struct btf_field_info *info) 3566 { 3567 struct module *mod = NULL; 3568 const struct btf_type *t; 3569 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3570 * is that BTF, otherwise it's program BTF 3571 */ 3572 struct btf *kptr_btf; 3573 int ret; 3574 s32 id; 3575 3576 /* Find type in map BTF, and use it to look up the matching type 3577 * in vmlinux or module BTFs, by name and kind. 3578 */ 3579 t = btf_type_by_id(btf, info->kptr.type_id); 3580 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3581 &kptr_btf); 3582 if (id == -ENOENT) { 3583 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3584 WARN_ON_ONCE(btf_is_kernel(btf)); 3585 3586 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3587 * kptr allocated via bpf_obj_new 3588 */ 3589 field->kptr.dtor = NULL; 3590 id = info->kptr.type_id; 3591 kptr_btf = (struct btf *)btf; 3592 btf_get(kptr_btf); 3593 goto found_dtor; 3594 } 3595 if (id < 0) 3596 return id; 3597 3598 /* Find and stash the function pointer for the destruction function that 3599 * needs to be eventually invoked from the map free path. 3600 */ 3601 if (info->type == BPF_KPTR_REF) { 3602 const struct btf_type *dtor_func; 3603 const char *dtor_func_name; 3604 unsigned long addr; 3605 s32 dtor_btf_id; 3606 3607 /* This call also serves as a whitelist of allowed objects that 3608 * can be used as a referenced pointer and be stored in a map at 3609 * the same time. 3610 */ 3611 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3612 if (dtor_btf_id < 0) { 3613 ret = dtor_btf_id; 3614 goto end_btf; 3615 } 3616 3617 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3618 if (!dtor_func) { 3619 ret = -ENOENT; 3620 goto end_btf; 3621 } 3622 3623 if (btf_is_module(kptr_btf)) { 3624 mod = btf_try_get_module(kptr_btf); 3625 if (!mod) { 3626 ret = -ENXIO; 3627 goto end_btf; 3628 } 3629 } 3630 3631 /* We already verified dtor_func to be btf_type_is_func 3632 * in register_btf_id_dtor_kfuncs. 3633 */ 3634 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3635 addr = kallsyms_lookup_name(dtor_func_name); 3636 if (!addr) { 3637 ret = -EINVAL; 3638 goto end_mod; 3639 } 3640 field->kptr.dtor = (void *)addr; 3641 } 3642 3643 found_dtor: 3644 field->kptr.btf_id = id; 3645 field->kptr.btf = kptr_btf; 3646 field->kptr.module = mod; 3647 return 0; 3648 end_mod: 3649 module_put(mod); 3650 end_btf: 3651 btf_put(kptr_btf); 3652 return ret; 3653 } 3654 3655 static int btf_parse_graph_root(const struct btf *btf, 3656 struct btf_field *field, 3657 struct btf_field_info *info, 3658 const char *node_type_name, 3659 size_t node_type_align) 3660 { 3661 const struct btf_type *t, *n = NULL; 3662 const struct btf_member *member; 3663 u32 offset; 3664 int i; 3665 3666 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3667 /* We've already checked that value_btf_id is a struct type. We 3668 * just need to figure out the offset of the list_node, and 3669 * verify its type. 3670 */ 3671 for_each_member(i, t, member) { 3672 if (strcmp(info->graph_root.node_name, 3673 __btf_name_by_offset(btf, member->name_off))) 3674 continue; 3675 /* Invalid BTF, two members with same name */ 3676 if (n) 3677 return -EINVAL; 3678 n = btf_type_by_id(btf, member->type); 3679 if (!__btf_type_is_struct(n)) 3680 return -EINVAL; 3681 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3682 return -EINVAL; 3683 offset = __btf_member_bit_offset(n, member); 3684 if (offset % 8) 3685 return -EINVAL; 3686 offset /= 8; 3687 if (offset % node_type_align) 3688 return -EINVAL; 3689 3690 field->graph_root.btf = (struct btf *)btf; 3691 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3692 field->graph_root.node_offset = offset; 3693 } 3694 if (!n) 3695 return -ENOENT; 3696 return 0; 3697 } 3698 3699 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3700 struct btf_field_info *info) 3701 { 3702 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3703 __alignof__(struct bpf_list_node)); 3704 } 3705 3706 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3707 struct btf_field_info *info) 3708 { 3709 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3710 __alignof__(struct bpf_rb_node)); 3711 } 3712 3713 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3714 { 3715 const struct btf_field *a = (const struct btf_field *)_a; 3716 const struct btf_field *b = (const struct btf_field *)_b; 3717 3718 if (a->offset < b->offset) 3719 return -1; 3720 else if (a->offset > b->offset) 3721 return 1; 3722 return 0; 3723 } 3724 3725 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3726 u32 field_mask, u32 value_size) 3727 { 3728 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3729 u32 next_off = 0, field_type_size; 3730 struct btf_record *rec; 3731 int ret, i, cnt; 3732 3733 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3734 if (ret < 0) 3735 return ERR_PTR(ret); 3736 if (!ret) 3737 return NULL; 3738 3739 cnt = ret; 3740 /* This needs to be kzalloc to zero out padding and unused fields, see 3741 * comment in btf_record_equal. 3742 */ 3743 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3744 if (!rec) 3745 return ERR_PTR(-ENOMEM); 3746 3747 rec->spin_lock_off = -EINVAL; 3748 rec->timer_off = -EINVAL; 3749 rec->refcount_off = -EINVAL; 3750 for (i = 0; i < cnt; i++) { 3751 field_type_size = btf_field_type_size(info_arr[i].type); 3752 if (info_arr[i].off + field_type_size > value_size) { 3753 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3754 ret = -EFAULT; 3755 goto end; 3756 } 3757 if (info_arr[i].off < next_off) { 3758 ret = -EEXIST; 3759 goto end; 3760 } 3761 next_off = info_arr[i].off + field_type_size; 3762 3763 rec->field_mask |= info_arr[i].type; 3764 rec->fields[i].offset = info_arr[i].off; 3765 rec->fields[i].type = info_arr[i].type; 3766 rec->fields[i].size = field_type_size; 3767 3768 switch (info_arr[i].type) { 3769 case BPF_SPIN_LOCK: 3770 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3771 /* Cache offset for faster lookup at runtime */ 3772 rec->spin_lock_off = rec->fields[i].offset; 3773 break; 3774 case BPF_TIMER: 3775 WARN_ON_ONCE(rec->timer_off >= 0); 3776 /* Cache offset for faster lookup at runtime */ 3777 rec->timer_off = rec->fields[i].offset; 3778 break; 3779 case BPF_REFCOUNT: 3780 WARN_ON_ONCE(rec->refcount_off >= 0); 3781 /* Cache offset for faster lookup at runtime */ 3782 rec->refcount_off = rec->fields[i].offset; 3783 break; 3784 case BPF_KPTR_UNREF: 3785 case BPF_KPTR_REF: 3786 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3787 if (ret < 0) 3788 goto end; 3789 break; 3790 case BPF_LIST_HEAD: 3791 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3792 if (ret < 0) 3793 goto end; 3794 break; 3795 case BPF_RB_ROOT: 3796 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3797 if (ret < 0) 3798 goto end; 3799 break; 3800 case BPF_LIST_NODE: 3801 case BPF_RB_NODE: 3802 break; 3803 default: 3804 ret = -EFAULT; 3805 goto end; 3806 } 3807 rec->cnt++; 3808 } 3809 3810 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3811 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3812 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3813 ret = -EINVAL; 3814 goto end; 3815 } 3816 3817 if (rec->refcount_off < 0 && 3818 btf_record_has_field(rec, BPF_LIST_NODE) && 3819 btf_record_has_field(rec, BPF_RB_NODE)) { 3820 ret = -EINVAL; 3821 goto end; 3822 } 3823 3824 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 3825 NULL, rec); 3826 3827 return rec; 3828 end: 3829 btf_record_free(rec); 3830 return ERR_PTR(ret); 3831 } 3832 3833 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) 3834 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) 3835 3836 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3837 { 3838 int i; 3839 3840 /* There are three types that signify ownership of some other type: 3841 * kptr_ref, bpf_list_head, bpf_rb_root. 3842 * kptr_ref only supports storing kernel types, which can't store 3843 * references to program allocated local types. 3844 * 3845 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3846 * does not form cycles. 3847 */ 3848 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) 3849 return 0; 3850 for (i = 0; i < rec->cnt; i++) { 3851 struct btf_struct_meta *meta; 3852 u32 btf_id; 3853 3854 if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) 3855 continue; 3856 btf_id = rec->fields[i].graph_root.value_btf_id; 3857 meta = btf_find_struct_meta(btf, btf_id); 3858 if (!meta) 3859 return -EFAULT; 3860 rec->fields[i].graph_root.value_rec = meta->record; 3861 3862 /* We need to set value_rec for all root types, but no need 3863 * to check ownership cycle for a type unless it's also a 3864 * node type. 3865 */ 3866 if (!(rec->field_mask & GRAPH_NODE_MASK)) 3867 continue; 3868 3869 /* We need to ensure ownership acyclicity among all types. The 3870 * proper way to do it would be to topologically sort all BTF 3871 * IDs based on the ownership edges, since there can be multiple 3872 * bpf_{list_head,rb_node} in a type. Instead, we use the 3873 * following resaoning: 3874 * 3875 * - A type can only be owned by another type in user BTF if it 3876 * has a bpf_{list,rb}_node. Let's call these node types. 3877 * - A type can only _own_ another type in user BTF if it has a 3878 * bpf_{list_head,rb_root}. Let's call these root types. 3879 * 3880 * We ensure that if a type is both a root and node, its 3881 * element types cannot be root types. 3882 * 3883 * To ensure acyclicity: 3884 * 3885 * When A is an root type but not a node, its ownership 3886 * chain can be: 3887 * A -> B -> C 3888 * Where: 3889 * - A is an root, e.g. has bpf_rb_root. 3890 * - B is both a root and node, e.g. has bpf_rb_node and 3891 * bpf_list_head. 3892 * - C is only an root, e.g. has bpf_list_node 3893 * 3894 * When A is both a root and node, some other type already 3895 * owns it in the BTF domain, hence it can not own 3896 * another root type through any of the ownership edges. 3897 * A -> B 3898 * Where: 3899 * - A is both an root and node. 3900 * - B is only an node. 3901 */ 3902 if (meta->record->field_mask & GRAPH_ROOT_MASK) 3903 return -ELOOP; 3904 } 3905 return 0; 3906 } 3907 3908 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3909 u32 type_id, void *data, u8 bits_offset, 3910 struct btf_show *show) 3911 { 3912 const struct btf_member *member; 3913 void *safe_data; 3914 u32 i; 3915 3916 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3917 if (!safe_data) 3918 return; 3919 3920 for_each_member(i, t, member) { 3921 const struct btf_type *member_type = btf_type_by_id(btf, 3922 member->type); 3923 const struct btf_kind_operations *ops; 3924 u32 member_offset, bitfield_size; 3925 u32 bytes_offset; 3926 u8 bits8_offset; 3927 3928 btf_show_start_member(show, member); 3929 3930 member_offset = __btf_member_bit_offset(t, member); 3931 bitfield_size = __btf_member_bitfield_size(t, member); 3932 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3933 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3934 if (bitfield_size) { 3935 safe_data = btf_show_start_type(show, member_type, 3936 member->type, 3937 data + bytes_offset); 3938 if (safe_data) 3939 btf_bitfield_show(safe_data, 3940 bits8_offset, 3941 bitfield_size, show); 3942 btf_show_end_type(show); 3943 } else { 3944 ops = btf_type_ops(member_type); 3945 ops->show(btf, member_type, member->type, 3946 data + bytes_offset, bits8_offset, show); 3947 } 3948 3949 btf_show_end_member(show); 3950 } 3951 3952 btf_show_end_struct_type(show); 3953 } 3954 3955 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3956 u32 type_id, void *data, u8 bits_offset, 3957 struct btf_show *show) 3958 { 3959 const struct btf_member *m = show->state.member; 3960 3961 /* 3962 * First check if any members would be shown (are non-zero). 3963 * See comments above "struct btf_show" definition for more 3964 * details on how this works at a high-level. 3965 */ 3966 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3967 if (!show->state.depth_check) { 3968 show->state.depth_check = show->state.depth + 1; 3969 show->state.depth_to_show = 0; 3970 } 3971 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3972 /* Restore saved member data here */ 3973 show->state.member = m; 3974 if (show->state.depth_check != show->state.depth + 1) 3975 return; 3976 show->state.depth_check = 0; 3977 3978 if (show->state.depth_to_show <= show->state.depth) 3979 return; 3980 /* 3981 * Reaching here indicates we have recursed and found 3982 * non-zero child values. 3983 */ 3984 } 3985 3986 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3987 } 3988 3989 static struct btf_kind_operations struct_ops = { 3990 .check_meta = btf_struct_check_meta, 3991 .resolve = btf_struct_resolve, 3992 .check_member = btf_struct_check_member, 3993 .check_kflag_member = btf_generic_check_kflag_member, 3994 .log_details = btf_struct_log, 3995 .show = btf_struct_show, 3996 }; 3997 3998 static int btf_enum_check_member(struct btf_verifier_env *env, 3999 const struct btf_type *struct_type, 4000 const struct btf_member *member, 4001 const struct btf_type *member_type) 4002 { 4003 u32 struct_bits_off = member->offset; 4004 u32 struct_size, bytes_offset; 4005 4006 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4007 btf_verifier_log_member(env, struct_type, member, 4008 "Member is not byte aligned"); 4009 return -EINVAL; 4010 } 4011 4012 struct_size = struct_type->size; 4013 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4014 if (struct_size - bytes_offset < member_type->size) { 4015 btf_verifier_log_member(env, struct_type, member, 4016 "Member exceeds struct_size"); 4017 return -EINVAL; 4018 } 4019 4020 return 0; 4021 } 4022 4023 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4024 const struct btf_type *struct_type, 4025 const struct btf_member *member, 4026 const struct btf_type *member_type) 4027 { 4028 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4029 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4030 4031 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4032 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4033 if (!nr_bits) { 4034 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4035 btf_verifier_log_member(env, struct_type, member, 4036 "Member is not byte aligned"); 4037 return -EINVAL; 4038 } 4039 4040 nr_bits = int_bitsize; 4041 } else if (nr_bits > int_bitsize) { 4042 btf_verifier_log_member(env, struct_type, member, 4043 "Invalid member bitfield_size"); 4044 return -EINVAL; 4045 } 4046 4047 struct_size = struct_type->size; 4048 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4049 if (struct_size < bytes_end) { 4050 btf_verifier_log_member(env, struct_type, member, 4051 "Member exceeds struct_size"); 4052 return -EINVAL; 4053 } 4054 4055 return 0; 4056 } 4057 4058 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4059 const struct btf_type *t, 4060 u32 meta_left) 4061 { 4062 const struct btf_enum *enums = btf_type_enum(t); 4063 struct btf *btf = env->btf; 4064 const char *fmt_str; 4065 u16 i, nr_enums; 4066 u32 meta_needed; 4067 4068 nr_enums = btf_type_vlen(t); 4069 meta_needed = nr_enums * sizeof(*enums); 4070 4071 if (meta_left < meta_needed) { 4072 btf_verifier_log_basic(env, t, 4073 "meta_left:%u meta_needed:%u", 4074 meta_left, meta_needed); 4075 return -EINVAL; 4076 } 4077 4078 if (t->size > 8 || !is_power_of_2(t->size)) { 4079 btf_verifier_log_type(env, t, "Unexpected size"); 4080 return -EINVAL; 4081 } 4082 4083 /* enum type either no name or a valid one */ 4084 if (t->name_off && 4085 !btf_name_valid_identifier(env->btf, t->name_off)) { 4086 btf_verifier_log_type(env, t, "Invalid name"); 4087 return -EINVAL; 4088 } 4089 4090 btf_verifier_log_type(env, t, NULL); 4091 4092 for (i = 0; i < nr_enums; i++) { 4093 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4094 btf_verifier_log(env, "\tInvalid name_offset:%u", 4095 enums[i].name_off); 4096 return -EINVAL; 4097 } 4098 4099 /* enum member must have a valid name */ 4100 if (!enums[i].name_off || 4101 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4102 btf_verifier_log_type(env, t, "Invalid name"); 4103 return -EINVAL; 4104 } 4105 4106 if (env->log.level == BPF_LOG_KERNEL) 4107 continue; 4108 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4109 btf_verifier_log(env, fmt_str, 4110 __btf_name_by_offset(btf, enums[i].name_off), 4111 enums[i].val); 4112 } 4113 4114 return meta_needed; 4115 } 4116 4117 static void btf_enum_log(struct btf_verifier_env *env, 4118 const struct btf_type *t) 4119 { 4120 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4121 } 4122 4123 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4124 u32 type_id, void *data, u8 bits_offset, 4125 struct btf_show *show) 4126 { 4127 const struct btf_enum *enums = btf_type_enum(t); 4128 u32 i, nr_enums = btf_type_vlen(t); 4129 void *safe_data; 4130 int v; 4131 4132 safe_data = btf_show_start_type(show, t, type_id, data); 4133 if (!safe_data) 4134 return; 4135 4136 v = *(int *)safe_data; 4137 4138 for (i = 0; i < nr_enums; i++) { 4139 if (v != enums[i].val) 4140 continue; 4141 4142 btf_show_type_value(show, "%s", 4143 __btf_name_by_offset(btf, 4144 enums[i].name_off)); 4145 4146 btf_show_end_type(show); 4147 return; 4148 } 4149 4150 if (btf_type_kflag(t)) 4151 btf_show_type_value(show, "%d", v); 4152 else 4153 btf_show_type_value(show, "%u", v); 4154 btf_show_end_type(show); 4155 } 4156 4157 static struct btf_kind_operations enum_ops = { 4158 .check_meta = btf_enum_check_meta, 4159 .resolve = btf_df_resolve, 4160 .check_member = btf_enum_check_member, 4161 .check_kflag_member = btf_enum_check_kflag_member, 4162 .log_details = btf_enum_log, 4163 .show = btf_enum_show, 4164 }; 4165 4166 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4167 const struct btf_type *t, 4168 u32 meta_left) 4169 { 4170 const struct btf_enum64 *enums = btf_type_enum64(t); 4171 struct btf *btf = env->btf; 4172 const char *fmt_str; 4173 u16 i, nr_enums; 4174 u32 meta_needed; 4175 4176 nr_enums = btf_type_vlen(t); 4177 meta_needed = nr_enums * sizeof(*enums); 4178 4179 if (meta_left < meta_needed) { 4180 btf_verifier_log_basic(env, t, 4181 "meta_left:%u meta_needed:%u", 4182 meta_left, meta_needed); 4183 return -EINVAL; 4184 } 4185 4186 if (t->size > 8 || !is_power_of_2(t->size)) { 4187 btf_verifier_log_type(env, t, "Unexpected size"); 4188 return -EINVAL; 4189 } 4190 4191 /* enum type either no name or a valid one */ 4192 if (t->name_off && 4193 !btf_name_valid_identifier(env->btf, t->name_off)) { 4194 btf_verifier_log_type(env, t, "Invalid name"); 4195 return -EINVAL; 4196 } 4197 4198 btf_verifier_log_type(env, t, NULL); 4199 4200 for (i = 0; i < nr_enums; i++) { 4201 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4202 btf_verifier_log(env, "\tInvalid name_offset:%u", 4203 enums[i].name_off); 4204 return -EINVAL; 4205 } 4206 4207 /* enum member must have a valid name */ 4208 if (!enums[i].name_off || 4209 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4210 btf_verifier_log_type(env, t, "Invalid name"); 4211 return -EINVAL; 4212 } 4213 4214 if (env->log.level == BPF_LOG_KERNEL) 4215 continue; 4216 4217 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4218 btf_verifier_log(env, fmt_str, 4219 __btf_name_by_offset(btf, enums[i].name_off), 4220 btf_enum64_value(enums + i)); 4221 } 4222 4223 return meta_needed; 4224 } 4225 4226 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4227 u32 type_id, void *data, u8 bits_offset, 4228 struct btf_show *show) 4229 { 4230 const struct btf_enum64 *enums = btf_type_enum64(t); 4231 u32 i, nr_enums = btf_type_vlen(t); 4232 void *safe_data; 4233 s64 v; 4234 4235 safe_data = btf_show_start_type(show, t, type_id, data); 4236 if (!safe_data) 4237 return; 4238 4239 v = *(u64 *)safe_data; 4240 4241 for (i = 0; i < nr_enums; i++) { 4242 if (v != btf_enum64_value(enums + i)) 4243 continue; 4244 4245 btf_show_type_value(show, "%s", 4246 __btf_name_by_offset(btf, 4247 enums[i].name_off)); 4248 4249 btf_show_end_type(show); 4250 return; 4251 } 4252 4253 if (btf_type_kflag(t)) 4254 btf_show_type_value(show, "%lld", v); 4255 else 4256 btf_show_type_value(show, "%llu", v); 4257 btf_show_end_type(show); 4258 } 4259 4260 static struct btf_kind_operations enum64_ops = { 4261 .check_meta = btf_enum64_check_meta, 4262 .resolve = btf_df_resolve, 4263 .check_member = btf_enum_check_member, 4264 .check_kflag_member = btf_enum_check_kflag_member, 4265 .log_details = btf_enum_log, 4266 .show = btf_enum64_show, 4267 }; 4268 4269 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4270 const struct btf_type *t, 4271 u32 meta_left) 4272 { 4273 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4274 4275 if (meta_left < meta_needed) { 4276 btf_verifier_log_basic(env, t, 4277 "meta_left:%u meta_needed:%u", 4278 meta_left, meta_needed); 4279 return -EINVAL; 4280 } 4281 4282 if (t->name_off) { 4283 btf_verifier_log_type(env, t, "Invalid name"); 4284 return -EINVAL; 4285 } 4286 4287 if (btf_type_kflag(t)) { 4288 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4289 return -EINVAL; 4290 } 4291 4292 btf_verifier_log_type(env, t, NULL); 4293 4294 return meta_needed; 4295 } 4296 4297 static void btf_func_proto_log(struct btf_verifier_env *env, 4298 const struct btf_type *t) 4299 { 4300 const struct btf_param *args = (const struct btf_param *)(t + 1); 4301 u16 nr_args = btf_type_vlen(t), i; 4302 4303 btf_verifier_log(env, "return=%u args=(", t->type); 4304 if (!nr_args) { 4305 btf_verifier_log(env, "void"); 4306 goto done; 4307 } 4308 4309 if (nr_args == 1 && !args[0].type) { 4310 /* Only one vararg */ 4311 btf_verifier_log(env, "vararg"); 4312 goto done; 4313 } 4314 4315 btf_verifier_log(env, "%u %s", args[0].type, 4316 __btf_name_by_offset(env->btf, 4317 args[0].name_off)); 4318 for (i = 1; i < nr_args - 1; i++) 4319 btf_verifier_log(env, ", %u %s", args[i].type, 4320 __btf_name_by_offset(env->btf, 4321 args[i].name_off)); 4322 4323 if (nr_args > 1) { 4324 const struct btf_param *last_arg = &args[nr_args - 1]; 4325 4326 if (last_arg->type) 4327 btf_verifier_log(env, ", %u %s", last_arg->type, 4328 __btf_name_by_offset(env->btf, 4329 last_arg->name_off)); 4330 else 4331 btf_verifier_log(env, ", vararg"); 4332 } 4333 4334 done: 4335 btf_verifier_log(env, ")"); 4336 } 4337 4338 static struct btf_kind_operations func_proto_ops = { 4339 .check_meta = btf_func_proto_check_meta, 4340 .resolve = btf_df_resolve, 4341 /* 4342 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4343 * a struct's member. 4344 * 4345 * It should be a function pointer instead. 4346 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4347 * 4348 * Hence, there is no btf_func_check_member(). 4349 */ 4350 .check_member = btf_df_check_member, 4351 .check_kflag_member = btf_df_check_kflag_member, 4352 .log_details = btf_func_proto_log, 4353 .show = btf_df_show, 4354 }; 4355 4356 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4357 const struct btf_type *t, 4358 u32 meta_left) 4359 { 4360 if (!t->name_off || 4361 !btf_name_valid_identifier(env->btf, t->name_off)) { 4362 btf_verifier_log_type(env, t, "Invalid name"); 4363 return -EINVAL; 4364 } 4365 4366 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4367 btf_verifier_log_type(env, t, "Invalid func linkage"); 4368 return -EINVAL; 4369 } 4370 4371 if (btf_type_kflag(t)) { 4372 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4373 return -EINVAL; 4374 } 4375 4376 btf_verifier_log_type(env, t, NULL); 4377 4378 return 0; 4379 } 4380 4381 static int btf_func_resolve(struct btf_verifier_env *env, 4382 const struct resolve_vertex *v) 4383 { 4384 const struct btf_type *t = v->t; 4385 u32 next_type_id = t->type; 4386 int err; 4387 4388 err = btf_func_check(env, t); 4389 if (err) 4390 return err; 4391 4392 env_stack_pop_resolved(env, next_type_id, 0); 4393 return 0; 4394 } 4395 4396 static struct btf_kind_operations func_ops = { 4397 .check_meta = btf_func_check_meta, 4398 .resolve = btf_func_resolve, 4399 .check_member = btf_df_check_member, 4400 .check_kflag_member = btf_df_check_kflag_member, 4401 .log_details = btf_ref_type_log, 4402 .show = btf_df_show, 4403 }; 4404 4405 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4406 const struct btf_type *t, 4407 u32 meta_left) 4408 { 4409 const struct btf_var *var; 4410 u32 meta_needed = sizeof(*var); 4411 4412 if (meta_left < meta_needed) { 4413 btf_verifier_log_basic(env, t, 4414 "meta_left:%u meta_needed:%u", 4415 meta_left, meta_needed); 4416 return -EINVAL; 4417 } 4418 4419 if (btf_type_vlen(t)) { 4420 btf_verifier_log_type(env, t, "vlen != 0"); 4421 return -EINVAL; 4422 } 4423 4424 if (btf_type_kflag(t)) { 4425 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4426 return -EINVAL; 4427 } 4428 4429 if (!t->name_off || 4430 !__btf_name_valid(env->btf, t->name_off)) { 4431 btf_verifier_log_type(env, t, "Invalid name"); 4432 return -EINVAL; 4433 } 4434 4435 /* A var cannot be in type void */ 4436 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4437 btf_verifier_log_type(env, t, "Invalid type_id"); 4438 return -EINVAL; 4439 } 4440 4441 var = btf_type_var(t); 4442 if (var->linkage != BTF_VAR_STATIC && 4443 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4444 btf_verifier_log_type(env, t, "Linkage not supported"); 4445 return -EINVAL; 4446 } 4447 4448 btf_verifier_log_type(env, t, NULL); 4449 4450 return meta_needed; 4451 } 4452 4453 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4454 { 4455 const struct btf_var *var = btf_type_var(t); 4456 4457 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4458 } 4459 4460 static const struct btf_kind_operations var_ops = { 4461 .check_meta = btf_var_check_meta, 4462 .resolve = btf_var_resolve, 4463 .check_member = btf_df_check_member, 4464 .check_kflag_member = btf_df_check_kflag_member, 4465 .log_details = btf_var_log, 4466 .show = btf_var_show, 4467 }; 4468 4469 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4470 const struct btf_type *t, 4471 u32 meta_left) 4472 { 4473 const struct btf_var_secinfo *vsi; 4474 u64 last_vsi_end_off = 0, sum = 0; 4475 u32 i, meta_needed; 4476 4477 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4478 if (meta_left < meta_needed) { 4479 btf_verifier_log_basic(env, t, 4480 "meta_left:%u meta_needed:%u", 4481 meta_left, meta_needed); 4482 return -EINVAL; 4483 } 4484 4485 if (!t->size) { 4486 btf_verifier_log_type(env, t, "size == 0"); 4487 return -EINVAL; 4488 } 4489 4490 if (btf_type_kflag(t)) { 4491 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4492 return -EINVAL; 4493 } 4494 4495 if (!t->name_off || 4496 !btf_name_valid_section(env->btf, t->name_off)) { 4497 btf_verifier_log_type(env, t, "Invalid name"); 4498 return -EINVAL; 4499 } 4500 4501 btf_verifier_log_type(env, t, NULL); 4502 4503 for_each_vsi(i, t, vsi) { 4504 /* A var cannot be in type void */ 4505 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4506 btf_verifier_log_vsi(env, t, vsi, 4507 "Invalid type_id"); 4508 return -EINVAL; 4509 } 4510 4511 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4512 btf_verifier_log_vsi(env, t, vsi, 4513 "Invalid offset"); 4514 return -EINVAL; 4515 } 4516 4517 if (!vsi->size || vsi->size > t->size) { 4518 btf_verifier_log_vsi(env, t, vsi, 4519 "Invalid size"); 4520 return -EINVAL; 4521 } 4522 4523 last_vsi_end_off = vsi->offset + vsi->size; 4524 if (last_vsi_end_off > t->size) { 4525 btf_verifier_log_vsi(env, t, vsi, 4526 "Invalid offset+size"); 4527 return -EINVAL; 4528 } 4529 4530 btf_verifier_log_vsi(env, t, vsi, NULL); 4531 sum += vsi->size; 4532 } 4533 4534 if (t->size < sum) { 4535 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4536 return -EINVAL; 4537 } 4538 4539 return meta_needed; 4540 } 4541 4542 static int btf_datasec_resolve(struct btf_verifier_env *env, 4543 const struct resolve_vertex *v) 4544 { 4545 const struct btf_var_secinfo *vsi; 4546 struct btf *btf = env->btf; 4547 u16 i; 4548 4549 env->resolve_mode = RESOLVE_TBD; 4550 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4551 u32 var_type_id = vsi->type, type_id, type_size = 0; 4552 const struct btf_type *var_type = btf_type_by_id(env->btf, 4553 var_type_id); 4554 if (!var_type || !btf_type_is_var(var_type)) { 4555 btf_verifier_log_vsi(env, v->t, vsi, 4556 "Not a VAR kind member"); 4557 return -EINVAL; 4558 } 4559 4560 if (!env_type_is_resolve_sink(env, var_type) && 4561 !env_type_is_resolved(env, var_type_id)) { 4562 env_stack_set_next_member(env, i + 1); 4563 return env_stack_push(env, var_type, var_type_id); 4564 } 4565 4566 type_id = var_type->type; 4567 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4568 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4569 return -EINVAL; 4570 } 4571 4572 if (vsi->size < type_size) { 4573 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4574 return -EINVAL; 4575 } 4576 } 4577 4578 env_stack_pop_resolved(env, 0, 0); 4579 return 0; 4580 } 4581 4582 static void btf_datasec_log(struct btf_verifier_env *env, 4583 const struct btf_type *t) 4584 { 4585 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4586 } 4587 4588 static void btf_datasec_show(const struct btf *btf, 4589 const struct btf_type *t, u32 type_id, 4590 void *data, u8 bits_offset, 4591 struct btf_show *show) 4592 { 4593 const struct btf_var_secinfo *vsi; 4594 const struct btf_type *var; 4595 u32 i; 4596 4597 if (!btf_show_start_type(show, t, type_id, data)) 4598 return; 4599 4600 btf_show_type_value(show, "section (\"%s\") = {", 4601 __btf_name_by_offset(btf, t->name_off)); 4602 for_each_vsi(i, t, vsi) { 4603 var = btf_type_by_id(btf, vsi->type); 4604 if (i) 4605 btf_show(show, ","); 4606 btf_type_ops(var)->show(btf, var, vsi->type, 4607 data + vsi->offset, bits_offset, show); 4608 } 4609 btf_show_end_type(show); 4610 } 4611 4612 static const struct btf_kind_operations datasec_ops = { 4613 .check_meta = btf_datasec_check_meta, 4614 .resolve = btf_datasec_resolve, 4615 .check_member = btf_df_check_member, 4616 .check_kflag_member = btf_df_check_kflag_member, 4617 .log_details = btf_datasec_log, 4618 .show = btf_datasec_show, 4619 }; 4620 4621 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4622 const struct btf_type *t, 4623 u32 meta_left) 4624 { 4625 if (btf_type_vlen(t)) { 4626 btf_verifier_log_type(env, t, "vlen != 0"); 4627 return -EINVAL; 4628 } 4629 4630 if (btf_type_kflag(t)) { 4631 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4632 return -EINVAL; 4633 } 4634 4635 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4636 t->size != 16) { 4637 btf_verifier_log_type(env, t, "Invalid type_size"); 4638 return -EINVAL; 4639 } 4640 4641 btf_verifier_log_type(env, t, NULL); 4642 4643 return 0; 4644 } 4645 4646 static int btf_float_check_member(struct btf_verifier_env *env, 4647 const struct btf_type *struct_type, 4648 const struct btf_member *member, 4649 const struct btf_type *member_type) 4650 { 4651 u64 start_offset_bytes; 4652 u64 end_offset_bytes; 4653 u64 misalign_bits; 4654 u64 align_bytes; 4655 u64 align_bits; 4656 4657 /* Different architectures have different alignment requirements, so 4658 * here we check only for the reasonable minimum. This way we ensure 4659 * that types after CO-RE can pass the kernel BTF verifier. 4660 */ 4661 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4662 align_bits = align_bytes * BITS_PER_BYTE; 4663 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4664 if (misalign_bits) { 4665 btf_verifier_log_member(env, struct_type, member, 4666 "Member is not properly aligned"); 4667 return -EINVAL; 4668 } 4669 4670 start_offset_bytes = member->offset / BITS_PER_BYTE; 4671 end_offset_bytes = start_offset_bytes + member_type->size; 4672 if (end_offset_bytes > struct_type->size) { 4673 btf_verifier_log_member(env, struct_type, member, 4674 "Member exceeds struct_size"); 4675 return -EINVAL; 4676 } 4677 4678 return 0; 4679 } 4680 4681 static void btf_float_log(struct btf_verifier_env *env, 4682 const struct btf_type *t) 4683 { 4684 btf_verifier_log(env, "size=%u", t->size); 4685 } 4686 4687 static const struct btf_kind_operations float_ops = { 4688 .check_meta = btf_float_check_meta, 4689 .resolve = btf_df_resolve, 4690 .check_member = btf_float_check_member, 4691 .check_kflag_member = btf_generic_check_kflag_member, 4692 .log_details = btf_float_log, 4693 .show = btf_df_show, 4694 }; 4695 4696 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4697 const struct btf_type *t, 4698 u32 meta_left) 4699 { 4700 const struct btf_decl_tag *tag; 4701 u32 meta_needed = sizeof(*tag); 4702 s32 component_idx; 4703 const char *value; 4704 4705 if (meta_left < meta_needed) { 4706 btf_verifier_log_basic(env, t, 4707 "meta_left:%u meta_needed:%u", 4708 meta_left, meta_needed); 4709 return -EINVAL; 4710 } 4711 4712 value = btf_name_by_offset(env->btf, t->name_off); 4713 if (!value || !value[0]) { 4714 btf_verifier_log_type(env, t, "Invalid value"); 4715 return -EINVAL; 4716 } 4717 4718 if (btf_type_vlen(t)) { 4719 btf_verifier_log_type(env, t, "vlen != 0"); 4720 return -EINVAL; 4721 } 4722 4723 if (btf_type_kflag(t)) { 4724 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4725 return -EINVAL; 4726 } 4727 4728 component_idx = btf_type_decl_tag(t)->component_idx; 4729 if (component_idx < -1) { 4730 btf_verifier_log_type(env, t, "Invalid component_idx"); 4731 return -EINVAL; 4732 } 4733 4734 btf_verifier_log_type(env, t, NULL); 4735 4736 return meta_needed; 4737 } 4738 4739 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4740 const struct resolve_vertex *v) 4741 { 4742 const struct btf_type *next_type; 4743 const struct btf_type *t = v->t; 4744 u32 next_type_id = t->type; 4745 struct btf *btf = env->btf; 4746 s32 component_idx; 4747 u32 vlen; 4748 4749 next_type = btf_type_by_id(btf, next_type_id); 4750 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4751 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4752 return -EINVAL; 4753 } 4754 4755 if (!env_type_is_resolve_sink(env, next_type) && 4756 !env_type_is_resolved(env, next_type_id)) 4757 return env_stack_push(env, next_type, next_type_id); 4758 4759 component_idx = btf_type_decl_tag(t)->component_idx; 4760 if (component_idx != -1) { 4761 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4762 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4763 return -EINVAL; 4764 } 4765 4766 if (btf_type_is_struct(next_type)) { 4767 vlen = btf_type_vlen(next_type); 4768 } else { 4769 /* next_type should be a function */ 4770 next_type = btf_type_by_id(btf, next_type->type); 4771 vlen = btf_type_vlen(next_type); 4772 } 4773 4774 if ((u32)component_idx >= vlen) { 4775 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4776 return -EINVAL; 4777 } 4778 } 4779 4780 env_stack_pop_resolved(env, next_type_id, 0); 4781 4782 return 0; 4783 } 4784 4785 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4786 { 4787 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4788 btf_type_decl_tag(t)->component_idx); 4789 } 4790 4791 static const struct btf_kind_operations decl_tag_ops = { 4792 .check_meta = btf_decl_tag_check_meta, 4793 .resolve = btf_decl_tag_resolve, 4794 .check_member = btf_df_check_member, 4795 .check_kflag_member = btf_df_check_kflag_member, 4796 .log_details = btf_decl_tag_log, 4797 .show = btf_df_show, 4798 }; 4799 4800 static int btf_func_proto_check(struct btf_verifier_env *env, 4801 const struct btf_type *t) 4802 { 4803 const struct btf_type *ret_type; 4804 const struct btf_param *args; 4805 const struct btf *btf; 4806 u16 nr_args, i; 4807 int err; 4808 4809 btf = env->btf; 4810 args = (const struct btf_param *)(t + 1); 4811 nr_args = btf_type_vlen(t); 4812 4813 /* Check func return type which could be "void" (t->type == 0) */ 4814 if (t->type) { 4815 u32 ret_type_id = t->type; 4816 4817 ret_type = btf_type_by_id(btf, ret_type_id); 4818 if (!ret_type) { 4819 btf_verifier_log_type(env, t, "Invalid return type"); 4820 return -EINVAL; 4821 } 4822 4823 if (btf_type_is_resolve_source_only(ret_type)) { 4824 btf_verifier_log_type(env, t, "Invalid return type"); 4825 return -EINVAL; 4826 } 4827 4828 if (btf_type_needs_resolve(ret_type) && 4829 !env_type_is_resolved(env, ret_type_id)) { 4830 err = btf_resolve(env, ret_type, ret_type_id); 4831 if (err) 4832 return err; 4833 } 4834 4835 /* Ensure the return type is a type that has a size */ 4836 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4837 btf_verifier_log_type(env, t, "Invalid return type"); 4838 return -EINVAL; 4839 } 4840 } 4841 4842 if (!nr_args) 4843 return 0; 4844 4845 /* Last func arg type_id could be 0 if it is a vararg */ 4846 if (!args[nr_args - 1].type) { 4847 if (args[nr_args - 1].name_off) { 4848 btf_verifier_log_type(env, t, "Invalid arg#%u", 4849 nr_args); 4850 return -EINVAL; 4851 } 4852 nr_args--; 4853 } 4854 4855 for (i = 0; i < nr_args; i++) { 4856 const struct btf_type *arg_type; 4857 u32 arg_type_id; 4858 4859 arg_type_id = args[i].type; 4860 arg_type = btf_type_by_id(btf, arg_type_id); 4861 if (!arg_type) { 4862 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4863 return -EINVAL; 4864 } 4865 4866 if (btf_type_is_resolve_source_only(arg_type)) { 4867 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4868 return -EINVAL; 4869 } 4870 4871 if (args[i].name_off && 4872 (!btf_name_offset_valid(btf, args[i].name_off) || 4873 !btf_name_valid_identifier(btf, args[i].name_off))) { 4874 btf_verifier_log_type(env, t, 4875 "Invalid arg#%u", i + 1); 4876 return -EINVAL; 4877 } 4878 4879 if (btf_type_needs_resolve(arg_type) && 4880 !env_type_is_resolved(env, arg_type_id)) { 4881 err = btf_resolve(env, arg_type, arg_type_id); 4882 if (err) 4883 return err; 4884 } 4885 4886 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4887 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4888 return -EINVAL; 4889 } 4890 } 4891 4892 return 0; 4893 } 4894 4895 static int btf_func_check(struct btf_verifier_env *env, 4896 const struct btf_type *t) 4897 { 4898 const struct btf_type *proto_type; 4899 const struct btf_param *args; 4900 const struct btf *btf; 4901 u16 nr_args, i; 4902 4903 btf = env->btf; 4904 proto_type = btf_type_by_id(btf, t->type); 4905 4906 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4907 btf_verifier_log_type(env, t, "Invalid type_id"); 4908 return -EINVAL; 4909 } 4910 4911 args = (const struct btf_param *)(proto_type + 1); 4912 nr_args = btf_type_vlen(proto_type); 4913 for (i = 0; i < nr_args; i++) { 4914 if (!args[i].name_off && args[i].type) { 4915 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4916 return -EINVAL; 4917 } 4918 } 4919 4920 return 0; 4921 } 4922 4923 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4924 [BTF_KIND_INT] = &int_ops, 4925 [BTF_KIND_PTR] = &ptr_ops, 4926 [BTF_KIND_ARRAY] = &array_ops, 4927 [BTF_KIND_STRUCT] = &struct_ops, 4928 [BTF_KIND_UNION] = &struct_ops, 4929 [BTF_KIND_ENUM] = &enum_ops, 4930 [BTF_KIND_FWD] = &fwd_ops, 4931 [BTF_KIND_TYPEDEF] = &modifier_ops, 4932 [BTF_KIND_VOLATILE] = &modifier_ops, 4933 [BTF_KIND_CONST] = &modifier_ops, 4934 [BTF_KIND_RESTRICT] = &modifier_ops, 4935 [BTF_KIND_FUNC] = &func_ops, 4936 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4937 [BTF_KIND_VAR] = &var_ops, 4938 [BTF_KIND_DATASEC] = &datasec_ops, 4939 [BTF_KIND_FLOAT] = &float_ops, 4940 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4941 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4942 [BTF_KIND_ENUM64] = &enum64_ops, 4943 }; 4944 4945 static s32 btf_check_meta(struct btf_verifier_env *env, 4946 const struct btf_type *t, 4947 u32 meta_left) 4948 { 4949 u32 saved_meta_left = meta_left; 4950 s32 var_meta_size; 4951 4952 if (meta_left < sizeof(*t)) { 4953 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4954 env->log_type_id, meta_left, sizeof(*t)); 4955 return -EINVAL; 4956 } 4957 meta_left -= sizeof(*t); 4958 4959 if (t->info & ~BTF_INFO_MASK) { 4960 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4961 env->log_type_id, t->info); 4962 return -EINVAL; 4963 } 4964 4965 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4966 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4967 btf_verifier_log(env, "[%u] Invalid kind:%u", 4968 env->log_type_id, BTF_INFO_KIND(t->info)); 4969 return -EINVAL; 4970 } 4971 4972 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4973 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4974 env->log_type_id, t->name_off); 4975 return -EINVAL; 4976 } 4977 4978 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4979 if (var_meta_size < 0) 4980 return var_meta_size; 4981 4982 meta_left -= var_meta_size; 4983 4984 return saved_meta_left - meta_left; 4985 } 4986 4987 static int btf_check_all_metas(struct btf_verifier_env *env) 4988 { 4989 struct btf *btf = env->btf; 4990 struct btf_header *hdr; 4991 void *cur, *end; 4992 4993 hdr = &btf->hdr; 4994 cur = btf->nohdr_data + hdr->type_off; 4995 end = cur + hdr->type_len; 4996 4997 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4998 while (cur < end) { 4999 struct btf_type *t = cur; 5000 s32 meta_size; 5001 5002 meta_size = btf_check_meta(env, t, end - cur); 5003 if (meta_size < 0) 5004 return meta_size; 5005 5006 btf_add_type(env, t); 5007 cur += meta_size; 5008 env->log_type_id++; 5009 } 5010 5011 return 0; 5012 } 5013 5014 static bool btf_resolve_valid(struct btf_verifier_env *env, 5015 const struct btf_type *t, 5016 u32 type_id) 5017 { 5018 struct btf *btf = env->btf; 5019 5020 if (!env_type_is_resolved(env, type_id)) 5021 return false; 5022 5023 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5024 return !btf_resolved_type_id(btf, type_id) && 5025 !btf_resolved_type_size(btf, type_id); 5026 5027 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5028 return btf_resolved_type_id(btf, type_id) && 5029 !btf_resolved_type_size(btf, type_id); 5030 5031 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5032 btf_type_is_var(t)) { 5033 t = btf_type_id_resolve(btf, &type_id); 5034 return t && 5035 !btf_type_is_modifier(t) && 5036 !btf_type_is_var(t) && 5037 !btf_type_is_datasec(t); 5038 } 5039 5040 if (btf_type_is_array(t)) { 5041 const struct btf_array *array = btf_type_array(t); 5042 const struct btf_type *elem_type; 5043 u32 elem_type_id = array->type; 5044 u32 elem_size; 5045 5046 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5047 return elem_type && !btf_type_is_modifier(elem_type) && 5048 (array->nelems * elem_size == 5049 btf_resolved_type_size(btf, type_id)); 5050 } 5051 5052 return false; 5053 } 5054 5055 static int btf_resolve(struct btf_verifier_env *env, 5056 const struct btf_type *t, u32 type_id) 5057 { 5058 u32 save_log_type_id = env->log_type_id; 5059 const struct resolve_vertex *v; 5060 int err = 0; 5061 5062 env->resolve_mode = RESOLVE_TBD; 5063 env_stack_push(env, t, type_id); 5064 while (!err && (v = env_stack_peak(env))) { 5065 env->log_type_id = v->type_id; 5066 err = btf_type_ops(v->t)->resolve(env, v); 5067 } 5068 5069 env->log_type_id = type_id; 5070 if (err == -E2BIG) { 5071 btf_verifier_log_type(env, t, 5072 "Exceeded max resolving depth:%u", 5073 MAX_RESOLVE_DEPTH); 5074 } else if (err == -EEXIST) { 5075 btf_verifier_log_type(env, t, "Loop detected"); 5076 } 5077 5078 /* Final sanity check */ 5079 if (!err && !btf_resolve_valid(env, t, type_id)) { 5080 btf_verifier_log_type(env, t, "Invalid resolve state"); 5081 err = -EINVAL; 5082 } 5083 5084 env->log_type_id = save_log_type_id; 5085 return err; 5086 } 5087 5088 static int btf_check_all_types(struct btf_verifier_env *env) 5089 { 5090 struct btf *btf = env->btf; 5091 const struct btf_type *t; 5092 u32 type_id, i; 5093 int err; 5094 5095 err = env_resolve_init(env); 5096 if (err) 5097 return err; 5098 5099 env->phase++; 5100 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5101 type_id = btf->start_id + i; 5102 t = btf_type_by_id(btf, type_id); 5103 5104 env->log_type_id = type_id; 5105 if (btf_type_needs_resolve(t) && 5106 !env_type_is_resolved(env, type_id)) { 5107 err = btf_resolve(env, t, type_id); 5108 if (err) 5109 return err; 5110 } 5111 5112 if (btf_type_is_func_proto(t)) { 5113 err = btf_func_proto_check(env, t); 5114 if (err) 5115 return err; 5116 } 5117 } 5118 5119 return 0; 5120 } 5121 5122 static int btf_parse_type_sec(struct btf_verifier_env *env) 5123 { 5124 const struct btf_header *hdr = &env->btf->hdr; 5125 int err; 5126 5127 /* Type section must align to 4 bytes */ 5128 if (hdr->type_off & (sizeof(u32) - 1)) { 5129 btf_verifier_log(env, "Unaligned type_off"); 5130 return -EINVAL; 5131 } 5132 5133 if (!env->btf->base_btf && !hdr->type_len) { 5134 btf_verifier_log(env, "No type found"); 5135 return -EINVAL; 5136 } 5137 5138 err = btf_check_all_metas(env); 5139 if (err) 5140 return err; 5141 5142 return btf_check_all_types(env); 5143 } 5144 5145 static int btf_parse_str_sec(struct btf_verifier_env *env) 5146 { 5147 const struct btf_header *hdr; 5148 struct btf *btf = env->btf; 5149 const char *start, *end; 5150 5151 hdr = &btf->hdr; 5152 start = btf->nohdr_data + hdr->str_off; 5153 end = start + hdr->str_len; 5154 5155 if (end != btf->data + btf->data_size) { 5156 btf_verifier_log(env, "String section is not at the end"); 5157 return -EINVAL; 5158 } 5159 5160 btf->strings = start; 5161 5162 if (btf->base_btf && !hdr->str_len) 5163 return 0; 5164 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5165 btf_verifier_log(env, "Invalid string section"); 5166 return -EINVAL; 5167 } 5168 if (!btf->base_btf && start[0]) { 5169 btf_verifier_log(env, "Invalid string section"); 5170 return -EINVAL; 5171 } 5172 5173 return 0; 5174 } 5175 5176 static const size_t btf_sec_info_offset[] = { 5177 offsetof(struct btf_header, type_off), 5178 offsetof(struct btf_header, str_off), 5179 }; 5180 5181 static int btf_sec_info_cmp(const void *a, const void *b) 5182 { 5183 const struct btf_sec_info *x = a; 5184 const struct btf_sec_info *y = b; 5185 5186 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5187 } 5188 5189 static int btf_check_sec_info(struct btf_verifier_env *env, 5190 u32 btf_data_size) 5191 { 5192 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5193 u32 total, expected_total, i; 5194 const struct btf_header *hdr; 5195 const struct btf *btf; 5196 5197 btf = env->btf; 5198 hdr = &btf->hdr; 5199 5200 /* Populate the secs from hdr */ 5201 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5202 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5203 btf_sec_info_offset[i]); 5204 5205 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5206 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5207 5208 /* Check for gaps and overlap among sections */ 5209 total = 0; 5210 expected_total = btf_data_size - hdr->hdr_len; 5211 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5212 if (expected_total < secs[i].off) { 5213 btf_verifier_log(env, "Invalid section offset"); 5214 return -EINVAL; 5215 } 5216 if (total < secs[i].off) { 5217 /* gap */ 5218 btf_verifier_log(env, "Unsupported section found"); 5219 return -EINVAL; 5220 } 5221 if (total > secs[i].off) { 5222 btf_verifier_log(env, "Section overlap found"); 5223 return -EINVAL; 5224 } 5225 if (expected_total - total < secs[i].len) { 5226 btf_verifier_log(env, 5227 "Total section length too long"); 5228 return -EINVAL; 5229 } 5230 total += secs[i].len; 5231 } 5232 5233 /* There is data other than hdr and known sections */ 5234 if (expected_total != total) { 5235 btf_verifier_log(env, "Unsupported section found"); 5236 return -EINVAL; 5237 } 5238 5239 return 0; 5240 } 5241 5242 static int btf_parse_hdr(struct btf_verifier_env *env) 5243 { 5244 u32 hdr_len, hdr_copy, btf_data_size; 5245 const struct btf_header *hdr; 5246 struct btf *btf; 5247 5248 btf = env->btf; 5249 btf_data_size = btf->data_size; 5250 5251 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5252 btf_verifier_log(env, "hdr_len not found"); 5253 return -EINVAL; 5254 } 5255 5256 hdr = btf->data; 5257 hdr_len = hdr->hdr_len; 5258 if (btf_data_size < hdr_len) { 5259 btf_verifier_log(env, "btf_header not found"); 5260 return -EINVAL; 5261 } 5262 5263 /* Ensure the unsupported header fields are zero */ 5264 if (hdr_len > sizeof(btf->hdr)) { 5265 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5266 u8 *end = btf->data + hdr_len; 5267 5268 for (; expected_zero < end; expected_zero++) { 5269 if (*expected_zero) { 5270 btf_verifier_log(env, "Unsupported btf_header"); 5271 return -E2BIG; 5272 } 5273 } 5274 } 5275 5276 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5277 memcpy(&btf->hdr, btf->data, hdr_copy); 5278 5279 hdr = &btf->hdr; 5280 5281 btf_verifier_log_hdr(env, btf_data_size); 5282 5283 if (hdr->magic != BTF_MAGIC) { 5284 btf_verifier_log(env, "Invalid magic"); 5285 return -EINVAL; 5286 } 5287 5288 if (hdr->version != BTF_VERSION) { 5289 btf_verifier_log(env, "Unsupported version"); 5290 return -ENOTSUPP; 5291 } 5292 5293 if (hdr->flags) { 5294 btf_verifier_log(env, "Unsupported flags"); 5295 return -ENOTSUPP; 5296 } 5297 5298 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5299 btf_verifier_log(env, "No data"); 5300 return -EINVAL; 5301 } 5302 5303 return btf_check_sec_info(env, btf_data_size); 5304 } 5305 5306 static const char *alloc_obj_fields[] = { 5307 "bpf_spin_lock", 5308 "bpf_list_head", 5309 "bpf_list_node", 5310 "bpf_rb_root", 5311 "bpf_rb_node", 5312 "bpf_refcount", 5313 }; 5314 5315 static struct btf_struct_metas * 5316 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5317 { 5318 union { 5319 struct btf_id_set set; 5320 struct { 5321 u32 _cnt; 5322 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5323 } _arr; 5324 } aof; 5325 struct btf_struct_metas *tab = NULL; 5326 int i, n, id, ret; 5327 5328 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5329 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5330 5331 memset(&aof, 0, sizeof(aof)); 5332 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5333 /* Try to find whether this special type exists in user BTF, and 5334 * if so remember its ID so we can easily find it among members 5335 * of structs that we iterate in the next loop. 5336 */ 5337 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5338 if (id < 0) 5339 continue; 5340 aof.set.ids[aof.set.cnt++] = id; 5341 } 5342 5343 if (!aof.set.cnt) 5344 return NULL; 5345 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5346 5347 n = btf_nr_types(btf); 5348 for (i = 1; i < n; i++) { 5349 struct btf_struct_metas *new_tab; 5350 const struct btf_member *member; 5351 struct btf_struct_meta *type; 5352 struct btf_record *record; 5353 const struct btf_type *t; 5354 int j, tab_cnt; 5355 5356 t = btf_type_by_id(btf, i); 5357 if (!t) { 5358 ret = -EINVAL; 5359 goto free; 5360 } 5361 if (!__btf_type_is_struct(t)) 5362 continue; 5363 5364 cond_resched(); 5365 5366 for_each_member(j, t, member) { 5367 if (btf_id_set_contains(&aof.set, member->type)) 5368 goto parse; 5369 } 5370 continue; 5371 parse: 5372 tab_cnt = tab ? tab->cnt : 0; 5373 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5374 GFP_KERNEL | __GFP_NOWARN); 5375 if (!new_tab) { 5376 ret = -ENOMEM; 5377 goto free; 5378 } 5379 if (!tab) 5380 new_tab->cnt = 0; 5381 tab = new_tab; 5382 5383 type = &tab->types[tab->cnt]; 5384 type->btf_id = i; 5385 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5386 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5387 /* The record cannot be unset, treat it as an error if so */ 5388 if (IS_ERR_OR_NULL(record)) { 5389 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5390 goto free; 5391 } 5392 type->record = record; 5393 tab->cnt++; 5394 } 5395 return tab; 5396 free: 5397 btf_struct_metas_free(tab); 5398 return ERR_PTR(ret); 5399 } 5400 5401 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5402 { 5403 struct btf_struct_metas *tab; 5404 5405 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5406 tab = btf->struct_meta_tab; 5407 if (!tab) 5408 return NULL; 5409 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5410 } 5411 5412 static int btf_check_type_tags(struct btf_verifier_env *env, 5413 struct btf *btf, int start_id) 5414 { 5415 int i, n, good_id = start_id - 1; 5416 bool in_tags; 5417 5418 n = btf_nr_types(btf); 5419 for (i = start_id; i < n; i++) { 5420 const struct btf_type *t; 5421 int chain_limit = 32; 5422 u32 cur_id = i; 5423 5424 t = btf_type_by_id(btf, i); 5425 if (!t) 5426 return -EINVAL; 5427 if (!btf_type_is_modifier(t)) 5428 continue; 5429 5430 cond_resched(); 5431 5432 in_tags = btf_type_is_type_tag(t); 5433 while (btf_type_is_modifier(t)) { 5434 if (!chain_limit--) { 5435 btf_verifier_log(env, "Max chain length or cycle detected"); 5436 return -ELOOP; 5437 } 5438 if (btf_type_is_type_tag(t)) { 5439 if (!in_tags) { 5440 btf_verifier_log(env, "Type tags don't precede modifiers"); 5441 return -EINVAL; 5442 } 5443 } else if (in_tags) { 5444 in_tags = false; 5445 } 5446 if (cur_id <= good_id) 5447 break; 5448 /* Move to next type */ 5449 cur_id = t->type; 5450 t = btf_type_by_id(btf, cur_id); 5451 if (!t) 5452 return -EINVAL; 5453 } 5454 good_id = i; 5455 } 5456 return 0; 5457 } 5458 5459 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5460 { 5461 u32 log_true_size; 5462 int err; 5463 5464 err = bpf_vlog_finalize(log, &log_true_size); 5465 5466 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5467 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5468 &log_true_size, sizeof(log_true_size))) 5469 err = -EFAULT; 5470 5471 return err; 5472 } 5473 5474 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5475 { 5476 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5477 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5478 struct btf_struct_metas *struct_meta_tab; 5479 struct btf_verifier_env *env = NULL; 5480 struct btf *btf = NULL; 5481 u8 *data; 5482 int err, ret; 5483 5484 if (attr->btf_size > BTF_MAX_SIZE) 5485 return ERR_PTR(-E2BIG); 5486 5487 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5488 if (!env) 5489 return ERR_PTR(-ENOMEM); 5490 5491 /* user could have requested verbose verifier output 5492 * and supplied buffer to store the verification trace 5493 */ 5494 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5495 log_ubuf, attr->btf_log_size); 5496 if (err) 5497 goto errout_free; 5498 5499 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5500 if (!btf) { 5501 err = -ENOMEM; 5502 goto errout; 5503 } 5504 env->btf = btf; 5505 5506 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5507 if (!data) { 5508 err = -ENOMEM; 5509 goto errout; 5510 } 5511 5512 btf->data = data; 5513 btf->data_size = attr->btf_size; 5514 5515 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5516 err = -EFAULT; 5517 goto errout; 5518 } 5519 5520 err = btf_parse_hdr(env); 5521 if (err) 5522 goto errout; 5523 5524 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5525 5526 err = btf_parse_str_sec(env); 5527 if (err) 5528 goto errout; 5529 5530 err = btf_parse_type_sec(env); 5531 if (err) 5532 goto errout; 5533 5534 err = btf_check_type_tags(env, btf, 1); 5535 if (err) 5536 goto errout; 5537 5538 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5539 if (IS_ERR(struct_meta_tab)) { 5540 err = PTR_ERR(struct_meta_tab); 5541 goto errout; 5542 } 5543 btf->struct_meta_tab = struct_meta_tab; 5544 5545 if (struct_meta_tab) { 5546 int i; 5547 5548 for (i = 0; i < struct_meta_tab->cnt; i++) { 5549 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5550 if (err < 0) 5551 goto errout_meta; 5552 } 5553 } 5554 5555 err = finalize_log(&env->log, uattr, uattr_size); 5556 if (err) 5557 goto errout_free; 5558 5559 btf_verifier_env_free(env); 5560 refcount_set(&btf->refcnt, 1); 5561 return btf; 5562 5563 errout_meta: 5564 btf_free_struct_meta_tab(btf); 5565 errout: 5566 /* overwrite err with -ENOSPC or -EFAULT */ 5567 ret = finalize_log(&env->log, uattr, uattr_size); 5568 if (ret) 5569 err = ret; 5570 errout_free: 5571 btf_verifier_env_free(env); 5572 if (btf) 5573 btf_free(btf); 5574 return ERR_PTR(err); 5575 } 5576 5577 extern char __weak __start_BTF[]; 5578 extern char __weak __stop_BTF[]; 5579 extern struct btf *btf_vmlinux; 5580 5581 #define BPF_MAP_TYPE(_id, _ops) 5582 #define BPF_LINK_TYPE(_id, _name) 5583 static union { 5584 struct bpf_ctx_convert { 5585 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5586 prog_ctx_type _id##_prog; \ 5587 kern_ctx_type _id##_kern; 5588 #include <linux/bpf_types.h> 5589 #undef BPF_PROG_TYPE 5590 } *__t; 5591 /* 't' is written once under lock. Read many times. */ 5592 const struct btf_type *t; 5593 } bpf_ctx_convert; 5594 enum { 5595 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5596 __ctx_convert##_id, 5597 #include <linux/bpf_types.h> 5598 #undef BPF_PROG_TYPE 5599 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5600 }; 5601 static u8 bpf_ctx_convert_map[] = { 5602 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5603 [_id] = __ctx_convert##_id, 5604 #include <linux/bpf_types.h> 5605 #undef BPF_PROG_TYPE 5606 0, /* avoid empty array */ 5607 }; 5608 #undef BPF_MAP_TYPE 5609 #undef BPF_LINK_TYPE 5610 5611 const struct btf_member * 5612 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5613 const struct btf_type *t, enum bpf_prog_type prog_type, 5614 int arg) 5615 { 5616 const struct btf_type *conv_struct; 5617 const struct btf_type *ctx_struct; 5618 const struct btf_member *ctx_type; 5619 const char *tname, *ctx_tname; 5620 5621 conv_struct = bpf_ctx_convert.t; 5622 if (!conv_struct) { 5623 bpf_log(log, "btf_vmlinux is malformed\n"); 5624 return NULL; 5625 } 5626 t = btf_type_by_id(btf, t->type); 5627 while (btf_type_is_modifier(t)) 5628 t = btf_type_by_id(btf, t->type); 5629 if (!btf_type_is_struct(t)) { 5630 /* Only pointer to struct is supported for now. 5631 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5632 * is not supported yet. 5633 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5634 */ 5635 return NULL; 5636 } 5637 tname = btf_name_by_offset(btf, t->name_off); 5638 if (!tname) { 5639 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5640 return NULL; 5641 } 5642 /* prog_type is valid bpf program type. No need for bounds check. */ 5643 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5644 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5645 * Like 'struct __sk_buff' 5646 */ 5647 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5648 if (!ctx_struct) 5649 /* should not happen */ 5650 return NULL; 5651 again: 5652 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5653 if (!ctx_tname) { 5654 /* should not happen */ 5655 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5656 return NULL; 5657 } 5658 /* only compare that prog's ctx type name is the same as 5659 * kernel expects. No need to compare field by field. 5660 * It's ok for bpf prog to do: 5661 * struct __sk_buff {}; 5662 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5663 * { // no fields of skb are ever used } 5664 */ 5665 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5666 return ctx_type; 5667 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5668 return ctx_type; 5669 if (strcmp(ctx_tname, tname)) { 5670 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5671 * underlying struct and check name again 5672 */ 5673 if (!btf_type_is_modifier(ctx_struct)) 5674 return NULL; 5675 while (btf_type_is_modifier(ctx_struct)) 5676 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); 5677 goto again; 5678 } 5679 return ctx_type; 5680 } 5681 5682 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5683 struct btf *btf, 5684 const struct btf_type *t, 5685 enum bpf_prog_type prog_type, 5686 int arg) 5687 { 5688 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5689 5690 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5691 if (!prog_ctx_type) 5692 return -ENOENT; 5693 kern_ctx_type = prog_ctx_type + 1; 5694 return kern_ctx_type->type; 5695 } 5696 5697 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5698 { 5699 const struct btf_member *kctx_member; 5700 const struct btf_type *conv_struct; 5701 const struct btf_type *kctx_type; 5702 u32 kctx_type_id; 5703 5704 conv_struct = bpf_ctx_convert.t; 5705 /* get member for kernel ctx type */ 5706 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5707 kctx_type_id = kctx_member->type; 5708 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5709 if (!btf_type_is_struct(kctx_type)) { 5710 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5711 return -EINVAL; 5712 } 5713 5714 return kctx_type_id; 5715 } 5716 5717 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5718 BTF_ID(struct, bpf_ctx_convert) 5719 5720 struct btf *btf_parse_vmlinux(void) 5721 { 5722 struct btf_verifier_env *env = NULL; 5723 struct bpf_verifier_log *log; 5724 struct btf *btf = NULL; 5725 int err; 5726 5727 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5728 if (!env) 5729 return ERR_PTR(-ENOMEM); 5730 5731 log = &env->log; 5732 log->level = BPF_LOG_KERNEL; 5733 5734 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5735 if (!btf) { 5736 err = -ENOMEM; 5737 goto errout; 5738 } 5739 env->btf = btf; 5740 5741 btf->data = __start_BTF; 5742 btf->data_size = __stop_BTF - __start_BTF; 5743 btf->kernel_btf = true; 5744 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5745 5746 err = btf_parse_hdr(env); 5747 if (err) 5748 goto errout; 5749 5750 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5751 5752 err = btf_parse_str_sec(env); 5753 if (err) 5754 goto errout; 5755 5756 err = btf_check_all_metas(env); 5757 if (err) 5758 goto errout; 5759 5760 err = btf_check_type_tags(env, btf, 1); 5761 if (err) 5762 goto errout; 5763 5764 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5765 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5766 5767 bpf_struct_ops_init(btf, log); 5768 5769 refcount_set(&btf->refcnt, 1); 5770 5771 err = btf_alloc_id(btf); 5772 if (err) 5773 goto errout; 5774 5775 btf_verifier_env_free(env); 5776 return btf; 5777 5778 errout: 5779 btf_verifier_env_free(env); 5780 if (btf) { 5781 kvfree(btf->types); 5782 kfree(btf); 5783 } 5784 return ERR_PTR(err); 5785 } 5786 5787 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5788 5789 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5790 { 5791 struct btf_verifier_env *env = NULL; 5792 struct bpf_verifier_log *log; 5793 struct btf *btf = NULL, *base_btf; 5794 int err; 5795 5796 base_btf = bpf_get_btf_vmlinux(); 5797 if (IS_ERR(base_btf)) 5798 return base_btf; 5799 if (!base_btf) 5800 return ERR_PTR(-EINVAL); 5801 5802 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5803 if (!env) 5804 return ERR_PTR(-ENOMEM); 5805 5806 log = &env->log; 5807 log->level = BPF_LOG_KERNEL; 5808 5809 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5810 if (!btf) { 5811 err = -ENOMEM; 5812 goto errout; 5813 } 5814 env->btf = btf; 5815 5816 btf->base_btf = base_btf; 5817 btf->start_id = base_btf->nr_types; 5818 btf->start_str_off = base_btf->hdr.str_len; 5819 btf->kernel_btf = true; 5820 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5821 5822 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5823 if (!btf->data) { 5824 err = -ENOMEM; 5825 goto errout; 5826 } 5827 memcpy(btf->data, data, data_size); 5828 btf->data_size = data_size; 5829 5830 err = btf_parse_hdr(env); 5831 if (err) 5832 goto errout; 5833 5834 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5835 5836 err = btf_parse_str_sec(env); 5837 if (err) 5838 goto errout; 5839 5840 err = btf_check_all_metas(env); 5841 if (err) 5842 goto errout; 5843 5844 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5845 if (err) 5846 goto errout; 5847 5848 btf_verifier_env_free(env); 5849 refcount_set(&btf->refcnt, 1); 5850 return btf; 5851 5852 errout: 5853 btf_verifier_env_free(env); 5854 if (btf) { 5855 kvfree(btf->data); 5856 kvfree(btf->types); 5857 kfree(btf); 5858 } 5859 return ERR_PTR(err); 5860 } 5861 5862 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5863 5864 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5865 { 5866 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5867 5868 if (tgt_prog) 5869 return tgt_prog->aux->btf; 5870 else 5871 return prog->aux->attach_btf; 5872 } 5873 5874 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5875 { 5876 /* skip modifiers */ 5877 t = btf_type_skip_modifiers(btf, t->type, NULL); 5878 5879 return btf_type_is_int(t); 5880 } 5881 5882 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5883 int off) 5884 { 5885 const struct btf_param *args; 5886 const struct btf_type *t; 5887 u32 offset = 0, nr_args; 5888 int i; 5889 5890 if (!func_proto) 5891 return off / 8; 5892 5893 nr_args = btf_type_vlen(func_proto); 5894 args = (const struct btf_param *)(func_proto + 1); 5895 for (i = 0; i < nr_args; i++) { 5896 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5897 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5898 if (off < offset) 5899 return i; 5900 } 5901 5902 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5903 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5904 if (off < offset) 5905 return nr_args; 5906 5907 return nr_args + 1; 5908 } 5909 5910 static bool prog_args_trusted(const struct bpf_prog *prog) 5911 { 5912 enum bpf_attach_type atype = prog->expected_attach_type; 5913 5914 switch (prog->type) { 5915 case BPF_PROG_TYPE_TRACING: 5916 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5917 case BPF_PROG_TYPE_LSM: 5918 return bpf_lsm_is_trusted(prog); 5919 case BPF_PROG_TYPE_STRUCT_OPS: 5920 return true; 5921 default: 5922 return false; 5923 } 5924 } 5925 5926 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5927 const struct bpf_prog *prog, 5928 struct bpf_insn_access_aux *info) 5929 { 5930 const struct btf_type *t = prog->aux->attach_func_proto; 5931 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5932 struct btf *btf = bpf_prog_get_target_btf(prog); 5933 const char *tname = prog->aux->attach_func_name; 5934 struct bpf_verifier_log *log = info->log; 5935 const struct btf_param *args; 5936 const char *tag_value; 5937 u32 nr_args, arg; 5938 int i, ret; 5939 5940 if (off % 8) { 5941 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5942 tname, off); 5943 return false; 5944 } 5945 arg = get_ctx_arg_idx(btf, t, off); 5946 args = (const struct btf_param *)(t + 1); 5947 /* if (t == NULL) Fall back to default BPF prog with 5948 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5949 */ 5950 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5951 if (prog->aux->attach_btf_trace) { 5952 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5953 args++; 5954 nr_args--; 5955 } 5956 5957 if (arg > nr_args) { 5958 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5959 tname, arg + 1); 5960 return false; 5961 } 5962 5963 if (arg == nr_args) { 5964 switch (prog->expected_attach_type) { 5965 case BPF_LSM_CGROUP: 5966 case BPF_LSM_MAC: 5967 case BPF_TRACE_FEXIT: 5968 /* When LSM programs are attached to void LSM hooks 5969 * they use FEXIT trampolines and when attached to 5970 * int LSM hooks, they use MODIFY_RETURN trampolines. 5971 * 5972 * While the LSM programs are BPF_MODIFY_RETURN-like 5973 * the check: 5974 * 5975 * if (ret_type != 'int') 5976 * return -EINVAL; 5977 * 5978 * is _not_ done here. This is still safe as LSM hooks 5979 * have only void and int return types. 5980 */ 5981 if (!t) 5982 return true; 5983 t = btf_type_by_id(btf, t->type); 5984 break; 5985 case BPF_MODIFY_RETURN: 5986 /* For now the BPF_MODIFY_RETURN can only be attached to 5987 * functions that return an int. 5988 */ 5989 if (!t) 5990 return false; 5991 5992 t = btf_type_skip_modifiers(btf, t->type, NULL); 5993 if (!btf_type_is_small_int(t)) { 5994 bpf_log(log, 5995 "ret type %s not allowed for fmod_ret\n", 5996 btf_type_str(t)); 5997 return false; 5998 } 5999 break; 6000 default: 6001 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6002 tname, arg + 1); 6003 return false; 6004 } 6005 } else { 6006 if (!t) 6007 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6008 return true; 6009 t = btf_type_by_id(btf, args[arg].type); 6010 } 6011 6012 /* skip modifiers */ 6013 while (btf_type_is_modifier(t)) 6014 t = btf_type_by_id(btf, t->type); 6015 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6016 /* accessing a scalar */ 6017 return true; 6018 if (!btf_type_is_ptr(t)) { 6019 bpf_log(log, 6020 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6021 tname, arg, 6022 __btf_name_by_offset(btf, t->name_off), 6023 btf_type_str(t)); 6024 return false; 6025 } 6026 6027 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6028 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6029 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6030 u32 type, flag; 6031 6032 type = base_type(ctx_arg_info->reg_type); 6033 flag = type_flag(ctx_arg_info->reg_type); 6034 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6035 (flag & PTR_MAYBE_NULL)) { 6036 info->reg_type = ctx_arg_info->reg_type; 6037 return true; 6038 } 6039 } 6040 6041 if (t->type == 0) 6042 /* This is a pointer to void. 6043 * It is the same as scalar from the verifier safety pov. 6044 * No further pointer walking is allowed. 6045 */ 6046 return true; 6047 6048 if (is_int_ptr(btf, t)) 6049 return true; 6050 6051 /* this is a pointer to another type */ 6052 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6053 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6054 6055 if (ctx_arg_info->offset == off) { 6056 if (!ctx_arg_info->btf_id) { 6057 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6058 return false; 6059 } 6060 6061 info->reg_type = ctx_arg_info->reg_type; 6062 info->btf = btf_vmlinux; 6063 info->btf_id = ctx_arg_info->btf_id; 6064 return true; 6065 } 6066 } 6067 6068 info->reg_type = PTR_TO_BTF_ID; 6069 if (prog_args_trusted(prog)) 6070 info->reg_type |= PTR_TRUSTED; 6071 6072 if (tgt_prog) { 6073 enum bpf_prog_type tgt_type; 6074 6075 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6076 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6077 else 6078 tgt_type = tgt_prog->type; 6079 6080 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6081 if (ret > 0) { 6082 info->btf = btf_vmlinux; 6083 info->btf_id = ret; 6084 return true; 6085 } else { 6086 return false; 6087 } 6088 } 6089 6090 info->btf = btf; 6091 info->btf_id = t->type; 6092 t = btf_type_by_id(btf, t->type); 6093 6094 if (btf_type_is_type_tag(t)) { 6095 tag_value = __btf_name_by_offset(btf, t->name_off); 6096 if (strcmp(tag_value, "user") == 0) 6097 info->reg_type |= MEM_USER; 6098 if (strcmp(tag_value, "percpu") == 0) 6099 info->reg_type |= MEM_PERCPU; 6100 } 6101 6102 /* skip modifiers */ 6103 while (btf_type_is_modifier(t)) { 6104 info->btf_id = t->type; 6105 t = btf_type_by_id(btf, t->type); 6106 } 6107 if (!btf_type_is_struct(t)) { 6108 bpf_log(log, 6109 "func '%s' arg%d type %s is not a struct\n", 6110 tname, arg, btf_type_str(t)); 6111 return false; 6112 } 6113 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6114 tname, arg, info->btf_id, btf_type_str(t), 6115 __btf_name_by_offset(btf, t->name_off)); 6116 return true; 6117 } 6118 6119 enum bpf_struct_walk_result { 6120 /* < 0 error */ 6121 WALK_SCALAR = 0, 6122 WALK_PTR, 6123 WALK_STRUCT, 6124 }; 6125 6126 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6127 const struct btf_type *t, int off, int size, 6128 u32 *next_btf_id, enum bpf_type_flag *flag, 6129 const char **field_name) 6130 { 6131 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6132 const struct btf_type *mtype, *elem_type = NULL; 6133 const struct btf_member *member; 6134 const char *tname, *mname, *tag_value; 6135 u32 vlen, elem_id, mid; 6136 6137 again: 6138 if (btf_type_is_modifier(t)) 6139 t = btf_type_skip_modifiers(btf, t->type, NULL); 6140 tname = __btf_name_by_offset(btf, t->name_off); 6141 if (!btf_type_is_struct(t)) { 6142 bpf_log(log, "Type '%s' is not a struct\n", tname); 6143 return -EINVAL; 6144 } 6145 6146 vlen = btf_type_vlen(t); 6147 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED)) 6148 /* 6149 * walking unions yields untrusted pointers 6150 * with exception of __bpf_md_ptr and other 6151 * unions with a single member 6152 */ 6153 *flag |= PTR_UNTRUSTED; 6154 6155 if (off + size > t->size) { 6156 /* If the last element is a variable size array, we may 6157 * need to relax the rule. 6158 */ 6159 struct btf_array *array_elem; 6160 6161 if (vlen == 0) 6162 goto error; 6163 6164 member = btf_type_member(t) + vlen - 1; 6165 mtype = btf_type_skip_modifiers(btf, member->type, 6166 NULL); 6167 if (!btf_type_is_array(mtype)) 6168 goto error; 6169 6170 array_elem = (struct btf_array *)(mtype + 1); 6171 if (array_elem->nelems != 0) 6172 goto error; 6173 6174 moff = __btf_member_bit_offset(t, member) / 8; 6175 if (off < moff) 6176 goto error; 6177 6178 /* allow structure and integer */ 6179 t = btf_type_skip_modifiers(btf, array_elem->type, 6180 NULL); 6181 6182 if (btf_type_is_int(t)) 6183 return WALK_SCALAR; 6184 6185 if (!btf_type_is_struct(t)) 6186 goto error; 6187 6188 off = (off - moff) % t->size; 6189 goto again; 6190 6191 error: 6192 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6193 tname, off, size); 6194 return -EACCES; 6195 } 6196 6197 for_each_member(i, t, member) { 6198 /* offset of the field in bytes */ 6199 moff = __btf_member_bit_offset(t, member) / 8; 6200 if (off + size <= moff) 6201 /* won't find anything, field is already too far */ 6202 break; 6203 6204 if (__btf_member_bitfield_size(t, member)) { 6205 u32 end_bit = __btf_member_bit_offset(t, member) + 6206 __btf_member_bitfield_size(t, member); 6207 6208 /* off <= moff instead of off == moff because clang 6209 * does not generate a BTF member for anonymous 6210 * bitfield like the ":16" here: 6211 * struct { 6212 * int :16; 6213 * int x:8; 6214 * }; 6215 */ 6216 if (off <= moff && 6217 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6218 return WALK_SCALAR; 6219 6220 /* off may be accessing a following member 6221 * 6222 * or 6223 * 6224 * Doing partial access at either end of this 6225 * bitfield. Continue on this case also to 6226 * treat it as not accessing this bitfield 6227 * and eventually error out as field not 6228 * found to keep it simple. 6229 * It could be relaxed if there was a legit 6230 * partial access case later. 6231 */ 6232 continue; 6233 } 6234 6235 /* In case of "off" is pointing to holes of a struct */ 6236 if (off < moff) 6237 break; 6238 6239 /* type of the field */ 6240 mid = member->type; 6241 mtype = btf_type_by_id(btf, member->type); 6242 mname = __btf_name_by_offset(btf, member->name_off); 6243 6244 mtype = __btf_resolve_size(btf, mtype, &msize, 6245 &elem_type, &elem_id, &total_nelems, 6246 &mid); 6247 if (IS_ERR(mtype)) { 6248 bpf_log(log, "field %s doesn't have size\n", mname); 6249 return -EFAULT; 6250 } 6251 6252 mtrue_end = moff + msize; 6253 if (off >= mtrue_end) 6254 /* no overlap with member, keep iterating */ 6255 continue; 6256 6257 if (btf_type_is_array(mtype)) { 6258 u32 elem_idx; 6259 6260 /* __btf_resolve_size() above helps to 6261 * linearize a multi-dimensional array. 6262 * 6263 * The logic here is treating an array 6264 * in a struct as the following way: 6265 * 6266 * struct outer { 6267 * struct inner array[2][2]; 6268 * }; 6269 * 6270 * looks like: 6271 * 6272 * struct outer { 6273 * struct inner array_elem0; 6274 * struct inner array_elem1; 6275 * struct inner array_elem2; 6276 * struct inner array_elem3; 6277 * }; 6278 * 6279 * When accessing outer->array[1][0], it moves 6280 * moff to "array_elem2", set mtype to 6281 * "struct inner", and msize also becomes 6282 * sizeof(struct inner). Then most of the 6283 * remaining logic will fall through without 6284 * caring the current member is an array or 6285 * not. 6286 * 6287 * Unlike mtype/msize/moff, mtrue_end does not 6288 * change. The naming difference ("_true") tells 6289 * that it is not always corresponding to 6290 * the current mtype/msize/moff. 6291 * It is the true end of the current 6292 * member (i.e. array in this case). That 6293 * will allow an int array to be accessed like 6294 * a scratch space, 6295 * i.e. allow access beyond the size of 6296 * the array's element as long as it is 6297 * within the mtrue_end boundary. 6298 */ 6299 6300 /* skip empty array */ 6301 if (moff == mtrue_end) 6302 continue; 6303 6304 msize /= total_nelems; 6305 elem_idx = (off - moff) / msize; 6306 moff += elem_idx * msize; 6307 mtype = elem_type; 6308 mid = elem_id; 6309 } 6310 6311 /* the 'off' we're looking for is either equal to start 6312 * of this field or inside of this struct 6313 */ 6314 if (btf_type_is_struct(mtype)) { 6315 /* our field must be inside that union or struct */ 6316 t = mtype; 6317 6318 /* return if the offset matches the member offset */ 6319 if (off == moff) { 6320 *next_btf_id = mid; 6321 return WALK_STRUCT; 6322 } 6323 6324 /* adjust offset we're looking for */ 6325 off -= moff; 6326 goto again; 6327 } 6328 6329 if (btf_type_is_ptr(mtype)) { 6330 const struct btf_type *stype, *t; 6331 enum bpf_type_flag tmp_flag = 0; 6332 u32 id; 6333 6334 if (msize != size || off != moff) { 6335 bpf_log(log, 6336 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6337 mname, moff, tname, off, size); 6338 return -EACCES; 6339 } 6340 6341 /* check type tag */ 6342 t = btf_type_by_id(btf, mtype->type); 6343 if (btf_type_is_type_tag(t)) { 6344 tag_value = __btf_name_by_offset(btf, t->name_off); 6345 /* check __user tag */ 6346 if (strcmp(tag_value, "user") == 0) 6347 tmp_flag = MEM_USER; 6348 /* check __percpu tag */ 6349 if (strcmp(tag_value, "percpu") == 0) 6350 tmp_flag = MEM_PERCPU; 6351 /* check __rcu tag */ 6352 if (strcmp(tag_value, "rcu") == 0) 6353 tmp_flag = MEM_RCU; 6354 } 6355 6356 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6357 if (btf_type_is_struct(stype)) { 6358 *next_btf_id = id; 6359 *flag |= tmp_flag; 6360 if (field_name) 6361 *field_name = mname; 6362 return WALK_PTR; 6363 } 6364 } 6365 6366 /* Allow more flexible access within an int as long as 6367 * it is within mtrue_end. 6368 * Since mtrue_end could be the end of an array, 6369 * that also allows using an array of int as a scratch 6370 * space. e.g. skb->cb[]. 6371 */ 6372 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) { 6373 bpf_log(log, 6374 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6375 mname, mtrue_end, tname, off, size); 6376 return -EACCES; 6377 } 6378 6379 return WALK_SCALAR; 6380 } 6381 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6382 return -EINVAL; 6383 } 6384 6385 int btf_struct_access(struct bpf_verifier_log *log, 6386 const struct bpf_reg_state *reg, 6387 int off, int size, enum bpf_access_type atype __maybe_unused, 6388 u32 *next_btf_id, enum bpf_type_flag *flag, 6389 const char **field_name) 6390 { 6391 const struct btf *btf = reg->btf; 6392 enum bpf_type_flag tmp_flag = 0; 6393 const struct btf_type *t; 6394 u32 id = reg->btf_id; 6395 int err; 6396 6397 while (type_is_alloc(reg->type)) { 6398 struct btf_struct_meta *meta; 6399 struct btf_record *rec; 6400 int i; 6401 6402 meta = btf_find_struct_meta(btf, id); 6403 if (!meta) 6404 break; 6405 rec = meta->record; 6406 for (i = 0; i < rec->cnt; i++) { 6407 struct btf_field *field = &rec->fields[i]; 6408 u32 offset = field->offset; 6409 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6410 bpf_log(log, 6411 "direct access to %s is disallowed\n", 6412 btf_field_type_name(field->type)); 6413 return -EACCES; 6414 } 6415 } 6416 break; 6417 } 6418 6419 t = btf_type_by_id(btf, id); 6420 do { 6421 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6422 6423 switch (err) { 6424 case WALK_PTR: 6425 /* For local types, the destination register cannot 6426 * become a pointer again. 6427 */ 6428 if (type_is_alloc(reg->type)) 6429 return SCALAR_VALUE; 6430 /* If we found the pointer or scalar on t+off, 6431 * we're done. 6432 */ 6433 *next_btf_id = id; 6434 *flag = tmp_flag; 6435 return PTR_TO_BTF_ID; 6436 case WALK_SCALAR: 6437 return SCALAR_VALUE; 6438 case WALK_STRUCT: 6439 /* We found nested struct, so continue the search 6440 * by diving in it. At this point the offset is 6441 * aligned with the new type, so set it to 0. 6442 */ 6443 t = btf_type_by_id(btf, id); 6444 off = 0; 6445 break; 6446 default: 6447 /* It's either error or unknown return value.. 6448 * scream and leave. 6449 */ 6450 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6451 return -EINVAL; 6452 return err; 6453 } 6454 } while (t); 6455 6456 return -EINVAL; 6457 } 6458 6459 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6460 * the same. Trivial ID check is not enough due to module BTFs, because we can 6461 * end up with two different module BTFs, but IDs point to the common type in 6462 * vmlinux BTF. 6463 */ 6464 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6465 const struct btf *btf2, u32 id2) 6466 { 6467 if (id1 != id2) 6468 return false; 6469 if (btf1 == btf2) 6470 return true; 6471 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6472 } 6473 6474 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6475 const struct btf *btf, u32 id, int off, 6476 const struct btf *need_btf, u32 need_type_id, 6477 bool strict) 6478 { 6479 const struct btf_type *type; 6480 enum bpf_type_flag flag = 0; 6481 int err; 6482 6483 /* Are we already done? */ 6484 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6485 return true; 6486 /* In case of strict type match, we do not walk struct, the top level 6487 * type match must succeed. When strict is true, off should have already 6488 * been 0. 6489 */ 6490 if (strict) 6491 return false; 6492 again: 6493 type = btf_type_by_id(btf, id); 6494 if (!type) 6495 return false; 6496 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6497 if (err != WALK_STRUCT) 6498 return false; 6499 6500 /* We found nested struct object. If it matches 6501 * the requested ID, we're done. Otherwise let's 6502 * continue the search with offset 0 in the new 6503 * type. 6504 */ 6505 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6506 off = 0; 6507 goto again; 6508 } 6509 6510 return true; 6511 } 6512 6513 static int __get_type_size(struct btf *btf, u32 btf_id, 6514 const struct btf_type **ret_type) 6515 { 6516 const struct btf_type *t; 6517 6518 *ret_type = btf_type_by_id(btf, 0); 6519 if (!btf_id) 6520 /* void */ 6521 return 0; 6522 t = btf_type_by_id(btf, btf_id); 6523 while (t && btf_type_is_modifier(t)) 6524 t = btf_type_by_id(btf, t->type); 6525 if (!t) 6526 return -EINVAL; 6527 *ret_type = t; 6528 if (btf_type_is_ptr(t)) 6529 /* kernel size of pointer. Not BPF's size of pointer*/ 6530 return sizeof(void *); 6531 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6532 return t->size; 6533 return -EINVAL; 6534 } 6535 6536 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6537 { 6538 u8 flags = 0; 6539 6540 if (__btf_type_is_struct(t)) 6541 flags |= BTF_FMODEL_STRUCT_ARG; 6542 if (btf_type_is_signed_int(t)) 6543 flags |= BTF_FMODEL_SIGNED_ARG; 6544 6545 return flags; 6546 } 6547 6548 int btf_distill_func_proto(struct bpf_verifier_log *log, 6549 struct btf *btf, 6550 const struct btf_type *func, 6551 const char *tname, 6552 struct btf_func_model *m) 6553 { 6554 const struct btf_param *args; 6555 const struct btf_type *t; 6556 u32 i, nargs; 6557 int ret; 6558 6559 if (!func) { 6560 /* BTF function prototype doesn't match the verifier types. 6561 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6562 */ 6563 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6564 m->arg_size[i] = 8; 6565 m->arg_flags[i] = 0; 6566 } 6567 m->ret_size = 8; 6568 m->ret_flags = 0; 6569 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6570 return 0; 6571 } 6572 args = (const struct btf_param *)(func + 1); 6573 nargs = btf_type_vlen(func); 6574 if (nargs > MAX_BPF_FUNC_ARGS) { 6575 bpf_log(log, 6576 "The function %s has %d arguments. Too many.\n", 6577 tname, nargs); 6578 return -EINVAL; 6579 } 6580 ret = __get_type_size(btf, func->type, &t); 6581 if (ret < 0 || __btf_type_is_struct(t)) { 6582 bpf_log(log, 6583 "The function %s return type %s is unsupported.\n", 6584 tname, btf_type_str(t)); 6585 return -EINVAL; 6586 } 6587 m->ret_size = ret; 6588 m->ret_flags = __get_type_fmodel_flags(t); 6589 6590 for (i = 0; i < nargs; i++) { 6591 if (i == nargs - 1 && args[i].type == 0) { 6592 bpf_log(log, 6593 "The function %s with variable args is unsupported.\n", 6594 tname); 6595 return -EINVAL; 6596 } 6597 ret = __get_type_size(btf, args[i].type, &t); 6598 6599 /* No support of struct argument size greater than 16 bytes */ 6600 if (ret < 0 || ret > 16) { 6601 bpf_log(log, 6602 "The function %s arg%d type %s is unsupported.\n", 6603 tname, i, btf_type_str(t)); 6604 return -EINVAL; 6605 } 6606 if (ret == 0) { 6607 bpf_log(log, 6608 "The function %s has malformed void argument.\n", 6609 tname); 6610 return -EINVAL; 6611 } 6612 m->arg_size[i] = ret; 6613 m->arg_flags[i] = __get_type_fmodel_flags(t); 6614 } 6615 m->nr_args = nargs; 6616 return 0; 6617 } 6618 6619 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6620 * t1 points to BTF_KIND_FUNC in btf1 6621 * t2 points to BTF_KIND_FUNC in btf2 6622 * Returns: 6623 * EINVAL - function prototype mismatch 6624 * EFAULT - verifier bug 6625 * 0 - 99% match. The last 1% is validated by the verifier. 6626 */ 6627 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6628 struct btf *btf1, const struct btf_type *t1, 6629 struct btf *btf2, const struct btf_type *t2) 6630 { 6631 const struct btf_param *args1, *args2; 6632 const char *fn1, *fn2, *s1, *s2; 6633 u32 nargs1, nargs2, i; 6634 6635 fn1 = btf_name_by_offset(btf1, t1->name_off); 6636 fn2 = btf_name_by_offset(btf2, t2->name_off); 6637 6638 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6639 bpf_log(log, "%s() is not a global function\n", fn1); 6640 return -EINVAL; 6641 } 6642 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6643 bpf_log(log, "%s() is not a global function\n", fn2); 6644 return -EINVAL; 6645 } 6646 6647 t1 = btf_type_by_id(btf1, t1->type); 6648 if (!t1 || !btf_type_is_func_proto(t1)) 6649 return -EFAULT; 6650 t2 = btf_type_by_id(btf2, t2->type); 6651 if (!t2 || !btf_type_is_func_proto(t2)) 6652 return -EFAULT; 6653 6654 args1 = (const struct btf_param *)(t1 + 1); 6655 nargs1 = btf_type_vlen(t1); 6656 args2 = (const struct btf_param *)(t2 + 1); 6657 nargs2 = btf_type_vlen(t2); 6658 6659 if (nargs1 != nargs2) { 6660 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6661 fn1, nargs1, fn2, nargs2); 6662 return -EINVAL; 6663 } 6664 6665 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6666 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6667 if (t1->info != t2->info) { 6668 bpf_log(log, 6669 "Return type %s of %s() doesn't match type %s of %s()\n", 6670 btf_type_str(t1), fn1, 6671 btf_type_str(t2), fn2); 6672 return -EINVAL; 6673 } 6674 6675 for (i = 0; i < nargs1; i++) { 6676 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6677 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6678 6679 if (t1->info != t2->info) { 6680 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6681 i, fn1, btf_type_str(t1), 6682 fn2, btf_type_str(t2)); 6683 return -EINVAL; 6684 } 6685 if (btf_type_has_size(t1) && t1->size != t2->size) { 6686 bpf_log(log, 6687 "arg%d in %s() has size %d while %s() has %d\n", 6688 i, fn1, t1->size, 6689 fn2, t2->size); 6690 return -EINVAL; 6691 } 6692 6693 /* global functions are validated with scalars and pointers 6694 * to context only. And only global functions can be replaced. 6695 * Hence type check only those types. 6696 */ 6697 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6698 continue; 6699 if (!btf_type_is_ptr(t1)) { 6700 bpf_log(log, 6701 "arg%d in %s() has unrecognized type\n", 6702 i, fn1); 6703 return -EINVAL; 6704 } 6705 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6706 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6707 if (!btf_type_is_struct(t1)) { 6708 bpf_log(log, 6709 "arg%d in %s() is not a pointer to context\n", 6710 i, fn1); 6711 return -EINVAL; 6712 } 6713 if (!btf_type_is_struct(t2)) { 6714 bpf_log(log, 6715 "arg%d in %s() is not a pointer to context\n", 6716 i, fn2); 6717 return -EINVAL; 6718 } 6719 /* This is an optional check to make program writing easier. 6720 * Compare names of structs and report an error to the user. 6721 * btf_prepare_func_args() already checked that t2 struct 6722 * is a context type. btf_prepare_func_args() will check 6723 * later that t1 struct is a context type as well. 6724 */ 6725 s1 = btf_name_by_offset(btf1, t1->name_off); 6726 s2 = btf_name_by_offset(btf2, t2->name_off); 6727 if (strcmp(s1, s2)) { 6728 bpf_log(log, 6729 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6730 i, fn1, s1, fn2, s2); 6731 return -EINVAL; 6732 } 6733 } 6734 return 0; 6735 } 6736 6737 /* Compare BTFs of given program with BTF of target program */ 6738 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6739 struct btf *btf2, const struct btf_type *t2) 6740 { 6741 struct btf *btf1 = prog->aux->btf; 6742 const struct btf_type *t1; 6743 u32 btf_id = 0; 6744 6745 if (!prog->aux->func_info) { 6746 bpf_log(log, "Program extension requires BTF\n"); 6747 return -EINVAL; 6748 } 6749 6750 btf_id = prog->aux->func_info[0].type_id; 6751 if (!btf_id) 6752 return -EFAULT; 6753 6754 t1 = btf_type_by_id(btf1, btf_id); 6755 if (!t1 || !btf_type_is_func(t1)) 6756 return -EFAULT; 6757 6758 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6759 } 6760 6761 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6762 const struct btf *btf, u32 func_id, 6763 struct bpf_reg_state *regs, 6764 bool ptr_to_mem_ok, 6765 bool processing_call) 6766 { 6767 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6768 struct bpf_verifier_log *log = &env->log; 6769 const char *func_name, *ref_tname; 6770 const struct btf_type *t, *ref_t; 6771 const struct btf_param *args; 6772 u32 i, nargs, ref_id; 6773 int ret; 6774 6775 t = btf_type_by_id(btf, func_id); 6776 if (!t || !btf_type_is_func(t)) { 6777 /* These checks were already done by the verifier while loading 6778 * struct bpf_func_info or in add_kfunc_call(). 6779 */ 6780 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6781 func_id); 6782 return -EFAULT; 6783 } 6784 func_name = btf_name_by_offset(btf, t->name_off); 6785 6786 t = btf_type_by_id(btf, t->type); 6787 if (!t || !btf_type_is_func_proto(t)) { 6788 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6789 return -EFAULT; 6790 } 6791 args = (const struct btf_param *)(t + 1); 6792 nargs = btf_type_vlen(t); 6793 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6794 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6795 MAX_BPF_FUNC_REG_ARGS); 6796 return -EINVAL; 6797 } 6798 6799 /* check that BTF function arguments match actual types that the 6800 * verifier sees. 6801 */ 6802 for (i = 0; i < nargs; i++) { 6803 enum bpf_arg_type arg_type = ARG_DONTCARE; 6804 u32 regno = i + 1; 6805 struct bpf_reg_state *reg = ®s[regno]; 6806 6807 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6808 if (btf_type_is_scalar(t)) { 6809 if (reg->type == SCALAR_VALUE) 6810 continue; 6811 bpf_log(log, "R%d is not a scalar\n", regno); 6812 return -EINVAL; 6813 } 6814 6815 if (!btf_type_is_ptr(t)) { 6816 bpf_log(log, "Unrecognized arg#%d type %s\n", 6817 i, btf_type_str(t)); 6818 return -EINVAL; 6819 } 6820 6821 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6822 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6823 6824 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6825 if (ret < 0) 6826 return ret; 6827 6828 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6829 /* If function expects ctx type in BTF check that caller 6830 * is passing PTR_TO_CTX. 6831 */ 6832 if (reg->type != PTR_TO_CTX) { 6833 bpf_log(log, 6834 "arg#%d expected pointer to ctx, but got %s\n", 6835 i, btf_type_str(t)); 6836 return -EINVAL; 6837 } 6838 } else if (ptr_to_mem_ok && processing_call) { 6839 const struct btf_type *resolve_ret; 6840 u32 type_size; 6841 6842 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6843 if (IS_ERR(resolve_ret)) { 6844 bpf_log(log, 6845 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6846 i, btf_type_str(ref_t), ref_tname, 6847 PTR_ERR(resolve_ret)); 6848 return -EINVAL; 6849 } 6850 6851 if (check_mem_reg(env, reg, regno, type_size)) 6852 return -EINVAL; 6853 } else { 6854 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6855 func_name, func_id); 6856 return -EINVAL; 6857 } 6858 } 6859 6860 return 0; 6861 } 6862 6863 /* Compare BTF of a function declaration with given bpf_reg_state. 6864 * Returns: 6865 * EFAULT - there is a verifier bug. Abort verification. 6866 * EINVAL - there is a type mismatch or BTF is not available. 6867 * 0 - BTF matches with what bpf_reg_state expects. 6868 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6869 */ 6870 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6871 struct bpf_reg_state *regs) 6872 { 6873 struct bpf_prog *prog = env->prog; 6874 struct btf *btf = prog->aux->btf; 6875 bool is_global; 6876 u32 btf_id; 6877 int err; 6878 6879 if (!prog->aux->func_info) 6880 return -EINVAL; 6881 6882 btf_id = prog->aux->func_info[subprog].type_id; 6883 if (!btf_id) 6884 return -EFAULT; 6885 6886 if (prog->aux->func_info_aux[subprog].unreliable) 6887 return -EINVAL; 6888 6889 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6890 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6891 6892 /* Compiler optimizations can remove arguments from static functions 6893 * or mismatched type can be passed into a global function. 6894 * In such cases mark the function as unreliable from BTF point of view. 6895 */ 6896 if (err) 6897 prog->aux->func_info_aux[subprog].unreliable = true; 6898 return err; 6899 } 6900 6901 /* Compare BTF of a function call with given bpf_reg_state. 6902 * Returns: 6903 * EFAULT - there is a verifier bug. Abort verification. 6904 * EINVAL - there is a type mismatch or BTF is not available. 6905 * 0 - BTF matches with what bpf_reg_state expects. 6906 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6907 * 6908 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6909 * because btf_check_func_arg_match() is still doing both. Once that 6910 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6911 * first, and then treat the calling part in a new code path. 6912 */ 6913 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6914 struct bpf_reg_state *regs) 6915 { 6916 struct bpf_prog *prog = env->prog; 6917 struct btf *btf = prog->aux->btf; 6918 bool is_global; 6919 u32 btf_id; 6920 int err; 6921 6922 if (!prog->aux->func_info) 6923 return -EINVAL; 6924 6925 btf_id = prog->aux->func_info[subprog].type_id; 6926 if (!btf_id) 6927 return -EFAULT; 6928 6929 if (prog->aux->func_info_aux[subprog].unreliable) 6930 return -EINVAL; 6931 6932 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6933 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6934 6935 /* Compiler optimizations can remove arguments from static functions 6936 * or mismatched type can be passed into a global function. 6937 * In such cases mark the function as unreliable from BTF point of view. 6938 */ 6939 if (err) 6940 prog->aux->func_info_aux[subprog].unreliable = true; 6941 return err; 6942 } 6943 6944 /* Convert BTF of a function into bpf_reg_state if possible 6945 * Returns: 6946 * EFAULT - there is a verifier bug. Abort verification. 6947 * EINVAL - cannot convert BTF. 6948 * 0 - Successfully converted BTF into bpf_reg_state 6949 * (either PTR_TO_CTX or SCALAR_VALUE). 6950 */ 6951 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6952 struct bpf_reg_state *regs) 6953 { 6954 struct bpf_verifier_log *log = &env->log; 6955 struct bpf_prog *prog = env->prog; 6956 enum bpf_prog_type prog_type = prog->type; 6957 struct btf *btf = prog->aux->btf; 6958 const struct btf_param *args; 6959 const struct btf_type *t, *ref_t; 6960 u32 i, nargs, btf_id; 6961 const char *tname; 6962 6963 if (!prog->aux->func_info || 6964 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6965 bpf_log(log, "Verifier bug\n"); 6966 return -EFAULT; 6967 } 6968 6969 btf_id = prog->aux->func_info[subprog].type_id; 6970 if (!btf_id) { 6971 bpf_log(log, "Global functions need valid BTF\n"); 6972 return -EFAULT; 6973 } 6974 6975 t = btf_type_by_id(btf, btf_id); 6976 if (!t || !btf_type_is_func(t)) { 6977 /* These checks were already done by the verifier while loading 6978 * struct bpf_func_info 6979 */ 6980 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6981 subprog); 6982 return -EFAULT; 6983 } 6984 tname = btf_name_by_offset(btf, t->name_off); 6985 6986 if (log->level & BPF_LOG_LEVEL) 6987 bpf_log(log, "Validating %s() func#%d...\n", 6988 tname, subprog); 6989 6990 if (prog->aux->func_info_aux[subprog].unreliable) { 6991 bpf_log(log, "Verifier bug in function %s()\n", tname); 6992 return -EFAULT; 6993 } 6994 if (prog_type == BPF_PROG_TYPE_EXT) 6995 prog_type = prog->aux->dst_prog->type; 6996 6997 t = btf_type_by_id(btf, t->type); 6998 if (!t || !btf_type_is_func_proto(t)) { 6999 bpf_log(log, "Invalid type of function %s()\n", tname); 7000 return -EFAULT; 7001 } 7002 args = (const struct btf_param *)(t + 1); 7003 nargs = btf_type_vlen(t); 7004 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7005 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7006 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7007 return -EINVAL; 7008 } 7009 /* check that function returns int */ 7010 t = btf_type_by_id(btf, t->type); 7011 while (btf_type_is_modifier(t)) 7012 t = btf_type_by_id(btf, t->type); 7013 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7014 bpf_log(log, 7015 "Global function %s() doesn't return scalar. Only those are supported.\n", 7016 tname); 7017 return -EINVAL; 7018 } 7019 /* Convert BTF function arguments into verifier types. 7020 * Only PTR_TO_CTX and SCALAR are supported atm. 7021 */ 7022 for (i = 0; i < nargs; i++) { 7023 struct bpf_reg_state *reg = ®s[i + 1]; 7024 7025 t = btf_type_by_id(btf, args[i].type); 7026 while (btf_type_is_modifier(t)) 7027 t = btf_type_by_id(btf, t->type); 7028 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7029 reg->type = SCALAR_VALUE; 7030 continue; 7031 } 7032 if (btf_type_is_ptr(t)) { 7033 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 7034 reg->type = PTR_TO_CTX; 7035 continue; 7036 } 7037 7038 t = btf_type_skip_modifiers(btf, t->type, NULL); 7039 7040 ref_t = btf_resolve_size(btf, t, ®->mem_size); 7041 if (IS_ERR(ref_t)) { 7042 bpf_log(log, 7043 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7044 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7045 PTR_ERR(ref_t)); 7046 return -EINVAL; 7047 } 7048 7049 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 7050 reg->id = ++env->id_gen; 7051 7052 continue; 7053 } 7054 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7055 i, btf_type_str(t), tname); 7056 return -EINVAL; 7057 } 7058 return 0; 7059 } 7060 7061 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7062 struct btf_show *show) 7063 { 7064 const struct btf_type *t = btf_type_by_id(btf, type_id); 7065 7066 show->btf = btf; 7067 memset(&show->state, 0, sizeof(show->state)); 7068 memset(&show->obj, 0, sizeof(show->obj)); 7069 7070 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7071 } 7072 7073 static void btf_seq_show(struct btf_show *show, const char *fmt, 7074 va_list args) 7075 { 7076 seq_vprintf((struct seq_file *)show->target, fmt, args); 7077 } 7078 7079 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7080 void *obj, struct seq_file *m, u64 flags) 7081 { 7082 struct btf_show sseq; 7083 7084 sseq.target = m; 7085 sseq.showfn = btf_seq_show; 7086 sseq.flags = flags; 7087 7088 btf_type_show(btf, type_id, obj, &sseq); 7089 7090 return sseq.state.status; 7091 } 7092 7093 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7094 struct seq_file *m) 7095 { 7096 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7097 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7098 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7099 } 7100 7101 struct btf_show_snprintf { 7102 struct btf_show show; 7103 int len_left; /* space left in string */ 7104 int len; /* length we would have written */ 7105 }; 7106 7107 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7108 va_list args) 7109 { 7110 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7111 int len; 7112 7113 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7114 7115 if (len < 0) { 7116 ssnprintf->len_left = 0; 7117 ssnprintf->len = len; 7118 } else if (len >= ssnprintf->len_left) { 7119 /* no space, drive on to get length we would have written */ 7120 ssnprintf->len_left = 0; 7121 ssnprintf->len += len; 7122 } else { 7123 ssnprintf->len_left -= len; 7124 ssnprintf->len += len; 7125 show->target += len; 7126 } 7127 } 7128 7129 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7130 char *buf, int len, u64 flags) 7131 { 7132 struct btf_show_snprintf ssnprintf; 7133 7134 ssnprintf.show.target = buf; 7135 ssnprintf.show.flags = flags; 7136 ssnprintf.show.showfn = btf_snprintf_show; 7137 ssnprintf.len_left = len; 7138 ssnprintf.len = 0; 7139 7140 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7141 7142 /* If we encountered an error, return it. */ 7143 if (ssnprintf.show.state.status) 7144 return ssnprintf.show.state.status; 7145 7146 /* Otherwise return length we would have written */ 7147 return ssnprintf.len; 7148 } 7149 7150 #ifdef CONFIG_PROC_FS 7151 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7152 { 7153 const struct btf *btf = filp->private_data; 7154 7155 seq_printf(m, "btf_id:\t%u\n", btf->id); 7156 } 7157 #endif 7158 7159 static int btf_release(struct inode *inode, struct file *filp) 7160 { 7161 btf_put(filp->private_data); 7162 return 0; 7163 } 7164 7165 const struct file_operations btf_fops = { 7166 #ifdef CONFIG_PROC_FS 7167 .show_fdinfo = bpf_btf_show_fdinfo, 7168 #endif 7169 .release = btf_release, 7170 }; 7171 7172 static int __btf_new_fd(struct btf *btf) 7173 { 7174 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7175 } 7176 7177 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7178 { 7179 struct btf *btf; 7180 int ret; 7181 7182 btf = btf_parse(attr, uattr, uattr_size); 7183 if (IS_ERR(btf)) 7184 return PTR_ERR(btf); 7185 7186 ret = btf_alloc_id(btf); 7187 if (ret) { 7188 btf_free(btf); 7189 return ret; 7190 } 7191 7192 /* 7193 * The BTF ID is published to the userspace. 7194 * All BTF free must go through call_rcu() from 7195 * now on (i.e. free by calling btf_put()). 7196 */ 7197 7198 ret = __btf_new_fd(btf); 7199 if (ret < 0) 7200 btf_put(btf); 7201 7202 return ret; 7203 } 7204 7205 struct btf *btf_get_by_fd(int fd) 7206 { 7207 struct btf *btf; 7208 struct fd f; 7209 7210 f = fdget(fd); 7211 7212 if (!f.file) 7213 return ERR_PTR(-EBADF); 7214 7215 if (f.file->f_op != &btf_fops) { 7216 fdput(f); 7217 return ERR_PTR(-EINVAL); 7218 } 7219 7220 btf = f.file->private_data; 7221 refcount_inc(&btf->refcnt); 7222 fdput(f); 7223 7224 return btf; 7225 } 7226 7227 int btf_get_info_by_fd(const struct btf *btf, 7228 const union bpf_attr *attr, 7229 union bpf_attr __user *uattr) 7230 { 7231 struct bpf_btf_info __user *uinfo; 7232 struct bpf_btf_info info; 7233 u32 info_copy, btf_copy; 7234 void __user *ubtf; 7235 char __user *uname; 7236 u32 uinfo_len, uname_len, name_len; 7237 int ret = 0; 7238 7239 uinfo = u64_to_user_ptr(attr->info.info); 7240 uinfo_len = attr->info.info_len; 7241 7242 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7243 memset(&info, 0, sizeof(info)); 7244 if (copy_from_user(&info, uinfo, info_copy)) 7245 return -EFAULT; 7246 7247 info.id = btf->id; 7248 ubtf = u64_to_user_ptr(info.btf); 7249 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7250 if (copy_to_user(ubtf, btf->data, btf_copy)) 7251 return -EFAULT; 7252 info.btf_size = btf->data_size; 7253 7254 info.kernel_btf = btf->kernel_btf; 7255 7256 uname = u64_to_user_ptr(info.name); 7257 uname_len = info.name_len; 7258 if (!uname ^ !uname_len) 7259 return -EINVAL; 7260 7261 name_len = strlen(btf->name); 7262 info.name_len = name_len; 7263 7264 if (uname) { 7265 if (uname_len >= name_len + 1) { 7266 if (copy_to_user(uname, btf->name, name_len + 1)) 7267 return -EFAULT; 7268 } else { 7269 char zero = '\0'; 7270 7271 if (copy_to_user(uname, btf->name, uname_len - 1)) 7272 return -EFAULT; 7273 if (put_user(zero, uname + uname_len - 1)) 7274 return -EFAULT; 7275 /* let user-space know about too short buffer */ 7276 ret = -ENOSPC; 7277 } 7278 } 7279 7280 if (copy_to_user(uinfo, &info, info_copy) || 7281 put_user(info_copy, &uattr->info.info_len)) 7282 return -EFAULT; 7283 7284 return ret; 7285 } 7286 7287 int btf_get_fd_by_id(u32 id) 7288 { 7289 struct btf *btf; 7290 int fd; 7291 7292 rcu_read_lock(); 7293 btf = idr_find(&btf_idr, id); 7294 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7295 btf = ERR_PTR(-ENOENT); 7296 rcu_read_unlock(); 7297 7298 if (IS_ERR(btf)) 7299 return PTR_ERR(btf); 7300 7301 fd = __btf_new_fd(btf); 7302 if (fd < 0) 7303 btf_put(btf); 7304 7305 return fd; 7306 } 7307 7308 u32 btf_obj_id(const struct btf *btf) 7309 { 7310 return btf->id; 7311 } 7312 7313 bool btf_is_kernel(const struct btf *btf) 7314 { 7315 return btf->kernel_btf; 7316 } 7317 7318 bool btf_is_module(const struct btf *btf) 7319 { 7320 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7321 } 7322 7323 enum { 7324 BTF_MODULE_F_LIVE = (1 << 0), 7325 }; 7326 7327 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7328 struct btf_module { 7329 struct list_head list; 7330 struct module *module; 7331 struct btf *btf; 7332 struct bin_attribute *sysfs_attr; 7333 int flags; 7334 }; 7335 7336 static LIST_HEAD(btf_modules); 7337 static DEFINE_MUTEX(btf_module_mutex); 7338 7339 static ssize_t 7340 btf_module_read(struct file *file, struct kobject *kobj, 7341 struct bin_attribute *bin_attr, 7342 char *buf, loff_t off, size_t len) 7343 { 7344 const struct btf *btf = bin_attr->private; 7345 7346 memcpy(buf, btf->data + off, len); 7347 return len; 7348 } 7349 7350 static void purge_cand_cache(struct btf *btf); 7351 7352 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7353 void *module) 7354 { 7355 struct btf_module *btf_mod, *tmp; 7356 struct module *mod = module; 7357 struct btf *btf; 7358 int err = 0; 7359 7360 if (mod->btf_data_size == 0 || 7361 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7362 op != MODULE_STATE_GOING)) 7363 goto out; 7364 7365 switch (op) { 7366 case MODULE_STATE_COMING: 7367 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7368 if (!btf_mod) { 7369 err = -ENOMEM; 7370 goto out; 7371 } 7372 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7373 if (IS_ERR(btf)) { 7374 kfree(btf_mod); 7375 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7376 pr_warn("failed to validate module [%s] BTF: %ld\n", 7377 mod->name, PTR_ERR(btf)); 7378 err = PTR_ERR(btf); 7379 } else { 7380 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7381 } 7382 goto out; 7383 } 7384 err = btf_alloc_id(btf); 7385 if (err) { 7386 btf_free(btf); 7387 kfree(btf_mod); 7388 goto out; 7389 } 7390 7391 purge_cand_cache(NULL); 7392 mutex_lock(&btf_module_mutex); 7393 btf_mod->module = module; 7394 btf_mod->btf = btf; 7395 list_add(&btf_mod->list, &btf_modules); 7396 mutex_unlock(&btf_module_mutex); 7397 7398 if (IS_ENABLED(CONFIG_SYSFS)) { 7399 struct bin_attribute *attr; 7400 7401 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7402 if (!attr) 7403 goto out; 7404 7405 sysfs_bin_attr_init(attr); 7406 attr->attr.name = btf->name; 7407 attr->attr.mode = 0444; 7408 attr->size = btf->data_size; 7409 attr->private = btf; 7410 attr->read = btf_module_read; 7411 7412 err = sysfs_create_bin_file(btf_kobj, attr); 7413 if (err) { 7414 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7415 mod->name, err); 7416 kfree(attr); 7417 err = 0; 7418 goto out; 7419 } 7420 7421 btf_mod->sysfs_attr = attr; 7422 } 7423 7424 break; 7425 case MODULE_STATE_LIVE: 7426 mutex_lock(&btf_module_mutex); 7427 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7428 if (btf_mod->module != module) 7429 continue; 7430 7431 btf_mod->flags |= BTF_MODULE_F_LIVE; 7432 break; 7433 } 7434 mutex_unlock(&btf_module_mutex); 7435 break; 7436 case MODULE_STATE_GOING: 7437 mutex_lock(&btf_module_mutex); 7438 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7439 if (btf_mod->module != module) 7440 continue; 7441 7442 list_del(&btf_mod->list); 7443 if (btf_mod->sysfs_attr) 7444 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7445 purge_cand_cache(btf_mod->btf); 7446 btf_put(btf_mod->btf); 7447 kfree(btf_mod->sysfs_attr); 7448 kfree(btf_mod); 7449 break; 7450 } 7451 mutex_unlock(&btf_module_mutex); 7452 break; 7453 } 7454 out: 7455 return notifier_from_errno(err); 7456 } 7457 7458 static struct notifier_block btf_module_nb = { 7459 .notifier_call = btf_module_notify, 7460 }; 7461 7462 static int __init btf_module_init(void) 7463 { 7464 register_module_notifier(&btf_module_nb); 7465 return 0; 7466 } 7467 7468 fs_initcall(btf_module_init); 7469 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7470 7471 struct module *btf_try_get_module(const struct btf *btf) 7472 { 7473 struct module *res = NULL; 7474 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7475 struct btf_module *btf_mod, *tmp; 7476 7477 mutex_lock(&btf_module_mutex); 7478 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7479 if (btf_mod->btf != btf) 7480 continue; 7481 7482 /* We must only consider module whose __init routine has 7483 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7484 * which is set from the notifier callback for 7485 * MODULE_STATE_LIVE. 7486 */ 7487 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7488 res = btf_mod->module; 7489 7490 break; 7491 } 7492 mutex_unlock(&btf_module_mutex); 7493 #endif 7494 7495 return res; 7496 } 7497 7498 /* Returns struct btf corresponding to the struct module. 7499 * This function can return NULL or ERR_PTR. 7500 */ 7501 static struct btf *btf_get_module_btf(const struct module *module) 7502 { 7503 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7504 struct btf_module *btf_mod, *tmp; 7505 #endif 7506 struct btf *btf = NULL; 7507 7508 if (!module) { 7509 btf = bpf_get_btf_vmlinux(); 7510 if (!IS_ERR_OR_NULL(btf)) 7511 btf_get(btf); 7512 return btf; 7513 } 7514 7515 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7516 mutex_lock(&btf_module_mutex); 7517 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7518 if (btf_mod->module != module) 7519 continue; 7520 7521 btf_get(btf_mod->btf); 7522 btf = btf_mod->btf; 7523 break; 7524 } 7525 mutex_unlock(&btf_module_mutex); 7526 #endif 7527 7528 return btf; 7529 } 7530 7531 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7532 { 7533 struct btf *btf = NULL; 7534 int btf_obj_fd = 0; 7535 long ret; 7536 7537 if (flags) 7538 return -EINVAL; 7539 7540 if (name_sz <= 1 || name[name_sz - 1]) 7541 return -EINVAL; 7542 7543 ret = bpf_find_btf_id(name, kind, &btf); 7544 if (ret > 0 && btf_is_module(btf)) { 7545 btf_obj_fd = __btf_new_fd(btf); 7546 if (btf_obj_fd < 0) { 7547 btf_put(btf); 7548 return btf_obj_fd; 7549 } 7550 return ret | (((u64)btf_obj_fd) << 32); 7551 } 7552 if (ret > 0) 7553 btf_put(btf); 7554 return ret; 7555 } 7556 7557 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7558 .func = bpf_btf_find_by_name_kind, 7559 .gpl_only = false, 7560 .ret_type = RET_INTEGER, 7561 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7562 .arg2_type = ARG_CONST_SIZE, 7563 .arg3_type = ARG_ANYTHING, 7564 .arg4_type = ARG_ANYTHING, 7565 }; 7566 7567 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7568 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7569 BTF_TRACING_TYPE_xxx 7570 #undef BTF_TRACING_TYPE 7571 7572 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7573 const struct btf_type *func, u32 func_flags) 7574 { 7575 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7576 const char *name, *sfx, *iter_name; 7577 const struct btf_param *arg; 7578 const struct btf_type *t; 7579 char exp_name[128]; 7580 u32 nr_args; 7581 7582 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7583 if (!flags || (flags & (flags - 1))) 7584 return -EINVAL; 7585 7586 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7587 nr_args = btf_type_vlen(func); 7588 if (nr_args < 1) 7589 return -EINVAL; 7590 7591 arg = &btf_params(func)[0]; 7592 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7593 if (!t || !btf_type_is_ptr(t)) 7594 return -EINVAL; 7595 t = btf_type_skip_modifiers(btf, t->type, NULL); 7596 if (!t || !__btf_type_is_struct(t)) 7597 return -EINVAL; 7598 7599 name = btf_name_by_offset(btf, t->name_off); 7600 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 7601 return -EINVAL; 7602 7603 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 7604 * fit nicely in stack slots 7605 */ 7606 if (t->size == 0 || (t->size % 8)) 7607 return -EINVAL; 7608 7609 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 7610 * naming pattern 7611 */ 7612 iter_name = name + sizeof(ITER_PREFIX) - 1; 7613 if (flags & KF_ITER_NEW) 7614 sfx = "new"; 7615 else if (flags & KF_ITER_NEXT) 7616 sfx = "next"; 7617 else /* (flags & KF_ITER_DESTROY) */ 7618 sfx = "destroy"; 7619 7620 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 7621 if (strcmp(func_name, exp_name)) 7622 return -EINVAL; 7623 7624 /* only iter constructor should have extra arguments */ 7625 if (!(flags & KF_ITER_NEW) && nr_args != 1) 7626 return -EINVAL; 7627 7628 if (flags & KF_ITER_NEXT) { 7629 /* bpf_iter_<type>_next() should return pointer */ 7630 t = btf_type_skip_modifiers(btf, func->type, NULL); 7631 if (!t || !btf_type_is_ptr(t)) 7632 return -EINVAL; 7633 } 7634 7635 if (flags & KF_ITER_DESTROY) { 7636 /* bpf_iter_<type>_destroy() should return void */ 7637 t = btf_type_by_id(btf, func->type); 7638 if (!t || !btf_type_is_void(t)) 7639 return -EINVAL; 7640 } 7641 7642 return 0; 7643 } 7644 7645 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 7646 { 7647 const struct btf_type *func; 7648 const char *func_name; 7649 int err; 7650 7651 /* any kfunc should be FUNC -> FUNC_PROTO */ 7652 func = btf_type_by_id(btf, func_id); 7653 if (!func || !btf_type_is_func(func)) 7654 return -EINVAL; 7655 7656 /* sanity check kfunc name */ 7657 func_name = btf_name_by_offset(btf, func->name_off); 7658 if (!func_name || !func_name[0]) 7659 return -EINVAL; 7660 7661 func = btf_type_by_id(btf, func->type); 7662 if (!func || !btf_type_is_func_proto(func)) 7663 return -EINVAL; 7664 7665 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 7666 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 7667 if (err) 7668 return err; 7669 } 7670 7671 return 0; 7672 } 7673 7674 /* Kernel Function (kfunc) BTF ID set registration API */ 7675 7676 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7677 const struct btf_kfunc_id_set *kset) 7678 { 7679 struct btf_kfunc_hook_filter *hook_filter; 7680 struct btf_id_set8 *add_set = kset->set; 7681 bool vmlinux_set = !btf_is_module(btf); 7682 bool add_filter = !!kset->filter; 7683 struct btf_kfunc_set_tab *tab; 7684 struct btf_id_set8 *set; 7685 u32 set_cnt; 7686 int ret; 7687 7688 if (hook >= BTF_KFUNC_HOOK_MAX) { 7689 ret = -EINVAL; 7690 goto end; 7691 } 7692 7693 if (!add_set->cnt) 7694 return 0; 7695 7696 tab = btf->kfunc_set_tab; 7697 7698 if (tab && add_filter) { 7699 u32 i; 7700 7701 hook_filter = &tab->hook_filters[hook]; 7702 for (i = 0; i < hook_filter->nr_filters; i++) { 7703 if (hook_filter->filters[i] == kset->filter) { 7704 add_filter = false; 7705 break; 7706 } 7707 } 7708 7709 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) { 7710 ret = -E2BIG; 7711 goto end; 7712 } 7713 } 7714 7715 if (!tab) { 7716 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7717 if (!tab) 7718 return -ENOMEM; 7719 btf->kfunc_set_tab = tab; 7720 } 7721 7722 set = tab->sets[hook]; 7723 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7724 * for module sets. 7725 */ 7726 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7727 ret = -EINVAL; 7728 goto end; 7729 } 7730 7731 /* We don't need to allocate, concatenate, and sort module sets, because 7732 * only one is allowed per hook. Hence, we can directly assign the 7733 * pointer and return. 7734 */ 7735 if (!vmlinux_set) { 7736 tab->sets[hook] = add_set; 7737 goto do_add_filter; 7738 } 7739 7740 /* In case of vmlinux sets, there may be more than one set being 7741 * registered per hook. To create a unified set, we allocate a new set 7742 * and concatenate all individual sets being registered. While each set 7743 * is individually sorted, they may become unsorted when concatenated, 7744 * hence re-sorting the final set again is required to make binary 7745 * searching the set using btf_id_set8_contains function work. 7746 */ 7747 set_cnt = set ? set->cnt : 0; 7748 7749 if (set_cnt > U32_MAX - add_set->cnt) { 7750 ret = -EOVERFLOW; 7751 goto end; 7752 } 7753 7754 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7755 ret = -E2BIG; 7756 goto end; 7757 } 7758 7759 /* Grow set */ 7760 set = krealloc(tab->sets[hook], 7761 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7762 GFP_KERNEL | __GFP_NOWARN); 7763 if (!set) { 7764 ret = -ENOMEM; 7765 goto end; 7766 } 7767 7768 /* For newly allocated set, initialize set->cnt to 0 */ 7769 if (!tab->sets[hook]) 7770 set->cnt = 0; 7771 tab->sets[hook] = set; 7772 7773 /* Concatenate the two sets */ 7774 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7775 set->cnt += add_set->cnt; 7776 7777 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7778 7779 do_add_filter: 7780 if (add_filter) { 7781 hook_filter = &tab->hook_filters[hook]; 7782 hook_filter->filters[hook_filter->nr_filters++] = kset->filter; 7783 } 7784 return 0; 7785 end: 7786 btf_free_kfunc_set_tab(btf); 7787 return ret; 7788 } 7789 7790 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7791 enum btf_kfunc_hook hook, 7792 u32 kfunc_btf_id, 7793 const struct bpf_prog *prog) 7794 { 7795 struct btf_kfunc_hook_filter *hook_filter; 7796 struct btf_id_set8 *set; 7797 u32 *id, i; 7798 7799 if (hook >= BTF_KFUNC_HOOK_MAX) 7800 return NULL; 7801 if (!btf->kfunc_set_tab) 7802 return NULL; 7803 hook_filter = &btf->kfunc_set_tab->hook_filters[hook]; 7804 for (i = 0; i < hook_filter->nr_filters; i++) { 7805 if (hook_filter->filters[i](prog, kfunc_btf_id)) 7806 return NULL; 7807 } 7808 set = btf->kfunc_set_tab->sets[hook]; 7809 if (!set) 7810 return NULL; 7811 id = btf_id_set8_contains(set, kfunc_btf_id); 7812 if (!id) 7813 return NULL; 7814 /* The flags for BTF ID are located next to it */ 7815 return id + 1; 7816 } 7817 7818 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7819 { 7820 switch (prog_type) { 7821 case BPF_PROG_TYPE_UNSPEC: 7822 return BTF_KFUNC_HOOK_COMMON; 7823 case BPF_PROG_TYPE_XDP: 7824 return BTF_KFUNC_HOOK_XDP; 7825 case BPF_PROG_TYPE_SCHED_CLS: 7826 return BTF_KFUNC_HOOK_TC; 7827 case BPF_PROG_TYPE_STRUCT_OPS: 7828 return BTF_KFUNC_HOOK_STRUCT_OPS; 7829 case BPF_PROG_TYPE_TRACING: 7830 case BPF_PROG_TYPE_LSM: 7831 return BTF_KFUNC_HOOK_TRACING; 7832 case BPF_PROG_TYPE_SYSCALL: 7833 return BTF_KFUNC_HOOK_SYSCALL; 7834 case BPF_PROG_TYPE_CGROUP_SKB: 7835 return BTF_KFUNC_HOOK_CGROUP_SKB; 7836 case BPF_PROG_TYPE_SCHED_ACT: 7837 return BTF_KFUNC_HOOK_SCHED_ACT; 7838 case BPF_PROG_TYPE_SK_SKB: 7839 return BTF_KFUNC_HOOK_SK_SKB; 7840 case BPF_PROG_TYPE_SOCKET_FILTER: 7841 return BTF_KFUNC_HOOK_SOCKET_FILTER; 7842 case BPF_PROG_TYPE_LWT_OUT: 7843 case BPF_PROG_TYPE_LWT_IN: 7844 case BPF_PROG_TYPE_LWT_XMIT: 7845 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 7846 return BTF_KFUNC_HOOK_LWT; 7847 case BPF_PROG_TYPE_NETFILTER: 7848 return BTF_KFUNC_HOOK_NETFILTER; 7849 default: 7850 return BTF_KFUNC_HOOK_MAX; 7851 } 7852 } 7853 7854 /* Caution: 7855 * Reference to the module (obtained using btf_try_get_module) corresponding to 7856 * the struct btf *MUST* be held when calling this function from verifier 7857 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7858 * keeping the reference for the duration of the call provides the necessary 7859 * protection for looking up a well-formed btf->kfunc_set_tab. 7860 */ 7861 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7862 u32 kfunc_btf_id, 7863 const struct bpf_prog *prog) 7864 { 7865 enum bpf_prog_type prog_type = resolve_prog_type(prog); 7866 enum btf_kfunc_hook hook; 7867 u32 *kfunc_flags; 7868 7869 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog); 7870 if (kfunc_flags) 7871 return kfunc_flags; 7872 7873 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7874 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog); 7875 } 7876 7877 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id, 7878 const struct bpf_prog *prog) 7879 { 7880 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog); 7881 } 7882 7883 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7884 const struct btf_kfunc_id_set *kset) 7885 { 7886 struct btf *btf; 7887 int ret, i; 7888 7889 btf = btf_get_module_btf(kset->owner); 7890 if (!btf) { 7891 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7892 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7893 return -ENOENT; 7894 } 7895 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) 7896 pr_warn("missing module BTF, cannot register kfuncs\n"); 7897 return 0; 7898 } 7899 if (IS_ERR(btf)) 7900 return PTR_ERR(btf); 7901 7902 for (i = 0; i < kset->set->cnt; i++) { 7903 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 7904 kset->set->pairs[i].flags); 7905 if (ret) 7906 goto err_out; 7907 } 7908 7909 ret = btf_populate_kfunc_set(btf, hook, kset); 7910 7911 err_out: 7912 btf_put(btf); 7913 return ret; 7914 } 7915 7916 /* This function must be invoked only from initcalls/module init functions */ 7917 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7918 const struct btf_kfunc_id_set *kset) 7919 { 7920 enum btf_kfunc_hook hook; 7921 7922 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7923 return __register_btf_kfunc_id_set(hook, kset); 7924 } 7925 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7926 7927 /* This function must be invoked only from initcalls/module init functions */ 7928 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7929 { 7930 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7931 } 7932 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7933 7934 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7935 { 7936 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7937 struct btf_id_dtor_kfunc *dtor; 7938 7939 if (!tab) 7940 return -ENOENT; 7941 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7942 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7943 */ 7944 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7945 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7946 if (!dtor) 7947 return -ENOENT; 7948 return dtor->kfunc_btf_id; 7949 } 7950 7951 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7952 { 7953 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7954 const struct btf_param *args; 7955 s32 dtor_btf_id; 7956 u32 nr_args, i; 7957 7958 for (i = 0; i < cnt; i++) { 7959 dtor_btf_id = dtors[i].kfunc_btf_id; 7960 7961 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7962 if (!dtor_func || !btf_type_is_func(dtor_func)) 7963 return -EINVAL; 7964 7965 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7966 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7967 return -EINVAL; 7968 7969 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7970 t = btf_type_by_id(btf, dtor_func_proto->type); 7971 if (!t || !btf_type_is_void(t)) 7972 return -EINVAL; 7973 7974 nr_args = btf_type_vlen(dtor_func_proto); 7975 if (nr_args != 1) 7976 return -EINVAL; 7977 args = btf_params(dtor_func_proto); 7978 t = btf_type_by_id(btf, args[0].type); 7979 /* Allow any pointer type, as width on targets Linux supports 7980 * will be same for all pointer types (i.e. sizeof(void *)) 7981 */ 7982 if (!t || !btf_type_is_ptr(t)) 7983 return -EINVAL; 7984 } 7985 return 0; 7986 } 7987 7988 /* This function must be invoked only from initcalls/module init functions */ 7989 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7990 struct module *owner) 7991 { 7992 struct btf_id_dtor_kfunc_tab *tab; 7993 struct btf *btf; 7994 u32 tab_cnt; 7995 int ret; 7996 7997 btf = btf_get_module_btf(owner); 7998 if (!btf) { 7999 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 8000 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 8001 return -ENOENT; 8002 } 8003 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 8004 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 8005 return -ENOENT; 8006 } 8007 return 0; 8008 } 8009 if (IS_ERR(btf)) 8010 return PTR_ERR(btf); 8011 8012 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8013 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8014 ret = -E2BIG; 8015 goto end; 8016 } 8017 8018 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 8019 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 8020 if (ret < 0) 8021 goto end; 8022 8023 tab = btf->dtor_kfunc_tab; 8024 /* Only one call allowed for modules */ 8025 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 8026 ret = -EINVAL; 8027 goto end; 8028 } 8029 8030 tab_cnt = tab ? tab->cnt : 0; 8031 if (tab_cnt > U32_MAX - add_cnt) { 8032 ret = -EOVERFLOW; 8033 goto end; 8034 } 8035 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 8036 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 8037 ret = -E2BIG; 8038 goto end; 8039 } 8040 8041 tab = krealloc(btf->dtor_kfunc_tab, 8042 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8043 GFP_KERNEL | __GFP_NOWARN); 8044 if (!tab) { 8045 ret = -ENOMEM; 8046 goto end; 8047 } 8048 8049 if (!btf->dtor_kfunc_tab) 8050 tab->cnt = 0; 8051 btf->dtor_kfunc_tab = tab; 8052 8053 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8054 tab->cnt += add_cnt; 8055 8056 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8057 8058 end: 8059 if (ret) 8060 btf_free_dtor_kfunc_tab(btf); 8061 btf_put(btf); 8062 return ret; 8063 } 8064 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8065 8066 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8067 8068 /* Check local and target types for compatibility. This check is used for 8069 * type-based CO-RE relocations and follow slightly different rules than 8070 * field-based relocations. This function assumes that root types were already 8071 * checked for name match. Beyond that initial root-level name check, names 8072 * are completely ignored. Compatibility rules are as follows: 8073 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8074 * kind should match for local and target types (i.e., STRUCT is not 8075 * compatible with UNION); 8076 * - for ENUMs/ENUM64s, the size is ignored; 8077 * - for INT, size and signedness are ignored; 8078 * - for ARRAY, dimensionality is ignored, element types are checked for 8079 * compatibility recursively; 8080 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8081 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8082 * - FUNC_PROTOs are compatible if they have compatible signature: same 8083 * number of input args and compatible return and argument types. 8084 * These rules are not set in stone and probably will be adjusted as we get 8085 * more experience with using BPF CO-RE relocations. 8086 */ 8087 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8088 const struct btf *targ_btf, __u32 targ_id) 8089 { 8090 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8091 MAX_TYPES_ARE_COMPAT_DEPTH); 8092 } 8093 8094 #define MAX_TYPES_MATCH_DEPTH 2 8095 8096 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8097 const struct btf *targ_btf, u32 targ_id) 8098 { 8099 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8100 MAX_TYPES_MATCH_DEPTH); 8101 } 8102 8103 static bool bpf_core_is_flavor_sep(const char *s) 8104 { 8105 /* check X___Y name pattern, where X and Y are not underscores */ 8106 return s[0] != '_' && /* X */ 8107 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8108 s[4] != '_'; /* Y */ 8109 } 8110 8111 size_t bpf_core_essential_name_len(const char *name) 8112 { 8113 size_t n = strlen(name); 8114 int i; 8115 8116 for (i = n - 5; i >= 0; i--) { 8117 if (bpf_core_is_flavor_sep(name + i)) 8118 return i + 1; 8119 } 8120 return n; 8121 } 8122 8123 struct bpf_cand_cache { 8124 const char *name; 8125 u32 name_len; 8126 u16 kind; 8127 u16 cnt; 8128 struct { 8129 const struct btf *btf; 8130 u32 id; 8131 } cands[]; 8132 }; 8133 8134 static void bpf_free_cands(struct bpf_cand_cache *cands) 8135 { 8136 if (!cands->cnt) 8137 /* empty candidate array was allocated on stack */ 8138 return; 8139 kfree(cands); 8140 } 8141 8142 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8143 { 8144 kfree(cands->name); 8145 kfree(cands); 8146 } 8147 8148 #define VMLINUX_CAND_CACHE_SIZE 31 8149 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8150 8151 #define MODULE_CAND_CACHE_SIZE 31 8152 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8153 8154 static DEFINE_MUTEX(cand_cache_mutex); 8155 8156 static void __print_cand_cache(struct bpf_verifier_log *log, 8157 struct bpf_cand_cache **cache, 8158 int cache_size) 8159 { 8160 struct bpf_cand_cache *cc; 8161 int i, j; 8162 8163 for (i = 0; i < cache_size; i++) { 8164 cc = cache[i]; 8165 if (!cc) 8166 continue; 8167 bpf_log(log, "[%d]%s(", i, cc->name); 8168 for (j = 0; j < cc->cnt; j++) { 8169 bpf_log(log, "%d", cc->cands[j].id); 8170 if (j < cc->cnt - 1) 8171 bpf_log(log, " "); 8172 } 8173 bpf_log(log, "), "); 8174 } 8175 } 8176 8177 static void print_cand_cache(struct bpf_verifier_log *log) 8178 { 8179 mutex_lock(&cand_cache_mutex); 8180 bpf_log(log, "vmlinux_cand_cache:"); 8181 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8182 bpf_log(log, "\nmodule_cand_cache:"); 8183 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8184 bpf_log(log, "\n"); 8185 mutex_unlock(&cand_cache_mutex); 8186 } 8187 8188 static u32 hash_cands(struct bpf_cand_cache *cands) 8189 { 8190 return jhash(cands->name, cands->name_len, 0); 8191 } 8192 8193 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8194 struct bpf_cand_cache **cache, 8195 int cache_size) 8196 { 8197 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8198 8199 if (cc && cc->name_len == cands->name_len && 8200 !strncmp(cc->name, cands->name, cands->name_len)) 8201 return cc; 8202 return NULL; 8203 } 8204 8205 static size_t sizeof_cands(int cnt) 8206 { 8207 return offsetof(struct bpf_cand_cache, cands[cnt]); 8208 } 8209 8210 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8211 struct bpf_cand_cache **cache, 8212 int cache_size) 8213 { 8214 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8215 8216 if (*cc) { 8217 bpf_free_cands_from_cache(*cc); 8218 *cc = NULL; 8219 } 8220 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8221 if (!new_cands) { 8222 bpf_free_cands(cands); 8223 return ERR_PTR(-ENOMEM); 8224 } 8225 /* strdup the name, since it will stay in cache. 8226 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8227 */ 8228 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8229 bpf_free_cands(cands); 8230 if (!new_cands->name) { 8231 kfree(new_cands); 8232 return ERR_PTR(-ENOMEM); 8233 } 8234 *cc = new_cands; 8235 return new_cands; 8236 } 8237 8238 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8239 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8240 int cache_size) 8241 { 8242 struct bpf_cand_cache *cc; 8243 int i, j; 8244 8245 for (i = 0; i < cache_size; i++) { 8246 cc = cache[i]; 8247 if (!cc) 8248 continue; 8249 if (!btf) { 8250 /* when new module is loaded purge all of module_cand_cache, 8251 * since new module might have candidates with the name 8252 * that matches cached cands. 8253 */ 8254 bpf_free_cands_from_cache(cc); 8255 cache[i] = NULL; 8256 continue; 8257 } 8258 /* when module is unloaded purge cache entries 8259 * that match module's btf 8260 */ 8261 for (j = 0; j < cc->cnt; j++) 8262 if (cc->cands[j].btf == btf) { 8263 bpf_free_cands_from_cache(cc); 8264 cache[i] = NULL; 8265 break; 8266 } 8267 } 8268 8269 } 8270 8271 static void purge_cand_cache(struct btf *btf) 8272 { 8273 mutex_lock(&cand_cache_mutex); 8274 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8275 mutex_unlock(&cand_cache_mutex); 8276 } 8277 #endif 8278 8279 static struct bpf_cand_cache * 8280 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8281 int targ_start_id) 8282 { 8283 struct bpf_cand_cache *new_cands; 8284 const struct btf_type *t; 8285 const char *targ_name; 8286 size_t targ_essent_len; 8287 int n, i; 8288 8289 n = btf_nr_types(targ_btf); 8290 for (i = targ_start_id; i < n; i++) { 8291 t = btf_type_by_id(targ_btf, i); 8292 if (btf_kind(t) != cands->kind) 8293 continue; 8294 8295 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8296 if (!targ_name) 8297 continue; 8298 8299 /* the resched point is before strncmp to make sure that search 8300 * for non-existing name will have a chance to schedule(). 8301 */ 8302 cond_resched(); 8303 8304 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8305 continue; 8306 8307 targ_essent_len = bpf_core_essential_name_len(targ_name); 8308 if (targ_essent_len != cands->name_len) 8309 continue; 8310 8311 /* most of the time there is only one candidate for a given kind+name pair */ 8312 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8313 if (!new_cands) { 8314 bpf_free_cands(cands); 8315 return ERR_PTR(-ENOMEM); 8316 } 8317 8318 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8319 bpf_free_cands(cands); 8320 cands = new_cands; 8321 cands->cands[cands->cnt].btf = targ_btf; 8322 cands->cands[cands->cnt].id = i; 8323 cands->cnt++; 8324 } 8325 return cands; 8326 } 8327 8328 static struct bpf_cand_cache * 8329 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8330 { 8331 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8332 const struct btf *local_btf = ctx->btf; 8333 const struct btf_type *local_type; 8334 const struct btf *main_btf; 8335 size_t local_essent_len; 8336 struct btf *mod_btf; 8337 const char *name; 8338 int id; 8339 8340 main_btf = bpf_get_btf_vmlinux(); 8341 if (IS_ERR(main_btf)) 8342 return ERR_CAST(main_btf); 8343 if (!main_btf) 8344 return ERR_PTR(-EINVAL); 8345 8346 local_type = btf_type_by_id(local_btf, local_type_id); 8347 if (!local_type) 8348 return ERR_PTR(-EINVAL); 8349 8350 name = btf_name_by_offset(local_btf, local_type->name_off); 8351 if (str_is_empty(name)) 8352 return ERR_PTR(-EINVAL); 8353 local_essent_len = bpf_core_essential_name_len(name); 8354 8355 cands = &local_cand; 8356 cands->name = name; 8357 cands->kind = btf_kind(local_type); 8358 cands->name_len = local_essent_len; 8359 8360 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8361 /* cands is a pointer to stack here */ 8362 if (cc) { 8363 if (cc->cnt) 8364 return cc; 8365 goto check_modules; 8366 } 8367 8368 /* Attempt to find target candidates in vmlinux BTF first */ 8369 cands = bpf_core_add_cands(cands, main_btf, 1); 8370 if (IS_ERR(cands)) 8371 return ERR_CAST(cands); 8372 8373 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8374 8375 /* populate cache even when cands->cnt == 0 */ 8376 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8377 if (IS_ERR(cc)) 8378 return ERR_CAST(cc); 8379 8380 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8381 if (cc->cnt) 8382 return cc; 8383 8384 check_modules: 8385 /* cands is a pointer to stack here and cands->cnt == 0 */ 8386 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8387 if (cc) 8388 /* if cache has it return it even if cc->cnt == 0 */ 8389 return cc; 8390 8391 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8392 spin_lock_bh(&btf_idr_lock); 8393 idr_for_each_entry(&btf_idr, mod_btf, id) { 8394 if (!btf_is_module(mod_btf)) 8395 continue; 8396 /* linear search could be slow hence unlock/lock 8397 * the IDR to avoiding holding it for too long 8398 */ 8399 btf_get(mod_btf); 8400 spin_unlock_bh(&btf_idr_lock); 8401 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8402 btf_put(mod_btf); 8403 if (IS_ERR(cands)) 8404 return ERR_CAST(cands); 8405 spin_lock_bh(&btf_idr_lock); 8406 } 8407 spin_unlock_bh(&btf_idr_lock); 8408 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8409 * or pointer to stack if cands->cnd == 0. 8410 * Copy it into the cache even when cands->cnt == 0 and 8411 * return the result. 8412 */ 8413 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8414 } 8415 8416 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8417 int relo_idx, void *insn) 8418 { 8419 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8420 struct bpf_core_cand_list cands = {}; 8421 struct bpf_core_relo_res targ_res; 8422 struct bpf_core_spec *specs; 8423 int err; 8424 8425 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8426 * into arrays of btf_ids of struct fields and array indices. 8427 */ 8428 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8429 if (!specs) 8430 return -ENOMEM; 8431 8432 if (need_cands) { 8433 struct bpf_cand_cache *cc; 8434 int i; 8435 8436 mutex_lock(&cand_cache_mutex); 8437 cc = bpf_core_find_cands(ctx, relo->type_id); 8438 if (IS_ERR(cc)) { 8439 bpf_log(ctx->log, "target candidate search failed for %d\n", 8440 relo->type_id); 8441 err = PTR_ERR(cc); 8442 goto out; 8443 } 8444 if (cc->cnt) { 8445 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8446 if (!cands.cands) { 8447 err = -ENOMEM; 8448 goto out; 8449 } 8450 } 8451 for (i = 0; i < cc->cnt; i++) { 8452 bpf_log(ctx->log, 8453 "CO-RE relocating %s %s: found target candidate [%d]\n", 8454 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8455 cands.cands[i].btf = cc->cands[i].btf; 8456 cands.cands[i].id = cc->cands[i].id; 8457 } 8458 cands.len = cc->cnt; 8459 /* cand_cache_mutex needs to span the cache lookup and 8460 * copy of btf pointer into bpf_core_cand_list, 8461 * since module can be unloaded while bpf_core_calc_relo_insn 8462 * is working with module's btf. 8463 */ 8464 } 8465 8466 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8467 &targ_res); 8468 if (err) 8469 goto out; 8470 8471 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8472 &targ_res); 8473 8474 out: 8475 kfree(specs); 8476 if (need_cands) { 8477 kfree(cands.cands); 8478 mutex_unlock(&cand_cache_mutex); 8479 if (ctx->log->level & BPF_LOG_LEVEL2) 8480 print_cand_cache(ctx->log); 8481 } 8482 return err; 8483 } 8484 8485 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8486 const struct bpf_reg_state *reg, 8487 const char *field_name, u32 btf_id, const char *suffix) 8488 { 8489 struct btf *btf = reg->btf; 8490 const struct btf_type *walk_type, *safe_type; 8491 const char *tname; 8492 char safe_tname[64]; 8493 long ret, safe_id; 8494 const struct btf_member *member; 8495 u32 i; 8496 8497 walk_type = btf_type_by_id(btf, reg->btf_id); 8498 if (!walk_type) 8499 return false; 8500 8501 tname = btf_name_by_offset(btf, walk_type->name_off); 8502 8503 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8504 if (ret < 0) 8505 return false; 8506 8507 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8508 if (safe_id < 0) 8509 return false; 8510 8511 safe_type = btf_type_by_id(btf, safe_id); 8512 if (!safe_type) 8513 return false; 8514 8515 for_each_member(i, safe_type, member) { 8516 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8517 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8518 u32 id; 8519 8520 if (!btf_type_is_ptr(mtype)) 8521 continue; 8522 8523 btf_type_skip_modifiers(btf, mtype->type, &id); 8524 /* If we match on both type and name, the field is considered trusted. */ 8525 if (btf_id == id && !strcmp(field_name, m_name)) 8526 return true; 8527 } 8528 8529 return false; 8530 } 8531 8532 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8533 const struct btf *reg_btf, u32 reg_id, 8534 const struct btf *arg_btf, u32 arg_id) 8535 { 8536 const char *reg_name, *arg_name, *search_needle; 8537 const struct btf_type *reg_type, *arg_type; 8538 int reg_len, arg_len, cmp_len; 8539 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8540 8541 reg_type = btf_type_by_id(reg_btf, reg_id); 8542 if (!reg_type) 8543 return false; 8544 8545 arg_type = btf_type_by_id(arg_btf, arg_id); 8546 if (!arg_type) 8547 return false; 8548 8549 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8550 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8551 8552 reg_len = strlen(reg_name); 8553 arg_len = strlen(arg_name); 8554 8555 /* Exactly one of the two type names may be suffixed with ___init, so 8556 * if the strings are the same size, they can't possibly be no-cast 8557 * aliases of one another. If you have two of the same type names, e.g. 8558 * they're both nf_conn___init, it would be improper to return true 8559 * because they are _not_ no-cast aliases, they are the same type. 8560 */ 8561 if (reg_len == arg_len) 8562 return false; 8563 8564 /* Either of the two names must be the other name, suffixed with ___init. */ 8565 if ((reg_len != arg_len + pattern_len) && 8566 (arg_len != reg_len + pattern_len)) 8567 return false; 8568 8569 if (reg_len < arg_len) { 8570 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8571 cmp_len = reg_len; 8572 } else { 8573 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8574 cmp_len = arg_len; 8575 } 8576 8577 if (!search_needle) 8578 return false; 8579 8580 /* ___init suffix must come at the end of the name */ 8581 if (*(search_needle + pattern_len) != '\0') 8582 return false; 8583 8584 return !strncmp(reg_name, arg_name, cmp_len); 8585 } 8586