xref: /openbmc/linux/kernel/bpf/btf.c (revision 0da908c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/bpf_lsm.h>
23 #include <linux/skmsg.h>
24 #include <linux/perf_event.h>
25 #include <linux/bsearch.h>
26 #include <linux/kobject.h>
27 #include <linux/sysfs.h>
28 #include <net/sock.h>
29 #include "../tools/lib/bpf/relo_core.h"
30 
31 /* BTF (BPF Type Format) is the meta data format which describes
32  * the data types of BPF program/map.  Hence, it basically focus
33  * on the C programming language which the modern BPF is primary
34  * using.
35  *
36  * ELF Section:
37  * ~~~~~~~~~~~
38  * The BTF data is stored under the ".BTF" ELF section
39  *
40  * struct btf_type:
41  * ~~~~~~~~~~~~~~~
42  * Each 'struct btf_type' object describes a C data type.
43  * Depending on the type it is describing, a 'struct btf_type'
44  * object may be followed by more data.  F.e.
45  * To describe an array, 'struct btf_type' is followed by
46  * 'struct btf_array'.
47  *
48  * 'struct btf_type' and any extra data following it are
49  * 4 bytes aligned.
50  *
51  * Type section:
52  * ~~~~~~~~~~~~~
53  * The BTF type section contains a list of 'struct btf_type' objects.
54  * Each one describes a C type.  Recall from the above section
55  * that a 'struct btf_type' object could be immediately followed by extra
56  * data in order to describe some particular C types.
57  *
58  * type_id:
59  * ~~~~~~~
60  * Each btf_type object is identified by a type_id.  The type_id
61  * is implicitly implied by the location of the btf_type object in
62  * the BTF type section.  The first one has type_id 1.  The second
63  * one has type_id 2...etc.  Hence, an earlier btf_type has
64  * a smaller type_id.
65  *
66  * A btf_type object may refer to another btf_type object by using
67  * type_id (i.e. the "type" in the "struct btf_type").
68  *
69  * NOTE that we cannot assume any reference-order.
70  * A btf_type object can refer to an earlier btf_type object
71  * but it can also refer to a later btf_type object.
72  *
73  * For example, to describe "const void *".  A btf_type
74  * object describing "const" may refer to another btf_type
75  * object describing "void *".  This type-reference is done
76  * by specifying type_id:
77  *
78  * [1] CONST (anon) type_id=2
79  * [2] PTR (anon) type_id=0
80  *
81  * The above is the btf_verifier debug log:
82  *   - Each line started with "[?]" is a btf_type object
83  *   - [?] is the type_id of the btf_type object.
84  *   - CONST/PTR is the BTF_KIND_XXX
85  *   - "(anon)" is the name of the type.  It just
86  *     happens that CONST and PTR has no name.
87  *   - type_id=XXX is the 'u32 type' in btf_type
88  *
89  * NOTE: "void" has type_id 0
90  *
91  * String section:
92  * ~~~~~~~~~~~~~~
93  * The BTF string section contains the names used by the type section.
94  * Each string is referred by an "offset" from the beginning of the
95  * string section.
96  *
97  * Each string is '\0' terminated.
98  *
99  * The first character in the string section must be '\0'
100  * which is used to mean 'anonymous'. Some btf_type may not
101  * have a name.
102  */
103 
104 /* BTF verification:
105  *
106  * To verify BTF data, two passes are needed.
107  *
108  * Pass #1
109  * ~~~~~~~
110  * The first pass is to collect all btf_type objects to
111  * an array: "btf->types".
112  *
113  * Depending on the C type that a btf_type is describing,
114  * a btf_type may be followed by extra data.  We don't know
115  * how many btf_type is there, and more importantly we don't
116  * know where each btf_type is located in the type section.
117  *
118  * Without knowing the location of each type_id, most verifications
119  * cannot be done.  e.g. an earlier btf_type may refer to a later
120  * btf_type (recall the "const void *" above), so we cannot
121  * check this type-reference in the first pass.
122  *
123  * In the first pass, it still does some verifications (e.g.
124  * checking the name is a valid offset to the string section).
125  *
126  * Pass #2
127  * ~~~~~~~
128  * The main focus is to resolve a btf_type that is referring
129  * to another type.
130  *
131  * We have to ensure the referring type:
132  * 1) does exist in the BTF (i.e. in btf->types[])
133  * 2) does not cause a loop:
134  *	struct A {
135  *		struct B b;
136  *	};
137  *
138  *	struct B {
139  *		struct A a;
140  *	};
141  *
142  * btf_type_needs_resolve() decides if a btf_type needs
143  * to be resolved.
144  *
145  * The needs_resolve type implements the "resolve()" ops which
146  * essentially does a DFS and detects backedge.
147  *
148  * During resolve (or DFS), different C types have different
149  * "RESOLVED" conditions.
150  *
151  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
152  * members because a member is always referring to another
153  * type.  A struct's member can be treated as "RESOLVED" if
154  * it is referring to a BTF_KIND_PTR.  Otherwise, the
155  * following valid C struct would be rejected:
156  *
157  *	struct A {
158  *		int m;
159  *		struct A *a;
160  *	};
161  *
162  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
163  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
164  * detect a pointer loop, e.g.:
165  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
166  *                        ^                                         |
167  *                        +-----------------------------------------+
168  *
169  */
170 
171 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
172 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
173 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
174 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
175 #define BITS_ROUNDUP_BYTES(bits) \
176 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
177 
178 #define BTF_INFO_MASK 0x9f00ffff
179 #define BTF_INT_MASK 0x0fffffff
180 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
181 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
182 
183 /* 16MB for 64k structs and each has 16 members and
184  * a few MB spaces for the string section.
185  * The hard limit is S32_MAX.
186  */
187 #define BTF_MAX_SIZE (16 * 1024 * 1024)
188 
189 #define for_each_member_from(i, from, struct_type, member)		\
190 	for (i = from, member = btf_type_member(struct_type) + from;	\
191 	     i < btf_type_vlen(struct_type);				\
192 	     i++, member++)
193 
194 #define for_each_vsi_from(i, from, struct_type, member)				\
195 	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
196 	     i < btf_type_vlen(struct_type);					\
197 	     i++, member++)
198 
199 DEFINE_IDR(btf_idr);
200 DEFINE_SPINLOCK(btf_idr_lock);
201 
202 enum btf_kfunc_hook {
203 	BTF_KFUNC_HOOK_COMMON,
204 	BTF_KFUNC_HOOK_XDP,
205 	BTF_KFUNC_HOOK_TC,
206 	BTF_KFUNC_HOOK_STRUCT_OPS,
207 	BTF_KFUNC_HOOK_TRACING,
208 	BTF_KFUNC_HOOK_SYSCALL,
209 	BTF_KFUNC_HOOK_FMODRET,
210 	BTF_KFUNC_HOOK_MAX,
211 };
212 
213 enum {
214 	BTF_KFUNC_SET_MAX_CNT = 256,
215 	BTF_DTOR_KFUNC_MAX_CNT = 256,
216 };
217 
218 struct btf_kfunc_set_tab {
219 	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
220 };
221 
222 struct btf_id_dtor_kfunc_tab {
223 	u32 cnt;
224 	struct btf_id_dtor_kfunc dtors[];
225 };
226 
227 struct btf {
228 	void *data;
229 	struct btf_type **types;
230 	u32 *resolved_ids;
231 	u32 *resolved_sizes;
232 	const char *strings;
233 	void *nohdr_data;
234 	struct btf_header hdr;
235 	u32 nr_types; /* includes VOID for base BTF */
236 	u32 types_size;
237 	u32 data_size;
238 	refcount_t refcnt;
239 	u32 id;
240 	struct rcu_head rcu;
241 	struct btf_kfunc_set_tab *kfunc_set_tab;
242 	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
243 	struct btf_struct_metas *struct_meta_tab;
244 
245 	/* split BTF support */
246 	struct btf *base_btf;
247 	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
248 	u32 start_str_off; /* first string offset (0 for base BTF) */
249 	char name[MODULE_NAME_LEN];
250 	bool kernel_btf;
251 };
252 
253 enum verifier_phase {
254 	CHECK_META,
255 	CHECK_TYPE,
256 };
257 
258 struct resolve_vertex {
259 	const struct btf_type *t;
260 	u32 type_id;
261 	u16 next_member;
262 };
263 
264 enum visit_state {
265 	NOT_VISITED,
266 	VISITED,
267 	RESOLVED,
268 };
269 
270 enum resolve_mode {
271 	RESOLVE_TBD,	/* To Be Determined */
272 	RESOLVE_PTR,	/* Resolving for Pointer */
273 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
274 					 * or array
275 					 */
276 };
277 
278 #define MAX_RESOLVE_DEPTH 32
279 
280 struct btf_sec_info {
281 	u32 off;
282 	u32 len;
283 };
284 
285 struct btf_verifier_env {
286 	struct btf *btf;
287 	u8 *visit_states;
288 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
289 	struct bpf_verifier_log log;
290 	u32 log_type_id;
291 	u32 top_stack;
292 	enum verifier_phase phase;
293 	enum resolve_mode resolve_mode;
294 };
295 
296 static const char * const btf_kind_str[NR_BTF_KINDS] = {
297 	[BTF_KIND_UNKN]		= "UNKNOWN",
298 	[BTF_KIND_INT]		= "INT",
299 	[BTF_KIND_PTR]		= "PTR",
300 	[BTF_KIND_ARRAY]	= "ARRAY",
301 	[BTF_KIND_STRUCT]	= "STRUCT",
302 	[BTF_KIND_UNION]	= "UNION",
303 	[BTF_KIND_ENUM]		= "ENUM",
304 	[BTF_KIND_FWD]		= "FWD",
305 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
306 	[BTF_KIND_VOLATILE]	= "VOLATILE",
307 	[BTF_KIND_CONST]	= "CONST",
308 	[BTF_KIND_RESTRICT]	= "RESTRICT",
309 	[BTF_KIND_FUNC]		= "FUNC",
310 	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
311 	[BTF_KIND_VAR]		= "VAR",
312 	[BTF_KIND_DATASEC]	= "DATASEC",
313 	[BTF_KIND_FLOAT]	= "FLOAT",
314 	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
315 	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
316 	[BTF_KIND_ENUM64]	= "ENUM64",
317 };
318 
319 const char *btf_type_str(const struct btf_type *t)
320 {
321 	return btf_kind_str[BTF_INFO_KIND(t->info)];
322 }
323 
324 /* Chunk size we use in safe copy of data to be shown. */
325 #define BTF_SHOW_OBJ_SAFE_SIZE		32
326 
327 /*
328  * This is the maximum size of a base type value (equivalent to a
329  * 128-bit int); if we are at the end of our safe buffer and have
330  * less than 16 bytes space we can't be assured of being able
331  * to copy the next type safely, so in such cases we will initiate
332  * a new copy.
333  */
334 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
335 
336 /* Type name size */
337 #define BTF_SHOW_NAME_SIZE		80
338 
339 /*
340  * Common data to all BTF show operations. Private show functions can add
341  * their own data to a structure containing a struct btf_show and consult it
342  * in the show callback.  See btf_type_show() below.
343  *
344  * One challenge with showing nested data is we want to skip 0-valued
345  * data, but in order to figure out whether a nested object is all zeros
346  * we need to walk through it.  As a result, we need to make two passes
347  * when handling structs, unions and arrays; the first path simply looks
348  * for nonzero data, while the second actually does the display.  The first
349  * pass is signalled by show->state.depth_check being set, and if we
350  * encounter a non-zero value we set show->state.depth_to_show to
351  * the depth at which we encountered it.  When we have completed the
352  * first pass, we will know if anything needs to be displayed if
353  * depth_to_show > depth.  See btf_[struct,array]_show() for the
354  * implementation of this.
355  *
356  * Another problem is we want to ensure the data for display is safe to
357  * access.  To support this, the anonymous "struct {} obj" tracks the data
358  * object and our safe copy of it.  We copy portions of the data needed
359  * to the object "copy" buffer, but because its size is limited to
360  * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
361  * traverse larger objects for display.
362  *
363  * The various data type show functions all start with a call to
364  * btf_show_start_type() which returns a pointer to the safe copy
365  * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
366  * raw data itself).  btf_show_obj_safe() is responsible for
367  * using copy_from_kernel_nofault() to update the safe data if necessary
368  * as we traverse the object's data.  skbuff-like semantics are
369  * used:
370  *
371  * - obj.head points to the start of the toplevel object for display
372  * - obj.size is the size of the toplevel object
373  * - obj.data points to the current point in the original data at
374  *   which our safe data starts.  obj.data will advance as we copy
375  *   portions of the data.
376  *
377  * In most cases a single copy will suffice, but larger data structures
378  * such as "struct task_struct" will require many copies.  The logic in
379  * btf_show_obj_safe() handles the logic that determines if a new
380  * copy_from_kernel_nofault() is needed.
381  */
382 struct btf_show {
383 	u64 flags;
384 	void *target;	/* target of show operation (seq file, buffer) */
385 	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
386 	const struct btf *btf;
387 	/* below are used during iteration */
388 	struct {
389 		u8 depth;
390 		u8 depth_to_show;
391 		u8 depth_check;
392 		u8 array_member:1,
393 		   array_terminated:1;
394 		u16 array_encoding;
395 		u32 type_id;
396 		int status;			/* non-zero for error */
397 		const struct btf_type *type;
398 		const struct btf_member *member;
399 		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
400 	} state;
401 	struct {
402 		u32 size;
403 		void *head;
404 		void *data;
405 		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
406 	} obj;
407 };
408 
409 struct btf_kind_operations {
410 	s32 (*check_meta)(struct btf_verifier_env *env,
411 			  const struct btf_type *t,
412 			  u32 meta_left);
413 	int (*resolve)(struct btf_verifier_env *env,
414 		       const struct resolve_vertex *v);
415 	int (*check_member)(struct btf_verifier_env *env,
416 			    const struct btf_type *struct_type,
417 			    const struct btf_member *member,
418 			    const struct btf_type *member_type);
419 	int (*check_kflag_member)(struct btf_verifier_env *env,
420 				  const struct btf_type *struct_type,
421 				  const struct btf_member *member,
422 				  const struct btf_type *member_type);
423 	void (*log_details)(struct btf_verifier_env *env,
424 			    const struct btf_type *t);
425 	void (*show)(const struct btf *btf, const struct btf_type *t,
426 			 u32 type_id, void *data, u8 bits_offsets,
427 			 struct btf_show *show);
428 };
429 
430 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
431 static struct btf_type btf_void;
432 
433 static int btf_resolve(struct btf_verifier_env *env,
434 		       const struct btf_type *t, u32 type_id);
435 
436 static int btf_func_check(struct btf_verifier_env *env,
437 			  const struct btf_type *t);
438 
439 static bool btf_type_is_modifier(const struct btf_type *t)
440 {
441 	/* Some of them is not strictly a C modifier
442 	 * but they are grouped into the same bucket
443 	 * for BTF concern:
444 	 *   A type (t) that refers to another
445 	 *   type through t->type AND its size cannot
446 	 *   be determined without following the t->type.
447 	 *
448 	 * ptr does not fall into this bucket
449 	 * because its size is always sizeof(void *).
450 	 */
451 	switch (BTF_INFO_KIND(t->info)) {
452 	case BTF_KIND_TYPEDEF:
453 	case BTF_KIND_VOLATILE:
454 	case BTF_KIND_CONST:
455 	case BTF_KIND_RESTRICT:
456 	case BTF_KIND_TYPE_TAG:
457 		return true;
458 	}
459 
460 	return false;
461 }
462 
463 bool btf_type_is_void(const struct btf_type *t)
464 {
465 	return t == &btf_void;
466 }
467 
468 static bool btf_type_is_fwd(const struct btf_type *t)
469 {
470 	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
471 }
472 
473 static bool btf_type_nosize(const struct btf_type *t)
474 {
475 	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
476 	       btf_type_is_func(t) || btf_type_is_func_proto(t);
477 }
478 
479 static bool btf_type_nosize_or_null(const struct btf_type *t)
480 {
481 	return !t || btf_type_nosize(t);
482 }
483 
484 static bool btf_type_is_datasec(const struct btf_type *t)
485 {
486 	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
487 }
488 
489 static bool btf_type_is_decl_tag(const struct btf_type *t)
490 {
491 	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
492 }
493 
494 static bool btf_type_is_decl_tag_target(const struct btf_type *t)
495 {
496 	return btf_type_is_func(t) || btf_type_is_struct(t) ||
497 	       btf_type_is_var(t) || btf_type_is_typedef(t);
498 }
499 
500 u32 btf_nr_types(const struct btf *btf)
501 {
502 	u32 total = 0;
503 
504 	while (btf) {
505 		total += btf->nr_types;
506 		btf = btf->base_btf;
507 	}
508 
509 	return total;
510 }
511 
512 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
513 {
514 	const struct btf_type *t;
515 	const char *tname;
516 	u32 i, total;
517 
518 	total = btf_nr_types(btf);
519 	for (i = 1; i < total; i++) {
520 		t = btf_type_by_id(btf, i);
521 		if (BTF_INFO_KIND(t->info) != kind)
522 			continue;
523 
524 		tname = btf_name_by_offset(btf, t->name_off);
525 		if (!strcmp(tname, name))
526 			return i;
527 	}
528 
529 	return -ENOENT;
530 }
531 
532 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
533 {
534 	struct btf *btf;
535 	s32 ret;
536 	int id;
537 
538 	btf = bpf_get_btf_vmlinux();
539 	if (IS_ERR(btf))
540 		return PTR_ERR(btf);
541 	if (!btf)
542 		return -EINVAL;
543 
544 	ret = btf_find_by_name_kind(btf, name, kind);
545 	/* ret is never zero, since btf_find_by_name_kind returns
546 	 * positive btf_id or negative error.
547 	 */
548 	if (ret > 0) {
549 		btf_get(btf);
550 		*btf_p = btf;
551 		return ret;
552 	}
553 
554 	/* If name is not found in vmlinux's BTF then search in module's BTFs */
555 	spin_lock_bh(&btf_idr_lock);
556 	idr_for_each_entry(&btf_idr, btf, id) {
557 		if (!btf_is_module(btf))
558 			continue;
559 		/* linear search could be slow hence unlock/lock
560 		 * the IDR to avoiding holding it for too long
561 		 */
562 		btf_get(btf);
563 		spin_unlock_bh(&btf_idr_lock);
564 		ret = btf_find_by_name_kind(btf, name, kind);
565 		if (ret > 0) {
566 			*btf_p = btf;
567 			return ret;
568 		}
569 		spin_lock_bh(&btf_idr_lock);
570 		btf_put(btf);
571 	}
572 	spin_unlock_bh(&btf_idr_lock);
573 	return ret;
574 }
575 
576 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
577 					       u32 id, u32 *res_id)
578 {
579 	const struct btf_type *t = btf_type_by_id(btf, id);
580 
581 	while (btf_type_is_modifier(t)) {
582 		id = t->type;
583 		t = btf_type_by_id(btf, t->type);
584 	}
585 
586 	if (res_id)
587 		*res_id = id;
588 
589 	return t;
590 }
591 
592 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
593 					    u32 id, u32 *res_id)
594 {
595 	const struct btf_type *t;
596 
597 	t = btf_type_skip_modifiers(btf, id, NULL);
598 	if (!btf_type_is_ptr(t))
599 		return NULL;
600 
601 	return btf_type_skip_modifiers(btf, t->type, res_id);
602 }
603 
604 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
605 						 u32 id, u32 *res_id)
606 {
607 	const struct btf_type *ptype;
608 
609 	ptype = btf_type_resolve_ptr(btf, id, res_id);
610 	if (ptype && btf_type_is_func_proto(ptype))
611 		return ptype;
612 
613 	return NULL;
614 }
615 
616 /* Types that act only as a source, not sink or intermediate
617  * type when resolving.
618  */
619 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
620 {
621 	return btf_type_is_var(t) ||
622 	       btf_type_is_decl_tag(t) ||
623 	       btf_type_is_datasec(t);
624 }
625 
626 /* What types need to be resolved?
627  *
628  * btf_type_is_modifier() is an obvious one.
629  *
630  * btf_type_is_struct() because its member refers to
631  * another type (through member->type).
632  *
633  * btf_type_is_var() because the variable refers to
634  * another type. btf_type_is_datasec() holds multiple
635  * btf_type_is_var() types that need resolving.
636  *
637  * btf_type_is_array() because its element (array->type)
638  * refers to another type.  Array can be thought of a
639  * special case of struct while array just has the same
640  * member-type repeated by array->nelems of times.
641  */
642 static bool btf_type_needs_resolve(const struct btf_type *t)
643 {
644 	return btf_type_is_modifier(t) ||
645 	       btf_type_is_ptr(t) ||
646 	       btf_type_is_struct(t) ||
647 	       btf_type_is_array(t) ||
648 	       btf_type_is_var(t) ||
649 	       btf_type_is_func(t) ||
650 	       btf_type_is_decl_tag(t) ||
651 	       btf_type_is_datasec(t);
652 }
653 
654 /* t->size can be used */
655 static bool btf_type_has_size(const struct btf_type *t)
656 {
657 	switch (BTF_INFO_KIND(t->info)) {
658 	case BTF_KIND_INT:
659 	case BTF_KIND_STRUCT:
660 	case BTF_KIND_UNION:
661 	case BTF_KIND_ENUM:
662 	case BTF_KIND_DATASEC:
663 	case BTF_KIND_FLOAT:
664 	case BTF_KIND_ENUM64:
665 		return true;
666 	}
667 
668 	return false;
669 }
670 
671 static const char *btf_int_encoding_str(u8 encoding)
672 {
673 	if (encoding == 0)
674 		return "(none)";
675 	else if (encoding == BTF_INT_SIGNED)
676 		return "SIGNED";
677 	else if (encoding == BTF_INT_CHAR)
678 		return "CHAR";
679 	else if (encoding == BTF_INT_BOOL)
680 		return "BOOL";
681 	else
682 		return "UNKN";
683 }
684 
685 static u32 btf_type_int(const struct btf_type *t)
686 {
687 	return *(u32 *)(t + 1);
688 }
689 
690 static const struct btf_array *btf_type_array(const struct btf_type *t)
691 {
692 	return (const struct btf_array *)(t + 1);
693 }
694 
695 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
696 {
697 	return (const struct btf_enum *)(t + 1);
698 }
699 
700 static const struct btf_var *btf_type_var(const struct btf_type *t)
701 {
702 	return (const struct btf_var *)(t + 1);
703 }
704 
705 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
706 {
707 	return (const struct btf_decl_tag *)(t + 1);
708 }
709 
710 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
711 {
712 	return (const struct btf_enum64 *)(t + 1);
713 }
714 
715 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
716 {
717 	return kind_ops[BTF_INFO_KIND(t->info)];
718 }
719 
720 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
721 {
722 	if (!BTF_STR_OFFSET_VALID(offset))
723 		return false;
724 
725 	while (offset < btf->start_str_off)
726 		btf = btf->base_btf;
727 
728 	offset -= btf->start_str_off;
729 	return offset < btf->hdr.str_len;
730 }
731 
732 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
733 {
734 	if ((first ? !isalpha(c) :
735 		     !isalnum(c)) &&
736 	    c != '_' &&
737 	    ((c == '.' && !dot_ok) ||
738 	      c != '.'))
739 		return false;
740 	return true;
741 }
742 
743 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
744 {
745 	while (offset < btf->start_str_off)
746 		btf = btf->base_btf;
747 
748 	offset -= btf->start_str_off;
749 	if (offset < btf->hdr.str_len)
750 		return &btf->strings[offset];
751 
752 	return NULL;
753 }
754 
755 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
756 {
757 	/* offset must be valid */
758 	const char *src = btf_str_by_offset(btf, offset);
759 	const char *src_limit;
760 
761 	if (!__btf_name_char_ok(*src, true, dot_ok))
762 		return false;
763 
764 	/* set a limit on identifier length */
765 	src_limit = src + KSYM_NAME_LEN;
766 	src++;
767 	while (*src && src < src_limit) {
768 		if (!__btf_name_char_ok(*src, false, dot_ok))
769 			return false;
770 		src++;
771 	}
772 
773 	return !*src;
774 }
775 
776 /* Only C-style identifier is permitted. This can be relaxed if
777  * necessary.
778  */
779 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
780 {
781 	return __btf_name_valid(btf, offset, false);
782 }
783 
784 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
785 {
786 	return __btf_name_valid(btf, offset, true);
787 }
788 
789 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
790 {
791 	const char *name;
792 
793 	if (!offset)
794 		return "(anon)";
795 
796 	name = btf_str_by_offset(btf, offset);
797 	return name ?: "(invalid-name-offset)";
798 }
799 
800 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
801 {
802 	return btf_str_by_offset(btf, offset);
803 }
804 
805 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
806 {
807 	while (type_id < btf->start_id)
808 		btf = btf->base_btf;
809 
810 	type_id -= btf->start_id;
811 	if (type_id >= btf->nr_types)
812 		return NULL;
813 	return btf->types[type_id];
814 }
815 EXPORT_SYMBOL_GPL(btf_type_by_id);
816 
817 /*
818  * Regular int is not a bit field and it must be either
819  * u8/u16/u32/u64 or __int128.
820  */
821 static bool btf_type_int_is_regular(const struct btf_type *t)
822 {
823 	u8 nr_bits, nr_bytes;
824 	u32 int_data;
825 
826 	int_data = btf_type_int(t);
827 	nr_bits = BTF_INT_BITS(int_data);
828 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
829 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
830 	    BTF_INT_OFFSET(int_data) ||
831 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
832 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
833 	     nr_bytes != (2 * sizeof(u64)))) {
834 		return false;
835 	}
836 
837 	return true;
838 }
839 
840 /*
841  * Check that given struct member is a regular int with expected
842  * offset and size.
843  */
844 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
845 			   const struct btf_member *m,
846 			   u32 expected_offset, u32 expected_size)
847 {
848 	const struct btf_type *t;
849 	u32 id, int_data;
850 	u8 nr_bits;
851 
852 	id = m->type;
853 	t = btf_type_id_size(btf, &id, NULL);
854 	if (!t || !btf_type_is_int(t))
855 		return false;
856 
857 	int_data = btf_type_int(t);
858 	nr_bits = BTF_INT_BITS(int_data);
859 	if (btf_type_kflag(s)) {
860 		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
861 		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
862 
863 		/* if kflag set, int should be a regular int and
864 		 * bit offset should be at byte boundary.
865 		 */
866 		return !bitfield_size &&
867 		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
868 		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
869 	}
870 
871 	if (BTF_INT_OFFSET(int_data) ||
872 	    BITS_PER_BYTE_MASKED(m->offset) ||
873 	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
874 	    BITS_PER_BYTE_MASKED(nr_bits) ||
875 	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
876 		return false;
877 
878 	return true;
879 }
880 
881 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
882 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
883 						       u32 id)
884 {
885 	const struct btf_type *t = btf_type_by_id(btf, id);
886 
887 	while (btf_type_is_modifier(t) &&
888 	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
889 		t = btf_type_by_id(btf, t->type);
890 	}
891 
892 	return t;
893 }
894 
895 #define BTF_SHOW_MAX_ITER	10
896 
897 #define BTF_KIND_BIT(kind)	(1ULL << kind)
898 
899 /*
900  * Populate show->state.name with type name information.
901  * Format of type name is
902  *
903  * [.member_name = ] (type_name)
904  */
905 static const char *btf_show_name(struct btf_show *show)
906 {
907 	/* BTF_MAX_ITER array suffixes "[]" */
908 	const char *array_suffixes = "[][][][][][][][][][]";
909 	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
910 	/* BTF_MAX_ITER pointer suffixes "*" */
911 	const char *ptr_suffixes = "**********";
912 	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
913 	const char *name = NULL, *prefix = "", *parens = "";
914 	const struct btf_member *m = show->state.member;
915 	const struct btf_type *t;
916 	const struct btf_array *array;
917 	u32 id = show->state.type_id;
918 	const char *member = NULL;
919 	bool show_member = false;
920 	u64 kinds = 0;
921 	int i;
922 
923 	show->state.name[0] = '\0';
924 
925 	/*
926 	 * Don't show type name if we're showing an array member;
927 	 * in that case we show the array type so don't need to repeat
928 	 * ourselves for each member.
929 	 */
930 	if (show->state.array_member)
931 		return "";
932 
933 	/* Retrieve member name, if any. */
934 	if (m) {
935 		member = btf_name_by_offset(show->btf, m->name_off);
936 		show_member = strlen(member) > 0;
937 		id = m->type;
938 	}
939 
940 	/*
941 	 * Start with type_id, as we have resolved the struct btf_type *
942 	 * via btf_modifier_show() past the parent typedef to the child
943 	 * struct, int etc it is defined as.  In such cases, the type_id
944 	 * still represents the starting type while the struct btf_type *
945 	 * in our show->state points at the resolved type of the typedef.
946 	 */
947 	t = btf_type_by_id(show->btf, id);
948 	if (!t)
949 		return "";
950 
951 	/*
952 	 * The goal here is to build up the right number of pointer and
953 	 * array suffixes while ensuring the type name for a typedef
954 	 * is represented.  Along the way we accumulate a list of
955 	 * BTF kinds we have encountered, since these will inform later
956 	 * display; for example, pointer types will not require an
957 	 * opening "{" for struct, we will just display the pointer value.
958 	 *
959 	 * We also want to accumulate the right number of pointer or array
960 	 * indices in the format string while iterating until we get to
961 	 * the typedef/pointee/array member target type.
962 	 *
963 	 * We start by pointing at the end of pointer and array suffix
964 	 * strings; as we accumulate pointers and arrays we move the pointer
965 	 * or array string backwards so it will show the expected number of
966 	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
967 	 * and/or arrays and typedefs are supported as a precaution.
968 	 *
969 	 * We also want to get typedef name while proceeding to resolve
970 	 * type it points to so that we can add parentheses if it is a
971 	 * "typedef struct" etc.
972 	 */
973 	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
974 
975 		switch (BTF_INFO_KIND(t->info)) {
976 		case BTF_KIND_TYPEDEF:
977 			if (!name)
978 				name = btf_name_by_offset(show->btf,
979 							       t->name_off);
980 			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
981 			id = t->type;
982 			break;
983 		case BTF_KIND_ARRAY:
984 			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
985 			parens = "[";
986 			if (!t)
987 				return "";
988 			array = btf_type_array(t);
989 			if (array_suffix > array_suffixes)
990 				array_suffix -= 2;
991 			id = array->type;
992 			break;
993 		case BTF_KIND_PTR:
994 			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
995 			if (ptr_suffix > ptr_suffixes)
996 				ptr_suffix -= 1;
997 			id = t->type;
998 			break;
999 		default:
1000 			id = 0;
1001 			break;
1002 		}
1003 		if (!id)
1004 			break;
1005 		t = btf_type_skip_qualifiers(show->btf, id);
1006 	}
1007 	/* We may not be able to represent this type; bail to be safe */
1008 	if (i == BTF_SHOW_MAX_ITER)
1009 		return "";
1010 
1011 	if (!name)
1012 		name = btf_name_by_offset(show->btf, t->name_off);
1013 
1014 	switch (BTF_INFO_KIND(t->info)) {
1015 	case BTF_KIND_STRUCT:
1016 	case BTF_KIND_UNION:
1017 		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1018 			 "struct" : "union";
1019 		/* if it's an array of struct/union, parens is already set */
1020 		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1021 			parens = "{";
1022 		break;
1023 	case BTF_KIND_ENUM:
1024 	case BTF_KIND_ENUM64:
1025 		prefix = "enum";
1026 		break;
1027 	default:
1028 		break;
1029 	}
1030 
1031 	/* pointer does not require parens */
1032 	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1033 		parens = "";
1034 	/* typedef does not require struct/union/enum prefix */
1035 	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1036 		prefix = "";
1037 
1038 	if (!name)
1039 		name = "";
1040 
1041 	/* Even if we don't want type name info, we want parentheses etc */
1042 	if (show->flags & BTF_SHOW_NONAME)
1043 		snprintf(show->state.name, sizeof(show->state.name), "%s",
1044 			 parens);
1045 	else
1046 		snprintf(show->state.name, sizeof(show->state.name),
1047 			 "%s%s%s(%s%s%s%s%s%s)%s",
1048 			 /* first 3 strings comprise ".member = " */
1049 			 show_member ? "." : "",
1050 			 show_member ? member : "",
1051 			 show_member ? " = " : "",
1052 			 /* ...next is our prefix (struct, enum, etc) */
1053 			 prefix,
1054 			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1055 			 /* ...this is the type name itself */
1056 			 name,
1057 			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1058 			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1059 			 array_suffix, parens);
1060 
1061 	return show->state.name;
1062 }
1063 
1064 static const char *__btf_show_indent(struct btf_show *show)
1065 {
1066 	const char *indents = "                                ";
1067 	const char *indent = &indents[strlen(indents)];
1068 
1069 	if ((indent - show->state.depth) >= indents)
1070 		return indent - show->state.depth;
1071 	return indents;
1072 }
1073 
1074 static const char *btf_show_indent(struct btf_show *show)
1075 {
1076 	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1077 }
1078 
1079 static const char *btf_show_newline(struct btf_show *show)
1080 {
1081 	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1082 }
1083 
1084 static const char *btf_show_delim(struct btf_show *show)
1085 {
1086 	if (show->state.depth == 0)
1087 		return "";
1088 
1089 	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1090 		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1091 		return "|";
1092 
1093 	return ",";
1094 }
1095 
1096 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1097 {
1098 	va_list args;
1099 
1100 	if (!show->state.depth_check) {
1101 		va_start(args, fmt);
1102 		show->showfn(show, fmt, args);
1103 		va_end(args);
1104 	}
1105 }
1106 
1107 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1108  * format specifiers to the format specifier passed in; these do the work of
1109  * adding indentation, delimiters etc while the caller simply has to specify
1110  * the type value(s) in the format specifier + value(s).
1111  */
1112 #define btf_show_type_value(show, fmt, value)				       \
1113 	do {								       \
1114 		if ((value) != (__typeof__(value))0 ||			       \
1115 		    (show->flags & BTF_SHOW_ZERO) ||			       \
1116 		    show->state.depth == 0) {				       \
1117 			btf_show(show, "%s%s" fmt "%s%s",		       \
1118 				 btf_show_indent(show),			       \
1119 				 btf_show_name(show),			       \
1120 				 value, btf_show_delim(show),		       \
1121 				 btf_show_newline(show));		       \
1122 			if (show->state.depth > show->state.depth_to_show)     \
1123 				show->state.depth_to_show = show->state.depth; \
1124 		}							       \
1125 	} while (0)
1126 
1127 #define btf_show_type_values(show, fmt, ...)				       \
1128 	do {								       \
1129 		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1130 			 btf_show_name(show),				       \
1131 			 __VA_ARGS__, btf_show_delim(show),		       \
1132 			 btf_show_newline(show));			       \
1133 		if (show->state.depth > show->state.depth_to_show)	       \
1134 			show->state.depth_to_show = show->state.depth;	       \
1135 	} while (0)
1136 
1137 /* How much is left to copy to safe buffer after @data? */
1138 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1139 {
1140 	return show->obj.head + show->obj.size - data;
1141 }
1142 
1143 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1144 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1145 {
1146 	return data >= show->obj.data &&
1147 	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1148 }
1149 
1150 /*
1151  * If object pointed to by @data of @size falls within our safe buffer, return
1152  * the equivalent pointer to the same safe data.  Assumes
1153  * copy_from_kernel_nofault() has already happened and our safe buffer is
1154  * populated.
1155  */
1156 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1157 {
1158 	if (btf_show_obj_is_safe(show, data, size))
1159 		return show->obj.safe + (data - show->obj.data);
1160 	return NULL;
1161 }
1162 
1163 /*
1164  * Return a safe-to-access version of data pointed to by @data.
1165  * We do this by copying the relevant amount of information
1166  * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1167  *
1168  * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1169  * safe copy is needed.
1170  *
1171  * Otherwise we need to determine if we have the required amount
1172  * of data (determined by the @data pointer and the size of the
1173  * largest base type we can encounter (represented by
1174  * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1175  * that we will be able to print some of the current object,
1176  * and if more is needed a copy will be triggered.
1177  * Some objects such as structs will not fit into the buffer;
1178  * in such cases additional copies when we iterate over their
1179  * members may be needed.
1180  *
1181  * btf_show_obj_safe() is used to return a safe buffer for
1182  * btf_show_start_type(); this ensures that as we recurse into
1183  * nested types we always have safe data for the given type.
1184  * This approach is somewhat wasteful; it's possible for example
1185  * that when iterating over a large union we'll end up copying the
1186  * same data repeatedly, but the goal is safety not performance.
1187  * We use stack data as opposed to per-CPU buffers because the
1188  * iteration over a type can take some time, and preemption handling
1189  * would greatly complicate use of the safe buffer.
1190  */
1191 static void *btf_show_obj_safe(struct btf_show *show,
1192 			       const struct btf_type *t,
1193 			       void *data)
1194 {
1195 	const struct btf_type *rt;
1196 	int size_left, size;
1197 	void *safe = NULL;
1198 
1199 	if (show->flags & BTF_SHOW_UNSAFE)
1200 		return data;
1201 
1202 	rt = btf_resolve_size(show->btf, t, &size);
1203 	if (IS_ERR(rt)) {
1204 		show->state.status = PTR_ERR(rt);
1205 		return NULL;
1206 	}
1207 
1208 	/*
1209 	 * Is this toplevel object? If so, set total object size and
1210 	 * initialize pointers.  Otherwise check if we still fall within
1211 	 * our safe object data.
1212 	 */
1213 	if (show->state.depth == 0) {
1214 		show->obj.size = size;
1215 		show->obj.head = data;
1216 	} else {
1217 		/*
1218 		 * If the size of the current object is > our remaining
1219 		 * safe buffer we _may_ need to do a new copy.  However
1220 		 * consider the case of a nested struct; it's size pushes
1221 		 * us over the safe buffer limit, but showing any individual
1222 		 * struct members does not.  In such cases, we don't need
1223 		 * to initiate a fresh copy yet; however we definitely need
1224 		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1225 		 * in our buffer, regardless of the current object size.
1226 		 * The logic here is that as we resolve types we will
1227 		 * hit a base type at some point, and we need to be sure
1228 		 * the next chunk of data is safely available to display
1229 		 * that type info safely.  We cannot rely on the size of
1230 		 * the current object here because it may be much larger
1231 		 * than our current buffer (e.g. task_struct is 8k).
1232 		 * All we want to do here is ensure that we can print the
1233 		 * next basic type, which we can if either
1234 		 * - the current type size is within the safe buffer; or
1235 		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1236 		 *   the safe buffer.
1237 		 */
1238 		safe = __btf_show_obj_safe(show, data,
1239 					   min(size,
1240 					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1241 	}
1242 
1243 	/*
1244 	 * We need a new copy to our safe object, either because we haven't
1245 	 * yet copied and are initializing safe data, or because the data
1246 	 * we want falls outside the boundaries of the safe object.
1247 	 */
1248 	if (!safe) {
1249 		size_left = btf_show_obj_size_left(show, data);
1250 		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1251 			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1252 		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1253 							      data, size_left);
1254 		if (!show->state.status) {
1255 			show->obj.data = data;
1256 			safe = show->obj.safe;
1257 		}
1258 	}
1259 
1260 	return safe;
1261 }
1262 
1263 /*
1264  * Set the type we are starting to show and return a safe data pointer
1265  * to be used for showing the associated data.
1266  */
1267 static void *btf_show_start_type(struct btf_show *show,
1268 				 const struct btf_type *t,
1269 				 u32 type_id, void *data)
1270 {
1271 	show->state.type = t;
1272 	show->state.type_id = type_id;
1273 	show->state.name[0] = '\0';
1274 
1275 	return btf_show_obj_safe(show, t, data);
1276 }
1277 
1278 static void btf_show_end_type(struct btf_show *show)
1279 {
1280 	show->state.type = NULL;
1281 	show->state.type_id = 0;
1282 	show->state.name[0] = '\0';
1283 }
1284 
1285 static void *btf_show_start_aggr_type(struct btf_show *show,
1286 				      const struct btf_type *t,
1287 				      u32 type_id, void *data)
1288 {
1289 	void *safe_data = btf_show_start_type(show, t, type_id, data);
1290 
1291 	if (!safe_data)
1292 		return safe_data;
1293 
1294 	btf_show(show, "%s%s%s", btf_show_indent(show),
1295 		 btf_show_name(show),
1296 		 btf_show_newline(show));
1297 	show->state.depth++;
1298 	return safe_data;
1299 }
1300 
1301 static void btf_show_end_aggr_type(struct btf_show *show,
1302 				   const char *suffix)
1303 {
1304 	show->state.depth--;
1305 	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1306 		 btf_show_delim(show), btf_show_newline(show));
1307 	btf_show_end_type(show);
1308 }
1309 
1310 static void btf_show_start_member(struct btf_show *show,
1311 				  const struct btf_member *m)
1312 {
1313 	show->state.member = m;
1314 }
1315 
1316 static void btf_show_start_array_member(struct btf_show *show)
1317 {
1318 	show->state.array_member = 1;
1319 	btf_show_start_member(show, NULL);
1320 }
1321 
1322 static void btf_show_end_member(struct btf_show *show)
1323 {
1324 	show->state.member = NULL;
1325 }
1326 
1327 static void btf_show_end_array_member(struct btf_show *show)
1328 {
1329 	show->state.array_member = 0;
1330 	btf_show_end_member(show);
1331 }
1332 
1333 static void *btf_show_start_array_type(struct btf_show *show,
1334 				       const struct btf_type *t,
1335 				       u32 type_id,
1336 				       u16 array_encoding,
1337 				       void *data)
1338 {
1339 	show->state.array_encoding = array_encoding;
1340 	show->state.array_terminated = 0;
1341 	return btf_show_start_aggr_type(show, t, type_id, data);
1342 }
1343 
1344 static void btf_show_end_array_type(struct btf_show *show)
1345 {
1346 	show->state.array_encoding = 0;
1347 	show->state.array_terminated = 0;
1348 	btf_show_end_aggr_type(show, "]");
1349 }
1350 
1351 static void *btf_show_start_struct_type(struct btf_show *show,
1352 					const struct btf_type *t,
1353 					u32 type_id,
1354 					void *data)
1355 {
1356 	return btf_show_start_aggr_type(show, t, type_id, data);
1357 }
1358 
1359 static void btf_show_end_struct_type(struct btf_show *show)
1360 {
1361 	btf_show_end_aggr_type(show, "}");
1362 }
1363 
1364 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1365 					      const char *fmt, ...)
1366 {
1367 	va_list args;
1368 
1369 	va_start(args, fmt);
1370 	bpf_verifier_vlog(log, fmt, args);
1371 	va_end(args);
1372 }
1373 
1374 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1375 					    const char *fmt, ...)
1376 {
1377 	struct bpf_verifier_log *log = &env->log;
1378 	va_list args;
1379 
1380 	if (!bpf_verifier_log_needed(log))
1381 		return;
1382 
1383 	va_start(args, fmt);
1384 	bpf_verifier_vlog(log, fmt, args);
1385 	va_end(args);
1386 }
1387 
1388 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1389 						   const struct btf_type *t,
1390 						   bool log_details,
1391 						   const char *fmt, ...)
1392 {
1393 	struct bpf_verifier_log *log = &env->log;
1394 	struct btf *btf = env->btf;
1395 	va_list args;
1396 
1397 	if (!bpf_verifier_log_needed(log))
1398 		return;
1399 
1400 	/* btf verifier prints all types it is processing via
1401 	 * btf_verifier_log_type(..., fmt = NULL).
1402 	 * Skip those prints for in-kernel BTF verification.
1403 	 */
1404 	if (log->level == BPF_LOG_KERNEL && !fmt)
1405 		return;
1406 
1407 	__btf_verifier_log(log, "[%u] %s %s%s",
1408 			   env->log_type_id,
1409 			   btf_type_str(t),
1410 			   __btf_name_by_offset(btf, t->name_off),
1411 			   log_details ? " " : "");
1412 
1413 	if (log_details)
1414 		btf_type_ops(t)->log_details(env, t);
1415 
1416 	if (fmt && *fmt) {
1417 		__btf_verifier_log(log, " ");
1418 		va_start(args, fmt);
1419 		bpf_verifier_vlog(log, fmt, args);
1420 		va_end(args);
1421 	}
1422 
1423 	__btf_verifier_log(log, "\n");
1424 }
1425 
1426 #define btf_verifier_log_type(env, t, ...) \
1427 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1428 #define btf_verifier_log_basic(env, t, ...) \
1429 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1430 
1431 __printf(4, 5)
1432 static void btf_verifier_log_member(struct btf_verifier_env *env,
1433 				    const struct btf_type *struct_type,
1434 				    const struct btf_member *member,
1435 				    const char *fmt, ...)
1436 {
1437 	struct bpf_verifier_log *log = &env->log;
1438 	struct btf *btf = env->btf;
1439 	va_list args;
1440 
1441 	if (!bpf_verifier_log_needed(log))
1442 		return;
1443 
1444 	if (log->level == BPF_LOG_KERNEL && !fmt)
1445 		return;
1446 	/* The CHECK_META phase already did a btf dump.
1447 	 *
1448 	 * If member is logged again, it must hit an error in
1449 	 * parsing this member.  It is useful to print out which
1450 	 * struct this member belongs to.
1451 	 */
1452 	if (env->phase != CHECK_META)
1453 		btf_verifier_log_type(env, struct_type, NULL);
1454 
1455 	if (btf_type_kflag(struct_type))
1456 		__btf_verifier_log(log,
1457 				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1458 				   __btf_name_by_offset(btf, member->name_off),
1459 				   member->type,
1460 				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1461 				   BTF_MEMBER_BIT_OFFSET(member->offset));
1462 	else
1463 		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1464 				   __btf_name_by_offset(btf, member->name_off),
1465 				   member->type, member->offset);
1466 
1467 	if (fmt && *fmt) {
1468 		__btf_verifier_log(log, " ");
1469 		va_start(args, fmt);
1470 		bpf_verifier_vlog(log, fmt, args);
1471 		va_end(args);
1472 	}
1473 
1474 	__btf_verifier_log(log, "\n");
1475 }
1476 
1477 __printf(4, 5)
1478 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1479 				 const struct btf_type *datasec_type,
1480 				 const struct btf_var_secinfo *vsi,
1481 				 const char *fmt, ...)
1482 {
1483 	struct bpf_verifier_log *log = &env->log;
1484 	va_list args;
1485 
1486 	if (!bpf_verifier_log_needed(log))
1487 		return;
1488 	if (log->level == BPF_LOG_KERNEL && !fmt)
1489 		return;
1490 	if (env->phase != CHECK_META)
1491 		btf_verifier_log_type(env, datasec_type, NULL);
1492 
1493 	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1494 			   vsi->type, vsi->offset, vsi->size);
1495 	if (fmt && *fmt) {
1496 		__btf_verifier_log(log, " ");
1497 		va_start(args, fmt);
1498 		bpf_verifier_vlog(log, fmt, args);
1499 		va_end(args);
1500 	}
1501 
1502 	__btf_verifier_log(log, "\n");
1503 }
1504 
1505 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1506 				 u32 btf_data_size)
1507 {
1508 	struct bpf_verifier_log *log = &env->log;
1509 	const struct btf *btf = env->btf;
1510 	const struct btf_header *hdr;
1511 
1512 	if (!bpf_verifier_log_needed(log))
1513 		return;
1514 
1515 	if (log->level == BPF_LOG_KERNEL)
1516 		return;
1517 	hdr = &btf->hdr;
1518 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1519 	__btf_verifier_log(log, "version: %u\n", hdr->version);
1520 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1521 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1522 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1523 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1524 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1525 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1526 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1527 }
1528 
1529 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1530 {
1531 	struct btf *btf = env->btf;
1532 
1533 	if (btf->types_size == btf->nr_types) {
1534 		/* Expand 'types' array */
1535 
1536 		struct btf_type **new_types;
1537 		u32 expand_by, new_size;
1538 
1539 		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1540 			btf_verifier_log(env, "Exceeded max num of types");
1541 			return -E2BIG;
1542 		}
1543 
1544 		expand_by = max_t(u32, btf->types_size >> 2, 16);
1545 		new_size = min_t(u32, BTF_MAX_TYPE,
1546 				 btf->types_size + expand_by);
1547 
1548 		new_types = kvcalloc(new_size, sizeof(*new_types),
1549 				     GFP_KERNEL | __GFP_NOWARN);
1550 		if (!new_types)
1551 			return -ENOMEM;
1552 
1553 		if (btf->nr_types == 0) {
1554 			if (!btf->base_btf) {
1555 				/* lazily init VOID type */
1556 				new_types[0] = &btf_void;
1557 				btf->nr_types++;
1558 			}
1559 		} else {
1560 			memcpy(new_types, btf->types,
1561 			       sizeof(*btf->types) * btf->nr_types);
1562 		}
1563 
1564 		kvfree(btf->types);
1565 		btf->types = new_types;
1566 		btf->types_size = new_size;
1567 	}
1568 
1569 	btf->types[btf->nr_types++] = t;
1570 
1571 	return 0;
1572 }
1573 
1574 static int btf_alloc_id(struct btf *btf)
1575 {
1576 	int id;
1577 
1578 	idr_preload(GFP_KERNEL);
1579 	spin_lock_bh(&btf_idr_lock);
1580 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1581 	if (id > 0)
1582 		btf->id = id;
1583 	spin_unlock_bh(&btf_idr_lock);
1584 	idr_preload_end();
1585 
1586 	if (WARN_ON_ONCE(!id))
1587 		return -ENOSPC;
1588 
1589 	return id > 0 ? 0 : id;
1590 }
1591 
1592 static void btf_free_id(struct btf *btf)
1593 {
1594 	unsigned long flags;
1595 
1596 	/*
1597 	 * In map-in-map, calling map_delete_elem() on outer
1598 	 * map will call bpf_map_put on the inner map.
1599 	 * It will then eventually call btf_free_id()
1600 	 * on the inner map.  Some of the map_delete_elem()
1601 	 * implementation may have irq disabled, so
1602 	 * we need to use the _irqsave() version instead
1603 	 * of the _bh() version.
1604 	 */
1605 	spin_lock_irqsave(&btf_idr_lock, flags);
1606 	idr_remove(&btf_idr, btf->id);
1607 	spin_unlock_irqrestore(&btf_idr_lock, flags);
1608 }
1609 
1610 static void btf_free_kfunc_set_tab(struct btf *btf)
1611 {
1612 	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1613 	int hook;
1614 
1615 	if (!tab)
1616 		return;
1617 	/* For module BTF, we directly assign the sets being registered, so
1618 	 * there is nothing to free except kfunc_set_tab.
1619 	 */
1620 	if (btf_is_module(btf))
1621 		goto free_tab;
1622 	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1623 		kfree(tab->sets[hook]);
1624 free_tab:
1625 	kfree(tab);
1626 	btf->kfunc_set_tab = NULL;
1627 }
1628 
1629 static void btf_free_dtor_kfunc_tab(struct btf *btf)
1630 {
1631 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1632 
1633 	if (!tab)
1634 		return;
1635 	kfree(tab);
1636 	btf->dtor_kfunc_tab = NULL;
1637 }
1638 
1639 static void btf_struct_metas_free(struct btf_struct_metas *tab)
1640 {
1641 	int i;
1642 
1643 	if (!tab)
1644 		return;
1645 	for (i = 0; i < tab->cnt; i++) {
1646 		btf_record_free(tab->types[i].record);
1647 		kfree(tab->types[i].field_offs);
1648 	}
1649 	kfree(tab);
1650 }
1651 
1652 static void btf_free_struct_meta_tab(struct btf *btf)
1653 {
1654 	struct btf_struct_metas *tab = btf->struct_meta_tab;
1655 
1656 	btf_struct_metas_free(tab);
1657 	btf->struct_meta_tab = NULL;
1658 }
1659 
1660 static void btf_free(struct btf *btf)
1661 {
1662 	btf_free_struct_meta_tab(btf);
1663 	btf_free_dtor_kfunc_tab(btf);
1664 	btf_free_kfunc_set_tab(btf);
1665 	kvfree(btf->types);
1666 	kvfree(btf->resolved_sizes);
1667 	kvfree(btf->resolved_ids);
1668 	kvfree(btf->data);
1669 	kfree(btf);
1670 }
1671 
1672 static void btf_free_rcu(struct rcu_head *rcu)
1673 {
1674 	struct btf *btf = container_of(rcu, struct btf, rcu);
1675 
1676 	btf_free(btf);
1677 }
1678 
1679 void btf_get(struct btf *btf)
1680 {
1681 	refcount_inc(&btf->refcnt);
1682 }
1683 
1684 void btf_put(struct btf *btf)
1685 {
1686 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1687 		btf_free_id(btf);
1688 		call_rcu(&btf->rcu, btf_free_rcu);
1689 	}
1690 }
1691 
1692 static int env_resolve_init(struct btf_verifier_env *env)
1693 {
1694 	struct btf *btf = env->btf;
1695 	u32 nr_types = btf->nr_types;
1696 	u32 *resolved_sizes = NULL;
1697 	u32 *resolved_ids = NULL;
1698 	u8 *visit_states = NULL;
1699 
1700 	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1701 				  GFP_KERNEL | __GFP_NOWARN);
1702 	if (!resolved_sizes)
1703 		goto nomem;
1704 
1705 	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1706 				GFP_KERNEL | __GFP_NOWARN);
1707 	if (!resolved_ids)
1708 		goto nomem;
1709 
1710 	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1711 				GFP_KERNEL | __GFP_NOWARN);
1712 	if (!visit_states)
1713 		goto nomem;
1714 
1715 	btf->resolved_sizes = resolved_sizes;
1716 	btf->resolved_ids = resolved_ids;
1717 	env->visit_states = visit_states;
1718 
1719 	return 0;
1720 
1721 nomem:
1722 	kvfree(resolved_sizes);
1723 	kvfree(resolved_ids);
1724 	kvfree(visit_states);
1725 	return -ENOMEM;
1726 }
1727 
1728 static void btf_verifier_env_free(struct btf_verifier_env *env)
1729 {
1730 	kvfree(env->visit_states);
1731 	kfree(env);
1732 }
1733 
1734 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1735 				     const struct btf_type *next_type)
1736 {
1737 	switch (env->resolve_mode) {
1738 	case RESOLVE_TBD:
1739 		/* int, enum or void is a sink */
1740 		return !btf_type_needs_resolve(next_type);
1741 	case RESOLVE_PTR:
1742 		/* int, enum, void, struct, array, func or func_proto is a sink
1743 		 * for ptr
1744 		 */
1745 		return !btf_type_is_modifier(next_type) &&
1746 			!btf_type_is_ptr(next_type);
1747 	case RESOLVE_STRUCT_OR_ARRAY:
1748 		/* int, enum, void, ptr, func or func_proto is a sink
1749 		 * for struct and array
1750 		 */
1751 		return !btf_type_is_modifier(next_type) &&
1752 			!btf_type_is_array(next_type) &&
1753 			!btf_type_is_struct(next_type);
1754 	default:
1755 		BUG();
1756 	}
1757 }
1758 
1759 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1760 				 u32 type_id)
1761 {
1762 	/* base BTF types should be resolved by now */
1763 	if (type_id < env->btf->start_id)
1764 		return true;
1765 
1766 	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1767 }
1768 
1769 static int env_stack_push(struct btf_verifier_env *env,
1770 			  const struct btf_type *t, u32 type_id)
1771 {
1772 	const struct btf *btf = env->btf;
1773 	struct resolve_vertex *v;
1774 
1775 	if (env->top_stack == MAX_RESOLVE_DEPTH)
1776 		return -E2BIG;
1777 
1778 	if (type_id < btf->start_id
1779 	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1780 		return -EEXIST;
1781 
1782 	env->visit_states[type_id - btf->start_id] = VISITED;
1783 
1784 	v = &env->stack[env->top_stack++];
1785 	v->t = t;
1786 	v->type_id = type_id;
1787 	v->next_member = 0;
1788 
1789 	if (env->resolve_mode == RESOLVE_TBD) {
1790 		if (btf_type_is_ptr(t))
1791 			env->resolve_mode = RESOLVE_PTR;
1792 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1793 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1794 	}
1795 
1796 	return 0;
1797 }
1798 
1799 static void env_stack_set_next_member(struct btf_verifier_env *env,
1800 				      u16 next_member)
1801 {
1802 	env->stack[env->top_stack - 1].next_member = next_member;
1803 }
1804 
1805 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1806 				   u32 resolved_type_id,
1807 				   u32 resolved_size)
1808 {
1809 	u32 type_id = env->stack[--(env->top_stack)].type_id;
1810 	struct btf *btf = env->btf;
1811 
1812 	type_id -= btf->start_id; /* adjust to local type id */
1813 	btf->resolved_sizes[type_id] = resolved_size;
1814 	btf->resolved_ids[type_id] = resolved_type_id;
1815 	env->visit_states[type_id] = RESOLVED;
1816 }
1817 
1818 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1819 {
1820 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1821 }
1822 
1823 /* Resolve the size of a passed-in "type"
1824  *
1825  * type: is an array (e.g. u32 array[x][y])
1826  * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1827  * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1828  *             corresponds to the return type.
1829  * *elem_type: u32
1830  * *elem_id: id of u32
1831  * *total_nelems: (x * y).  Hence, individual elem size is
1832  *                (*type_size / *total_nelems)
1833  * *type_id: id of type if it's changed within the function, 0 if not
1834  *
1835  * type: is not an array (e.g. const struct X)
1836  * return type: type "struct X"
1837  * *type_size: sizeof(struct X)
1838  * *elem_type: same as return type ("struct X")
1839  * *elem_id: 0
1840  * *total_nelems: 1
1841  * *type_id: id of type if it's changed within the function, 0 if not
1842  */
1843 static const struct btf_type *
1844 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1845 		   u32 *type_size, const struct btf_type **elem_type,
1846 		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1847 {
1848 	const struct btf_type *array_type = NULL;
1849 	const struct btf_array *array = NULL;
1850 	u32 i, size, nelems = 1, id = 0;
1851 
1852 	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1853 		switch (BTF_INFO_KIND(type->info)) {
1854 		/* type->size can be used */
1855 		case BTF_KIND_INT:
1856 		case BTF_KIND_STRUCT:
1857 		case BTF_KIND_UNION:
1858 		case BTF_KIND_ENUM:
1859 		case BTF_KIND_FLOAT:
1860 		case BTF_KIND_ENUM64:
1861 			size = type->size;
1862 			goto resolved;
1863 
1864 		case BTF_KIND_PTR:
1865 			size = sizeof(void *);
1866 			goto resolved;
1867 
1868 		/* Modifiers */
1869 		case BTF_KIND_TYPEDEF:
1870 		case BTF_KIND_VOLATILE:
1871 		case BTF_KIND_CONST:
1872 		case BTF_KIND_RESTRICT:
1873 		case BTF_KIND_TYPE_TAG:
1874 			id = type->type;
1875 			type = btf_type_by_id(btf, type->type);
1876 			break;
1877 
1878 		case BTF_KIND_ARRAY:
1879 			if (!array_type)
1880 				array_type = type;
1881 			array = btf_type_array(type);
1882 			if (nelems && array->nelems > U32_MAX / nelems)
1883 				return ERR_PTR(-EINVAL);
1884 			nelems *= array->nelems;
1885 			type = btf_type_by_id(btf, array->type);
1886 			break;
1887 
1888 		/* type without size */
1889 		default:
1890 			return ERR_PTR(-EINVAL);
1891 		}
1892 	}
1893 
1894 	return ERR_PTR(-EINVAL);
1895 
1896 resolved:
1897 	if (nelems && size > U32_MAX / nelems)
1898 		return ERR_PTR(-EINVAL);
1899 
1900 	*type_size = nelems * size;
1901 	if (total_nelems)
1902 		*total_nelems = nelems;
1903 	if (elem_type)
1904 		*elem_type = type;
1905 	if (elem_id)
1906 		*elem_id = array ? array->type : 0;
1907 	if (type_id && id)
1908 		*type_id = id;
1909 
1910 	return array_type ? : type;
1911 }
1912 
1913 const struct btf_type *
1914 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1915 		 u32 *type_size)
1916 {
1917 	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1918 }
1919 
1920 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1921 {
1922 	while (type_id < btf->start_id)
1923 		btf = btf->base_btf;
1924 
1925 	return btf->resolved_ids[type_id - btf->start_id];
1926 }
1927 
1928 /* The input param "type_id" must point to a needs_resolve type */
1929 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1930 						  u32 *type_id)
1931 {
1932 	*type_id = btf_resolved_type_id(btf, *type_id);
1933 	return btf_type_by_id(btf, *type_id);
1934 }
1935 
1936 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1937 {
1938 	while (type_id < btf->start_id)
1939 		btf = btf->base_btf;
1940 
1941 	return btf->resolved_sizes[type_id - btf->start_id];
1942 }
1943 
1944 const struct btf_type *btf_type_id_size(const struct btf *btf,
1945 					u32 *type_id, u32 *ret_size)
1946 {
1947 	const struct btf_type *size_type;
1948 	u32 size_type_id = *type_id;
1949 	u32 size = 0;
1950 
1951 	size_type = btf_type_by_id(btf, size_type_id);
1952 	if (btf_type_nosize_or_null(size_type))
1953 		return NULL;
1954 
1955 	if (btf_type_has_size(size_type)) {
1956 		size = size_type->size;
1957 	} else if (btf_type_is_array(size_type)) {
1958 		size = btf_resolved_type_size(btf, size_type_id);
1959 	} else if (btf_type_is_ptr(size_type)) {
1960 		size = sizeof(void *);
1961 	} else {
1962 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1963 				 !btf_type_is_var(size_type)))
1964 			return NULL;
1965 
1966 		size_type_id = btf_resolved_type_id(btf, size_type_id);
1967 		size_type = btf_type_by_id(btf, size_type_id);
1968 		if (btf_type_nosize_or_null(size_type))
1969 			return NULL;
1970 		else if (btf_type_has_size(size_type))
1971 			size = size_type->size;
1972 		else if (btf_type_is_array(size_type))
1973 			size = btf_resolved_type_size(btf, size_type_id);
1974 		else if (btf_type_is_ptr(size_type))
1975 			size = sizeof(void *);
1976 		else
1977 			return NULL;
1978 	}
1979 
1980 	*type_id = size_type_id;
1981 	if (ret_size)
1982 		*ret_size = size;
1983 
1984 	return size_type;
1985 }
1986 
1987 static int btf_df_check_member(struct btf_verifier_env *env,
1988 			       const struct btf_type *struct_type,
1989 			       const struct btf_member *member,
1990 			       const struct btf_type *member_type)
1991 {
1992 	btf_verifier_log_basic(env, struct_type,
1993 			       "Unsupported check_member");
1994 	return -EINVAL;
1995 }
1996 
1997 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1998 				     const struct btf_type *struct_type,
1999 				     const struct btf_member *member,
2000 				     const struct btf_type *member_type)
2001 {
2002 	btf_verifier_log_basic(env, struct_type,
2003 			       "Unsupported check_kflag_member");
2004 	return -EINVAL;
2005 }
2006 
2007 /* Used for ptr, array struct/union and float type members.
2008  * int, enum and modifier types have their specific callback functions.
2009  */
2010 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2011 					  const struct btf_type *struct_type,
2012 					  const struct btf_member *member,
2013 					  const struct btf_type *member_type)
2014 {
2015 	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2016 		btf_verifier_log_member(env, struct_type, member,
2017 					"Invalid member bitfield_size");
2018 		return -EINVAL;
2019 	}
2020 
2021 	/* bitfield size is 0, so member->offset represents bit offset only.
2022 	 * It is safe to call non kflag check_member variants.
2023 	 */
2024 	return btf_type_ops(member_type)->check_member(env, struct_type,
2025 						       member,
2026 						       member_type);
2027 }
2028 
2029 static int btf_df_resolve(struct btf_verifier_env *env,
2030 			  const struct resolve_vertex *v)
2031 {
2032 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2033 	return -EINVAL;
2034 }
2035 
2036 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2037 			u32 type_id, void *data, u8 bits_offsets,
2038 			struct btf_show *show)
2039 {
2040 	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2041 }
2042 
2043 static int btf_int_check_member(struct btf_verifier_env *env,
2044 				const struct btf_type *struct_type,
2045 				const struct btf_member *member,
2046 				const struct btf_type *member_type)
2047 {
2048 	u32 int_data = btf_type_int(member_type);
2049 	u32 struct_bits_off = member->offset;
2050 	u32 struct_size = struct_type->size;
2051 	u32 nr_copy_bits;
2052 	u32 bytes_offset;
2053 
2054 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2055 		btf_verifier_log_member(env, struct_type, member,
2056 					"bits_offset exceeds U32_MAX");
2057 		return -EINVAL;
2058 	}
2059 
2060 	struct_bits_off += BTF_INT_OFFSET(int_data);
2061 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2062 	nr_copy_bits = BTF_INT_BITS(int_data) +
2063 		BITS_PER_BYTE_MASKED(struct_bits_off);
2064 
2065 	if (nr_copy_bits > BITS_PER_U128) {
2066 		btf_verifier_log_member(env, struct_type, member,
2067 					"nr_copy_bits exceeds 128");
2068 		return -EINVAL;
2069 	}
2070 
2071 	if (struct_size < bytes_offset ||
2072 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2073 		btf_verifier_log_member(env, struct_type, member,
2074 					"Member exceeds struct_size");
2075 		return -EINVAL;
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2082 				      const struct btf_type *struct_type,
2083 				      const struct btf_member *member,
2084 				      const struct btf_type *member_type)
2085 {
2086 	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2087 	u32 int_data = btf_type_int(member_type);
2088 	u32 struct_size = struct_type->size;
2089 	u32 nr_copy_bits;
2090 
2091 	/* a regular int type is required for the kflag int member */
2092 	if (!btf_type_int_is_regular(member_type)) {
2093 		btf_verifier_log_member(env, struct_type, member,
2094 					"Invalid member base type");
2095 		return -EINVAL;
2096 	}
2097 
2098 	/* check sanity of bitfield size */
2099 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2100 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2101 	nr_int_data_bits = BTF_INT_BITS(int_data);
2102 	if (!nr_bits) {
2103 		/* Not a bitfield member, member offset must be at byte
2104 		 * boundary.
2105 		 */
2106 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2107 			btf_verifier_log_member(env, struct_type, member,
2108 						"Invalid member offset");
2109 			return -EINVAL;
2110 		}
2111 
2112 		nr_bits = nr_int_data_bits;
2113 	} else if (nr_bits > nr_int_data_bits) {
2114 		btf_verifier_log_member(env, struct_type, member,
2115 					"Invalid member bitfield_size");
2116 		return -EINVAL;
2117 	}
2118 
2119 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2120 	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2121 	if (nr_copy_bits > BITS_PER_U128) {
2122 		btf_verifier_log_member(env, struct_type, member,
2123 					"nr_copy_bits exceeds 128");
2124 		return -EINVAL;
2125 	}
2126 
2127 	if (struct_size < bytes_offset ||
2128 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2129 		btf_verifier_log_member(env, struct_type, member,
2130 					"Member exceeds struct_size");
2131 		return -EINVAL;
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 static s32 btf_int_check_meta(struct btf_verifier_env *env,
2138 			      const struct btf_type *t,
2139 			      u32 meta_left)
2140 {
2141 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2142 	u16 encoding;
2143 
2144 	if (meta_left < meta_needed) {
2145 		btf_verifier_log_basic(env, t,
2146 				       "meta_left:%u meta_needed:%u",
2147 				       meta_left, meta_needed);
2148 		return -EINVAL;
2149 	}
2150 
2151 	if (btf_type_vlen(t)) {
2152 		btf_verifier_log_type(env, t, "vlen != 0");
2153 		return -EINVAL;
2154 	}
2155 
2156 	if (btf_type_kflag(t)) {
2157 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2158 		return -EINVAL;
2159 	}
2160 
2161 	int_data = btf_type_int(t);
2162 	if (int_data & ~BTF_INT_MASK) {
2163 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2164 				       int_data);
2165 		return -EINVAL;
2166 	}
2167 
2168 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2169 
2170 	if (nr_bits > BITS_PER_U128) {
2171 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2172 				      BITS_PER_U128);
2173 		return -EINVAL;
2174 	}
2175 
2176 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2177 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2178 		return -EINVAL;
2179 	}
2180 
2181 	/*
2182 	 * Only one of the encoding bits is allowed and it
2183 	 * should be sufficient for the pretty print purpose (i.e. decoding).
2184 	 * Multiple bits can be allowed later if it is found
2185 	 * to be insufficient.
2186 	 */
2187 	encoding = BTF_INT_ENCODING(int_data);
2188 	if (encoding &&
2189 	    encoding != BTF_INT_SIGNED &&
2190 	    encoding != BTF_INT_CHAR &&
2191 	    encoding != BTF_INT_BOOL) {
2192 		btf_verifier_log_type(env, t, "Unsupported encoding");
2193 		return -ENOTSUPP;
2194 	}
2195 
2196 	btf_verifier_log_type(env, t, NULL);
2197 
2198 	return meta_needed;
2199 }
2200 
2201 static void btf_int_log(struct btf_verifier_env *env,
2202 			const struct btf_type *t)
2203 {
2204 	int int_data = btf_type_int(t);
2205 
2206 	btf_verifier_log(env,
2207 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2208 			 t->size, BTF_INT_OFFSET(int_data),
2209 			 BTF_INT_BITS(int_data),
2210 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2211 }
2212 
2213 static void btf_int128_print(struct btf_show *show, void *data)
2214 {
2215 	/* data points to a __int128 number.
2216 	 * Suppose
2217 	 *     int128_num = *(__int128 *)data;
2218 	 * The below formulas shows what upper_num and lower_num represents:
2219 	 *     upper_num = int128_num >> 64;
2220 	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2221 	 */
2222 	u64 upper_num, lower_num;
2223 
2224 #ifdef __BIG_ENDIAN_BITFIELD
2225 	upper_num = *(u64 *)data;
2226 	lower_num = *(u64 *)(data + 8);
2227 #else
2228 	upper_num = *(u64 *)(data + 8);
2229 	lower_num = *(u64 *)data;
2230 #endif
2231 	if (upper_num == 0)
2232 		btf_show_type_value(show, "0x%llx", lower_num);
2233 	else
2234 		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2235 				     lower_num);
2236 }
2237 
2238 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2239 			     u16 right_shift_bits)
2240 {
2241 	u64 upper_num, lower_num;
2242 
2243 #ifdef __BIG_ENDIAN_BITFIELD
2244 	upper_num = print_num[0];
2245 	lower_num = print_num[1];
2246 #else
2247 	upper_num = print_num[1];
2248 	lower_num = print_num[0];
2249 #endif
2250 
2251 	/* shake out un-needed bits by shift/or operations */
2252 	if (left_shift_bits >= 64) {
2253 		upper_num = lower_num << (left_shift_bits - 64);
2254 		lower_num = 0;
2255 	} else {
2256 		upper_num = (upper_num << left_shift_bits) |
2257 			    (lower_num >> (64 - left_shift_bits));
2258 		lower_num = lower_num << left_shift_bits;
2259 	}
2260 
2261 	if (right_shift_bits >= 64) {
2262 		lower_num = upper_num >> (right_shift_bits - 64);
2263 		upper_num = 0;
2264 	} else {
2265 		lower_num = (lower_num >> right_shift_bits) |
2266 			    (upper_num << (64 - right_shift_bits));
2267 		upper_num = upper_num >> right_shift_bits;
2268 	}
2269 
2270 #ifdef __BIG_ENDIAN_BITFIELD
2271 	print_num[0] = upper_num;
2272 	print_num[1] = lower_num;
2273 #else
2274 	print_num[0] = lower_num;
2275 	print_num[1] = upper_num;
2276 #endif
2277 }
2278 
2279 static void btf_bitfield_show(void *data, u8 bits_offset,
2280 			      u8 nr_bits, struct btf_show *show)
2281 {
2282 	u16 left_shift_bits, right_shift_bits;
2283 	u8 nr_copy_bytes;
2284 	u8 nr_copy_bits;
2285 	u64 print_num[2] = {};
2286 
2287 	nr_copy_bits = nr_bits + bits_offset;
2288 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2289 
2290 	memcpy(print_num, data, nr_copy_bytes);
2291 
2292 #ifdef __BIG_ENDIAN_BITFIELD
2293 	left_shift_bits = bits_offset;
2294 #else
2295 	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2296 #endif
2297 	right_shift_bits = BITS_PER_U128 - nr_bits;
2298 
2299 	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2300 	btf_int128_print(show, print_num);
2301 }
2302 
2303 
2304 static void btf_int_bits_show(const struct btf *btf,
2305 			      const struct btf_type *t,
2306 			      void *data, u8 bits_offset,
2307 			      struct btf_show *show)
2308 {
2309 	u32 int_data = btf_type_int(t);
2310 	u8 nr_bits = BTF_INT_BITS(int_data);
2311 	u8 total_bits_offset;
2312 
2313 	/*
2314 	 * bits_offset is at most 7.
2315 	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2316 	 */
2317 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2318 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2319 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2320 	btf_bitfield_show(data, bits_offset, nr_bits, show);
2321 }
2322 
2323 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2324 			 u32 type_id, void *data, u8 bits_offset,
2325 			 struct btf_show *show)
2326 {
2327 	u32 int_data = btf_type_int(t);
2328 	u8 encoding = BTF_INT_ENCODING(int_data);
2329 	bool sign = encoding & BTF_INT_SIGNED;
2330 	u8 nr_bits = BTF_INT_BITS(int_data);
2331 	void *safe_data;
2332 
2333 	safe_data = btf_show_start_type(show, t, type_id, data);
2334 	if (!safe_data)
2335 		return;
2336 
2337 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2338 	    BITS_PER_BYTE_MASKED(nr_bits)) {
2339 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2340 		goto out;
2341 	}
2342 
2343 	switch (nr_bits) {
2344 	case 128:
2345 		btf_int128_print(show, safe_data);
2346 		break;
2347 	case 64:
2348 		if (sign)
2349 			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2350 		else
2351 			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2352 		break;
2353 	case 32:
2354 		if (sign)
2355 			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2356 		else
2357 			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2358 		break;
2359 	case 16:
2360 		if (sign)
2361 			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2362 		else
2363 			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2364 		break;
2365 	case 8:
2366 		if (show->state.array_encoding == BTF_INT_CHAR) {
2367 			/* check for null terminator */
2368 			if (show->state.array_terminated)
2369 				break;
2370 			if (*(char *)data == '\0') {
2371 				show->state.array_terminated = 1;
2372 				break;
2373 			}
2374 			if (isprint(*(char *)data)) {
2375 				btf_show_type_value(show, "'%c'",
2376 						    *(char *)safe_data);
2377 				break;
2378 			}
2379 		}
2380 		if (sign)
2381 			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2382 		else
2383 			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2384 		break;
2385 	default:
2386 		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2387 		break;
2388 	}
2389 out:
2390 	btf_show_end_type(show);
2391 }
2392 
2393 static const struct btf_kind_operations int_ops = {
2394 	.check_meta = btf_int_check_meta,
2395 	.resolve = btf_df_resolve,
2396 	.check_member = btf_int_check_member,
2397 	.check_kflag_member = btf_int_check_kflag_member,
2398 	.log_details = btf_int_log,
2399 	.show = btf_int_show,
2400 };
2401 
2402 static int btf_modifier_check_member(struct btf_verifier_env *env,
2403 				     const struct btf_type *struct_type,
2404 				     const struct btf_member *member,
2405 				     const struct btf_type *member_type)
2406 {
2407 	const struct btf_type *resolved_type;
2408 	u32 resolved_type_id = member->type;
2409 	struct btf_member resolved_member;
2410 	struct btf *btf = env->btf;
2411 
2412 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2413 	if (!resolved_type) {
2414 		btf_verifier_log_member(env, struct_type, member,
2415 					"Invalid member");
2416 		return -EINVAL;
2417 	}
2418 
2419 	resolved_member = *member;
2420 	resolved_member.type = resolved_type_id;
2421 
2422 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2423 							 &resolved_member,
2424 							 resolved_type);
2425 }
2426 
2427 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2428 					   const struct btf_type *struct_type,
2429 					   const struct btf_member *member,
2430 					   const struct btf_type *member_type)
2431 {
2432 	const struct btf_type *resolved_type;
2433 	u32 resolved_type_id = member->type;
2434 	struct btf_member resolved_member;
2435 	struct btf *btf = env->btf;
2436 
2437 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2438 	if (!resolved_type) {
2439 		btf_verifier_log_member(env, struct_type, member,
2440 					"Invalid member");
2441 		return -EINVAL;
2442 	}
2443 
2444 	resolved_member = *member;
2445 	resolved_member.type = resolved_type_id;
2446 
2447 	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2448 							       &resolved_member,
2449 							       resolved_type);
2450 }
2451 
2452 static int btf_ptr_check_member(struct btf_verifier_env *env,
2453 				const struct btf_type *struct_type,
2454 				const struct btf_member *member,
2455 				const struct btf_type *member_type)
2456 {
2457 	u32 struct_size, struct_bits_off, bytes_offset;
2458 
2459 	struct_size = struct_type->size;
2460 	struct_bits_off = member->offset;
2461 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2462 
2463 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2464 		btf_verifier_log_member(env, struct_type, member,
2465 					"Member is not byte aligned");
2466 		return -EINVAL;
2467 	}
2468 
2469 	if (struct_size - bytes_offset < sizeof(void *)) {
2470 		btf_verifier_log_member(env, struct_type, member,
2471 					"Member exceeds struct_size");
2472 		return -EINVAL;
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2479 				   const struct btf_type *t,
2480 				   u32 meta_left)
2481 {
2482 	const char *value;
2483 
2484 	if (btf_type_vlen(t)) {
2485 		btf_verifier_log_type(env, t, "vlen != 0");
2486 		return -EINVAL;
2487 	}
2488 
2489 	if (btf_type_kflag(t)) {
2490 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2491 		return -EINVAL;
2492 	}
2493 
2494 	if (!BTF_TYPE_ID_VALID(t->type)) {
2495 		btf_verifier_log_type(env, t, "Invalid type_id");
2496 		return -EINVAL;
2497 	}
2498 
2499 	/* typedef/type_tag type must have a valid name, and other ref types,
2500 	 * volatile, const, restrict, should have a null name.
2501 	 */
2502 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2503 		if (!t->name_off ||
2504 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2505 			btf_verifier_log_type(env, t, "Invalid name");
2506 			return -EINVAL;
2507 		}
2508 	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2509 		value = btf_name_by_offset(env->btf, t->name_off);
2510 		if (!value || !value[0]) {
2511 			btf_verifier_log_type(env, t, "Invalid name");
2512 			return -EINVAL;
2513 		}
2514 	} else {
2515 		if (t->name_off) {
2516 			btf_verifier_log_type(env, t, "Invalid name");
2517 			return -EINVAL;
2518 		}
2519 	}
2520 
2521 	btf_verifier_log_type(env, t, NULL);
2522 
2523 	return 0;
2524 }
2525 
2526 static int btf_modifier_resolve(struct btf_verifier_env *env,
2527 				const struct resolve_vertex *v)
2528 {
2529 	const struct btf_type *t = v->t;
2530 	const struct btf_type *next_type;
2531 	u32 next_type_id = t->type;
2532 	struct btf *btf = env->btf;
2533 
2534 	next_type = btf_type_by_id(btf, next_type_id);
2535 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2536 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2537 		return -EINVAL;
2538 	}
2539 
2540 	if (!env_type_is_resolve_sink(env, next_type) &&
2541 	    !env_type_is_resolved(env, next_type_id))
2542 		return env_stack_push(env, next_type, next_type_id);
2543 
2544 	/* Figure out the resolved next_type_id with size.
2545 	 * They will be stored in the current modifier's
2546 	 * resolved_ids and resolved_sizes such that it can
2547 	 * save us a few type-following when we use it later (e.g. in
2548 	 * pretty print).
2549 	 */
2550 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2551 		if (env_type_is_resolved(env, next_type_id))
2552 			next_type = btf_type_id_resolve(btf, &next_type_id);
2553 
2554 		/* "typedef void new_void", "const void"...etc */
2555 		if (!btf_type_is_void(next_type) &&
2556 		    !btf_type_is_fwd(next_type) &&
2557 		    !btf_type_is_func_proto(next_type)) {
2558 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2559 			return -EINVAL;
2560 		}
2561 	}
2562 
2563 	env_stack_pop_resolved(env, next_type_id, 0);
2564 
2565 	return 0;
2566 }
2567 
2568 static int btf_var_resolve(struct btf_verifier_env *env,
2569 			   const struct resolve_vertex *v)
2570 {
2571 	const struct btf_type *next_type;
2572 	const struct btf_type *t = v->t;
2573 	u32 next_type_id = t->type;
2574 	struct btf *btf = env->btf;
2575 
2576 	next_type = btf_type_by_id(btf, next_type_id);
2577 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2578 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2579 		return -EINVAL;
2580 	}
2581 
2582 	if (!env_type_is_resolve_sink(env, next_type) &&
2583 	    !env_type_is_resolved(env, next_type_id))
2584 		return env_stack_push(env, next_type, next_type_id);
2585 
2586 	if (btf_type_is_modifier(next_type)) {
2587 		const struct btf_type *resolved_type;
2588 		u32 resolved_type_id;
2589 
2590 		resolved_type_id = next_type_id;
2591 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2592 
2593 		if (btf_type_is_ptr(resolved_type) &&
2594 		    !env_type_is_resolve_sink(env, resolved_type) &&
2595 		    !env_type_is_resolved(env, resolved_type_id))
2596 			return env_stack_push(env, resolved_type,
2597 					      resolved_type_id);
2598 	}
2599 
2600 	/* We must resolve to something concrete at this point, no
2601 	 * forward types or similar that would resolve to size of
2602 	 * zero is allowed.
2603 	 */
2604 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2605 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2606 		return -EINVAL;
2607 	}
2608 
2609 	env_stack_pop_resolved(env, next_type_id, 0);
2610 
2611 	return 0;
2612 }
2613 
2614 static int btf_ptr_resolve(struct btf_verifier_env *env,
2615 			   const struct resolve_vertex *v)
2616 {
2617 	const struct btf_type *next_type;
2618 	const struct btf_type *t = v->t;
2619 	u32 next_type_id = t->type;
2620 	struct btf *btf = env->btf;
2621 
2622 	next_type = btf_type_by_id(btf, next_type_id);
2623 	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2624 		btf_verifier_log_type(env, v->t, "Invalid type_id");
2625 		return -EINVAL;
2626 	}
2627 
2628 	if (!env_type_is_resolve_sink(env, next_type) &&
2629 	    !env_type_is_resolved(env, next_type_id))
2630 		return env_stack_push(env, next_type, next_type_id);
2631 
2632 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2633 	 * the modifier may have stopped resolving when it was resolved
2634 	 * to a ptr (last-resolved-ptr).
2635 	 *
2636 	 * We now need to continue from the last-resolved-ptr to
2637 	 * ensure the last-resolved-ptr will not referring back to
2638 	 * the current ptr (t).
2639 	 */
2640 	if (btf_type_is_modifier(next_type)) {
2641 		const struct btf_type *resolved_type;
2642 		u32 resolved_type_id;
2643 
2644 		resolved_type_id = next_type_id;
2645 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2646 
2647 		if (btf_type_is_ptr(resolved_type) &&
2648 		    !env_type_is_resolve_sink(env, resolved_type) &&
2649 		    !env_type_is_resolved(env, resolved_type_id))
2650 			return env_stack_push(env, resolved_type,
2651 					      resolved_type_id);
2652 	}
2653 
2654 	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2655 		if (env_type_is_resolved(env, next_type_id))
2656 			next_type = btf_type_id_resolve(btf, &next_type_id);
2657 
2658 		if (!btf_type_is_void(next_type) &&
2659 		    !btf_type_is_fwd(next_type) &&
2660 		    !btf_type_is_func_proto(next_type)) {
2661 			btf_verifier_log_type(env, v->t, "Invalid type_id");
2662 			return -EINVAL;
2663 		}
2664 	}
2665 
2666 	env_stack_pop_resolved(env, next_type_id, 0);
2667 
2668 	return 0;
2669 }
2670 
2671 static void btf_modifier_show(const struct btf *btf,
2672 			      const struct btf_type *t,
2673 			      u32 type_id, void *data,
2674 			      u8 bits_offset, struct btf_show *show)
2675 {
2676 	if (btf->resolved_ids)
2677 		t = btf_type_id_resolve(btf, &type_id);
2678 	else
2679 		t = btf_type_skip_modifiers(btf, type_id, NULL);
2680 
2681 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2682 }
2683 
2684 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2685 			 u32 type_id, void *data, u8 bits_offset,
2686 			 struct btf_show *show)
2687 {
2688 	t = btf_type_id_resolve(btf, &type_id);
2689 
2690 	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2691 }
2692 
2693 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2694 			 u32 type_id, void *data, u8 bits_offset,
2695 			 struct btf_show *show)
2696 {
2697 	void *safe_data;
2698 
2699 	safe_data = btf_show_start_type(show, t, type_id, data);
2700 	if (!safe_data)
2701 		return;
2702 
2703 	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2704 	if (show->flags & BTF_SHOW_PTR_RAW)
2705 		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2706 	else
2707 		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2708 	btf_show_end_type(show);
2709 }
2710 
2711 static void btf_ref_type_log(struct btf_verifier_env *env,
2712 			     const struct btf_type *t)
2713 {
2714 	btf_verifier_log(env, "type_id=%u", t->type);
2715 }
2716 
2717 static struct btf_kind_operations modifier_ops = {
2718 	.check_meta = btf_ref_type_check_meta,
2719 	.resolve = btf_modifier_resolve,
2720 	.check_member = btf_modifier_check_member,
2721 	.check_kflag_member = btf_modifier_check_kflag_member,
2722 	.log_details = btf_ref_type_log,
2723 	.show = btf_modifier_show,
2724 };
2725 
2726 static struct btf_kind_operations ptr_ops = {
2727 	.check_meta = btf_ref_type_check_meta,
2728 	.resolve = btf_ptr_resolve,
2729 	.check_member = btf_ptr_check_member,
2730 	.check_kflag_member = btf_generic_check_kflag_member,
2731 	.log_details = btf_ref_type_log,
2732 	.show = btf_ptr_show,
2733 };
2734 
2735 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2736 			      const struct btf_type *t,
2737 			      u32 meta_left)
2738 {
2739 	if (btf_type_vlen(t)) {
2740 		btf_verifier_log_type(env, t, "vlen != 0");
2741 		return -EINVAL;
2742 	}
2743 
2744 	if (t->type) {
2745 		btf_verifier_log_type(env, t, "type != 0");
2746 		return -EINVAL;
2747 	}
2748 
2749 	/* fwd type must have a valid name */
2750 	if (!t->name_off ||
2751 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2752 		btf_verifier_log_type(env, t, "Invalid name");
2753 		return -EINVAL;
2754 	}
2755 
2756 	btf_verifier_log_type(env, t, NULL);
2757 
2758 	return 0;
2759 }
2760 
2761 static void btf_fwd_type_log(struct btf_verifier_env *env,
2762 			     const struct btf_type *t)
2763 {
2764 	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2765 }
2766 
2767 static struct btf_kind_operations fwd_ops = {
2768 	.check_meta = btf_fwd_check_meta,
2769 	.resolve = btf_df_resolve,
2770 	.check_member = btf_df_check_member,
2771 	.check_kflag_member = btf_df_check_kflag_member,
2772 	.log_details = btf_fwd_type_log,
2773 	.show = btf_df_show,
2774 };
2775 
2776 static int btf_array_check_member(struct btf_verifier_env *env,
2777 				  const struct btf_type *struct_type,
2778 				  const struct btf_member *member,
2779 				  const struct btf_type *member_type)
2780 {
2781 	u32 struct_bits_off = member->offset;
2782 	u32 struct_size, bytes_offset;
2783 	u32 array_type_id, array_size;
2784 	struct btf *btf = env->btf;
2785 
2786 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2787 		btf_verifier_log_member(env, struct_type, member,
2788 					"Member is not byte aligned");
2789 		return -EINVAL;
2790 	}
2791 
2792 	array_type_id = member->type;
2793 	btf_type_id_size(btf, &array_type_id, &array_size);
2794 	struct_size = struct_type->size;
2795 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2796 	if (struct_size - bytes_offset < array_size) {
2797 		btf_verifier_log_member(env, struct_type, member,
2798 					"Member exceeds struct_size");
2799 		return -EINVAL;
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2806 				const struct btf_type *t,
2807 				u32 meta_left)
2808 {
2809 	const struct btf_array *array = btf_type_array(t);
2810 	u32 meta_needed = sizeof(*array);
2811 
2812 	if (meta_left < meta_needed) {
2813 		btf_verifier_log_basic(env, t,
2814 				       "meta_left:%u meta_needed:%u",
2815 				       meta_left, meta_needed);
2816 		return -EINVAL;
2817 	}
2818 
2819 	/* array type should not have a name */
2820 	if (t->name_off) {
2821 		btf_verifier_log_type(env, t, "Invalid name");
2822 		return -EINVAL;
2823 	}
2824 
2825 	if (btf_type_vlen(t)) {
2826 		btf_verifier_log_type(env, t, "vlen != 0");
2827 		return -EINVAL;
2828 	}
2829 
2830 	if (btf_type_kflag(t)) {
2831 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2832 		return -EINVAL;
2833 	}
2834 
2835 	if (t->size) {
2836 		btf_verifier_log_type(env, t, "size != 0");
2837 		return -EINVAL;
2838 	}
2839 
2840 	/* Array elem type and index type cannot be in type void,
2841 	 * so !array->type and !array->index_type are not allowed.
2842 	 */
2843 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2844 		btf_verifier_log_type(env, t, "Invalid elem");
2845 		return -EINVAL;
2846 	}
2847 
2848 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2849 		btf_verifier_log_type(env, t, "Invalid index");
2850 		return -EINVAL;
2851 	}
2852 
2853 	btf_verifier_log_type(env, t, NULL);
2854 
2855 	return meta_needed;
2856 }
2857 
2858 static int btf_array_resolve(struct btf_verifier_env *env,
2859 			     const struct resolve_vertex *v)
2860 {
2861 	const struct btf_array *array = btf_type_array(v->t);
2862 	const struct btf_type *elem_type, *index_type;
2863 	u32 elem_type_id, index_type_id;
2864 	struct btf *btf = env->btf;
2865 	u32 elem_size;
2866 
2867 	/* Check array->index_type */
2868 	index_type_id = array->index_type;
2869 	index_type = btf_type_by_id(btf, index_type_id);
2870 	if (btf_type_nosize_or_null(index_type) ||
2871 	    btf_type_is_resolve_source_only(index_type)) {
2872 		btf_verifier_log_type(env, v->t, "Invalid index");
2873 		return -EINVAL;
2874 	}
2875 
2876 	if (!env_type_is_resolve_sink(env, index_type) &&
2877 	    !env_type_is_resolved(env, index_type_id))
2878 		return env_stack_push(env, index_type, index_type_id);
2879 
2880 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2881 	if (!index_type || !btf_type_is_int(index_type) ||
2882 	    !btf_type_int_is_regular(index_type)) {
2883 		btf_verifier_log_type(env, v->t, "Invalid index");
2884 		return -EINVAL;
2885 	}
2886 
2887 	/* Check array->type */
2888 	elem_type_id = array->type;
2889 	elem_type = btf_type_by_id(btf, elem_type_id);
2890 	if (btf_type_nosize_or_null(elem_type) ||
2891 	    btf_type_is_resolve_source_only(elem_type)) {
2892 		btf_verifier_log_type(env, v->t,
2893 				      "Invalid elem");
2894 		return -EINVAL;
2895 	}
2896 
2897 	if (!env_type_is_resolve_sink(env, elem_type) &&
2898 	    !env_type_is_resolved(env, elem_type_id))
2899 		return env_stack_push(env, elem_type, elem_type_id);
2900 
2901 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2902 	if (!elem_type) {
2903 		btf_verifier_log_type(env, v->t, "Invalid elem");
2904 		return -EINVAL;
2905 	}
2906 
2907 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2908 		btf_verifier_log_type(env, v->t, "Invalid array of int");
2909 		return -EINVAL;
2910 	}
2911 
2912 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2913 		btf_verifier_log_type(env, v->t,
2914 				      "Array size overflows U32_MAX");
2915 		return -EINVAL;
2916 	}
2917 
2918 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2919 
2920 	return 0;
2921 }
2922 
2923 static void btf_array_log(struct btf_verifier_env *env,
2924 			  const struct btf_type *t)
2925 {
2926 	const struct btf_array *array = btf_type_array(t);
2927 
2928 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2929 			 array->type, array->index_type, array->nelems);
2930 }
2931 
2932 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2933 			     u32 type_id, void *data, u8 bits_offset,
2934 			     struct btf_show *show)
2935 {
2936 	const struct btf_array *array = btf_type_array(t);
2937 	const struct btf_kind_operations *elem_ops;
2938 	const struct btf_type *elem_type;
2939 	u32 i, elem_size = 0, elem_type_id;
2940 	u16 encoding = 0;
2941 
2942 	elem_type_id = array->type;
2943 	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2944 	if (elem_type && btf_type_has_size(elem_type))
2945 		elem_size = elem_type->size;
2946 
2947 	if (elem_type && btf_type_is_int(elem_type)) {
2948 		u32 int_type = btf_type_int(elem_type);
2949 
2950 		encoding = BTF_INT_ENCODING(int_type);
2951 
2952 		/*
2953 		 * BTF_INT_CHAR encoding never seems to be set for
2954 		 * char arrays, so if size is 1 and element is
2955 		 * printable as a char, we'll do that.
2956 		 */
2957 		if (elem_size == 1)
2958 			encoding = BTF_INT_CHAR;
2959 	}
2960 
2961 	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2962 		return;
2963 
2964 	if (!elem_type)
2965 		goto out;
2966 	elem_ops = btf_type_ops(elem_type);
2967 
2968 	for (i = 0; i < array->nelems; i++) {
2969 
2970 		btf_show_start_array_member(show);
2971 
2972 		elem_ops->show(btf, elem_type, elem_type_id, data,
2973 			       bits_offset, show);
2974 		data += elem_size;
2975 
2976 		btf_show_end_array_member(show);
2977 
2978 		if (show->state.array_terminated)
2979 			break;
2980 	}
2981 out:
2982 	btf_show_end_array_type(show);
2983 }
2984 
2985 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2986 			   u32 type_id, void *data, u8 bits_offset,
2987 			   struct btf_show *show)
2988 {
2989 	const struct btf_member *m = show->state.member;
2990 
2991 	/*
2992 	 * First check if any members would be shown (are non-zero).
2993 	 * See comments above "struct btf_show" definition for more
2994 	 * details on how this works at a high-level.
2995 	 */
2996 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2997 		if (!show->state.depth_check) {
2998 			show->state.depth_check = show->state.depth + 1;
2999 			show->state.depth_to_show = 0;
3000 		}
3001 		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3002 		show->state.member = m;
3003 
3004 		if (show->state.depth_check != show->state.depth + 1)
3005 			return;
3006 		show->state.depth_check = 0;
3007 
3008 		if (show->state.depth_to_show <= show->state.depth)
3009 			return;
3010 		/*
3011 		 * Reaching here indicates we have recursed and found
3012 		 * non-zero array member(s).
3013 		 */
3014 	}
3015 	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3016 }
3017 
3018 static struct btf_kind_operations array_ops = {
3019 	.check_meta = btf_array_check_meta,
3020 	.resolve = btf_array_resolve,
3021 	.check_member = btf_array_check_member,
3022 	.check_kflag_member = btf_generic_check_kflag_member,
3023 	.log_details = btf_array_log,
3024 	.show = btf_array_show,
3025 };
3026 
3027 static int btf_struct_check_member(struct btf_verifier_env *env,
3028 				   const struct btf_type *struct_type,
3029 				   const struct btf_member *member,
3030 				   const struct btf_type *member_type)
3031 {
3032 	u32 struct_bits_off = member->offset;
3033 	u32 struct_size, bytes_offset;
3034 
3035 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3036 		btf_verifier_log_member(env, struct_type, member,
3037 					"Member is not byte aligned");
3038 		return -EINVAL;
3039 	}
3040 
3041 	struct_size = struct_type->size;
3042 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3043 	if (struct_size - bytes_offset < member_type->size) {
3044 		btf_verifier_log_member(env, struct_type, member,
3045 					"Member exceeds struct_size");
3046 		return -EINVAL;
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3053 				 const struct btf_type *t,
3054 				 u32 meta_left)
3055 {
3056 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3057 	const struct btf_member *member;
3058 	u32 meta_needed, last_offset;
3059 	struct btf *btf = env->btf;
3060 	u32 struct_size = t->size;
3061 	u32 offset;
3062 	u16 i;
3063 
3064 	meta_needed = btf_type_vlen(t) * sizeof(*member);
3065 	if (meta_left < meta_needed) {
3066 		btf_verifier_log_basic(env, t,
3067 				       "meta_left:%u meta_needed:%u",
3068 				       meta_left, meta_needed);
3069 		return -EINVAL;
3070 	}
3071 
3072 	/* struct type either no name or a valid one */
3073 	if (t->name_off &&
3074 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3075 		btf_verifier_log_type(env, t, "Invalid name");
3076 		return -EINVAL;
3077 	}
3078 
3079 	btf_verifier_log_type(env, t, NULL);
3080 
3081 	last_offset = 0;
3082 	for_each_member(i, t, member) {
3083 		if (!btf_name_offset_valid(btf, member->name_off)) {
3084 			btf_verifier_log_member(env, t, member,
3085 						"Invalid member name_offset:%u",
3086 						member->name_off);
3087 			return -EINVAL;
3088 		}
3089 
3090 		/* struct member either no name or a valid one */
3091 		if (member->name_off &&
3092 		    !btf_name_valid_identifier(btf, member->name_off)) {
3093 			btf_verifier_log_member(env, t, member, "Invalid name");
3094 			return -EINVAL;
3095 		}
3096 		/* A member cannot be in type void */
3097 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3098 			btf_verifier_log_member(env, t, member,
3099 						"Invalid type_id");
3100 			return -EINVAL;
3101 		}
3102 
3103 		offset = __btf_member_bit_offset(t, member);
3104 		if (is_union && offset) {
3105 			btf_verifier_log_member(env, t, member,
3106 						"Invalid member bits_offset");
3107 			return -EINVAL;
3108 		}
3109 
3110 		/*
3111 		 * ">" instead of ">=" because the last member could be
3112 		 * "char a[0];"
3113 		 */
3114 		if (last_offset > offset) {
3115 			btf_verifier_log_member(env, t, member,
3116 						"Invalid member bits_offset");
3117 			return -EINVAL;
3118 		}
3119 
3120 		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3121 			btf_verifier_log_member(env, t, member,
3122 						"Member bits_offset exceeds its struct size");
3123 			return -EINVAL;
3124 		}
3125 
3126 		btf_verifier_log_member(env, t, member, NULL);
3127 		last_offset = offset;
3128 	}
3129 
3130 	return meta_needed;
3131 }
3132 
3133 static int btf_struct_resolve(struct btf_verifier_env *env,
3134 			      const struct resolve_vertex *v)
3135 {
3136 	const struct btf_member *member;
3137 	int err;
3138 	u16 i;
3139 
3140 	/* Before continue resolving the next_member,
3141 	 * ensure the last member is indeed resolved to a
3142 	 * type with size info.
3143 	 */
3144 	if (v->next_member) {
3145 		const struct btf_type *last_member_type;
3146 		const struct btf_member *last_member;
3147 		u32 last_member_type_id;
3148 
3149 		last_member = btf_type_member(v->t) + v->next_member - 1;
3150 		last_member_type_id = last_member->type;
3151 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3152 						       last_member_type_id)))
3153 			return -EINVAL;
3154 
3155 		last_member_type = btf_type_by_id(env->btf,
3156 						  last_member_type_id);
3157 		if (btf_type_kflag(v->t))
3158 			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3159 								last_member,
3160 								last_member_type);
3161 		else
3162 			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3163 								last_member,
3164 								last_member_type);
3165 		if (err)
3166 			return err;
3167 	}
3168 
3169 	for_each_member_from(i, v->next_member, v->t, member) {
3170 		u32 member_type_id = member->type;
3171 		const struct btf_type *member_type = btf_type_by_id(env->btf,
3172 								member_type_id);
3173 
3174 		if (btf_type_nosize_or_null(member_type) ||
3175 		    btf_type_is_resolve_source_only(member_type)) {
3176 			btf_verifier_log_member(env, v->t, member,
3177 						"Invalid member");
3178 			return -EINVAL;
3179 		}
3180 
3181 		if (!env_type_is_resolve_sink(env, member_type) &&
3182 		    !env_type_is_resolved(env, member_type_id)) {
3183 			env_stack_set_next_member(env, i + 1);
3184 			return env_stack_push(env, member_type, member_type_id);
3185 		}
3186 
3187 		if (btf_type_kflag(v->t))
3188 			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3189 									    member,
3190 									    member_type);
3191 		else
3192 			err = btf_type_ops(member_type)->check_member(env, v->t,
3193 								      member,
3194 								      member_type);
3195 		if (err)
3196 			return err;
3197 	}
3198 
3199 	env_stack_pop_resolved(env, 0, 0);
3200 
3201 	return 0;
3202 }
3203 
3204 static void btf_struct_log(struct btf_verifier_env *env,
3205 			   const struct btf_type *t)
3206 {
3207 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3208 }
3209 
3210 enum btf_field_info_type {
3211 	BTF_FIELD_SPIN_LOCK,
3212 	BTF_FIELD_TIMER,
3213 	BTF_FIELD_KPTR,
3214 };
3215 
3216 enum {
3217 	BTF_FIELD_IGNORE = 0,
3218 	BTF_FIELD_FOUND  = 1,
3219 };
3220 
3221 struct btf_field_info {
3222 	enum btf_field_type type;
3223 	u32 off;
3224 	union {
3225 		struct {
3226 			u32 type_id;
3227 		} kptr;
3228 		struct {
3229 			const char *node_name;
3230 			u32 value_btf_id;
3231 		} list_head;
3232 	};
3233 };
3234 
3235 static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3236 			   u32 off, int sz, enum btf_field_type field_type,
3237 			   struct btf_field_info *info)
3238 {
3239 	if (!__btf_type_is_struct(t))
3240 		return BTF_FIELD_IGNORE;
3241 	if (t->size != sz)
3242 		return BTF_FIELD_IGNORE;
3243 	info->type = field_type;
3244 	info->off = off;
3245 	return BTF_FIELD_FOUND;
3246 }
3247 
3248 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3249 			 u32 off, int sz, struct btf_field_info *info)
3250 {
3251 	enum btf_field_type type;
3252 	u32 res_id;
3253 
3254 	/* Permit modifiers on the pointer itself */
3255 	if (btf_type_is_volatile(t))
3256 		t = btf_type_by_id(btf, t->type);
3257 	/* For PTR, sz is always == 8 */
3258 	if (!btf_type_is_ptr(t))
3259 		return BTF_FIELD_IGNORE;
3260 	t = btf_type_by_id(btf, t->type);
3261 
3262 	if (!btf_type_is_type_tag(t))
3263 		return BTF_FIELD_IGNORE;
3264 	/* Reject extra tags */
3265 	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3266 		return -EINVAL;
3267 	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3268 		type = BPF_KPTR_UNREF;
3269 	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3270 		type = BPF_KPTR_REF;
3271 	else
3272 		return -EINVAL;
3273 
3274 	/* Get the base type */
3275 	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3276 	/* Only pointer to struct is allowed */
3277 	if (!__btf_type_is_struct(t))
3278 		return -EINVAL;
3279 
3280 	info->type = type;
3281 	info->off = off;
3282 	info->kptr.type_id = res_id;
3283 	return BTF_FIELD_FOUND;
3284 }
3285 
3286 static const char *btf_find_decl_tag_value(const struct btf *btf,
3287 					   const struct btf_type *pt,
3288 					   int comp_idx, const char *tag_key)
3289 {
3290 	int i;
3291 
3292 	for (i = 1; i < btf_nr_types(btf); i++) {
3293 		const struct btf_type *t = btf_type_by_id(btf, i);
3294 		int len = strlen(tag_key);
3295 
3296 		if (!btf_type_is_decl_tag(t))
3297 			continue;
3298 		if (pt != btf_type_by_id(btf, t->type) ||
3299 		    btf_type_decl_tag(t)->component_idx != comp_idx)
3300 			continue;
3301 		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3302 			continue;
3303 		return __btf_name_by_offset(btf, t->name_off) + len;
3304 	}
3305 	return NULL;
3306 }
3307 
3308 static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt,
3309 			      const struct btf_type *t, int comp_idx,
3310 			      u32 off, int sz, struct btf_field_info *info)
3311 {
3312 	const char *value_type;
3313 	const char *list_node;
3314 	s32 id;
3315 
3316 	if (!__btf_type_is_struct(t))
3317 		return BTF_FIELD_IGNORE;
3318 	if (t->size != sz)
3319 		return BTF_FIELD_IGNORE;
3320 	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3321 	if (!value_type)
3322 		return -EINVAL;
3323 	list_node = strstr(value_type, ":");
3324 	if (!list_node)
3325 		return -EINVAL;
3326 	value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN);
3327 	if (!value_type)
3328 		return -ENOMEM;
3329 	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3330 	kfree(value_type);
3331 	if (id < 0)
3332 		return id;
3333 	list_node++;
3334 	if (str_is_empty(list_node))
3335 		return -EINVAL;
3336 	info->type = BPF_LIST_HEAD;
3337 	info->off = off;
3338 	info->list_head.value_btf_id = id;
3339 	info->list_head.node_name = list_node;
3340 	return BTF_FIELD_FOUND;
3341 }
3342 
3343 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3344 			      int *align, int *sz)
3345 {
3346 	int type = 0;
3347 
3348 	if (field_mask & BPF_SPIN_LOCK) {
3349 		if (!strcmp(name, "bpf_spin_lock")) {
3350 			if (*seen_mask & BPF_SPIN_LOCK)
3351 				return -E2BIG;
3352 			*seen_mask |= BPF_SPIN_LOCK;
3353 			type = BPF_SPIN_LOCK;
3354 			goto end;
3355 		}
3356 	}
3357 	if (field_mask & BPF_TIMER) {
3358 		if (!strcmp(name, "bpf_timer")) {
3359 			if (*seen_mask & BPF_TIMER)
3360 				return -E2BIG;
3361 			*seen_mask |= BPF_TIMER;
3362 			type = BPF_TIMER;
3363 			goto end;
3364 		}
3365 	}
3366 	if (field_mask & BPF_LIST_HEAD) {
3367 		if (!strcmp(name, "bpf_list_head")) {
3368 			type = BPF_LIST_HEAD;
3369 			goto end;
3370 		}
3371 	}
3372 	if (field_mask & BPF_LIST_NODE) {
3373 		if (!strcmp(name, "bpf_list_node")) {
3374 			type = BPF_LIST_NODE;
3375 			goto end;
3376 		}
3377 	}
3378 	/* Only return BPF_KPTR when all other types with matchable names fail */
3379 	if (field_mask & BPF_KPTR) {
3380 		type = BPF_KPTR_REF;
3381 		goto end;
3382 	}
3383 	return 0;
3384 end:
3385 	*sz = btf_field_type_size(type);
3386 	*align = btf_field_type_align(type);
3387 	return type;
3388 }
3389 
3390 static int btf_find_struct_field(const struct btf *btf,
3391 				 const struct btf_type *t, u32 field_mask,
3392 				 struct btf_field_info *info, int info_cnt)
3393 {
3394 	int ret, idx = 0, align, sz, field_type;
3395 	const struct btf_member *member;
3396 	struct btf_field_info tmp;
3397 	u32 i, off, seen_mask = 0;
3398 
3399 	for_each_member(i, t, member) {
3400 		const struct btf_type *member_type = btf_type_by_id(btf,
3401 								    member->type);
3402 
3403 		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3404 						field_mask, &seen_mask, &align, &sz);
3405 		if (field_type == 0)
3406 			continue;
3407 		if (field_type < 0)
3408 			return field_type;
3409 
3410 		off = __btf_member_bit_offset(t, member);
3411 		if (off % 8)
3412 			/* valid C code cannot generate such BTF */
3413 			return -EINVAL;
3414 		off /= 8;
3415 		if (off % align)
3416 			continue;
3417 
3418 		switch (field_type) {
3419 		case BPF_SPIN_LOCK:
3420 		case BPF_TIMER:
3421 		case BPF_LIST_NODE:
3422 			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3423 					      idx < info_cnt ? &info[idx] : &tmp);
3424 			if (ret < 0)
3425 				return ret;
3426 			break;
3427 		case BPF_KPTR_UNREF:
3428 		case BPF_KPTR_REF:
3429 			ret = btf_find_kptr(btf, member_type, off, sz,
3430 					    idx < info_cnt ? &info[idx] : &tmp);
3431 			if (ret < 0)
3432 				return ret;
3433 			break;
3434 		case BPF_LIST_HEAD:
3435 			ret = btf_find_list_head(btf, t, member_type, i, off, sz,
3436 						 idx < info_cnt ? &info[idx] : &tmp);
3437 			if (ret < 0)
3438 				return ret;
3439 			break;
3440 		default:
3441 			return -EFAULT;
3442 		}
3443 
3444 		if (ret == BTF_FIELD_IGNORE)
3445 			continue;
3446 		if (idx >= info_cnt)
3447 			return -E2BIG;
3448 		++idx;
3449 	}
3450 	return idx;
3451 }
3452 
3453 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3454 				u32 field_mask, struct btf_field_info *info,
3455 				int info_cnt)
3456 {
3457 	int ret, idx = 0, align, sz, field_type;
3458 	const struct btf_var_secinfo *vsi;
3459 	struct btf_field_info tmp;
3460 	u32 i, off, seen_mask = 0;
3461 
3462 	for_each_vsi(i, t, vsi) {
3463 		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3464 		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3465 
3466 		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3467 						field_mask, &seen_mask, &align, &sz);
3468 		if (field_type == 0)
3469 			continue;
3470 		if (field_type < 0)
3471 			return field_type;
3472 
3473 		off = vsi->offset;
3474 		if (vsi->size != sz)
3475 			continue;
3476 		if (off % align)
3477 			continue;
3478 
3479 		switch (field_type) {
3480 		case BPF_SPIN_LOCK:
3481 		case BPF_TIMER:
3482 		case BPF_LIST_NODE:
3483 			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3484 					      idx < info_cnt ? &info[idx] : &tmp);
3485 			if (ret < 0)
3486 				return ret;
3487 			break;
3488 		case BPF_KPTR_UNREF:
3489 		case BPF_KPTR_REF:
3490 			ret = btf_find_kptr(btf, var_type, off, sz,
3491 					    idx < info_cnt ? &info[idx] : &tmp);
3492 			if (ret < 0)
3493 				return ret;
3494 			break;
3495 		case BPF_LIST_HEAD:
3496 			ret = btf_find_list_head(btf, var, var_type, -1, off, sz,
3497 						 idx < info_cnt ? &info[idx] : &tmp);
3498 			if (ret < 0)
3499 				return ret;
3500 			break;
3501 		default:
3502 			return -EFAULT;
3503 		}
3504 
3505 		if (ret == BTF_FIELD_IGNORE)
3506 			continue;
3507 		if (idx >= info_cnt)
3508 			return -E2BIG;
3509 		++idx;
3510 	}
3511 	return idx;
3512 }
3513 
3514 static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3515 			  u32 field_mask, struct btf_field_info *info,
3516 			  int info_cnt)
3517 {
3518 	if (__btf_type_is_struct(t))
3519 		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3520 	else if (btf_type_is_datasec(t))
3521 		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3522 	return -EINVAL;
3523 }
3524 
3525 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3526 			  struct btf_field_info *info)
3527 {
3528 	struct module *mod = NULL;
3529 	const struct btf_type *t;
3530 	struct btf *kernel_btf;
3531 	int ret;
3532 	s32 id;
3533 
3534 	/* Find type in map BTF, and use it to look up the matching type
3535 	 * in vmlinux or module BTFs, by name and kind.
3536 	 */
3537 	t = btf_type_by_id(btf, info->kptr.type_id);
3538 	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3539 			     &kernel_btf);
3540 	if (id < 0)
3541 		return id;
3542 
3543 	/* Find and stash the function pointer for the destruction function that
3544 	 * needs to be eventually invoked from the map free path.
3545 	 */
3546 	if (info->type == BPF_KPTR_REF) {
3547 		const struct btf_type *dtor_func;
3548 		const char *dtor_func_name;
3549 		unsigned long addr;
3550 		s32 dtor_btf_id;
3551 
3552 		/* This call also serves as a whitelist of allowed objects that
3553 		 * can be used as a referenced pointer and be stored in a map at
3554 		 * the same time.
3555 		 */
3556 		dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3557 		if (dtor_btf_id < 0) {
3558 			ret = dtor_btf_id;
3559 			goto end_btf;
3560 		}
3561 
3562 		dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3563 		if (!dtor_func) {
3564 			ret = -ENOENT;
3565 			goto end_btf;
3566 		}
3567 
3568 		if (btf_is_module(kernel_btf)) {
3569 			mod = btf_try_get_module(kernel_btf);
3570 			if (!mod) {
3571 				ret = -ENXIO;
3572 				goto end_btf;
3573 			}
3574 		}
3575 
3576 		/* We already verified dtor_func to be btf_type_is_func
3577 		 * in register_btf_id_dtor_kfuncs.
3578 		 */
3579 		dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3580 		addr = kallsyms_lookup_name(dtor_func_name);
3581 		if (!addr) {
3582 			ret = -EINVAL;
3583 			goto end_mod;
3584 		}
3585 		field->kptr.dtor = (void *)addr;
3586 	}
3587 
3588 	field->kptr.btf_id = id;
3589 	field->kptr.btf = kernel_btf;
3590 	field->kptr.module = mod;
3591 	return 0;
3592 end_mod:
3593 	module_put(mod);
3594 end_btf:
3595 	btf_put(kernel_btf);
3596 	return ret;
3597 }
3598 
3599 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3600 			       struct btf_field_info *info)
3601 {
3602 	const struct btf_type *t, *n = NULL;
3603 	const struct btf_member *member;
3604 	u32 offset;
3605 	int i;
3606 
3607 	t = btf_type_by_id(btf, info->list_head.value_btf_id);
3608 	/* We've already checked that value_btf_id is a struct type. We
3609 	 * just need to figure out the offset of the list_node, and
3610 	 * verify its type.
3611 	 */
3612 	for_each_member(i, t, member) {
3613 		if (strcmp(info->list_head.node_name, __btf_name_by_offset(btf, member->name_off)))
3614 			continue;
3615 		/* Invalid BTF, two members with same name */
3616 		if (n)
3617 			return -EINVAL;
3618 		n = btf_type_by_id(btf, member->type);
3619 		if (!__btf_type_is_struct(n))
3620 			return -EINVAL;
3621 		if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off)))
3622 			return -EINVAL;
3623 		offset = __btf_member_bit_offset(n, member);
3624 		if (offset % 8)
3625 			return -EINVAL;
3626 		offset /= 8;
3627 		if (offset % __alignof__(struct bpf_list_node))
3628 			return -EINVAL;
3629 
3630 		field->list_head.btf = (struct btf *)btf;
3631 		field->list_head.value_btf_id = info->list_head.value_btf_id;
3632 		field->list_head.node_offset = offset;
3633 	}
3634 	if (!n)
3635 		return -ENOENT;
3636 	return 0;
3637 }
3638 
3639 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3640 				    u32 field_mask, u32 value_size)
3641 {
3642 	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3643 	struct btf_record *rec;
3644 	u32 next_off = 0;
3645 	int ret, i, cnt;
3646 
3647 	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3648 	if (ret < 0)
3649 		return ERR_PTR(ret);
3650 	if (!ret)
3651 		return NULL;
3652 
3653 	cnt = ret;
3654 	/* This needs to be kzalloc to zero out padding and unused fields, see
3655 	 * comment in btf_record_equal.
3656 	 */
3657 	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3658 	if (!rec)
3659 		return ERR_PTR(-ENOMEM);
3660 
3661 	rec->spin_lock_off = -EINVAL;
3662 	rec->timer_off = -EINVAL;
3663 	for (i = 0; i < cnt; i++) {
3664 		if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
3665 			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3666 			ret = -EFAULT;
3667 			goto end;
3668 		}
3669 		if (info_arr[i].off < next_off) {
3670 			ret = -EEXIST;
3671 			goto end;
3672 		}
3673 		next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
3674 
3675 		rec->field_mask |= info_arr[i].type;
3676 		rec->fields[i].offset = info_arr[i].off;
3677 		rec->fields[i].type = info_arr[i].type;
3678 
3679 		switch (info_arr[i].type) {
3680 		case BPF_SPIN_LOCK:
3681 			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3682 			/* Cache offset for faster lookup at runtime */
3683 			rec->spin_lock_off = rec->fields[i].offset;
3684 			break;
3685 		case BPF_TIMER:
3686 			WARN_ON_ONCE(rec->timer_off >= 0);
3687 			/* Cache offset for faster lookup at runtime */
3688 			rec->timer_off = rec->fields[i].offset;
3689 			break;
3690 		case BPF_KPTR_UNREF:
3691 		case BPF_KPTR_REF:
3692 			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3693 			if (ret < 0)
3694 				goto end;
3695 			break;
3696 		case BPF_LIST_HEAD:
3697 			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3698 			if (ret < 0)
3699 				goto end;
3700 			break;
3701 		case BPF_LIST_NODE:
3702 			break;
3703 		default:
3704 			ret = -EFAULT;
3705 			goto end;
3706 		}
3707 		rec->cnt++;
3708 	}
3709 
3710 	/* bpf_list_head requires bpf_spin_lock */
3711 	if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) {
3712 		ret = -EINVAL;
3713 		goto end;
3714 	}
3715 
3716 	return rec;
3717 end:
3718 	btf_record_free(rec);
3719 	return ERR_PTR(ret);
3720 }
3721 
3722 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3723 {
3724 	int i;
3725 
3726 	/* There are two owning types, kptr_ref and bpf_list_head. The former
3727 	 * only supports storing kernel types, which can never store references
3728 	 * to program allocated local types, atleast not yet. Hence we only need
3729 	 * to ensure that bpf_list_head ownership does not form cycles.
3730 	 */
3731 	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD))
3732 		return 0;
3733 	for (i = 0; i < rec->cnt; i++) {
3734 		struct btf_struct_meta *meta;
3735 		u32 btf_id;
3736 
3737 		if (!(rec->fields[i].type & BPF_LIST_HEAD))
3738 			continue;
3739 		btf_id = rec->fields[i].list_head.value_btf_id;
3740 		meta = btf_find_struct_meta(btf, btf_id);
3741 		if (!meta)
3742 			return -EFAULT;
3743 		rec->fields[i].list_head.value_rec = meta->record;
3744 
3745 		if (!(rec->field_mask & BPF_LIST_NODE))
3746 			continue;
3747 
3748 		/* We need to ensure ownership acyclicity among all types. The
3749 		 * proper way to do it would be to topologically sort all BTF
3750 		 * IDs based on the ownership edges, since there can be multiple
3751 		 * bpf_list_head in a type. Instead, we use the following
3752 		 * reasoning:
3753 		 *
3754 		 * - A type can only be owned by another type in user BTF if it
3755 		 *   has a bpf_list_node.
3756 		 * - A type can only _own_ another type in user BTF if it has a
3757 		 *   bpf_list_head.
3758 		 *
3759 		 * We ensure that if a type has both bpf_list_head and
3760 		 * bpf_list_node, its element types cannot be owning types.
3761 		 *
3762 		 * To ensure acyclicity:
3763 		 *
3764 		 * When A only has bpf_list_head, ownership chain can be:
3765 		 *	A -> B -> C
3766 		 * Where:
3767 		 * - B has both bpf_list_head and bpf_list_node.
3768 		 * - C only has bpf_list_node.
3769 		 *
3770 		 * When A has both bpf_list_head and bpf_list_node, some other
3771 		 * type already owns it in the BTF domain, hence it can not own
3772 		 * another owning type through any of the bpf_list_head edges.
3773 		 *	A -> B
3774 		 * Where:
3775 		 * - B only has bpf_list_node.
3776 		 */
3777 		if (meta->record->field_mask & BPF_LIST_HEAD)
3778 			return -ELOOP;
3779 	}
3780 	return 0;
3781 }
3782 
3783 static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
3784 {
3785 	const u32 a = *(const u32 *)_a;
3786 	const u32 b = *(const u32 *)_b;
3787 
3788 	if (a < b)
3789 		return -1;
3790 	else if (a > b)
3791 		return 1;
3792 	return 0;
3793 }
3794 
3795 static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
3796 {
3797 	struct btf_field_offs *foffs = (void *)priv;
3798 	u32 *off_base = foffs->field_off;
3799 	u32 *a = _a, *b = _b;
3800 	u8 *sz_a, *sz_b;
3801 
3802 	sz_a = foffs->field_sz + (a - off_base);
3803 	sz_b = foffs->field_sz + (b - off_base);
3804 
3805 	swap(*a, *b);
3806 	swap(*sz_a, *sz_b);
3807 }
3808 
3809 struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
3810 {
3811 	struct btf_field_offs *foffs;
3812 	u32 i, *off;
3813 	u8 *sz;
3814 
3815 	BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
3816 	if (IS_ERR_OR_NULL(rec))
3817 		return NULL;
3818 
3819 	foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
3820 	if (!foffs)
3821 		return ERR_PTR(-ENOMEM);
3822 
3823 	off = foffs->field_off;
3824 	sz = foffs->field_sz;
3825 	for (i = 0; i < rec->cnt; i++) {
3826 		off[i] = rec->fields[i].offset;
3827 		sz[i] = btf_field_type_size(rec->fields[i].type);
3828 	}
3829 	foffs->cnt = rec->cnt;
3830 
3831 	if (foffs->cnt == 1)
3832 		return foffs;
3833 	sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
3834 	       btf_field_offs_cmp, btf_field_offs_swap, foffs);
3835 	return foffs;
3836 }
3837 
3838 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3839 			      u32 type_id, void *data, u8 bits_offset,
3840 			      struct btf_show *show)
3841 {
3842 	const struct btf_member *member;
3843 	void *safe_data;
3844 	u32 i;
3845 
3846 	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3847 	if (!safe_data)
3848 		return;
3849 
3850 	for_each_member(i, t, member) {
3851 		const struct btf_type *member_type = btf_type_by_id(btf,
3852 								member->type);
3853 		const struct btf_kind_operations *ops;
3854 		u32 member_offset, bitfield_size;
3855 		u32 bytes_offset;
3856 		u8 bits8_offset;
3857 
3858 		btf_show_start_member(show, member);
3859 
3860 		member_offset = __btf_member_bit_offset(t, member);
3861 		bitfield_size = __btf_member_bitfield_size(t, member);
3862 		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3863 		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3864 		if (bitfield_size) {
3865 			safe_data = btf_show_start_type(show, member_type,
3866 							member->type,
3867 							data + bytes_offset);
3868 			if (safe_data)
3869 				btf_bitfield_show(safe_data,
3870 						  bits8_offset,
3871 						  bitfield_size, show);
3872 			btf_show_end_type(show);
3873 		} else {
3874 			ops = btf_type_ops(member_type);
3875 			ops->show(btf, member_type, member->type,
3876 				  data + bytes_offset, bits8_offset, show);
3877 		}
3878 
3879 		btf_show_end_member(show);
3880 	}
3881 
3882 	btf_show_end_struct_type(show);
3883 }
3884 
3885 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3886 			    u32 type_id, void *data, u8 bits_offset,
3887 			    struct btf_show *show)
3888 {
3889 	const struct btf_member *m = show->state.member;
3890 
3891 	/*
3892 	 * First check if any members would be shown (are non-zero).
3893 	 * See comments above "struct btf_show" definition for more
3894 	 * details on how this works at a high-level.
3895 	 */
3896 	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3897 		if (!show->state.depth_check) {
3898 			show->state.depth_check = show->state.depth + 1;
3899 			show->state.depth_to_show = 0;
3900 		}
3901 		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3902 		/* Restore saved member data here */
3903 		show->state.member = m;
3904 		if (show->state.depth_check != show->state.depth + 1)
3905 			return;
3906 		show->state.depth_check = 0;
3907 
3908 		if (show->state.depth_to_show <= show->state.depth)
3909 			return;
3910 		/*
3911 		 * Reaching here indicates we have recursed and found
3912 		 * non-zero child values.
3913 		 */
3914 	}
3915 
3916 	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3917 }
3918 
3919 static struct btf_kind_operations struct_ops = {
3920 	.check_meta = btf_struct_check_meta,
3921 	.resolve = btf_struct_resolve,
3922 	.check_member = btf_struct_check_member,
3923 	.check_kflag_member = btf_generic_check_kflag_member,
3924 	.log_details = btf_struct_log,
3925 	.show = btf_struct_show,
3926 };
3927 
3928 static int btf_enum_check_member(struct btf_verifier_env *env,
3929 				 const struct btf_type *struct_type,
3930 				 const struct btf_member *member,
3931 				 const struct btf_type *member_type)
3932 {
3933 	u32 struct_bits_off = member->offset;
3934 	u32 struct_size, bytes_offset;
3935 
3936 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3937 		btf_verifier_log_member(env, struct_type, member,
3938 					"Member is not byte aligned");
3939 		return -EINVAL;
3940 	}
3941 
3942 	struct_size = struct_type->size;
3943 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3944 	if (struct_size - bytes_offset < member_type->size) {
3945 		btf_verifier_log_member(env, struct_type, member,
3946 					"Member exceeds struct_size");
3947 		return -EINVAL;
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3954 				       const struct btf_type *struct_type,
3955 				       const struct btf_member *member,
3956 				       const struct btf_type *member_type)
3957 {
3958 	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3959 	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3960 
3961 	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3962 	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3963 	if (!nr_bits) {
3964 		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3965 			btf_verifier_log_member(env, struct_type, member,
3966 						"Member is not byte aligned");
3967 			return -EINVAL;
3968 		}
3969 
3970 		nr_bits = int_bitsize;
3971 	} else if (nr_bits > int_bitsize) {
3972 		btf_verifier_log_member(env, struct_type, member,
3973 					"Invalid member bitfield_size");
3974 		return -EINVAL;
3975 	}
3976 
3977 	struct_size = struct_type->size;
3978 	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3979 	if (struct_size < bytes_end) {
3980 		btf_verifier_log_member(env, struct_type, member,
3981 					"Member exceeds struct_size");
3982 		return -EINVAL;
3983 	}
3984 
3985 	return 0;
3986 }
3987 
3988 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3989 			       const struct btf_type *t,
3990 			       u32 meta_left)
3991 {
3992 	const struct btf_enum *enums = btf_type_enum(t);
3993 	struct btf *btf = env->btf;
3994 	const char *fmt_str;
3995 	u16 i, nr_enums;
3996 	u32 meta_needed;
3997 
3998 	nr_enums = btf_type_vlen(t);
3999 	meta_needed = nr_enums * sizeof(*enums);
4000 
4001 	if (meta_left < meta_needed) {
4002 		btf_verifier_log_basic(env, t,
4003 				       "meta_left:%u meta_needed:%u",
4004 				       meta_left, meta_needed);
4005 		return -EINVAL;
4006 	}
4007 
4008 	if (t->size > 8 || !is_power_of_2(t->size)) {
4009 		btf_verifier_log_type(env, t, "Unexpected size");
4010 		return -EINVAL;
4011 	}
4012 
4013 	/* enum type either no name or a valid one */
4014 	if (t->name_off &&
4015 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4016 		btf_verifier_log_type(env, t, "Invalid name");
4017 		return -EINVAL;
4018 	}
4019 
4020 	btf_verifier_log_type(env, t, NULL);
4021 
4022 	for (i = 0; i < nr_enums; i++) {
4023 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4024 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4025 					 enums[i].name_off);
4026 			return -EINVAL;
4027 		}
4028 
4029 		/* enum member must have a valid name */
4030 		if (!enums[i].name_off ||
4031 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4032 			btf_verifier_log_type(env, t, "Invalid name");
4033 			return -EINVAL;
4034 		}
4035 
4036 		if (env->log.level == BPF_LOG_KERNEL)
4037 			continue;
4038 		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4039 		btf_verifier_log(env, fmt_str,
4040 				 __btf_name_by_offset(btf, enums[i].name_off),
4041 				 enums[i].val);
4042 	}
4043 
4044 	return meta_needed;
4045 }
4046 
4047 static void btf_enum_log(struct btf_verifier_env *env,
4048 			 const struct btf_type *t)
4049 {
4050 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4051 }
4052 
4053 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4054 			  u32 type_id, void *data, u8 bits_offset,
4055 			  struct btf_show *show)
4056 {
4057 	const struct btf_enum *enums = btf_type_enum(t);
4058 	u32 i, nr_enums = btf_type_vlen(t);
4059 	void *safe_data;
4060 	int v;
4061 
4062 	safe_data = btf_show_start_type(show, t, type_id, data);
4063 	if (!safe_data)
4064 		return;
4065 
4066 	v = *(int *)safe_data;
4067 
4068 	for (i = 0; i < nr_enums; i++) {
4069 		if (v != enums[i].val)
4070 			continue;
4071 
4072 		btf_show_type_value(show, "%s",
4073 				    __btf_name_by_offset(btf,
4074 							 enums[i].name_off));
4075 
4076 		btf_show_end_type(show);
4077 		return;
4078 	}
4079 
4080 	if (btf_type_kflag(t))
4081 		btf_show_type_value(show, "%d", v);
4082 	else
4083 		btf_show_type_value(show, "%u", v);
4084 	btf_show_end_type(show);
4085 }
4086 
4087 static struct btf_kind_operations enum_ops = {
4088 	.check_meta = btf_enum_check_meta,
4089 	.resolve = btf_df_resolve,
4090 	.check_member = btf_enum_check_member,
4091 	.check_kflag_member = btf_enum_check_kflag_member,
4092 	.log_details = btf_enum_log,
4093 	.show = btf_enum_show,
4094 };
4095 
4096 static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4097 				 const struct btf_type *t,
4098 				 u32 meta_left)
4099 {
4100 	const struct btf_enum64 *enums = btf_type_enum64(t);
4101 	struct btf *btf = env->btf;
4102 	const char *fmt_str;
4103 	u16 i, nr_enums;
4104 	u32 meta_needed;
4105 
4106 	nr_enums = btf_type_vlen(t);
4107 	meta_needed = nr_enums * sizeof(*enums);
4108 
4109 	if (meta_left < meta_needed) {
4110 		btf_verifier_log_basic(env, t,
4111 				       "meta_left:%u meta_needed:%u",
4112 				       meta_left, meta_needed);
4113 		return -EINVAL;
4114 	}
4115 
4116 	if (t->size > 8 || !is_power_of_2(t->size)) {
4117 		btf_verifier_log_type(env, t, "Unexpected size");
4118 		return -EINVAL;
4119 	}
4120 
4121 	/* enum type either no name or a valid one */
4122 	if (t->name_off &&
4123 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4124 		btf_verifier_log_type(env, t, "Invalid name");
4125 		return -EINVAL;
4126 	}
4127 
4128 	btf_verifier_log_type(env, t, NULL);
4129 
4130 	for (i = 0; i < nr_enums; i++) {
4131 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4132 			btf_verifier_log(env, "\tInvalid name_offset:%u",
4133 					 enums[i].name_off);
4134 			return -EINVAL;
4135 		}
4136 
4137 		/* enum member must have a valid name */
4138 		if (!enums[i].name_off ||
4139 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4140 			btf_verifier_log_type(env, t, "Invalid name");
4141 			return -EINVAL;
4142 		}
4143 
4144 		if (env->log.level == BPF_LOG_KERNEL)
4145 			continue;
4146 
4147 		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4148 		btf_verifier_log(env, fmt_str,
4149 				 __btf_name_by_offset(btf, enums[i].name_off),
4150 				 btf_enum64_value(enums + i));
4151 	}
4152 
4153 	return meta_needed;
4154 }
4155 
4156 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4157 			    u32 type_id, void *data, u8 bits_offset,
4158 			    struct btf_show *show)
4159 {
4160 	const struct btf_enum64 *enums = btf_type_enum64(t);
4161 	u32 i, nr_enums = btf_type_vlen(t);
4162 	void *safe_data;
4163 	s64 v;
4164 
4165 	safe_data = btf_show_start_type(show, t, type_id, data);
4166 	if (!safe_data)
4167 		return;
4168 
4169 	v = *(u64 *)safe_data;
4170 
4171 	for (i = 0; i < nr_enums; i++) {
4172 		if (v != btf_enum64_value(enums + i))
4173 			continue;
4174 
4175 		btf_show_type_value(show, "%s",
4176 				    __btf_name_by_offset(btf,
4177 							 enums[i].name_off));
4178 
4179 		btf_show_end_type(show);
4180 		return;
4181 	}
4182 
4183 	if (btf_type_kflag(t))
4184 		btf_show_type_value(show, "%lld", v);
4185 	else
4186 		btf_show_type_value(show, "%llu", v);
4187 	btf_show_end_type(show);
4188 }
4189 
4190 static struct btf_kind_operations enum64_ops = {
4191 	.check_meta = btf_enum64_check_meta,
4192 	.resolve = btf_df_resolve,
4193 	.check_member = btf_enum_check_member,
4194 	.check_kflag_member = btf_enum_check_kflag_member,
4195 	.log_details = btf_enum_log,
4196 	.show = btf_enum64_show,
4197 };
4198 
4199 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4200 				     const struct btf_type *t,
4201 				     u32 meta_left)
4202 {
4203 	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4204 
4205 	if (meta_left < meta_needed) {
4206 		btf_verifier_log_basic(env, t,
4207 				       "meta_left:%u meta_needed:%u",
4208 				       meta_left, meta_needed);
4209 		return -EINVAL;
4210 	}
4211 
4212 	if (t->name_off) {
4213 		btf_verifier_log_type(env, t, "Invalid name");
4214 		return -EINVAL;
4215 	}
4216 
4217 	if (btf_type_kflag(t)) {
4218 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4219 		return -EINVAL;
4220 	}
4221 
4222 	btf_verifier_log_type(env, t, NULL);
4223 
4224 	return meta_needed;
4225 }
4226 
4227 static void btf_func_proto_log(struct btf_verifier_env *env,
4228 			       const struct btf_type *t)
4229 {
4230 	const struct btf_param *args = (const struct btf_param *)(t + 1);
4231 	u16 nr_args = btf_type_vlen(t), i;
4232 
4233 	btf_verifier_log(env, "return=%u args=(", t->type);
4234 	if (!nr_args) {
4235 		btf_verifier_log(env, "void");
4236 		goto done;
4237 	}
4238 
4239 	if (nr_args == 1 && !args[0].type) {
4240 		/* Only one vararg */
4241 		btf_verifier_log(env, "vararg");
4242 		goto done;
4243 	}
4244 
4245 	btf_verifier_log(env, "%u %s", args[0].type,
4246 			 __btf_name_by_offset(env->btf,
4247 					      args[0].name_off));
4248 	for (i = 1; i < nr_args - 1; i++)
4249 		btf_verifier_log(env, ", %u %s", args[i].type,
4250 				 __btf_name_by_offset(env->btf,
4251 						      args[i].name_off));
4252 
4253 	if (nr_args > 1) {
4254 		const struct btf_param *last_arg = &args[nr_args - 1];
4255 
4256 		if (last_arg->type)
4257 			btf_verifier_log(env, ", %u %s", last_arg->type,
4258 					 __btf_name_by_offset(env->btf,
4259 							      last_arg->name_off));
4260 		else
4261 			btf_verifier_log(env, ", vararg");
4262 	}
4263 
4264 done:
4265 	btf_verifier_log(env, ")");
4266 }
4267 
4268 static struct btf_kind_operations func_proto_ops = {
4269 	.check_meta = btf_func_proto_check_meta,
4270 	.resolve = btf_df_resolve,
4271 	/*
4272 	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4273 	 * a struct's member.
4274 	 *
4275 	 * It should be a function pointer instead.
4276 	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4277 	 *
4278 	 * Hence, there is no btf_func_check_member().
4279 	 */
4280 	.check_member = btf_df_check_member,
4281 	.check_kflag_member = btf_df_check_kflag_member,
4282 	.log_details = btf_func_proto_log,
4283 	.show = btf_df_show,
4284 };
4285 
4286 static s32 btf_func_check_meta(struct btf_verifier_env *env,
4287 			       const struct btf_type *t,
4288 			       u32 meta_left)
4289 {
4290 	if (!t->name_off ||
4291 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4292 		btf_verifier_log_type(env, t, "Invalid name");
4293 		return -EINVAL;
4294 	}
4295 
4296 	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4297 		btf_verifier_log_type(env, t, "Invalid func linkage");
4298 		return -EINVAL;
4299 	}
4300 
4301 	if (btf_type_kflag(t)) {
4302 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4303 		return -EINVAL;
4304 	}
4305 
4306 	btf_verifier_log_type(env, t, NULL);
4307 
4308 	return 0;
4309 }
4310 
4311 static int btf_func_resolve(struct btf_verifier_env *env,
4312 			    const struct resolve_vertex *v)
4313 {
4314 	const struct btf_type *t = v->t;
4315 	u32 next_type_id = t->type;
4316 	int err;
4317 
4318 	err = btf_func_check(env, t);
4319 	if (err)
4320 		return err;
4321 
4322 	env_stack_pop_resolved(env, next_type_id, 0);
4323 	return 0;
4324 }
4325 
4326 static struct btf_kind_operations func_ops = {
4327 	.check_meta = btf_func_check_meta,
4328 	.resolve = btf_func_resolve,
4329 	.check_member = btf_df_check_member,
4330 	.check_kflag_member = btf_df_check_kflag_member,
4331 	.log_details = btf_ref_type_log,
4332 	.show = btf_df_show,
4333 };
4334 
4335 static s32 btf_var_check_meta(struct btf_verifier_env *env,
4336 			      const struct btf_type *t,
4337 			      u32 meta_left)
4338 {
4339 	const struct btf_var *var;
4340 	u32 meta_needed = sizeof(*var);
4341 
4342 	if (meta_left < meta_needed) {
4343 		btf_verifier_log_basic(env, t,
4344 				       "meta_left:%u meta_needed:%u",
4345 				       meta_left, meta_needed);
4346 		return -EINVAL;
4347 	}
4348 
4349 	if (btf_type_vlen(t)) {
4350 		btf_verifier_log_type(env, t, "vlen != 0");
4351 		return -EINVAL;
4352 	}
4353 
4354 	if (btf_type_kflag(t)) {
4355 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4356 		return -EINVAL;
4357 	}
4358 
4359 	if (!t->name_off ||
4360 	    !__btf_name_valid(env->btf, t->name_off, true)) {
4361 		btf_verifier_log_type(env, t, "Invalid name");
4362 		return -EINVAL;
4363 	}
4364 
4365 	/* A var cannot be in type void */
4366 	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4367 		btf_verifier_log_type(env, t, "Invalid type_id");
4368 		return -EINVAL;
4369 	}
4370 
4371 	var = btf_type_var(t);
4372 	if (var->linkage != BTF_VAR_STATIC &&
4373 	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4374 		btf_verifier_log_type(env, t, "Linkage not supported");
4375 		return -EINVAL;
4376 	}
4377 
4378 	btf_verifier_log_type(env, t, NULL);
4379 
4380 	return meta_needed;
4381 }
4382 
4383 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4384 {
4385 	const struct btf_var *var = btf_type_var(t);
4386 
4387 	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4388 }
4389 
4390 static const struct btf_kind_operations var_ops = {
4391 	.check_meta		= btf_var_check_meta,
4392 	.resolve		= btf_var_resolve,
4393 	.check_member		= btf_df_check_member,
4394 	.check_kflag_member	= btf_df_check_kflag_member,
4395 	.log_details		= btf_var_log,
4396 	.show			= btf_var_show,
4397 };
4398 
4399 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4400 				  const struct btf_type *t,
4401 				  u32 meta_left)
4402 {
4403 	const struct btf_var_secinfo *vsi;
4404 	u64 last_vsi_end_off = 0, sum = 0;
4405 	u32 i, meta_needed;
4406 
4407 	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4408 	if (meta_left < meta_needed) {
4409 		btf_verifier_log_basic(env, t,
4410 				       "meta_left:%u meta_needed:%u",
4411 				       meta_left, meta_needed);
4412 		return -EINVAL;
4413 	}
4414 
4415 	if (!t->size) {
4416 		btf_verifier_log_type(env, t, "size == 0");
4417 		return -EINVAL;
4418 	}
4419 
4420 	if (btf_type_kflag(t)) {
4421 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4422 		return -EINVAL;
4423 	}
4424 
4425 	if (!t->name_off ||
4426 	    !btf_name_valid_section(env->btf, t->name_off)) {
4427 		btf_verifier_log_type(env, t, "Invalid name");
4428 		return -EINVAL;
4429 	}
4430 
4431 	btf_verifier_log_type(env, t, NULL);
4432 
4433 	for_each_vsi(i, t, vsi) {
4434 		/* A var cannot be in type void */
4435 		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4436 			btf_verifier_log_vsi(env, t, vsi,
4437 					     "Invalid type_id");
4438 			return -EINVAL;
4439 		}
4440 
4441 		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4442 			btf_verifier_log_vsi(env, t, vsi,
4443 					     "Invalid offset");
4444 			return -EINVAL;
4445 		}
4446 
4447 		if (!vsi->size || vsi->size > t->size) {
4448 			btf_verifier_log_vsi(env, t, vsi,
4449 					     "Invalid size");
4450 			return -EINVAL;
4451 		}
4452 
4453 		last_vsi_end_off = vsi->offset + vsi->size;
4454 		if (last_vsi_end_off > t->size) {
4455 			btf_verifier_log_vsi(env, t, vsi,
4456 					     "Invalid offset+size");
4457 			return -EINVAL;
4458 		}
4459 
4460 		btf_verifier_log_vsi(env, t, vsi, NULL);
4461 		sum += vsi->size;
4462 	}
4463 
4464 	if (t->size < sum) {
4465 		btf_verifier_log_type(env, t, "Invalid btf_info size");
4466 		return -EINVAL;
4467 	}
4468 
4469 	return meta_needed;
4470 }
4471 
4472 static int btf_datasec_resolve(struct btf_verifier_env *env,
4473 			       const struct resolve_vertex *v)
4474 {
4475 	const struct btf_var_secinfo *vsi;
4476 	struct btf *btf = env->btf;
4477 	u16 i;
4478 
4479 	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4480 		u32 var_type_id = vsi->type, type_id, type_size = 0;
4481 		const struct btf_type *var_type = btf_type_by_id(env->btf,
4482 								 var_type_id);
4483 		if (!var_type || !btf_type_is_var(var_type)) {
4484 			btf_verifier_log_vsi(env, v->t, vsi,
4485 					     "Not a VAR kind member");
4486 			return -EINVAL;
4487 		}
4488 
4489 		if (!env_type_is_resolve_sink(env, var_type) &&
4490 		    !env_type_is_resolved(env, var_type_id)) {
4491 			env_stack_set_next_member(env, i + 1);
4492 			return env_stack_push(env, var_type, var_type_id);
4493 		}
4494 
4495 		type_id = var_type->type;
4496 		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4497 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4498 			return -EINVAL;
4499 		}
4500 
4501 		if (vsi->size < type_size) {
4502 			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4503 			return -EINVAL;
4504 		}
4505 	}
4506 
4507 	env_stack_pop_resolved(env, 0, 0);
4508 	return 0;
4509 }
4510 
4511 static void btf_datasec_log(struct btf_verifier_env *env,
4512 			    const struct btf_type *t)
4513 {
4514 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4515 }
4516 
4517 static void btf_datasec_show(const struct btf *btf,
4518 			     const struct btf_type *t, u32 type_id,
4519 			     void *data, u8 bits_offset,
4520 			     struct btf_show *show)
4521 {
4522 	const struct btf_var_secinfo *vsi;
4523 	const struct btf_type *var;
4524 	u32 i;
4525 
4526 	if (!btf_show_start_type(show, t, type_id, data))
4527 		return;
4528 
4529 	btf_show_type_value(show, "section (\"%s\") = {",
4530 			    __btf_name_by_offset(btf, t->name_off));
4531 	for_each_vsi(i, t, vsi) {
4532 		var = btf_type_by_id(btf, vsi->type);
4533 		if (i)
4534 			btf_show(show, ",");
4535 		btf_type_ops(var)->show(btf, var, vsi->type,
4536 					data + vsi->offset, bits_offset, show);
4537 	}
4538 	btf_show_end_type(show);
4539 }
4540 
4541 static const struct btf_kind_operations datasec_ops = {
4542 	.check_meta		= btf_datasec_check_meta,
4543 	.resolve		= btf_datasec_resolve,
4544 	.check_member		= btf_df_check_member,
4545 	.check_kflag_member	= btf_df_check_kflag_member,
4546 	.log_details		= btf_datasec_log,
4547 	.show			= btf_datasec_show,
4548 };
4549 
4550 static s32 btf_float_check_meta(struct btf_verifier_env *env,
4551 				const struct btf_type *t,
4552 				u32 meta_left)
4553 {
4554 	if (btf_type_vlen(t)) {
4555 		btf_verifier_log_type(env, t, "vlen != 0");
4556 		return -EINVAL;
4557 	}
4558 
4559 	if (btf_type_kflag(t)) {
4560 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4561 		return -EINVAL;
4562 	}
4563 
4564 	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4565 	    t->size != 16) {
4566 		btf_verifier_log_type(env, t, "Invalid type_size");
4567 		return -EINVAL;
4568 	}
4569 
4570 	btf_verifier_log_type(env, t, NULL);
4571 
4572 	return 0;
4573 }
4574 
4575 static int btf_float_check_member(struct btf_verifier_env *env,
4576 				  const struct btf_type *struct_type,
4577 				  const struct btf_member *member,
4578 				  const struct btf_type *member_type)
4579 {
4580 	u64 start_offset_bytes;
4581 	u64 end_offset_bytes;
4582 	u64 misalign_bits;
4583 	u64 align_bytes;
4584 	u64 align_bits;
4585 
4586 	/* Different architectures have different alignment requirements, so
4587 	 * here we check only for the reasonable minimum. This way we ensure
4588 	 * that types after CO-RE can pass the kernel BTF verifier.
4589 	 */
4590 	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4591 	align_bits = align_bytes * BITS_PER_BYTE;
4592 	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4593 	if (misalign_bits) {
4594 		btf_verifier_log_member(env, struct_type, member,
4595 					"Member is not properly aligned");
4596 		return -EINVAL;
4597 	}
4598 
4599 	start_offset_bytes = member->offset / BITS_PER_BYTE;
4600 	end_offset_bytes = start_offset_bytes + member_type->size;
4601 	if (end_offset_bytes > struct_type->size) {
4602 		btf_verifier_log_member(env, struct_type, member,
4603 					"Member exceeds struct_size");
4604 		return -EINVAL;
4605 	}
4606 
4607 	return 0;
4608 }
4609 
4610 static void btf_float_log(struct btf_verifier_env *env,
4611 			  const struct btf_type *t)
4612 {
4613 	btf_verifier_log(env, "size=%u", t->size);
4614 }
4615 
4616 static const struct btf_kind_operations float_ops = {
4617 	.check_meta = btf_float_check_meta,
4618 	.resolve = btf_df_resolve,
4619 	.check_member = btf_float_check_member,
4620 	.check_kflag_member = btf_generic_check_kflag_member,
4621 	.log_details = btf_float_log,
4622 	.show = btf_df_show,
4623 };
4624 
4625 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4626 			      const struct btf_type *t,
4627 			      u32 meta_left)
4628 {
4629 	const struct btf_decl_tag *tag;
4630 	u32 meta_needed = sizeof(*tag);
4631 	s32 component_idx;
4632 	const char *value;
4633 
4634 	if (meta_left < meta_needed) {
4635 		btf_verifier_log_basic(env, t,
4636 				       "meta_left:%u meta_needed:%u",
4637 				       meta_left, meta_needed);
4638 		return -EINVAL;
4639 	}
4640 
4641 	value = btf_name_by_offset(env->btf, t->name_off);
4642 	if (!value || !value[0]) {
4643 		btf_verifier_log_type(env, t, "Invalid value");
4644 		return -EINVAL;
4645 	}
4646 
4647 	if (btf_type_vlen(t)) {
4648 		btf_verifier_log_type(env, t, "vlen != 0");
4649 		return -EINVAL;
4650 	}
4651 
4652 	if (btf_type_kflag(t)) {
4653 		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4654 		return -EINVAL;
4655 	}
4656 
4657 	component_idx = btf_type_decl_tag(t)->component_idx;
4658 	if (component_idx < -1) {
4659 		btf_verifier_log_type(env, t, "Invalid component_idx");
4660 		return -EINVAL;
4661 	}
4662 
4663 	btf_verifier_log_type(env, t, NULL);
4664 
4665 	return meta_needed;
4666 }
4667 
4668 static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4669 			   const struct resolve_vertex *v)
4670 {
4671 	const struct btf_type *next_type;
4672 	const struct btf_type *t = v->t;
4673 	u32 next_type_id = t->type;
4674 	struct btf *btf = env->btf;
4675 	s32 component_idx;
4676 	u32 vlen;
4677 
4678 	next_type = btf_type_by_id(btf, next_type_id);
4679 	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4680 		btf_verifier_log_type(env, v->t, "Invalid type_id");
4681 		return -EINVAL;
4682 	}
4683 
4684 	if (!env_type_is_resolve_sink(env, next_type) &&
4685 	    !env_type_is_resolved(env, next_type_id))
4686 		return env_stack_push(env, next_type, next_type_id);
4687 
4688 	component_idx = btf_type_decl_tag(t)->component_idx;
4689 	if (component_idx != -1) {
4690 		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4691 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4692 			return -EINVAL;
4693 		}
4694 
4695 		if (btf_type_is_struct(next_type)) {
4696 			vlen = btf_type_vlen(next_type);
4697 		} else {
4698 			/* next_type should be a function */
4699 			next_type = btf_type_by_id(btf, next_type->type);
4700 			vlen = btf_type_vlen(next_type);
4701 		}
4702 
4703 		if ((u32)component_idx >= vlen) {
4704 			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4705 			return -EINVAL;
4706 		}
4707 	}
4708 
4709 	env_stack_pop_resolved(env, next_type_id, 0);
4710 
4711 	return 0;
4712 }
4713 
4714 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4715 {
4716 	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4717 			 btf_type_decl_tag(t)->component_idx);
4718 }
4719 
4720 static const struct btf_kind_operations decl_tag_ops = {
4721 	.check_meta = btf_decl_tag_check_meta,
4722 	.resolve = btf_decl_tag_resolve,
4723 	.check_member = btf_df_check_member,
4724 	.check_kflag_member = btf_df_check_kflag_member,
4725 	.log_details = btf_decl_tag_log,
4726 	.show = btf_df_show,
4727 };
4728 
4729 static int btf_func_proto_check(struct btf_verifier_env *env,
4730 				const struct btf_type *t)
4731 {
4732 	const struct btf_type *ret_type;
4733 	const struct btf_param *args;
4734 	const struct btf *btf;
4735 	u16 nr_args, i;
4736 	int err;
4737 
4738 	btf = env->btf;
4739 	args = (const struct btf_param *)(t + 1);
4740 	nr_args = btf_type_vlen(t);
4741 
4742 	/* Check func return type which could be "void" (t->type == 0) */
4743 	if (t->type) {
4744 		u32 ret_type_id = t->type;
4745 
4746 		ret_type = btf_type_by_id(btf, ret_type_id);
4747 		if (!ret_type) {
4748 			btf_verifier_log_type(env, t, "Invalid return type");
4749 			return -EINVAL;
4750 		}
4751 
4752 		if (btf_type_is_resolve_source_only(ret_type)) {
4753 			btf_verifier_log_type(env, t, "Invalid return type");
4754 			return -EINVAL;
4755 		}
4756 
4757 		if (btf_type_needs_resolve(ret_type) &&
4758 		    !env_type_is_resolved(env, ret_type_id)) {
4759 			err = btf_resolve(env, ret_type, ret_type_id);
4760 			if (err)
4761 				return err;
4762 		}
4763 
4764 		/* Ensure the return type is a type that has a size */
4765 		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4766 			btf_verifier_log_type(env, t, "Invalid return type");
4767 			return -EINVAL;
4768 		}
4769 	}
4770 
4771 	if (!nr_args)
4772 		return 0;
4773 
4774 	/* Last func arg type_id could be 0 if it is a vararg */
4775 	if (!args[nr_args - 1].type) {
4776 		if (args[nr_args - 1].name_off) {
4777 			btf_verifier_log_type(env, t, "Invalid arg#%u",
4778 					      nr_args);
4779 			return -EINVAL;
4780 		}
4781 		nr_args--;
4782 	}
4783 
4784 	for (i = 0; i < nr_args; i++) {
4785 		const struct btf_type *arg_type;
4786 		u32 arg_type_id;
4787 
4788 		arg_type_id = args[i].type;
4789 		arg_type = btf_type_by_id(btf, arg_type_id);
4790 		if (!arg_type) {
4791 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4792 			return -EINVAL;
4793 		}
4794 
4795 		if (btf_type_is_resolve_source_only(arg_type)) {
4796 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4797 			return -EINVAL;
4798 		}
4799 
4800 		if (args[i].name_off &&
4801 		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4802 		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4803 			btf_verifier_log_type(env, t,
4804 					      "Invalid arg#%u", i + 1);
4805 			return -EINVAL;
4806 		}
4807 
4808 		if (btf_type_needs_resolve(arg_type) &&
4809 		    !env_type_is_resolved(env, arg_type_id)) {
4810 			err = btf_resolve(env, arg_type, arg_type_id);
4811 			if (err)
4812 				return err;
4813 		}
4814 
4815 		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4816 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4817 			return -EINVAL;
4818 		}
4819 	}
4820 
4821 	return 0;
4822 }
4823 
4824 static int btf_func_check(struct btf_verifier_env *env,
4825 			  const struct btf_type *t)
4826 {
4827 	const struct btf_type *proto_type;
4828 	const struct btf_param *args;
4829 	const struct btf *btf;
4830 	u16 nr_args, i;
4831 
4832 	btf = env->btf;
4833 	proto_type = btf_type_by_id(btf, t->type);
4834 
4835 	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4836 		btf_verifier_log_type(env, t, "Invalid type_id");
4837 		return -EINVAL;
4838 	}
4839 
4840 	args = (const struct btf_param *)(proto_type + 1);
4841 	nr_args = btf_type_vlen(proto_type);
4842 	for (i = 0; i < nr_args; i++) {
4843 		if (!args[i].name_off && args[i].type) {
4844 			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4845 			return -EINVAL;
4846 		}
4847 	}
4848 
4849 	return 0;
4850 }
4851 
4852 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4853 	[BTF_KIND_INT] = &int_ops,
4854 	[BTF_KIND_PTR] = &ptr_ops,
4855 	[BTF_KIND_ARRAY] = &array_ops,
4856 	[BTF_KIND_STRUCT] = &struct_ops,
4857 	[BTF_KIND_UNION] = &struct_ops,
4858 	[BTF_KIND_ENUM] = &enum_ops,
4859 	[BTF_KIND_FWD] = &fwd_ops,
4860 	[BTF_KIND_TYPEDEF] = &modifier_ops,
4861 	[BTF_KIND_VOLATILE] = &modifier_ops,
4862 	[BTF_KIND_CONST] = &modifier_ops,
4863 	[BTF_KIND_RESTRICT] = &modifier_ops,
4864 	[BTF_KIND_FUNC] = &func_ops,
4865 	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4866 	[BTF_KIND_VAR] = &var_ops,
4867 	[BTF_KIND_DATASEC] = &datasec_ops,
4868 	[BTF_KIND_FLOAT] = &float_ops,
4869 	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4870 	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4871 	[BTF_KIND_ENUM64] = &enum64_ops,
4872 };
4873 
4874 static s32 btf_check_meta(struct btf_verifier_env *env,
4875 			  const struct btf_type *t,
4876 			  u32 meta_left)
4877 {
4878 	u32 saved_meta_left = meta_left;
4879 	s32 var_meta_size;
4880 
4881 	if (meta_left < sizeof(*t)) {
4882 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4883 				 env->log_type_id, meta_left, sizeof(*t));
4884 		return -EINVAL;
4885 	}
4886 	meta_left -= sizeof(*t);
4887 
4888 	if (t->info & ~BTF_INFO_MASK) {
4889 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4890 				 env->log_type_id, t->info);
4891 		return -EINVAL;
4892 	}
4893 
4894 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4895 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4896 		btf_verifier_log(env, "[%u] Invalid kind:%u",
4897 				 env->log_type_id, BTF_INFO_KIND(t->info));
4898 		return -EINVAL;
4899 	}
4900 
4901 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4902 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4903 				 env->log_type_id, t->name_off);
4904 		return -EINVAL;
4905 	}
4906 
4907 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4908 	if (var_meta_size < 0)
4909 		return var_meta_size;
4910 
4911 	meta_left -= var_meta_size;
4912 
4913 	return saved_meta_left - meta_left;
4914 }
4915 
4916 static int btf_check_all_metas(struct btf_verifier_env *env)
4917 {
4918 	struct btf *btf = env->btf;
4919 	struct btf_header *hdr;
4920 	void *cur, *end;
4921 
4922 	hdr = &btf->hdr;
4923 	cur = btf->nohdr_data + hdr->type_off;
4924 	end = cur + hdr->type_len;
4925 
4926 	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4927 	while (cur < end) {
4928 		struct btf_type *t = cur;
4929 		s32 meta_size;
4930 
4931 		meta_size = btf_check_meta(env, t, end - cur);
4932 		if (meta_size < 0)
4933 			return meta_size;
4934 
4935 		btf_add_type(env, t);
4936 		cur += meta_size;
4937 		env->log_type_id++;
4938 	}
4939 
4940 	return 0;
4941 }
4942 
4943 static bool btf_resolve_valid(struct btf_verifier_env *env,
4944 			      const struct btf_type *t,
4945 			      u32 type_id)
4946 {
4947 	struct btf *btf = env->btf;
4948 
4949 	if (!env_type_is_resolved(env, type_id))
4950 		return false;
4951 
4952 	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4953 		return !btf_resolved_type_id(btf, type_id) &&
4954 		       !btf_resolved_type_size(btf, type_id);
4955 
4956 	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4957 		return btf_resolved_type_id(btf, type_id) &&
4958 		       !btf_resolved_type_size(btf, type_id);
4959 
4960 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4961 	    btf_type_is_var(t)) {
4962 		t = btf_type_id_resolve(btf, &type_id);
4963 		return t &&
4964 		       !btf_type_is_modifier(t) &&
4965 		       !btf_type_is_var(t) &&
4966 		       !btf_type_is_datasec(t);
4967 	}
4968 
4969 	if (btf_type_is_array(t)) {
4970 		const struct btf_array *array = btf_type_array(t);
4971 		const struct btf_type *elem_type;
4972 		u32 elem_type_id = array->type;
4973 		u32 elem_size;
4974 
4975 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4976 		return elem_type && !btf_type_is_modifier(elem_type) &&
4977 			(array->nelems * elem_size ==
4978 			 btf_resolved_type_size(btf, type_id));
4979 	}
4980 
4981 	return false;
4982 }
4983 
4984 static int btf_resolve(struct btf_verifier_env *env,
4985 		       const struct btf_type *t, u32 type_id)
4986 {
4987 	u32 save_log_type_id = env->log_type_id;
4988 	const struct resolve_vertex *v;
4989 	int err = 0;
4990 
4991 	env->resolve_mode = RESOLVE_TBD;
4992 	env_stack_push(env, t, type_id);
4993 	while (!err && (v = env_stack_peak(env))) {
4994 		env->log_type_id = v->type_id;
4995 		err = btf_type_ops(v->t)->resolve(env, v);
4996 	}
4997 
4998 	env->log_type_id = type_id;
4999 	if (err == -E2BIG) {
5000 		btf_verifier_log_type(env, t,
5001 				      "Exceeded max resolving depth:%u",
5002 				      MAX_RESOLVE_DEPTH);
5003 	} else if (err == -EEXIST) {
5004 		btf_verifier_log_type(env, t, "Loop detected");
5005 	}
5006 
5007 	/* Final sanity check */
5008 	if (!err && !btf_resolve_valid(env, t, type_id)) {
5009 		btf_verifier_log_type(env, t, "Invalid resolve state");
5010 		err = -EINVAL;
5011 	}
5012 
5013 	env->log_type_id = save_log_type_id;
5014 	return err;
5015 }
5016 
5017 static int btf_check_all_types(struct btf_verifier_env *env)
5018 {
5019 	struct btf *btf = env->btf;
5020 	const struct btf_type *t;
5021 	u32 type_id, i;
5022 	int err;
5023 
5024 	err = env_resolve_init(env);
5025 	if (err)
5026 		return err;
5027 
5028 	env->phase++;
5029 	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5030 		type_id = btf->start_id + i;
5031 		t = btf_type_by_id(btf, type_id);
5032 
5033 		env->log_type_id = type_id;
5034 		if (btf_type_needs_resolve(t) &&
5035 		    !env_type_is_resolved(env, type_id)) {
5036 			err = btf_resolve(env, t, type_id);
5037 			if (err)
5038 				return err;
5039 		}
5040 
5041 		if (btf_type_is_func_proto(t)) {
5042 			err = btf_func_proto_check(env, t);
5043 			if (err)
5044 				return err;
5045 		}
5046 	}
5047 
5048 	return 0;
5049 }
5050 
5051 static int btf_parse_type_sec(struct btf_verifier_env *env)
5052 {
5053 	const struct btf_header *hdr = &env->btf->hdr;
5054 	int err;
5055 
5056 	/* Type section must align to 4 bytes */
5057 	if (hdr->type_off & (sizeof(u32) - 1)) {
5058 		btf_verifier_log(env, "Unaligned type_off");
5059 		return -EINVAL;
5060 	}
5061 
5062 	if (!env->btf->base_btf && !hdr->type_len) {
5063 		btf_verifier_log(env, "No type found");
5064 		return -EINVAL;
5065 	}
5066 
5067 	err = btf_check_all_metas(env);
5068 	if (err)
5069 		return err;
5070 
5071 	return btf_check_all_types(env);
5072 }
5073 
5074 static int btf_parse_str_sec(struct btf_verifier_env *env)
5075 {
5076 	const struct btf_header *hdr;
5077 	struct btf *btf = env->btf;
5078 	const char *start, *end;
5079 
5080 	hdr = &btf->hdr;
5081 	start = btf->nohdr_data + hdr->str_off;
5082 	end = start + hdr->str_len;
5083 
5084 	if (end != btf->data + btf->data_size) {
5085 		btf_verifier_log(env, "String section is not at the end");
5086 		return -EINVAL;
5087 	}
5088 
5089 	btf->strings = start;
5090 
5091 	if (btf->base_btf && !hdr->str_len)
5092 		return 0;
5093 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5094 		btf_verifier_log(env, "Invalid string section");
5095 		return -EINVAL;
5096 	}
5097 	if (!btf->base_btf && start[0]) {
5098 		btf_verifier_log(env, "Invalid string section");
5099 		return -EINVAL;
5100 	}
5101 
5102 	return 0;
5103 }
5104 
5105 static const size_t btf_sec_info_offset[] = {
5106 	offsetof(struct btf_header, type_off),
5107 	offsetof(struct btf_header, str_off),
5108 };
5109 
5110 static int btf_sec_info_cmp(const void *a, const void *b)
5111 {
5112 	const struct btf_sec_info *x = a;
5113 	const struct btf_sec_info *y = b;
5114 
5115 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5116 }
5117 
5118 static int btf_check_sec_info(struct btf_verifier_env *env,
5119 			      u32 btf_data_size)
5120 {
5121 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5122 	u32 total, expected_total, i;
5123 	const struct btf_header *hdr;
5124 	const struct btf *btf;
5125 
5126 	btf = env->btf;
5127 	hdr = &btf->hdr;
5128 
5129 	/* Populate the secs from hdr */
5130 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5131 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5132 						   btf_sec_info_offset[i]);
5133 
5134 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5135 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5136 
5137 	/* Check for gaps and overlap among sections */
5138 	total = 0;
5139 	expected_total = btf_data_size - hdr->hdr_len;
5140 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5141 		if (expected_total < secs[i].off) {
5142 			btf_verifier_log(env, "Invalid section offset");
5143 			return -EINVAL;
5144 		}
5145 		if (total < secs[i].off) {
5146 			/* gap */
5147 			btf_verifier_log(env, "Unsupported section found");
5148 			return -EINVAL;
5149 		}
5150 		if (total > secs[i].off) {
5151 			btf_verifier_log(env, "Section overlap found");
5152 			return -EINVAL;
5153 		}
5154 		if (expected_total - total < secs[i].len) {
5155 			btf_verifier_log(env,
5156 					 "Total section length too long");
5157 			return -EINVAL;
5158 		}
5159 		total += secs[i].len;
5160 	}
5161 
5162 	/* There is data other than hdr and known sections */
5163 	if (expected_total != total) {
5164 		btf_verifier_log(env, "Unsupported section found");
5165 		return -EINVAL;
5166 	}
5167 
5168 	return 0;
5169 }
5170 
5171 static int btf_parse_hdr(struct btf_verifier_env *env)
5172 {
5173 	u32 hdr_len, hdr_copy, btf_data_size;
5174 	const struct btf_header *hdr;
5175 	struct btf *btf;
5176 
5177 	btf = env->btf;
5178 	btf_data_size = btf->data_size;
5179 
5180 	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5181 		btf_verifier_log(env, "hdr_len not found");
5182 		return -EINVAL;
5183 	}
5184 
5185 	hdr = btf->data;
5186 	hdr_len = hdr->hdr_len;
5187 	if (btf_data_size < hdr_len) {
5188 		btf_verifier_log(env, "btf_header not found");
5189 		return -EINVAL;
5190 	}
5191 
5192 	/* Ensure the unsupported header fields are zero */
5193 	if (hdr_len > sizeof(btf->hdr)) {
5194 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5195 		u8 *end = btf->data + hdr_len;
5196 
5197 		for (; expected_zero < end; expected_zero++) {
5198 			if (*expected_zero) {
5199 				btf_verifier_log(env, "Unsupported btf_header");
5200 				return -E2BIG;
5201 			}
5202 		}
5203 	}
5204 
5205 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5206 	memcpy(&btf->hdr, btf->data, hdr_copy);
5207 
5208 	hdr = &btf->hdr;
5209 
5210 	btf_verifier_log_hdr(env, btf_data_size);
5211 
5212 	if (hdr->magic != BTF_MAGIC) {
5213 		btf_verifier_log(env, "Invalid magic");
5214 		return -EINVAL;
5215 	}
5216 
5217 	if (hdr->version != BTF_VERSION) {
5218 		btf_verifier_log(env, "Unsupported version");
5219 		return -ENOTSUPP;
5220 	}
5221 
5222 	if (hdr->flags) {
5223 		btf_verifier_log(env, "Unsupported flags");
5224 		return -ENOTSUPP;
5225 	}
5226 
5227 	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5228 		btf_verifier_log(env, "No data");
5229 		return -EINVAL;
5230 	}
5231 
5232 	return btf_check_sec_info(env, btf_data_size);
5233 }
5234 
5235 static const char *alloc_obj_fields[] = {
5236 	"bpf_spin_lock",
5237 	"bpf_list_head",
5238 	"bpf_list_node",
5239 };
5240 
5241 static struct btf_struct_metas *
5242 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5243 {
5244 	union {
5245 		struct btf_id_set set;
5246 		struct {
5247 			u32 _cnt;
5248 			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5249 		} _arr;
5250 	} aof;
5251 	struct btf_struct_metas *tab = NULL;
5252 	int i, n, id, ret;
5253 
5254 	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5255 	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5256 
5257 	memset(&aof, 0, sizeof(aof));
5258 	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5259 		/* Try to find whether this special type exists in user BTF, and
5260 		 * if so remember its ID so we can easily find it among members
5261 		 * of structs that we iterate in the next loop.
5262 		 */
5263 		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5264 		if (id < 0)
5265 			continue;
5266 		aof.set.ids[aof.set.cnt++] = id;
5267 	}
5268 
5269 	if (!aof.set.cnt)
5270 		return NULL;
5271 	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5272 
5273 	n = btf_nr_types(btf);
5274 	for (i = 1; i < n; i++) {
5275 		struct btf_struct_metas *new_tab;
5276 		const struct btf_member *member;
5277 		struct btf_field_offs *foffs;
5278 		struct btf_struct_meta *type;
5279 		struct btf_record *record;
5280 		const struct btf_type *t;
5281 		int j, tab_cnt;
5282 
5283 		t = btf_type_by_id(btf, i);
5284 		if (!t) {
5285 			ret = -EINVAL;
5286 			goto free;
5287 		}
5288 		if (!__btf_type_is_struct(t))
5289 			continue;
5290 
5291 		cond_resched();
5292 
5293 		for_each_member(j, t, member) {
5294 			if (btf_id_set_contains(&aof.set, member->type))
5295 				goto parse;
5296 		}
5297 		continue;
5298 	parse:
5299 		tab_cnt = tab ? tab->cnt : 0;
5300 		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5301 				   GFP_KERNEL | __GFP_NOWARN);
5302 		if (!new_tab) {
5303 			ret = -ENOMEM;
5304 			goto free;
5305 		}
5306 		if (!tab)
5307 			new_tab->cnt = 0;
5308 		tab = new_tab;
5309 
5310 		type = &tab->types[tab->cnt];
5311 		type->btf_id = i;
5312 		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size);
5313 		/* The record cannot be unset, treat it as an error if so */
5314 		if (IS_ERR_OR_NULL(record)) {
5315 			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5316 			goto free;
5317 		}
5318 		foffs = btf_parse_field_offs(record);
5319 		/* We need the field_offs to be valid for a valid record,
5320 		 * either both should be set or both should be unset.
5321 		 */
5322 		if (IS_ERR_OR_NULL(foffs)) {
5323 			btf_record_free(record);
5324 			ret = -EFAULT;
5325 			goto free;
5326 		}
5327 		type->record = record;
5328 		type->field_offs = foffs;
5329 		tab->cnt++;
5330 	}
5331 	return tab;
5332 free:
5333 	btf_struct_metas_free(tab);
5334 	return ERR_PTR(ret);
5335 }
5336 
5337 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5338 {
5339 	struct btf_struct_metas *tab;
5340 
5341 	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5342 	tab = btf->struct_meta_tab;
5343 	if (!tab)
5344 		return NULL;
5345 	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5346 }
5347 
5348 static int btf_check_type_tags(struct btf_verifier_env *env,
5349 			       struct btf *btf, int start_id)
5350 {
5351 	int i, n, good_id = start_id - 1;
5352 	bool in_tags;
5353 
5354 	n = btf_nr_types(btf);
5355 	for (i = start_id; i < n; i++) {
5356 		const struct btf_type *t;
5357 		int chain_limit = 32;
5358 		u32 cur_id = i;
5359 
5360 		t = btf_type_by_id(btf, i);
5361 		if (!t)
5362 			return -EINVAL;
5363 		if (!btf_type_is_modifier(t))
5364 			continue;
5365 
5366 		cond_resched();
5367 
5368 		in_tags = btf_type_is_type_tag(t);
5369 		while (btf_type_is_modifier(t)) {
5370 			if (!chain_limit--) {
5371 				btf_verifier_log(env, "Max chain length or cycle detected");
5372 				return -ELOOP;
5373 			}
5374 			if (btf_type_is_type_tag(t)) {
5375 				if (!in_tags) {
5376 					btf_verifier_log(env, "Type tags don't precede modifiers");
5377 					return -EINVAL;
5378 				}
5379 			} else if (in_tags) {
5380 				in_tags = false;
5381 			}
5382 			if (cur_id <= good_id)
5383 				break;
5384 			/* Move to next type */
5385 			cur_id = t->type;
5386 			t = btf_type_by_id(btf, cur_id);
5387 			if (!t)
5388 				return -EINVAL;
5389 		}
5390 		good_id = i;
5391 	}
5392 	return 0;
5393 }
5394 
5395 static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
5396 			     u32 log_level, char __user *log_ubuf, u32 log_size)
5397 {
5398 	struct btf_struct_metas *struct_meta_tab;
5399 	struct btf_verifier_env *env = NULL;
5400 	struct bpf_verifier_log *log;
5401 	struct btf *btf = NULL;
5402 	u8 *data;
5403 	int err;
5404 
5405 	if (btf_data_size > BTF_MAX_SIZE)
5406 		return ERR_PTR(-E2BIG);
5407 
5408 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5409 	if (!env)
5410 		return ERR_PTR(-ENOMEM);
5411 
5412 	log = &env->log;
5413 	if (log_level || log_ubuf || log_size) {
5414 		/* user requested verbose verifier output
5415 		 * and supplied buffer to store the verification trace
5416 		 */
5417 		log->level = log_level;
5418 		log->ubuf = log_ubuf;
5419 		log->len_total = log_size;
5420 
5421 		/* log attributes have to be sane */
5422 		if (!bpf_verifier_log_attr_valid(log)) {
5423 			err = -EINVAL;
5424 			goto errout;
5425 		}
5426 	}
5427 
5428 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5429 	if (!btf) {
5430 		err = -ENOMEM;
5431 		goto errout;
5432 	}
5433 	env->btf = btf;
5434 
5435 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5436 	if (!data) {
5437 		err = -ENOMEM;
5438 		goto errout;
5439 	}
5440 
5441 	btf->data = data;
5442 	btf->data_size = btf_data_size;
5443 
5444 	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5445 		err = -EFAULT;
5446 		goto errout;
5447 	}
5448 
5449 	err = btf_parse_hdr(env);
5450 	if (err)
5451 		goto errout;
5452 
5453 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5454 
5455 	err = btf_parse_str_sec(env);
5456 	if (err)
5457 		goto errout;
5458 
5459 	err = btf_parse_type_sec(env);
5460 	if (err)
5461 		goto errout;
5462 
5463 	err = btf_check_type_tags(env, btf, 1);
5464 	if (err)
5465 		goto errout;
5466 
5467 	struct_meta_tab = btf_parse_struct_metas(log, btf);
5468 	if (IS_ERR(struct_meta_tab)) {
5469 		err = PTR_ERR(struct_meta_tab);
5470 		goto errout;
5471 	}
5472 	btf->struct_meta_tab = struct_meta_tab;
5473 
5474 	if (struct_meta_tab) {
5475 		int i;
5476 
5477 		for (i = 0; i < struct_meta_tab->cnt; i++) {
5478 			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5479 			if (err < 0)
5480 				goto errout_meta;
5481 		}
5482 	}
5483 
5484 	if (log->level && bpf_verifier_log_full(log)) {
5485 		err = -ENOSPC;
5486 		goto errout_meta;
5487 	}
5488 
5489 	btf_verifier_env_free(env);
5490 	refcount_set(&btf->refcnt, 1);
5491 	return btf;
5492 
5493 errout_meta:
5494 	btf_free_struct_meta_tab(btf);
5495 errout:
5496 	btf_verifier_env_free(env);
5497 	if (btf)
5498 		btf_free(btf);
5499 	return ERR_PTR(err);
5500 }
5501 
5502 extern char __weak __start_BTF[];
5503 extern char __weak __stop_BTF[];
5504 extern struct btf *btf_vmlinux;
5505 
5506 #define BPF_MAP_TYPE(_id, _ops)
5507 #define BPF_LINK_TYPE(_id, _name)
5508 static union {
5509 	struct bpf_ctx_convert {
5510 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5511 	prog_ctx_type _id##_prog; \
5512 	kern_ctx_type _id##_kern;
5513 #include <linux/bpf_types.h>
5514 #undef BPF_PROG_TYPE
5515 	} *__t;
5516 	/* 't' is written once under lock. Read many times. */
5517 	const struct btf_type *t;
5518 } bpf_ctx_convert;
5519 enum {
5520 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5521 	__ctx_convert##_id,
5522 #include <linux/bpf_types.h>
5523 #undef BPF_PROG_TYPE
5524 	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5525 };
5526 static u8 bpf_ctx_convert_map[] = {
5527 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5528 	[_id] = __ctx_convert##_id,
5529 #include <linux/bpf_types.h>
5530 #undef BPF_PROG_TYPE
5531 	0, /* avoid empty array */
5532 };
5533 #undef BPF_MAP_TYPE
5534 #undef BPF_LINK_TYPE
5535 
5536 const struct btf_member *
5537 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5538 		      const struct btf_type *t, enum bpf_prog_type prog_type,
5539 		      int arg)
5540 {
5541 	const struct btf_type *conv_struct;
5542 	const struct btf_type *ctx_struct;
5543 	const struct btf_member *ctx_type;
5544 	const char *tname, *ctx_tname;
5545 
5546 	conv_struct = bpf_ctx_convert.t;
5547 	if (!conv_struct) {
5548 		bpf_log(log, "btf_vmlinux is malformed\n");
5549 		return NULL;
5550 	}
5551 	t = btf_type_by_id(btf, t->type);
5552 	while (btf_type_is_modifier(t))
5553 		t = btf_type_by_id(btf, t->type);
5554 	if (!btf_type_is_struct(t)) {
5555 		/* Only pointer to struct is supported for now.
5556 		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5557 		 * is not supported yet.
5558 		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5559 		 */
5560 		return NULL;
5561 	}
5562 	tname = btf_name_by_offset(btf, t->name_off);
5563 	if (!tname) {
5564 		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5565 		return NULL;
5566 	}
5567 	/* prog_type is valid bpf program type. No need for bounds check. */
5568 	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5569 	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5570 	 * Like 'struct __sk_buff'
5571 	 */
5572 	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5573 	if (!ctx_struct)
5574 		/* should not happen */
5575 		return NULL;
5576 	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
5577 	if (!ctx_tname) {
5578 		/* should not happen */
5579 		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5580 		return NULL;
5581 	}
5582 	/* only compare that prog's ctx type name is the same as
5583 	 * kernel expects. No need to compare field by field.
5584 	 * It's ok for bpf prog to do:
5585 	 * struct __sk_buff {};
5586 	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5587 	 * { // no fields of skb are ever used }
5588 	 */
5589 	if (strcmp(ctx_tname, tname))
5590 		return NULL;
5591 	return ctx_type;
5592 }
5593 
5594 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5595 				     struct btf *btf,
5596 				     const struct btf_type *t,
5597 				     enum bpf_prog_type prog_type,
5598 				     int arg)
5599 {
5600 	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5601 
5602 	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5603 	if (!prog_ctx_type)
5604 		return -ENOENT;
5605 	kern_ctx_type = prog_ctx_type + 1;
5606 	return kern_ctx_type->type;
5607 }
5608 
5609 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5610 {
5611 	const struct btf_member *kctx_member;
5612 	const struct btf_type *conv_struct;
5613 	const struct btf_type *kctx_type;
5614 	u32 kctx_type_id;
5615 
5616 	conv_struct = bpf_ctx_convert.t;
5617 	/* get member for kernel ctx type */
5618 	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5619 	kctx_type_id = kctx_member->type;
5620 	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5621 	if (!btf_type_is_struct(kctx_type)) {
5622 		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5623 		return -EINVAL;
5624 	}
5625 
5626 	return kctx_type_id;
5627 }
5628 
5629 BTF_ID_LIST(bpf_ctx_convert_btf_id)
5630 BTF_ID(struct, bpf_ctx_convert)
5631 
5632 struct btf *btf_parse_vmlinux(void)
5633 {
5634 	struct btf_verifier_env *env = NULL;
5635 	struct bpf_verifier_log *log;
5636 	struct btf *btf = NULL;
5637 	int err;
5638 
5639 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5640 	if (!env)
5641 		return ERR_PTR(-ENOMEM);
5642 
5643 	log = &env->log;
5644 	log->level = BPF_LOG_KERNEL;
5645 
5646 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5647 	if (!btf) {
5648 		err = -ENOMEM;
5649 		goto errout;
5650 	}
5651 	env->btf = btf;
5652 
5653 	btf->data = __start_BTF;
5654 	btf->data_size = __stop_BTF - __start_BTF;
5655 	btf->kernel_btf = true;
5656 	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5657 
5658 	err = btf_parse_hdr(env);
5659 	if (err)
5660 		goto errout;
5661 
5662 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5663 
5664 	err = btf_parse_str_sec(env);
5665 	if (err)
5666 		goto errout;
5667 
5668 	err = btf_check_all_metas(env);
5669 	if (err)
5670 		goto errout;
5671 
5672 	err = btf_check_type_tags(env, btf, 1);
5673 	if (err)
5674 		goto errout;
5675 
5676 	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5677 	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5678 
5679 	bpf_struct_ops_init(btf, log);
5680 
5681 	refcount_set(&btf->refcnt, 1);
5682 
5683 	err = btf_alloc_id(btf);
5684 	if (err)
5685 		goto errout;
5686 
5687 	btf_verifier_env_free(env);
5688 	return btf;
5689 
5690 errout:
5691 	btf_verifier_env_free(env);
5692 	if (btf) {
5693 		kvfree(btf->types);
5694 		kfree(btf);
5695 	}
5696 	return ERR_PTR(err);
5697 }
5698 
5699 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5700 
5701 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5702 {
5703 	struct btf_verifier_env *env = NULL;
5704 	struct bpf_verifier_log *log;
5705 	struct btf *btf = NULL, *base_btf;
5706 	int err;
5707 
5708 	base_btf = bpf_get_btf_vmlinux();
5709 	if (IS_ERR(base_btf))
5710 		return base_btf;
5711 	if (!base_btf)
5712 		return ERR_PTR(-EINVAL);
5713 
5714 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5715 	if (!env)
5716 		return ERR_PTR(-ENOMEM);
5717 
5718 	log = &env->log;
5719 	log->level = BPF_LOG_KERNEL;
5720 
5721 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5722 	if (!btf) {
5723 		err = -ENOMEM;
5724 		goto errout;
5725 	}
5726 	env->btf = btf;
5727 
5728 	btf->base_btf = base_btf;
5729 	btf->start_id = base_btf->nr_types;
5730 	btf->start_str_off = base_btf->hdr.str_len;
5731 	btf->kernel_btf = true;
5732 	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5733 
5734 	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5735 	if (!btf->data) {
5736 		err = -ENOMEM;
5737 		goto errout;
5738 	}
5739 	memcpy(btf->data, data, data_size);
5740 	btf->data_size = data_size;
5741 
5742 	err = btf_parse_hdr(env);
5743 	if (err)
5744 		goto errout;
5745 
5746 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5747 
5748 	err = btf_parse_str_sec(env);
5749 	if (err)
5750 		goto errout;
5751 
5752 	err = btf_check_all_metas(env);
5753 	if (err)
5754 		goto errout;
5755 
5756 	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5757 	if (err)
5758 		goto errout;
5759 
5760 	btf_verifier_env_free(env);
5761 	refcount_set(&btf->refcnt, 1);
5762 	return btf;
5763 
5764 errout:
5765 	btf_verifier_env_free(env);
5766 	if (btf) {
5767 		kvfree(btf->data);
5768 		kvfree(btf->types);
5769 		kfree(btf);
5770 	}
5771 	return ERR_PTR(err);
5772 }
5773 
5774 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5775 
5776 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5777 {
5778 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5779 
5780 	if (tgt_prog)
5781 		return tgt_prog->aux->btf;
5782 	else
5783 		return prog->aux->attach_btf;
5784 }
5785 
5786 static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5787 {
5788 	/* t comes in already as a pointer */
5789 	t = btf_type_by_id(btf, t->type);
5790 
5791 	/* allow const */
5792 	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5793 		t = btf_type_by_id(btf, t->type);
5794 
5795 	return btf_type_is_int(t);
5796 }
5797 
5798 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5799 			   int off)
5800 {
5801 	const struct btf_param *args;
5802 	const struct btf_type *t;
5803 	u32 offset = 0, nr_args;
5804 	int i;
5805 
5806 	if (!func_proto)
5807 		return off / 8;
5808 
5809 	nr_args = btf_type_vlen(func_proto);
5810 	args = (const struct btf_param *)(func_proto + 1);
5811 	for (i = 0; i < nr_args; i++) {
5812 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5813 		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5814 		if (off < offset)
5815 			return i;
5816 	}
5817 
5818 	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5819 	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5820 	if (off < offset)
5821 		return nr_args;
5822 
5823 	return nr_args + 1;
5824 }
5825 
5826 static bool prog_args_trusted(const struct bpf_prog *prog)
5827 {
5828 	enum bpf_attach_type atype = prog->expected_attach_type;
5829 
5830 	switch (prog->type) {
5831 	case BPF_PROG_TYPE_TRACING:
5832 		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5833 	case BPF_PROG_TYPE_LSM:
5834 		return bpf_lsm_is_trusted(prog);
5835 	case BPF_PROG_TYPE_STRUCT_OPS:
5836 		return true;
5837 	default:
5838 		return false;
5839 	}
5840 }
5841 
5842 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5843 		    const struct bpf_prog *prog,
5844 		    struct bpf_insn_access_aux *info)
5845 {
5846 	const struct btf_type *t = prog->aux->attach_func_proto;
5847 	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5848 	struct btf *btf = bpf_prog_get_target_btf(prog);
5849 	const char *tname = prog->aux->attach_func_name;
5850 	struct bpf_verifier_log *log = info->log;
5851 	const struct btf_param *args;
5852 	const char *tag_value;
5853 	u32 nr_args, arg;
5854 	int i, ret;
5855 
5856 	if (off % 8) {
5857 		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5858 			tname, off);
5859 		return false;
5860 	}
5861 	arg = get_ctx_arg_idx(btf, t, off);
5862 	args = (const struct btf_param *)(t + 1);
5863 	/* if (t == NULL) Fall back to default BPF prog with
5864 	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5865 	 */
5866 	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5867 	if (prog->aux->attach_btf_trace) {
5868 		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5869 		args++;
5870 		nr_args--;
5871 	}
5872 
5873 	if (arg > nr_args) {
5874 		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5875 			tname, arg + 1);
5876 		return false;
5877 	}
5878 
5879 	if (arg == nr_args) {
5880 		switch (prog->expected_attach_type) {
5881 		case BPF_LSM_CGROUP:
5882 		case BPF_LSM_MAC:
5883 		case BPF_TRACE_FEXIT:
5884 			/* When LSM programs are attached to void LSM hooks
5885 			 * they use FEXIT trampolines and when attached to
5886 			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5887 			 *
5888 			 * While the LSM programs are BPF_MODIFY_RETURN-like
5889 			 * the check:
5890 			 *
5891 			 *	if (ret_type != 'int')
5892 			 *		return -EINVAL;
5893 			 *
5894 			 * is _not_ done here. This is still safe as LSM hooks
5895 			 * have only void and int return types.
5896 			 */
5897 			if (!t)
5898 				return true;
5899 			t = btf_type_by_id(btf, t->type);
5900 			break;
5901 		case BPF_MODIFY_RETURN:
5902 			/* For now the BPF_MODIFY_RETURN can only be attached to
5903 			 * functions that return an int.
5904 			 */
5905 			if (!t)
5906 				return false;
5907 
5908 			t = btf_type_skip_modifiers(btf, t->type, NULL);
5909 			if (!btf_type_is_small_int(t)) {
5910 				bpf_log(log,
5911 					"ret type %s not allowed for fmod_ret\n",
5912 					btf_type_str(t));
5913 				return false;
5914 			}
5915 			break;
5916 		default:
5917 			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5918 				tname, arg + 1);
5919 			return false;
5920 		}
5921 	} else {
5922 		if (!t)
5923 			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5924 			return true;
5925 		t = btf_type_by_id(btf, args[arg].type);
5926 	}
5927 
5928 	/* skip modifiers */
5929 	while (btf_type_is_modifier(t))
5930 		t = btf_type_by_id(btf, t->type);
5931 	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5932 		/* accessing a scalar */
5933 		return true;
5934 	if (!btf_type_is_ptr(t)) {
5935 		bpf_log(log,
5936 			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5937 			tname, arg,
5938 			__btf_name_by_offset(btf, t->name_off),
5939 			btf_type_str(t));
5940 		return false;
5941 	}
5942 
5943 	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5944 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5945 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5946 		u32 type, flag;
5947 
5948 		type = base_type(ctx_arg_info->reg_type);
5949 		flag = type_flag(ctx_arg_info->reg_type);
5950 		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5951 		    (flag & PTR_MAYBE_NULL)) {
5952 			info->reg_type = ctx_arg_info->reg_type;
5953 			return true;
5954 		}
5955 	}
5956 
5957 	if (t->type == 0)
5958 		/* This is a pointer to void.
5959 		 * It is the same as scalar from the verifier safety pov.
5960 		 * No further pointer walking is allowed.
5961 		 */
5962 		return true;
5963 
5964 	if (is_int_ptr(btf, t))
5965 		return true;
5966 
5967 	/* this is a pointer to another type */
5968 	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5969 		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5970 
5971 		if (ctx_arg_info->offset == off) {
5972 			if (!ctx_arg_info->btf_id) {
5973 				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5974 				return false;
5975 			}
5976 
5977 			info->reg_type = ctx_arg_info->reg_type;
5978 			info->btf = btf_vmlinux;
5979 			info->btf_id = ctx_arg_info->btf_id;
5980 			return true;
5981 		}
5982 	}
5983 
5984 	info->reg_type = PTR_TO_BTF_ID;
5985 	if (prog_args_trusted(prog))
5986 		info->reg_type |= PTR_TRUSTED;
5987 
5988 	if (tgt_prog) {
5989 		enum bpf_prog_type tgt_type;
5990 
5991 		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5992 			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5993 		else
5994 			tgt_type = tgt_prog->type;
5995 
5996 		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5997 		if (ret > 0) {
5998 			info->btf = btf_vmlinux;
5999 			info->btf_id = ret;
6000 			return true;
6001 		} else {
6002 			return false;
6003 		}
6004 	}
6005 
6006 	info->btf = btf;
6007 	info->btf_id = t->type;
6008 	t = btf_type_by_id(btf, t->type);
6009 
6010 	if (btf_type_is_type_tag(t)) {
6011 		tag_value = __btf_name_by_offset(btf, t->name_off);
6012 		if (strcmp(tag_value, "user") == 0)
6013 			info->reg_type |= MEM_USER;
6014 		if (strcmp(tag_value, "percpu") == 0)
6015 			info->reg_type |= MEM_PERCPU;
6016 	}
6017 
6018 	/* skip modifiers */
6019 	while (btf_type_is_modifier(t)) {
6020 		info->btf_id = t->type;
6021 		t = btf_type_by_id(btf, t->type);
6022 	}
6023 	if (!btf_type_is_struct(t)) {
6024 		bpf_log(log,
6025 			"func '%s' arg%d type %s is not a struct\n",
6026 			tname, arg, btf_type_str(t));
6027 		return false;
6028 	}
6029 	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6030 		tname, arg, info->btf_id, btf_type_str(t),
6031 		__btf_name_by_offset(btf, t->name_off));
6032 	return true;
6033 }
6034 
6035 enum bpf_struct_walk_result {
6036 	/* < 0 error */
6037 	WALK_SCALAR = 0,
6038 	WALK_PTR,
6039 	WALK_STRUCT,
6040 };
6041 
6042 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6043 			   const struct btf_type *t, int off, int size,
6044 			   u32 *next_btf_id, enum bpf_type_flag *flag)
6045 {
6046 	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6047 	const struct btf_type *mtype, *elem_type = NULL;
6048 	const struct btf_member *member;
6049 	const char *tname, *mname, *tag_value;
6050 	u32 vlen, elem_id, mid;
6051 
6052 again:
6053 	tname = __btf_name_by_offset(btf, t->name_off);
6054 	if (!btf_type_is_struct(t)) {
6055 		bpf_log(log, "Type '%s' is not a struct\n", tname);
6056 		return -EINVAL;
6057 	}
6058 
6059 	vlen = btf_type_vlen(t);
6060 	if (off + size > t->size) {
6061 		/* If the last element is a variable size array, we may
6062 		 * need to relax the rule.
6063 		 */
6064 		struct btf_array *array_elem;
6065 
6066 		if (vlen == 0)
6067 			goto error;
6068 
6069 		member = btf_type_member(t) + vlen - 1;
6070 		mtype = btf_type_skip_modifiers(btf, member->type,
6071 						NULL);
6072 		if (!btf_type_is_array(mtype))
6073 			goto error;
6074 
6075 		array_elem = (struct btf_array *)(mtype + 1);
6076 		if (array_elem->nelems != 0)
6077 			goto error;
6078 
6079 		moff = __btf_member_bit_offset(t, member) / 8;
6080 		if (off < moff)
6081 			goto error;
6082 
6083 		/* Only allow structure for now, can be relaxed for
6084 		 * other types later.
6085 		 */
6086 		t = btf_type_skip_modifiers(btf, array_elem->type,
6087 					    NULL);
6088 		if (!btf_type_is_struct(t))
6089 			goto error;
6090 
6091 		off = (off - moff) % t->size;
6092 		goto again;
6093 
6094 error:
6095 		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6096 			tname, off, size);
6097 		return -EACCES;
6098 	}
6099 
6100 	for_each_member(i, t, member) {
6101 		/* offset of the field in bytes */
6102 		moff = __btf_member_bit_offset(t, member) / 8;
6103 		if (off + size <= moff)
6104 			/* won't find anything, field is already too far */
6105 			break;
6106 
6107 		if (__btf_member_bitfield_size(t, member)) {
6108 			u32 end_bit = __btf_member_bit_offset(t, member) +
6109 				__btf_member_bitfield_size(t, member);
6110 
6111 			/* off <= moff instead of off == moff because clang
6112 			 * does not generate a BTF member for anonymous
6113 			 * bitfield like the ":16" here:
6114 			 * struct {
6115 			 *	int :16;
6116 			 *	int x:8;
6117 			 * };
6118 			 */
6119 			if (off <= moff &&
6120 			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6121 				return WALK_SCALAR;
6122 
6123 			/* off may be accessing a following member
6124 			 *
6125 			 * or
6126 			 *
6127 			 * Doing partial access at either end of this
6128 			 * bitfield.  Continue on this case also to
6129 			 * treat it as not accessing this bitfield
6130 			 * and eventually error out as field not
6131 			 * found to keep it simple.
6132 			 * It could be relaxed if there was a legit
6133 			 * partial access case later.
6134 			 */
6135 			continue;
6136 		}
6137 
6138 		/* In case of "off" is pointing to holes of a struct */
6139 		if (off < moff)
6140 			break;
6141 
6142 		/* type of the field */
6143 		mid = member->type;
6144 		mtype = btf_type_by_id(btf, member->type);
6145 		mname = __btf_name_by_offset(btf, member->name_off);
6146 
6147 		mtype = __btf_resolve_size(btf, mtype, &msize,
6148 					   &elem_type, &elem_id, &total_nelems,
6149 					   &mid);
6150 		if (IS_ERR(mtype)) {
6151 			bpf_log(log, "field %s doesn't have size\n", mname);
6152 			return -EFAULT;
6153 		}
6154 
6155 		mtrue_end = moff + msize;
6156 		if (off >= mtrue_end)
6157 			/* no overlap with member, keep iterating */
6158 			continue;
6159 
6160 		if (btf_type_is_array(mtype)) {
6161 			u32 elem_idx;
6162 
6163 			/* __btf_resolve_size() above helps to
6164 			 * linearize a multi-dimensional array.
6165 			 *
6166 			 * The logic here is treating an array
6167 			 * in a struct as the following way:
6168 			 *
6169 			 * struct outer {
6170 			 *	struct inner array[2][2];
6171 			 * };
6172 			 *
6173 			 * looks like:
6174 			 *
6175 			 * struct outer {
6176 			 *	struct inner array_elem0;
6177 			 *	struct inner array_elem1;
6178 			 *	struct inner array_elem2;
6179 			 *	struct inner array_elem3;
6180 			 * };
6181 			 *
6182 			 * When accessing outer->array[1][0], it moves
6183 			 * moff to "array_elem2", set mtype to
6184 			 * "struct inner", and msize also becomes
6185 			 * sizeof(struct inner).  Then most of the
6186 			 * remaining logic will fall through without
6187 			 * caring the current member is an array or
6188 			 * not.
6189 			 *
6190 			 * Unlike mtype/msize/moff, mtrue_end does not
6191 			 * change.  The naming difference ("_true") tells
6192 			 * that it is not always corresponding to
6193 			 * the current mtype/msize/moff.
6194 			 * It is the true end of the current
6195 			 * member (i.e. array in this case).  That
6196 			 * will allow an int array to be accessed like
6197 			 * a scratch space,
6198 			 * i.e. allow access beyond the size of
6199 			 *      the array's element as long as it is
6200 			 *      within the mtrue_end boundary.
6201 			 */
6202 
6203 			/* skip empty array */
6204 			if (moff == mtrue_end)
6205 				continue;
6206 
6207 			msize /= total_nelems;
6208 			elem_idx = (off - moff) / msize;
6209 			moff += elem_idx * msize;
6210 			mtype = elem_type;
6211 			mid = elem_id;
6212 		}
6213 
6214 		/* the 'off' we're looking for is either equal to start
6215 		 * of this field or inside of this struct
6216 		 */
6217 		if (btf_type_is_struct(mtype)) {
6218 			/* our field must be inside that union or struct */
6219 			t = mtype;
6220 
6221 			/* return if the offset matches the member offset */
6222 			if (off == moff) {
6223 				*next_btf_id = mid;
6224 				return WALK_STRUCT;
6225 			}
6226 
6227 			/* adjust offset we're looking for */
6228 			off -= moff;
6229 			goto again;
6230 		}
6231 
6232 		if (btf_type_is_ptr(mtype)) {
6233 			const struct btf_type *stype, *t;
6234 			enum bpf_type_flag tmp_flag = 0;
6235 			u32 id;
6236 
6237 			if (msize != size || off != moff) {
6238 				bpf_log(log,
6239 					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6240 					mname, moff, tname, off, size);
6241 				return -EACCES;
6242 			}
6243 
6244 			/* check type tag */
6245 			t = btf_type_by_id(btf, mtype->type);
6246 			if (btf_type_is_type_tag(t)) {
6247 				tag_value = __btf_name_by_offset(btf, t->name_off);
6248 				/* check __user tag */
6249 				if (strcmp(tag_value, "user") == 0)
6250 					tmp_flag = MEM_USER;
6251 				/* check __percpu tag */
6252 				if (strcmp(tag_value, "percpu") == 0)
6253 					tmp_flag = MEM_PERCPU;
6254 				/* check __rcu tag */
6255 				if (strcmp(tag_value, "rcu") == 0)
6256 					tmp_flag = MEM_RCU;
6257 			}
6258 
6259 			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6260 			if (btf_type_is_struct(stype)) {
6261 				*next_btf_id = id;
6262 				*flag = tmp_flag;
6263 				return WALK_PTR;
6264 			}
6265 		}
6266 
6267 		/* Allow more flexible access within an int as long as
6268 		 * it is within mtrue_end.
6269 		 * Since mtrue_end could be the end of an array,
6270 		 * that also allows using an array of int as a scratch
6271 		 * space. e.g. skb->cb[].
6272 		 */
6273 		if (off + size > mtrue_end) {
6274 			bpf_log(log,
6275 				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6276 				mname, mtrue_end, tname, off, size);
6277 			return -EACCES;
6278 		}
6279 
6280 		return WALK_SCALAR;
6281 	}
6282 	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6283 	return -EINVAL;
6284 }
6285 
6286 int btf_struct_access(struct bpf_verifier_log *log,
6287 		      const struct bpf_reg_state *reg,
6288 		      int off, int size, enum bpf_access_type atype __maybe_unused,
6289 		      u32 *next_btf_id, enum bpf_type_flag *flag)
6290 {
6291 	const struct btf *btf = reg->btf;
6292 	enum bpf_type_flag tmp_flag = 0;
6293 	const struct btf_type *t;
6294 	u32 id = reg->btf_id;
6295 	int err;
6296 
6297 	while (type_is_alloc(reg->type)) {
6298 		struct btf_struct_meta *meta;
6299 		struct btf_record *rec;
6300 		int i;
6301 
6302 		meta = btf_find_struct_meta(btf, id);
6303 		if (!meta)
6304 			break;
6305 		rec = meta->record;
6306 		for (i = 0; i < rec->cnt; i++) {
6307 			struct btf_field *field = &rec->fields[i];
6308 			u32 offset = field->offset;
6309 			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6310 				bpf_log(log,
6311 					"direct access to %s is disallowed\n",
6312 					btf_field_type_name(field->type));
6313 				return -EACCES;
6314 			}
6315 		}
6316 		break;
6317 	}
6318 
6319 	t = btf_type_by_id(btf, id);
6320 	do {
6321 		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
6322 
6323 		switch (err) {
6324 		case WALK_PTR:
6325 			/* For local types, the destination register cannot
6326 			 * become a pointer again.
6327 			 */
6328 			if (type_is_alloc(reg->type))
6329 				return SCALAR_VALUE;
6330 			/* If we found the pointer or scalar on t+off,
6331 			 * we're done.
6332 			 */
6333 			*next_btf_id = id;
6334 			*flag = tmp_flag;
6335 			return PTR_TO_BTF_ID;
6336 		case WALK_SCALAR:
6337 			return SCALAR_VALUE;
6338 		case WALK_STRUCT:
6339 			/* We found nested struct, so continue the search
6340 			 * by diving in it. At this point the offset is
6341 			 * aligned with the new type, so set it to 0.
6342 			 */
6343 			t = btf_type_by_id(btf, id);
6344 			off = 0;
6345 			break;
6346 		default:
6347 			/* It's either error or unknown return value..
6348 			 * scream and leave.
6349 			 */
6350 			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6351 				return -EINVAL;
6352 			return err;
6353 		}
6354 	} while (t);
6355 
6356 	return -EINVAL;
6357 }
6358 
6359 /* Check that two BTF types, each specified as an BTF object + id, are exactly
6360  * the same. Trivial ID check is not enough due to module BTFs, because we can
6361  * end up with two different module BTFs, but IDs point to the common type in
6362  * vmlinux BTF.
6363  */
6364 bool btf_types_are_same(const struct btf *btf1, u32 id1,
6365 			const struct btf *btf2, u32 id2)
6366 {
6367 	if (id1 != id2)
6368 		return false;
6369 	if (btf1 == btf2)
6370 		return true;
6371 	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6372 }
6373 
6374 bool btf_struct_ids_match(struct bpf_verifier_log *log,
6375 			  const struct btf *btf, u32 id, int off,
6376 			  const struct btf *need_btf, u32 need_type_id,
6377 			  bool strict)
6378 {
6379 	const struct btf_type *type;
6380 	enum bpf_type_flag flag;
6381 	int err;
6382 
6383 	/* Are we already done? */
6384 	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6385 		return true;
6386 	/* In case of strict type match, we do not walk struct, the top level
6387 	 * type match must succeed. When strict is true, off should have already
6388 	 * been 0.
6389 	 */
6390 	if (strict)
6391 		return false;
6392 again:
6393 	type = btf_type_by_id(btf, id);
6394 	if (!type)
6395 		return false;
6396 	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
6397 	if (err != WALK_STRUCT)
6398 		return false;
6399 
6400 	/* We found nested struct object. If it matches
6401 	 * the requested ID, we're done. Otherwise let's
6402 	 * continue the search with offset 0 in the new
6403 	 * type.
6404 	 */
6405 	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6406 		off = 0;
6407 		goto again;
6408 	}
6409 
6410 	return true;
6411 }
6412 
6413 static int __get_type_size(struct btf *btf, u32 btf_id,
6414 			   const struct btf_type **ret_type)
6415 {
6416 	const struct btf_type *t;
6417 
6418 	*ret_type = btf_type_by_id(btf, 0);
6419 	if (!btf_id)
6420 		/* void */
6421 		return 0;
6422 	t = btf_type_by_id(btf, btf_id);
6423 	while (t && btf_type_is_modifier(t))
6424 		t = btf_type_by_id(btf, t->type);
6425 	if (!t)
6426 		return -EINVAL;
6427 	*ret_type = t;
6428 	if (btf_type_is_ptr(t))
6429 		/* kernel size of pointer. Not BPF's size of pointer*/
6430 		return sizeof(void *);
6431 	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6432 		return t->size;
6433 	return -EINVAL;
6434 }
6435 
6436 int btf_distill_func_proto(struct bpf_verifier_log *log,
6437 			   struct btf *btf,
6438 			   const struct btf_type *func,
6439 			   const char *tname,
6440 			   struct btf_func_model *m)
6441 {
6442 	const struct btf_param *args;
6443 	const struct btf_type *t;
6444 	u32 i, nargs;
6445 	int ret;
6446 
6447 	if (!func) {
6448 		/* BTF function prototype doesn't match the verifier types.
6449 		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6450 		 */
6451 		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6452 			m->arg_size[i] = 8;
6453 			m->arg_flags[i] = 0;
6454 		}
6455 		m->ret_size = 8;
6456 		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6457 		return 0;
6458 	}
6459 	args = (const struct btf_param *)(func + 1);
6460 	nargs = btf_type_vlen(func);
6461 	if (nargs > MAX_BPF_FUNC_ARGS) {
6462 		bpf_log(log,
6463 			"The function %s has %d arguments. Too many.\n",
6464 			tname, nargs);
6465 		return -EINVAL;
6466 	}
6467 	ret = __get_type_size(btf, func->type, &t);
6468 	if (ret < 0 || __btf_type_is_struct(t)) {
6469 		bpf_log(log,
6470 			"The function %s return type %s is unsupported.\n",
6471 			tname, btf_type_str(t));
6472 		return -EINVAL;
6473 	}
6474 	m->ret_size = ret;
6475 
6476 	for (i = 0; i < nargs; i++) {
6477 		if (i == nargs - 1 && args[i].type == 0) {
6478 			bpf_log(log,
6479 				"The function %s with variable args is unsupported.\n",
6480 				tname);
6481 			return -EINVAL;
6482 		}
6483 		ret = __get_type_size(btf, args[i].type, &t);
6484 
6485 		/* No support of struct argument size greater than 16 bytes */
6486 		if (ret < 0 || ret > 16) {
6487 			bpf_log(log,
6488 				"The function %s arg%d type %s is unsupported.\n",
6489 				tname, i, btf_type_str(t));
6490 			return -EINVAL;
6491 		}
6492 		if (ret == 0) {
6493 			bpf_log(log,
6494 				"The function %s has malformed void argument.\n",
6495 				tname);
6496 			return -EINVAL;
6497 		}
6498 		m->arg_size[i] = ret;
6499 		m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
6500 	}
6501 	m->nr_args = nargs;
6502 	return 0;
6503 }
6504 
6505 /* Compare BTFs of two functions assuming only scalars and pointers to context.
6506  * t1 points to BTF_KIND_FUNC in btf1
6507  * t2 points to BTF_KIND_FUNC in btf2
6508  * Returns:
6509  * EINVAL - function prototype mismatch
6510  * EFAULT - verifier bug
6511  * 0 - 99% match. The last 1% is validated by the verifier.
6512  */
6513 static int btf_check_func_type_match(struct bpf_verifier_log *log,
6514 				     struct btf *btf1, const struct btf_type *t1,
6515 				     struct btf *btf2, const struct btf_type *t2)
6516 {
6517 	const struct btf_param *args1, *args2;
6518 	const char *fn1, *fn2, *s1, *s2;
6519 	u32 nargs1, nargs2, i;
6520 
6521 	fn1 = btf_name_by_offset(btf1, t1->name_off);
6522 	fn2 = btf_name_by_offset(btf2, t2->name_off);
6523 
6524 	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6525 		bpf_log(log, "%s() is not a global function\n", fn1);
6526 		return -EINVAL;
6527 	}
6528 	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6529 		bpf_log(log, "%s() is not a global function\n", fn2);
6530 		return -EINVAL;
6531 	}
6532 
6533 	t1 = btf_type_by_id(btf1, t1->type);
6534 	if (!t1 || !btf_type_is_func_proto(t1))
6535 		return -EFAULT;
6536 	t2 = btf_type_by_id(btf2, t2->type);
6537 	if (!t2 || !btf_type_is_func_proto(t2))
6538 		return -EFAULT;
6539 
6540 	args1 = (const struct btf_param *)(t1 + 1);
6541 	nargs1 = btf_type_vlen(t1);
6542 	args2 = (const struct btf_param *)(t2 + 1);
6543 	nargs2 = btf_type_vlen(t2);
6544 
6545 	if (nargs1 != nargs2) {
6546 		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6547 			fn1, nargs1, fn2, nargs2);
6548 		return -EINVAL;
6549 	}
6550 
6551 	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6552 	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6553 	if (t1->info != t2->info) {
6554 		bpf_log(log,
6555 			"Return type %s of %s() doesn't match type %s of %s()\n",
6556 			btf_type_str(t1), fn1,
6557 			btf_type_str(t2), fn2);
6558 		return -EINVAL;
6559 	}
6560 
6561 	for (i = 0; i < nargs1; i++) {
6562 		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6563 		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6564 
6565 		if (t1->info != t2->info) {
6566 			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6567 				i, fn1, btf_type_str(t1),
6568 				fn2, btf_type_str(t2));
6569 			return -EINVAL;
6570 		}
6571 		if (btf_type_has_size(t1) && t1->size != t2->size) {
6572 			bpf_log(log,
6573 				"arg%d in %s() has size %d while %s() has %d\n",
6574 				i, fn1, t1->size,
6575 				fn2, t2->size);
6576 			return -EINVAL;
6577 		}
6578 
6579 		/* global functions are validated with scalars and pointers
6580 		 * to context only. And only global functions can be replaced.
6581 		 * Hence type check only those types.
6582 		 */
6583 		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6584 			continue;
6585 		if (!btf_type_is_ptr(t1)) {
6586 			bpf_log(log,
6587 				"arg%d in %s() has unrecognized type\n",
6588 				i, fn1);
6589 			return -EINVAL;
6590 		}
6591 		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6592 		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6593 		if (!btf_type_is_struct(t1)) {
6594 			bpf_log(log,
6595 				"arg%d in %s() is not a pointer to context\n",
6596 				i, fn1);
6597 			return -EINVAL;
6598 		}
6599 		if (!btf_type_is_struct(t2)) {
6600 			bpf_log(log,
6601 				"arg%d in %s() is not a pointer to context\n",
6602 				i, fn2);
6603 			return -EINVAL;
6604 		}
6605 		/* This is an optional check to make program writing easier.
6606 		 * Compare names of structs and report an error to the user.
6607 		 * btf_prepare_func_args() already checked that t2 struct
6608 		 * is a context type. btf_prepare_func_args() will check
6609 		 * later that t1 struct is a context type as well.
6610 		 */
6611 		s1 = btf_name_by_offset(btf1, t1->name_off);
6612 		s2 = btf_name_by_offset(btf2, t2->name_off);
6613 		if (strcmp(s1, s2)) {
6614 			bpf_log(log,
6615 				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6616 				i, fn1, s1, fn2, s2);
6617 			return -EINVAL;
6618 		}
6619 	}
6620 	return 0;
6621 }
6622 
6623 /* Compare BTFs of given program with BTF of target program */
6624 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6625 			 struct btf *btf2, const struct btf_type *t2)
6626 {
6627 	struct btf *btf1 = prog->aux->btf;
6628 	const struct btf_type *t1;
6629 	u32 btf_id = 0;
6630 
6631 	if (!prog->aux->func_info) {
6632 		bpf_log(log, "Program extension requires BTF\n");
6633 		return -EINVAL;
6634 	}
6635 
6636 	btf_id = prog->aux->func_info[0].type_id;
6637 	if (!btf_id)
6638 		return -EFAULT;
6639 
6640 	t1 = btf_type_by_id(btf1, btf_id);
6641 	if (!t1 || !btf_type_is_func(t1))
6642 		return -EFAULT;
6643 
6644 	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6645 }
6646 
6647 static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6648 				    const struct btf *btf, u32 func_id,
6649 				    struct bpf_reg_state *regs,
6650 				    bool ptr_to_mem_ok,
6651 				    bool processing_call)
6652 {
6653 	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6654 	struct bpf_verifier_log *log = &env->log;
6655 	const char *func_name, *ref_tname;
6656 	const struct btf_type *t, *ref_t;
6657 	const struct btf_param *args;
6658 	u32 i, nargs, ref_id;
6659 	int ret;
6660 
6661 	t = btf_type_by_id(btf, func_id);
6662 	if (!t || !btf_type_is_func(t)) {
6663 		/* These checks were already done by the verifier while loading
6664 		 * struct bpf_func_info or in add_kfunc_call().
6665 		 */
6666 		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6667 			func_id);
6668 		return -EFAULT;
6669 	}
6670 	func_name = btf_name_by_offset(btf, t->name_off);
6671 
6672 	t = btf_type_by_id(btf, t->type);
6673 	if (!t || !btf_type_is_func_proto(t)) {
6674 		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6675 		return -EFAULT;
6676 	}
6677 	args = (const struct btf_param *)(t + 1);
6678 	nargs = btf_type_vlen(t);
6679 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6680 		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6681 			MAX_BPF_FUNC_REG_ARGS);
6682 		return -EINVAL;
6683 	}
6684 
6685 	/* check that BTF function arguments match actual types that the
6686 	 * verifier sees.
6687 	 */
6688 	for (i = 0; i < nargs; i++) {
6689 		enum bpf_arg_type arg_type = ARG_DONTCARE;
6690 		u32 regno = i + 1;
6691 		struct bpf_reg_state *reg = &regs[regno];
6692 
6693 		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6694 		if (btf_type_is_scalar(t)) {
6695 			if (reg->type == SCALAR_VALUE)
6696 				continue;
6697 			bpf_log(log, "R%d is not a scalar\n", regno);
6698 			return -EINVAL;
6699 		}
6700 
6701 		if (!btf_type_is_ptr(t)) {
6702 			bpf_log(log, "Unrecognized arg#%d type %s\n",
6703 				i, btf_type_str(t));
6704 			return -EINVAL;
6705 		}
6706 
6707 		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6708 		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6709 
6710 		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6711 		if (ret < 0)
6712 			return ret;
6713 
6714 		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6715 			/* If function expects ctx type in BTF check that caller
6716 			 * is passing PTR_TO_CTX.
6717 			 */
6718 			if (reg->type != PTR_TO_CTX) {
6719 				bpf_log(log,
6720 					"arg#%d expected pointer to ctx, but got %s\n",
6721 					i, btf_type_str(t));
6722 				return -EINVAL;
6723 			}
6724 		} else if (ptr_to_mem_ok && processing_call) {
6725 			const struct btf_type *resolve_ret;
6726 			u32 type_size;
6727 
6728 			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6729 			if (IS_ERR(resolve_ret)) {
6730 				bpf_log(log,
6731 					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6732 					i, btf_type_str(ref_t), ref_tname,
6733 					PTR_ERR(resolve_ret));
6734 				return -EINVAL;
6735 			}
6736 
6737 			if (check_mem_reg(env, reg, regno, type_size))
6738 				return -EINVAL;
6739 		} else {
6740 			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6741 				func_name, func_id);
6742 			return -EINVAL;
6743 		}
6744 	}
6745 
6746 	return 0;
6747 }
6748 
6749 /* Compare BTF of a function declaration with given bpf_reg_state.
6750  * Returns:
6751  * EFAULT - there is a verifier bug. Abort verification.
6752  * EINVAL - there is a type mismatch or BTF is not available.
6753  * 0 - BTF matches with what bpf_reg_state expects.
6754  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6755  */
6756 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6757 				struct bpf_reg_state *regs)
6758 {
6759 	struct bpf_prog *prog = env->prog;
6760 	struct btf *btf = prog->aux->btf;
6761 	bool is_global;
6762 	u32 btf_id;
6763 	int err;
6764 
6765 	if (!prog->aux->func_info)
6766 		return -EINVAL;
6767 
6768 	btf_id = prog->aux->func_info[subprog].type_id;
6769 	if (!btf_id)
6770 		return -EFAULT;
6771 
6772 	if (prog->aux->func_info_aux[subprog].unreliable)
6773 		return -EINVAL;
6774 
6775 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6776 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6777 
6778 	/* Compiler optimizations can remove arguments from static functions
6779 	 * or mismatched type can be passed into a global function.
6780 	 * In such cases mark the function as unreliable from BTF point of view.
6781 	 */
6782 	if (err)
6783 		prog->aux->func_info_aux[subprog].unreliable = true;
6784 	return err;
6785 }
6786 
6787 /* Compare BTF of a function call with given bpf_reg_state.
6788  * Returns:
6789  * EFAULT - there is a verifier bug. Abort verification.
6790  * EINVAL - there is a type mismatch or BTF is not available.
6791  * 0 - BTF matches with what bpf_reg_state expects.
6792  * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6793  *
6794  * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6795  * because btf_check_func_arg_match() is still doing both. Once that
6796  * function is split in 2, we can call from here btf_check_subprog_arg_match()
6797  * first, and then treat the calling part in a new code path.
6798  */
6799 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6800 			   struct bpf_reg_state *regs)
6801 {
6802 	struct bpf_prog *prog = env->prog;
6803 	struct btf *btf = prog->aux->btf;
6804 	bool is_global;
6805 	u32 btf_id;
6806 	int err;
6807 
6808 	if (!prog->aux->func_info)
6809 		return -EINVAL;
6810 
6811 	btf_id = prog->aux->func_info[subprog].type_id;
6812 	if (!btf_id)
6813 		return -EFAULT;
6814 
6815 	if (prog->aux->func_info_aux[subprog].unreliable)
6816 		return -EINVAL;
6817 
6818 	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6819 	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
6820 
6821 	/* Compiler optimizations can remove arguments from static functions
6822 	 * or mismatched type can be passed into a global function.
6823 	 * In such cases mark the function as unreliable from BTF point of view.
6824 	 */
6825 	if (err)
6826 		prog->aux->func_info_aux[subprog].unreliable = true;
6827 	return err;
6828 }
6829 
6830 /* Convert BTF of a function into bpf_reg_state if possible
6831  * Returns:
6832  * EFAULT - there is a verifier bug. Abort verification.
6833  * EINVAL - cannot convert BTF.
6834  * 0 - Successfully converted BTF into bpf_reg_state
6835  * (either PTR_TO_CTX or SCALAR_VALUE).
6836  */
6837 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6838 			  struct bpf_reg_state *regs)
6839 {
6840 	struct bpf_verifier_log *log = &env->log;
6841 	struct bpf_prog *prog = env->prog;
6842 	enum bpf_prog_type prog_type = prog->type;
6843 	struct btf *btf = prog->aux->btf;
6844 	const struct btf_param *args;
6845 	const struct btf_type *t, *ref_t;
6846 	u32 i, nargs, btf_id;
6847 	const char *tname;
6848 
6849 	if (!prog->aux->func_info ||
6850 	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6851 		bpf_log(log, "Verifier bug\n");
6852 		return -EFAULT;
6853 	}
6854 
6855 	btf_id = prog->aux->func_info[subprog].type_id;
6856 	if (!btf_id) {
6857 		bpf_log(log, "Global functions need valid BTF\n");
6858 		return -EFAULT;
6859 	}
6860 
6861 	t = btf_type_by_id(btf, btf_id);
6862 	if (!t || !btf_type_is_func(t)) {
6863 		/* These checks were already done by the verifier while loading
6864 		 * struct bpf_func_info
6865 		 */
6866 		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6867 			subprog);
6868 		return -EFAULT;
6869 	}
6870 	tname = btf_name_by_offset(btf, t->name_off);
6871 
6872 	if (log->level & BPF_LOG_LEVEL)
6873 		bpf_log(log, "Validating %s() func#%d...\n",
6874 			tname, subprog);
6875 
6876 	if (prog->aux->func_info_aux[subprog].unreliable) {
6877 		bpf_log(log, "Verifier bug in function %s()\n", tname);
6878 		return -EFAULT;
6879 	}
6880 	if (prog_type == BPF_PROG_TYPE_EXT)
6881 		prog_type = prog->aux->dst_prog->type;
6882 
6883 	t = btf_type_by_id(btf, t->type);
6884 	if (!t || !btf_type_is_func_proto(t)) {
6885 		bpf_log(log, "Invalid type of function %s()\n", tname);
6886 		return -EFAULT;
6887 	}
6888 	args = (const struct btf_param *)(t + 1);
6889 	nargs = btf_type_vlen(t);
6890 	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6891 		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6892 			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6893 		return -EINVAL;
6894 	}
6895 	/* check that function returns int */
6896 	t = btf_type_by_id(btf, t->type);
6897 	while (btf_type_is_modifier(t))
6898 		t = btf_type_by_id(btf, t->type);
6899 	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
6900 		bpf_log(log,
6901 			"Global function %s() doesn't return scalar. Only those are supported.\n",
6902 			tname);
6903 		return -EINVAL;
6904 	}
6905 	/* Convert BTF function arguments into verifier types.
6906 	 * Only PTR_TO_CTX and SCALAR are supported atm.
6907 	 */
6908 	for (i = 0; i < nargs; i++) {
6909 		struct bpf_reg_state *reg = &regs[i + 1];
6910 
6911 		t = btf_type_by_id(btf, args[i].type);
6912 		while (btf_type_is_modifier(t))
6913 			t = btf_type_by_id(btf, t->type);
6914 		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
6915 			reg->type = SCALAR_VALUE;
6916 			continue;
6917 		}
6918 		if (btf_type_is_ptr(t)) {
6919 			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6920 				reg->type = PTR_TO_CTX;
6921 				continue;
6922 			}
6923 
6924 			t = btf_type_skip_modifiers(btf, t->type, NULL);
6925 
6926 			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
6927 			if (IS_ERR(ref_t)) {
6928 				bpf_log(log,
6929 				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6930 				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6931 					PTR_ERR(ref_t));
6932 				return -EINVAL;
6933 			}
6934 
6935 			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6936 			reg->id = ++env->id_gen;
6937 
6938 			continue;
6939 		}
6940 		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6941 			i, btf_type_str(t), tname);
6942 		return -EINVAL;
6943 	}
6944 	return 0;
6945 }
6946 
6947 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6948 			  struct btf_show *show)
6949 {
6950 	const struct btf_type *t = btf_type_by_id(btf, type_id);
6951 
6952 	show->btf = btf;
6953 	memset(&show->state, 0, sizeof(show->state));
6954 	memset(&show->obj, 0, sizeof(show->obj));
6955 
6956 	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6957 }
6958 
6959 static void btf_seq_show(struct btf_show *show, const char *fmt,
6960 			 va_list args)
6961 {
6962 	seq_vprintf((struct seq_file *)show->target, fmt, args);
6963 }
6964 
6965 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6966 			    void *obj, struct seq_file *m, u64 flags)
6967 {
6968 	struct btf_show sseq;
6969 
6970 	sseq.target = m;
6971 	sseq.showfn = btf_seq_show;
6972 	sseq.flags = flags;
6973 
6974 	btf_type_show(btf, type_id, obj, &sseq);
6975 
6976 	return sseq.state.status;
6977 }
6978 
6979 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6980 		       struct seq_file *m)
6981 {
6982 	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6983 				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6984 				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6985 }
6986 
6987 struct btf_show_snprintf {
6988 	struct btf_show show;
6989 	int len_left;		/* space left in string */
6990 	int len;		/* length we would have written */
6991 };
6992 
6993 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6994 			      va_list args)
6995 {
6996 	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6997 	int len;
6998 
6999 	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7000 
7001 	if (len < 0) {
7002 		ssnprintf->len_left = 0;
7003 		ssnprintf->len = len;
7004 	} else if (len >= ssnprintf->len_left) {
7005 		/* no space, drive on to get length we would have written */
7006 		ssnprintf->len_left = 0;
7007 		ssnprintf->len += len;
7008 	} else {
7009 		ssnprintf->len_left -= len;
7010 		ssnprintf->len += len;
7011 		show->target += len;
7012 	}
7013 }
7014 
7015 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7016 			   char *buf, int len, u64 flags)
7017 {
7018 	struct btf_show_snprintf ssnprintf;
7019 
7020 	ssnprintf.show.target = buf;
7021 	ssnprintf.show.flags = flags;
7022 	ssnprintf.show.showfn = btf_snprintf_show;
7023 	ssnprintf.len_left = len;
7024 	ssnprintf.len = 0;
7025 
7026 	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7027 
7028 	/* If we encountered an error, return it. */
7029 	if (ssnprintf.show.state.status)
7030 		return ssnprintf.show.state.status;
7031 
7032 	/* Otherwise return length we would have written */
7033 	return ssnprintf.len;
7034 }
7035 
7036 #ifdef CONFIG_PROC_FS
7037 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7038 {
7039 	const struct btf *btf = filp->private_data;
7040 
7041 	seq_printf(m, "btf_id:\t%u\n", btf->id);
7042 }
7043 #endif
7044 
7045 static int btf_release(struct inode *inode, struct file *filp)
7046 {
7047 	btf_put(filp->private_data);
7048 	return 0;
7049 }
7050 
7051 const struct file_operations btf_fops = {
7052 #ifdef CONFIG_PROC_FS
7053 	.show_fdinfo	= bpf_btf_show_fdinfo,
7054 #endif
7055 	.release	= btf_release,
7056 };
7057 
7058 static int __btf_new_fd(struct btf *btf)
7059 {
7060 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7061 }
7062 
7063 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
7064 {
7065 	struct btf *btf;
7066 	int ret;
7067 
7068 	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
7069 			attr->btf_size, attr->btf_log_level,
7070 			u64_to_user_ptr(attr->btf_log_buf),
7071 			attr->btf_log_size);
7072 	if (IS_ERR(btf))
7073 		return PTR_ERR(btf);
7074 
7075 	ret = btf_alloc_id(btf);
7076 	if (ret) {
7077 		btf_free(btf);
7078 		return ret;
7079 	}
7080 
7081 	/*
7082 	 * The BTF ID is published to the userspace.
7083 	 * All BTF free must go through call_rcu() from
7084 	 * now on (i.e. free by calling btf_put()).
7085 	 */
7086 
7087 	ret = __btf_new_fd(btf);
7088 	if (ret < 0)
7089 		btf_put(btf);
7090 
7091 	return ret;
7092 }
7093 
7094 struct btf *btf_get_by_fd(int fd)
7095 {
7096 	struct btf *btf;
7097 	struct fd f;
7098 
7099 	f = fdget(fd);
7100 
7101 	if (!f.file)
7102 		return ERR_PTR(-EBADF);
7103 
7104 	if (f.file->f_op != &btf_fops) {
7105 		fdput(f);
7106 		return ERR_PTR(-EINVAL);
7107 	}
7108 
7109 	btf = f.file->private_data;
7110 	refcount_inc(&btf->refcnt);
7111 	fdput(f);
7112 
7113 	return btf;
7114 }
7115 
7116 int btf_get_info_by_fd(const struct btf *btf,
7117 		       const union bpf_attr *attr,
7118 		       union bpf_attr __user *uattr)
7119 {
7120 	struct bpf_btf_info __user *uinfo;
7121 	struct bpf_btf_info info;
7122 	u32 info_copy, btf_copy;
7123 	void __user *ubtf;
7124 	char __user *uname;
7125 	u32 uinfo_len, uname_len, name_len;
7126 	int ret = 0;
7127 
7128 	uinfo = u64_to_user_ptr(attr->info.info);
7129 	uinfo_len = attr->info.info_len;
7130 
7131 	info_copy = min_t(u32, uinfo_len, sizeof(info));
7132 	memset(&info, 0, sizeof(info));
7133 	if (copy_from_user(&info, uinfo, info_copy))
7134 		return -EFAULT;
7135 
7136 	info.id = btf->id;
7137 	ubtf = u64_to_user_ptr(info.btf);
7138 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7139 	if (copy_to_user(ubtf, btf->data, btf_copy))
7140 		return -EFAULT;
7141 	info.btf_size = btf->data_size;
7142 
7143 	info.kernel_btf = btf->kernel_btf;
7144 
7145 	uname = u64_to_user_ptr(info.name);
7146 	uname_len = info.name_len;
7147 	if (!uname ^ !uname_len)
7148 		return -EINVAL;
7149 
7150 	name_len = strlen(btf->name);
7151 	info.name_len = name_len;
7152 
7153 	if (uname) {
7154 		if (uname_len >= name_len + 1) {
7155 			if (copy_to_user(uname, btf->name, name_len + 1))
7156 				return -EFAULT;
7157 		} else {
7158 			char zero = '\0';
7159 
7160 			if (copy_to_user(uname, btf->name, uname_len - 1))
7161 				return -EFAULT;
7162 			if (put_user(zero, uname + uname_len - 1))
7163 				return -EFAULT;
7164 			/* let user-space know about too short buffer */
7165 			ret = -ENOSPC;
7166 		}
7167 	}
7168 
7169 	if (copy_to_user(uinfo, &info, info_copy) ||
7170 	    put_user(info_copy, &uattr->info.info_len))
7171 		return -EFAULT;
7172 
7173 	return ret;
7174 }
7175 
7176 int btf_get_fd_by_id(u32 id)
7177 {
7178 	struct btf *btf;
7179 	int fd;
7180 
7181 	rcu_read_lock();
7182 	btf = idr_find(&btf_idr, id);
7183 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7184 		btf = ERR_PTR(-ENOENT);
7185 	rcu_read_unlock();
7186 
7187 	if (IS_ERR(btf))
7188 		return PTR_ERR(btf);
7189 
7190 	fd = __btf_new_fd(btf);
7191 	if (fd < 0)
7192 		btf_put(btf);
7193 
7194 	return fd;
7195 }
7196 
7197 u32 btf_obj_id(const struct btf *btf)
7198 {
7199 	return btf->id;
7200 }
7201 
7202 bool btf_is_kernel(const struct btf *btf)
7203 {
7204 	return btf->kernel_btf;
7205 }
7206 
7207 bool btf_is_module(const struct btf *btf)
7208 {
7209 	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7210 }
7211 
7212 enum {
7213 	BTF_MODULE_F_LIVE = (1 << 0),
7214 };
7215 
7216 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7217 struct btf_module {
7218 	struct list_head list;
7219 	struct module *module;
7220 	struct btf *btf;
7221 	struct bin_attribute *sysfs_attr;
7222 	int flags;
7223 };
7224 
7225 static LIST_HEAD(btf_modules);
7226 static DEFINE_MUTEX(btf_module_mutex);
7227 
7228 static ssize_t
7229 btf_module_read(struct file *file, struct kobject *kobj,
7230 		struct bin_attribute *bin_attr,
7231 		char *buf, loff_t off, size_t len)
7232 {
7233 	const struct btf *btf = bin_attr->private;
7234 
7235 	memcpy(buf, btf->data + off, len);
7236 	return len;
7237 }
7238 
7239 static void purge_cand_cache(struct btf *btf);
7240 
7241 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7242 			     void *module)
7243 {
7244 	struct btf_module *btf_mod, *tmp;
7245 	struct module *mod = module;
7246 	struct btf *btf;
7247 	int err = 0;
7248 
7249 	if (mod->btf_data_size == 0 ||
7250 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7251 	     op != MODULE_STATE_GOING))
7252 		goto out;
7253 
7254 	switch (op) {
7255 	case MODULE_STATE_COMING:
7256 		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7257 		if (!btf_mod) {
7258 			err = -ENOMEM;
7259 			goto out;
7260 		}
7261 		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7262 		if (IS_ERR(btf)) {
7263 			pr_warn("failed to validate module [%s] BTF: %ld\n",
7264 				mod->name, PTR_ERR(btf));
7265 			kfree(btf_mod);
7266 			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
7267 				err = PTR_ERR(btf);
7268 			goto out;
7269 		}
7270 		err = btf_alloc_id(btf);
7271 		if (err) {
7272 			btf_free(btf);
7273 			kfree(btf_mod);
7274 			goto out;
7275 		}
7276 
7277 		purge_cand_cache(NULL);
7278 		mutex_lock(&btf_module_mutex);
7279 		btf_mod->module = module;
7280 		btf_mod->btf = btf;
7281 		list_add(&btf_mod->list, &btf_modules);
7282 		mutex_unlock(&btf_module_mutex);
7283 
7284 		if (IS_ENABLED(CONFIG_SYSFS)) {
7285 			struct bin_attribute *attr;
7286 
7287 			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7288 			if (!attr)
7289 				goto out;
7290 
7291 			sysfs_bin_attr_init(attr);
7292 			attr->attr.name = btf->name;
7293 			attr->attr.mode = 0444;
7294 			attr->size = btf->data_size;
7295 			attr->private = btf;
7296 			attr->read = btf_module_read;
7297 
7298 			err = sysfs_create_bin_file(btf_kobj, attr);
7299 			if (err) {
7300 				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7301 					mod->name, err);
7302 				kfree(attr);
7303 				err = 0;
7304 				goto out;
7305 			}
7306 
7307 			btf_mod->sysfs_attr = attr;
7308 		}
7309 
7310 		break;
7311 	case MODULE_STATE_LIVE:
7312 		mutex_lock(&btf_module_mutex);
7313 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7314 			if (btf_mod->module != module)
7315 				continue;
7316 
7317 			btf_mod->flags |= BTF_MODULE_F_LIVE;
7318 			break;
7319 		}
7320 		mutex_unlock(&btf_module_mutex);
7321 		break;
7322 	case MODULE_STATE_GOING:
7323 		mutex_lock(&btf_module_mutex);
7324 		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7325 			if (btf_mod->module != module)
7326 				continue;
7327 
7328 			list_del(&btf_mod->list);
7329 			if (btf_mod->sysfs_attr)
7330 				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7331 			purge_cand_cache(btf_mod->btf);
7332 			btf_put(btf_mod->btf);
7333 			kfree(btf_mod->sysfs_attr);
7334 			kfree(btf_mod);
7335 			break;
7336 		}
7337 		mutex_unlock(&btf_module_mutex);
7338 		break;
7339 	}
7340 out:
7341 	return notifier_from_errno(err);
7342 }
7343 
7344 static struct notifier_block btf_module_nb = {
7345 	.notifier_call = btf_module_notify,
7346 };
7347 
7348 static int __init btf_module_init(void)
7349 {
7350 	register_module_notifier(&btf_module_nb);
7351 	return 0;
7352 }
7353 
7354 fs_initcall(btf_module_init);
7355 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7356 
7357 struct module *btf_try_get_module(const struct btf *btf)
7358 {
7359 	struct module *res = NULL;
7360 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7361 	struct btf_module *btf_mod, *tmp;
7362 
7363 	mutex_lock(&btf_module_mutex);
7364 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7365 		if (btf_mod->btf != btf)
7366 			continue;
7367 
7368 		/* We must only consider module whose __init routine has
7369 		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7370 		 * which is set from the notifier callback for
7371 		 * MODULE_STATE_LIVE.
7372 		 */
7373 		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7374 			res = btf_mod->module;
7375 
7376 		break;
7377 	}
7378 	mutex_unlock(&btf_module_mutex);
7379 #endif
7380 
7381 	return res;
7382 }
7383 
7384 /* Returns struct btf corresponding to the struct module.
7385  * This function can return NULL or ERR_PTR.
7386  */
7387 static struct btf *btf_get_module_btf(const struct module *module)
7388 {
7389 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7390 	struct btf_module *btf_mod, *tmp;
7391 #endif
7392 	struct btf *btf = NULL;
7393 
7394 	if (!module) {
7395 		btf = bpf_get_btf_vmlinux();
7396 		if (!IS_ERR_OR_NULL(btf))
7397 			btf_get(btf);
7398 		return btf;
7399 	}
7400 
7401 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7402 	mutex_lock(&btf_module_mutex);
7403 	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7404 		if (btf_mod->module != module)
7405 			continue;
7406 
7407 		btf_get(btf_mod->btf);
7408 		btf = btf_mod->btf;
7409 		break;
7410 	}
7411 	mutex_unlock(&btf_module_mutex);
7412 #endif
7413 
7414 	return btf;
7415 }
7416 
7417 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7418 {
7419 	struct btf *btf = NULL;
7420 	int btf_obj_fd = 0;
7421 	long ret;
7422 
7423 	if (flags)
7424 		return -EINVAL;
7425 
7426 	if (name_sz <= 1 || name[name_sz - 1])
7427 		return -EINVAL;
7428 
7429 	ret = bpf_find_btf_id(name, kind, &btf);
7430 	if (ret > 0 && btf_is_module(btf)) {
7431 		btf_obj_fd = __btf_new_fd(btf);
7432 		if (btf_obj_fd < 0) {
7433 			btf_put(btf);
7434 			return btf_obj_fd;
7435 		}
7436 		return ret | (((u64)btf_obj_fd) << 32);
7437 	}
7438 	if (ret > 0)
7439 		btf_put(btf);
7440 	return ret;
7441 }
7442 
7443 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7444 	.func		= bpf_btf_find_by_name_kind,
7445 	.gpl_only	= false,
7446 	.ret_type	= RET_INTEGER,
7447 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7448 	.arg2_type	= ARG_CONST_SIZE,
7449 	.arg3_type	= ARG_ANYTHING,
7450 	.arg4_type	= ARG_ANYTHING,
7451 };
7452 
7453 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7454 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7455 BTF_TRACING_TYPE_xxx
7456 #undef BTF_TRACING_TYPE
7457 
7458 /* Kernel Function (kfunc) BTF ID set registration API */
7459 
7460 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7461 				  struct btf_id_set8 *add_set)
7462 {
7463 	bool vmlinux_set = !btf_is_module(btf);
7464 	struct btf_kfunc_set_tab *tab;
7465 	struct btf_id_set8 *set;
7466 	u32 set_cnt;
7467 	int ret;
7468 
7469 	if (hook >= BTF_KFUNC_HOOK_MAX) {
7470 		ret = -EINVAL;
7471 		goto end;
7472 	}
7473 
7474 	if (!add_set->cnt)
7475 		return 0;
7476 
7477 	tab = btf->kfunc_set_tab;
7478 	if (!tab) {
7479 		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7480 		if (!tab)
7481 			return -ENOMEM;
7482 		btf->kfunc_set_tab = tab;
7483 	}
7484 
7485 	set = tab->sets[hook];
7486 	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7487 	 * for module sets.
7488 	 */
7489 	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7490 		ret = -EINVAL;
7491 		goto end;
7492 	}
7493 
7494 	/* We don't need to allocate, concatenate, and sort module sets, because
7495 	 * only one is allowed per hook. Hence, we can directly assign the
7496 	 * pointer and return.
7497 	 */
7498 	if (!vmlinux_set) {
7499 		tab->sets[hook] = add_set;
7500 		return 0;
7501 	}
7502 
7503 	/* In case of vmlinux sets, there may be more than one set being
7504 	 * registered per hook. To create a unified set, we allocate a new set
7505 	 * and concatenate all individual sets being registered. While each set
7506 	 * is individually sorted, they may become unsorted when concatenated,
7507 	 * hence re-sorting the final set again is required to make binary
7508 	 * searching the set using btf_id_set8_contains function work.
7509 	 */
7510 	set_cnt = set ? set->cnt : 0;
7511 
7512 	if (set_cnt > U32_MAX - add_set->cnt) {
7513 		ret = -EOVERFLOW;
7514 		goto end;
7515 	}
7516 
7517 	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7518 		ret = -E2BIG;
7519 		goto end;
7520 	}
7521 
7522 	/* Grow set */
7523 	set = krealloc(tab->sets[hook],
7524 		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7525 		       GFP_KERNEL | __GFP_NOWARN);
7526 	if (!set) {
7527 		ret = -ENOMEM;
7528 		goto end;
7529 	}
7530 
7531 	/* For newly allocated set, initialize set->cnt to 0 */
7532 	if (!tab->sets[hook])
7533 		set->cnt = 0;
7534 	tab->sets[hook] = set;
7535 
7536 	/* Concatenate the two sets */
7537 	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7538 	set->cnt += add_set->cnt;
7539 
7540 	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7541 
7542 	return 0;
7543 end:
7544 	btf_free_kfunc_set_tab(btf);
7545 	return ret;
7546 }
7547 
7548 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7549 					enum btf_kfunc_hook hook,
7550 					u32 kfunc_btf_id)
7551 {
7552 	struct btf_id_set8 *set;
7553 	u32 *id;
7554 
7555 	if (hook >= BTF_KFUNC_HOOK_MAX)
7556 		return NULL;
7557 	if (!btf->kfunc_set_tab)
7558 		return NULL;
7559 	set = btf->kfunc_set_tab->sets[hook];
7560 	if (!set)
7561 		return NULL;
7562 	id = btf_id_set8_contains(set, kfunc_btf_id);
7563 	if (!id)
7564 		return NULL;
7565 	/* The flags for BTF ID are located next to it */
7566 	return id + 1;
7567 }
7568 
7569 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7570 {
7571 	switch (prog_type) {
7572 	case BPF_PROG_TYPE_UNSPEC:
7573 		return BTF_KFUNC_HOOK_COMMON;
7574 	case BPF_PROG_TYPE_XDP:
7575 		return BTF_KFUNC_HOOK_XDP;
7576 	case BPF_PROG_TYPE_SCHED_CLS:
7577 		return BTF_KFUNC_HOOK_TC;
7578 	case BPF_PROG_TYPE_STRUCT_OPS:
7579 		return BTF_KFUNC_HOOK_STRUCT_OPS;
7580 	case BPF_PROG_TYPE_TRACING:
7581 	case BPF_PROG_TYPE_LSM:
7582 		return BTF_KFUNC_HOOK_TRACING;
7583 	case BPF_PROG_TYPE_SYSCALL:
7584 		return BTF_KFUNC_HOOK_SYSCALL;
7585 	default:
7586 		return BTF_KFUNC_HOOK_MAX;
7587 	}
7588 }
7589 
7590 /* Caution:
7591  * Reference to the module (obtained using btf_try_get_module) corresponding to
7592  * the struct btf *MUST* be held when calling this function from verifier
7593  * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7594  * keeping the reference for the duration of the call provides the necessary
7595  * protection for looking up a well-formed btf->kfunc_set_tab.
7596  */
7597 u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7598 			       enum bpf_prog_type prog_type,
7599 			       u32 kfunc_btf_id)
7600 {
7601 	enum btf_kfunc_hook hook;
7602 	u32 *kfunc_flags;
7603 
7604 	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7605 	if (kfunc_flags)
7606 		return kfunc_flags;
7607 
7608 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7609 	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
7610 }
7611 
7612 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
7613 {
7614 	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7615 }
7616 
7617 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7618 				       const struct btf_kfunc_id_set *kset)
7619 {
7620 	struct btf *btf;
7621 	int ret;
7622 
7623 	btf = btf_get_module_btf(kset->owner);
7624 	if (!btf) {
7625 		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7626 			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7627 			return -ENOENT;
7628 		}
7629 		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7630 			pr_err("missing module BTF, cannot register kfuncs\n");
7631 			return -ENOENT;
7632 		}
7633 		return 0;
7634 	}
7635 	if (IS_ERR(btf))
7636 		return PTR_ERR(btf);
7637 
7638 	ret = btf_populate_kfunc_set(btf, hook, kset->set);
7639 	btf_put(btf);
7640 	return ret;
7641 }
7642 
7643 /* This function must be invoked only from initcalls/module init functions */
7644 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7645 			      const struct btf_kfunc_id_set *kset)
7646 {
7647 	enum btf_kfunc_hook hook;
7648 
7649 	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7650 	return __register_btf_kfunc_id_set(hook, kset);
7651 }
7652 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7653 
7654 /* This function must be invoked only from initcalls/module init functions */
7655 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7656 {
7657 	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7658 }
7659 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7660 
7661 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7662 {
7663 	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7664 	struct btf_id_dtor_kfunc *dtor;
7665 
7666 	if (!tab)
7667 		return -ENOENT;
7668 	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7669 	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7670 	 */
7671 	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7672 	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7673 	if (!dtor)
7674 		return -ENOENT;
7675 	return dtor->kfunc_btf_id;
7676 }
7677 
7678 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7679 {
7680 	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7681 	const struct btf_param *args;
7682 	s32 dtor_btf_id;
7683 	u32 nr_args, i;
7684 
7685 	for (i = 0; i < cnt; i++) {
7686 		dtor_btf_id = dtors[i].kfunc_btf_id;
7687 
7688 		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7689 		if (!dtor_func || !btf_type_is_func(dtor_func))
7690 			return -EINVAL;
7691 
7692 		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7693 		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7694 			return -EINVAL;
7695 
7696 		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7697 		t = btf_type_by_id(btf, dtor_func_proto->type);
7698 		if (!t || !btf_type_is_void(t))
7699 			return -EINVAL;
7700 
7701 		nr_args = btf_type_vlen(dtor_func_proto);
7702 		if (nr_args != 1)
7703 			return -EINVAL;
7704 		args = btf_params(dtor_func_proto);
7705 		t = btf_type_by_id(btf, args[0].type);
7706 		/* Allow any pointer type, as width on targets Linux supports
7707 		 * will be same for all pointer types (i.e. sizeof(void *))
7708 		 */
7709 		if (!t || !btf_type_is_ptr(t))
7710 			return -EINVAL;
7711 	}
7712 	return 0;
7713 }
7714 
7715 /* This function must be invoked only from initcalls/module init functions */
7716 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7717 				struct module *owner)
7718 {
7719 	struct btf_id_dtor_kfunc_tab *tab;
7720 	struct btf *btf;
7721 	u32 tab_cnt;
7722 	int ret;
7723 
7724 	btf = btf_get_module_btf(owner);
7725 	if (!btf) {
7726 		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7727 			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7728 			return -ENOENT;
7729 		}
7730 		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7731 			pr_err("missing module BTF, cannot register dtor kfuncs\n");
7732 			return -ENOENT;
7733 		}
7734 		return 0;
7735 	}
7736 	if (IS_ERR(btf))
7737 		return PTR_ERR(btf);
7738 
7739 	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7740 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7741 		ret = -E2BIG;
7742 		goto end;
7743 	}
7744 
7745 	/* Ensure that the prototype of dtor kfuncs being registered is sane */
7746 	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7747 	if (ret < 0)
7748 		goto end;
7749 
7750 	tab = btf->dtor_kfunc_tab;
7751 	/* Only one call allowed for modules */
7752 	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7753 		ret = -EINVAL;
7754 		goto end;
7755 	}
7756 
7757 	tab_cnt = tab ? tab->cnt : 0;
7758 	if (tab_cnt > U32_MAX - add_cnt) {
7759 		ret = -EOVERFLOW;
7760 		goto end;
7761 	}
7762 	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7763 		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7764 		ret = -E2BIG;
7765 		goto end;
7766 	}
7767 
7768 	tab = krealloc(btf->dtor_kfunc_tab,
7769 		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7770 		       GFP_KERNEL | __GFP_NOWARN);
7771 	if (!tab) {
7772 		ret = -ENOMEM;
7773 		goto end;
7774 	}
7775 
7776 	if (!btf->dtor_kfunc_tab)
7777 		tab->cnt = 0;
7778 	btf->dtor_kfunc_tab = tab;
7779 
7780 	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7781 	tab->cnt += add_cnt;
7782 
7783 	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7784 
7785 	return 0;
7786 end:
7787 	btf_free_dtor_kfunc_tab(btf);
7788 	btf_put(btf);
7789 	return ret;
7790 }
7791 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7792 
7793 #define MAX_TYPES_ARE_COMPAT_DEPTH 2
7794 
7795 /* Check local and target types for compatibility. This check is used for
7796  * type-based CO-RE relocations and follow slightly different rules than
7797  * field-based relocations. This function assumes that root types were already
7798  * checked for name match. Beyond that initial root-level name check, names
7799  * are completely ignored. Compatibility rules are as follows:
7800  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7801  *     kind should match for local and target types (i.e., STRUCT is not
7802  *     compatible with UNION);
7803  *   - for ENUMs/ENUM64s, the size is ignored;
7804  *   - for INT, size and signedness are ignored;
7805  *   - for ARRAY, dimensionality is ignored, element types are checked for
7806  *     compatibility recursively;
7807  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
7808  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7809  *   - FUNC_PROTOs are compatible if they have compatible signature: same
7810  *     number of input args and compatible return and argument types.
7811  * These rules are not set in stone and probably will be adjusted as we get
7812  * more experience with using BPF CO-RE relocations.
7813  */
7814 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7815 			      const struct btf *targ_btf, __u32 targ_id)
7816 {
7817 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7818 					   MAX_TYPES_ARE_COMPAT_DEPTH);
7819 }
7820 
7821 #define MAX_TYPES_MATCH_DEPTH 2
7822 
7823 int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7824 			 const struct btf *targ_btf, u32 targ_id)
7825 {
7826 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7827 				      MAX_TYPES_MATCH_DEPTH);
7828 }
7829 
7830 static bool bpf_core_is_flavor_sep(const char *s)
7831 {
7832 	/* check X___Y name pattern, where X and Y are not underscores */
7833 	return s[0] != '_' &&				      /* X */
7834 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
7835 	       s[4] != '_';				      /* Y */
7836 }
7837 
7838 size_t bpf_core_essential_name_len(const char *name)
7839 {
7840 	size_t n = strlen(name);
7841 	int i;
7842 
7843 	for (i = n - 5; i >= 0; i--) {
7844 		if (bpf_core_is_flavor_sep(name + i))
7845 			return i + 1;
7846 	}
7847 	return n;
7848 }
7849 
7850 struct bpf_cand_cache {
7851 	const char *name;
7852 	u32 name_len;
7853 	u16 kind;
7854 	u16 cnt;
7855 	struct {
7856 		const struct btf *btf;
7857 		u32 id;
7858 	} cands[];
7859 };
7860 
7861 static void bpf_free_cands(struct bpf_cand_cache *cands)
7862 {
7863 	if (!cands->cnt)
7864 		/* empty candidate array was allocated on stack */
7865 		return;
7866 	kfree(cands);
7867 }
7868 
7869 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7870 {
7871 	kfree(cands->name);
7872 	kfree(cands);
7873 }
7874 
7875 #define VMLINUX_CAND_CACHE_SIZE 31
7876 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7877 
7878 #define MODULE_CAND_CACHE_SIZE 31
7879 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7880 
7881 static DEFINE_MUTEX(cand_cache_mutex);
7882 
7883 static void __print_cand_cache(struct bpf_verifier_log *log,
7884 			       struct bpf_cand_cache **cache,
7885 			       int cache_size)
7886 {
7887 	struct bpf_cand_cache *cc;
7888 	int i, j;
7889 
7890 	for (i = 0; i < cache_size; i++) {
7891 		cc = cache[i];
7892 		if (!cc)
7893 			continue;
7894 		bpf_log(log, "[%d]%s(", i, cc->name);
7895 		for (j = 0; j < cc->cnt; j++) {
7896 			bpf_log(log, "%d", cc->cands[j].id);
7897 			if (j < cc->cnt - 1)
7898 				bpf_log(log, " ");
7899 		}
7900 		bpf_log(log, "), ");
7901 	}
7902 }
7903 
7904 static void print_cand_cache(struct bpf_verifier_log *log)
7905 {
7906 	mutex_lock(&cand_cache_mutex);
7907 	bpf_log(log, "vmlinux_cand_cache:");
7908 	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7909 	bpf_log(log, "\nmodule_cand_cache:");
7910 	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7911 	bpf_log(log, "\n");
7912 	mutex_unlock(&cand_cache_mutex);
7913 }
7914 
7915 static u32 hash_cands(struct bpf_cand_cache *cands)
7916 {
7917 	return jhash(cands->name, cands->name_len, 0);
7918 }
7919 
7920 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7921 					       struct bpf_cand_cache **cache,
7922 					       int cache_size)
7923 {
7924 	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7925 
7926 	if (cc && cc->name_len == cands->name_len &&
7927 	    !strncmp(cc->name, cands->name, cands->name_len))
7928 		return cc;
7929 	return NULL;
7930 }
7931 
7932 static size_t sizeof_cands(int cnt)
7933 {
7934 	return offsetof(struct bpf_cand_cache, cands[cnt]);
7935 }
7936 
7937 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7938 						  struct bpf_cand_cache **cache,
7939 						  int cache_size)
7940 {
7941 	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7942 
7943 	if (*cc) {
7944 		bpf_free_cands_from_cache(*cc);
7945 		*cc = NULL;
7946 	}
7947 	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7948 	if (!new_cands) {
7949 		bpf_free_cands(cands);
7950 		return ERR_PTR(-ENOMEM);
7951 	}
7952 	/* strdup the name, since it will stay in cache.
7953 	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7954 	 */
7955 	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7956 	bpf_free_cands(cands);
7957 	if (!new_cands->name) {
7958 		kfree(new_cands);
7959 		return ERR_PTR(-ENOMEM);
7960 	}
7961 	*cc = new_cands;
7962 	return new_cands;
7963 }
7964 
7965 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7966 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7967 			       int cache_size)
7968 {
7969 	struct bpf_cand_cache *cc;
7970 	int i, j;
7971 
7972 	for (i = 0; i < cache_size; i++) {
7973 		cc = cache[i];
7974 		if (!cc)
7975 			continue;
7976 		if (!btf) {
7977 			/* when new module is loaded purge all of module_cand_cache,
7978 			 * since new module might have candidates with the name
7979 			 * that matches cached cands.
7980 			 */
7981 			bpf_free_cands_from_cache(cc);
7982 			cache[i] = NULL;
7983 			continue;
7984 		}
7985 		/* when module is unloaded purge cache entries
7986 		 * that match module's btf
7987 		 */
7988 		for (j = 0; j < cc->cnt; j++)
7989 			if (cc->cands[j].btf == btf) {
7990 				bpf_free_cands_from_cache(cc);
7991 				cache[i] = NULL;
7992 				break;
7993 			}
7994 	}
7995 
7996 }
7997 
7998 static void purge_cand_cache(struct btf *btf)
7999 {
8000 	mutex_lock(&cand_cache_mutex);
8001 	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8002 	mutex_unlock(&cand_cache_mutex);
8003 }
8004 #endif
8005 
8006 static struct bpf_cand_cache *
8007 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8008 		   int targ_start_id)
8009 {
8010 	struct bpf_cand_cache *new_cands;
8011 	const struct btf_type *t;
8012 	const char *targ_name;
8013 	size_t targ_essent_len;
8014 	int n, i;
8015 
8016 	n = btf_nr_types(targ_btf);
8017 	for (i = targ_start_id; i < n; i++) {
8018 		t = btf_type_by_id(targ_btf, i);
8019 		if (btf_kind(t) != cands->kind)
8020 			continue;
8021 
8022 		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8023 		if (!targ_name)
8024 			continue;
8025 
8026 		/* the resched point is before strncmp to make sure that search
8027 		 * for non-existing name will have a chance to schedule().
8028 		 */
8029 		cond_resched();
8030 
8031 		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8032 			continue;
8033 
8034 		targ_essent_len = bpf_core_essential_name_len(targ_name);
8035 		if (targ_essent_len != cands->name_len)
8036 			continue;
8037 
8038 		/* most of the time there is only one candidate for a given kind+name pair */
8039 		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8040 		if (!new_cands) {
8041 			bpf_free_cands(cands);
8042 			return ERR_PTR(-ENOMEM);
8043 		}
8044 
8045 		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8046 		bpf_free_cands(cands);
8047 		cands = new_cands;
8048 		cands->cands[cands->cnt].btf = targ_btf;
8049 		cands->cands[cands->cnt].id = i;
8050 		cands->cnt++;
8051 	}
8052 	return cands;
8053 }
8054 
8055 static struct bpf_cand_cache *
8056 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8057 {
8058 	struct bpf_cand_cache *cands, *cc, local_cand = {};
8059 	const struct btf *local_btf = ctx->btf;
8060 	const struct btf_type *local_type;
8061 	const struct btf *main_btf;
8062 	size_t local_essent_len;
8063 	struct btf *mod_btf;
8064 	const char *name;
8065 	int id;
8066 
8067 	main_btf = bpf_get_btf_vmlinux();
8068 	if (IS_ERR(main_btf))
8069 		return ERR_CAST(main_btf);
8070 	if (!main_btf)
8071 		return ERR_PTR(-EINVAL);
8072 
8073 	local_type = btf_type_by_id(local_btf, local_type_id);
8074 	if (!local_type)
8075 		return ERR_PTR(-EINVAL);
8076 
8077 	name = btf_name_by_offset(local_btf, local_type->name_off);
8078 	if (str_is_empty(name))
8079 		return ERR_PTR(-EINVAL);
8080 	local_essent_len = bpf_core_essential_name_len(name);
8081 
8082 	cands = &local_cand;
8083 	cands->name = name;
8084 	cands->kind = btf_kind(local_type);
8085 	cands->name_len = local_essent_len;
8086 
8087 	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8088 	/* cands is a pointer to stack here */
8089 	if (cc) {
8090 		if (cc->cnt)
8091 			return cc;
8092 		goto check_modules;
8093 	}
8094 
8095 	/* Attempt to find target candidates in vmlinux BTF first */
8096 	cands = bpf_core_add_cands(cands, main_btf, 1);
8097 	if (IS_ERR(cands))
8098 		return ERR_CAST(cands);
8099 
8100 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8101 
8102 	/* populate cache even when cands->cnt == 0 */
8103 	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8104 	if (IS_ERR(cc))
8105 		return ERR_CAST(cc);
8106 
8107 	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8108 	if (cc->cnt)
8109 		return cc;
8110 
8111 check_modules:
8112 	/* cands is a pointer to stack here and cands->cnt == 0 */
8113 	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8114 	if (cc)
8115 		/* if cache has it return it even if cc->cnt == 0 */
8116 		return cc;
8117 
8118 	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8119 	spin_lock_bh(&btf_idr_lock);
8120 	idr_for_each_entry(&btf_idr, mod_btf, id) {
8121 		if (!btf_is_module(mod_btf))
8122 			continue;
8123 		/* linear search could be slow hence unlock/lock
8124 		 * the IDR to avoiding holding it for too long
8125 		 */
8126 		btf_get(mod_btf);
8127 		spin_unlock_bh(&btf_idr_lock);
8128 		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8129 		if (IS_ERR(cands)) {
8130 			btf_put(mod_btf);
8131 			return ERR_CAST(cands);
8132 		}
8133 		spin_lock_bh(&btf_idr_lock);
8134 		btf_put(mod_btf);
8135 	}
8136 	spin_unlock_bh(&btf_idr_lock);
8137 	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8138 	 * or pointer to stack if cands->cnd == 0.
8139 	 * Copy it into the cache even when cands->cnt == 0 and
8140 	 * return the result.
8141 	 */
8142 	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8143 }
8144 
8145 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8146 		   int relo_idx, void *insn)
8147 {
8148 	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8149 	struct bpf_core_cand_list cands = {};
8150 	struct bpf_core_relo_res targ_res;
8151 	struct bpf_core_spec *specs;
8152 	int err;
8153 
8154 	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8155 	 * into arrays of btf_ids of struct fields and array indices.
8156 	 */
8157 	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8158 	if (!specs)
8159 		return -ENOMEM;
8160 
8161 	if (need_cands) {
8162 		struct bpf_cand_cache *cc;
8163 		int i;
8164 
8165 		mutex_lock(&cand_cache_mutex);
8166 		cc = bpf_core_find_cands(ctx, relo->type_id);
8167 		if (IS_ERR(cc)) {
8168 			bpf_log(ctx->log, "target candidate search failed for %d\n",
8169 				relo->type_id);
8170 			err = PTR_ERR(cc);
8171 			goto out;
8172 		}
8173 		if (cc->cnt) {
8174 			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8175 			if (!cands.cands) {
8176 				err = -ENOMEM;
8177 				goto out;
8178 			}
8179 		}
8180 		for (i = 0; i < cc->cnt; i++) {
8181 			bpf_log(ctx->log,
8182 				"CO-RE relocating %s %s: found target candidate [%d]\n",
8183 				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8184 			cands.cands[i].btf = cc->cands[i].btf;
8185 			cands.cands[i].id = cc->cands[i].id;
8186 		}
8187 		cands.len = cc->cnt;
8188 		/* cand_cache_mutex needs to span the cache lookup and
8189 		 * copy of btf pointer into bpf_core_cand_list,
8190 		 * since module can be unloaded while bpf_core_calc_relo_insn
8191 		 * is working with module's btf.
8192 		 */
8193 	}
8194 
8195 	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8196 				      &targ_res);
8197 	if (err)
8198 		goto out;
8199 
8200 	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8201 				  &targ_res);
8202 
8203 out:
8204 	kfree(specs);
8205 	if (need_cands) {
8206 		kfree(cands.cands);
8207 		mutex_unlock(&cand_cache_mutex);
8208 		if (ctx->log->level & BPF_LOG_LEVEL2)
8209 			print_cand_cache(ctx->log);
8210 	}
8211 	return err;
8212 }
8213