1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 #include <net/sock.h> 29 #include "../tools/lib/bpf/relo_core.h" 30 31 /* BTF (BPF Type Format) is the meta data format which describes 32 * the data types of BPF program/map. Hence, it basically focus 33 * on the C programming language which the modern BPF is primary 34 * using. 35 * 36 * ELF Section: 37 * ~~~~~~~~~~~ 38 * The BTF data is stored under the ".BTF" ELF section 39 * 40 * struct btf_type: 41 * ~~~~~~~~~~~~~~~ 42 * Each 'struct btf_type' object describes a C data type. 43 * Depending on the type it is describing, a 'struct btf_type' 44 * object may be followed by more data. F.e. 45 * To describe an array, 'struct btf_type' is followed by 46 * 'struct btf_array'. 47 * 48 * 'struct btf_type' and any extra data following it are 49 * 4 bytes aligned. 50 * 51 * Type section: 52 * ~~~~~~~~~~~~~ 53 * The BTF type section contains a list of 'struct btf_type' objects. 54 * Each one describes a C type. Recall from the above section 55 * that a 'struct btf_type' object could be immediately followed by extra 56 * data in order to describe some particular C types. 57 * 58 * type_id: 59 * ~~~~~~~ 60 * Each btf_type object is identified by a type_id. The type_id 61 * is implicitly implied by the location of the btf_type object in 62 * the BTF type section. The first one has type_id 1. The second 63 * one has type_id 2...etc. Hence, an earlier btf_type has 64 * a smaller type_id. 65 * 66 * A btf_type object may refer to another btf_type object by using 67 * type_id (i.e. the "type" in the "struct btf_type"). 68 * 69 * NOTE that we cannot assume any reference-order. 70 * A btf_type object can refer to an earlier btf_type object 71 * but it can also refer to a later btf_type object. 72 * 73 * For example, to describe "const void *". A btf_type 74 * object describing "const" may refer to another btf_type 75 * object describing "void *". This type-reference is done 76 * by specifying type_id: 77 * 78 * [1] CONST (anon) type_id=2 79 * [2] PTR (anon) type_id=0 80 * 81 * The above is the btf_verifier debug log: 82 * - Each line started with "[?]" is a btf_type object 83 * - [?] is the type_id of the btf_type object. 84 * - CONST/PTR is the BTF_KIND_XXX 85 * - "(anon)" is the name of the type. It just 86 * happens that CONST and PTR has no name. 87 * - type_id=XXX is the 'u32 type' in btf_type 88 * 89 * NOTE: "void" has type_id 0 90 * 91 * String section: 92 * ~~~~~~~~~~~~~~ 93 * The BTF string section contains the names used by the type section. 94 * Each string is referred by an "offset" from the beginning of the 95 * string section. 96 * 97 * Each string is '\0' terminated. 98 * 99 * The first character in the string section must be '\0' 100 * which is used to mean 'anonymous'. Some btf_type may not 101 * have a name. 102 */ 103 104 /* BTF verification: 105 * 106 * To verify BTF data, two passes are needed. 107 * 108 * Pass #1 109 * ~~~~~~~ 110 * The first pass is to collect all btf_type objects to 111 * an array: "btf->types". 112 * 113 * Depending on the C type that a btf_type is describing, 114 * a btf_type may be followed by extra data. We don't know 115 * how many btf_type is there, and more importantly we don't 116 * know where each btf_type is located in the type section. 117 * 118 * Without knowing the location of each type_id, most verifications 119 * cannot be done. e.g. an earlier btf_type may refer to a later 120 * btf_type (recall the "const void *" above), so we cannot 121 * check this type-reference in the first pass. 122 * 123 * In the first pass, it still does some verifications (e.g. 124 * checking the name is a valid offset to the string section). 125 * 126 * Pass #2 127 * ~~~~~~~ 128 * The main focus is to resolve a btf_type that is referring 129 * to another type. 130 * 131 * We have to ensure the referring type: 132 * 1) does exist in the BTF (i.e. in btf->types[]) 133 * 2) does not cause a loop: 134 * struct A { 135 * struct B b; 136 * }; 137 * 138 * struct B { 139 * struct A a; 140 * }; 141 * 142 * btf_type_needs_resolve() decides if a btf_type needs 143 * to be resolved. 144 * 145 * The needs_resolve type implements the "resolve()" ops which 146 * essentially does a DFS and detects backedge. 147 * 148 * During resolve (or DFS), different C types have different 149 * "RESOLVED" conditions. 150 * 151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 152 * members because a member is always referring to another 153 * type. A struct's member can be treated as "RESOLVED" if 154 * it is referring to a BTF_KIND_PTR. Otherwise, the 155 * following valid C struct would be rejected: 156 * 157 * struct A { 158 * int m; 159 * struct A *a; 160 * }; 161 * 162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 163 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 164 * detect a pointer loop, e.g.: 165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 166 * ^ | 167 * +-----------------------------------------+ 168 * 169 */ 170 171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 175 #define BITS_ROUNDUP_BYTES(bits) \ 176 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 177 178 #define BTF_INFO_MASK 0x9f00ffff 179 #define BTF_INT_MASK 0x0fffffff 180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 182 183 /* 16MB for 64k structs and each has 16 members and 184 * a few MB spaces for the string section. 185 * The hard limit is S32_MAX. 186 */ 187 #define BTF_MAX_SIZE (16 * 1024 * 1024) 188 189 #define for_each_member_from(i, from, struct_type, member) \ 190 for (i = from, member = btf_type_member(struct_type) + from; \ 191 i < btf_type_vlen(struct_type); \ 192 i++, member++) 193 194 #define for_each_vsi_from(i, from, struct_type, member) \ 195 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 196 i < btf_type_vlen(struct_type); \ 197 i++, member++) 198 199 DEFINE_IDR(btf_idr); 200 DEFINE_SPINLOCK(btf_idr_lock); 201 202 enum btf_kfunc_hook { 203 BTF_KFUNC_HOOK_COMMON, 204 BTF_KFUNC_HOOK_XDP, 205 BTF_KFUNC_HOOK_TC, 206 BTF_KFUNC_HOOK_STRUCT_OPS, 207 BTF_KFUNC_HOOK_TRACING, 208 BTF_KFUNC_HOOK_SYSCALL, 209 BTF_KFUNC_HOOK_FMODRET, 210 BTF_KFUNC_HOOK_MAX, 211 }; 212 213 enum { 214 BTF_KFUNC_SET_MAX_CNT = 256, 215 BTF_DTOR_KFUNC_MAX_CNT = 256, 216 }; 217 218 struct btf_kfunc_set_tab { 219 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 220 }; 221 222 struct btf_id_dtor_kfunc_tab { 223 u32 cnt; 224 struct btf_id_dtor_kfunc dtors[]; 225 }; 226 227 struct btf { 228 void *data; 229 struct btf_type **types; 230 u32 *resolved_ids; 231 u32 *resolved_sizes; 232 const char *strings; 233 void *nohdr_data; 234 struct btf_header hdr; 235 u32 nr_types; /* includes VOID for base BTF */ 236 u32 types_size; 237 u32 data_size; 238 refcount_t refcnt; 239 u32 id; 240 struct rcu_head rcu; 241 struct btf_kfunc_set_tab *kfunc_set_tab; 242 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 243 struct btf_struct_metas *struct_meta_tab; 244 245 /* split BTF support */ 246 struct btf *base_btf; 247 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 248 u32 start_str_off; /* first string offset (0 for base BTF) */ 249 char name[MODULE_NAME_LEN]; 250 bool kernel_btf; 251 }; 252 253 enum verifier_phase { 254 CHECK_META, 255 CHECK_TYPE, 256 }; 257 258 struct resolve_vertex { 259 const struct btf_type *t; 260 u32 type_id; 261 u16 next_member; 262 }; 263 264 enum visit_state { 265 NOT_VISITED, 266 VISITED, 267 RESOLVED, 268 }; 269 270 enum resolve_mode { 271 RESOLVE_TBD, /* To Be Determined */ 272 RESOLVE_PTR, /* Resolving for Pointer */ 273 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 274 * or array 275 */ 276 }; 277 278 #define MAX_RESOLVE_DEPTH 32 279 280 struct btf_sec_info { 281 u32 off; 282 u32 len; 283 }; 284 285 struct btf_verifier_env { 286 struct btf *btf; 287 u8 *visit_states; 288 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 289 struct bpf_verifier_log log; 290 u32 log_type_id; 291 u32 top_stack; 292 enum verifier_phase phase; 293 enum resolve_mode resolve_mode; 294 }; 295 296 static const char * const btf_kind_str[NR_BTF_KINDS] = { 297 [BTF_KIND_UNKN] = "UNKNOWN", 298 [BTF_KIND_INT] = "INT", 299 [BTF_KIND_PTR] = "PTR", 300 [BTF_KIND_ARRAY] = "ARRAY", 301 [BTF_KIND_STRUCT] = "STRUCT", 302 [BTF_KIND_UNION] = "UNION", 303 [BTF_KIND_ENUM] = "ENUM", 304 [BTF_KIND_FWD] = "FWD", 305 [BTF_KIND_TYPEDEF] = "TYPEDEF", 306 [BTF_KIND_VOLATILE] = "VOLATILE", 307 [BTF_KIND_CONST] = "CONST", 308 [BTF_KIND_RESTRICT] = "RESTRICT", 309 [BTF_KIND_FUNC] = "FUNC", 310 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 311 [BTF_KIND_VAR] = "VAR", 312 [BTF_KIND_DATASEC] = "DATASEC", 313 [BTF_KIND_FLOAT] = "FLOAT", 314 [BTF_KIND_DECL_TAG] = "DECL_TAG", 315 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 316 [BTF_KIND_ENUM64] = "ENUM64", 317 }; 318 319 const char *btf_type_str(const struct btf_type *t) 320 { 321 return btf_kind_str[BTF_INFO_KIND(t->info)]; 322 } 323 324 /* Chunk size we use in safe copy of data to be shown. */ 325 #define BTF_SHOW_OBJ_SAFE_SIZE 32 326 327 /* 328 * This is the maximum size of a base type value (equivalent to a 329 * 128-bit int); if we are at the end of our safe buffer and have 330 * less than 16 bytes space we can't be assured of being able 331 * to copy the next type safely, so in such cases we will initiate 332 * a new copy. 333 */ 334 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 335 336 /* Type name size */ 337 #define BTF_SHOW_NAME_SIZE 80 338 339 /* 340 * The suffix of a type that indicates it cannot alias another type when 341 * comparing BTF IDs for kfunc invocations. 342 */ 343 #define NOCAST_ALIAS_SUFFIX "___init" 344 345 /* 346 * Common data to all BTF show operations. Private show functions can add 347 * their own data to a structure containing a struct btf_show and consult it 348 * in the show callback. See btf_type_show() below. 349 * 350 * One challenge with showing nested data is we want to skip 0-valued 351 * data, but in order to figure out whether a nested object is all zeros 352 * we need to walk through it. As a result, we need to make two passes 353 * when handling structs, unions and arrays; the first path simply looks 354 * for nonzero data, while the second actually does the display. The first 355 * pass is signalled by show->state.depth_check being set, and if we 356 * encounter a non-zero value we set show->state.depth_to_show to 357 * the depth at which we encountered it. When we have completed the 358 * first pass, we will know if anything needs to be displayed if 359 * depth_to_show > depth. See btf_[struct,array]_show() for the 360 * implementation of this. 361 * 362 * Another problem is we want to ensure the data for display is safe to 363 * access. To support this, the anonymous "struct {} obj" tracks the data 364 * object and our safe copy of it. We copy portions of the data needed 365 * to the object "copy" buffer, but because its size is limited to 366 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 367 * traverse larger objects for display. 368 * 369 * The various data type show functions all start with a call to 370 * btf_show_start_type() which returns a pointer to the safe copy 371 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 372 * raw data itself). btf_show_obj_safe() is responsible for 373 * using copy_from_kernel_nofault() to update the safe data if necessary 374 * as we traverse the object's data. skbuff-like semantics are 375 * used: 376 * 377 * - obj.head points to the start of the toplevel object for display 378 * - obj.size is the size of the toplevel object 379 * - obj.data points to the current point in the original data at 380 * which our safe data starts. obj.data will advance as we copy 381 * portions of the data. 382 * 383 * In most cases a single copy will suffice, but larger data structures 384 * such as "struct task_struct" will require many copies. The logic in 385 * btf_show_obj_safe() handles the logic that determines if a new 386 * copy_from_kernel_nofault() is needed. 387 */ 388 struct btf_show { 389 u64 flags; 390 void *target; /* target of show operation (seq file, buffer) */ 391 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 392 const struct btf *btf; 393 /* below are used during iteration */ 394 struct { 395 u8 depth; 396 u8 depth_to_show; 397 u8 depth_check; 398 u8 array_member:1, 399 array_terminated:1; 400 u16 array_encoding; 401 u32 type_id; 402 int status; /* non-zero for error */ 403 const struct btf_type *type; 404 const struct btf_member *member; 405 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 406 } state; 407 struct { 408 u32 size; 409 void *head; 410 void *data; 411 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 412 } obj; 413 }; 414 415 struct btf_kind_operations { 416 s32 (*check_meta)(struct btf_verifier_env *env, 417 const struct btf_type *t, 418 u32 meta_left); 419 int (*resolve)(struct btf_verifier_env *env, 420 const struct resolve_vertex *v); 421 int (*check_member)(struct btf_verifier_env *env, 422 const struct btf_type *struct_type, 423 const struct btf_member *member, 424 const struct btf_type *member_type); 425 int (*check_kflag_member)(struct btf_verifier_env *env, 426 const struct btf_type *struct_type, 427 const struct btf_member *member, 428 const struct btf_type *member_type); 429 void (*log_details)(struct btf_verifier_env *env, 430 const struct btf_type *t); 431 void (*show)(const struct btf *btf, const struct btf_type *t, 432 u32 type_id, void *data, u8 bits_offsets, 433 struct btf_show *show); 434 }; 435 436 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 437 static struct btf_type btf_void; 438 439 static int btf_resolve(struct btf_verifier_env *env, 440 const struct btf_type *t, u32 type_id); 441 442 static int btf_func_check(struct btf_verifier_env *env, 443 const struct btf_type *t); 444 445 static bool btf_type_is_modifier(const struct btf_type *t) 446 { 447 /* Some of them is not strictly a C modifier 448 * but they are grouped into the same bucket 449 * for BTF concern: 450 * A type (t) that refers to another 451 * type through t->type AND its size cannot 452 * be determined without following the t->type. 453 * 454 * ptr does not fall into this bucket 455 * because its size is always sizeof(void *). 456 */ 457 switch (BTF_INFO_KIND(t->info)) { 458 case BTF_KIND_TYPEDEF: 459 case BTF_KIND_VOLATILE: 460 case BTF_KIND_CONST: 461 case BTF_KIND_RESTRICT: 462 case BTF_KIND_TYPE_TAG: 463 return true; 464 } 465 466 return false; 467 } 468 469 bool btf_type_is_void(const struct btf_type *t) 470 { 471 return t == &btf_void; 472 } 473 474 static bool btf_type_is_fwd(const struct btf_type *t) 475 { 476 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 477 } 478 479 static bool btf_type_nosize(const struct btf_type *t) 480 { 481 return btf_type_is_void(t) || btf_type_is_fwd(t) || 482 btf_type_is_func(t) || btf_type_is_func_proto(t); 483 } 484 485 static bool btf_type_nosize_or_null(const struct btf_type *t) 486 { 487 return !t || btf_type_nosize(t); 488 } 489 490 static bool btf_type_is_datasec(const struct btf_type *t) 491 { 492 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 493 } 494 495 static bool btf_type_is_decl_tag(const struct btf_type *t) 496 { 497 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 498 } 499 500 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 501 { 502 return btf_type_is_func(t) || btf_type_is_struct(t) || 503 btf_type_is_var(t) || btf_type_is_typedef(t); 504 } 505 506 u32 btf_nr_types(const struct btf *btf) 507 { 508 u32 total = 0; 509 510 while (btf) { 511 total += btf->nr_types; 512 btf = btf->base_btf; 513 } 514 515 return total; 516 } 517 518 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 519 { 520 const struct btf_type *t; 521 const char *tname; 522 u32 i, total; 523 524 total = btf_nr_types(btf); 525 for (i = 1; i < total; i++) { 526 t = btf_type_by_id(btf, i); 527 if (BTF_INFO_KIND(t->info) != kind) 528 continue; 529 530 tname = btf_name_by_offset(btf, t->name_off); 531 if (!strcmp(tname, name)) 532 return i; 533 } 534 535 return -ENOENT; 536 } 537 538 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 539 { 540 struct btf *btf; 541 s32 ret; 542 int id; 543 544 btf = bpf_get_btf_vmlinux(); 545 if (IS_ERR(btf)) 546 return PTR_ERR(btf); 547 if (!btf) 548 return -EINVAL; 549 550 ret = btf_find_by_name_kind(btf, name, kind); 551 /* ret is never zero, since btf_find_by_name_kind returns 552 * positive btf_id or negative error. 553 */ 554 if (ret > 0) { 555 btf_get(btf); 556 *btf_p = btf; 557 return ret; 558 } 559 560 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 561 spin_lock_bh(&btf_idr_lock); 562 idr_for_each_entry(&btf_idr, btf, id) { 563 if (!btf_is_module(btf)) 564 continue; 565 /* linear search could be slow hence unlock/lock 566 * the IDR to avoiding holding it for too long 567 */ 568 btf_get(btf); 569 spin_unlock_bh(&btf_idr_lock); 570 ret = btf_find_by_name_kind(btf, name, kind); 571 if (ret > 0) { 572 *btf_p = btf; 573 return ret; 574 } 575 spin_lock_bh(&btf_idr_lock); 576 btf_put(btf); 577 } 578 spin_unlock_bh(&btf_idr_lock); 579 return ret; 580 } 581 582 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 583 u32 id, u32 *res_id) 584 { 585 const struct btf_type *t = btf_type_by_id(btf, id); 586 587 while (btf_type_is_modifier(t)) { 588 id = t->type; 589 t = btf_type_by_id(btf, t->type); 590 } 591 592 if (res_id) 593 *res_id = id; 594 595 return t; 596 } 597 598 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 599 u32 id, u32 *res_id) 600 { 601 const struct btf_type *t; 602 603 t = btf_type_skip_modifiers(btf, id, NULL); 604 if (!btf_type_is_ptr(t)) 605 return NULL; 606 607 return btf_type_skip_modifiers(btf, t->type, res_id); 608 } 609 610 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 611 u32 id, u32 *res_id) 612 { 613 const struct btf_type *ptype; 614 615 ptype = btf_type_resolve_ptr(btf, id, res_id); 616 if (ptype && btf_type_is_func_proto(ptype)) 617 return ptype; 618 619 return NULL; 620 } 621 622 /* Types that act only as a source, not sink or intermediate 623 * type when resolving. 624 */ 625 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 626 { 627 return btf_type_is_var(t) || 628 btf_type_is_decl_tag(t) || 629 btf_type_is_datasec(t); 630 } 631 632 /* What types need to be resolved? 633 * 634 * btf_type_is_modifier() is an obvious one. 635 * 636 * btf_type_is_struct() because its member refers to 637 * another type (through member->type). 638 * 639 * btf_type_is_var() because the variable refers to 640 * another type. btf_type_is_datasec() holds multiple 641 * btf_type_is_var() types that need resolving. 642 * 643 * btf_type_is_array() because its element (array->type) 644 * refers to another type. Array can be thought of a 645 * special case of struct while array just has the same 646 * member-type repeated by array->nelems of times. 647 */ 648 static bool btf_type_needs_resolve(const struct btf_type *t) 649 { 650 return btf_type_is_modifier(t) || 651 btf_type_is_ptr(t) || 652 btf_type_is_struct(t) || 653 btf_type_is_array(t) || 654 btf_type_is_var(t) || 655 btf_type_is_func(t) || 656 btf_type_is_decl_tag(t) || 657 btf_type_is_datasec(t); 658 } 659 660 /* t->size can be used */ 661 static bool btf_type_has_size(const struct btf_type *t) 662 { 663 switch (BTF_INFO_KIND(t->info)) { 664 case BTF_KIND_INT: 665 case BTF_KIND_STRUCT: 666 case BTF_KIND_UNION: 667 case BTF_KIND_ENUM: 668 case BTF_KIND_DATASEC: 669 case BTF_KIND_FLOAT: 670 case BTF_KIND_ENUM64: 671 return true; 672 } 673 674 return false; 675 } 676 677 static const char *btf_int_encoding_str(u8 encoding) 678 { 679 if (encoding == 0) 680 return "(none)"; 681 else if (encoding == BTF_INT_SIGNED) 682 return "SIGNED"; 683 else if (encoding == BTF_INT_CHAR) 684 return "CHAR"; 685 else if (encoding == BTF_INT_BOOL) 686 return "BOOL"; 687 else 688 return "UNKN"; 689 } 690 691 static u32 btf_type_int(const struct btf_type *t) 692 { 693 return *(u32 *)(t + 1); 694 } 695 696 static const struct btf_array *btf_type_array(const struct btf_type *t) 697 { 698 return (const struct btf_array *)(t + 1); 699 } 700 701 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 702 { 703 return (const struct btf_enum *)(t + 1); 704 } 705 706 static const struct btf_var *btf_type_var(const struct btf_type *t) 707 { 708 return (const struct btf_var *)(t + 1); 709 } 710 711 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 712 { 713 return (const struct btf_decl_tag *)(t + 1); 714 } 715 716 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 717 { 718 return (const struct btf_enum64 *)(t + 1); 719 } 720 721 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 722 { 723 return kind_ops[BTF_INFO_KIND(t->info)]; 724 } 725 726 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 727 { 728 if (!BTF_STR_OFFSET_VALID(offset)) 729 return false; 730 731 while (offset < btf->start_str_off) 732 btf = btf->base_btf; 733 734 offset -= btf->start_str_off; 735 return offset < btf->hdr.str_len; 736 } 737 738 static bool __btf_name_char_ok(char c, bool first, bool dot_ok) 739 { 740 if ((first ? !isalpha(c) : 741 !isalnum(c)) && 742 c != '_' && 743 ((c == '.' && !dot_ok) || 744 c != '.')) 745 return false; 746 return true; 747 } 748 749 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 750 { 751 while (offset < btf->start_str_off) 752 btf = btf->base_btf; 753 754 offset -= btf->start_str_off; 755 if (offset < btf->hdr.str_len) 756 return &btf->strings[offset]; 757 758 return NULL; 759 } 760 761 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok) 762 { 763 /* offset must be valid */ 764 const char *src = btf_str_by_offset(btf, offset); 765 const char *src_limit; 766 767 if (!__btf_name_char_ok(*src, true, dot_ok)) 768 return false; 769 770 /* set a limit on identifier length */ 771 src_limit = src + KSYM_NAME_LEN; 772 src++; 773 while (*src && src < src_limit) { 774 if (!__btf_name_char_ok(*src, false, dot_ok)) 775 return false; 776 src++; 777 } 778 779 return !*src; 780 } 781 782 /* Only C-style identifier is permitted. This can be relaxed if 783 * necessary. 784 */ 785 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 786 { 787 return __btf_name_valid(btf, offset, false); 788 } 789 790 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 791 { 792 return __btf_name_valid(btf, offset, true); 793 } 794 795 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 796 { 797 const char *name; 798 799 if (!offset) 800 return "(anon)"; 801 802 name = btf_str_by_offset(btf, offset); 803 return name ?: "(invalid-name-offset)"; 804 } 805 806 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 807 { 808 return btf_str_by_offset(btf, offset); 809 } 810 811 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 812 { 813 while (type_id < btf->start_id) 814 btf = btf->base_btf; 815 816 type_id -= btf->start_id; 817 if (type_id >= btf->nr_types) 818 return NULL; 819 return btf->types[type_id]; 820 } 821 EXPORT_SYMBOL_GPL(btf_type_by_id); 822 823 /* 824 * Regular int is not a bit field and it must be either 825 * u8/u16/u32/u64 or __int128. 826 */ 827 static bool btf_type_int_is_regular(const struct btf_type *t) 828 { 829 u8 nr_bits, nr_bytes; 830 u32 int_data; 831 832 int_data = btf_type_int(t); 833 nr_bits = BTF_INT_BITS(int_data); 834 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 835 if (BITS_PER_BYTE_MASKED(nr_bits) || 836 BTF_INT_OFFSET(int_data) || 837 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 838 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 839 nr_bytes != (2 * sizeof(u64)))) { 840 return false; 841 } 842 843 return true; 844 } 845 846 /* 847 * Check that given struct member is a regular int with expected 848 * offset and size. 849 */ 850 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 851 const struct btf_member *m, 852 u32 expected_offset, u32 expected_size) 853 { 854 const struct btf_type *t; 855 u32 id, int_data; 856 u8 nr_bits; 857 858 id = m->type; 859 t = btf_type_id_size(btf, &id, NULL); 860 if (!t || !btf_type_is_int(t)) 861 return false; 862 863 int_data = btf_type_int(t); 864 nr_bits = BTF_INT_BITS(int_data); 865 if (btf_type_kflag(s)) { 866 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 867 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 868 869 /* if kflag set, int should be a regular int and 870 * bit offset should be at byte boundary. 871 */ 872 return !bitfield_size && 873 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 874 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 875 } 876 877 if (BTF_INT_OFFSET(int_data) || 878 BITS_PER_BYTE_MASKED(m->offset) || 879 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 880 BITS_PER_BYTE_MASKED(nr_bits) || 881 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 882 return false; 883 884 return true; 885 } 886 887 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 888 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 889 u32 id) 890 { 891 const struct btf_type *t = btf_type_by_id(btf, id); 892 893 while (btf_type_is_modifier(t) && 894 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 895 t = btf_type_by_id(btf, t->type); 896 } 897 898 return t; 899 } 900 901 #define BTF_SHOW_MAX_ITER 10 902 903 #define BTF_KIND_BIT(kind) (1ULL << kind) 904 905 /* 906 * Populate show->state.name with type name information. 907 * Format of type name is 908 * 909 * [.member_name = ] (type_name) 910 */ 911 static const char *btf_show_name(struct btf_show *show) 912 { 913 /* BTF_MAX_ITER array suffixes "[]" */ 914 const char *array_suffixes = "[][][][][][][][][][]"; 915 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 916 /* BTF_MAX_ITER pointer suffixes "*" */ 917 const char *ptr_suffixes = "**********"; 918 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 919 const char *name = NULL, *prefix = "", *parens = ""; 920 const struct btf_member *m = show->state.member; 921 const struct btf_type *t; 922 const struct btf_array *array; 923 u32 id = show->state.type_id; 924 const char *member = NULL; 925 bool show_member = false; 926 u64 kinds = 0; 927 int i; 928 929 show->state.name[0] = '\0'; 930 931 /* 932 * Don't show type name if we're showing an array member; 933 * in that case we show the array type so don't need to repeat 934 * ourselves for each member. 935 */ 936 if (show->state.array_member) 937 return ""; 938 939 /* Retrieve member name, if any. */ 940 if (m) { 941 member = btf_name_by_offset(show->btf, m->name_off); 942 show_member = strlen(member) > 0; 943 id = m->type; 944 } 945 946 /* 947 * Start with type_id, as we have resolved the struct btf_type * 948 * via btf_modifier_show() past the parent typedef to the child 949 * struct, int etc it is defined as. In such cases, the type_id 950 * still represents the starting type while the struct btf_type * 951 * in our show->state points at the resolved type of the typedef. 952 */ 953 t = btf_type_by_id(show->btf, id); 954 if (!t) 955 return ""; 956 957 /* 958 * The goal here is to build up the right number of pointer and 959 * array suffixes while ensuring the type name for a typedef 960 * is represented. Along the way we accumulate a list of 961 * BTF kinds we have encountered, since these will inform later 962 * display; for example, pointer types will not require an 963 * opening "{" for struct, we will just display the pointer value. 964 * 965 * We also want to accumulate the right number of pointer or array 966 * indices in the format string while iterating until we get to 967 * the typedef/pointee/array member target type. 968 * 969 * We start by pointing at the end of pointer and array suffix 970 * strings; as we accumulate pointers and arrays we move the pointer 971 * or array string backwards so it will show the expected number of 972 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 973 * and/or arrays and typedefs are supported as a precaution. 974 * 975 * We also want to get typedef name while proceeding to resolve 976 * type it points to so that we can add parentheses if it is a 977 * "typedef struct" etc. 978 */ 979 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 980 981 switch (BTF_INFO_KIND(t->info)) { 982 case BTF_KIND_TYPEDEF: 983 if (!name) 984 name = btf_name_by_offset(show->btf, 985 t->name_off); 986 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 987 id = t->type; 988 break; 989 case BTF_KIND_ARRAY: 990 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 991 parens = "["; 992 if (!t) 993 return ""; 994 array = btf_type_array(t); 995 if (array_suffix > array_suffixes) 996 array_suffix -= 2; 997 id = array->type; 998 break; 999 case BTF_KIND_PTR: 1000 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1001 if (ptr_suffix > ptr_suffixes) 1002 ptr_suffix -= 1; 1003 id = t->type; 1004 break; 1005 default: 1006 id = 0; 1007 break; 1008 } 1009 if (!id) 1010 break; 1011 t = btf_type_skip_qualifiers(show->btf, id); 1012 } 1013 /* We may not be able to represent this type; bail to be safe */ 1014 if (i == BTF_SHOW_MAX_ITER) 1015 return ""; 1016 1017 if (!name) 1018 name = btf_name_by_offset(show->btf, t->name_off); 1019 1020 switch (BTF_INFO_KIND(t->info)) { 1021 case BTF_KIND_STRUCT: 1022 case BTF_KIND_UNION: 1023 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1024 "struct" : "union"; 1025 /* if it's an array of struct/union, parens is already set */ 1026 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1027 parens = "{"; 1028 break; 1029 case BTF_KIND_ENUM: 1030 case BTF_KIND_ENUM64: 1031 prefix = "enum"; 1032 break; 1033 default: 1034 break; 1035 } 1036 1037 /* pointer does not require parens */ 1038 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1039 parens = ""; 1040 /* typedef does not require struct/union/enum prefix */ 1041 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1042 prefix = ""; 1043 1044 if (!name) 1045 name = ""; 1046 1047 /* Even if we don't want type name info, we want parentheses etc */ 1048 if (show->flags & BTF_SHOW_NONAME) 1049 snprintf(show->state.name, sizeof(show->state.name), "%s", 1050 parens); 1051 else 1052 snprintf(show->state.name, sizeof(show->state.name), 1053 "%s%s%s(%s%s%s%s%s%s)%s", 1054 /* first 3 strings comprise ".member = " */ 1055 show_member ? "." : "", 1056 show_member ? member : "", 1057 show_member ? " = " : "", 1058 /* ...next is our prefix (struct, enum, etc) */ 1059 prefix, 1060 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1061 /* ...this is the type name itself */ 1062 name, 1063 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1064 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1065 array_suffix, parens); 1066 1067 return show->state.name; 1068 } 1069 1070 static const char *__btf_show_indent(struct btf_show *show) 1071 { 1072 const char *indents = " "; 1073 const char *indent = &indents[strlen(indents)]; 1074 1075 if ((indent - show->state.depth) >= indents) 1076 return indent - show->state.depth; 1077 return indents; 1078 } 1079 1080 static const char *btf_show_indent(struct btf_show *show) 1081 { 1082 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1083 } 1084 1085 static const char *btf_show_newline(struct btf_show *show) 1086 { 1087 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1088 } 1089 1090 static const char *btf_show_delim(struct btf_show *show) 1091 { 1092 if (show->state.depth == 0) 1093 return ""; 1094 1095 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1096 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1097 return "|"; 1098 1099 return ","; 1100 } 1101 1102 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1103 { 1104 va_list args; 1105 1106 if (!show->state.depth_check) { 1107 va_start(args, fmt); 1108 show->showfn(show, fmt, args); 1109 va_end(args); 1110 } 1111 } 1112 1113 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1114 * format specifiers to the format specifier passed in; these do the work of 1115 * adding indentation, delimiters etc while the caller simply has to specify 1116 * the type value(s) in the format specifier + value(s). 1117 */ 1118 #define btf_show_type_value(show, fmt, value) \ 1119 do { \ 1120 if ((value) != (__typeof__(value))0 || \ 1121 (show->flags & BTF_SHOW_ZERO) || \ 1122 show->state.depth == 0) { \ 1123 btf_show(show, "%s%s" fmt "%s%s", \ 1124 btf_show_indent(show), \ 1125 btf_show_name(show), \ 1126 value, btf_show_delim(show), \ 1127 btf_show_newline(show)); \ 1128 if (show->state.depth > show->state.depth_to_show) \ 1129 show->state.depth_to_show = show->state.depth; \ 1130 } \ 1131 } while (0) 1132 1133 #define btf_show_type_values(show, fmt, ...) \ 1134 do { \ 1135 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1136 btf_show_name(show), \ 1137 __VA_ARGS__, btf_show_delim(show), \ 1138 btf_show_newline(show)); \ 1139 if (show->state.depth > show->state.depth_to_show) \ 1140 show->state.depth_to_show = show->state.depth; \ 1141 } while (0) 1142 1143 /* How much is left to copy to safe buffer after @data? */ 1144 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1145 { 1146 return show->obj.head + show->obj.size - data; 1147 } 1148 1149 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1150 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1151 { 1152 return data >= show->obj.data && 1153 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1154 } 1155 1156 /* 1157 * If object pointed to by @data of @size falls within our safe buffer, return 1158 * the equivalent pointer to the same safe data. Assumes 1159 * copy_from_kernel_nofault() has already happened and our safe buffer is 1160 * populated. 1161 */ 1162 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1163 { 1164 if (btf_show_obj_is_safe(show, data, size)) 1165 return show->obj.safe + (data - show->obj.data); 1166 return NULL; 1167 } 1168 1169 /* 1170 * Return a safe-to-access version of data pointed to by @data. 1171 * We do this by copying the relevant amount of information 1172 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1173 * 1174 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1175 * safe copy is needed. 1176 * 1177 * Otherwise we need to determine if we have the required amount 1178 * of data (determined by the @data pointer and the size of the 1179 * largest base type we can encounter (represented by 1180 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1181 * that we will be able to print some of the current object, 1182 * and if more is needed a copy will be triggered. 1183 * Some objects such as structs will not fit into the buffer; 1184 * in such cases additional copies when we iterate over their 1185 * members may be needed. 1186 * 1187 * btf_show_obj_safe() is used to return a safe buffer for 1188 * btf_show_start_type(); this ensures that as we recurse into 1189 * nested types we always have safe data for the given type. 1190 * This approach is somewhat wasteful; it's possible for example 1191 * that when iterating over a large union we'll end up copying the 1192 * same data repeatedly, but the goal is safety not performance. 1193 * We use stack data as opposed to per-CPU buffers because the 1194 * iteration over a type can take some time, and preemption handling 1195 * would greatly complicate use of the safe buffer. 1196 */ 1197 static void *btf_show_obj_safe(struct btf_show *show, 1198 const struct btf_type *t, 1199 void *data) 1200 { 1201 const struct btf_type *rt; 1202 int size_left, size; 1203 void *safe = NULL; 1204 1205 if (show->flags & BTF_SHOW_UNSAFE) 1206 return data; 1207 1208 rt = btf_resolve_size(show->btf, t, &size); 1209 if (IS_ERR(rt)) { 1210 show->state.status = PTR_ERR(rt); 1211 return NULL; 1212 } 1213 1214 /* 1215 * Is this toplevel object? If so, set total object size and 1216 * initialize pointers. Otherwise check if we still fall within 1217 * our safe object data. 1218 */ 1219 if (show->state.depth == 0) { 1220 show->obj.size = size; 1221 show->obj.head = data; 1222 } else { 1223 /* 1224 * If the size of the current object is > our remaining 1225 * safe buffer we _may_ need to do a new copy. However 1226 * consider the case of a nested struct; it's size pushes 1227 * us over the safe buffer limit, but showing any individual 1228 * struct members does not. In such cases, we don't need 1229 * to initiate a fresh copy yet; however we definitely need 1230 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1231 * in our buffer, regardless of the current object size. 1232 * The logic here is that as we resolve types we will 1233 * hit a base type at some point, and we need to be sure 1234 * the next chunk of data is safely available to display 1235 * that type info safely. We cannot rely on the size of 1236 * the current object here because it may be much larger 1237 * than our current buffer (e.g. task_struct is 8k). 1238 * All we want to do here is ensure that we can print the 1239 * next basic type, which we can if either 1240 * - the current type size is within the safe buffer; or 1241 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1242 * the safe buffer. 1243 */ 1244 safe = __btf_show_obj_safe(show, data, 1245 min(size, 1246 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1247 } 1248 1249 /* 1250 * We need a new copy to our safe object, either because we haven't 1251 * yet copied and are initializing safe data, or because the data 1252 * we want falls outside the boundaries of the safe object. 1253 */ 1254 if (!safe) { 1255 size_left = btf_show_obj_size_left(show, data); 1256 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1257 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1258 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1259 data, size_left); 1260 if (!show->state.status) { 1261 show->obj.data = data; 1262 safe = show->obj.safe; 1263 } 1264 } 1265 1266 return safe; 1267 } 1268 1269 /* 1270 * Set the type we are starting to show and return a safe data pointer 1271 * to be used for showing the associated data. 1272 */ 1273 static void *btf_show_start_type(struct btf_show *show, 1274 const struct btf_type *t, 1275 u32 type_id, void *data) 1276 { 1277 show->state.type = t; 1278 show->state.type_id = type_id; 1279 show->state.name[0] = '\0'; 1280 1281 return btf_show_obj_safe(show, t, data); 1282 } 1283 1284 static void btf_show_end_type(struct btf_show *show) 1285 { 1286 show->state.type = NULL; 1287 show->state.type_id = 0; 1288 show->state.name[0] = '\0'; 1289 } 1290 1291 static void *btf_show_start_aggr_type(struct btf_show *show, 1292 const struct btf_type *t, 1293 u32 type_id, void *data) 1294 { 1295 void *safe_data = btf_show_start_type(show, t, type_id, data); 1296 1297 if (!safe_data) 1298 return safe_data; 1299 1300 btf_show(show, "%s%s%s", btf_show_indent(show), 1301 btf_show_name(show), 1302 btf_show_newline(show)); 1303 show->state.depth++; 1304 return safe_data; 1305 } 1306 1307 static void btf_show_end_aggr_type(struct btf_show *show, 1308 const char *suffix) 1309 { 1310 show->state.depth--; 1311 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1312 btf_show_delim(show), btf_show_newline(show)); 1313 btf_show_end_type(show); 1314 } 1315 1316 static void btf_show_start_member(struct btf_show *show, 1317 const struct btf_member *m) 1318 { 1319 show->state.member = m; 1320 } 1321 1322 static void btf_show_start_array_member(struct btf_show *show) 1323 { 1324 show->state.array_member = 1; 1325 btf_show_start_member(show, NULL); 1326 } 1327 1328 static void btf_show_end_member(struct btf_show *show) 1329 { 1330 show->state.member = NULL; 1331 } 1332 1333 static void btf_show_end_array_member(struct btf_show *show) 1334 { 1335 show->state.array_member = 0; 1336 btf_show_end_member(show); 1337 } 1338 1339 static void *btf_show_start_array_type(struct btf_show *show, 1340 const struct btf_type *t, 1341 u32 type_id, 1342 u16 array_encoding, 1343 void *data) 1344 { 1345 show->state.array_encoding = array_encoding; 1346 show->state.array_terminated = 0; 1347 return btf_show_start_aggr_type(show, t, type_id, data); 1348 } 1349 1350 static void btf_show_end_array_type(struct btf_show *show) 1351 { 1352 show->state.array_encoding = 0; 1353 show->state.array_terminated = 0; 1354 btf_show_end_aggr_type(show, "]"); 1355 } 1356 1357 static void *btf_show_start_struct_type(struct btf_show *show, 1358 const struct btf_type *t, 1359 u32 type_id, 1360 void *data) 1361 { 1362 return btf_show_start_aggr_type(show, t, type_id, data); 1363 } 1364 1365 static void btf_show_end_struct_type(struct btf_show *show) 1366 { 1367 btf_show_end_aggr_type(show, "}"); 1368 } 1369 1370 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1371 const char *fmt, ...) 1372 { 1373 va_list args; 1374 1375 va_start(args, fmt); 1376 bpf_verifier_vlog(log, fmt, args); 1377 va_end(args); 1378 } 1379 1380 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1381 const char *fmt, ...) 1382 { 1383 struct bpf_verifier_log *log = &env->log; 1384 va_list args; 1385 1386 if (!bpf_verifier_log_needed(log)) 1387 return; 1388 1389 va_start(args, fmt); 1390 bpf_verifier_vlog(log, fmt, args); 1391 va_end(args); 1392 } 1393 1394 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1395 const struct btf_type *t, 1396 bool log_details, 1397 const char *fmt, ...) 1398 { 1399 struct bpf_verifier_log *log = &env->log; 1400 struct btf *btf = env->btf; 1401 va_list args; 1402 1403 if (!bpf_verifier_log_needed(log)) 1404 return; 1405 1406 if (log->level == BPF_LOG_KERNEL) { 1407 /* btf verifier prints all types it is processing via 1408 * btf_verifier_log_type(..., fmt = NULL). 1409 * Skip those prints for in-kernel BTF verification. 1410 */ 1411 if (!fmt) 1412 return; 1413 1414 /* Skip logging when loading module BTF with mismatches permitted */ 1415 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1416 return; 1417 } 1418 1419 __btf_verifier_log(log, "[%u] %s %s%s", 1420 env->log_type_id, 1421 btf_type_str(t), 1422 __btf_name_by_offset(btf, t->name_off), 1423 log_details ? " " : ""); 1424 1425 if (log_details) 1426 btf_type_ops(t)->log_details(env, t); 1427 1428 if (fmt && *fmt) { 1429 __btf_verifier_log(log, " "); 1430 va_start(args, fmt); 1431 bpf_verifier_vlog(log, fmt, args); 1432 va_end(args); 1433 } 1434 1435 __btf_verifier_log(log, "\n"); 1436 } 1437 1438 #define btf_verifier_log_type(env, t, ...) \ 1439 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1440 #define btf_verifier_log_basic(env, t, ...) \ 1441 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1442 1443 __printf(4, 5) 1444 static void btf_verifier_log_member(struct btf_verifier_env *env, 1445 const struct btf_type *struct_type, 1446 const struct btf_member *member, 1447 const char *fmt, ...) 1448 { 1449 struct bpf_verifier_log *log = &env->log; 1450 struct btf *btf = env->btf; 1451 va_list args; 1452 1453 if (!bpf_verifier_log_needed(log)) 1454 return; 1455 1456 if (log->level == BPF_LOG_KERNEL) { 1457 if (!fmt) 1458 return; 1459 1460 /* Skip logging when loading module BTF with mismatches permitted */ 1461 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1462 return; 1463 } 1464 1465 /* The CHECK_META phase already did a btf dump. 1466 * 1467 * If member is logged again, it must hit an error in 1468 * parsing this member. It is useful to print out which 1469 * struct this member belongs to. 1470 */ 1471 if (env->phase != CHECK_META) 1472 btf_verifier_log_type(env, struct_type, NULL); 1473 1474 if (btf_type_kflag(struct_type)) 1475 __btf_verifier_log(log, 1476 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1477 __btf_name_by_offset(btf, member->name_off), 1478 member->type, 1479 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1480 BTF_MEMBER_BIT_OFFSET(member->offset)); 1481 else 1482 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1483 __btf_name_by_offset(btf, member->name_off), 1484 member->type, member->offset); 1485 1486 if (fmt && *fmt) { 1487 __btf_verifier_log(log, " "); 1488 va_start(args, fmt); 1489 bpf_verifier_vlog(log, fmt, args); 1490 va_end(args); 1491 } 1492 1493 __btf_verifier_log(log, "\n"); 1494 } 1495 1496 __printf(4, 5) 1497 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1498 const struct btf_type *datasec_type, 1499 const struct btf_var_secinfo *vsi, 1500 const char *fmt, ...) 1501 { 1502 struct bpf_verifier_log *log = &env->log; 1503 va_list args; 1504 1505 if (!bpf_verifier_log_needed(log)) 1506 return; 1507 if (log->level == BPF_LOG_KERNEL && !fmt) 1508 return; 1509 if (env->phase != CHECK_META) 1510 btf_verifier_log_type(env, datasec_type, NULL); 1511 1512 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1513 vsi->type, vsi->offset, vsi->size); 1514 if (fmt && *fmt) { 1515 __btf_verifier_log(log, " "); 1516 va_start(args, fmt); 1517 bpf_verifier_vlog(log, fmt, args); 1518 va_end(args); 1519 } 1520 1521 __btf_verifier_log(log, "\n"); 1522 } 1523 1524 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1525 u32 btf_data_size) 1526 { 1527 struct bpf_verifier_log *log = &env->log; 1528 const struct btf *btf = env->btf; 1529 const struct btf_header *hdr; 1530 1531 if (!bpf_verifier_log_needed(log)) 1532 return; 1533 1534 if (log->level == BPF_LOG_KERNEL) 1535 return; 1536 hdr = &btf->hdr; 1537 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1538 __btf_verifier_log(log, "version: %u\n", hdr->version); 1539 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1540 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1541 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1542 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1543 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1544 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1545 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1546 } 1547 1548 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1549 { 1550 struct btf *btf = env->btf; 1551 1552 if (btf->types_size == btf->nr_types) { 1553 /* Expand 'types' array */ 1554 1555 struct btf_type **new_types; 1556 u32 expand_by, new_size; 1557 1558 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1559 btf_verifier_log(env, "Exceeded max num of types"); 1560 return -E2BIG; 1561 } 1562 1563 expand_by = max_t(u32, btf->types_size >> 2, 16); 1564 new_size = min_t(u32, BTF_MAX_TYPE, 1565 btf->types_size + expand_by); 1566 1567 new_types = kvcalloc(new_size, sizeof(*new_types), 1568 GFP_KERNEL | __GFP_NOWARN); 1569 if (!new_types) 1570 return -ENOMEM; 1571 1572 if (btf->nr_types == 0) { 1573 if (!btf->base_btf) { 1574 /* lazily init VOID type */ 1575 new_types[0] = &btf_void; 1576 btf->nr_types++; 1577 } 1578 } else { 1579 memcpy(new_types, btf->types, 1580 sizeof(*btf->types) * btf->nr_types); 1581 } 1582 1583 kvfree(btf->types); 1584 btf->types = new_types; 1585 btf->types_size = new_size; 1586 } 1587 1588 btf->types[btf->nr_types++] = t; 1589 1590 return 0; 1591 } 1592 1593 static int btf_alloc_id(struct btf *btf) 1594 { 1595 int id; 1596 1597 idr_preload(GFP_KERNEL); 1598 spin_lock_bh(&btf_idr_lock); 1599 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1600 if (id > 0) 1601 btf->id = id; 1602 spin_unlock_bh(&btf_idr_lock); 1603 idr_preload_end(); 1604 1605 if (WARN_ON_ONCE(!id)) 1606 return -ENOSPC; 1607 1608 return id > 0 ? 0 : id; 1609 } 1610 1611 static void btf_free_id(struct btf *btf) 1612 { 1613 unsigned long flags; 1614 1615 /* 1616 * In map-in-map, calling map_delete_elem() on outer 1617 * map will call bpf_map_put on the inner map. 1618 * It will then eventually call btf_free_id() 1619 * on the inner map. Some of the map_delete_elem() 1620 * implementation may have irq disabled, so 1621 * we need to use the _irqsave() version instead 1622 * of the _bh() version. 1623 */ 1624 spin_lock_irqsave(&btf_idr_lock, flags); 1625 idr_remove(&btf_idr, btf->id); 1626 spin_unlock_irqrestore(&btf_idr_lock, flags); 1627 } 1628 1629 static void btf_free_kfunc_set_tab(struct btf *btf) 1630 { 1631 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1632 int hook; 1633 1634 if (!tab) 1635 return; 1636 /* For module BTF, we directly assign the sets being registered, so 1637 * there is nothing to free except kfunc_set_tab. 1638 */ 1639 if (btf_is_module(btf)) 1640 goto free_tab; 1641 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1642 kfree(tab->sets[hook]); 1643 free_tab: 1644 kfree(tab); 1645 btf->kfunc_set_tab = NULL; 1646 } 1647 1648 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1649 { 1650 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1651 1652 if (!tab) 1653 return; 1654 kfree(tab); 1655 btf->dtor_kfunc_tab = NULL; 1656 } 1657 1658 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1659 { 1660 int i; 1661 1662 if (!tab) 1663 return; 1664 for (i = 0; i < tab->cnt; i++) { 1665 btf_record_free(tab->types[i].record); 1666 kfree(tab->types[i].field_offs); 1667 } 1668 kfree(tab); 1669 } 1670 1671 static void btf_free_struct_meta_tab(struct btf *btf) 1672 { 1673 struct btf_struct_metas *tab = btf->struct_meta_tab; 1674 1675 btf_struct_metas_free(tab); 1676 btf->struct_meta_tab = NULL; 1677 } 1678 1679 static void btf_free(struct btf *btf) 1680 { 1681 btf_free_struct_meta_tab(btf); 1682 btf_free_dtor_kfunc_tab(btf); 1683 btf_free_kfunc_set_tab(btf); 1684 kvfree(btf->types); 1685 kvfree(btf->resolved_sizes); 1686 kvfree(btf->resolved_ids); 1687 kvfree(btf->data); 1688 kfree(btf); 1689 } 1690 1691 static void btf_free_rcu(struct rcu_head *rcu) 1692 { 1693 struct btf *btf = container_of(rcu, struct btf, rcu); 1694 1695 btf_free(btf); 1696 } 1697 1698 void btf_get(struct btf *btf) 1699 { 1700 refcount_inc(&btf->refcnt); 1701 } 1702 1703 void btf_put(struct btf *btf) 1704 { 1705 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1706 btf_free_id(btf); 1707 call_rcu(&btf->rcu, btf_free_rcu); 1708 } 1709 } 1710 1711 static int env_resolve_init(struct btf_verifier_env *env) 1712 { 1713 struct btf *btf = env->btf; 1714 u32 nr_types = btf->nr_types; 1715 u32 *resolved_sizes = NULL; 1716 u32 *resolved_ids = NULL; 1717 u8 *visit_states = NULL; 1718 1719 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1720 GFP_KERNEL | __GFP_NOWARN); 1721 if (!resolved_sizes) 1722 goto nomem; 1723 1724 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1725 GFP_KERNEL | __GFP_NOWARN); 1726 if (!resolved_ids) 1727 goto nomem; 1728 1729 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1730 GFP_KERNEL | __GFP_NOWARN); 1731 if (!visit_states) 1732 goto nomem; 1733 1734 btf->resolved_sizes = resolved_sizes; 1735 btf->resolved_ids = resolved_ids; 1736 env->visit_states = visit_states; 1737 1738 return 0; 1739 1740 nomem: 1741 kvfree(resolved_sizes); 1742 kvfree(resolved_ids); 1743 kvfree(visit_states); 1744 return -ENOMEM; 1745 } 1746 1747 static void btf_verifier_env_free(struct btf_verifier_env *env) 1748 { 1749 kvfree(env->visit_states); 1750 kfree(env); 1751 } 1752 1753 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1754 const struct btf_type *next_type) 1755 { 1756 switch (env->resolve_mode) { 1757 case RESOLVE_TBD: 1758 /* int, enum or void is a sink */ 1759 return !btf_type_needs_resolve(next_type); 1760 case RESOLVE_PTR: 1761 /* int, enum, void, struct, array, func or func_proto is a sink 1762 * for ptr 1763 */ 1764 return !btf_type_is_modifier(next_type) && 1765 !btf_type_is_ptr(next_type); 1766 case RESOLVE_STRUCT_OR_ARRAY: 1767 /* int, enum, void, ptr, func or func_proto is a sink 1768 * for struct and array 1769 */ 1770 return !btf_type_is_modifier(next_type) && 1771 !btf_type_is_array(next_type) && 1772 !btf_type_is_struct(next_type); 1773 default: 1774 BUG(); 1775 } 1776 } 1777 1778 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1779 u32 type_id) 1780 { 1781 /* base BTF types should be resolved by now */ 1782 if (type_id < env->btf->start_id) 1783 return true; 1784 1785 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1786 } 1787 1788 static int env_stack_push(struct btf_verifier_env *env, 1789 const struct btf_type *t, u32 type_id) 1790 { 1791 const struct btf *btf = env->btf; 1792 struct resolve_vertex *v; 1793 1794 if (env->top_stack == MAX_RESOLVE_DEPTH) 1795 return -E2BIG; 1796 1797 if (type_id < btf->start_id 1798 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1799 return -EEXIST; 1800 1801 env->visit_states[type_id - btf->start_id] = VISITED; 1802 1803 v = &env->stack[env->top_stack++]; 1804 v->t = t; 1805 v->type_id = type_id; 1806 v->next_member = 0; 1807 1808 if (env->resolve_mode == RESOLVE_TBD) { 1809 if (btf_type_is_ptr(t)) 1810 env->resolve_mode = RESOLVE_PTR; 1811 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1812 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1813 } 1814 1815 return 0; 1816 } 1817 1818 static void env_stack_set_next_member(struct btf_verifier_env *env, 1819 u16 next_member) 1820 { 1821 env->stack[env->top_stack - 1].next_member = next_member; 1822 } 1823 1824 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1825 u32 resolved_type_id, 1826 u32 resolved_size) 1827 { 1828 u32 type_id = env->stack[--(env->top_stack)].type_id; 1829 struct btf *btf = env->btf; 1830 1831 type_id -= btf->start_id; /* adjust to local type id */ 1832 btf->resolved_sizes[type_id] = resolved_size; 1833 btf->resolved_ids[type_id] = resolved_type_id; 1834 env->visit_states[type_id] = RESOLVED; 1835 } 1836 1837 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1838 { 1839 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1840 } 1841 1842 /* Resolve the size of a passed-in "type" 1843 * 1844 * type: is an array (e.g. u32 array[x][y]) 1845 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1846 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1847 * corresponds to the return type. 1848 * *elem_type: u32 1849 * *elem_id: id of u32 1850 * *total_nelems: (x * y). Hence, individual elem size is 1851 * (*type_size / *total_nelems) 1852 * *type_id: id of type if it's changed within the function, 0 if not 1853 * 1854 * type: is not an array (e.g. const struct X) 1855 * return type: type "struct X" 1856 * *type_size: sizeof(struct X) 1857 * *elem_type: same as return type ("struct X") 1858 * *elem_id: 0 1859 * *total_nelems: 1 1860 * *type_id: id of type if it's changed within the function, 0 if not 1861 */ 1862 static const struct btf_type * 1863 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1864 u32 *type_size, const struct btf_type **elem_type, 1865 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1866 { 1867 const struct btf_type *array_type = NULL; 1868 const struct btf_array *array = NULL; 1869 u32 i, size, nelems = 1, id = 0; 1870 1871 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1872 switch (BTF_INFO_KIND(type->info)) { 1873 /* type->size can be used */ 1874 case BTF_KIND_INT: 1875 case BTF_KIND_STRUCT: 1876 case BTF_KIND_UNION: 1877 case BTF_KIND_ENUM: 1878 case BTF_KIND_FLOAT: 1879 case BTF_KIND_ENUM64: 1880 size = type->size; 1881 goto resolved; 1882 1883 case BTF_KIND_PTR: 1884 size = sizeof(void *); 1885 goto resolved; 1886 1887 /* Modifiers */ 1888 case BTF_KIND_TYPEDEF: 1889 case BTF_KIND_VOLATILE: 1890 case BTF_KIND_CONST: 1891 case BTF_KIND_RESTRICT: 1892 case BTF_KIND_TYPE_TAG: 1893 id = type->type; 1894 type = btf_type_by_id(btf, type->type); 1895 break; 1896 1897 case BTF_KIND_ARRAY: 1898 if (!array_type) 1899 array_type = type; 1900 array = btf_type_array(type); 1901 if (nelems && array->nelems > U32_MAX / nelems) 1902 return ERR_PTR(-EINVAL); 1903 nelems *= array->nelems; 1904 type = btf_type_by_id(btf, array->type); 1905 break; 1906 1907 /* type without size */ 1908 default: 1909 return ERR_PTR(-EINVAL); 1910 } 1911 } 1912 1913 return ERR_PTR(-EINVAL); 1914 1915 resolved: 1916 if (nelems && size > U32_MAX / nelems) 1917 return ERR_PTR(-EINVAL); 1918 1919 *type_size = nelems * size; 1920 if (total_nelems) 1921 *total_nelems = nelems; 1922 if (elem_type) 1923 *elem_type = type; 1924 if (elem_id) 1925 *elem_id = array ? array->type : 0; 1926 if (type_id && id) 1927 *type_id = id; 1928 1929 return array_type ? : type; 1930 } 1931 1932 const struct btf_type * 1933 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1934 u32 *type_size) 1935 { 1936 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1937 } 1938 1939 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1940 { 1941 while (type_id < btf->start_id) 1942 btf = btf->base_btf; 1943 1944 return btf->resolved_ids[type_id - btf->start_id]; 1945 } 1946 1947 /* The input param "type_id" must point to a needs_resolve type */ 1948 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1949 u32 *type_id) 1950 { 1951 *type_id = btf_resolved_type_id(btf, *type_id); 1952 return btf_type_by_id(btf, *type_id); 1953 } 1954 1955 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1956 { 1957 while (type_id < btf->start_id) 1958 btf = btf->base_btf; 1959 1960 return btf->resolved_sizes[type_id - btf->start_id]; 1961 } 1962 1963 const struct btf_type *btf_type_id_size(const struct btf *btf, 1964 u32 *type_id, u32 *ret_size) 1965 { 1966 const struct btf_type *size_type; 1967 u32 size_type_id = *type_id; 1968 u32 size = 0; 1969 1970 size_type = btf_type_by_id(btf, size_type_id); 1971 if (btf_type_nosize_or_null(size_type)) 1972 return NULL; 1973 1974 if (btf_type_has_size(size_type)) { 1975 size = size_type->size; 1976 } else if (btf_type_is_array(size_type)) { 1977 size = btf_resolved_type_size(btf, size_type_id); 1978 } else if (btf_type_is_ptr(size_type)) { 1979 size = sizeof(void *); 1980 } else { 1981 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1982 !btf_type_is_var(size_type))) 1983 return NULL; 1984 1985 size_type_id = btf_resolved_type_id(btf, size_type_id); 1986 size_type = btf_type_by_id(btf, size_type_id); 1987 if (btf_type_nosize_or_null(size_type)) 1988 return NULL; 1989 else if (btf_type_has_size(size_type)) 1990 size = size_type->size; 1991 else if (btf_type_is_array(size_type)) 1992 size = btf_resolved_type_size(btf, size_type_id); 1993 else if (btf_type_is_ptr(size_type)) 1994 size = sizeof(void *); 1995 else 1996 return NULL; 1997 } 1998 1999 *type_id = size_type_id; 2000 if (ret_size) 2001 *ret_size = size; 2002 2003 return size_type; 2004 } 2005 2006 static int btf_df_check_member(struct btf_verifier_env *env, 2007 const struct btf_type *struct_type, 2008 const struct btf_member *member, 2009 const struct btf_type *member_type) 2010 { 2011 btf_verifier_log_basic(env, struct_type, 2012 "Unsupported check_member"); 2013 return -EINVAL; 2014 } 2015 2016 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2017 const struct btf_type *struct_type, 2018 const struct btf_member *member, 2019 const struct btf_type *member_type) 2020 { 2021 btf_verifier_log_basic(env, struct_type, 2022 "Unsupported check_kflag_member"); 2023 return -EINVAL; 2024 } 2025 2026 /* Used for ptr, array struct/union and float type members. 2027 * int, enum and modifier types have their specific callback functions. 2028 */ 2029 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2030 const struct btf_type *struct_type, 2031 const struct btf_member *member, 2032 const struct btf_type *member_type) 2033 { 2034 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2035 btf_verifier_log_member(env, struct_type, member, 2036 "Invalid member bitfield_size"); 2037 return -EINVAL; 2038 } 2039 2040 /* bitfield size is 0, so member->offset represents bit offset only. 2041 * It is safe to call non kflag check_member variants. 2042 */ 2043 return btf_type_ops(member_type)->check_member(env, struct_type, 2044 member, 2045 member_type); 2046 } 2047 2048 static int btf_df_resolve(struct btf_verifier_env *env, 2049 const struct resolve_vertex *v) 2050 { 2051 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2052 return -EINVAL; 2053 } 2054 2055 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2056 u32 type_id, void *data, u8 bits_offsets, 2057 struct btf_show *show) 2058 { 2059 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2060 } 2061 2062 static int btf_int_check_member(struct btf_verifier_env *env, 2063 const struct btf_type *struct_type, 2064 const struct btf_member *member, 2065 const struct btf_type *member_type) 2066 { 2067 u32 int_data = btf_type_int(member_type); 2068 u32 struct_bits_off = member->offset; 2069 u32 struct_size = struct_type->size; 2070 u32 nr_copy_bits; 2071 u32 bytes_offset; 2072 2073 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2074 btf_verifier_log_member(env, struct_type, member, 2075 "bits_offset exceeds U32_MAX"); 2076 return -EINVAL; 2077 } 2078 2079 struct_bits_off += BTF_INT_OFFSET(int_data); 2080 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2081 nr_copy_bits = BTF_INT_BITS(int_data) + 2082 BITS_PER_BYTE_MASKED(struct_bits_off); 2083 2084 if (nr_copy_bits > BITS_PER_U128) { 2085 btf_verifier_log_member(env, struct_type, member, 2086 "nr_copy_bits exceeds 128"); 2087 return -EINVAL; 2088 } 2089 2090 if (struct_size < bytes_offset || 2091 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2092 btf_verifier_log_member(env, struct_type, member, 2093 "Member exceeds struct_size"); 2094 return -EINVAL; 2095 } 2096 2097 return 0; 2098 } 2099 2100 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2101 const struct btf_type *struct_type, 2102 const struct btf_member *member, 2103 const struct btf_type *member_type) 2104 { 2105 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2106 u32 int_data = btf_type_int(member_type); 2107 u32 struct_size = struct_type->size; 2108 u32 nr_copy_bits; 2109 2110 /* a regular int type is required for the kflag int member */ 2111 if (!btf_type_int_is_regular(member_type)) { 2112 btf_verifier_log_member(env, struct_type, member, 2113 "Invalid member base type"); 2114 return -EINVAL; 2115 } 2116 2117 /* check sanity of bitfield size */ 2118 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2119 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2120 nr_int_data_bits = BTF_INT_BITS(int_data); 2121 if (!nr_bits) { 2122 /* Not a bitfield member, member offset must be at byte 2123 * boundary. 2124 */ 2125 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2126 btf_verifier_log_member(env, struct_type, member, 2127 "Invalid member offset"); 2128 return -EINVAL; 2129 } 2130 2131 nr_bits = nr_int_data_bits; 2132 } else if (nr_bits > nr_int_data_bits) { 2133 btf_verifier_log_member(env, struct_type, member, 2134 "Invalid member bitfield_size"); 2135 return -EINVAL; 2136 } 2137 2138 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2139 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2140 if (nr_copy_bits > BITS_PER_U128) { 2141 btf_verifier_log_member(env, struct_type, member, 2142 "nr_copy_bits exceeds 128"); 2143 return -EINVAL; 2144 } 2145 2146 if (struct_size < bytes_offset || 2147 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2148 btf_verifier_log_member(env, struct_type, member, 2149 "Member exceeds struct_size"); 2150 return -EINVAL; 2151 } 2152 2153 return 0; 2154 } 2155 2156 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2157 const struct btf_type *t, 2158 u32 meta_left) 2159 { 2160 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2161 u16 encoding; 2162 2163 if (meta_left < meta_needed) { 2164 btf_verifier_log_basic(env, t, 2165 "meta_left:%u meta_needed:%u", 2166 meta_left, meta_needed); 2167 return -EINVAL; 2168 } 2169 2170 if (btf_type_vlen(t)) { 2171 btf_verifier_log_type(env, t, "vlen != 0"); 2172 return -EINVAL; 2173 } 2174 2175 if (btf_type_kflag(t)) { 2176 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2177 return -EINVAL; 2178 } 2179 2180 int_data = btf_type_int(t); 2181 if (int_data & ~BTF_INT_MASK) { 2182 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2183 int_data); 2184 return -EINVAL; 2185 } 2186 2187 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2188 2189 if (nr_bits > BITS_PER_U128) { 2190 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2191 BITS_PER_U128); 2192 return -EINVAL; 2193 } 2194 2195 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2196 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2197 return -EINVAL; 2198 } 2199 2200 /* 2201 * Only one of the encoding bits is allowed and it 2202 * should be sufficient for the pretty print purpose (i.e. decoding). 2203 * Multiple bits can be allowed later if it is found 2204 * to be insufficient. 2205 */ 2206 encoding = BTF_INT_ENCODING(int_data); 2207 if (encoding && 2208 encoding != BTF_INT_SIGNED && 2209 encoding != BTF_INT_CHAR && 2210 encoding != BTF_INT_BOOL) { 2211 btf_verifier_log_type(env, t, "Unsupported encoding"); 2212 return -ENOTSUPP; 2213 } 2214 2215 btf_verifier_log_type(env, t, NULL); 2216 2217 return meta_needed; 2218 } 2219 2220 static void btf_int_log(struct btf_verifier_env *env, 2221 const struct btf_type *t) 2222 { 2223 int int_data = btf_type_int(t); 2224 2225 btf_verifier_log(env, 2226 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2227 t->size, BTF_INT_OFFSET(int_data), 2228 BTF_INT_BITS(int_data), 2229 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2230 } 2231 2232 static void btf_int128_print(struct btf_show *show, void *data) 2233 { 2234 /* data points to a __int128 number. 2235 * Suppose 2236 * int128_num = *(__int128 *)data; 2237 * The below formulas shows what upper_num and lower_num represents: 2238 * upper_num = int128_num >> 64; 2239 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2240 */ 2241 u64 upper_num, lower_num; 2242 2243 #ifdef __BIG_ENDIAN_BITFIELD 2244 upper_num = *(u64 *)data; 2245 lower_num = *(u64 *)(data + 8); 2246 #else 2247 upper_num = *(u64 *)(data + 8); 2248 lower_num = *(u64 *)data; 2249 #endif 2250 if (upper_num == 0) 2251 btf_show_type_value(show, "0x%llx", lower_num); 2252 else 2253 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2254 lower_num); 2255 } 2256 2257 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2258 u16 right_shift_bits) 2259 { 2260 u64 upper_num, lower_num; 2261 2262 #ifdef __BIG_ENDIAN_BITFIELD 2263 upper_num = print_num[0]; 2264 lower_num = print_num[1]; 2265 #else 2266 upper_num = print_num[1]; 2267 lower_num = print_num[0]; 2268 #endif 2269 2270 /* shake out un-needed bits by shift/or operations */ 2271 if (left_shift_bits >= 64) { 2272 upper_num = lower_num << (left_shift_bits - 64); 2273 lower_num = 0; 2274 } else { 2275 upper_num = (upper_num << left_shift_bits) | 2276 (lower_num >> (64 - left_shift_bits)); 2277 lower_num = lower_num << left_shift_bits; 2278 } 2279 2280 if (right_shift_bits >= 64) { 2281 lower_num = upper_num >> (right_shift_bits - 64); 2282 upper_num = 0; 2283 } else { 2284 lower_num = (lower_num >> right_shift_bits) | 2285 (upper_num << (64 - right_shift_bits)); 2286 upper_num = upper_num >> right_shift_bits; 2287 } 2288 2289 #ifdef __BIG_ENDIAN_BITFIELD 2290 print_num[0] = upper_num; 2291 print_num[1] = lower_num; 2292 #else 2293 print_num[0] = lower_num; 2294 print_num[1] = upper_num; 2295 #endif 2296 } 2297 2298 static void btf_bitfield_show(void *data, u8 bits_offset, 2299 u8 nr_bits, struct btf_show *show) 2300 { 2301 u16 left_shift_bits, right_shift_bits; 2302 u8 nr_copy_bytes; 2303 u8 nr_copy_bits; 2304 u64 print_num[2] = {}; 2305 2306 nr_copy_bits = nr_bits + bits_offset; 2307 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2308 2309 memcpy(print_num, data, nr_copy_bytes); 2310 2311 #ifdef __BIG_ENDIAN_BITFIELD 2312 left_shift_bits = bits_offset; 2313 #else 2314 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2315 #endif 2316 right_shift_bits = BITS_PER_U128 - nr_bits; 2317 2318 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2319 btf_int128_print(show, print_num); 2320 } 2321 2322 2323 static void btf_int_bits_show(const struct btf *btf, 2324 const struct btf_type *t, 2325 void *data, u8 bits_offset, 2326 struct btf_show *show) 2327 { 2328 u32 int_data = btf_type_int(t); 2329 u8 nr_bits = BTF_INT_BITS(int_data); 2330 u8 total_bits_offset; 2331 2332 /* 2333 * bits_offset is at most 7. 2334 * BTF_INT_OFFSET() cannot exceed 128 bits. 2335 */ 2336 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2337 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2338 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2339 btf_bitfield_show(data, bits_offset, nr_bits, show); 2340 } 2341 2342 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2343 u32 type_id, void *data, u8 bits_offset, 2344 struct btf_show *show) 2345 { 2346 u32 int_data = btf_type_int(t); 2347 u8 encoding = BTF_INT_ENCODING(int_data); 2348 bool sign = encoding & BTF_INT_SIGNED; 2349 u8 nr_bits = BTF_INT_BITS(int_data); 2350 void *safe_data; 2351 2352 safe_data = btf_show_start_type(show, t, type_id, data); 2353 if (!safe_data) 2354 return; 2355 2356 if (bits_offset || BTF_INT_OFFSET(int_data) || 2357 BITS_PER_BYTE_MASKED(nr_bits)) { 2358 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2359 goto out; 2360 } 2361 2362 switch (nr_bits) { 2363 case 128: 2364 btf_int128_print(show, safe_data); 2365 break; 2366 case 64: 2367 if (sign) 2368 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2369 else 2370 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2371 break; 2372 case 32: 2373 if (sign) 2374 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2375 else 2376 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2377 break; 2378 case 16: 2379 if (sign) 2380 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2381 else 2382 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2383 break; 2384 case 8: 2385 if (show->state.array_encoding == BTF_INT_CHAR) { 2386 /* check for null terminator */ 2387 if (show->state.array_terminated) 2388 break; 2389 if (*(char *)data == '\0') { 2390 show->state.array_terminated = 1; 2391 break; 2392 } 2393 if (isprint(*(char *)data)) { 2394 btf_show_type_value(show, "'%c'", 2395 *(char *)safe_data); 2396 break; 2397 } 2398 } 2399 if (sign) 2400 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2401 else 2402 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2403 break; 2404 default: 2405 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2406 break; 2407 } 2408 out: 2409 btf_show_end_type(show); 2410 } 2411 2412 static const struct btf_kind_operations int_ops = { 2413 .check_meta = btf_int_check_meta, 2414 .resolve = btf_df_resolve, 2415 .check_member = btf_int_check_member, 2416 .check_kflag_member = btf_int_check_kflag_member, 2417 .log_details = btf_int_log, 2418 .show = btf_int_show, 2419 }; 2420 2421 static int btf_modifier_check_member(struct btf_verifier_env *env, 2422 const struct btf_type *struct_type, 2423 const struct btf_member *member, 2424 const struct btf_type *member_type) 2425 { 2426 const struct btf_type *resolved_type; 2427 u32 resolved_type_id = member->type; 2428 struct btf_member resolved_member; 2429 struct btf *btf = env->btf; 2430 2431 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2432 if (!resolved_type) { 2433 btf_verifier_log_member(env, struct_type, member, 2434 "Invalid member"); 2435 return -EINVAL; 2436 } 2437 2438 resolved_member = *member; 2439 resolved_member.type = resolved_type_id; 2440 2441 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2442 &resolved_member, 2443 resolved_type); 2444 } 2445 2446 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2447 const struct btf_type *struct_type, 2448 const struct btf_member *member, 2449 const struct btf_type *member_type) 2450 { 2451 const struct btf_type *resolved_type; 2452 u32 resolved_type_id = member->type; 2453 struct btf_member resolved_member; 2454 struct btf *btf = env->btf; 2455 2456 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2457 if (!resolved_type) { 2458 btf_verifier_log_member(env, struct_type, member, 2459 "Invalid member"); 2460 return -EINVAL; 2461 } 2462 2463 resolved_member = *member; 2464 resolved_member.type = resolved_type_id; 2465 2466 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2467 &resolved_member, 2468 resolved_type); 2469 } 2470 2471 static int btf_ptr_check_member(struct btf_verifier_env *env, 2472 const struct btf_type *struct_type, 2473 const struct btf_member *member, 2474 const struct btf_type *member_type) 2475 { 2476 u32 struct_size, struct_bits_off, bytes_offset; 2477 2478 struct_size = struct_type->size; 2479 struct_bits_off = member->offset; 2480 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2481 2482 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2483 btf_verifier_log_member(env, struct_type, member, 2484 "Member is not byte aligned"); 2485 return -EINVAL; 2486 } 2487 2488 if (struct_size - bytes_offset < sizeof(void *)) { 2489 btf_verifier_log_member(env, struct_type, member, 2490 "Member exceeds struct_size"); 2491 return -EINVAL; 2492 } 2493 2494 return 0; 2495 } 2496 2497 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2498 const struct btf_type *t, 2499 u32 meta_left) 2500 { 2501 const char *value; 2502 2503 if (btf_type_vlen(t)) { 2504 btf_verifier_log_type(env, t, "vlen != 0"); 2505 return -EINVAL; 2506 } 2507 2508 if (btf_type_kflag(t)) { 2509 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2510 return -EINVAL; 2511 } 2512 2513 if (!BTF_TYPE_ID_VALID(t->type)) { 2514 btf_verifier_log_type(env, t, "Invalid type_id"); 2515 return -EINVAL; 2516 } 2517 2518 /* typedef/type_tag type must have a valid name, and other ref types, 2519 * volatile, const, restrict, should have a null name. 2520 */ 2521 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2522 if (!t->name_off || 2523 !btf_name_valid_identifier(env->btf, t->name_off)) { 2524 btf_verifier_log_type(env, t, "Invalid name"); 2525 return -EINVAL; 2526 } 2527 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2528 value = btf_name_by_offset(env->btf, t->name_off); 2529 if (!value || !value[0]) { 2530 btf_verifier_log_type(env, t, "Invalid name"); 2531 return -EINVAL; 2532 } 2533 } else { 2534 if (t->name_off) { 2535 btf_verifier_log_type(env, t, "Invalid name"); 2536 return -EINVAL; 2537 } 2538 } 2539 2540 btf_verifier_log_type(env, t, NULL); 2541 2542 return 0; 2543 } 2544 2545 static int btf_modifier_resolve(struct btf_verifier_env *env, 2546 const struct resolve_vertex *v) 2547 { 2548 const struct btf_type *t = v->t; 2549 const struct btf_type *next_type; 2550 u32 next_type_id = t->type; 2551 struct btf *btf = env->btf; 2552 2553 next_type = btf_type_by_id(btf, next_type_id); 2554 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2555 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2556 return -EINVAL; 2557 } 2558 2559 if (!env_type_is_resolve_sink(env, next_type) && 2560 !env_type_is_resolved(env, next_type_id)) 2561 return env_stack_push(env, next_type, next_type_id); 2562 2563 /* Figure out the resolved next_type_id with size. 2564 * They will be stored in the current modifier's 2565 * resolved_ids and resolved_sizes such that it can 2566 * save us a few type-following when we use it later (e.g. in 2567 * pretty print). 2568 */ 2569 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2570 if (env_type_is_resolved(env, next_type_id)) 2571 next_type = btf_type_id_resolve(btf, &next_type_id); 2572 2573 /* "typedef void new_void", "const void"...etc */ 2574 if (!btf_type_is_void(next_type) && 2575 !btf_type_is_fwd(next_type) && 2576 !btf_type_is_func_proto(next_type)) { 2577 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2578 return -EINVAL; 2579 } 2580 } 2581 2582 env_stack_pop_resolved(env, next_type_id, 0); 2583 2584 return 0; 2585 } 2586 2587 static int btf_var_resolve(struct btf_verifier_env *env, 2588 const struct resolve_vertex *v) 2589 { 2590 const struct btf_type *next_type; 2591 const struct btf_type *t = v->t; 2592 u32 next_type_id = t->type; 2593 struct btf *btf = env->btf; 2594 2595 next_type = btf_type_by_id(btf, next_type_id); 2596 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2597 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2598 return -EINVAL; 2599 } 2600 2601 if (!env_type_is_resolve_sink(env, next_type) && 2602 !env_type_is_resolved(env, next_type_id)) 2603 return env_stack_push(env, next_type, next_type_id); 2604 2605 if (btf_type_is_modifier(next_type)) { 2606 const struct btf_type *resolved_type; 2607 u32 resolved_type_id; 2608 2609 resolved_type_id = next_type_id; 2610 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2611 2612 if (btf_type_is_ptr(resolved_type) && 2613 !env_type_is_resolve_sink(env, resolved_type) && 2614 !env_type_is_resolved(env, resolved_type_id)) 2615 return env_stack_push(env, resolved_type, 2616 resolved_type_id); 2617 } 2618 2619 /* We must resolve to something concrete at this point, no 2620 * forward types or similar that would resolve to size of 2621 * zero is allowed. 2622 */ 2623 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2624 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2625 return -EINVAL; 2626 } 2627 2628 env_stack_pop_resolved(env, next_type_id, 0); 2629 2630 return 0; 2631 } 2632 2633 static int btf_ptr_resolve(struct btf_verifier_env *env, 2634 const struct resolve_vertex *v) 2635 { 2636 const struct btf_type *next_type; 2637 const struct btf_type *t = v->t; 2638 u32 next_type_id = t->type; 2639 struct btf *btf = env->btf; 2640 2641 next_type = btf_type_by_id(btf, next_type_id); 2642 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2643 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2644 return -EINVAL; 2645 } 2646 2647 if (!env_type_is_resolve_sink(env, next_type) && 2648 !env_type_is_resolved(env, next_type_id)) 2649 return env_stack_push(env, next_type, next_type_id); 2650 2651 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2652 * the modifier may have stopped resolving when it was resolved 2653 * to a ptr (last-resolved-ptr). 2654 * 2655 * We now need to continue from the last-resolved-ptr to 2656 * ensure the last-resolved-ptr will not referring back to 2657 * the current ptr (t). 2658 */ 2659 if (btf_type_is_modifier(next_type)) { 2660 const struct btf_type *resolved_type; 2661 u32 resolved_type_id; 2662 2663 resolved_type_id = next_type_id; 2664 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2665 2666 if (btf_type_is_ptr(resolved_type) && 2667 !env_type_is_resolve_sink(env, resolved_type) && 2668 !env_type_is_resolved(env, resolved_type_id)) 2669 return env_stack_push(env, resolved_type, 2670 resolved_type_id); 2671 } 2672 2673 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2674 if (env_type_is_resolved(env, next_type_id)) 2675 next_type = btf_type_id_resolve(btf, &next_type_id); 2676 2677 if (!btf_type_is_void(next_type) && 2678 !btf_type_is_fwd(next_type) && 2679 !btf_type_is_func_proto(next_type)) { 2680 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2681 return -EINVAL; 2682 } 2683 } 2684 2685 env_stack_pop_resolved(env, next_type_id, 0); 2686 2687 return 0; 2688 } 2689 2690 static void btf_modifier_show(const struct btf *btf, 2691 const struct btf_type *t, 2692 u32 type_id, void *data, 2693 u8 bits_offset, struct btf_show *show) 2694 { 2695 if (btf->resolved_ids) 2696 t = btf_type_id_resolve(btf, &type_id); 2697 else 2698 t = btf_type_skip_modifiers(btf, type_id, NULL); 2699 2700 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2701 } 2702 2703 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2704 u32 type_id, void *data, u8 bits_offset, 2705 struct btf_show *show) 2706 { 2707 t = btf_type_id_resolve(btf, &type_id); 2708 2709 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2710 } 2711 2712 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2713 u32 type_id, void *data, u8 bits_offset, 2714 struct btf_show *show) 2715 { 2716 void *safe_data; 2717 2718 safe_data = btf_show_start_type(show, t, type_id, data); 2719 if (!safe_data) 2720 return; 2721 2722 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2723 if (show->flags & BTF_SHOW_PTR_RAW) 2724 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2725 else 2726 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2727 btf_show_end_type(show); 2728 } 2729 2730 static void btf_ref_type_log(struct btf_verifier_env *env, 2731 const struct btf_type *t) 2732 { 2733 btf_verifier_log(env, "type_id=%u", t->type); 2734 } 2735 2736 static struct btf_kind_operations modifier_ops = { 2737 .check_meta = btf_ref_type_check_meta, 2738 .resolve = btf_modifier_resolve, 2739 .check_member = btf_modifier_check_member, 2740 .check_kflag_member = btf_modifier_check_kflag_member, 2741 .log_details = btf_ref_type_log, 2742 .show = btf_modifier_show, 2743 }; 2744 2745 static struct btf_kind_operations ptr_ops = { 2746 .check_meta = btf_ref_type_check_meta, 2747 .resolve = btf_ptr_resolve, 2748 .check_member = btf_ptr_check_member, 2749 .check_kflag_member = btf_generic_check_kflag_member, 2750 .log_details = btf_ref_type_log, 2751 .show = btf_ptr_show, 2752 }; 2753 2754 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2755 const struct btf_type *t, 2756 u32 meta_left) 2757 { 2758 if (btf_type_vlen(t)) { 2759 btf_verifier_log_type(env, t, "vlen != 0"); 2760 return -EINVAL; 2761 } 2762 2763 if (t->type) { 2764 btf_verifier_log_type(env, t, "type != 0"); 2765 return -EINVAL; 2766 } 2767 2768 /* fwd type must have a valid name */ 2769 if (!t->name_off || 2770 !btf_name_valid_identifier(env->btf, t->name_off)) { 2771 btf_verifier_log_type(env, t, "Invalid name"); 2772 return -EINVAL; 2773 } 2774 2775 btf_verifier_log_type(env, t, NULL); 2776 2777 return 0; 2778 } 2779 2780 static void btf_fwd_type_log(struct btf_verifier_env *env, 2781 const struct btf_type *t) 2782 { 2783 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2784 } 2785 2786 static struct btf_kind_operations fwd_ops = { 2787 .check_meta = btf_fwd_check_meta, 2788 .resolve = btf_df_resolve, 2789 .check_member = btf_df_check_member, 2790 .check_kflag_member = btf_df_check_kflag_member, 2791 .log_details = btf_fwd_type_log, 2792 .show = btf_df_show, 2793 }; 2794 2795 static int btf_array_check_member(struct btf_verifier_env *env, 2796 const struct btf_type *struct_type, 2797 const struct btf_member *member, 2798 const struct btf_type *member_type) 2799 { 2800 u32 struct_bits_off = member->offset; 2801 u32 struct_size, bytes_offset; 2802 u32 array_type_id, array_size; 2803 struct btf *btf = env->btf; 2804 2805 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2806 btf_verifier_log_member(env, struct_type, member, 2807 "Member is not byte aligned"); 2808 return -EINVAL; 2809 } 2810 2811 array_type_id = member->type; 2812 btf_type_id_size(btf, &array_type_id, &array_size); 2813 struct_size = struct_type->size; 2814 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2815 if (struct_size - bytes_offset < array_size) { 2816 btf_verifier_log_member(env, struct_type, member, 2817 "Member exceeds struct_size"); 2818 return -EINVAL; 2819 } 2820 2821 return 0; 2822 } 2823 2824 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2825 const struct btf_type *t, 2826 u32 meta_left) 2827 { 2828 const struct btf_array *array = btf_type_array(t); 2829 u32 meta_needed = sizeof(*array); 2830 2831 if (meta_left < meta_needed) { 2832 btf_verifier_log_basic(env, t, 2833 "meta_left:%u meta_needed:%u", 2834 meta_left, meta_needed); 2835 return -EINVAL; 2836 } 2837 2838 /* array type should not have a name */ 2839 if (t->name_off) { 2840 btf_verifier_log_type(env, t, "Invalid name"); 2841 return -EINVAL; 2842 } 2843 2844 if (btf_type_vlen(t)) { 2845 btf_verifier_log_type(env, t, "vlen != 0"); 2846 return -EINVAL; 2847 } 2848 2849 if (btf_type_kflag(t)) { 2850 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2851 return -EINVAL; 2852 } 2853 2854 if (t->size) { 2855 btf_verifier_log_type(env, t, "size != 0"); 2856 return -EINVAL; 2857 } 2858 2859 /* Array elem type and index type cannot be in type void, 2860 * so !array->type and !array->index_type are not allowed. 2861 */ 2862 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2863 btf_verifier_log_type(env, t, "Invalid elem"); 2864 return -EINVAL; 2865 } 2866 2867 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2868 btf_verifier_log_type(env, t, "Invalid index"); 2869 return -EINVAL; 2870 } 2871 2872 btf_verifier_log_type(env, t, NULL); 2873 2874 return meta_needed; 2875 } 2876 2877 static int btf_array_resolve(struct btf_verifier_env *env, 2878 const struct resolve_vertex *v) 2879 { 2880 const struct btf_array *array = btf_type_array(v->t); 2881 const struct btf_type *elem_type, *index_type; 2882 u32 elem_type_id, index_type_id; 2883 struct btf *btf = env->btf; 2884 u32 elem_size; 2885 2886 /* Check array->index_type */ 2887 index_type_id = array->index_type; 2888 index_type = btf_type_by_id(btf, index_type_id); 2889 if (btf_type_nosize_or_null(index_type) || 2890 btf_type_is_resolve_source_only(index_type)) { 2891 btf_verifier_log_type(env, v->t, "Invalid index"); 2892 return -EINVAL; 2893 } 2894 2895 if (!env_type_is_resolve_sink(env, index_type) && 2896 !env_type_is_resolved(env, index_type_id)) 2897 return env_stack_push(env, index_type, index_type_id); 2898 2899 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2900 if (!index_type || !btf_type_is_int(index_type) || 2901 !btf_type_int_is_regular(index_type)) { 2902 btf_verifier_log_type(env, v->t, "Invalid index"); 2903 return -EINVAL; 2904 } 2905 2906 /* Check array->type */ 2907 elem_type_id = array->type; 2908 elem_type = btf_type_by_id(btf, elem_type_id); 2909 if (btf_type_nosize_or_null(elem_type) || 2910 btf_type_is_resolve_source_only(elem_type)) { 2911 btf_verifier_log_type(env, v->t, 2912 "Invalid elem"); 2913 return -EINVAL; 2914 } 2915 2916 if (!env_type_is_resolve_sink(env, elem_type) && 2917 !env_type_is_resolved(env, elem_type_id)) 2918 return env_stack_push(env, elem_type, elem_type_id); 2919 2920 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2921 if (!elem_type) { 2922 btf_verifier_log_type(env, v->t, "Invalid elem"); 2923 return -EINVAL; 2924 } 2925 2926 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2927 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2928 return -EINVAL; 2929 } 2930 2931 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2932 btf_verifier_log_type(env, v->t, 2933 "Array size overflows U32_MAX"); 2934 return -EINVAL; 2935 } 2936 2937 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2938 2939 return 0; 2940 } 2941 2942 static void btf_array_log(struct btf_verifier_env *env, 2943 const struct btf_type *t) 2944 { 2945 const struct btf_array *array = btf_type_array(t); 2946 2947 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2948 array->type, array->index_type, array->nelems); 2949 } 2950 2951 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2952 u32 type_id, void *data, u8 bits_offset, 2953 struct btf_show *show) 2954 { 2955 const struct btf_array *array = btf_type_array(t); 2956 const struct btf_kind_operations *elem_ops; 2957 const struct btf_type *elem_type; 2958 u32 i, elem_size = 0, elem_type_id; 2959 u16 encoding = 0; 2960 2961 elem_type_id = array->type; 2962 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2963 if (elem_type && btf_type_has_size(elem_type)) 2964 elem_size = elem_type->size; 2965 2966 if (elem_type && btf_type_is_int(elem_type)) { 2967 u32 int_type = btf_type_int(elem_type); 2968 2969 encoding = BTF_INT_ENCODING(int_type); 2970 2971 /* 2972 * BTF_INT_CHAR encoding never seems to be set for 2973 * char arrays, so if size is 1 and element is 2974 * printable as a char, we'll do that. 2975 */ 2976 if (elem_size == 1) 2977 encoding = BTF_INT_CHAR; 2978 } 2979 2980 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2981 return; 2982 2983 if (!elem_type) 2984 goto out; 2985 elem_ops = btf_type_ops(elem_type); 2986 2987 for (i = 0; i < array->nelems; i++) { 2988 2989 btf_show_start_array_member(show); 2990 2991 elem_ops->show(btf, elem_type, elem_type_id, data, 2992 bits_offset, show); 2993 data += elem_size; 2994 2995 btf_show_end_array_member(show); 2996 2997 if (show->state.array_terminated) 2998 break; 2999 } 3000 out: 3001 btf_show_end_array_type(show); 3002 } 3003 3004 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3005 u32 type_id, void *data, u8 bits_offset, 3006 struct btf_show *show) 3007 { 3008 const struct btf_member *m = show->state.member; 3009 3010 /* 3011 * First check if any members would be shown (are non-zero). 3012 * See comments above "struct btf_show" definition for more 3013 * details on how this works at a high-level. 3014 */ 3015 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3016 if (!show->state.depth_check) { 3017 show->state.depth_check = show->state.depth + 1; 3018 show->state.depth_to_show = 0; 3019 } 3020 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3021 show->state.member = m; 3022 3023 if (show->state.depth_check != show->state.depth + 1) 3024 return; 3025 show->state.depth_check = 0; 3026 3027 if (show->state.depth_to_show <= show->state.depth) 3028 return; 3029 /* 3030 * Reaching here indicates we have recursed and found 3031 * non-zero array member(s). 3032 */ 3033 } 3034 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3035 } 3036 3037 static struct btf_kind_operations array_ops = { 3038 .check_meta = btf_array_check_meta, 3039 .resolve = btf_array_resolve, 3040 .check_member = btf_array_check_member, 3041 .check_kflag_member = btf_generic_check_kflag_member, 3042 .log_details = btf_array_log, 3043 .show = btf_array_show, 3044 }; 3045 3046 static int btf_struct_check_member(struct btf_verifier_env *env, 3047 const struct btf_type *struct_type, 3048 const struct btf_member *member, 3049 const struct btf_type *member_type) 3050 { 3051 u32 struct_bits_off = member->offset; 3052 u32 struct_size, bytes_offset; 3053 3054 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3055 btf_verifier_log_member(env, struct_type, member, 3056 "Member is not byte aligned"); 3057 return -EINVAL; 3058 } 3059 3060 struct_size = struct_type->size; 3061 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3062 if (struct_size - bytes_offset < member_type->size) { 3063 btf_verifier_log_member(env, struct_type, member, 3064 "Member exceeds struct_size"); 3065 return -EINVAL; 3066 } 3067 3068 return 0; 3069 } 3070 3071 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3072 const struct btf_type *t, 3073 u32 meta_left) 3074 { 3075 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3076 const struct btf_member *member; 3077 u32 meta_needed, last_offset; 3078 struct btf *btf = env->btf; 3079 u32 struct_size = t->size; 3080 u32 offset; 3081 u16 i; 3082 3083 meta_needed = btf_type_vlen(t) * sizeof(*member); 3084 if (meta_left < meta_needed) { 3085 btf_verifier_log_basic(env, t, 3086 "meta_left:%u meta_needed:%u", 3087 meta_left, meta_needed); 3088 return -EINVAL; 3089 } 3090 3091 /* struct type either no name or a valid one */ 3092 if (t->name_off && 3093 !btf_name_valid_identifier(env->btf, t->name_off)) { 3094 btf_verifier_log_type(env, t, "Invalid name"); 3095 return -EINVAL; 3096 } 3097 3098 btf_verifier_log_type(env, t, NULL); 3099 3100 last_offset = 0; 3101 for_each_member(i, t, member) { 3102 if (!btf_name_offset_valid(btf, member->name_off)) { 3103 btf_verifier_log_member(env, t, member, 3104 "Invalid member name_offset:%u", 3105 member->name_off); 3106 return -EINVAL; 3107 } 3108 3109 /* struct member either no name or a valid one */ 3110 if (member->name_off && 3111 !btf_name_valid_identifier(btf, member->name_off)) { 3112 btf_verifier_log_member(env, t, member, "Invalid name"); 3113 return -EINVAL; 3114 } 3115 /* A member cannot be in type void */ 3116 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3117 btf_verifier_log_member(env, t, member, 3118 "Invalid type_id"); 3119 return -EINVAL; 3120 } 3121 3122 offset = __btf_member_bit_offset(t, member); 3123 if (is_union && offset) { 3124 btf_verifier_log_member(env, t, member, 3125 "Invalid member bits_offset"); 3126 return -EINVAL; 3127 } 3128 3129 /* 3130 * ">" instead of ">=" because the last member could be 3131 * "char a[0];" 3132 */ 3133 if (last_offset > offset) { 3134 btf_verifier_log_member(env, t, member, 3135 "Invalid member bits_offset"); 3136 return -EINVAL; 3137 } 3138 3139 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3140 btf_verifier_log_member(env, t, member, 3141 "Member bits_offset exceeds its struct size"); 3142 return -EINVAL; 3143 } 3144 3145 btf_verifier_log_member(env, t, member, NULL); 3146 last_offset = offset; 3147 } 3148 3149 return meta_needed; 3150 } 3151 3152 static int btf_struct_resolve(struct btf_verifier_env *env, 3153 const struct resolve_vertex *v) 3154 { 3155 const struct btf_member *member; 3156 int err; 3157 u16 i; 3158 3159 /* Before continue resolving the next_member, 3160 * ensure the last member is indeed resolved to a 3161 * type with size info. 3162 */ 3163 if (v->next_member) { 3164 const struct btf_type *last_member_type; 3165 const struct btf_member *last_member; 3166 u32 last_member_type_id; 3167 3168 last_member = btf_type_member(v->t) + v->next_member - 1; 3169 last_member_type_id = last_member->type; 3170 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3171 last_member_type_id))) 3172 return -EINVAL; 3173 3174 last_member_type = btf_type_by_id(env->btf, 3175 last_member_type_id); 3176 if (btf_type_kflag(v->t)) 3177 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3178 last_member, 3179 last_member_type); 3180 else 3181 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3182 last_member, 3183 last_member_type); 3184 if (err) 3185 return err; 3186 } 3187 3188 for_each_member_from(i, v->next_member, v->t, member) { 3189 u32 member_type_id = member->type; 3190 const struct btf_type *member_type = btf_type_by_id(env->btf, 3191 member_type_id); 3192 3193 if (btf_type_nosize_or_null(member_type) || 3194 btf_type_is_resolve_source_only(member_type)) { 3195 btf_verifier_log_member(env, v->t, member, 3196 "Invalid member"); 3197 return -EINVAL; 3198 } 3199 3200 if (!env_type_is_resolve_sink(env, member_type) && 3201 !env_type_is_resolved(env, member_type_id)) { 3202 env_stack_set_next_member(env, i + 1); 3203 return env_stack_push(env, member_type, member_type_id); 3204 } 3205 3206 if (btf_type_kflag(v->t)) 3207 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3208 member, 3209 member_type); 3210 else 3211 err = btf_type_ops(member_type)->check_member(env, v->t, 3212 member, 3213 member_type); 3214 if (err) 3215 return err; 3216 } 3217 3218 env_stack_pop_resolved(env, 0, 0); 3219 3220 return 0; 3221 } 3222 3223 static void btf_struct_log(struct btf_verifier_env *env, 3224 const struct btf_type *t) 3225 { 3226 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3227 } 3228 3229 enum btf_field_info_type { 3230 BTF_FIELD_SPIN_LOCK, 3231 BTF_FIELD_TIMER, 3232 BTF_FIELD_KPTR, 3233 }; 3234 3235 enum { 3236 BTF_FIELD_IGNORE = 0, 3237 BTF_FIELD_FOUND = 1, 3238 }; 3239 3240 struct btf_field_info { 3241 enum btf_field_type type; 3242 u32 off; 3243 union { 3244 struct { 3245 u32 type_id; 3246 } kptr; 3247 struct { 3248 const char *node_name; 3249 u32 value_btf_id; 3250 } graph_root; 3251 }; 3252 }; 3253 3254 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3255 u32 off, int sz, enum btf_field_type field_type, 3256 struct btf_field_info *info) 3257 { 3258 if (!__btf_type_is_struct(t)) 3259 return BTF_FIELD_IGNORE; 3260 if (t->size != sz) 3261 return BTF_FIELD_IGNORE; 3262 info->type = field_type; 3263 info->off = off; 3264 return BTF_FIELD_FOUND; 3265 } 3266 3267 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3268 u32 off, int sz, struct btf_field_info *info) 3269 { 3270 enum btf_field_type type; 3271 u32 res_id; 3272 3273 /* Permit modifiers on the pointer itself */ 3274 if (btf_type_is_volatile(t)) 3275 t = btf_type_by_id(btf, t->type); 3276 /* For PTR, sz is always == 8 */ 3277 if (!btf_type_is_ptr(t)) 3278 return BTF_FIELD_IGNORE; 3279 t = btf_type_by_id(btf, t->type); 3280 3281 if (!btf_type_is_type_tag(t)) 3282 return BTF_FIELD_IGNORE; 3283 /* Reject extra tags */ 3284 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3285 return -EINVAL; 3286 if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3287 type = BPF_KPTR_UNREF; 3288 else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off))) 3289 type = BPF_KPTR_REF; 3290 else 3291 return -EINVAL; 3292 3293 /* Get the base type */ 3294 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3295 /* Only pointer to struct is allowed */ 3296 if (!__btf_type_is_struct(t)) 3297 return -EINVAL; 3298 3299 info->type = type; 3300 info->off = off; 3301 info->kptr.type_id = res_id; 3302 return BTF_FIELD_FOUND; 3303 } 3304 3305 static const char *btf_find_decl_tag_value(const struct btf *btf, 3306 const struct btf_type *pt, 3307 int comp_idx, const char *tag_key) 3308 { 3309 int i; 3310 3311 for (i = 1; i < btf_nr_types(btf); i++) { 3312 const struct btf_type *t = btf_type_by_id(btf, i); 3313 int len = strlen(tag_key); 3314 3315 if (!btf_type_is_decl_tag(t)) 3316 continue; 3317 if (pt != btf_type_by_id(btf, t->type) || 3318 btf_type_decl_tag(t)->component_idx != comp_idx) 3319 continue; 3320 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3321 continue; 3322 return __btf_name_by_offset(btf, t->name_off) + len; 3323 } 3324 return NULL; 3325 } 3326 3327 static int 3328 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3329 const struct btf_type *t, int comp_idx, u32 off, 3330 int sz, struct btf_field_info *info, 3331 enum btf_field_type head_type) 3332 { 3333 const char *node_field_name; 3334 const char *value_type; 3335 s32 id; 3336 3337 if (!__btf_type_is_struct(t)) 3338 return BTF_FIELD_IGNORE; 3339 if (t->size != sz) 3340 return BTF_FIELD_IGNORE; 3341 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3342 if (!value_type) 3343 return -EINVAL; 3344 node_field_name = strstr(value_type, ":"); 3345 if (!node_field_name) 3346 return -EINVAL; 3347 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3348 if (!value_type) 3349 return -ENOMEM; 3350 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3351 kfree(value_type); 3352 if (id < 0) 3353 return id; 3354 node_field_name++; 3355 if (str_is_empty(node_field_name)) 3356 return -EINVAL; 3357 info->type = head_type; 3358 info->off = off; 3359 info->graph_root.value_btf_id = id; 3360 info->graph_root.node_name = node_field_name; 3361 return BTF_FIELD_FOUND; 3362 } 3363 3364 #define field_mask_test_name(field_type, field_type_str) \ 3365 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3366 type = field_type; \ 3367 goto end; \ 3368 } 3369 3370 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3371 int *align, int *sz) 3372 { 3373 int type = 0; 3374 3375 if (field_mask & BPF_SPIN_LOCK) { 3376 if (!strcmp(name, "bpf_spin_lock")) { 3377 if (*seen_mask & BPF_SPIN_LOCK) 3378 return -E2BIG; 3379 *seen_mask |= BPF_SPIN_LOCK; 3380 type = BPF_SPIN_LOCK; 3381 goto end; 3382 } 3383 } 3384 if (field_mask & BPF_TIMER) { 3385 if (!strcmp(name, "bpf_timer")) { 3386 if (*seen_mask & BPF_TIMER) 3387 return -E2BIG; 3388 *seen_mask |= BPF_TIMER; 3389 type = BPF_TIMER; 3390 goto end; 3391 } 3392 } 3393 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3394 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3395 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3396 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3397 3398 /* Only return BPF_KPTR when all other types with matchable names fail */ 3399 if (field_mask & BPF_KPTR) { 3400 type = BPF_KPTR_REF; 3401 goto end; 3402 } 3403 return 0; 3404 end: 3405 *sz = btf_field_type_size(type); 3406 *align = btf_field_type_align(type); 3407 return type; 3408 } 3409 3410 #undef field_mask_test_name 3411 3412 static int btf_find_struct_field(const struct btf *btf, 3413 const struct btf_type *t, u32 field_mask, 3414 struct btf_field_info *info, int info_cnt) 3415 { 3416 int ret, idx = 0, align, sz, field_type; 3417 const struct btf_member *member; 3418 struct btf_field_info tmp; 3419 u32 i, off, seen_mask = 0; 3420 3421 for_each_member(i, t, member) { 3422 const struct btf_type *member_type = btf_type_by_id(btf, 3423 member->type); 3424 3425 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3426 field_mask, &seen_mask, &align, &sz); 3427 if (field_type == 0) 3428 continue; 3429 if (field_type < 0) 3430 return field_type; 3431 3432 off = __btf_member_bit_offset(t, member); 3433 if (off % 8) 3434 /* valid C code cannot generate such BTF */ 3435 return -EINVAL; 3436 off /= 8; 3437 if (off % align) 3438 continue; 3439 3440 switch (field_type) { 3441 case BPF_SPIN_LOCK: 3442 case BPF_TIMER: 3443 case BPF_LIST_NODE: 3444 case BPF_RB_NODE: 3445 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3446 idx < info_cnt ? &info[idx] : &tmp); 3447 if (ret < 0) 3448 return ret; 3449 break; 3450 case BPF_KPTR_UNREF: 3451 case BPF_KPTR_REF: 3452 ret = btf_find_kptr(btf, member_type, off, sz, 3453 idx < info_cnt ? &info[idx] : &tmp); 3454 if (ret < 0) 3455 return ret; 3456 break; 3457 case BPF_LIST_HEAD: 3458 case BPF_RB_ROOT: 3459 ret = btf_find_graph_root(btf, t, member_type, 3460 i, off, sz, 3461 idx < info_cnt ? &info[idx] : &tmp, 3462 field_type); 3463 if (ret < 0) 3464 return ret; 3465 break; 3466 default: 3467 return -EFAULT; 3468 } 3469 3470 if (ret == BTF_FIELD_IGNORE) 3471 continue; 3472 if (idx >= info_cnt) 3473 return -E2BIG; 3474 ++idx; 3475 } 3476 return idx; 3477 } 3478 3479 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3480 u32 field_mask, struct btf_field_info *info, 3481 int info_cnt) 3482 { 3483 int ret, idx = 0, align, sz, field_type; 3484 const struct btf_var_secinfo *vsi; 3485 struct btf_field_info tmp; 3486 u32 i, off, seen_mask = 0; 3487 3488 for_each_vsi(i, t, vsi) { 3489 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3490 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3491 3492 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3493 field_mask, &seen_mask, &align, &sz); 3494 if (field_type == 0) 3495 continue; 3496 if (field_type < 0) 3497 return field_type; 3498 3499 off = vsi->offset; 3500 if (vsi->size != sz) 3501 continue; 3502 if (off % align) 3503 continue; 3504 3505 switch (field_type) { 3506 case BPF_SPIN_LOCK: 3507 case BPF_TIMER: 3508 case BPF_LIST_NODE: 3509 case BPF_RB_NODE: 3510 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3511 idx < info_cnt ? &info[idx] : &tmp); 3512 if (ret < 0) 3513 return ret; 3514 break; 3515 case BPF_KPTR_UNREF: 3516 case BPF_KPTR_REF: 3517 ret = btf_find_kptr(btf, var_type, off, sz, 3518 idx < info_cnt ? &info[idx] : &tmp); 3519 if (ret < 0) 3520 return ret; 3521 break; 3522 case BPF_LIST_HEAD: 3523 case BPF_RB_ROOT: 3524 ret = btf_find_graph_root(btf, var, var_type, 3525 -1, off, sz, 3526 idx < info_cnt ? &info[idx] : &tmp, 3527 field_type); 3528 if (ret < 0) 3529 return ret; 3530 break; 3531 default: 3532 return -EFAULT; 3533 } 3534 3535 if (ret == BTF_FIELD_IGNORE) 3536 continue; 3537 if (idx >= info_cnt) 3538 return -E2BIG; 3539 ++idx; 3540 } 3541 return idx; 3542 } 3543 3544 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3545 u32 field_mask, struct btf_field_info *info, 3546 int info_cnt) 3547 { 3548 if (__btf_type_is_struct(t)) 3549 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3550 else if (btf_type_is_datasec(t)) 3551 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3552 return -EINVAL; 3553 } 3554 3555 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3556 struct btf_field_info *info) 3557 { 3558 struct module *mod = NULL; 3559 const struct btf_type *t; 3560 struct btf *kernel_btf; 3561 int ret; 3562 s32 id; 3563 3564 /* Find type in map BTF, and use it to look up the matching type 3565 * in vmlinux or module BTFs, by name and kind. 3566 */ 3567 t = btf_type_by_id(btf, info->kptr.type_id); 3568 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3569 &kernel_btf); 3570 if (id < 0) 3571 return id; 3572 3573 /* Find and stash the function pointer for the destruction function that 3574 * needs to be eventually invoked from the map free path. 3575 */ 3576 if (info->type == BPF_KPTR_REF) { 3577 const struct btf_type *dtor_func; 3578 const char *dtor_func_name; 3579 unsigned long addr; 3580 s32 dtor_btf_id; 3581 3582 /* This call also serves as a whitelist of allowed objects that 3583 * can be used as a referenced pointer and be stored in a map at 3584 * the same time. 3585 */ 3586 dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id); 3587 if (dtor_btf_id < 0) { 3588 ret = dtor_btf_id; 3589 goto end_btf; 3590 } 3591 3592 dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id); 3593 if (!dtor_func) { 3594 ret = -ENOENT; 3595 goto end_btf; 3596 } 3597 3598 if (btf_is_module(kernel_btf)) { 3599 mod = btf_try_get_module(kernel_btf); 3600 if (!mod) { 3601 ret = -ENXIO; 3602 goto end_btf; 3603 } 3604 } 3605 3606 /* We already verified dtor_func to be btf_type_is_func 3607 * in register_btf_id_dtor_kfuncs. 3608 */ 3609 dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off); 3610 addr = kallsyms_lookup_name(dtor_func_name); 3611 if (!addr) { 3612 ret = -EINVAL; 3613 goto end_mod; 3614 } 3615 field->kptr.dtor = (void *)addr; 3616 } 3617 3618 field->kptr.btf_id = id; 3619 field->kptr.btf = kernel_btf; 3620 field->kptr.module = mod; 3621 return 0; 3622 end_mod: 3623 module_put(mod); 3624 end_btf: 3625 btf_put(kernel_btf); 3626 return ret; 3627 } 3628 3629 static int btf_parse_graph_root(const struct btf *btf, 3630 struct btf_field *field, 3631 struct btf_field_info *info, 3632 const char *node_type_name, 3633 size_t node_type_align) 3634 { 3635 const struct btf_type *t, *n = NULL; 3636 const struct btf_member *member; 3637 u32 offset; 3638 int i; 3639 3640 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3641 /* We've already checked that value_btf_id is a struct type. We 3642 * just need to figure out the offset of the list_node, and 3643 * verify its type. 3644 */ 3645 for_each_member(i, t, member) { 3646 if (strcmp(info->graph_root.node_name, 3647 __btf_name_by_offset(btf, member->name_off))) 3648 continue; 3649 /* Invalid BTF, two members with same name */ 3650 if (n) 3651 return -EINVAL; 3652 n = btf_type_by_id(btf, member->type); 3653 if (!__btf_type_is_struct(n)) 3654 return -EINVAL; 3655 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3656 return -EINVAL; 3657 offset = __btf_member_bit_offset(n, member); 3658 if (offset % 8) 3659 return -EINVAL; 3660 offset /= 8; 3661 if (offset % node_type_align) 3662 return -EINVAL; 3663 3664 field->graph_root.btf = (struct btf *)btf; 3665 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3666 field->graph_root.node_offset = offset; 3667 } 3668 if (!n) 3669 return -ENOENT; 3670 return 0; 3671 } 3672 3673 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3674 struct btf_field_info *info) 3675 { 3676 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3677 __alignof__(struct bpf_list_node)); 3678 } 3679 3680 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3681 struct btf_field_info *info) 3682 { 3683 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3684 __alignof__(struct bpf_rb_node)); 3685 } 3686 3687 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3688 u32 field_mask, u32 value_size) 3689 { 3690 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3691 struct btf_record *rec; 3692 u32 next_off = 0; 3693 int ret, i, cnt; 3694 3695 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3696 if (ret < 0) 3697 return ERR_PTR(ret); 3698 if (!ret) 3699 return NULL; 3700 3701 cnt = ret; 3702 /* This needs to be kzalloc to zero out padding and unused fields, see 3703 * comment in btf_record_equal. 3704 */ 3705 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3706 if (!rec) 3707 return ERR_PTR(-ENOMEM); 3708 3709 rec->spin_lock_off = -EINVAL; 3710 rec->timer_off = -EINVAL; 3711 for (i = 0; i < cnt; i++) { 3712 if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) { 3713 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3714 ret = -EFAULT; 3715 goto end; 3716 } 3717 if (info_arr[i].off < next_off) { 3718 ret = -EEXIST; 3719 goto end; 3720 } 3721 next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type); 3722 3723 rec->field_mask |= info_arr[i].type; 3724 rec->fields[i].offset = info_arr[i].off; 3725 rec->fields[i].type = info_arr[i].type; 3726 3727 switch (info_arr[i].type) { 3728 case BPF_SPIN_LOCK: 3729 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3730 /* Cache offset for faster lookup at runtime */ 3731 rec->spin_lock_off = rec->fields[i].offset; 3732 break; 3733 case BPF_TIMER: 3734 WARN_ON_ONCE(rec->timer_off >= 0); 3735 /* Cache offset for faster lookup at runtime */ 3736 rec->timer_off = rec->fields[i].offset; 3737 break; 3738 case BPF_KPTR_UNREF: 3739 case BPF_KPTR_REF: 3740 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3741 if (ret < 0) 3742 goto end; 3743 break; 3744 case BPF_LIST_HEAD: 3745 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3746 if (ret < 0) 3747 goto end; 3748 break; 3749 case BPF_RB_ROOT: 3750 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3751 if (ret < 0) 3752 goto end; 3753 break; 3754 case BPF_LIST_NODE: 3755 case BPF_RB_NODE: 3756 break; 3757 default: 3758 ret = -EFAULT; 3759 goto end; 3760 } 3761 rec->cnt++; 3762 } 3763 3764 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3765 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3766 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3767 ret = -EINVAL; 3768 goto end; 3769 } 3770 3771 /* need collection identity for non-owning refs before allowing this 3772 * 3773 * Consider a node type w/ both list and rb_node fields: 3774 * struct node { 3775 * struct bpf_list_node l; 3776 * struct bpf_rb_node r; 3777 * } 3778 * 3779 * Used like so: 3780 * struct node *n = bpf_obj_new(....); 3781 * bpf_list_push_front(&list_head, &n->l); 3782 * bpf_rbtree_remove(&rb_root, &n->r); 3783 * 3784 * It should not be possible to rbtree_remove the node since it hasn't 3785 * been added to a tree. But push_front converts n to a non-owning 3786 * reference, and rbtree_remove accepts the non-owning reference to 3787 * a type w/ bpf_rb_node field. 3788 */ 3789 if (btf_record_has_field(rec, BPF_LIST_NODE) && 3790 btf_record_has_field(rec, BPF_RB_NODE)) { 3791 ret = -EINVAL; 3792 goto end; 3793 } 3794 3795 return rec; 3796 end: 3797 btf_record_free(rec); 3798 return ERR_PTR(ret); 3799 } 3800 3801 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) 3802 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) 3803 3804 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3805 { 3806 int i; 3807 3808 /* There are three types that signify ownership of some other type: 3809 * kptr_ref, bpf_list_head, bpf_rb_root. 3810 * kptr_ref only supports storing kernel types, which can't store 3811 * references to program allocated local types. 3812 * 3813 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3814 * does not form cycles. 3815 */ 3816 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) 3817 return 0; 3818 for (i = 0; i < rec->cnt; i++) { 3819 struct btf_struct_meta *meta; 3820 u32 btf_id; 3821 3822 if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) 3823 continue; 3824 btf_id = rec->fields[i].graph_root.value_btf_id; 3825 meta = btf_find_struct_meta(btf, btf_id); 3826 if (!meta) 3827 return -EFAULT; 3828 rec->fields[i].graph_root.value_rec = meta->record; 3829 3830 /* We need to set value_rec for all root types, but no need 3831 * to check ownership cycle for a type unless it's also a 3832 * node type. 3833 */ 3834 if (!(rec->field_mask & GRAPH_NODE_MASK)) 3835 continue; 3836 3837 /* We need to ensure ownership acyclicity among all types. The 3838 * proper way to do it would be to topologically sort all BTF 3839 * IDs based on the ownership edges, since there can be multiple 3840 * bpf_{list_head,rb_node} in a type. Instead, we use the 3841 * following resaoning: 3842 * 3843 * - A type can only be owned by another type in user BTF if it 3844 * has a bpf_{list,rb}_node. Let's call these node types. 3845 * - A type can only _own_ another type in user BTF if it has a 3846 * bpf_{list_head,rb_root}. Let's call these root types. 3847 * 3848 * We ensure that if a type is both a root and node, its 3849 * element types cannot be root types. 3850 * 3851 * To ensure acyclicity: 3852 * 3853 * When A is an root type but not a node, its ownership 3854 * chain can be: 3855 * A -> B -> C 3856 * Where: 3857 * - A is an root, e.g. has bpf_rb_root. 3858 * - B is both a root and node, e.g. has bpf_rb_node and 3859 * bpf_list_head. 3860 * - C is only an root, e.g. has bpf_list_node 3861 * 3862 * When A is both a root and node, some other type already 3863 * owns it in the BTF domain, hence it can not own 3864 * another root type through any of the ownership edges. 3865 * A -> B 3866 * Where: 3867 * - A is both an root and node. 3868 * - B is only an node. 3869 */ 3870 if (meta->record->field_mask & GRAPH_ROOT_MASK) 3871 return -ELOOP; 3872 } 3873 return 0; 3874 } 3875 3876 static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv) 3877 { 3878 const u32 a = *(const u32 *)_a; 3879 const u32 b = *(const u32 *)_b; 3880 3881 if (a < b) 3882 return -1; 3883 else if (a > b) 3884 return 1; 3885 return 0; 3886 } 3887 3888 static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv) 3889 { 3890 struct btf_field_offs *foffs = (void *)priv; 3891 u32 *off_base = foffs->field_off; 3892 u32 *a = _a, *b = _b; 3893 u8 *sz_a, *sz_b; 3894 3895 sz_a = foffs->field_sz + (a - off_base); 3896 sz_b = foffs->field_sz + (b - off_base); 3897 3898 swap(*a, *b); 3899 swap(*sz_a, *sz_b); 3900 } 3901 3902 struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec) 3903 { 3904 struct btf_field_offs *foffs; 3905 u32 i, *off; 3906 u8 *sz; 3907 3908 BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz)); 3909 if (IS_ERR_OR_NULL(rec)) 3910 return NULL; 3911 3912 foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN); 3913 if (!foffs) 3914 return ERR_PTR(-ENOMEM); 3915 3916 off = foffs->field_off; 3917 sz = foffs->field_sz; 3918 for (i = 0; i < rec->cnt; i++) { 3919 off[i] = rec->fields[i].offset; 3920 sz[i] = btf_field_type_size(rec->fields[i].type); 3921 } 3922 foffs->cnt = rec->cnt; 3923 3924 if (foffs->cnt == 1) 3925 return foffs; 3926 sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]), 3927 btf_field_offs_cmp, btf_field_offs_swap, foffs); 3928 return foffs; 3929 } 3930 3931 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3932 u32 type_id, void *data, u8 bits_offset, 3933 struct btf_show *show) 3934 { 3935 const struct btf_member *member; 3936 void *safe_data; 3937 u32 i; 3938 3939 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3940 if (!safe_data) 3941 return; 3942 3943 for_each_member(i, t, member) { 3944 const struct btf_type *member_type = btf_type_by_id(btf, 3945 member->type); 3946 const struct btf_kind_operations *ops; 3947 u32 member_offset, bitfield_size; 3948 u32 bytes_offset; 3949 u8 bits8_offset; 3950 3951 btf_show_start_member(show, member); 3952 3953 member_offset = __btf_member_bit_offset(t, member); 3954 bitfield_size = __btf_member_bitfield_size(t, member); 3955 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3956 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3957 if (bitfield_size) { 3958 safe_data = btf_show_start_type(show, member_type, 3959 member->type, 3960 data + bytes_offset); 3961 if (safe_data) 3962 btf_bitfield_show(safe_data, 3963 bits8_offset, 3964 bitfield_size, show); 3965 btf_show_end_type(show); 3966 } else { 3967 ops = btf_type_ops(member_type); 3968 ops->show(btf, member_type, member->type, 3969 data + bytes_offset, bits8_offset, show); 3970 } 3971 3972 btf_show_end_member(show); 3973 } 3974 3975 btf_show_end_struct_type(show); 3976 } 3977 3978 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3979 u32 type_id, void *data, u8 bits_offset, 3980 struct btf_show *show) 3981 { 3982 const struct btf_member *m = show->state.member; 3983 3984 /* 3985 * First check if any members would be shown (are non-zero). 3986 * See comments above "struct btf_show" definition for more 3987 * details on how this works at a high-level. 3988 */ 3989 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3990 if (!show->state.depth_check) { 3991 show->state.depth_check = show->state.depth + 1; 3992 show->state.depth_to_show = 0; 3993 } 3994 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3995 /* Restore saved member data here */ 3996 show->state.member = m; 3997 if (show->state.depth_check != show->state.depth + 1) 3998 return; 3999 show->state.depth_check = 0; 4000 4001 if (show->state.depth_to_show <= show->state.depth) 4002 return; 4003 /* 4004 * Reaching here indicates we have recursed and found 4005 * non-zero child values. 4006 */ 4007 } 4008 4009 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 4010 } 4011 4012 static struct btf_kind_operations struct_ops = { 4013 .check_meta = btf_struct_check_meta, 4014 .resolve = btf_struct_resolve, 4015 .check_member = btf_struct_check_member, 4016 .check_kflag_member = btf_generic_check_kflag_member, 4017 .log_details = btf_struct_log, 4018 .show = btf_struct_show, 4019 }; 4020 4021 static int btf_enum_check_member(struct btf_verifier_env *env, 4022 const struct btf_type *struct_type, 4023 const struct btf_member *member, 4024 const struct btf_type *member_type) 4025 { 4026 u32 struct_bits_off = member->offset; 4027 u32 struct_size, bytes_offset; 4028 4029 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4030 btf_verifier_log_member(env, struct_type, member, 4031 "Member is not byte aligned"); 4032 return -EINVAL; 4033 } 4034 4035 struct_size = struct_type->size; 4036 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4037 if (struct_size - bytes_offset < member_type->size) { 4038 btf_verifier_log_member(env, struct_type, member, 4039 "Member exceeds struct_size"); 4040 return -EINVAL; 4041 } 4042 4043 return 0; 4044 } 4045 4046 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4047 const struct btf_type *struct_type, 4048 const struct btf_member *member, 4049 const struct btf_type *member_type) 4050 { 4051 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4052 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4053 4054 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4055 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4056 if (!nr_bits) { 4057 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4058 btf_verifier_log_member(env, struct_type, member, 4059 "Member is not byte aligned"); 4060 return -EINVAL; 4061 } 4062 4063 nr_bits = int_bitsize; 4064 } else if (nr_bits > int_bitsize) { 4065 btf_verifier_log_member(env, struct_type, member, 4066 "Invalid member bitfield_size"); 4067 return -EINVAL; 4068 } 4069 4070 struct_size = struct_type->size; 4071 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4072 if (struct_size < bytes_end) { 4073 btf_verifier_log_member(env, struct_type, member, 4074 "Member exceeds struct_size"); 4075 return -EINVAL; 4076 } 4077 4078 return 0; 4079 } 4080 4081 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4082 const struct btf_type *t, 4083 u32 meta_left) 4084 { 4085 const struct btf_enum *enums = btf_type_enum(t); 4086 struct btf *btf = env->btf; 4087 const char *fmt_str; 4088 u16 i, nr_enums; 4089 u32 meta_needed; 4090 4091 nr_enums = btf_type_vlen(t); 4092 meta_needed = nr_enums * sizeof(*enums); 4093 4094 if (meta_left < meta_needed) { 4095 btf_verifier_log_basic(env, t, 4096 "meta_left:%u meta_needed:%u", 4097 meta_left, meta_needed); 4098 return -EINVAL; 4099 } 4100 4101 if (t->size > 8 || !is_power_of_2(t->size)) { 4102 btf_verifier_log_type(env, t, "Unexpected size"); 4103 return -EINVAL; 4104 } 4105 4106 /* enum type either no name or a valid one */ 4107 if (t->name_off && 4108 !btf_name_valid_identifier(env->btf, t->name_off)) { 4109 btf_verifier_log_type(env, t, "Invalid name"); 4110 return -EINVAL; 4111 } 4112 4113 btf_verifier_log_type(env, t, NULL); 4114 4115 for (i = 0; i < nr_enums; i++) { 4116 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4117 btf_verifier_log(env, "\tInvalid name_offset:%u", 4118 enums[i].name_off); 4119 return -EINVAL; 4120 } 4121 4122 /* enum member must have a valid name */ 4123 if (!enums[i].name_off || 4124 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4125 btf_verifier_log_type(env, t, "Invalid name"); 4126 return -EINVAL; 4127 } 4128 4129 if (env->log.level == BPF_LOG_KERNEL) 4130 continue; 4131 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4132 btf_verifier_log(env, fmt_str, 4133 __btf_name_by_offset(btf, enums[i].name_off), 4134 enums[i].val); 4135 } 4136 4137 return meta_needed; 4138 } 4139 4140 static void btf_enum_log(struct btf_verifier_env *env, 4141 const struct btf_type *t) 4142 { 4143 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4144 } 4145 4146 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4147 u32 type_id, void *data, u8 bits_offset, 4148 struct btf_show *show) 4149 { 4150 const struct btf_enum *enums = btf_type_enum(t); 4151 u32 i, nr_enums = btf_type_vlen(t); 4152 void *safe_data; 4153 int v; 4154 4155 safe_data = btf_show_start_type(show, t, type_id, data); 4156 if (!safe_data) 4157 return; 4158 4159 v = *(int *)safe_data; 4160 4161 for (i = 0; i < nr_enums; i++) { 4162 if (v != enums[i].val) 4163 continue; 4164 4165 btf_show_type_value(show, "%s", 4166 __btf_name_by_offset(btf, 4167 enums[i].name_off)); 4168 4169 btf_show_end_type(show); 4170 return; 4171 } 4172 4173 if (btf_type_kflag(t)) 4174 btf_show_type_value(show, "%d", v); 4175 else 4176 btf_show_type_value(show, "%u", v); 4177 btf_show_end_type(show); 4178 } 4179 4180 static struct btf_kind_operations enum_ops = { 4181 .check_meta = btf_enum_check_meta, 4182 .resolve = btf_df_resolve, 4183 .check_member = btf_enum_check_member, 4184 .check_kflag_member = btf_enum_check_kflag_member, 4185 .log_details = btf_enum_log, 4186 .show = btf_enum_show, 4187 }; 4188 4189 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4190 const struct btf_type *t, 4191 u32 meta_left) 4192 { 4193 const struct btf_enum64 *enums = btf_type_enum64(t); 4194 struct btf *btf = env->btf; 4195 const char *fmt_str; 4196 u16 i, nr_enums; 4197 u32 meta_needed; 4198 4199 nr_enums = btf_type_vlen(t); 4200 meta_needed = nr_enums * sizeof(*enums); 4201 4202 if (meta_left < meta_needed) { 4203 btf_verifier_log_basic(env, t, 4204 "meta_left:%u meta_needed:%u", 4205 meta_left, meta_needed); 4206 return -EINVAL; 4207 } 4208 4209 if (t->size > 8 || !is_power_of_2(t->size)) { 4210 btf_verifier_log_type(env, t, "Unexpected size"); 4211 return -EINVAL; 4212 } 4213 4214 /* enum type either no name or a valid one */ 4215 if (t->name_off && 4216 !btf_name_valid_identifier(env->btf, t->name_off)) { 4217 btf_verifier_log_type(env, t, "Invalid name"); 4218 return -EINVAL; 4219 } 4220 4221 btf_verifier_log_type(env, t, NULL); 4222 4223 for (i = 0; i < nr_enums; i++) { 4224 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4225 btf_verifier_log(env, "\tInvalid name_offset:%u", 4226 enums[i].name_off); 4227 return -EINVAL; 4228 } 4229 4230 /* enum member must have a valid name */ 4231 if (!enums[i].name_off || 4232 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4233 btf_verifier_log_type(env, t, "Invalid name"); 4234 return -EINVAL; 4235 } 4236 4237 if (env->log.level == BPF_LOG_KERNEL) 4238 continue; 4239 4240 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4241 btf_verifier_log(env, fmt_str, 4242 __btf_name_by_offset(btf, enums[i].name_off), 4243 btf_enum64_value(enums + i)); 4244 } 4245 4246 return meta_needed; 4247 } 4248 4249 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4250 u32 type_id, void *data, u8 bits_offset, 4251 struct btf_show *show) 4252 { 4253 const struct btf_enum64 *enums = btf_type_enum64(t); 4254 u32 i, nr_enums = btf_type_vlen(t); 4255 void *safe_data; 4256 s64 v; 4257 4258 safe_data = btf_show_start_type(show, t, type_id, data); 4259 if (!safe_data) 4260 return; 4261 4262 v = *(u64 *)safe_data; 4263 4264 for (i = 0; i < nr_enums; i++) { 4265 if (v != btf_enum64_value(enums + i)) 4266 continue; 4267 4268 btf_show_type_value(show, "%s", 4269 __btf_name_by_offset(btf, 4270 enums[i].name_off)); 4271 4272 btf_show_end_type(show); 4273 return; 4274 } 4275 4276 if (btf_type_kflag(t)) 4277 btf_show_type_value(show, "%lld", v); 4278 else 4279 btf_show_type_value(show, "%llu", v); 4280 btf_show_end_type(show); 4281 } 4282 4283 static struct btf_kind_operations enum64_ops = { 4284 .check_meta = btf_enum64_check_meta, 4285 .resolve = btf_df_resolve, 4286 .check_member = btf_enum_check_member, 4287 .check_kflag_member = btf_enum_check_kflag_member, 4288 .log_details = btf_enum_log, 4289 .show = btf_enum64_show, 4290 }; 4291 4292 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4293 const struct btf_type *t, 4294 u32 meta_left) 4295 { 4296 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4297 4298 if (meta_left < meta_needed) { 4299 btf_verifier_log_basic(env, t, 4300 "meta_left:%u meta_needed:%u", 4301 meta_left, meta_needed); 4302 return -EINVAL; 4303 } 4304 4305 if (t->name_off) { 4306 btf_verifier_log_type(env, t, "Invalid name"); 4307 return -EINVAL; 4308 } 4309 4310 if (btf_type_kflag(t)) { 4311 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4312 return -EINVAL; 4313 } 4314 4315 btf_verifier_log_type(env, t, NULL); 4316 4317 return meta_needed; 4318 } 4319 4320 static void btf_func_proto_log(struct btf_verifier_env *env, 4321 const struct btf_type *t) 4322 { 4323 const struct btf_param *args = (const struct btf_param *)(t + 1); 4324 u16 nr_args = btf_type_vlen(t), i; 4325 4326 btf_verifier_log(env, "return=%u args=(", t->type); 4327 if (!nr_args) { 4328 btf_verifier_log(env, "void"); 4329 goto done; 4330 } 4331 4332 if (nr_args == 1 && !args[0].type) { 4333 /* Only one vararg */ 4334 btf_verifier_log(env, "vararg"); 4335 goto done; 4336 } 4337 4338 btf_verifier_log(env, "%u %s", args[0].type, 4339 __btf_name_by_offset(env->btf, 4340 args[0].name_off)); 4341 for (i = 1; i < nr_args - 1; i++) 4342 btf_verifier_log(env, ", %u %s", args[i].type, 4343 __btf_name_by_offset(env->btf, 4344 args[i].name_off)); 4345 4346 if (nr_args > 1) { 4347 const struct btf_param *last_arg = &args[nr_args - 1]; 4348 4349 if (last_arg->type) 4350 btf_verifier_log(env, ", %u %s", last_arg->type, 4351 __btf_name_by_offset(env->btf, 4352 last_arg->name_off)); 4353 else 4354 btf_verifier_log(env, ", vararg"); 4355 } 4356 4357 done: 4358 btf_verifier_log(env, ")"); 4359 } 4360 4361 static struct btf_kind_operations func_proto_ops = { 4362 .check_meta = btf_func_proto_check_meta, 4363 .resolve = btf_df_resolve, 4364 /* 4365 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4366 * a struct's member. 4367 * 4368 * It should be a function pointer instead. 4369 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4370 * 4371 * Hence, there is no btf_func_check_member(). 4372 */ 4373 .check_member = btf_df_check_member, 4374 .check_kflag_member = btf_df_check_kflag_member, 4375 .log_details = btf_func_proto_log, 4376 .show = btf_df_show, 4377 }; 4378 4379 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4380 const struct btf_type *t, 4381 u32 meta_left) 4382 { 4383 if (!t->name_off || 4384 !btf_name_valid_identifier(env->btf, t->name_off)) { 4385 btf_verifier_log_type(env, t, "Invalid name"); 4386 return -EINVAL; 4387 } 4388 4389 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4390 btf_verifier_log_type(env, t, "Invalid func linkage"); 4391 return -EINVAL; 4392 } 4393 4394 if (btf_type_kflag(t)) { 4395 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4396 return -EINVAL; 4397 } 4398 4399 btf_verifier_log_type(env, t, NULL); 4400 4401 return 0; 4402 } 4403 4404 static int btf_func_resolve(struct btf_verifier_env *env, 4405 const struct resolve_vertex *v) 4406 { 4407 const struct btf_type *t = v->t; 4408 u32 next_type_id = t->type; 4409 int err; 4410 4411 err = btf_func_check(env, t); 4412 if (err) 4413 return err; 4414 4415 env_stack_pop_resolved(env, next_type_id, 0); 4416 return 0; 4417 } 4418 4419 static struct btf_kind_operations func_ops = { 4420 .check_meta = btf_func_check_meta, 4421 .resolve = btf_func_resolve, 4422 .check_member = btf_df_check_member, 4423 .check_kflag_member = btf_df_check_kflag_member, 4424 .log_details = btf_ref_type_log, 4425 .show = btf_df_show, 4426 }; 4427 4428 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4429 const struct btf_type *t, 4430 u32 meta_left) 4431 { 4432 const struct btf_var *var; 4433 u32 meta_needed = sizeof(*var); 4434 4435 if (meta_left < meta_needed) { 4436 btf_verifier_log_basic(env, t, 4437 "meta_left:%u meta_needed:%u", 4438 meta_left, meta_needed); 4439 return -EINVAL; 4440 } 4441 4442 if (btf_type_vlen(t)) { 4443 btf_verifier_log_type(env, t, "vlen != 0"); 4444 return -EINVAL; 4445 } 4446 4447 if (btf_type_kflag(t)) { 4448 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4449 return -EINVAL; 4450 } 4451 4452 if (!t->name_off || 4453 !__btf_name_valid(env->btf, t->name_off, true)) { 4454 btf_verifier_log_type(env, t, "Invalid name"); 4455 return -EINVAL; 4456 } 4457 4458 /* A var cannot be in type void */ 4459 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4460 btf_verifier_log_type(env, t, "Invalid type_id"); 4461 return -EINVAL; 4462 } 4463 4464 var = btf_type_var(t); 4465 if (var->linkage != BTF_VAR_STATIC && 4466 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4467 btf_verifier_log_type(env, t, "Linkage not supported"); 4468 return -EINVAL; 4469 } 4470 4471 btf_verifier_log_type(env, t, NULL); 4472 4473 return meta_needed; 4474 } 4475 4476 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4477 { 4478 const struct btf_var *var = btf_type_var(t); 4479 4480 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4481 } 4482 4483 static const struct btf_kind_operations var_ops = { 4484 .check_meta = btf_var_check_meta, 4485 .resolve = btf_var_resolve, 4486 .check_member = btf_df_check_member, 4487 .check_kflag_member = btf_df_check_kflag_member, 4488 .log_details = btf_var_log, 4489 .show = btf_var_show, 4490 }; 4491 4492 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4493 const struct btf_type *t, 4494 u32 meta_left) 4495 { 4496 const struct btf_var_secinfo *vsi; 4497 u64 last_vsi_end_off = 0, sum = 0; 4498 u32 i, meta_needed; 4499 4500 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4501 if (meta_left < meta_needed) { 4502 btf_verifier_log_basic(env, t, 4503 "meta_left:%u meta_needed:%u", 4504 meta_left, meta_needed); 4505 return -EINVAL; 4506 } 4507 4508 if (!t->size) { 4509 btf_verifier_log_type(env, t, "size == 0"); 4510 return -EINVAL; 4511 } 4512 4513 if (btf_type_kflag(t)) { 4514 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4515 return -EINVAL; 4516 } 4517 4518 if (!t->name_off || 4519 !btf_name_valid_section(env->btf, t->name_off)) { 4520 btf_verifier_log_type(env, t, "Invalid name"); 4521 return -EINVAL; 4522 } 4523 4524 btf_verifier_log_type(env, t, NULL); 4525 4526 for_each_vsi(i, t, vsi) { 4527 /* A var cannot be in type void */ 4528 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4529 btf_verifier_log_vsi(env, t, vsi, 4530 "Invalid type_id"); 4531 return -EINVAL; 4532 } 4533 4534 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4535 btf_verifier_log_vsi(env, t, vsi, 4536 "Invalid offset"); 4537 return -EINVAL; 4538 } 4539 4540 if (!vsi->size || vsi->size > t->size) { 4541 btf_verifier_log_vsi(env, t, vsi, 4542 "Invalid size"); 4543 return -EINVAL; 4544 } 4545 4546 last_vsi_end_off = vsi->offset + vsi->size; 4547 if (last_vsi_end_off > t->size) { 4548 btf_verifier_log_vsi(env, t, vsi, 4549 "Invalid offset+size"); 4550 return -EINVAL; 4551 } 4552 4553 btf_verifier_log_vsi(env, t, vsi, NULL); 4554 sum += vsi->size; 4555 } 4556 4557 if (t->size < sum) { 4558 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4559 return -EINVAL; 4560 } 4561 4562 return meta_needed; 4563 } 4564 4565 static int btf_datasec_resolve(struct btf_verifier_env *env, 4566 const struct resolve_vertex *v) 4567 { 4568 const struct btf_var_secinfo *vsi; 4569 struct btf *btf = env->btf; 4570 u16 i; 4571 4572 env->resolve_mode = RESOLVE_TBD; 4573 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4574 u32 var_type_id = vsi->type, type_id, type_size = 0; 4575 const struct btf_type *var_type = btf_type_by_id(env->btf, 4576 var_type_id); 4577 if (!var_type || !btf_type_is_var(var_type)) { 4578 btf_verifier_log_vsi(env, v->t, vsi, 4579 "Not a VAR kind member"); 4580 return -EINVAL; 4581 } 4582 4583 if (!env_type_is_resolve_sink(env, var_type) && 4584 !env_type_is_resolved(env, var_type_id)) { 4585 env_stack_set_next_member(env, i + 1); 4586 return env_stack_push(env, var_type, var_type_id); 4587 } 4588 4589 type_id = var_type->type; 4590 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4591 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4592 return -EINVAL; 4593 } 4594 4595 if (vsi->size < type_size) { 4596 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4597 return -EINVAL; 4598 } 4599 } 4600 4601 env_stack_pop_resolved(env, 0, 0); 4602 return 0; 4603 } 4604 4605 static void btf_datasec_log(struct btf_verifier_env *env, 4606 const struct btf_type *t) 4607 { 4608 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4609 } 4610 4611 static void btf_datasec_show(const struct btf *btf, 4612 const struct btf_type *t, u32 type_id, 4613 void *data, u8 bits_offset, 4614 struct btf_show *show) 4615 { 4616 const struct btf_var_secinfo *vsi; 4617 const struct btf_type *var; 4618 u32 i; 4619 4620 if (!btf_show_start_type(show, t, type_id, data)) 4621 return; 4622 4623 btf_show_type_value(show, "section (\"%s\") = {", 4624 __btf_name_by_offset(btf, t->name_off)); 4625 for_each_vsi(i, t, vsi) { 4626 var = btf_type_by_id(btf, vsi->type); 4627 if (i) 4628 btf_show(show, ","); 4629 btf_type_ops(var)->show(btf, var, vsi->type, 4630 data + vsi->offset, bits_offset, show); 4631 } 4632 btf_show_end_type(show); 4633 } 4634 4635 static const struct btf_kind_operations datasec_ops = { 4636 .check_meta = btf_datasec_check_meta, 4637 .resolve = btf_datasec_resolve, 4638 .check_member = btf_df_check_member, 4639 .check_kflag_member = btf_df_check_kflag_member, 4640 .log_details = btf_datasec_log, 4641 .show = btf_datasec_show, 4642 }; 4643 4644 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4645 const struct btf_type *t, 4646 u32 meta_left) 4647 { 4648 if (btf_type_vlen(t)) { 4649 btf_verifier_log_type(env, t, "vlen != 0"); 4650 return -EINVAL; 4651 } 4652 4653 if (btf_type_kflag(t)) { 4654 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4655 return -EINVAL; 4656 } 4657 4658 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4659 t->size != 16) { 4660 btf_verifier_log_type(env, t, "Invalid type_size"); 4661 return -EINVAL; 4662 } 4663 4664 btf_verifier_log_type(env, t, NULL); 4665 4666 return 0; 4667 } 4668 4669 static int btf_float_check_member(struct btf_verifier_env *env, 4670 const struct btf_type *struct_type, 4671 const struct btf_member *member, 4672 const struct btf_type *member_type) 4673 { 4674 u64 start_offset_bytes; 4675 u64 end_offset_bytes; 4676 u64 misalign_bits; 4677 u64 align_bytes; 4678 u64 align_bits; 4679 4680 /* Different architectures have different alignment requirements, so 4681 * here we check only for the reasonable minimum. This way we ensure 4682 * that types after CO-RE can pass the kernel BTF verifier. 4683 */ 4684 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4685 align_bits = align_bytes * BITS_PER_BYTE; 4686 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4687 if (misalign_bits) { 4688 btf_verifier_log_member(env, struct_type, member, 4689 "Member is not properly aligned"); 4690 return -EINVAL; 4691 } 4692 4693 start_offset_bytes = member->offset / BITS_PER_BYTE; 4694 end_offset_bytes = start_offset_bytes + member_type->size; 4695 if (end_offset_bytes > struct_type->size) { 4696 btf_verifier_log_member(env, struct_type, member, 4697 "Member exceeds struct_size"); 4698 return -EINVAL; 4699 } 4700 4701 return 0; 4702 } 4703 4704 static void btf_float_log(struct btf_verifier_env *env, 4705 const struct btf_type *t) 4706 { 4707 btf_verifier_log(env, "size=%u", t->size); 4708 } 4709 4710 static const struct btf_kind_operations float_ops = { 4711 .check_meta = btf_float_check_meta, 4712 .resolve = btf_df_resolve, 4713 .check_member = btf_float_check_member, 4714 .check_kflag_member = btf_generic_check_kflag_member, 4715 .log_details = btf_float_log, 4716 .show = btf_df_show, 4717 }; 4718 4719 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4720 const struct btf_type *t, 4721 u32 meta_left) 4722 { 4723 const struct btf_decl_tag *tag; 4724 u32 meta_needed = sizeof(*tag); 4725 s32 component_idx; 4726 const char *value; 4727 4728 if (meta_left < meta_needed) { 4729 btf_verifier_log_basic(env, t, 4730 "meta_left:%u meta_needed:%u", 4731 meta_left, meta_needed); 4732 return -EINVAL; 4733 } 4734 4735 value = btf_name_by_offset(env->btf, t->name_off); 4736 if (!value || !value[0]) { 4737 btf_verifier_log_type(env, t, "Invalid value"); 4738 return -EINVAL; 4739 } 4740 4741 if (btf_type_vlen(t)) { 4742 btf_verifier_log_type(env, t, "vlen != 0"); 4743 return -EINVAL; 4744 } 4745 4746 if (btf_type_kflag(t)) { 4747 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4748 return -EINVAL; 4749 } 4750 4751 component_idx = btf_type_decl_tag(t)->component_idx; 4752 if (component_idx < -1) { 4753 btf_verifier_log_type(env, t, "Invalid component_idx"); 4754 return -EINVAL; 4755 } 4756 4757 btf_verifier_log_type(env, t, NULL); 4758 4759 return meta_needed; 4760 } 4761 4762 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4763 const struct resolve_vertex *v) 4764 { 4765 const struct btf_type *next_type; 4766 const struct btf_type *t = v->t; 4767 u32 next_type_id = t->type; 4768 struct btf *btf = env->btf; 4769 s32 component_idx; 4770 u32 vlen; 4771 4772 next_type = btf_type_by_id(btf, next_type_id); 4773 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4774 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4775 return -EINVAL; 4776 } 4777 4778 if (!env_type_is_resolve_sink(env, next_type) && 4779 !env_type_is_resolved(env, next_type_id)) 4780 return env_stack_push(env, next_type, next_type_id); 4781 4782 component_idx = btf_type_decl_tag(t)->component_idx; 4783 if (component_idx != -1) { 4784 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4785 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4786 return -EINVAL; 4787 } 4788 4789 if (btf_type_is_struct(next_type)) { 4790 vlen = btf_type_vlen(next_type); 4791 } else { 4792 /* next_type should be a function */ 4793 next_type = btf_type_by_id(btf, next_type->type); 4794 vlen = btf_type_vlen(next_type); 4795 } 4796 4797 if ((u32)component_idx >= vlen) { 4798 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4799 return -EINVAL; 4800 } 4801 } 4802 4803 env_stack_pop_resolved(env, next_type_id, 0); 4804 4805 return 0; 4806 } 4807 4808 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4809 { 4810 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4811 btf_type_decl_tag(t)->component_idx); 4812 } 4813 4814 static const struct btf_kind_operations decl_tag_ops = { 4815 .check_meta = btf_decl_tag_check_meta, 4816 .resolve = btf_decl_tag_resolve, 4817 .check_member = btf_df_check_member, 4818 .check_kflag_member = btf_df_check_kflag_member, 4819 .log_details = btf_decl_tag_log, 4820 .show = btf_df_show, 4821 }; 4822 4823 static int btf_func_proto_check(struct btf_verifier_env *env, 4824 const struct btf_type *t) 4825 { 4826 const struct btf_type *ret_type; 4827 const struct btf_param *args; 4828 const struct btf *btf; 4829 u16 nr_args, i; 4830 int err; 4831 4832 btf = env->btf; 4833 args = (const struct btf_param *)(t + 1); 4834 nr_args = btf_type_vlen(t); 4835 4836 /* Check func return type which could be "void" (t->type == 0) */ 4837 if (t->type) { 4838 u32 ret_type_id = t->type; 4839 4840 ret_type = btf_type_by_id(btf, ret_type_id); 4841 if (!ret_type) { 4842 btf_verifier_log_type(env, t, "Invalid return type"); 4843 return -EINVAL; 4844 } 4845 4846 if (btf_type_is_resolve_source_only(ret_type)) { 4847 btf_verifier_log_type(env, t, "Invalid return type"); 4848 return -EINVAL; 4849 } 4850 4851 if (btf_type_needs_resolve(ret_type) && 4852 !env_type_is_resolved(env, ret_type_id)) { 4853 err = btf_resolve(env, ret_type, ret_type_id); 4854 if (err) 4855 return err; 4856 } 4857 4858 /* Ensure the return type is a type that has a size */ 4859 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4860 btf_verifier_log_type(env, t, "Invalid return type"); 4861 return -EINVAL; 4862 } 4863 } 4864 4865 if (!nr_args) 4866 return 0; 4867 4868 /* Last func arg type_id could be 0 if it is a vararg */ 4869 if (!args[nr_args - 1].type) { 4870 if (args[nr_args - 1].name_off) { 4871 btf_verifier_log_type(env, t, "Invalid arg#%u", 4872 nr_args); 4873 return -EINVAL; 4874 } 4875 nr_args--; 4876 } 4877 4878 for (i = 0; i < nr_args; i++) { 4879 const struct btf_type *arg_type; 4880 u32 arg_type_id; 4881 4882 arg_type_id = args[i].type; 4883 arg_type = btf_type_by_id(btf, arg_type_id); 4884 if (!arg_type) { 4885 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4886 return -EINVAL; 4887 } 4888 4889 if (btf_type_is_resolve_source_only(arg_type)) { 4890 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4891 return -EINVAL; 4892 } 4893 4894 if (args[i].name_off && 4895 (!btf_name_offset_valid(btf, args[i].name_off) || 4896 !btf_name_valid_identifier(btf, args[i].name_off))) { 4897 btf_verifier_log_type(env, t, 4898 "Invalid arg#%u", i + 1); 4899 return -EINVAL; 4900 } 4901 4902 if (btf_type_needs_resolve(arg_type) && 4903 !env_type_is_resolved(env, arg_type_id)) { 4904 err = btf_resolve(env, arg_type, arg_type_id); 4905 if (err) 4906 return err; 4907 } 4908 4909 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4910 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4911 return -EINVAL; 4912 } 4913 } 4914 4915 return 0; 4916 } 4917 4918 static int btf_func_check(struct btf_verifier_env *env, 4919 const struct btf_type *t) 4920 { 4921 const struct btf_type *proto_type; 4922 const struct btf_param *args; 4923 const struct btf *btf; 4924 u16 nr_args, i; 4925 4926 btf = env->btf; 4927 proto_type = btf_type_by_id(btf, t->type); 4928 4929 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4930 btf_verifier_log_type(env, t, "Invalid type_id"); 4931 return -EINVAL; 4932 } 4933 4934 args = (const struct btf_param *)(proto_type + 1); 4935 nr_args = btf_type_vlen(proto_type); 4936 for (i = 0; i < nr_args; i++) { 4937 if (!args[i].name_off && args[i].type) { 4938 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4939 return -EINVAL; 4940 } 4941 } 4942 4943 return 0; 4944 } 4945 4946 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4947 [BTF_KIND_INT] = &int_ops, 4948 [BTF_KIND_PTR] = &ptr_ops, 4949 [BTF_KIND_ARRAY] = &array_ops, 4950 [BTF_KIND_STRUCT] = &struct_ops, 4951 [BTF_KIND_UNION] = &struct_ops, 4952 [BTF_KIND_ENUM] = &enum_ops, 4953 [BTF_KIND_FWD] = &fwd_ops, 4954 [BTF_KIND_TYPEDEF] = &modifier_ops, 4955 [BTF_KIND_VOLATILE] = &modifier_ops, 4956 [BTF_KIND_CONST] = &modifier_ops, 4957 [BTF_KIND_RESTRICT] = &modifier_ops, 4958 [BTF_KIND_FUNC] = &func_ops, 4959 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4960 [BTF_KIND_VAR] = &var_ops, 4961 [BTF_KIND_DATASEC] = &datasec_ops, 4962 [BTF_KIND_FLOAT] = &float_ops, 4963 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4964 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4965 [BTF_KIND_ENUM64] = &enum64_ops, 4966 }; 4967 4968 static s32 btf_check_meta(struct btf_verifier_env *env, 4969 const struct btf_type *t, 4970 u32 meta_left) 4971 { 4972 u32 saved_meta_left = meta_left; 4973 s32 var_meta_size; 4974 4975 if (meta_left < sizeof(*t)) { 4976 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4977 env->log_type_id, meta_left, sizeof(*t)); 4978 return -EINVAL; 4979 } 4980 meta_left -= sizeof(*t); 4981 4982 if (t->info & ~BTF_INFO_MASK) { 4983 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4984 env->log_type_id, t->info); 4985 return -EINVAL; 4986 } 4987 4988 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4989 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4990 btf_verifier_log(env, "[%u] Invalid kind:%u", 4991 env->log_type_id, BTF_INFO_KIND(t->info)); 4992 return -EINVAL; 4993 } 4994 4995 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4996 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4997 env->log_type_id, t->name_off); 4998 return -EINVAL; 4999 } 5000 5001 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 5002 if (var_meta_size < 0) 5003 return var_meta_size; 5004 5005 meta_left -= var_meta_size; 5006 5007 return saved_meta_left - meta_left; 5008 } 5009 5010 static int btf_check_all_metas(struct btf_verifier_env *env) 5011 { 5012 struct btf *btf = env->btf; 5013 struct btf_header *hdr; 5014 void *cur, *end; 5015 5016 hdr = &btf->hdr; 5017 cur = btf->nohdr_data + hdr->type_off; 5018 end = cur + hdr->type_len; 5019 5020 env->log_type_id = btf->base_btf ? btf->start_id : 1; 5021 while (cur < end) { 5022 struct btf_type *t = cur; 5023 s32 meta_size; 5024 5025 meta_size = btf_check_meta(env, t, end - cur); 5026 if (meta_size < 0) 5027 return meta_size; 5028 5029 btf_add_type(env, t); 5030 cur += meta_size; 5031 env->log_type_id++; 5032 } 5033 5034 return 0; 5035 } 5036 5037 static bool btf_resolve_valid(struct btf_verifier_env *env, 5038 const struct btf_type *t, 5039 u32 type_id) 5040 { 5041 struct btf *btf = env->btf; 5042 5043 if (!env_type_is_resolved(env, type_id)) 5044 return false; 5045 5046 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5047 return !btf_resolved_type_id(btf, type_id) && 5048 !btf_resolved_type_size(btf, type_id); 5049 5050 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5051 return btf_resolved_type_id(btf, type_id) && 5052 !btf_resolved_type_size(btf, type_id); 5053 5054 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5055 btf_type_is_var(t)) { 5056 t = btf_type_id_resolve(btf, &type_id); 5057 return t && 5058 !btf_type_is_modifier(t) && 5059 !btf_type_is_var(t) && 5060 !btf_type_is_datasec(t); 5061 } 5062 5063 if (btf_type_is_array(t)) { 5064 const struct btf_array *array = btf_type_array(t); 5065 const struct btf_type *elem_type; 5066 u32 elem_type_id = array->type; 5067 u32 elem_size; 5068 5069 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5070 return elem_type && !btf_type_is_modifier(elem_type) && 5071 (array->nelems * elem_size == 5072 btf_resolved_type_size(btf, type_id)); 5073 } 5074 5075 return false; 5076 } 5077 5078 static int btf_resolve(struct btf_verifier_env *env, 5079 const struct btf_type *t, u32 type_id) 5080 { 5081 u32 save_log_type_id = env->log_type_id; 5082 const struct resolve_vertex *v; 5083 int err = 0; 5084 5085 env->resolve_mode = RESOLVE_TBD; 5086 env_stack_push(env, t, type_id); 5087 while (!err && (v = env_stack_peak(env))) { 5088 env->log_type_id = v->type_id; 5089 err = btf_type_ops(v->t)->resolve(env, v); 5090 } 5091 5092 env->log_type_id = type_id; 5093 if (err == -E2BIG) { 5094 btf_verifier_log_type(env, t, 5095 "Exceeded max resolving depth:%u", 5096 MAX_RESOLVE_DEPTH); 5097 } else if (err == -EEXIST) { 5098 btf_verifier_log_type(env, t, "Loop detected"); 5099 } 5100 5101 /* Final sanity check */ 5102 if (!err && !btf_resolve_valid(env, t, type_id)) { 5103 btf_verifier_log_type(env, t, "Invalid resolve state"); 5104 err = -EINVAL; 5105 } 5106 5107 env->log_type_id = save_log_type_id; 5108 return err; 5109 } 5110 5111 static int btf_check_all_types(struct btf_verifier_env *env) 5112 { 5113 struct btf *btf = env->btf; 5114 const struct btf_type *t; 5115 u32 type_id, i; 5116 int err; 5117 5118 err = env_resolve_init(env); 5119 if (err) 5120 return err; 5121 5122 env->phase++; 5123 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5124 type_id = btf->start_id + i; 5125 t = btf_type_by_id(btf, type_id); 5126 5127 env->log_type_id = type_id; 5128 if (btf_type_needs_resolve(t) && 5129 !env_type_is_resolved(env, type_id)) { 5130 err = btf_resolve(env, t, type_id); 5131 if (err) 5132 return err; 5133 } 5134 5135 if (btf_type_is_func_proto(t)) { 5136 err = btf_func_proto_check(env, t); 5137 if (err) 5138 return err; 5139 } 5140 } 5141 5142 return 0; 5143 } 5144 5145 static int btf_parse_type_sec(struct btf_verifier_env *env) 5146 { 5147 const struct btf_header *hdr = &env->btf->hdr; 5148 int err; 5149 5150 /* Type section must align to 4 bytes */ 5151 if (hdr->type_off & (sizeof(u32) - 1)) { 5152 btf_verifier_log(env, "Unaligned type_off"); 5153 return -EINVAL; 5154 } 5155 5156 if (!env->btf->base_btf && !hdr->type_len) { 5157 btf_verifier_log(env, "No type found"); 5158 return -EINVAL; 5159 } 5160 5161 err = btf_check_all_metas(env); 5162 if (err) 5163 return err; 5164 5165 return btf_check_all_types(env); 5166 } 5167 5168 static int btf_parse_str_sec(struct btf_verifier_env *env) 5169 { 5170 const struct btf_header *hdr; 5171 struct btf *btf = env->btf; 5172 const char *start, *end; 5173 5174 hdr = &btf->hdr; 5175 start = btf->nohdr_data + hdr->str_off; 5176 end = start + hdr->str_len; 5177 5178 if (end != btf->data + btf->data_size) { 5179 btf_verifier_log(env, "String section is not at the end"); 5180 return -EINVAL; 5181 } 5182 5183 btf->strings = start; 5184 5185 if (btf->base_btf && !hdr->str_len) 5186 return 0; 5187 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5188 btf_verifier_log(env, "Invalid string section"); 5189 return -EINVAL; 5190 } 5191 if (!btf->base_btf && start[0]) { 5192 btf_verifier_log(env, "Invalid string section"); 5193 return -EINVAL; 5194 } 5195 5196 return 0; 5197 } 5198 5199 static const size_t btf_sec_info_offset[] = { 5200 offsetof(struct btf_header, type_off), 5201 offsetof(struct btf_header, str_off), 5202 }; 5203 5204 static int btf_sec_info_cmp(const void *a, const void *b) 5205 { 5206 const struct btf_sec_info *x = a; 5207 const struct btf_sec_info *y = b; 5208 5209 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5210 } 5211 5212 static int btf_check_sec_info(struct btf_verifier_env *env, 5213 u32 btf_data_size) 5214 { 5215 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5216 u32 total, expected_total, i; 5217 const struct btf_header *hdr; 5218 const struct btf *btf; 5219 5220 btf = env->btf; 5221 hdr = &btf->hdr; 5222 5223 /* Populate the secs from hdr */ 5224 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5225 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5226 btf_sec_info_offset[i]); 5227 5228 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5229 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5230 5231 /* Check for gaps and overlap among sections */ 5232 total = 0; 5233 expected_total = btf_data_size - hdr->hdr_len; 5234 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5235 if (expected_total < secs[i].off) { 5236 btf_verifier_log(env, "Invalid section offset"); 5237 return -EINVAL; 5238 } 5239 if (total < secs[i].off) { 5240 /* gap */ 5241 btf_verifier_log(env, "Unsupported section found"); 5242 return -EINVAL; 5243 } 5244 if (total > secs[i].off) { 5245 btf_verifier_log(env, "Section overlap found"); 5246 return -EINVAL; 5247 } 5248 if (expected_total - total < secs[i].len) { 5249 btf_verifier_log(env, 5250 "Total section length too long"); 5251 return -EINVAL; 5252 } 5253 total += secs[i].len; 5254 } 5255 5256 /* There is data other than hdr and known sections */ 5257 if (expected_total != total) { 5258 btf_verifier_log(env, "Unsupported section found"); 5259 return -EINVAL; 5260 } 5261 5262 return 0; 5263 } 5264 5265 static int btf_parse_hdr(struct btf_verifier_env *env) 5266 { 5267 u32 hdr_len, hdr_copy, btf_data_size; 5268 const struct btf_header *hdr; 5269 struct btf *btf; 5270 5271 btf = env->btf; 5272 btf_data_size = btf->data_size; 5273 5274 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5275 btf_verifier_log(env, "hdr_len not found"); 5276 return -EINVAL; 5277 } 5278 5279 hdr = btf->data; 5280 hdr_len = hdr->hdr_len; 5281 if (btf_data_size < hdr_len) { 5282 btf_verifier_log(env, "btf_header not found"); 5283 return -EINVAL; 5284 } 5285 5286 /* Ensure the unsupported header fields are zero */ 5287 if (hdr_len > sizeof(btf->hdr)) { 5288 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5289 u8 *end = btf->data + hdr_len; 5290 5291 for (; expected_zero < end; expected_zero++) { 5292 if (*expected_zero) { 5293 btf_verifier_log(env, "Unsupported btf_header"); 5294 return -E2BIG; 5295 } 5296 } 5297 } 5298 5299 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5300 memcpy(&btf->hdr, btf->data, hdr_copy); 5301 5302 hdr = &btf->hdr; 5303 5304 btf_verifier_log_hdr(env, btf_data_size); 5305 5306 if (hdr->magic != BTF_MAGIC) { 5307 btf_verifier_log(env, "Invalid magic"); 5308 return -EINVAL; 5309 } 5310 5311 if (hdr->version != BTF_VERSION) { 5312 btf_verifier_log(env, "Unsupported version"); 5313 return -ENOTSUPP; 5314 } 5315 5316 if (hdr->flags) { 5317 btf_verifier_log(env, "Unsupported flags"); 5318 return -ENOTSUPP; 5319 } 5320 5321 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5322 btf_verifier_log(env, "No data"); 5323 return -EINVAL; 5324 } 5325 5326 return btf_check_sec_info(env, btf_data_size); 5327 } 5328 5329 static const char *alloc_obj_fields[] = { 5330 "bpf_spin_lock", 5331 "bpf_list_head", 5332 "bpf_list_node", 5333 "bpf_rb_root", 5334 "bpf_rb_node", 5335 }; 5336 5337 static struct btf_struct_metas * 5338 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5339 { 5340 union { 5341 struct btf_id_set set; 5342 struct { 5343 u32 _cnt; 5344 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5345 } _arr; 5346 } aof; 5347 struct btf_struct_metas *tab = NULL; 5348 int i, n, id, ret; 5349 5350 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5351 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5352 5353 memset(&aof, 0, sizeof(aof)); 5354 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5355 /* Try to find whether this special type exists in user BTF, and 5356 * if so remember its ID so we can easily find it among members 5357 * of structs that we iterate in the next loop. 5358 */ 5359 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5360 if (id < 0) 5361 continue; 5362 aof.set.ids[aof.set.cnt++] = id; 5363 } 5364 5365 if (!aof.set.cnt) 5366 return NULL; 5367 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5368 5369 n = btf_nr_types(btf); 5370 for (i = 1; i < n; i++) { 5371 struct btf_struct_metas *new_tab; 5372 const struct btf_member *member; 5373 struct btf_field_offs *foffs; 5374 struct btf_struct_meta *type; 5375 struct btf_record *record; 5376 const struct btf_type *t; 5377 int j, tab_cnt; 5378 5379 t = btf_type_by_id(btf, i); 5380 if (!t) { 5381 ret = -EINVAL; 5382 goto free; 5383 } 5384 if (!__btf_type_is_struct(t)) 5385 continue; 5386 5387 cond_resched(); 5388 5389 for_each_member(j, t, member) { 5390 if (btf_id_set_contains(&aof.set, member->type)) 5391 goto parse; 5392 } 5393 continue; 5394 parse: 5395 tab_cnt = tab ? tab->cnt : 0; 5396 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5397 GFP_KERNEL | __GFP_NOWARN); 5398 if (!new_tab) { 5399 ret = -ENOMEM; 5400 goto free; 5401 } 5402 if (!tab) 5403 new_tab->cnt = 0; 5404 tab = new_tab; 5405 5406 type = &tab->types[tab->cnt]; 5407 type->btf_id = i; 5408 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5409 BPF_RB_ROOT | BPF_RB_NODE, t->size); 5410 /* The record cannot be unset, treat it as an error if so */ 5411 if (IS_ERR_OR_NULL(record)) { 5412 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5413 goto free; 5414 } 5415 foffs = btf_parse_field_offs(record); 5416 /* We need the field_offs to be valid for a valid record, 5417 * either both should be set or both should be unset. 5418 */ 5419 if (IS_ERR_OR_NULL(foffs)) { 5420 btf_record_free(record); 5421 ret = -EFAULT; 5422 goto free; 5423 } 5424 type->record = record; 5425 type->field_offs = foffs; 5426 tab->cnt++; 5427 } 5428 return tab; 5429 free: 5430 btf_struct_metas_free(tab); 5431 return ERR_PTR(ret); 5432 } 5433 5434 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5435 { 5436 struct btf_struct_metas *tab; 5437 5438 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5439 tab = btf->struct_meta_tab; 5440 if (!tab) 5441 return NULL; 5442 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5443 } 5444 5445 static int btf_check_type_tags(struct btf_verifier_env *env, 5446 struct btf *btf, int start_id) 5447 { 5448 int i, n, good_id = start_id - 1; 5449 bool in_tags; 5450 5451 n = btf_nr_types(btf); 5452 for (i = start_id; i < n; i++) { 5453 const struct btf_type *t; 5454 int chain_limit = 32; 5455 u32 cur_id = i; 5456 5457 t = btf_type_by_id(btf, i); 5458 if (!t) 5459 return -EINVAL; 5460 if (!btf_type_is_modifier(t)) 5461 continue; 5462 5463 cond_resched(); 5464 5465 in_tags = btf_type_is_type_tag(t); 5466 while (btf_type_is_modifier(t)) { 5467 if (!chain_limit--) { 5468 btf_verifier_log(env, "Max chain length or cycle detected"); 5469 return -ELOOP; 5470 } 5471 if (btf_type_is_type_tag(t)) { 5472 if (!in_tags) { 5473 btf_verifier_log(env, "Type tags don't precede modifiers"); 5474 return -EINVAL; 5475 } 5476 } else if (in_tags) { 5477 in_tags = false; 5478 } 5479 if (cur_id <= good_id) 5480 break; 5481 /* Move to next type */ 5482 cur_id = t->type; 5483 t = btf_type_by_id(btf, cur_id); 5484 if (!t) 5485 return -EINVAL; 5486 } 5487 good_id = i; 5488 } 5489 return 0; 5490 } 5491 5492 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size, 5493 u32 log_level, char __user *log_ubuf, u32 log_size) 5494 { 5495 struct btf_struct_metas *struct_meta_tab; 5496 struct btf_verifier_env *env = NULL; 5497 struct bpf_verifier_log *log; 5498 struct btf *btf = NULL; 5499 u8 *data; 5500 int err; 5501 5502 if (btf_data_size > BTF_MAX_SIZE) 5503 return ERR_PTR(-E2BIG); 5504 5505 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5506 if (!env) 5507 return ERR_PTR(-ENOMEM); 5508 5509 log = &env->log; 5510 if (log_level || log_ubuf || log_size) { 5511 /* user requested verbose verifier output 5512 * and supplied buffer to store the verification trace 5513 */ 5514 log->level = log_level; 5515 log->ubuf = log_ubuf; 5516 log->len_total = log_size; 5517 5518 /* log attributes have to be sane */ 5519 if (!bpf_verifier_log_attr_valid(log)) { 5520 err = -EINVAL; 5521 goto errout; 5522 } 5523 } 5524 5525 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5526 if (!btf) { 5527 err = -ENOMEM; 5528 goto errout; 5529 } 5530 env->btf = btf; 5531 5532 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 5533 if (!data) { 5534 err = -ENOMEM; 5535 goto errout; 5536 } 5537 5538 btf->data = data; 5539 btf->data_size = btf_data_size; 5540 5541 if (copy_from_bpfptr(data, btf_data, btf_data_size)) { 5542 err = -EFAULT; 5543 goto errout; 5544 } 5545 5546 err = btf_parse_hdr(env); 5547 if (err) 5548 goto errout; 5549 5550 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5551 5552 err = btf_parse_str_sec(env); 5553 if (err) 5554 goto errout; 5555 5556 err = btf_parse_type_sec(env); 5557 if (err) 5558 goto errout; 5559 5560 err = btf_check_type_tags(env, btf, 1); 5561 if (err) 5562 goto errout; 5563 5564 struct_meta_tab = btf_parse_struct_metas(log, btf); 5565 if (IS_ERR(struct_meta_tab)) { 5566 err = PTR_ERR(struct_meta_tab); 5567 goto errout; 5568 } 5569 btf->struct_meta_tab = struct_meta_tab; 5570 5571 if (struct_meta_tab) { 5572 int i; 5573 5574 for (i = 0; i < struct_meta_tab->cnt; i++) { 5575 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5576 if (err < 0) 5577 goto errout_meta; 5578 } 5579 } 5580 5581 if (log->level && bpf_verifier_log_full(log)) { 5582 err = -ENOSPC; 5583 goto errout_meta; 5584 } 5585 5586 btf_verifier_env_free(env); 5587 refcount_set(&btf->refcnt, 1); 5588 return btf; 5589 5590 errout_meta: 5591 btf_free_struct_meta_tab(btf); 5592 errout: 5593 btf_verifier_env_free(env); 5594 if (btf) 5595 btf_free(btf); 5596 return ERR_PTR(err); 5597 } 5598 5599 extern char __weak __start_BTF[]; 5600 extern char __weak __stop_BTF[]; 5601 extern struct btf *btf_vmlinux; 5602 5603 #define BPF_MAP_TYPE(_id, _ops) 5604 #define BPF_LINK_TYPE(_id, _name) 5605 static union { 5606 struct bpf_ctx_convert { 5607 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5608 prog_ctx_type _id##_prog; \ 5609 kern_ctx_type _id##_kern; 5610 #include <linux/bpf_types.h> 5611 #undef BPF_PROG_TYPE 5612 } *__t; 5613 /* 't' is written once under lock. Read many times. */ 5614 const struct btf_type *t; 5615 } bpf_ctx_convert; 5616 enum { 5617 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5618 __ctx_convert##_id, 5619 #include <linux/bpf_types.h> 5620 #undef BPF_PROG_TYPE 5621 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5622 }; 5623 static u8 bpf_ctx_convert_map[] = { 5624 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5625 [_id] = __ctx_convert##_id, 5626 #include <linux/bpf_types.h> 5627 #undef BPF_PROG_TYPE 5628 0, /* avoid empty array */ 5629 }; 5630 #undef BPF_MAP_TYPE 5631 #undef BPF_LINK_TYPE 5632 5633 const struct btf_member * 5634 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5635 const struct btf_type *t, enum bpf_prog_type prog_type, 5636 int arg) 5637 { 5638 const struct btf_type *conv_struct; 5639 const struct btf_type *ctx_struct; 5640 const struct btf_member *ctx_type; 5641 const char *tname, *ctx_tname; 5642 5643 conv_struct = bpf_ctx_convert.t; 5644 if (!conv_struct) { 5645 bpf_log(log, "btf_vmlinux is malformed\n"); 5646 return NULL; 5647 } 5648 t = btf_type_by_id(btf, t->type); 5649 while (btf_type_is_modifier(t)) 5650 t = btf_type_by_id(btf, t->type); 5651 if (!btf_type_is_struct(t)) { 5652 /* Only pointer to struct is supported for now. 5653 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5654 * is not supported yet. 5655 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5656 */ 5657 return NULL; 5658 } 5659 tname = btf_name_by_offset(btf, t->name_off); 5660 if (!tname) { 5661 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5662 return NULL; 5663 } 5664 /* prog_type is valid bpf program type. No need for bounds check. */ 5665 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5666 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5667 * Like 'struct __sk_buff' 5668 */ 5669 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5670 if (!ctx_struct) 5671 /* should not happen */ 5672 return NULL; 5673 again: 5674 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5675 if (!ctx_tname) { 5676 /* should not happen */ 5677 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5678 return NULL; 5679 } 5680 /* only compare that prog's ctx type name is the same as 5681 * kernel expects. No need to compare field by field. 5682 * It's ok for bpf prog to do: 5683 * struct __sk_buff {}; 5684 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5685 * { // no fields of skb are ever used } 5686 */ 5687 if (strcmp(ctx_tname, tname)) { 5688 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5689 * underlying struct and check name again 5690 */ 5691 if (!btf_type_is_modifier(ctx_struct)) 5692 return NULL; 5693 while (btf_type_is_modifier(ctx_struct)) 5694 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); 5695 goto again; 5696 } 5697 return ctx_type; 5698 } 5699 5700 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5701 struct btf *btf, 5702 const struct btf_type *t, 5703 enum bpf_prog_type prog_type, 5704 int arg) 5705 { 5706 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5707 5708 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5709 if (!prog_ctx_type) 5710 return -ENOENT; 5711 kern_ctx_type = prog_ctx_type + 1; 5712 return kern_ctx_type->type; 5713 } 5714 5715 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5716 { 5717 const struct btf_member *kctx_member; 5718 const struct btf_type *conv_struct; 5719 const struct btf_type *kctx_type; 5720 u32 kctx_type_id; 5721 5722 conv_struct = bpf_ctx_convert.t; 5723 /* get member for kernel ctx type */ 5724 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5725 kctx_type_id = kctx_member->type; 5726 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5727 if (!btf_type_is_struct(kctx_type)) { 5728 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5729 return -EINVAL; 5730 } 5731 5732 return kctx_type_id; 5733 } 5734 5735 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5736 BTF_ID(struct, bpf_ctx_convert) 5737 5738 struct btf *btf_parse_vmlinux(void) 5739 { 5740 struct btf_verifier_env *env = NULL; 5741 struct bpf_verifier_log *log; 5742 struct btf *btf = NULL; 5743 int err; 5744 5745 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5746 if (!env) 5747 return ERR_PTR(-ENOMEM); 5748 5749 log = &env->log; 5750 log->level = BPF_LOG_KERNEL; 5751 5752 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5753 if (!btf) { 5754 err = -ENOMEM; 5755 goto errout; 5756 } 5757 env->btf = btf; 5758 5759 btf->data = __start_BTF; 5760 btf->data_size = __stop_BTF - __start_BTF; 5761 btf->kernel_btf = true; 5762 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5763 5764 err = btf_parse_hdr(env); 5765 if (err) 5766 goto errout; 5767 5768 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5769 5770 err = btf_parse_str_sec(env); 5771 if (err) 5772 goto errout; 5773 5774 err = btf_check_all_metas(env); 5775 if (err) 5776 goto errout; 5777 5778 err = btf_check_type_tags(env, btf, 1); 5779 if (err) 5780 goto errout; 5781 5782 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5783 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5784 5785 bpf_struct_ops_init(btf, log); 5786 5787 refcount_set(&btf->refcnt, 1); 5788 5789 err = btf_alloc_id(btf); 5790 if (err) 5791 goto errout; 5792 5793 btf_verifier_env_free(env); 5794 return btf; 5795 5796 errout: 5797 btf_verifier_env_free(env); 5798 if (btf) { 5799 kvfree(btf->types); 5800 kfree(btf); 5801 } 5802 return ERR_PTR(err); 5803 } 5804 5805 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5806 5807 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5808 { 5809 struct btf_verifier_env *env = NULL; 5810 struct bpf_verifier_log *log; 5811 struct btf *btf = NULL, *base_btf; 5812 int err; 5813 5814 base_btf = bpf_get_btf_vmlinux(); 5815 if (IS_ERR(base_btf)) 5816 return base_btf; 5817 if (!base_btf) 5818 return ERR_PTR(-EINVAL); 5819 5820 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5821 if (!env) 5822 return ERR_PTR(-ENOMEM); 5823 5824 log = &env->log; 5825 log->level = BPF_LOG_KERNEL; 5826 5827 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5828 if (!btf) { 5829 err = -ENOMEM; 5830 goto errout; 5831 } 5832 env->btf = btf; 5833 5834 btf->base_btf = base_btf; 5835 btf->start_id = base_btf->nr_types; 5836 btf->start_str_off = base_btf->hdr.str_len; 5837 btf->kernel_btf = true; 5838 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5839 5840 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5841 if (!btf->data) { 5842 err = -ENOMEM; 5843 goto errout; 5844 } 5845 memcpy(btf->data, data, data_size); 5846 btf->data_size = data_size; 5847 5848 err = btf_parse_hdr(env); 5849 if (err) 5850 goto errout; 5851 5852 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5853 5854 err = btf_parse_str_sec(env); 5855 if (err) 5856 goto errout; 5857 5858 err = btf_check_all_metas(env); 5859 if (err) 5860 goto errout; 5861 5862 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5863 if (err) 5864 goto errout; 5865 5866 btf_verifier_env_free(env); 5867 refcount_set(&btf->refcnt, 1); 5868 return btf; 5869 5870 errout: 5871 btf_verifier_env_free(env); 5872 if (btf) { 5873 kvfree(btf->data); 5874 kvfree(btf->types); 5875 kfree(btf); 5876 } 5877 return ERR_PTR(err); 5878 } 5879 5880 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5881 5882 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5883 { 5884 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5885 5886 if (tgt_prog) 5887 return tgt_prog->aux->btf; 5888 else 5889 return prog->aux->attach_btf; 5890 } 5891 5892 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5893 { 5894 /* t comes in already as a pointer */ 5895 t = btf_type_by_id(btf, t->type); 5896 5897 /* allow const */ 5898 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST) 5899 t = btf_type_by_id(btf, t->type); 5900 5901 return btf_type_is_int(t); 5902 } 5903 5904 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5905 int off) 5906 { 5907 const struct btf_param *args; 5908 const struct btf_type *t; 5909 u32 offset = 0, nr_args; 5910 int i; 5911 5912 if (!func_proto) 5913 return off / 8; 5914 5915 nr_args = btf_type_vlen(func_proto); 5916 args = (const struct btf_param *)(func_proto + 1); 5917 for (i = 0; i < nr_args; i++) { 5918 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5919 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5920 if (off < offset) 5921 return i; 5922 } 5923 5924 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5925 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5926 if (off < offset) 5927 return nr_args; 5928 5929 return nr_args + 1; 5930 } 5931 5932 static bool prog_args_trusted(const struct bpf_prog *prog) 5933 { 5934 enum bpf_attach_type atype = prog->expected_attach_type; 5935 5936 switch (prog->type) { 5937 case BPF_PROG_TYPE_TRACING: 5938 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5939 case BPF_PROG_TYPE_LSM: 5940 return bpf_lsm_is_trusted(prog); 5941 case BPF_PROG_TYPE_STRUCT_OPS: 5942 return true; 5943 default: 5944 return false; 5945 } 5946 } 5947 5948 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5949 const struct bpf_prog *prog, 5950 struct bpf_insn_access_aux *info) 5951 { 5952 const struct btf_type *t = prog->aux->attach_func_proto; 5953 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5954 struct btf *btf = bpf_prog_get_target_btf(prog); 5955 const char *tname = prog->aux->attach_func_name; 5956 struct bpf_verifier_log *log = info->log; 5957 const struct btf_param *args; 5958 const char *tag_value; 5959 u32 nr_args, arg; 5960 int i, ret; 5961 5962 if (off % 8) { 5963 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5964 tname, off); 5965 return false; 5966 } 5967 arg = get_ctx_arg_idx(btf, t, off); 5968 args = (const struct btf_param *)(t + 1); 5969 /* if (t == NULL) Fall back to default BPF prog with 5970 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5971 */ 5972 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5973 if (prog->aux->attach_btf_trace) { 5974 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5975 args++; 5976 nr_args--; 5977 } 5978 5979 if (arg > nr_args) { 5980 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5981 tname, arg + 1); 5982 return false; 5983 } 5984 5985 if (arg == nr_args) { 5986 switch (prog->expected_attach_type) { 5987 case BPF_LSM_CGROUP: 5988 case BPF_LSM_MAC: 5989 case BPF_TRACE_FEXIT: 5990 /* When LSM programs are attached to void LSM hooks 5991 * they use FEXIT trampolines and when attached to 5992 * int LSM hooks, they use MODIFY_RETURN trampolines. 5993 * 5994 * While the LSM programs are BPF_MODIFY_RETURN-like 5995 * the check: 5996 * 5997 * if (ret_type != 'int') 5998 * return -EINVAL; 5999 * 6000 * is _not_ done here. This is still safe as LSM hooks 6001 * have only void and int return types. 6002 */ 6003 if (!t) 6004 return true; 6005 t = btf_type_by_id(btf, t->type); 6006 break; 6007 case BPF_MODIFY_RETURN: 6008 /* For now the BPF_MODIFY_RETURN can only be attached to 6009 * functions that return an int. 6010 */ 6011 if (!t) 6012 return false; 6013 6014 t = btf_type_skip_modifiers(btf, t->type, NULL); 6015 if (!btf_type_is_small_int(t)) { 6016 bpf_log(log, 6017 "ret type %s not allowed for fmod_ret\n", 6018 btf_type_str(t)); 6019 return false; 6020 } 6021 break; 6022 default: 6023 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 6024 tname, arg + 1); 6025 return false; 6026 } 6027 } else { 6028 if (!t) 6029 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 6030 return true; 6031 t = btf_type_by_id(btf, args[arg].type); 6032 } 6033 6034 /* skip modifiers */ 6035 while (btf_type_is_modifier(t)) 6036 t = btf_type_by_id(btf, t->type); 6037 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6038 /* accessing a scalar */ 6039 return true; 6040 if (!btf_type_is_ptr(t)) { 6041 bpf_log(log, 6042 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6043 tname, arg, 6044 __btf_name_by_offset(btf, t->name_off), 6045 btf_type_str(t)); 6046 return false; 6047 } 6048 6049 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6050 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6051 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6052 u32 type, flag; 6053 6054 type = base_type(ctx_arg_info->reg_type); 6055 flag = type_flag(ctx_arg_info->reg_type); 6056 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6057 (flag & PTR_MAYBE_NULL)) { 6058 info->reg_type = ctx_arg_info->reg_type; 6059 return true; 6060 } 6061 } 6062 6063 if (t->type == 0) 6064 /* This is a pointer to void. 6065 * It is the same as scalar from the verifier safety pov. 6066 * No further pointer walking is allowed. 6067 */ 6068 return true; 6069 6070 if (is_int_ptr(btf, t)) 6071 return true; 6072 6073 /* this is a pointer to another type */ 6074 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6075 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6076 6077 if (ctx_arg_info->offset == off) { 6078 if (!ctx_arg_info->btf_id) { 6079 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6080 return false; 6081 } 6082 6083 info->reg_type = ctx_arg_info->reg_type; 6084 info->btf = btf_vmlinux; 6085 info->btf_id = ctx_arg_info->btf_id; 6086 return true; 6087 } 6088 } 6089 6090 info->reg_type = PTR_TO_BTF_ID; 6091 if (prog_args_trusted(prog)) 6092 info->reg_type |= PTR_TRUSTED; 6093 6094 if (tgt_prog) { 6095 enum bpf_prog_type tgt_type; 6096 6097 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6098 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6099 else 6100 tgt_type = tgt_prog->type; 6101 6102 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6103 if (ret > 0) { 6104 info->btf = btf_vmlinux; 6105 info->btf_id = ret; 6106 return true; 6107 } else { 6108 return false; 6109 } 6110 } 6111 6112 info->btf = btf; 6113 info->btf_id = t->type; 6114 t = btf_type_by_id(btf, t->type); 6115 6116 if (btf_type_is_type_tag(t)) { 6117 tag_value = __btf_name_by_offset(btf, t->name_off); 6118 if (strcmp(tag_value, "user") == 0) 6119 info->reg_type |= MEM_USER; 6120 if (strcmp(tag_value, "percpu") == 0) 6121 info->reg_type |= MEM_PERCPU; 6122 } 6123 6124 /* skip modifiers */ 6125 while (btf_type_is_modifier(t)) { 6126 info->btf_id = t->type; 6127 t = btf_type_by_id(btf, t->type); 6128 } 6129 if (!btf_type_is_struct(t)) { 6130 bpf_log(log, 6131 "func '%s' arg%d type %s is not a struct\n", 6132 tname, arg, btf_type_str(t)); 6133 return false; 6134 } 6135 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6136 tname, arg, info->btf_id, btf_type_str(t), 6137 __btf_name_by_offset(btf, t->name_off)); 6138 return true; 6139 } 6140 6141 enum bpf_struct_walk_result { 6142 /* < 0 error */ 6143 WALK_SCALAR = 0, 6144 WALK_PTR, 6145 WALK_STRUCT, 6146 }; 6147 6148 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6149 const struct btf_type *t, int off, int size, 6150 u32 *next_btf_id, enum bpf_type_flag *flag) 6151 { 6152 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6153 const struct btf_type *mtype, *elem_type = NULL; 6154 const struct btf_member *member; 6155 const char *tname, *mname, *tag_value; 6156 u32 vlen, elem_id, mid; 6157 6158 again: 6159 tname = __btf_name_by_offset(btf, t->name_off); 6160 if (!btf_type_is_struct(t)) { 6161 bpf_log(log, "Type '%s' is not a struct\n", tname); 6162 return -EINVAL; 6163 } 6164 6165 vlen = btf_type_vlen(t); 6166 if (off + size > t->size) { 6167 /* If the last element is a variable size array, we may 6168 * need to relax the rule. 6169 */ 6170 struct btf_array *array_elem; 6171 6172 if (vlen == 0) 6173 goto error; 6174 6175 member = btf_type_member(t) + vlen - 1; 6176 mtype = btf_type_skip_modifiers(btf, member->type, 6177 NULL); 6178 if (!btf_type_is_array(mtype)) 6179 goto error; 6180 6181 array_elem = (struct btf_array *)(mtype + 1); 6182 if (array_elem->nelems != 0) 6183 goto error; 6184 6185 moff = __btf_member_bit_offset(t, member) / 8; 6186 if (off < moff) 6187 goto error; 6188 6189 /* Only allow structure for now, can be relaxed for 6190 * other types later. 6191 */ 6192 t = btf_type_skip_modifiers(btf, array_elem->type, 6193 NULL); 6194 if (!btf_type_is_struct(t)) 6195 goto error; 6196 6197 off = (off - moff) % t->size; 6198 goto again; 6199 6200 error: 6201 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6202 tname, off, size); 6203 return -EACCES; 6204 } 6205 6206 for_each_member(i, t, member) { 6207 /* offset of the field in bytes */ 6208 moff = __btf_member_bit_offset(t, member) / 8; 6209 if (off + size <= moff) 6210 /* won't find anything, field is already too far */ 6211 break; 6212 6213 if (__btf_member_bitfield_size(t, member)) { 6214 u32 end_bit = __btf_member_bit_offset(t, member) + 6215 __btf_member_bitfield_size(t, member); 6216 6217 /* off <= moff instead of off == moff because clang 6218 * does not generate a BTF member for anonymous 6219 * bitfield like the ":16" here: 6220 * struct { 6221 * int :16; 6222 * int x:8; 6223 * }; 6224 */ 6225 if (off <= moff && 6226 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6227 return WALK_SCALAR; 6228 6229 /* off may be accessing a following member 6230 * 6231 * or 6232 * 6233 * Doing partial access at either end of this 6234 * bitfield. Continue on this case also to 6235 * treat it as not accessing this bitfield 6236 * and eventually error out as field not 6237 * found to keep it simple. 6238 * It could be relaxed if there was a legit 6239 * partial access case later. 6240 */ 6241 continue; 6242 } 6243 6244 /* In case of "off" is pointing to holes of a struct */ 6245 if (off < moff) 6246 break; 6247 6248 /* type of the field */ 6249 mid = member->type; 6250 mtype = btf_type_by_id(btf, member->type); 6251 mname = __btf_name_by_offset(btf, member->name_off); 6252 6253 mtype = __btf_resolve_size(btf, mtype, &msize, 6254 &elem_type, &elem_id, &total_nelems, 6255 &mid); 6256 if (IS_ERR(mtype)) { 6257 bpf_log(log, "field %s doesn't have size\n", mname); 6258 return -EFAULT; 6259 } 6260 6261 mtrue_end = moff + msize; 6262 if (off >= mtrue_end) 6263 /* no overlap with member, keep iterating */ 6264 continue; 6265 6266 if (btf_type_is_array(mtype)) { 6267 u32 elem_idx; 6268 6269 /* __btf_resolve_size() above helps to 6270 * linearize a multi-dimensional array. 6271 * 6272 * The logic here is treating an array 6273 * in a struct as the following way: 6274 * 6275 * struct outer { 6276 * struct inner array[2][2]; 6277 * }; 6278 * 6279 * looks like: 6280 * 6281 * struct outer { 6282 * struct inner array_elem0; 6283 * struct inner array_elem1; 6284 * struct inner array_elem2; 6285 * struct inner array_elem3; 6286 * }; 6287 * 6288 * When accessing outer->array[1][0], it moves 6289 * moff to "array_elem2", set mtype to 6290 * "struct inner", and msize also becomes 6291 * sizeof(struct inner). Then most of the 6292 * remaining logic will fall through without 6293 * caring the current member is an array or 6294 * not. 6295 * 6296 * Unlike mtype/msize/moff, mtrue_end does not 6297 * change. The naming difference ("_true") tells 6298 * that it is not always corresponding to 6299 * the current mtype/msize/moff. 6300 * It is the true end of the current 6301 * member (i.e. array in this case). That 6302 * will allow an int array to be accessed like 6303 * a scratch space, 6304 * i.e. allow access beyond the size of 6305 * the array's element as long as it is 6306 * within the mtrue_end boundary. 6307 */ 6308 6309 /* skip empty array */ 6310 if (moff == mtrue_end) 6311 continue; 6312 6313 msize /= total_nelems; 6314 elem_idx = (off - moff) / msize; 6315 moff += elem_idx * msize; 6316 mtype = elem_type; 6317 mid = elem_id; 6318 } 6319 6320 /* the 'off' we're looking for is either equal to start 6321 * of this field or inside of this struct 6322 */ 6323 if (btf_type_is_struct(mtype)) { 6324 /* our field must be inside that union or struct */ 6325 t = mtype; 6326 6327 /* return if the offset matches the member offset */ 6328 if (off == moff) { 6329 *next_btf_id = mid; 6330 return WALK_STRUCT; 6331 } 6332 6333 /* adjust offset we're looking for */ 6334 off -= moff; 6335 goto again; 6336 } 6337 6338 if (btf_type_is_ptr(mtype)) { 6339 const struct btf_type *stype, *t; 6340 enum bpf_type_flag tmp_flag = 0; 6341 u32 id; 6342 6343 if (msize != size || off != moff) { 6344 bpf_log(log, 6345 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6346 mname, moff, tname, off, size); 6347 return -EACCES; 6348 } 6349 6350 /* check type tag */ 6351 t = btf_type_by_id(btf, mtype->type); 6352 if (btf_type_is_type_tag(t)) { 6353 tag_value = __btf_name_by_offset(btf, t->name_off); 6354 /* check __user tag */ 6355 if (strcmp(tag_value, "user") == 0) 6356 tmp_flag = MEM_USER; 6357 /* check __percpu tag */ 6358 if (strcmp(tag_value, "percpu") == 0) 6359 tmp_flag = MEM_PERCPU; 6360 /* check __rcu tag */ 6361 if (strcmp(tag_value, "rcu") == 0) 6362 tmp_flag = MEM_RCU; 6363 } 6364 6365 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6366 if (btf_type_is_struct(stype)) { 6367 *next_btf_id = id; 6368 *flag = tmp_flag; 6369 return WALK_PTR; 6370 } 6371 } 6372 6373 /* Allow more flexible access within an int as long as 6374 * it is within mtrue_end. 6375 * Since mtrue_end could be the end of an array, 6376 * that also allows using an array of int as a scratch 6377 * space. e.g. skb->cb[]. 6378 */ 6379 if (off + size > mtrue_end) { 6380 bpf_log(log, 6381 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6382 mname, mtrue_end, tname, off, size); 6383 return -EACCES; 6384 } 6385 6386 return WALK_SCALAR; 6387 } 6388 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6389 return -EINVAL; 6390 } 6391 6392 int btf_struct_access(struct bpf_verifier_log *log, 6393 const struct bpf_reg_state *reg, 6394 int off, int size, enum bpf_access_type atype __maybe_unused, 6395 u32 *next_btf_id, enum bpf_type_flag *flag) 6396 { 6397 const struct btf *btf = reg->btf; 6398 enum bpf_type_flag tmp_flag = 0; 6399 const struct btf_type *t; 6400 u32 id = reg->btf_id; 6401 int err; 6402 6403 while (type_is_alloc(reg->type)) { 6404 struct btf_struct_meta *meta; 6405 struct btf_record *rec; 6406 int i; 6407 6408 meta = btf_find_struct_meta(btf, id); 6409 if (!meta) 6410 break; 6411 rec = meta->record; 6412 for (i = 0; i < rec->cnt; i++) { 6413 struct btf_field *field = &rec->fields[i]; 6414 u32 offset = field->offset; 6415 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6416 bpf_log(log, 6417 "direct access to %s is disallowed\n", 6418 btf_field_type_name(field->type)); 6419 return -EACCES; 6420 } 6421 } 6422 break; 6423 } 6424 6425 t = btf_type_by_id(btf, id); 6426 do { 6427 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag); 6428 6429 switch (err) { 6430 case WALK_PTR: 6431 /* For local types, the destination register cannot 6432 * become a pointer again. 6433 */ 6434 if (type_is_alloc(reg->type)) 6435 return SCALAR_VALUE; 6436 /* If we found the pointer or scalar on t+off, 6437 * we're done. 6438 */ 6439 *next_btf_id = id; 6440 *flag = tmp_flag; 6441 return PTR_TO_BTF_ID; 6442 case WALK_SCALAR: 6443 return SCALAR_VALUE; 6444 case WALK_STRUCT: 6445 /* We found nested struct, so continue the search 6446 * by diving in it. At this point the offset is 6447 * aligned with the new type, so set it to 0. 6448 */ 6449 t = btf_type_by_id(btf, id); 6450 off = 0; 6451 break; 6452 default: 6453 /* It's either error or unknown return value.. 6454 * scream and leave. 6455 */ 6456 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6457 return -EINVAL; 6458 return err; 6459 } 6460 } while (t); 6461 6462 return -EINVAL; 6463 } 6464 6465 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6466 * the same. Trivial ID check is not enough due to module BTFs, because we can 6467 * end up with two different module BTFs, but IDs point to the common type in 6468 * vmlinux BTF. 6469 */ 6470 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6471 const struct btf *btf2, u32 id2) 6472 { 6473 if (id1 != id2) 6474 return false; 6475 if (btf1 == btf2) 6476 return true; 6477 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6478 } 6479 6480 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6481 const struct btf *btf, u32 id, int off, 6482 const struct btf *need_btf, u32 need_type_id, 6483 bool strict) 6484 { 6485 const struct btf_type *type; 6486 enum bpf_type_flag flag; 6487 int err; 6488 6489 /* Are we already done? */ 6490 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6491 return true; 6492 /* In case of strict type match, we do not walk struct, the top level 6493 * type match must succeed. When strict is true, off should have already 6494 * been 0. 6495 */ 6496 if (strict) 6497 return false; 6498 again: 6499 type = btf_type_by_id(btf, id); 6500 if (!type) 6501 return false; 6502 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag); 6503 if (err != WALK_STRUCT) 6504 return false; 6505 6506 /* We found nested struct object. If it matches 6507 * the requested ID, we're done. Otherwise let's 6508 * continue the search with offset 0 in the new 6509 * type. 6510 */ 6511 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6512 off = 0; 6513 goto again; 6514 } 6515 6516 return true; 6517 } 6518 6519 static int __get_type_size(struct btf *btf, u32 btf_id, 6520 const struct btf_type **ret_type) 6521 { 6522 const struct btf_type *t; 6523 6524 *ret_type = btf_type_by_id(btf, 0); 6525 if (!btf_id) 6526 /* void */ 6527 return 0; 6528 t = btf_type_by_id(btf, btf_id); 6529 while (t && btf_type_is_modifier(t)) 6530 t = btf_type_by_id(btf, t->type); 6531 if (!t) 6532 return -EINVAL; 6533 *ret_type = t; 6534 if (btf_type_is_ptr(t)) 6535 /* kernel size of pointer. Not BPF's size of pointer*/ 6536 return sizeof(void *); 6537 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6538 return t->size; 6539 return -EINVAL; 6540 } 6541 6542 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6543 { 6544 u8 flags = 0; 6545 6546 if (__btf_type_is_struct(t)) 6547 flags |= BTF_FMODEL_STRUCT_ARG; 6548 if (btf_type_is_signed_int(t)) 6549 flags |= BTF_FMODEL_SIGNED_ARG; 6550 6551 return flags; 6552 } 6553 6554 int btf_distill_func_proto(struct bpf_verifier_log *log, 6555 struct btf *btf, 6556 const struct btf_type *func, 6557 const char *tname, 6558 struct btf_func_model *m) 6559 { 6560 const struct btf_param *args; 6561 const struct btf_type *t; 6562 u32 i, nargs; 6563 int ret; 6564 6565 if (!func) { 6566 /* BTF function prototype doesn't match the verifier types. 6567 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6568 */ 6569 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6570 m->arg_size[i] = 8; 6571 m->arg_flags[i] = 0; 6572 } 6573 m->ret_size = 8; 6574 m->ret_flags = 0; 6575 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6576 return 0; 6577 } 6578 args = (const struct btf_param *)(func + 1); 6579 nargs = btf_type_vlen(func); 6580 if (nargs > MAX_BPF_FUNC_ARGS) { 6581 bpf_log(log, 6582 "The function %s has %d arguments. Too many.\n", 6583 tname, nargs); 6584 return -EINVAL; 6585 } 6586 ret = __get_type_size(btf, func->type, &t); 6587 if (ret < 0 || __btf_type_is_struct(t)) { 6588 bpf_log(log, 6589 "The function %s return type %s is unsupported.\n", 6590 tname, btf_type_str(t)); 6591 return -EINVAL; 6592 } 6593 m->ret_size = ret; 6594 m->ret_flags = __get_type_fmodel_flags(t); 6595 6596 for (i = 0; i < nargs; i++) { 6597 if (i == nargs - 1 && args[i].type == 0) { 6598 bpf_log(log, 6599 "The function %s with variable args is unsupported.\n", 6600 tname); 6601 return -EINVAL; 6602 } 6603 ret = __get_type_size(btf, args[i].type, &t); 6604 6605 /* No support of struct argument size greater than 16 bytes */ 6606 if (ret < 0 || ret > 16) { 6607 bpf_log(log, 6608 "The function %s arg%d type %s is unsupported.\n", 6609 tname, i, btf_type_str(t)); 6610 return -EINVAL; 6611 } 6612 if (ret == 0) { 6613 bpf_log(log, 6614 "The function %s has malformed void argument.\n", 6615 tname); 6616 return -EINVAL; 6617 } 6618 m->arg_size[i] = ret; 6619 m->arg_flags[i] = __get_type_fmodel_flags(t); 6620 } 6621 m->nr_args = nargs; 6622 return 0; 6623 } 6624 6625 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6626 * t1 points to BTF_KIND_FUNC in btf1 6627 * t2 points to BTF_KIND_FUNC in btf2 6628 * Returns: 6629 * EINVAL - function prototype mismatch 6630 * EFAULT - verifier bug 6631 * 0 - 99% match. The last 1% is validated by the verifier. 6632 */ 6633 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6634 struct btf *btf1, const struct btf_type *t1, 6635 struct btf *btf2, const struct btf_type *t2) 6636 { 6637 const struct btf_param *args1, *args2; 6638 const char *fn1, *fn2, *s1, *s2; 6639 u32 nargs1, nargs2, i; 6640 6641 fn1 = btf_name_by_offset(btf1, t1->name_off); 6642 fn2 = btf_name_by_offset(btf2, t2->name_off); 6643 6644 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6645 bpf_log(log, "%s() is not a global function\n", fn1); 6646 return -EINVAL; 6647 } 6648 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6649 bpf_log(log, "%s() is not a global function\n", fn2); 6650 return -EINVAL; 6651 } 6652 6653 t1 = btf_type_by_id(btf1, t1->type); 6654 if (!t1 || !btf_type_is_func_proto(t1)) 6655 return -EFAULT; 6656 t2 = btf_type_by_id(btf2, t2->type); 6657 if (!t2 || !btf_type_is_func_proto(t2)) 6658 return -EFAULT; 6659 6660 args1 = (const struct btf_param *)(t1 + 1); 6661 nargs1 = btf_type_vlen(t1); 6662 args2 = (const struct btf_param *)(t2 + 1); 6663 nargs2 = btf_type_vlen(t2); 6664 6665 if (nargs1 != nargs2) { 6666 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6667 fn1, nargs1, fn2, nargs2); 6668 return -EINVAL; 6669 } 6670 6671 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6672 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6673 if (t1->info != t2->info) { 6674 bpf_log(log, 6675 "Return type %s of %s() doesn't match type %s of %s()\n", 6676 btf_type_str(t1), fn1, 6677 btf_type_str(t2), fn2); 6678 return -EINVAL; 6679 } 6680 6681 for (i = 0; i < nargs1; i++) { 6682 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6683 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6684 6685 if (t1->info != t2->info) { 6686 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6687 i, fn1, btf_type_str(t1), 6688 fn2, btf_type_str(t2)); 6689 return -EINVAL; 6690 } 6691 if (btf_type_has_size(t1) && t1->size != t2->size) { 6692 bpf_log(log, 6693 "arg%d in %s() has size %d while %s() has %d\n", 6694 i, fn1, t1->size, 6695 fn2, t2->size); 6696 return -EINVAL; 6697 } 6698 6699 /* global functions are validated with scalars and pointers 6700 * to context only. And only global functions can be replaced. 6701 * Hence type check only those types. 6702 */ 6703 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6704 continue; 6705 if (!btf_type_is_ptr(t1)) { 6706 bpf_log(log, 6707 "arg%d in %s() has unrecognized type\n", 6708 i, fn1); 6709 return -EINVAL; 6710 } 6711 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6712 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6713 if (!btf_type_is_struct(t1)) { 6714 bpf_log(log, 6715 "arg%d in %s() is not a pointer to context\n", 6716 i, fn1); 6717 return -EINVAL; 6718 } 6719 if (!btf_type_is_struct(t2)) { 6720 bpf_log(log, 6721 "arg%d in %s() is not a pointer to context\n", 6722 i, fn2); 6723 return -EINVAL; 6724 } 6725 /* This is an optional check to make program writing easier. 6726 * Compare names of structs and report an error to the user. 6727 * btf_prepare_func_args() already checked that t2 struct 6728 * is a context type. btf_prepare_func_args() will check 6729 * later that t1 struct is a context type as well. 6730 */ 6731 s1 = btf_name_by_offset(btf1, t1->name_off); 6732 s2 = btf_name_by_offset(btf2, t2->name_off); 6733 if (strcmp(s1, s2)) { 6734 bpf_log(log, 6735 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6736 i, fn1, s1, fn2, s2); 6737 return -EINVAL; 6738 } 6739 } 6740 return 0; 6741 } 6742 6743 /* Compare BTFs of given program with BTF of target program */ 6744 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6745 struct btf *btf2, const struct btf_type *t2) 6746 { 6747 struct btf *btf1 = prog->aux->btf; 6748 const struct btf_type *t1; 6749 u32 btf_id = 0; 6750 6751 if (!prog->aux->func_info) { 6752 bpf_log(log, "Program extension requires BTF\n"); 6753 return -EINVAL; 6754 } 6755 6756 btf_id = prog->aux->func_info[0].type_id; 6757 if (!btf_id) 6758 return -EFAULT; 6759 6760 t1 = btf_type_by_id(btf1, btf_id); 6761 if (!t1 || !btf_type_is_func(t1)) 6762 return -EFAULT; 6763 6764 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6765 } 6766 6767 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6768 const struct btf *btf, u32 func_id, 6769 struct bpf_reg_state *regs, 6770 bool ptr_to_mem_ok, 6771 bool processing_call) 6772 { 6773 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6774 struct bpf_verifier_log *log = &env->log; 6775 const char *func_name, *ref_tname; 6776 const struct btf_type *t, *ref_t; 6777 const struct btf_param *args; 6778 u32 i, nargs, ref_id; 6779 int ret; 6780 6781 t = btf_type_by_id(btf, func_id); 6782 if (!t || !btf_type_is_func(t)) { 6783 /* These checks were already done by the verifier while loading 6784 * struct bpf_func_info or in add_kfunc_call(). 6785 */ 6786 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6787 func_id); 6788 return -EFAULT; 6789 } 6790 func_name = btf_name_by_offset(btf, t->name_off); 6791 6792 t = btf_type_by_id(btf, t->type); 6793 if (!t || !btf_type_is_func_proto(t)) { 6794 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6795 return -EFAULT; 6796 } 6797 args = (const struct btf_param *)(t + 1); 6798 nargs = btf_type_vlen(t); 6799 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6800 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6801 MAX_BPF_FUNC_REG_ARGS); 6802 return -EINVAL; 6803 } 6804 6805 /* check that BTF function arguments match actual types that the 6806 * verifier sees. 6807 */ 6808 for (i = 0; i < nargs; i++) { 6809 enum bpf_arg_type arg_type = ARG_DONTCARE; 6810 u32 regno = i + 1; 6811 struct bpf_reg_state *reg = ®s[regno]; 6812 6813 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6814 if (btf_type_is_scalar(t)) { 6815 if (reg->type == SCALAR_VALUE) 6816 continue; 6817 bpf_log(log, "R%d is not a scalar\n", regno); 6818 return -EINVAL; 6819 } 6820 6821 if (!btf_type_is_ptr(t)) { 6822 bpf_log(log, "Unrecognized arg#%d type %s\n", 6823 i, btf_type_str(t)); 6824 return -EINVAL; 6825 } 6826 6827 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6828 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6829 6830 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6831 if (ret < 0) 6832 return ret; 6833 6834 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6835 /* If function expects ctx type in BTF check that caller 6836 * is passing PTR_TO_CTX. 6837 */ 6838 if (reg->type != PTR_TO_CTX) { 6839 bpf_log(log, 6840 "arg#%d expected pointer to ctx, but got %s\n", 6841 i, btf_type_str(t)); 6842 return -EINVAL; 6843 } 6844 } else if (ptr_to_mem_ok && processing_call) { 6845 const struct btf_type *resolve_ret; 6846 u32 type_size; 6847 6848 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6849 if (IS_ERR(resolve_ret)) { 6850 bpf_log(log, 6851 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6852 i, btf_type_str(ref_t), ref_tname, 6853 PTR_ERR(resolve_ret)); 6854 return -EINVAL; 6855 } 6856 6857 if (check_mem_reg(env, reg, regno, type_size)) 6858 return -EINVAL; 6859 } else { 6860 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6861 func_name, func_id); 6862 return -EINVAL; 6863 } 6864 } 6865 6866 return 0; 6867 } 6868 6869 /* Compare BTF of a function declaration with given bpf_reg_state. 6870 * Returns: 6871 * EFAULT - there is a verifier bug. Abort verification. 6872 * EINVAL - there is a type mismatch or BTF is not available. 6873 * 0 - BTF matches with what bpf_reg_state expects. 6874 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6875 */ 6876 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6877 struct bpf_reg_state *regs) 6878 { 6879 struct bpf_prog *prog = env->prog; 6880 struct btf *btf = prog->aux->btf; 6881 bool is_global; 6882 u32 btf_id; 6883 int err; 6884 6885 if (!prog->aux->func_info) 6886 return -EINVAL; 6887 6888 btf_id = prog->aux->func_info[subprog].type_id; 6889 if (!btf_id) 6890 return -EFAULT; 6891 6892 if (prog->aux->func_info_aux[subprog].unreliable) 6893 return -EINVAL; 6894 6895 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6896 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6897 6898 /* Compiler optimizations can remove arguments from static functions 6899 * or mismatched type can be passed into a global function. 6900 * In such cases mark the function as unreliable from BTF point of view. 6901 */ 6902 if (err) 6903 prog->aux->func_info_aux[subprog].unreliable = true; 6904 return err; 6905 } 6906 6907 /* Compare BTF of a function call with given bpf_reg_state. 6908 * Returns: 6909 * EFAULT - there is a verifier bug. Abort verification. 6910 * EINVAL - there is a type mismatch or BTF is not available. 6911 * 0 - BTF matches with what bpf_reg_state expects. 6912 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6913 * 6914 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6915 * because btf_check_func_arg_match() is still doing both. Once that 6916 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6917 * first, and then treat the calling part in a new code path. 6918 */ 6919 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6920 struct bpf_reg_state *regs) 6921 { 6922 struct bpf_prog *prog = env->prog; 6923 struct btf *btf = prog->aux->btf; 6924 bool is_global; 6925 u32 btf_id; 6926 int err; 6927 6928 if (!prog->aux->func_info) 6929 return -EINVAL; 6930 6931 btf_id = prog->aux->func_info[subprog].type_id; 6932 if (!btf_id) 6933 return -EFAULT; 6934 6935 if (prog->aux->func_info_aux[subprog].unreliable) 6936 return -EINVAL; 6937 6938 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6939 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6940 6941 /* Compiler optimizations can remove arguments from static functions 6942 * or mismatched type can be passed into a global function. 6943 * In such cases mark the function as unreliable from BTF point of view. 6944 */ 6945 if (err) 6946 prog->aux->func_info_aux[subprog].unreliable = true; 6947 return err; 6948 } 6949 6950 /* Convert BTF of a function into bpf_reg_state if possible 6951 * Returns: 6952 * EFAULT - there is a verifier bug. Abort verification. 6953 * EINVAL - cannot convert BTF. 6954 * 0 - Successfully converted BTF into bpf_reg_state 6955 * (either PTR_TO_CTX or SCALAR_VALUE). 6956 */ 6957 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6958 struct bpf_reg_state *regs) 6959 { 6960 struct bpf_verifier_log *log = &env->log; 6961 struct bpf_prog *prog = env->prog; 6962 enum bpf_prog_type prog_type = prog->type; 6963 struct btf *btf = prog->aux->btf; 6964 const struct btf_param *args; 6965 const struct btf_type *t, *ref_t; 6966 u32 i, nargs, btf_id; 6967 const char *tname; 6968 6969 if (!prog->aux->func_info || 6970 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6971 bpf_log(log, "Verifier bug\n"); 6972 return -EFAULT; 6973 } 6974 6975 btf_id = prog->aux->func_info[subprog].type_id; 6976 if (!btf_id) { 6977 bpf_log(log, "Global functions need valid BTF\n"); 6978 return -EFAULT; 6979 } 6980 6981 t = btf_type_by_id(btf, btf_id); 6982 if (!t || !btf_type_is_func(t)) { 6983 /* These checks were already done by the verifier while loading 6984 * struct bpf_func_info 6985 */ 6986 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6987 subprog); 6988 return -EFAULT; 6989 } 6990 tname = btf_name_by_offset(btf, t->name_off); 6991 6992 if (log->level & BPF_LOG_LEVEL) 6993 bpf_log(log, "Validating %s() func#%d...\n", 6994 tname, subprog); 6995 6996 if (prog->aux->func_info_aux[subprog].unreliable) { 6997 bpf_log(log, "Verifier bug in function %s()\n", tname); 6998 return -EFAULT; 6999 } 7000 if (prog_type == BPF_PROG_TYPE_EXT) 7001 prog_type = prog->aux->dst_prog->type; 7002 7003 t = btf_type_by_id(btf, t->type); 7004 if (!t || !btf_type_is_func_proto(t)) { 7005 bpf_log(log, "Invalid type of function %s()\n", tname); 7006 return -EFAULT; 7007 } 7008 args = (const struct btf_param *)(t + 1); 7009 nargs = btf_type_vlen(t); 7010 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 7011 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 7012 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 7013 return -EINVAL; 7014 } 7015 /* check that function returns int */ 7016 t = btf_type_by_id(btf, t->type); 7017 while (btf_type_is_modifier(t)) 7018 t = btf_type_by_id(btf, t->type); 7019 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7020 bpf_log(log, 7021 "Global function %s() doesn't return scalar. Only those are supported.\n", 7022 tname); 7023 return -EINVAL; 7024 } 7025 /* Convert BTF function arguments into verifier types. 7026 * Only PTR_TO_CTX and SCALAR are supported atm. 7027 */ 7028 for (i = 0; i < nargs; i++) { 7029 struct bpf_reg_state *reg = ®s[i + 1]; 7030 7031 t = btf_type_by_id(btf, args[i].type); 7032 while (btf_type_is_modifier(t)) 7033 t = btf_type_by_id(btf, t->type); 7034 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7035 reg->type = SCALAR_VALUE; 7036 continue; 7037 } 7038 if (btf_type_is_ptr(t)) { 7039 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 7040 reg->type = PTR_TO_CTX; 7041 continue; 7042 } 7043 7044 t = btf_type_skip_modifiers(btf, t->type, NULL); 7045 7046 ref_t = btf_resolve_size(btf, t, ®->mem_size); 7047 if (IS_ERR(ref_t)) { 7048 bpf_log(log, 7049 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7050 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7051 PTR_ERR(ref_t)); 7052 return -EINVAL; 7053 } 7054 7055 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 7056 reg->id = ++env->id_gen; 7057 7058 continue; 7059 } 7060 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7061 i, btf_type_str(t), tname); 7062 return -EINVAL; 7063 } 7064 return 0; 7065 } 7066 7067 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7068 struct btf_show *show) 7069 { 7070 const struct btf_type *t = btf_type_by_id(btf, type_id); 7071 7072 show->btf = btf; 7073 memset(&show->state, 0, sizeof(show->state)); 7074 memset(&show->obj, 0, sizeof(show->obj)); 7075 7076 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7077 } 7078 7079 static void btf_seq_show(struct btf_show *show, const char *fmt, 7080 va_list args) 7081 { 7082 seq_vprintf((struct seq_file *)show->target, fmt, args); 7083 } 7084 7085 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7086 void *obj, struct seq_file *m, u64 flags) 7087 { 7088 struct btf_show sseq; 7089 7090 sseq.target = m; 7091 sseq.showfn = btf_seq_show; 7092 sseq.flags = flags; 7093 7094 btf_type_show(btf, type_id, obj, &sseq); 7095 7096 return sseq.state.status; 7097 } 7098 7099 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7100 struct seq_file *m) 7101 { 7102 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7103 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7104 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7105 } 7106 7107 struct btf_show_snprintf { 7108 struct btf_show show; 7109 int len_left; /* space left in string */ 7110 int len; /* length we would have written */ 7111 }; 7112 7113 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7114 va_list args) 7115 { 7116 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7117 int len; 7118 7119 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7120 7121 if (len < 0) { 7122 ssnprintf->len_left = 0; 7123 ssnprintf->len = len; 7124 } else if (len >= ssnprintf->len_left) { 7125 /* no space, drive on to get length we would have written */ 7126 ssnprintf->len_left = 0; 7127 ssnprintf->len += len; 7128 } else { 7129 ssnprintf->len_left -= len; 7130 ssnprintf->len += len; 7131 show->target += len; 7132 } 7133 } 7134 7135 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7136 char *buf, int len, u64 flags) 7137 { 7138 struct btf_show_snprintf ssnprintf; 7139 7140 ssnprintf.show.target = buf; 7141 ssnprintf.show.flags = flags; 7142 ssnprintf.show.showfn = btf_snprintf_show; 7143 ssnprintf.len_left = len; 7144 ssnprintf.len = 0; 7145 7146 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7147 7148 /* If we encountered an error, return it. */ 7149 if (ssnprintf.show.state.status) 7150 return ssnprintf.show.state.status; 7151 7152 /* Otherwise return length we would have written */ 7153 return ssnprintf.len; 7154 } 7155 7156 #ifdef CONFIG_PROC_FS 7157 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7158 { 7159 const struct btf *btf = filp->private_data; 7160 7161 seq_printf(m, "btf_id:\t%u\n", btf->id); 7162 } 7163 #endif 7164 7165 static int btf_release(struct inode *inode, struct file *filp) 7166 { 7167 btf_put(filp->private_data); 7168 return 0; 7169 } 7170 7171 const struct file_operations btf_fops = { 7172 #ifdef CONFIG_PROC_FS 7173 .show_fdinfo = bpf_btf_show_fdinfo, 7174 #endif 7175 .release = btf_release, 7176 }; 7177 7178 static int __btf_new_fd(struct btf *btf) 7179 { 7180 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7181 } 7182 7183 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr) 7184 { 7185 struct btf *btf; 7186 int ret; 7187 7188 btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel), 7189 attr->btf_size, attr->btf_log_level, 7190 u64_to_user_ptr(attr->btf_log_buf), 7191 attr->btf_log_size); 7192 if (IS_ERR(btf)) 7193 return PTR_ERR(btf); 7194 7195 ret = btf_alloc_id(btf); 7196 if (ret) { 7197 btf_free(btf); 7198 return ret; 7199 } 7200 7201 /* 7202 * The BTF ID is published to the userspace. 7203 * All BTF free must go through call_rcu() from 7204 * now on (i.e. free by calling btf_put()). 7205 */ 7206 7207 ret = __btf_new_fd(btf); 7208 if (ret < 0) 7209 btf_put(btf); 7210 7211 return ret; 7212 } 7213 7214 struct btf *btf_get_by_fd(int fd) 7215 { 7216 struct btf *btf; 7217 struct fd f; 7218 7219 f = fdget(fd); 7220 7221 if (!f.file) 7222 return ERR_PTR(-EBADF); 7223 7224 if (f.file->f_op != &btf_fops) { 7225 fdput(f); 7226 return ERR_PTR(-EINVAL); 7227 } 7228 7229 btf = f.file->private_data; 7230 refcount_inc(&btf->refcnt); 7231 fdput(f); 7232 7233 return btf; 7234 } 7235 7236 int btf_get_info_by_fd(const struct btf *btf, 7237 const union bpf_attr *attr, 7238 union bpf_attr __user *uattr) 7239 { 7240 struct bpf_btf_info __user *uinfo; 7241 struct bpf_btf_info info; 7242 u32 info_copy, btf_copy; 7243 void __user *ubtf; 7244 char __user *uname; 7245 u32 uinfo_len, uname_len, name_len; 7246 int ret = 0; 7247 7248 uinfo = u64_to_user_ptr(attr->info.info); 7249 uinfo_len = attr->info.info_len; 7250 7251 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7252 memset(&info, 0, sizeof(info)); 7253 if (copy_from_user(&info, uinfo, info_copy)) 7254 return -EFAULT; 7255 7256 info.id = btf->id; 7257 ubtf = u64_to_user_ptr(info.btf); 7258 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7259 if (copy_to_user(ubtf, btf->data, btf_copy)) 7260 return -EFAULT; 7261 info.btf_size = btf->data_size; 7262 7263 info.kernel_btf = btf->kernel_btf; 7264 7265 uname = u64_to_user_ptr(info.name); 7266 uname_len = info.name_len; 7267 if (!uname ^ !uname_len) 7268 return -EINVAL; 7269 7270 name_len = strlen(btf->name); 7271 info.name_len = name_len; 7272 7273 if (uname) { 7274 if (uname_len >= name_len + 1) { 7275 if (copy_to_user(uname, btf->name, name_len + 1)) 7276 return -EFAULT; 7277 } else { 7278 char zero = '\0'; 7279 7280 if (copy_to_user(uname, btf->name, uname_len - 1)) 7281 return -EFAULT; 7282 if (put_user(zero, uname + uname_len - 1)) 7283 return -EFAULT; 7284 /* let user-space know about too short buffer */ 7285 ret = -ENOSPC; 7286 } 7287 } 7288 7289 if (copy_to_user(uinfo, &info, info_copy) || 7290 put_user(info_copy, &uattr->info.info_len)) 7291 return -EFAULT; 7292 7293 return ret; 7294 } 7295 7296 int btf_get_fd_by_id(u32 id) 7297 { 7298 struct btf *btf; 7299 int fd; 7300 7301 rcu_read_lock(); 7302 btf = idr_find(&btf_idr, id); 7303 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7304 btf = ERR_PTR(-ENOENT); 7305 rcu_read_unlock(); 7306 7307 if (IS_ERR(btf)) 7308 return PTR_ERR(btf); 7309 7310 fd = __btf_new_fd(btf); 7311 if (fd < 0) 7312 btf_put(btf); 7313 7314 return fd; 7315 } 7316 7317 u32 btf_obj_id(const struct btf *btf) 7318 { 7319 return btf->id; 7320 } 7321 7322 bool btf_is_kernel(const struct btf *btf) 7323 { 7324 return btf->kernel_btf; 7325 } 7326 7327 bool btf_is_module(const struct btf *btf) 7328 { 7329 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7330 } 7331 7332 enum { 7333 BTF_MODULE_F_LIVE = (1 << 0), 7334 }; 7335 7336 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7337 struct btf_module { 7338 struct list_head list; 7339 struct module *module; 7340 struct btf *btf; 7341 struct bin_attribute *sysfs_attr; 7342 int flags; 7343 }; 7344 7345 static LIST_HEAD(btf_modules); 7346 static DEFINE_MUTEX(btf_module_mutex); 7347 7348 static ssize_t 7349 btf_module_read(struct file *file, struct kobject *kobj, 7350 struct bin_attribute *bin_attr, 7351 char *buf, loff_t off, size_t len) 7352 { 7353 const struct btf *btf = bin_attr->private; 7354 7355 memcpy(buf, btf->data + off, len); 7356 return len; 7357 } 7358 7359 static void purge_cand_cache(struct btf *btf); 7360 7361 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7362 void *module) 7363 { 7364 struct btf_module *btf_mod, *tmp; 7365 struct module *mod = module; 7366 struct btf *btf; 7367 int err = 0; 7368 7369 if (mod->btf_data_size == 0 || 7370 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7371 op != MODULE_STATE_GOING)) 7372 goto out; 7373 7374 switch (op) { 7375 case MODULE_STATE_COMING: 7376 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7377 if (!btf_mod) { 7378 err = -ENOMEM; 7379 goto out; 7380 } 7381 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7382 if (IS_ERR(btf)) { 7383 kfree(btf_mod); 7384 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7385 pr_warn("failed to validate module [%s] BTF: %ld\n", 7386 mod->name, PTR_ERR(btf)); 7387 err = PTR_ERR(btf); 7388 } else { 7389 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7390 } 7391 goto out; 7392 } 7393 err = btf_alloc_id(btf); 7394 if (err) { 7395 btf_free(btf); 7396 kfree(btf_mod); 7397 goto out; 7398 } 7399 7400 purge_cand_cache(NULL); 7401 mutex_lock(&btf_module_mutex); 7402 btf_mod->module = module; 7403 btf_mod->btf = btf; 7404 list_add(&btf_mod->list, &btf_modules); 7405 mutex_unlock(&btf_module_mutex); 7406 7407 if (IS_ENABLED(CONFIG_SYSFS)) { 7408 struct bin_attribute *attr; 7409 7410 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7411 if (!attr) 7412 goto out; 7413 7414 sysfs_bin_attr_init(attr); 7415 attr->attr.name = btf->name; 7416 attr->attr.mode = 0444; 7417 attr->size = btf->data_size; 7418 attr->private = btf; 7419 attr->read = btf_module_read; 7420 7421 err = sysfs_create_bin_file(btf_kobj, attr); 7422 if (err) { 7423 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7424 mod->name, err); 7425 kfree(attr); 7426 err = 0; 7427 goto out; 7428 } 7429 7430 btf_mod->sysfs_attr = attr; 7431 } 7432 7433 break; 7434 case MODULE_STATE_LIVE: 7435 mutex_lock(&btf_module_mutex); 7436 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7437 if (btf_mod->module != module) 7438 continue; 7439 7440 btf_mod->flags |= BTF_MODULE_F_LIVE; 7441 break; 7442 } 7443 mutex_unlock(&btf_module_mutex); 7444 break; 7445 case MODULE_STATE_GOING: 7446 mutex_lock(&btf_module_mutex); 7447 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7448 if (btf_mod->module != module) 7449 continue; 7450 7451 list_del(&btf_mod->list); 7452 if (btf_mod->sysfs_attr) 7453 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7454 purge_cand_cache(btf_mod->btf); 7455 btf_put(btf_mod->btf); 7456 kfree(btf_mod->sysfs_attr); 7457 kfree(btf_mod); 7458 break; 7459 } 7460 mutex_unlock(&btf_module_mutex); 7461 break; 7462 } 7463 out: 7464 return notifier_from_errno(err); 7465 } 7466 7467 static struct notifier_block btf_module_nb = { 7468 .notifier_call = btf_module_notify, 7469 }; 7470 7471 static int __init btf_module_init(void) 7472 { 7473 register_module_notifier(&btf_module_nb); 7474 return 0; 7475 } 7476 7477 fs_initcall(btf_module_init); 7478 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7479 7480 struct module *btf_try_get_module(const struct btf *btf) 7481 { 7482 struct module *res = NULL; 7483 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7484 struct btf_module *btf_mod, *tmp; 7485 7486 mutex_lock(&btf_module_mutex); 7487 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7488 if (btf_mod->btf != btf) 7489 continue; 7490 7491 /* We must only consider module whose __init routine has 7492 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7493 * which is set from the notifier callback for 7494 * MODULE_STATE_LIVE. 7495 */ 7496 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7497 res = btf_mod->module; 7498 7499 break; 7500 } 7501 mutex_unlock(&btf_module_mutex); 7502 #endif 7503 7504 return res; 7505 } 7506 7507 /* Returns struct btf corresponding to the struct module. 7508 * This function can return NULL or ERR_PTR. 7509 */ 7510 static struct btf *btf_get_module_btf(const struct module *module) 7511 { 7512 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7513 struct btf_module *btf_mod, *tmp; 7514 #endif 7515 struct btf *btf = NULL; 7516 7517 if (!module) { 7518 btf = bpf_get_btf_vmlinux(); 7519 if (!IS_ERR_OR_NULL(btf)) 7520 btf_get(btf); 7521 return btf; 7522 } 7523 7524 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7525 mutex_lock(&btf_module_mutex); 7526 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7527 if (btf_mod->module != module) 7528 continue; 7529 7530 btf_get(btf_mod->btf); 7531 btf = btf_mod->btf; 7532 break; 7533 } 7534 mutex_unlock(&btf_module_mutex); 7535 #endif 7536 7537 return btf; 7538 } 7539 7540 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7541 { 7542 struct btf *btf = NULL; 7543 int btf_obj_fd = 0; 7544 long ret; 7545 7546 if (flags) 7547 return -EINVAL; 7548 7549 if (name_sz <= 1 || name[name_sz - 1]) 7550 return -EINVAL; 7551 7552 ret = bpf_find_btf_id(name, kind, &btf); 7553 if (ret > 0 && btf_is_module(btf)) { 7554 btf_obj_fd = __btf_new_fd(btf); 7555 if (btf_obj_fd < 0) { 7556 btf_put(btf); 7557 return btf_obj_fd; 7558 } 7559 return ret | (((u64)btf_obj_fd) << 32); 7560 } 7561 if (ret > 0) 7562 btf_put(btf); 7563 return ret; 7564 } 7565 7566 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7567 .func = bpf_btf_find_by_name_kind, 7568 .gpl_only = false, 7569 .ret_type = RET_INTEGER, 7570 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7571 .arg2_type = ARG_CONST_SIZE, 7572 .arg3_type = ARG_ANYTHING, 7573 .arg4_type = ARG_ANYTHING, 7574 }; 7575 7576 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7577 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7578 BTF_TRACING_TYPE_xxx 7579 #undef BTF_TRACING_TYPE 7580 7581 /* Kernel Function (kfunc) BTF ID set registration API */ 7582 7583 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7584 struct btf_id_set8 *add_set) 7585 { 7586 bool vmlinux_set = !btf_is_module(btf); 7587 struct btf_kfunc_set_tab *tab; 7588 struct btf_id_set8 *set; 7589 u32 set_cnt; 7590 int ret; 7591 7592 if (hook >= BTF_KFUNC_HOOK_MAX) { 7593 ret = -EINVAL; 7594 goto end; 7595 } 7596 7597 if (!add_set->cnt) 7598 return 0; 7599 7600 tab = btf->kfunc_set_tab; 7601 if (!tab) { 7602 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7603 if (!tab) 7604 return -ENOMEM; 7605 btf->kfunc_set_tab = tab; 7606 } 7607 7608 set = tab->sets[hook]; 7609 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7610 * for module sets. 7611 */ 7612 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7613 ret = -EINVAL; 7614 goto end; 7615 } 7616 7617 /* We don't need to allocate, concatenate, and sort module sets, because 7618 * only one is allowed per hook. Hence, we can directly assign the 7619 * pointer and return. 7620 */ 7621 if (!vmlinux_set) { 7622 tab->sets[hook] = add_set; 7623 return 0; 7624 } 7625 7626 /* In case of vmlinux sets, there may be more than one set being 7627 * registered per hook. To create a unified set, we allocate a new set 7628 * and concatenate all individual sets being registered. While each set 7629 * is individually sorted, they may become unsorted when concatenated, 7630 * hence re-sorting the final set again is required to make binary 7631 * searching the set using btf_id_set8_contains function work. 7632 */ 7633 set_cnt = set ? set->cnt : 0; 7634 7635 if (set_cnt > U32_MAX - add_set->cnt) { 7636 ret = -EOVERFLOW; 7637 goto end; 7638 } 7639 7640 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7641 ret = -E2BIG; 7642 goto end; 7643 } 7644 7645 /* Grow set */ 7646 set = krealloc(tab->sets[hook], 7647 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7648 GFP_KERNEL | __GFP_NOWARN); 7649 if (!set) { 7650 ret = -ENOMEM; 7651 goto end; 7652 } 7653 7654 /* For newly allocated set, initialize set->cnt to 0 */ 7655 if (!tab->sets[hook]) 7656 set->cnt = 0; 7657 tab->sets[hook] = set; 7658 7659 /* Concatenate the two sets */ 7660 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7661 set->cnt += add_set->cnt; 7662 7663 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7664 7665 return 0; 7666 end: 7667 btf_free_kfunc_set_tab(btf); 7668 return ret; 7669 } 7670 7671 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7672 enum btf_kfunc_hook hook, 7673 u32 kfunc_btf_id) 7674 { 7675 struct btf_id_set8 *set; 7676 u32 *id; 7677 7678 if (hook >= BTF_KFUNC_HOOK_MAX) 7679 return NULL; 7680 if (!btf->kfunc_set_tab) 7681 return NULL; 7682 set = btf->kfunc_set_tab->sets[hook]; 7683 if (!set) 7684 return NULL; 7685 id = btf_id_set8_contains(set, kfunc_btf_id); 7686 if (!id) 7687 return NULL; 7688 /* The flags for BTF ID are located next to it */ 7689 return id + 1; 7690 } 7691 7692 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7693 { 7694 switch (prog_type) { 7695 case BPF_PROG_TYPE_UNSPEC: 7696 return BTF_KFUNC_HOOK_COMMON; 7697 case BPF_PROG_TYPE_XDP: 7698 return BTF_KFUNC_HOOK_XDP; 7699 case BPF_PROG_TYPE_SCHED_CLS: 7700 return BTF_KFUNC_HOOK_TC; 7701 case BPF_PROG_TYPE_STRUCT_OPS: 7702 return BTF_KFUNC_HOOK_STRUCT_OPS; 7703 case BPF_PROG_TYPE_TRACING: 7704 case BPF_PROG_TYPE_LSM: 7705 return BTF_KFUNC_HOOK_TRACING; 7706 case BPF_PROG_TYPE_SYSCALL: 7707 return BTF_KFUNC_HOOK_SYSCALL; 7708 default: 7709 return BTF_KFUNC_HOOK_MAX; 7710 } 7711 } 7712 7713 /* Caution: 7714 * Reference to the module (obtained using btf_try_get_module) corresponding to 7715 * the struct btf *MUST* be held when calling this function from verifier 7716 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7717 * keeping the reference for the duration of the call provides the necessary 7718 * protection for looking up a well-formed btf->kfunc_set_tab. 7719 */ 7720 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7721 enum bpf_prog_type prog_type, 7722 u32 kfunc_btf_id) 7723 { 7724 enum btf_kfunc_hook hook; 7725 u32 *kfunc_flags; 7726 7727 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id); 7728 if (kfunc_flags) 7729 return kfunc_flags; 7730 7731 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7732 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7733 } 7734 7735 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id) 7736 { 7737 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id); 7738 } 7739 7740 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7741 const struct btf_kfunc_id_set *kset) 7742 { 7743 struct btf *btf; 7744 int ret; 7745 7746 btf = btf_get_module_btf(kset->owner); 7747 if (!btf) { 7748 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7749 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7750 return -ENOENT; 7751 } 7752 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7753 pr_err("missing module BTF, cannot register kfuncs\n"); 7754 return -ENOENT; 7755 } 7756 return 0; 7757 } 7758 if (IS_ERR(btf)) 7759 return PTR_ERR(btf); 7760 7761 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7762 btf_put(btf); 7763 return ret; 7764 } 7765 7766 /* This function must be invoked only from initcalls/module init functions */ 7767 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7768 const struct btf_kfunc_id_set *kset) 7769 { 7770 enum btf_kfunc_hook hook; 7771 7772 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7773 return __register_btf_kfunc_id_set(hook, kset); 7774 } 7775 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7776 7777 /* This function must be invoked only from initcalls/module init functions */ 7778 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7779 { 7780 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7781 } 7782 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7783 7784 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7785 { 7786 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7787 struct btf_id_dtor_kfunc *dtor; 7788 7789 if (!tab) 7790 return -ENOENT; 7791 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7792 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7793 */ 7794 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7795 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7796 if (!dtor) 7797 return -ENOENT; 7798 return dtor->kfunc_btf_id; 7799 } 7800 7801 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7802 { 7803 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7804 const struct btf_param *args; 7805 s32 dtor_btf_id; 7806 u32 nr_args, i; 7807 7808 for (i = 0; i < cnt; i++) { 7809 dtor_btf_id = dtors[i].kfunc_btf_id; 7810 7811 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7812 if (!dtor_func || !btf_type_is_func(dtor_func)) 7813 return -EINVAL; 7814 7815 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7816 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7817 return -EINVAL; 7818 7819 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7820 t = btf_type_by_id(btf, dtor_func_proto->type); 7821 if (!t || !btf_type_is_void(t)) 7822 return -EINVAL; 7823 7824 nr_args = btf_type_vlen(dtor_func_proto); 7825 if (nr_args != 1) 7826 return -EINVAL; 7827 args = btf_params(dtor_func_proto); 7828 t = btf_type_by_id(btf, args[0].type); 7829 /* Allow any pointer type, as width on targets Linux supports 7830 * will be same for all pointer types (i.e. sizeof(void *)) 7831 */ 7832 if (!t || !btf_type_is_ptr(t)) 7833 return -EINVAL; 7834 } 7835 return 0; 7836 } 7837 7838 /* This function must be invoked only from initcalls/module init functions */ 7839 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7840 struct module *owner) 7841 { 7842 struct btf_id_dtor_kfunc_tab *tab; 7843 struct btf *btf; 7844 u32 tab_cnt; 7845 int ret; 7846 7847 btf = btf_get_module_btf(owner); 7848 if (!btf) { 7849 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7850 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7851 return -ENOENT; 7852 } 7853 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7854 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7855 return -ENOENT; 7856 } 7857 return 0; 7858 } 7859 if (IS_ERR(btf)) 7860 return PTR_ERR(btf); 7861 7862 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7863 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7864 ret = -E2BIG; 7865 goto end; 7866 } 7867 7868 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7869 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7870 if (ret < 0) 7871 goto end; 7872 7873 tab = btf->dtor_kfunc_tab; 7874 /* Only one call allowed for modules */ 7875 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7876 ret = -EINVAL; 7877 goto end; 7878 } 7879 7880 tab_cnt = tab ? tab->cnt : 0; 7881 if (tab_cnt > U32_MAX - add_cnt) { 7882 ret = -EOVERFLOW; 7883 goto end; 7884 } 7885 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7886 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7887 ret = -E2BIG; 7888 goto end; 7889 } 7890 7891 tab = krealloc(btf->dtor_kfunc_tab, 7892 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 7893 GFP_KERNEL | __GFP_NOWARN); 7894 if (!tab) { 7895 ret = -ENOMEM; 7896 goto end; 7897 } 7898 7899 if (!btf->dtor_kfunc_tab) 7900 tab->cnt = 0; 7901 btf->dtor_kfunc_tab = tab; 7902 7903 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 7904 tab->cnt += add_cnt; 7905 7906 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 7907 7908 end: 7909 if (ret) 7910 btf_free_dtor_kfunc_tab(btf); 7911 btf_put(btf); 7912 return ret; 7913 } 7914 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 7915 7916 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 7917 7918 /* Check local and target types for compatibility. This check is used for 7919 * type-based CO-RE relocations and follow slightly different rules than 7920 * field-based relocations. This function assumes that root types were already 7921 * checked for name match. Beyond that initial root-level name check, names 7922 * are completely ignored. Compatibility rules are as follows: 7923 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 7924 * kind should match for local and target types (i.e., STRUCT is not 7925 * compatible with UNION); 7926 * - for ENUMs/ENUM64s, the size is ignored; 7927 * - for INT, size and signedness are ignored; 7928 * - for ARRAY, dimensionality is ignored, element types are checked for 7929 * compatibility recursively; 7930 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 7931 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 7932 * - FUNC_PROTOs are compatible if they have compatible signature: same 7933 * number of input args and compatible return and argument types. 7934 * These rules are not set in stone and probably will be adjusted as we get 7935 * more experience with using BPF CO-RE relocations. 7936 */ 7937 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 7938 const struct btf *targ_btf, __u32 targ_id) 7939 { 7940 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 7941 MAX_TYPES_ARE_COMPAT_DEPTH); 7942 } 7943 7944 #define MAX_TYPES_MATCH_DEPTH 2 7945 7946 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 7947 const struct btf *targ_btf, u32 targ_id) 7948 { 7949 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 7950 MAX_TYPES_MATCH_DEPTH); 7951 } 7952 7953 static bool bpf_core_is_flavor_sep(const char *s) 7954 { 7955 /* check X___Y name pattern, where X and Y are not underscores */ 7956 return s[0] != '_' && /* X */ 7957 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 7958 s[4] != '_'; /* Y */ 7959 } 7960 7961 size_t bpf_core_essential_name_len(const char *name) 7962 { 7963 size_t n = strlen(name); 7964 int i; 7965 7966 for (i = n - 5; i >= 0; i--) { 7967 if (bpf_core_is_flavor_sep(name + i)) 7968 return i + 1; 7969 } 7970 return n; 7971 } 7972 7973 struct bpf_cand_cache { 7974 const char *name; 7975 u32 name_len; 7976 u16 kind; 7977 u16 cnt; 7978 struct { 7979 const struct btf *btf; 7980 u32 id; 7981 } cands[]; 7982 }; 7983 7984 static void bpf_free_cands(struct bpf_cand_cache *cands) 7985 { 7986 if (!cands->cnt) 7987 /* empty candidate array was allocated on stack */ 7988 return; 7989 kfree(cands); 7990 } 7991 7992 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 7993 { 7994 kfree(cands->name); 7995 kfree(cands); 7996 } 7997 7998 #define VMLINUX_CAND_CACHE_SIZE 31 7999 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8000 8001 #define MODULE_CAND_CACHE_SIZE 31 8002 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8003 8004 static DEFINE_MUTEX(cand_cache_mutex); 8005 8006 static void __print_cand_cache(struct bpf_verifier_log *log, 8007 struct bpf_cand_cache **cache, 8008 int cache_size) 8009 { 8010 struct bpf_cand_cache *cc; 8011 int i, j; 8012 8013 for (i = 0; i < cache_size; i++) { 8014 cc = cache[i]; 8015 if (!cc) 8016 continue; 8017 bpf_log(log, "[%d]%s(", i, cc->name); 8018 for (j = 0; j < cc->cnt; j++) { 8019 bpf_log(log, "%d", cc->cands[j].id); 8020 if (j < cc->cnt - 1) 8021 bpf_log(log, " "); 8022 } 8023 bpf_log(log, "), "); 8024 } 8025 } 8026 8027 static void print_cand_cache(struct bpf_verifier_log *log) 8028 { 8029 mutex_lock(&cand_cache_mutex); 8030 bpf_log(log, "vmlinux_cand_cache:"); 8031 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8032 bpf_log(log, "\nmodule_cand_cache:"); 8033 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8034 bpf_log(log, "\n"); 8035 mutex_unlock(&cand_cache_mutex); 8036 } 8037 8038 static u32 hash_cands(struct bpf_cand_cache *cands) 8039 { 8040 return jhash(cands->name, cands->name_len, 0); 8041 } 8042 8043 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8044 struct bpf_cand_cache **cache, 8045 int cache_size) 8046 { 8047 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8048 8049 if (cc && cc->name_len == cands->name_len && 8050 !strncmp(cc->name, cands->name, cands->name_len)) 8051 return cc; 8052 return NULL; 8053 } 8054 8055 static size_t sizeof_cands(int cnt) 8056 { 8057 return offsetof(struct bpf_cand_cache, cands[cnt]); 8058 } 8059 8060 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8061 struct bpf_cand_cache **cache, 8062 int cache_size) 8063 { 8064 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8065 8066 if (*cc) { 8067 bpf_free_cands_from_cache(*cc); 8068 *cc = NULL; 8069 } 8070 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8071 if (!new_cands) { 8072 bpf_free_cands(cands); 8073 return ERR_PTR(-ENOMEM); 8074 } 8075 /* strdup the name, since it will stay in cache. 8076 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8077 */ 8078 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8079 bpf_free_cands(cands); 8080 if (!new_cands->name) { 8081 kfree(new_cands); 8082 return ERR_PTR(-ENOMEM); 8083 } 8084 *cc = new_cands; 8085 return new_cands; 8086 } 8087 8088 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8089 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8090 int cache_size) 8091 { 8092 struct bpf_cand_cache *cc; 8093 int i, j; 8094 8095 for (i = 0; i < cache_size; i++) { 8096 cc = cache[i]; 8097 if (!cc) 8098 continue; 8099 if (!btf) { 8100 /* when new module is loaded purge all of module_cand_cache, 8101 * since new module might have candidates with the name 8102 * that matches cached cands. 8103 */ 8104 bpf_free_cands_from_cache(cc); 8105 cache[i] = NULL; 8106 continue; 8107 } 8108 /* when module is unloaded purge cache entries 8109 * that match module's btf 8110 */ 8111 for (j = 0; j < cc->cnt; j++) 8112 if (cc->cands[j].btf == btf) { 8113 bpf_free_cands_from_cache(cc); 8114 cache[i] = NULL; 8115 break; 8116 } 8117 } 8118 8119 } 8120 8121 static void purge_cand_cache(struct btf *btf) 8122 { 8123 mutex_lock(&cand_cache_mutex); 8124 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8125 mutex_unlock(&cand_cache_mutex); 8126 } 8127 #endif 8128 8129 static struct bpf_cand_cache * 8130 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8131 int targ_start_id) 8132 { 8133 struct bpf_cand_cache *new_cands; 8134 const struct btf_type *t; 8135 const char *targ_name; 8136 size_t targ_essent_len; 8137 int n, i; 8138 8139 n = btf_nr_types(targ_btf); 8140 for (i = targ_start_id; i < n; i++) { 8141 t = btf_type_by_id(targ_btf, i); 8142 if (btf_kind(t) != cands->kind) 8143 continue; 8144 8145 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8146 if (!targ_name) 8147 continue; 8148 8149 /* the resched point is before strncmp to make sure that search 8150 * for non-existing name will have a chance to schedule(). 8151 */ 8152 cond_resched(); 8153 8154 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8155 continue; 8156 8157 targ_essent_len = bpf_core_essential_name_len(targ_name); 8158 if (targ_essent_len != cands->name_len) 8159 continue; 8160 8161 /* most of the time there is only one candidate for a given kind+name pair */ 8162 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8163 if (!new_cands) { 8164 bpf_free_cands(cands); 8165 return ERR_PTR(-ENOMEM); 8166 } 8167 8168 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8169 bpf_free_cands(cands); 8170 cands = new_cands; 8171 cands->cands[cands->cnt].btf = targ_btf; 8172 cands->cands[cands->cnt].id = i; 8173 cands->cnt++; 8174 } 8175 return cands; 8176 } 8177 8178 static struct bpf_cand_cache * 8179 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8180 { 8181 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8182 const struct btf *local_btf = ctx->btf; 8183 const struct btf_type *local_type; 8184 const struct btf *main_btf; 8185 size_t local_essent_len; 8186 struct btf *mod_btf; 8187 const char *name; 8188 int id; 8189 8190 main_btf = bpf_get_btf_vmlinux(); 8191 if (IS_ERR(main_btf)) 8192 return ERR_CAST(main_btf); 8193 if (!main_btf) 8194 return ERR_PTR(-EINVAL); 8195 8196 local_type = btf_type_by_id(local_btf, local_type_id); 8197 if (!local_type) 8198 return ERR_PTR(-EINVAL); 8199 8200 name = btf_name_by_offset(local_btf, local_type->name_off); 8201 if (str_is_empty(name)) 8202 return ERR_PTR(-EINVAL); 8203 local_essent_len = bpf_core_essential_name_len(name); 8204 8205 cands = &local_cand; 8206 cands->name = name; 8207 cands->kind = btf_kind(local_type); 8208 cands->name_len = local_essent_len; 8209 8210 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8211 /* cands is a pointer to stack here */ 8212 if (cc) { 8213 if (cc->cnt) 8214 return cc; 8215 goto check_modules; 8216 } 8217 8218 /* Attempt to find target candidates in vmlinux BTF first */ 8219 cands = bpf_core_add_cands(cands, main_btf, 1); 8220 if (IS_ERR(cands)) 8221 return ERR_CAST(cands); 8222 8223 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8224 8225 /* populate cache even when cands->cnt == 0 */ 8226 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8227 if (IS_ERR(cc)) 8228 return ERR_CAST(cc); 8229 8230 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8231 if (cc->cnt) 8232 return cc; 8233 8234 check_modules: 8235 /* cands is a pointer to stack here and cands->cnt == 0 */ 8236 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8237 if (cc) 8238 /* if cache has it return it even if cc->cnt == 0 */ 8239 return cc; 8240 8241 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8242 spin_lock_bh(&btf_idr_lock); 8243 idr_for_each_entry(&btf_idr, mod_btf, id) { 8244 if (!btf_is_module(mod_btf)) 8245 continue; 8246 /* linear search could be slow hence unlock/lock 8247 * the IDR to avoiding holding it for too long 8248 */ 8249 btf_get(mod_btf); 8250 spin_unlock_bh(&btf_idr_lock); 8251 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8252 if (IS_ERR(cands)) { 8253 btf_put(mod_btf); 8254 return ERR_CAST(cands); 8255 } 8256 spin_lock_bh(&btf_idr_lock); 8257 btf_put(mod_btf); 8258 } 8259 spin_unlock_bh(&btf_idr_lock); 8260 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8261 * or pointer to stack if cands->cnd == 0. 8262 * Copy it into the cache even when cands->cnt == 0 and 8263 * return the result. 8264 */ 8265 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8266 } 8267 8268 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8269 int relo_idx, void *insn) 8270 { 8271 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8272 struct bpf_core_cand_list cands = {}; 8273 struct bpf_core_relo_res targ_res; 8274 struct bpf_core_spec *specs; 8275 int err; 8276 8277 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8278 * into arrays of btf_ids of struct fields and array indices. 8279 */ 8280 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8281 if (!specs) 8282 return -ENOMEM; 8283 8284 if (need_cands) { 8285 struct bpf_cand_cache *cc; 8286 int i; 8287 8288 mutex_lock(&cand_cache_mutex); 8289 cc = bpf_core_find_cands(ctx, relo->type_id); 8290 if (IS_ERR(cc)) { 8291 bpf_log(ctx->log, "target candidate search failed for %d\n", 8292 relo->type_id); 8293 err = PTR_ERR(cc); 8294 goto out; 8295 } 8296 if (cc->cnt) { 8297 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8298 if (!cands.cands) { 8299 err = -ENOMEM; 8300 goto out; 8301 } 8302 } 8303 for (i = 0; i < cc->cnt; i++) { 8304 bpf_log(ctx->log, 8305 "CO-RE relocating %s %s: found target candidate [%d]\n", 8306 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8307 cands.cands[i].btf = cc->cands[i].btf; 8308 cands.cands[i].id = cc->cands[i].id; 8309 } 8310 cands.len = cc->cnt; 8311 /* cand_cache_mutex needs to span the cache lookup and 8312 * copy of btf pointer into bpf_core_cand_list, 8313 * since module can be unloaded while bpf_core_calc_relo_insn 8314 * is working with module's btf. 8315 */ 8316 } 8317 8318 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8319 &targ_res); 8320 if (err) 8321 goto out; 8322 8323 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8324 &targ_res); 8325 8326 out: 8327 kfree(specs); 8328 if (need_cands) { 8329 kfree(cands.cands); 8330 mutex_unlock(&cand_cache_mutex); 8331 if (ctx->log->level & BPF_LOG_LEVEL2) 8332 print_cand_cache(ctx->log); 8333 } 8334 return err; 8335 } 8336 8337 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8338 const struct bpf_reg_state *reg, 8339 int off) 8340 { 8341 struct btf *btf = reg->btf; 8342 const struct btf_type *walk_type, *safe_type; 8343 const char *tname; 8344 char safe_tname[64]; 8345 long ret, safe_id; 8346 const struct btf_member *member, *m_walk = NULL; 8347 u32 i; 8348 const char *walk_name; 8349 8350 walk_type = btf_type_by_id(btf, reg->btf_id); 8351 if (!walk_type) 8352 return false; 8353 8354 tname = btf_name_by_offset(btf, walk_type->name_off); 8355 8356 ret = snprintf(safe_tname, sizeof(safe_tname), "%s__safe_fields", tname); 8357 if (ret < 0) 8358 return false; 8359 8360 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8361 if (safe_id < 0) 8362 return false; 8363 8364 safe_type = btf_type_by_id(btf, safe_id); 8365 if (!safe_type) 8366 return false; 8367 8368 for_each_member(i, walk_type, member) { 8369 u32 moff; 8370 8371 /* We're looking for the PTR_TO_BTF_ID member in the struct 8372 * type we're walking which matches the specified offset. 8373 * Below, we'll iterate over the fields in the safe variant of 8374 * the struct and see if any of them has a matching type / 8375 * name. 8376 */ 8377 moff = __btf_member_bit_offset(walk_type, member) / 8; 8378 if (off == moff) { 8379 m_walk = member; 8380 break; 8381 } 8382 } 8383 if (m_walk == NULL) 8384 return false; 8385 8386 walk_name = __btf_name_by_offset(btf, m_walk->name_off); 8387 for_each_member(i, safe_type, member) { 8388 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8389 8390 /* If we match on both type and name, the field is considered trusted. */ 8391 if (m_walk->type == member->type && !strcmp(walk_name, m_name)) 8392 return true; 8393 } 8394 8395 return false; 8396 } 8397 8398 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8399 const struct btf *reg_btf, u32 reg_id, 8400 const struct btf *arg_btf, u32 arg_id) 8401 { 8402 const char *reg_name, *arg_name, *search_needle; 8403 const struct btf_type *reg_type, *arg_type; 8404 int reg_len, arg_len, cmp_len; 8405 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8406 8407 reg_type = btf_type_by_id(reg_btf, reg_id); 8408 if (!reg_type) 8409 return false; 8410 8411 arg_type = btf_type_by_id(arg_btf, arg_id); 8412 if (!arg_type) 8413 return false; 8414 8415 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8416 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8417 8418 reg_len = strlen(reg_name); 8419 arg_len = strlen(arg_name); 8420 8421 /* Exactly one of the two type names may be suffixed with ___init, so 8422 * if the strings are the same size, they can't possibly be no-cast 8423 * aliases of one another. If you have two of the same type names, e.g. 8424 * they're both nf_conn___init, it would be improper to return true 8425 * because they are _not_ no-cast aliases, they are the same type. 8426 */ 8427 if (reg_len == arg_len) 8428 return false; 8429 8430 /* Either of the two names must be the other name, suffixed with ___init. */ 8431 if ((reg_len != arg_len + pattern_len) && 8432 (arg_len != reg_len + pattern_len)) 8433 return false; 8434 8435 if (reg_len < arg_len) { 8436 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8437 cmp_len = reg_len; 8438 } else { 8439 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8440 cmp_len = arg_len; 8441 } 8442 8443 if (!search_needle) 8444 return false; 8445 8446 /* ___init suffix must come at the end of the name */ 8447 if (*(search_needle + pattern_len) != '\0') 8448 return false; 8449 8450 return !strncmp(reg_name, arg_name, cmp_len); 8451 } 8452