xref: /openbmc/linux/kernel/bpf/btf.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3 
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/types.h>
6 #include <linux/seq_file.h>
7 #include <linux/compiler.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/slab.h>
11 #include <linux/anon_inodes.h>
12 #include <linux/file.h>
13 #include <linux/uaccess.h>
14 #include <linux/kernel.h>
15 #include <linux/idr.h>
16 #include <linux/sort.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/btf.h>
19 
20 /* BTF (BPF Type Format) is the meta data format which describes
21  * the data types of BPF program/map.  Hence, it basically focus
22  * on the C programming language which the modern BPF is primary
23  * using.
24  *
25  * ELF Section:
26  * ~~~~~~~~~~~
27  * The BTF data is stored under the ".BTF" ELF section
28  *
29  * struct btf_type:
30  * ~~~~~~~~~~~~~~~
31  * Each 'struct btf_type' object describes a C data type.
32  * Depending on the type it is describing, a 'struct btf_type'
33  * object may be followed by more data.  F.e.
34  * To describe an array, 'struct btf_type' is followed by
35  * 'struct btf_array'.
36  *
37  * 'struct btf_type' and any extra data following it are
38  * 4 bytes aligned.
39  *
40  * Type section:
41  * ~~~~~~~~~~~~~
42  * The BTF type section contains a list of 'struct btf_type' objects.
43  * Each one describes a C type.  Recall from the above section
44  * that a 'struct btf_type' object could be immediately followed by extra
45  * data in order to desribe some particular C types.
46  *
47  * type_id:
48  * ~~~~~~~
49  * Each btf_type object is identified by a type_id.  The type_id
50  * is implicitly implied by the location of the btf_type object in
51  * the BTF type section.  The first one has type_id 1.  The second
52  * one has type_id 2...etc.  Hence, an earlier btf_type has
53  * a smaller type_id.
54  *
55  * A btf_type object may refer to another btf_type object by using
56  * type_id (i.e. the "type" in the "struct btf_type").
57  *
58  * NOTE that we cannot assume any reference-order.
59  * A btf_type object can refer to an earlier btf_type object
60  * but it can also refer to a later btf_type object.
61  *
62  * For example, to describe "const void *".  A btf_type
63  * object describing "const" may refer to another btf_type
64  * object describing "void *".  This type-reference is done
65  * by specifying type_id:
66  *
67  * [1] CONST (anon) type_id=2
68  * [2] PTR (anon) type_id=0
69  *
70  * The above is the btf_verifier debug log:
71  *   - Each line started with "[?]" is a btf_type object
72  *   - [?] is the type_id of the btf_type object.
73  *   - CONST/PTR is the BTF_KIND_XXX
74  *   - "(anon)" is the name of the type.  It just
75  *     happens that CONST and PTR has no name.
76  *   - type_id=XXX is the 'u32 type' in btf_type
77  *
78  * NOTE: "void" has type_id 0
79  *
80  * String section:
81  * ~~~~~~~~~~~~~~
82  * The BTF string section contains the names used by the type section.
83  * Each string is referred by an "offset" from the beginning of the
84  * string section.
85  *
86  * Each string is '\0' terminated.
87  *
88  * The first character in the string section must be '\0'
89  * which is used to mean 'anonymous'. Some btf_type may not
90  * have a name.
91  */
92 
93 /* BTF verification:
94  *
95  * To verify BTF data, two passes are needed.
96  *
97  * Pass #1
98  * ~~~~~~~
99  * The first pass is to collect all btf_type objects to
100  * an array: "btf->types".
101  *
102  * Depending on the C type that a btf_type is describing,
103  * a btf_type may be followed by extra data.  We don't know
104  * how many btf_type is there, and more importantly we don't
105  * know where each btf_type is located in the type section.
106  *
107  * Without knowing the location of each type_id, most verifications
108  * cannot be done.  e.g. an earlier btf_type may refer to a later
109  * btf_type (recall the "const void *" above), so we cannot
110  * check this type-reference in the first pass.
111  *
112  * In the first pass, it still does some verifications (e.g.
113  * checking the name is a valid offset to the string section).
114  *
115  * Pass #2
116  * ~~~~~~~
117  * The main focus is to resolve a btf_type that is referring
118  * to another type.
119  *
120  * We have to ensure the referring type:
121  * 1) does exist in the BTF (i.e. in btf->types[])
122  * 2) does not cause a loop:
123  *	struct A {
124  *		struct B b;
125  *	};
126  *
127  *	struct B {
128  *		struct A a;
129  *	};
130  *
131  * btf_type_needs_resolve() decides if a btf_type needs
132  * to be resolved.
133  *
134  * The needs_resolve type implements the "resolve()" ops which
135  * essentially does a DFS and detects backedge.
136  *
137  * During resolve (or DFS), different C types have different
138  * "RESOLVED" conditions.
139  *
140  * When resolving a BTF_KIND_STRUCT, we need to resolve all its
141  * members because a member is always referring to another
142  * type.  A struct's member can be treated as "RESOLVED" if
143  * it is referring to a BTF_KIND_PTR.  Otherwise, the
144  * following valid C struct would be rejected:
145  *
146  *	struct A {
147  *		int m;
148  *		struct A *a;
149  *	};
150  *
151  * When resolving a BTF_KIND_PTR, it needs to keep resolving if
152  * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
153  * detect a pointer loop, e.g.:
154  * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
155  *                        ^                                         |
156  *                        +-----------------------------------------+
157  *
158  */
159 
160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE)
161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
164 #define BITS_ROUNDUP_BYTES(bits) \
165 	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
166 
167 #define BTF_INFO_MASK 0x0f00ffff
168 #define BTF_INT_MASK 0x0fffffff
169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
171 
172 /* 16MB for 64k structs and each has 16 members and
173  * a few MB spaces for the string section.
174  * The hard limit is S32_MAX.
175  */
176 #define BTF_MAX_SIZE (16 * 1024 * 1024)
177 
178 #define for_each_member(i, struct_type, member)			\
179 	for (i = 0, member = btf_type_member(struct_type);	\
180 	     i < btf_type_vlen(struct_type);			\
181 	     i++, member++)
182 
183 #define for_each_member_from(i, from, struct_type, member)		\
184 	for (i = from, member = btf_type_member(struct_type) + from;	\
185 	     i < btf_type_vlen(struct_type);				\
186 	     i++, member++)
187 
188 static DEFINE_IDR(btf_idr);
189 static DEFINE_SPINLOCK(btf_idr_lock);
190 
191 struct btf {
192 	void *data;
193 	struct btf_type **types;
194 	u32 *resolved_ids;
195 	u32 *resolved_sizes;
196 	const char *strings;
197 	void *nohdr_data;
198 	struct btf_header hdr;
199 	u32 nr_types;
200 	u32 types_size;
201 	u32 data_size;
202 	refcount_t refcnt;
203 	u32 id;
204 	struct rcu_head rcu;
205 };
206 
207 enum verifier_phase {
208 	CHECK_META,
209 	CHECK_TYPE,
210 };
211 
212 struct resolve_vertex {
213 	const struct btf_type *t;
214 	u32 type_id;
215 	u16 next_member;
216 };
217 
218 enum visit_state {
219 	NOT_VISITED,
220 	VISITED,
221 	RESOLVED,
222 };
223 
224 enum resolve_mode {
225 	RESOLVE_TBD,	/* To Be Determined */
226 	RESOLVE_PTR,	/* Resolving for Pointer */
227 	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
228 					 * or array
229 					 */
230 };
231 
232 #define MAX_RESOLVE_DEPTH 32
233 
234 struct btf_sec_info {
235 	u32 off;
236 	u32 len;
237 };
238 
239 struct btf_verifier_env {
240 	struct btf *btf;
241 	u8 *visit_states;
242 	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
243 	struct bpf_verifier_log log;
244 	u32 log_type_id;
245 	u32 top_stack;
246 	enum verifier_phase phase;
247 	enum resolve_mode resolve_mode;
248 };
249 
250 static const char * const btf_kind_str[NR_BTF_KINDS] = {
251 	[BTF_KIND_UNKN]		= "UNKNOWN",
252 	[BTF_KIND_INT]		= "INT",
253 	[BTF_KIND_PTR]		= "PTR",
254 	[BTF_KIND_ARRAY]	= "ARRAY",
255 	[BTF_KIND_STRUCT]	= "STRUCT",
256 	[BTF_KIND_UNION]	= "UNION",
257 	[BTF_KIND_ENUM]		= "ENUM",
258 	[BTF_KIND_FWD]		= "FWD",
259 	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
260 	[BTF_KIND_VOLATILE]	= "VOLATILE",
261 	[BTF_KIND_CONST]	= "CONST",
262 	[BTF_KIND_RESTRICT]	= "RESTRICT",
263 };
264 
265 struct btf_kind_operations {
266 	s32 (*check_meta)(struct btf_verifier_env *env,
267 			  const struct btf_type *t,
268 			  u32 meta_left);
269 	int (*resolve)(struct btf_verifier_env *env,
270 		       const struct resolve_vertex *v);
271 	int (*check_member)(struct btf_verifier_env *env,
272 			    const struct btf_type *struct_type,
273 			    const struct btf_member *member,
274 			    const struct btf_type *member_type);
275 	void (*log_details)(struct btf_verifier_env *env,
276 			    const struct btf_type *t);
277 	void (*seq_show)(const struct btf *btf, const struct btf_type *t,
278 			 u32 type_id, void *data, u8 bits_offsets,
279 			 struct seq_file *m);
280 };
281 
282 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
283 static struct btf_type btf_void;
284 
285 static bool btf_type_is_modifier(const struct btf_type *t)
286 {
287 	/* Some of them is not strictly a C modifier
288 	 * but they are grouped into the same bucket
289 	 * for BTF concern:
290 	 *   A type (t) that refers to another
291 	 *   type through t->type AND its size cannot
292 	 *   be determined without following the t->type.
293 	 *
294 	 * ptr does not fall into this bucket
295 	 * because its size is always sizeof(void *).
296 	 */
297 	switch (BTF_INFO_KIND(t->info)) {
298 	case BTF_KIND_TYPEDEF:
299 	case BTF_KIND_VOLATILE:
300 	case BTF_KIND_CONST:
301 	case BTF_KIND_RESTRICT:
302 		return true;
303 	}
304 
305 	return false;
306 }
307 
308 static bool btf_type_is_void(const struct btf_type *t)
309 {
310 	/* void => no type and size info.
311 	 * Hence, FWD is also treated as void.
312 	 */
313 	return t == &btf_void || BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
314 }
315 
316 static bool btf_type_is_void_or_null(const struct btf_type *t)
317 {
318 	return !t || btf_type_is_void(t);
319 }
320 
321 /* union is only a special case of struct:
322  * all its offsetof(member) == 0
323  */
324 static bool btf_type_is_struct(const struct btf_type *t)
325 {
326 	u8 kind = BTF_INFO_KIND(t->info);
327 
328 	return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
329 }
330 
331 static bool btf_type_is_array(const struct btf_type *t)
332 {
333 	return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
334 }
335 
336 static bool btf_type_is_ptr(const struct btf_type *t)
337 {
338 	return BTF_INFO_KIND(t->info) == BTF_KIND_PTR;
339 }
340 
341 static bool btf_type_is_int(const struct btf_type *t)
342 {
343 	return BTF_INFO_KIND(t->info) == BTF_KIND_INT;
344 }
345 
346 /* What types need to be resolved?
347  *
348  * btf_type_is_modifier() is an obvious one.
349  *
350  * btf_type_is_struct() because its member refers to
351  * another type (through member->type).
352 
353  * btf_type_is_array() because its element (array->type)
354  * refers to another type.  Array can be thought of a
355  * special case of struct while array just has the same
356  * member-type repeated by array->nelems of times.
357  */
358 static bool btf_type_needs_resolve(const struct btf_type *t)
359 {
360 	return btf_type_is_modifier(t) ||
361 		btf_type_is_ptr(t) ||
362 		btf_type_is_struct(t) ||
363 		btf_type_is_array(t);
364 }
365 
366 /* t->size can be used */
367 static bool btf_type_has_size(const struct btf_type *t)
368 {
369 	switch (BTF_INFO_KIND(t->info)) {
370 	case BTF_KIND_INT:
371 	case BTF_KIND_STRUCT:
372 	case BTF_KIND_UNION:
373 	case BTF_KIND_ENUM:
374 		return true;
375 	}
376 
377 	return false;
378 }
379 
380 static const char *btf_int_encoding_str(u8 encoding)
381 {
382 	if (encoding == 0)
383 		return "(none)";
384 	else if (encoding == BTF_INT_SIGNED)
385 		return "SIGNED";
386 	else if (encoding == BTF_INT_CHAR)
387 		return "CHAR";
388 	else if (encoding == BTF_INT_BOOL)
389 		return "BOOL";
390 	else
391 		return "UNKN";
392 }
393 
394 static u16 btf_type_vlen(const struct btf_type *t)
395 {
396 	return BTF_INFO_VLEN(t->info);
397 }
398 
399 static u32 btf_type_int(const struct btf_type *t)
400 {
401 	return *(u32 *)(t + 1);
402 }
403 
404 static const struct btf_array *btf_type_array(const struct btf_type *t)
405 {
406 	return (const struct btf_array *)(t + 1);
407 }
408 
409 static const struct btf_member *btf_type_member(const struct btf_type *t)
410 {
411 	return (const struct btf_member *)(t + 1);
412 }
413 
414 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
415 {
416 	return (const struct btf_enum *)(t + 1);
417 }
418 
419 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
420 {
421 	return kind_ops[BTF_INFO_KIND(t->info)];
422 }
423 
424 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
425 {
426 	return BTF_STR_OFFSET_VALID(offset) &&
427 		offset < btf->hdr.str_len;
428 }
429 
430 /* Only C-style identifier is permitted. This can be relaxed if
431  * necessary.
432  */
433 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
434 {
435 	/* offset must be valid */
436 	const char *src = &btf->strings[offset];
437 	const char *src_limit;
438 
439 	if (!isalpha(*src) && *src != '_')
440 		return false;
441 
442 	/* set a limit on identifier length */
443 	src_limit = src + KSYM_NAME_LEN;
444 	src++;
445 	while (*src && src < src_limit) {
446 		if (!isalnum(*src) && *src != '_')
447 			return false;
448 		src++;
449 	}
450 
451 	return !*src;
452 }
453 
454 static const char *btf_name_by_offset(const struct btf *btf, u32 offset)
455 {
456 	if (!offset)
457 		return "(anon)";
458 	else if (offset < btf->hdr.str_len)
459 		return &btf->strings[offset];
460 	else
461 		return "(invalid-name-offset)";
462 }
463 
464 static const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
465 {
466 	if (type_id > btf->nr_types)
467 		return NULL;
468 
469 	return btf->types[type_id];
470 }
471 
472 /*
473  * Regular int is not a bit field and it must be either
474  * u8/u16/u32/u64.
475  */
476 static bool btf_type_int_is_regular(const struct btf_type *t)
477 {
478 	u8 nr_bits, nr_bytes;
479 	u32 int_data;
480 
481 	int_data = btf_type_int(t);
482 	nr_bits = BTF_INT_BITS(int_data);
483 	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
484 	if (BITS_PER_BYTE_MASKED(nr_bits) ||
485 	    BTF_INT_OFFSET(int_data) ||
486 	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
487 	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) {
488 		return false;
489 	}
490 
491 	return true;
492 }
493 
494 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
495 					      const char *fmt, ...)
496 {
497 	va_list args;
498 
499 	va_start(args, fmt);
500 	bpf_verifier_vlog(log, fmt, args);
501 	va_end(args);
502 }
503 
504 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
505 					    const char *fmt, ...)
506 {
507 	struct bpf_verifier_log *log = &env->log;
508 	va_list args;
509 
510 	if (!bpf_verifier_log_needed(log))
511 		return;
512 
513 	va_start(args, fmt);
514 	bpf_verifier_vlog(log, fmt, args);
515 	va_end(args);
516 }
517 
518 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
519 						   const struct btf_type *t,
520 						   bool log_details,
521 						   const char *fmt, ...)
522 {
523 	struct bpf_verifier_log *log = &env->log;
524 	u8 kind = BTF_INFO_KIND(t->info);
525 	struct btf *btf = env->btf;
526 	va_list args;
527 
528 	if (!bpf_verifier_log_needed(log))
529 		return;
530 
531 	__btf_verifier_log(log, "[%u] %s %s%s",
532 			   env->log_type_id,
533 			   btf_kind_str[kind],
534 			   btf_name_by_offset(btf, t->name_off),
535 			   log_details ? " " : "");
536 
537 	if (log_details)
538 		btf_type_ops(t)->log_details(env, t);
539 
540 	if (fmt && *fmt) {
541 		__btf_verifier_log(log, " ");
542 		va_start(args, fmt);
543 		bpf_verifier_vlog(log, fmt, args);
544 		va_end(args);
545 	}
546 
547 	__btf_verifier_log(log, "\n");
548 }
549 
550 #define btf_verifier_log_type(env, t, ...) \
551 	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
552 #define btf_verifier_log_basic(env, t, ...) \
553 	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
554 
555 __printf(4, 5)
556 static void btf_verifier_log_member(struct btf_verifier_env *env,
557 				    const struct btf_type *struct_type,
558 				    const struct btf_member *member,
559 				    const char *fmt, ...)
560 {
561 	struct bpf_verifier_log *log = &env->log;
562 	struct btf *btf = env->btf;
563 	va_list args;
564 
565 	if (!bpf_verifier_log_needed(log))
566 		return;
567 
568 	/* The CHECK_META phase already did a btf dump.
569 	 *
570 	 * If member is logged again, it must hit an error in
571 	 * parsing this member.  It is useful to print out which
572 	 * struct this member belongs to.
573 	 */
574 	if (env->phase != CHECK_META)
575 		btf_verifier_log_type(env, struct_type, NULL);
576 
577 	__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
578 			   btf_name_by_offset(btf, member->name_off),
579 			   member->type, member->offset);
580 
581 	if (fmt && *fmt) {
582 		__btf_verifier_log(log, " ");
583 		va_start(args, fmt);
584 		bpf_verifier_vlog(log, fmt, args);
585 		va_end(args);
586 	}
587 
588 	__btf_verifier_log(log, "\n");
589 }
590 
591 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
592 				 u32 btf_data_size)
593 {
594 	struct bpf_verifier_log *log = &env->log;
595 	const struct btf *btf = env->btf;
596 	const struct btf_header *hdr;
597 
598 	if (!bpf_verifier_log_needed(log))
599 		return;
600 
601 	hdr = &btf->hdr;
602 	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
603 	__btf_verifier_log(log, "version: %u\n", hdr->version);
604 	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
605 	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
606 	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
607 	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
608 	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
609 	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
610 	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
611 }
612 
613 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
614 {
615 	struct btf *btf = env->btf;
616 
617 	/* < 2 because +1 for btf_void which is always in btf->types[0].
618 	 * btf_void is not accounted in btf->nr_types because btf_void
619 	 * does not come from the BTF file.
620 	 */
621 	if (btf->types_size - btf->nr_types < 2) {
622 		/* Expand 'types' array */
623 
624 		struct btf_type **new_types;
625 		u32 expand_by, new_size;
626 
627 		if (btf->types_size == BTF_MAX_TYPE) {
628 			btf_verifier_log(env, "Exceeded max num of types");
629 			return -E2BIG;
630 		}
631 
632 		expand_by = max_t(u32, btf->types_size >> 2, 16);
633 		new_size = min_t(u32, BTF_MAX_TYPE,
634 				 btf->types_size + expand_by);
635 
636 		new_types = kvcalloc(new_size, sizeof(*new_types),
637 				     GFP_KERNEL | __GFP_NOWARN);
638 		if (!new_types)
639 			return -ENOMEM;
640 
641 		if (btf->nr_types == 0)
642 			new_types[0] = &btf_void;
643 		else
644 			memcpy(new_types, btf->types,
645 			       sizeof(*btf->types) * (btf->nr_types + 1));
646 
647 		kvfree(btf->types);
648 		btf->types = new_types;
649 		btf->types_size = new_size;
650 	}
651 
652 	btf->types[++(btf->nr_types)] = t;
653 
654 	return 0;
655 }
656 
657 static int btf_alloc_id(struct btf *btf)
658 {
659 	int id;
660 
661 	idr_preload(GFP_KERNEL);
662 	spin_lock_bh(&btf_idr_lock);
663 	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
664 	if (id > 0)
665 		btf->id = id;
666 	spin_unlock_bh(&btf_idr_lock);
667 	idr_preload_end();
668 
669 	if (WARN_ON_ONCE(!id))
670 		return -ENOSPC;
671 
672 	return id > 0 ? 0 : id;
673 }
674 
675 static void btf_free_id(struct btf *btf)
676 {
677 	unsigned long flags;
678 
679 	/*
680 	 * In map-in-map, calling map_delete_elem() on outer
681 	 * map will call bpf_map_put on the inner map.
682 	 * It will then eventually call btf_free_id()
683 	 * on the inner map.  Some of the map_delete_elem()
684 	 * implementation may have irq disabled, so
685 	 * we need to use the _irqsave() version instead
686 	 * of the _bh() version.
687 	 */
688 	spin_lock_irqsave(&btf_idr_lock, flags);
689 	idr_remove(&btf_idr, btf->id);
690 	spin_unlock_irqrestore(&btf_idr_lock, flags);
691 }
692 
693 static void btf_free(struct btf *btf)
694 {
695 	kvfree(btf->types);
696 	kvfree(btf->resolved_sizes);
697 	kvfree(btf->resolved_ids);
698 	kvfree(btf->data);
699 	kfree(btf);
700 }
701 
702 static void btf_free_rcu(struct rcu_head *rcu)
703 {
704 	struct btf *btf = container_of(rcu, struct btf, rcu);
705 
706 	btf_free(btf);
707 }
708 
709 void btf_put(struct btf *btf)
710 {
711 	if (btf && refcount_dec_and_test(&btf->refcnt)) {
712 		btf_free_id(btf);
713 		call_rcu(&btf->rcu, btf_free_rcu);
714 	}
715 }
716 
717 static int env_resolve_init(struct btf_verifier_env *env)
718 {
719 	struct btf *btf = env->btf;
720 	u32 nr_types = btf->nr_types;
721 	u32 *resolved_sizes = NULL;
722 	u32 *resolved_ids = NULL;
723 	u8 *visit_states = NULL;
724 
725 	/* +1 for btf_void */
726 	resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
727 				  GFP_KERNEL | __GFP_NOWARN);
728 	if (!resolved_sizes)
729 		goto nomem;
730 
731 	resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
732 				GFP_KERNEL | __GFP_NOWARN);
733 	if (!resolved_ids)
734 		goto nomem;
735 
736 	visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
737 				GFP_KERNEL | __GFP_NOWARN);
738 	if (!visit_states)
739 		goto nomem;
740 
741 	btf->resolved_sizes = resolved_sizes;
742 	btf->resolved_ids = resolved_ids;
743 	env->visit_states = visit_states;
744 
745 	return 0;
746 
747 nomem:
748 	kvfree(resolved_sizes);
749 	kvfree(resolved_ids);
750 	kvfree(visit_states);
751 	return -ENOMEM;
752 }
753 
754 static void btf_verifier_env_free(struct btf_verifier_env *env)
755 {
756 	kvfree(env->visit_states);
757 	kfree(env);
758 }
759 
760 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
761 				     const struct btf_type *next_type)
762 {
763 	switch (env->resolve_mode) {
764 	case RESOLVE_TBD:
765 		/* int, enum or void is a sink */
766 		return !btf_type_needs_resolve(next_type);
767 	case RESOLVE_PTR:
768 		/* int, enum, void, struct or array is a sink for ptr */
769 		return !btf_type_is_modifier(next_type) &&
770 			!btf_type_is_ptr(next_type);
771 	case RESOLVE_STRUCT_OR_ARRAY:
772 		/* int, enum, void or ptr is a sink for struct and array */
773 		return !btf_type_is_modifier(next_type) &&
774 			!btf_type_is_array(next_type) &&
775 			!btf_type_is_struct(next_type);
776 	default:
777 		BUG();
778 	}
779 }
780 
781 static bool env_type_is_resolved(const struct btf_verifier_env *env,
782 				 u32 type_id)
783 {
784 	return env->visit_states[type_id] == RESOLVED;
785 }
786 
787 static int env_stack_push(struct btf_verifier_env *env,
788 			  const struct btf_type *t, u32 type_id)
789 {
790 	struct resolve_vertex *v;
791 
792 	if (env->top_stack == MAX_RESOLVE_DEPTH)
793 		return -E2BIG;
794 
795 	if (env->visit_states[type_id] != NOT_VISITED)
796 		return -EEXIST;
797 
798 	env->visit_states[type_id] = VISITED;
799 
800 	v = &env->stack[env->top_stack++];
801 	v->t = t;
802 	v->type_id = type_id;
803 	v->next_member = 0;
804 
805 	if (env->resolve_mode == RESOLVE_TBD) {
806 		if (btf_type_is_ptr(t))
807 			env->resolve_mode = RESOLVE_PTR;
808 		else if (btf_type_is_struct(t) || btf_type_is_array(t))
809 			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
810 	}
811 
812 	return 0;
813 }
814 
815 static void env_stack_set_next_member(struct btf_verifier_env *env,
816 				      u16 next_member)
817 {
818 	env->stack[env->top_stack - 1].next_member = next_member;
819 }
820 
821 static void env_stack_pop_resolved(struct btf_verifier_env *env,
822 				   u32 resolved_type_id,
823 				   u32 resolved_size)
824 {
825 	u32 type_id = env->stack[--(env->top_stack)].type_id;
826 	struct btf *btf = env->btf;
827 
828 	btf->resolved_sizes[type_id] = resolved_size;
829 	btf->resolved_ids[type_id] = resolved_type_id;
830 	env->visit_states[type_id] = RESOLVED;
831 }
832 
833 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
834 {
835 	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
836 }
837 
838 /* The input param "type_id" must point to a needs_resolve type */
839 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
840 						  u32 *type_id)
841 {
842 	*type_id = btf->resolved_ids[*type_id];
843 	return btf_type_by_id(btf, *type_id);
844 }
845 
846 const struct btf_type *btf_type_id_size(const struct btf *btf,
847 					u32 *type_id, u32 *ret_size)
848 {
849 	const struct btf_type *size_type;
850 	u32 size_type_id = *type_id;
851 	u32 size = 0;
852 
853 	size_type = btf_type_by_id(btf, size_type_id);
854 	if (btf_type_is_void_or_null(size_type))
855 		return NULL;
856 
857 	if (btf_type_has_size(size_type)) {
858 		size = size_type->size;
859 	} else if (btf_type_is_array(size_type)) {
860 		size = btf->resolved_sizes[size_type_id];
861 	} else if (btf_type_is_ptr(size_type)) {
862 		size = sizeof(void *);
863 	} else {
864 		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type)))
865 			return NULL;
866 
867 		size = btf->resolved_sizes[size_type_id];
868 		size_type_id = btf->resolved_ids[size_type_id];
869 		size_type = btf_type_by_id(btf, size_type_id);
870 		if (btf_type_is_void(size_type))
871 			return NULL;
872 	}
873 
874 	*type_id = size_type_id;
875 	if (ret_size)
876 		*ret_size = size;
877 
878 	return size_type;
879 }
880 
881 static int btf_df_check_member(struct btf_verifier_env *env,
882 			       const struct btf_type *struct_type,
883 			       const struct btf_member *member,
884 			       const struct btf_type *member_type)
885 {
886 	btf_verifier_log_basic(env, struct_type,
887 			       "Unsupported check_member");
888 	return -EINVAL;
889 }
890 
891 static int btf_df_resolve(struct btf_verifier_env *env,
892 			  const struct resolve_vertex *v)
893 {
894 	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
895 	return -EINVAL;
896 }
897 
898 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
899 			    u32 type_id, void *data, u8 bits_offsets,
900 			    struct seq_file *m)
901 {
902 	seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
903 }
904 
905 static int btf_int_check_member(struct btf_verifier_env *env,
906 				const struct btf_type *struct_type,
907 				const struct btf_member *member,
908 				const struct btf_type *member_type)
909 {
910 	u32 int_data = btf_type_int(member_type);
911 	u32 struct_bits_off = member->offset;
912 	u32 struct_size = struct_type->size;
913 	u32 nr_copy_bits;
914 	u32 bytes_offset;
915 
916 	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
917 		btf_verifier_log_member(env, struct_type, member,
918 					"bits_offset exceeds U32_MAX");
919 		return -EINVAL;
920 	}
921 
922 	struct_bits_off += BTF_INT_OFFSET(int_data);
923 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
924 	nr_copy_bits = BTF_INT_BITS(int_data) +
925 		BITS_PER_BYTE_MASKED(struct_bits_off);
926 
927 	if (nr_copy_bits > BITS_PER_U64) {
928 		btf_verifier_log_member(env, struct_type, member,
929 					"nr_copy_bits exceeds 64");
930 		return -EINVAL;
931 	}
932 
933 	if (struct_size < bytes_offset ||
934 	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
935 		btf_verifier_log_member(env, struct_type, member,
936 					"Member exceeds struct_size");
937 		return -EINVAL;
938 	}
939 
940 	return 0;
941 }
942 
943 static s32 btf_int_check_meta(struct btf_verifier_env *env,
944 			      const struct btf_type *t,
945 			      u32 meta_left)
946 {
947 	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
948 	u16 encoding;
949 
950 	if (meta_left < meta_needed) {
951 		btf_verifier_log_basic(env, t,
952 				       "meta_left:%u meta_needed:%u",
953 				       meta_left, meta_needed);
954 		return -EINVAL;
955 	}
956 
957 	if (btf_type_vlen(t)) {
958 		btf_verifier_log_type(env, t, "vlen != 0");
959 		return -EINVAL;
960 	}
961 
962 	int_data = btf_type_int(t);
963 	if (int_data & ~BTF_INT_MASK) {
964 		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
965 				       int_data);
966 		return -EINVAL;
967 	}
968 
969 	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
970 
971 	if (nr_bits > BITS_PER_U64) {
972 		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
973 				      BITS_PER_U64);
974 		return -EINVAL;
975 	}
976 
977 	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
978 		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
979 		return -EINVAL;
980 	}
981 
982 	/*
983 	 * Only one of the encoding bits is allowed and it
984 	 * should be sufficient for the pretty print purpose (i.e. decoding).
985 	 * Multiple bits can be allowed later if it is found
986 	 * to be insufficient.
987 	 */
988 	encoding = BTF_INT_ENCODING(int_data);
989 	if (encoding &&
990 	    encoding != BTF_INT_SIGNED &&
991 	    encoding != BTF_INT_CHAR &&
992 	    encoding != BTF_INT_BOOL) {
993 		btf_verifier_log_type(env, t, "Unsupported encoding");
994 		return -ENOTSUPP;
995 	}
996 
997 	btf_verifier_log_type(env, t, NULL);
998 
999 	return meta_needed;
1000 }
1001 
1002 static void btf_int_log(struct btf_verifier_env *env,
1003 			const struct btf_type *t)
1004 {
1005 	int int_data = btf_type_int(t);
1006 
1007 	btf_verifier_log(env,
1008 			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1009 			 t->size, BTF_INT_OFFSET(int_data),
1010 			 BTF_INT_BITS(int_data),
1011 			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1012 }
1013 
1014 static void btf_int_bits_seq_show(const struct btf *btf,
1015 				  const struct btf_type *t,
1016 				  void *data, u8 bits_offset,
1017 				  struct seq_file *m)
1018 {
1019 	u16 left_shift_bits, right_shift_bits;
1020 	u32 int_data = btf_type_int(t);
1021 	u8 nr_bits = BTF_INT_BITS(int_data);
1022 	u8 total_bits_offset;
1023 	u8 nr_copy_bytes;
1024 	u8 nr_copy_bits;
1025 	u64 print_num;
1026 
1027 	/*
1028 	 * bits_offset is at most 7.
1029 	 * BTF_INT_OFFSET() cannot exceed 64 bits.
1030 	 */
1031 	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1032 	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1033 	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1034 	nr_copy_bits = nr_bits + bits_offset;
1035 	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1036 
1037 	print_num = 0;
1038 	memcpy(&print_num, data, nr_copy_bytes);
1039 
1040 #ifdef __BIG_ENDIAN_BITFIELD
1041 	left_shift_bits = bits_offset;
1042 #else
1043 	left_shift_bits = BITS_PER_U64 - nr_copy_bits;
1044 #endif
1045 	right_shift_bits = BITS_PER_U64 - nr_bits;
1046 
1047 	print_num <<= left_shift_bits;
1048 	print_num >>= right_shift_bits;
1049 
1050 	seq_printf(m, "0x%llx", print_num);
1051 }
1052 
1053 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1054 			     u32 type_id, void *data, u8 bits_offset,
1055 			     struct seq_file *m)
1056 {
1057 	u32 int_data = btf_type_int(t);
1058 	u8 encoding = BTF_INT_ENCODING(int_data);
1059 	bool sign = encoding & BTF_INT_SIGNED;
1060 	u8 nr_bits = BTF_INT_BITS(int_data);
1061 
1062 	if (bits_offset || BTF_INT_OFFSET(int_data) ||
1063 	    BITS_PER_BYTE_MASKED(nr_bits)) {
1064 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1065 		return;
1066 	}
1067 
1068 	switch (nr_bits) {
1069 	case 64:
1070 		if (sign)
1071 			seq_printf(m, "%lld", *(s64 *)data);
1072 		else
1073 			seq_printf(m, "%llu", *(u64 *)data);
1074 		break;
1075 	case 32:
1076 		if (sign)
1077 			seq_printf(m, "%d", *(s32 *)data);
1078 		else
1079 			seq_printf(m, "%u", *(u32 *)data);
1080 		break;
1081 	case 16:
1082 		if (sign)
1083 			seq_printf(m, "%d", *(s16 *)data);
1084 		else
1085 			seq_printf(m, "%u", *(u16 *)data);
1086 		break;
1087 	case 8:
1088 		if (sign)
1089 			seq_printf(m, "%d", *(s8 *)data);
1090 		else
1091 			seq_printf(m, "%u", *(u8 *)data);
1092 		break;
1093 	default:
1094 		btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1095 	}
1096 }
1097 
1098 static const struct btf_kind_operations int_ops = {
1099 	.check_meta = btf_int_check_meta,
1100 	.resolve = btf_df_resolve,
1101 	.check_member = btf_int_check_member,
1102 	.log_details = btf_int_log,
1103 	.seq_show = btf_int_seq_show,
1104 };
1105 
1106 static int btf_modifier_check_member(struct btf_verifier_env *env,
1107 				     const struct btf_type *struct_type,
1108 				     const struct btf_member *member,
1109 				     const struct btf_type *member_type)
1110 {
1111 	const struct btf_type *resolved_type;
1112 	u32 resolved_type_id = member->type;
1113 	struct btf_member resolved_member;
1114 	struct btf *btf = env->btf;
1115 
1116 	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1117 	if (!resolved_type) {
1118 		btf_verifier_log_member(env, struct_type, member,
1119 					"Invalid member");
1120 		return -EINVAL;
1121 	}
1122 
1123 	resolved_member = *member;
1124 	resolved_member.type = resolved_type_id;
1125 
1126 	return btf_type_ops(resolved_type)->check_member(env, struct_type,
1127 							 &resolved_member,
1128 							 resolved_type);
1129 }
1130 
1131 static int btf_ptr_check_member(struct btf_verifier_env *env,
1132 				const struct btf_type *struct_type,
1133 				const struct btf_member *member,
1134 				const struct btf_type *member_type)
1135 {
1136 	u32 struct_size, struct_bits_off, bytes_offset;
1137 
1138 	struct_size = struct_type->size;
1139 	struct_bits_off = member->offset;
1140 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1141 
1142 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1143 		btf_verifier_log_member(env, struct_type, member,
1144 					"Member is not byte aligned");
1145 		return -EINVAL;
1146 	}
1147 
1148 	if (struct_size - bytes_offset < sizeof(void *)) {
1149 		btf_verifier_log_member(env, struct_type, member,
1150 					"Member exceeds struct_size");
1151 		return -EINVAL;
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1158 				   const struct btf_type *t,
1159 				   u32 meta_left)
1160 {
1161 	if (btf_type_vlen(t)) {
1162 		btf_verifier_log_type(env, t, "vlen != 0");
1163 		return -EINVAL;
1164 	}
1165 
1166 	if (!BTF_TYPE_ID_VALID(t->type)) {
1167 		btf_verifier_log_type(env, t, "Invalid type_id");
1168 		return -EINVAL;
1169 	}
1170 
1171 	/* typedef type must have a valid name, and other ref types,
1172 	 * volatile, const, restrict, should have a null name.
1173 	 */
1174 	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1175 		if (!t->name_off ||
1176 		    !btf_name_valid_identifier(env->btf, t->name_off)) {
1177 			btf_verifier_log_type(env, t, "Invalid name");
1178 			return -EINVAL;
1179 		}
1180 	} else {
1181 		if (t->name_off) {
1182 			btf_verifier_log_type(env, t, "Invalid name");
1183 			return -EINVAL;
1184 		}
1185 	}
1186 
1187 	btf_verifier_log_type(env, t, NULL);
1188 
1189 	return 0;
1190 }
1191 
1192 static int btf_modifier_resolve(struct btf_verifier_env *env,
1193 				const struct resolve_vertex *v)
1194 {
1195 	const struct btf_type *t = v->t;
1196 	const struct btf_type *next_type;
1197 	u32 next_type_id = t->type;
1198 	struct btf *btf = env->btf;
1199 	u32 next_type_size = 0;
1200 
1201 	next_type = btf_type_by_id(btf, next_type_id);
1202 	if (!next_type) {
1203 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1204 		return -EINVAL;
1205 	}
1206 
1207 	/* "typedef void new_void", "const void"...etc */
1208 	if (btf_type_is_void(next_type))
1209 		goto resolved;
1210 
1211 	if (!env_type_is_resolve_sink(env, next_type) &&
1212 	    !env_type_is_resolved(env, next_type_id))
1213 		return env_stack_push(env, next_type, next_type_id);
1214 
1215 	/* Figure out the resolved next_type_id with size.
1216 	 * They will be stored in the current modifier's
1217 	 * resolved_ids and resolved_sizes such that it can
1218 	 * save us a few type-following when we use it later (e.g. in
1219 	 * pretty print).
1220 	 */
1221 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1222 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1223 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1224 		return -EINVAL;
1225 	}
1226 
1227 resolved:
1228 	env_stack_pop_resolved(env, next_type_id, next_type_size);
1229 
1230 	return 0;
1231 }
1232 
1233 static int btf_ptr_resolve(struct btf_verifier_env *env,
1234 			   const struct resolve_vertex *v)
1235 {
1236 	const struct btf_type *next_type;
1237 	const struct btf_type *t = v->t;
1238 	u32 next_type_id = t->type;
1239 	struct btf *btf = env->btf;
1240 	u32 next_type_size = 0;
1241 
1242 	next_type = btf_type_by_id(btf, next_type_id);
1243 	if (!next_type) {
1244 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1245 		return -EINVAL;
1246 	}
1247 
1248 	/* "void *" */
1249 	if (btf_type_is_void(next_type))
1250 		goto resolved;
1251 
1252 	if (!env_type_is_resolve_sink(env, next_type) &&
1253 	    !env_type_is_resolved(env, next_type_id))
1254 		return env_stack_push(env, next_type, next_type_id);
1255 
1256 	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1257 	 * the modifier may have stopped resolving when it was resolved
1258 	 * to a ptr (last-resolved-ptr).
1259 	 *
1260 	 * We now need to continue from the last-resolved-ptr to
1261 	 * ensure the last-resolved-ptr will not referring back to
1262 	 * the currenct ptr (t).
1263 	 */
1264 	if (btf_type_is_modifier(next_type)) {
1265 		const struct btf_type *resolved_type;
1266 		u32 resolved_type_id;
1267 
1268 		resolved_type_id = next_type_id;
1269 		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1270 
1271 		if (btf_type_is_ptr(resolved_type) &&
1272 		    !env_type_is_resolve_sink(env, resolved_type) &&
1273 		    !env_type_is_resolved(env, resolved_type_id))
1274 			return env_stack_push(env, resolved_type,
1275 					      resolved_type_id);
1276 	}
1277 
1278 	if (!btf_type_id_size(btf, &next_type_id, &next_type_size) &&
1279 	    !btf_type_is_void(btf_type_id_resolve(btf, &next_type_id))) {
1280 		btf_verifier_log_type(env, v->t, "Invalid type_id");
1281 		return -EINVAL;
1282 	}
1283 
1284 resolved:
1285 	env_stack_pop_resolved(env, next_type_id, 0);
1286 
1287 	return 0;
1288 }
1289 
1290 static void btf_modifier_seq_show(const struct btf *btf,
1291 				  const struct btf_type *t,
1292 				  u32 type_id, void *data,
1293 				  u8 bits_offset, struct seq_file *m)
1294 {
1295 	t = btf_type_id_resolve(btf, &type_id);
1296 
1297 	btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1298 }
1299 
1300 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1301 			     u32 type_id, void *data, u8 bits_offset,
1302 			     struct seq_file *m)
1303 {
1304 	/* It is a hashed value */
1305 	seq_printf(m, "%p", *(void **)data);
1306 }
1307 
1308 static void btf_ref_type_log(struct btf_verifier_env *env,
1309 			     const struct btf_type *t)
1310 {
1311 	btf_verifier_log(env, "type_id=%u", t->type);
1312 }
1313 
1314 static struct btf_kind_operations modifier_ops = {
1315 	.check_meta = btf_ref_type_check_meta,
1316 	.resolve = btf_modifier_resolve,
1317 	.check_member = btf_modifier_check_member,
1318 	.log_details = btf_ref_type_log,
1319 	.seq_show = btf_modifier_seq_show,
1320 };
1321 
1322 static struct btf_kind_operations ptr_ops = {
1323 	.check_meta = btf_ref_type_check_meta,
1324 	.resolve = btf_ptr_resolve,
1325 	.check_member = btf_ptr_check_member,
1326 	.log_details = btf_ref_type_log,
1327 	.seq_show = btf_ptr_seq_show,
1328 };
1329 
1330 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1331 			      const struct btf_type *t,
1332 			      u32 meta_left)
1333 {
1334 	if (btf_type_vlen(t)) {
1335 		btf_verifier_log_type(env, t, "vlen != 0");
1336 		return -EINVAL;
1337 	}
1338 
1339 	if (t->type) {
1340 		btf_verifier_log_type(env, t, "type != 0");
1341 		return -EINVAL;
1342 	}
1343 
1344 	/* fwd type must have a valid name */
1345 	if (!t->name_off ||
1346 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1347 		btf_verifier_log_type(env, t, "Invalid name");
1348 		return -EINVAL;
1349 	}
1350 
1351 	btf_verifier_log_type(env, t, NULL);
1352 
1353 	return 0;
1354 }
1355 
1356 static struct btf_kind_operations fwd_ops = {
1357 	.check_meta = btf_fwd_check_meta,
1358 	.resolve = btf_df_resolve,
1359 	.check_member = btf_df_check_member,
1360 	.log_details = btf_ref_type_log,
1361 	.seq_show = btf_df_seq_show,
1362 };
1363 
1364 static int btf_array_check_member(struct btf_verifier_env *env,
1365 				  const struct btf_type *struct_type,
1366 				  const struct btf_member *member,
1367 				  const struct btf_type *member_type)
1368 {
1369 	u32 struct_bits_off = member->offset;
1370 	u32 struct_size, bytes_offset;
1371 	u32 array_type_id, array_size;
1372 	struct btf *btf = env->btf;
1373 
1374 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1375 		btf_verifier_log_member(env, struct_type, member,
1376 					"Member is not byte aligned");
1377 		return -EINVAL;
1378 	}
1379 
1380 	array_type_id = member->type;
1381 	btf_type_id_size(btf, &array_type_id, &array_size);
1382 	struct_size = struct_type->size;
1383 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1384 	if (struct_size - bytes_offset < array_size) {
1385 		btf_verifier_log_member(env, struct_type, member,
1386 					"Member exceeds struct_size");
1387 		return -EINVAL;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1394 				const struct btf_type *t,
1395 				u32 meta_left)
1396 {
1397 	const struct btf_array *array = btf_type_array(t);
1398 	u32 meta_needed = sizeof(*array);
1399 
1400 	if (meta_left < meta_needed) {
1401 		btf_verifier_log_basic(env, t,
1402 				       "meta_left:%u meta_needed:%u",
1403 				       meta_left, meta_needed);
1404 		return -EINVAL;
1405 	}
1406 
1407 	/* array type should not have a name */
1408 	if (t->name_off) {
1409 		btf_verifier_log_type(env, t, "Invalid name");
1410 		return -EINVAL;
1411 	}
1412 
1413 	if (btf_type_vlen(t)) {
1414 		btf_verifier_log_type(env, t, "vlen != 0");
1415 		return -EINVAL;
1416 	}
1417 
1418 	if (t->size) {
1419 		btf_verifier_log_type(env, t, "size != 0");
1420 		return -EINVAL;
1421 	}
1422 
1423 	/* Array elem type and index type cannot be in type void,
1424 	 * so !array->type and !array->index_type are not allowed.
1425 	 */
1426 	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
1427 		btf_verifier_log_type(env, t, "Invalid elem");
1428 		return -EINVAL;
1429 	}
1430 
1431 	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
1432 		btf_verifier_log_type(env, t, "Invalid index");
1433 		return -EINVAL;
1434 	}
1435 
1436 	btf_verifier_log_type(env, t, NULL);
1437 
1438 	return meta_needed;
1439 }
1440 
1441 static int btf_array_resolve(struct btf_verifier_env *env,
1442 			     const struct resolve_vertex *v)
1443 {
1444 	const struct btf_array *array = btf_type_array(v->t);
1445 	const struct btf_type *elem_type, *index_type;
1446 	u32 elem_type_id, index_type_id;
1447 	struct btf *btf = env->btf;
1448 	u32 elem_size;
1449 
1450 	/* Check array->index_type */
1451 	index_type_id = array->index_type;
1452 	index_type = btf_type_by_id(btf, index_type_id);
1453 	if (btf_type_is_void_or_null(index_type)) {
1454 		btf_verifier_log_type(env, v->t, "Invalid index");
1455 		return -EINVAL;
1456 	}
1457 
1458 	if (!env_type_is_resolve_sink(env, index_type) &&
1459 	    !env_type_is_resolved(env, index_type_id))
1460 		return env_stack_push(env, index_type, index_type_id);
1461 
1462 	index_type = btf_type_id_size(btf, &index_type_id, NULL);
1463 	if (!index_type || !btf_type_is_int(index_type) ||
1464 	    !btf_type_int_is_regular(index_type)) {
1465 		btf_verifier_log_type(env, v->t, "Invalid index");
1466 		return -EINVAL;
1467 	}
1468 
1469 	/* Check array->type */
1470 	elem_type_id = array->type;
1471 	elem_type = btf_type_by_id(btf, elem_type_id);
1472 	if (btf_type_is_void_or_null(elem_type)) {
1473 		btf_verifier_log_type(env, v->t,
1474 				      "Invalid elem");
1475 		return -EINVAL;
1476 	}
1477 
1478 	if (!env_type_is_resolve_sink(env, elem_type) &&
1479 	    !env_type_is_resolved(env, elem_type_id))
1480 		return env_stack_push(env, elem_type, elem_type_id);
1481 
1482 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1483 	if (!elem_type) {
1484 		btf_verifier_log_type(env, v->t, "Invalid elem");
1485 		return -EINVAL;
1486 	}
1487 
1488 	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
1489 		btf_verifier_log_type(env, v->t, "Invalid array of int");
1490 		return -EINVAL;
1491 	}
1492 
1493 	if (array->nelems && elem_size > U32_MAX / array->nelems) {
1494 		btf_verifier_log_type(env, v->t,
1495 				      "Array size overflows U32_MAX");
1496 		return -EINVAL;
1497 	}
1498 
1499 	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
1500 
1501 	return 0;
1502 }
1503 
1504 static void btf_array_log(struct btf_verifier_env *env,
1505 			  const struct btf_type *t)
1506 {
1507 	const struct btf_array *array = btf_type_array(t);
1508 
1509 	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
1510 			 array->type, array->index_type, array->nelems);
1511 }
1512 
1513 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
1514 			       u32 type_id, void *data, u8 bits_offset,
1515 			       struct seq_file *m)
1516 {
1517 	const struct btf_array *array = btf_type_array(t);
1518 	const struct btf_kind_operations *elem_ops;
1519 	const struct btf_type *elem_type;
1520 	u32 i, elem_size, elem_type_id;
1521 
1522 	elem_type_id = array->type;
1523 	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1524 	elem_ops = btf_type_ops(elem_type);
1525 	seq_puts(m, "[");
1526 	for (i = 0; i < array->nelems; i++) {
1527 		if (i)
1528 			seq_puts(m, ",");
1529 
1530 		elem_ops->seq_show(btf, elem_type, elem_type_id, data,
1531 				   bits_offset, m);
1532 		data += elem_size;
1533 	}
1534 	seq_puts(m, "]");
1535 }
1536 
1537 static struct btf_kind_operations array_ops = {
1538 	.check_meta = btf_array_check_meta,
1539 	.resolve = btf_array_resolve,
1540 	.check_member = btf_array_check_member,
1541 	.log_details = btf_array_log,
1542 	.seq_show = btf_array_seq_show,
1543 };
1544 
1545 static int btf_struct_check_member(struct btf_verifier_env *env,
1546 				   const struct btf_type *struct_type,
1547 				   const struct btf_member *member,
1548 				   const struct btf_type *member_type)
1549 {
1550 	u32 struct_bits_off = member->offset;
1551 	u32 struct_size, bytes_offset;
1552 
1553 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1554 		btf_verifier_log_member(env, struct_type, member,
1555 					"Member is not byte aligned");
1556 		return -EINVAL;
1557 	}
1558 
1559 	struct_size = struct_type->size;
1560 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1561 	if (struct_size - bytes_offset < member_type->size) {
1562 		btf_verifier_log_member(env, struct_type, member,
1563 					"Member exceeds struct_size");
1564 		return -EINVAL;
1565 	}
1566 
1567 	return 0;
1568 }
1569 
1570 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
1571 				 const struct btf_type *t,
1572 				 u32 meta_left)
1573 {
1574 	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
1575 	const struct btf_member *member;
1576 	u32 meta_needed, last_offset;
1577 	struct btf *btf = env->btf;
1578 	u32 struct_size = t->size;
1579 	u16 i;
1580 
1581 	meta_needed = btf_type_vlen(t) * sizeof(*member);
1582 	if (meta_left < meta_needed) {
1583 		btf_verifier_log_basic(env, t,
1584 				       "meta_left:%u meta_needed:%u",
1585 				       meta_left, meta_needed);
1586 		return -EINVAL;
1587 	}
1588 
1589 	/* struct type either no name or a valid one */
1590 	if (t->name_off &&
1591 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1592 		btf_verifier_log_type(env, t, "Invalid name");
1593 		return -EINVAL;
1594 	}
1595 
1596 	btf_verifier_log_type(env, t, NULL);
1597 
1598 	last_offset = 0;
1599 	for_each_member(i, t, member) {
1600 		if (!btf_name_offset_valid(btf, member->name_off)) {
1601 			btf_verifier_log_member(env, t, member,
1602 						"Invalid member name_offset:%u",
1603 						member->name_off);
1604 			return -EINVAL;
1605 		}
1606 
1607 		/* struct member either no name or a valid one */
1608 		if (member->name_off &&
1609 		    !btf_name_valid_identifier(btf, member->name_off)) {
1610 			btf_verifier_log_member(env, t, member, "Invalid name");
1611 			return -EINVAL;
1612 		}
1613 		/* A member cannot be in type void */
1614 		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
1615 			btf_verifier_log_member(env, t, member,
1616 						"Invalid type_id");
1617 			return -EINVAL;
1618 		}
1619 
1620 		if (is_union && member->offset) {
1621 			btf_verifier_log_member(env, t, member,
1622 						"Invalid member bits_offset");
1623 			return -EINVAL;
1624 		}
1625 
1626 		/*
1627 		 * ">" instead of ">=" because the last member could be
1628 		 * "char a[0];"
1629 		 */
1630 		if (last_offset > member->offset) {
1631 			btf_verifier_log_member(env, t, member,
1632 						"Invalid member bits_offset");
1633 			return -EINVAL;
1634 		}
1635 
1636 		if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) {
1637 			btf_verifier_log_member(env, t, member,
1638 						"Memmber bits_offset exceeds its struct size");
1639 			return -EINVAL;
1640 		}
1641 
1642 		btf_verifier_log_member(env, t, member, NULL);
1643 		last_offset = member->offset;
1644 	}
1645 
1646 	return meta_needed;
1647 }
1648 
1649 static int btf_struct_resolve(struct btf_verifier_env *env,
1650 			      const struct resolve_vertex *v)
1651 {
1652 	const struct btf_member *member;
1653 	int err;
1654 	u16 i;
1655 
1656 	/* Before continue resolving the next_member,
1657 	 * ensure the last member is indeed resolved to a
1658 	 * type with size info.
1659 	 */
1660 	if (v->next_member) {
1661 		const struct btf_type *last_member_type;
1662 		const struct btf_member *last_member;
1663 		u16 last_member_type_id;
1664 
1665 		last_member = btf_type_member(v->t) + v->next_member - 1;
1666 		last_member_type_id = last_member->type;
1667 		if (WARN_ON_ONCE(!env_type_is_resolved(env,
1668 						       last_member_type_id)))
1669 			return -EINVAL;
1670 
1671 		last_member_type = btf_type_by_id(env->btf,
1672 						  last_member_type_id);
1673 		err = btf_type_ops(last_member_type)->check_member(env, v->t,
1674 							last_member,
1675 							last_member_type);
1676 		if (err)
1677 			return err;
1678 	}
1679 
1680 	for_each_member_from(i, v->next_member, v->t, member) {
1681 		u32 member_type_id = member->type;
1682 		const struct btf_type *member_type = btf_type_by_id(env->btf,
1683 								member_type_id);
1684 
1685 		if (btf_type_is_void_or_null(member_type)) {
1686 			btf_verifier_log_member(env, v->t, member,
1687 						"Invalid member");
1688 			return -EINVAL;
1689 		}
1690 
1691 		if (!env_type_is_resolve_sink(env, member_type) &&
1692 		    !env_type_is_resolved(env, member_type_id)) {
1693 			env_stack_set_next_member(env, i + 1);
1694 			return env_stack_push(env, member_type, member_type_id);
1695 		}
1696 
1697 		err = btf_type_ops(member_type)->check_member(env, v->t,
1698 							      member,
1699 							      member_type);
1700 		if (err)
1701 			return err;
1702 	}
1703 
1704 	env_stack_pop_resolved(env, 0, 0);
1705 
1706 	return 0;
1707 }
1708 
1709 static void btf_struct_log(struct btf_verifier_env *env,
1710 			   const struct btf_type *t)
1711 {
1712 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1713 }
1714 
1715 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
1716 				u32 type_id, void *data, u8 bits_offset,
1717 				struct seq_file *m)
1718 {
1719 	const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
1720 	const struct btf_member *member;
1721 	u32 i;
1722 
1723 	seq_puts(m, "{");
1724 	for_each_member(i, t, member) {
1725 		const struct btf_type *member_type = btf_type_by_id(btf,
1726 								member->type);
1727 		u32 member_offset = member->offset;
1728 		u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
1729 		u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
1730 		const struct btf_kind_operations *ops;
1731 
1732 		if (i)
1733 			seq_puts(m, seq);
1734 
1735 		ops = btf_type_ops(member_type);
1736 		ops->seq_show(btf, member_type, member->type,
1737 			      data + bytes_offset, bits8_offset, m);
1738 	}
1739 	seq_puts(m, "}");
1740 }
1741 
1742 static struct btf_kind_operations struct_ops = {
1743 	.check_meta = btf_struct_check_meta,
1744 	.resolve = btf_struct_resolve,
1745 	.check_member = btf_struct_check_member,
1746 	.log_details = btf_struct_log,
1747 	.seq_show = btf_struct_seq_show,
1748 };
1749 
1750 static int btf_enum_check_member(struct btf_verifier_env *env,
1751 				 const struct btf_type *struct_type,
1752 				 const struct btf_member *member,
1753 				 const struct btf_type *member_type)
1754 {
1755 	u32 struct_bits_off = member->offset;
1756 	u32 struct_size, bytes_offset;
1757 
1758 	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1759 		btf_verifier_log_member(env, struct_type, member,
1760 					"Member is not byte aligned");
1761 		return -EINVAL;
1762 	}
1763 
1764 	struct_size = struct_type->size;
1765 	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1766 	if (struct_size - bytes_offset < sizeof(int)) {
1767 		btf_verifier_log_member(env, struct_type, member,
1768 					"Member exceeds struct_size");
1769 		return -EINVAL;
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
1776 			       const struct btf_type *t,
1777 			       u32 meta_left)
1778 {
1779 	const struct btf_enum *enums = btf_type_enum(t);
1780 	struct btf *btf = env->btf;
1781 	u16 i, nr_enums;
1782 	u32 meta_needed;
1783 
1784 	nr_enums = btf_type_vlen(t);
1785 	meta_needed = nr_enums * sizeof(*enums);
1786 
1787 	if (meta_left < meta_needed) {
1788 		btf_verifier_log_basic(env, t,
1789 				       "meta_left:%u meta_needed:%u",
1790 				       meta_left, meta_needed);
1791 		return -EINVAL;
1792 	}
1793 
1794 	if (t->size != sizeof(int)) {
1795 		btf_verifier_log_type(env, t, "Expected size:%zu",
1796 				      sizeof(int));
1797 		return -EINVAL;
1798 	}
1799 
1800 	/* enum type either no name or a valid one */
1801 	if (t->name_off &&
1802 	    !btf_name_valid_identifier(env->btf, t->name_off)) {
1803 		btf_verifier_log_type(env, t, "Invalid name");
1804 		return -EINVAL;
1805 	}
1806 
1807 	btf_verifier_log_type(env, t, NULL);
1808 
1809 	for (i = 0; i < nr_enums; i++) {
1810 		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
1811 			btf_verifier_log(env, "\tInvalid name_offset:%u",
1812 					 enums[i].name_off);
1813 			return -EINVAL;
1814 		}
1815 
1816 		/* enum member must have a valid name */
1817 		if (!enums[i].name_off ||
1818 		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
1819 			btf_verifier_log_type(env, t, "Invalid name");
1820 			return -EINVAL;
1821 		}
1822 
1823 
1824 		btf_verifier_log(env, "\t%s val=%d\n",
1825 				 btf_name_by_offset(btf, enums[i].name_off),
1826 				 enums[i].val);
1827 	}
1828 
1829 	return meta_needed;
1830 }
1831 
1832 static void btf_enum_log(struct btf_verifier_env *env,
1833 			 const struct btf_type *t)
1834 {
1835 	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
1836 }
1837 
1838 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
1839 			      u32 type_id, void *data, u8 bits_offset,
1840 			      struct seq_file *m)
1841 {
1842 	const struct btf_enum *enums = btf_type_enum(t);
1843 	u32 i, nr_enums = btf_type_vlen(t);
1844 	int v = *(int *)data;
1845 
1846 	for (i = 0; i < nr_enums; i++) {
1847 		if (v == enums[i].val) {
1848 			seq_printf(m, "%s",
1849 				   btf_name_by_offset(btf, enums[i].name_off));
1850 			return;
1851 		}
1852 	}
1853 
1854 	seq_printf(m, "%d", v);
1855 }
1856 
1857 static struct btf_kind_operations enum_ops = {
1858 	.check_meta = btf_enum_check_meta,
1859 	.resolve = btf_df_resolve,
1860 	.check_member = btf_enum_check_member,
1861 	.log_details = btf_enum_log,
1862 	.seq_show = btf_enum_seq_show,
1863 };
1864 
1865 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
1866 	[BTF_KIND_INT] = &int_ops,
1867 	[BTF_KIND_PTR] = &ptr_ops,
1868 	[BTF_KIND_ARRAY] = &array_ops,
1869 	[BTF_KIND_STRUCT] = &struct_ops,
1870 	[BTF_KIND_UNION] = &struct_ops,
1871 	[BTF_KIND_ENUM] = &enum_ops,
1872 	[BTF_KIND_FWD] = &fwd_ops,
1873 	[BTF_KIND_TYPEDEF] = &modifier_ops,
1874 	[BTF_KIND_VOLATILE] = &modifier_ops,
1875 	[BTF_KIND_CONST] = &modifier_ops,
1876 	[BTF_KIND_RESTRICT] = &modifier_ops,
1877 };
1878 
1879 static s32 btf_check_meta(struct btf_verifier_env *env,
1880 			  const struct btf_type *t,
1881 			  u32 meta_left)
1882 {
1883 	u32 saved_meta_left = meta_left;
1884 	s32 var_meta_size;
1885 
1886 	if (meta_left < sizeof(*t)) {
1887 		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
1888 				 env->log_type_id, meta_left, sizeof(*t));
1889 		return -EINVAL;
1890 	}
1891 	meta_left -= sizeof(*t);
1892 
1893 	if (t->info & ~BTF_INFO_MASK) {
1894 		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
1895 				 env->log_type_id, t->info);
1896 		return -EINVAL;
1897 	}
1898 
1899 	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
1900 	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
1901 		btf_verifier_log(env, "[%u] Invalid kind:%u",
1902 				 env->log_type_id, BTF_INFO_KIND(t->info));
1903 		return -EINVAL;
1904 	}
1905 
1906 	if (!btf_name_offset_valid(env->btf, t->name_off)) {
1907 		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
1908 				 env->log_type_id, t->name_off);
1909 		return -EINVAL;
1910 	}
1911 
1912 	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
1913 	if (var_meta_size < 0)
1914 		return var_meta_size;
1915 
1916 	meta_left -= var_meta_size;
1917 
1918 	return saved_meta_left - meta_left;
1919 }
1920 
1921 static int btf_check_all_metas(struct btf_verifier_env *env)
1922 {
1923 	struct btf *btf = env->btf;
1924 	struct btf_header *hdr;
1925 	void *cur, *end;
1926 
1927 	hdr = &btf->hdr;
1928 	cur = btf->nohdr_data + hdr->type_off;
1929 	end = cur + hdr->type_len;
1930 
1931 	env->log_type_id = 1;
1932 	while (cur < end) {
1933 		struct btf_type *t = cur;
1934 		s32 meta_size;
1935 
1936 		meta_size = btf_check_meta(env, t, end - cur);
1937 		if (meta_size < 0)
1938 			return meta_size;
1939 
1940 		btf_add_type(env, t);
1941 		cur += meta_size;
1942 		env->log_type_id++;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int btf_resolve(struct btf_verifier_env *env,
1949 		       const struct btf_type *t, u32 type_id)
1950 {
1951 	const struct resolve_vertex *v;
1952 	int err = 0;
1953 
1954 	env->resolve_mode = RESOLVE_TBD;
1955 	env_stack_push(env, t, type_id);
1956 	while (!err && (v = env_stack_peak(env))) {
1957 		env->log_type_id = v->type_id;
1958 		err = btf_type_ops(v->t)->resolve(env, v);
1959 	}
1960 
1961 	env->log_type_id = type_id;
1962 	if (err == -E2BIG)
1963 		btf_verifier_log_type(env, t,
1964 				      "Exceeded max resolving depth:%u",
1965 				      MAX_RESOLVE_DEPTH);
1966 	else if (err == -EEXIST)
1967 		btf_verifier_log_type(env, t, "Loop detected");
1968 
1969 	return err;
1970 }
1971 
1972 static bool btf_resolve_valid(struct btf_verifier_env *env,
1973 			      const struct btf_type *t,
1974 			      u32 type_id)
1975 {
1976 	struct btf *btf = env->btf;
1977 
1978 	if (!env_type_is_resolved(env, type_id))
1979 		return false;
1980 
1981 	if (btf_type_is_struct(t))
1982 		return !btf->resolved_ids[type_id] &&
1983 			!btf->resolved_sizes[type_id];
1984 
1985 	if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) {
1986 		t = btf_type_id_resolve(btf, &type_id);
1987 		return t && !btf_type_is_modifier(t);
1988 	}
1989 
1990 	if (btf_type_is_array(t)) {
1991 		const struct btf_array *array = btf_type_array(t);
1992 		const struct btf_type *elem_type;
1993 		u32 elem_type_id = array->type;
1994 		u32 elem_size;
1995 
1996 		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
1997 		return elem_type && !btf_type_is_modifier(elem_type) &&
1998 			(array->nelems * elem_size ==
1999 			 btf->resolved_sizes[type_id]);
2000 	}
2001 
2002 	return false;
2003 }
2004 
2005 static int btf_check_all_types(struct btf_verifier_env *env)
2006 {
2007 	struct btf *btf = env->btf;
2008 	u32 type_id;
2009 	int err;
2010 
2011 	err = env_resolve_init(env);
2012 	if (err)
2013 		return err;
2014 
2015 	env->phase++;
2016 	for (type_id = 1; type_id <= btf->nr_types; type_id++) {
2017 		const struct btf_type *t = btf_type_by_id(btf, type_id);
2018 
2019 		env->log_type_id = type_id;
2020 		if (btf_type_needs_resolve(t) &&
2021 		    !env_type_is_resolved(env, type_id)) {
2022 			err = btf_resolve(env, t, type_id);
2023 			if (err)
2024 				return err;
2025 		}
2026 
2027 		if (btf_type_needs_resolve(t) &&
2028 		    !btf_resolve_valid(env, t, type_id)) {
2029 			btf_verifier_log_type(env, t, "Invalid resolve state");
2030 			return -EINVAL;
2031 		}
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static int btf_parse_type_sec(struct btf_verifier_env *env)
2038 {
2039 	const struct btf_header *hdr = &env->btf->hdr;
2040 	int err;
2041 
2042 	/* Type section must align to 4 bytes */
2043 	if (hdr->type_off & (sizeof(u32) - 1)) {
2044 		btf_verifier_log(env, "Unaligned type_off");
2045 		return -EINVAL;
2046 	}
2047 
2048 	if (!hdr->type_len) {
2049 		btf_verifier_log(env, "No type found");
2050 		return -EINVAL;
2051 	}
2052 
2053 	err = btf_check_all_metas(env);
2054 	if (err)
2055 		return err;
2056 
2057 	return btf_check_all_types(env);
2058 }
2059 
2060 static int btf_parse_str_sec(struct btf_verifier_env *env)
2061 {
2062 	const struct btf_header *hdr;
2063 	struct btf *btf = env->btf;
2064 	const char *start, *end;
2065 
2066 	hdr = &btf->hdr;
2067 	start = btf->nohdr_data + hdr->str_off;
2068 	end = start + hdr->str_len;
2069 
2070 	if (end != btf->data + btf->data_size) {
2071 		btf_verifier_log(env, "String section is not at the end");
2072 		return -EINVAL;
2073 	}
2074 
2075 	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
2076 	    start[0] || end[-1]) {
2077 		btf_verifier_log(env, "Invalid string section");
2078 		return -EINVAL;
2079 	}
2080 
2081 	btf->strings = start;
2082 
2083 	return 0;
2084 }
2085 
2086 static const size_t btf_sec_info_offset[] = {
2087 	offsetof(struct btf_header, type_off),
2088 	offsetof(struct btf_header, str_off),
2089 };
2090 
2091 static int btf_sec_info_cmp(const void *a, const void *b)
2092 {
2093 	const struct btf_sec_info *x = a;
2094 	const struct btf_sec_info *y = b;
2095 
2096 	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
2097 }
2098 
2099 static int btf_check_sec_info(struct btf_verifier_env *env,
2100 			      u32 btf_data_size)
2101 {
2102 	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
2103 	u32 total, expected_total, i;
2104 	const struct btf_header *hdr;
2105 	const struct btf *btf;
2106 
2107 	btf = env->btf;
2108 	hdr = &btf->hdr;
2109 
2110 	/* Populate the secs from hdr */
2111 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
2112 		secs[i] = *(struct btf_sec_info *)((void *)hdr +
2113 						   btf_sec_info_offset[i]);
2114 
2115 	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
2116 	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
2117 
2118 	/* Check for gaps and overlap among sections */
2119 	total = 0;
2120 	expected_total = btf_data_size - hdr->hdr_len;
2121 	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
2122 		if (expected_total < secs[i].off) {
2123 			btf_verifier_log(env, "Invalid section offset");
2124 			return -EINVAL;
2125 		}
2126 		if (total < secs[i].off) {
2127 			/* gap */
2128 			btf_verifier_log(env, "Unsupported section found");
2129 			return -EINVAL;
2130 		}
2131 		if (total > secs[i].off) {
2132 			btf_verifier_log(env, "Section overlap found");
2133 			return -EINVAL;
2134 		}
2135 		if (expected_total - total < secs[i].len) {
2136 			btf_verifier_log(env,
2137 					 "Total section length too long");
2138 			return -EINVAL;
2139 		}
2140 		total += secs[i].len;
2141 	}
2142 
2143 	/* There is data other than hdr and known sections */
2144 	if (expected_total != total) {
2145 		btf_verifier_log(env, "Unsupported section found");
2146 		return -EINVAL;
2147 	}
2148 
2149 	return 0;
2150 }
2151 
2152 static int btf_parse_hdr(struct btf_verifier_env *env)
2153 {
2154 	u32 hdr_len, hdr_copy, btf_data_size;
2155 	const struct btf_header *hdr;
2156 	struct btf *btf;
2157 	int err;
2158 
2159 	btf = env->btf;
2160 	btf_data_size = btf->data_size;
2161 
2162 	if (btf_data_size <
2163 	    offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
2164 		btf_verifier_log(env, "hdr_len not found");
2165 		return -EINVAL;
2166 	}
2167 
2168 	hdr = btf->data;
2169 	hdr_len = hdr->hdr_len;
2170 	if (btf_data_size < hdr_len) {
2171 		btf_verifier_log(env, "btf_header not found");
2172 		return -EINVAL;
2173 	}
2174 
2175 	/* Ensure the unsupported header fields are zero */
2176 	if (hdr_len > sizeof(btf->hdr)) {
2177 		u8 *expected_zero = btf->data + sizeof(btf->hdr);
2178 		u8 *end = btf->data + hdr_len;
2179 
2180 		for (; expected_zero < end; expected_zero++) {
2181 			if (*expected_zero) {
2182 				btf_verifier_log(env, "Unsupported btf_header");
2183 				return -E2BIG;
2184 			}
2185 		}
2186 	}
2187 
2188 	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
2189 	memcpy(&btf->hdr, btf->data, hdr_copy);
2190 
2191 	hdr = &btf->hdr;
2192 
2193 	btf_verifier_log_hdr(env, btf_data_size);
2194 
2195 	if (hdr->magic != BTF_MAGIC) {
2196 		btf_verifier_log(env, "Invalid magic");
2197 		return -EINVAL;
2198 	}
2199 
2200 	if (hdr->version != BTF_VERSION) {
2201 		btf_verifier_log(env, "Unsupported version");
2202 		return -ENOTSUPP;
2203 	}
2204 
2205 	if (hdr->flags) {
2206 		btf_verifier_log(env, "Unsupported flags");
2207 		return -ENOTSUPP;
2208 	}
2209 
2210 	if (btf_data_size == hdr->hdr_len) {
2211 		btf_verifier_log(env, "No data");
2212 		return -EINVAL;
2213 	}
2214 
2215 	err = btf_check_sec_info(env, btf_data_size);
2216 	if (err)
2217 		return err;
2218 
2219 	return 0;
2220 }
2221 
2222 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
2223 			     u32 log_level, char __user *log_ubuf, u32 log_size)
2224 {
2225 	struct btf_verifier_env *env = NULL;
2226 	struct bpf_verifier_log *log;
2227 	struct btf *btf = NULL;
2228 	u8 *data;
2229 	int err;
2230 
2231 	if (btf_data_size > BTF_MAX_SIZE)
2232 		return ERR_PTR(-E2BIG);
2233 
2234 	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
2235 	if (!env)
2236 		return ERR_PTR(-ENOMEM);
2237 
2238 	log = &env->log;
2239 	if (log_level || log_ubuf || log_size) {
2240 		/* user requested verbose verifier output
2241 		 * and supplied buffer to store the verification trace
2242 		 */
2243 		log->level = log_level;
2244 		log->ubuf = log_ubuf;
2245 		log->len_total = log_size;
2246 
2247 		/* log attributes have to be sane */
2248 		if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
2249 		    !log->level || !log->ubuf) {
2250 			err = -EINVAL;
2251 			goto errout;
2252 		}
2253 	}
2254 
2255 	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
2256 	if (!btf) {
2257 		err = -ENOMEM;
2258 		goto errout;
2259 	}
2260 	env->btf = btf;
2261 
2262 	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
2263 	if (!data) {
2264 		err = -ENOMEM;
2265 		goto errout;
2266 	}
2267 
2268 	btf->data = data;
2269 	btf->data_size = btf_data_size;
2270 
2271 	if (copy_from_user(data, btf_data, btf_data_size)) {
2272 		err = -EFAULT;
2273 		goto errout;
2274 	}
2275 
2276 	err = btf_parse_hdr(env);
2277 	if (err)
2278 		goto errout;
2279 
2280 	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
2281 
2282 	err = btf_parse_str_sec(env);
2283 	if (err)
2284 		goto errout;
2285 
2286 	err = btf_parse_type_sec(env);
2287 	if (err)
2288 		goto errout;
2289 
2290 	if (log->level && bpf_verifier_log_full(log)) {
2291 		err = -ENOSPC;
2292 		goto errout;
2293 	}
2294 
2295 	btf_verifier_env_free(env);
2296 	refcount_set(&btf->refcnt, 1);
2297 	return btf;
2298 
2299 errout:
2300 	btf_verifier_env_free(env);
2301 	if (btf)
2302 		btf_free(btf);
2303 	return ERR_PTR(err);
2304 }
2305 
2306 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
2307 		       struct seq_file *m)
2308 {
2309 	const struct btf_type *t = btf_type_by_id(btf, type_id);
2310 
2311 	btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
2312 }
2313 
2314 static int btf_release(struct inode *inode, struct file *filp)
2315 {
2316 	btf_put(filp->private_data);
2317 	return 0;
2318 }
2319 
2320 const struct file_operations btf_fops = {
2321 	.release	= btf_release,
2322 };
2323 
2324 static int __btf_new_fd(struct btf *btf)
2325 {
2326 	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
2327 }
2328 
2329 int btf_new_fd(const union bpf_attr *attr)
2330 {
2331 	struct btf *btf;
2332 	int ret;
2333 
2334 	btf = btf_parse(u64_to_user_ptr(attr->btf),
2335 			attr->btf_size, attr->btf_log_level,
2336 			u64_to_user_ptr(attr->btf_log_buf),
2337 			attr->btf_log_size);
2338 	if (IS_ERR(btf))
2339 		return PTR_ERR(btf);
2340 
2341 	ret = btf_alloc_id(btf);
2342 	if (ret) {
2343 		btf_free(btf);
2344 		return ret;
2345 	}
2346 
2347 	/*
2348 	 * The BTF ID is published to the userspace.
2349 	 * All BTF free must go through call_rcu() from
2350 	 * now on (i.e. free by calling btf_put()).
2351 	 */
2352 
2353 	ret = __btf_new_fd(btf);
2354 	if (ret < 0)
2355 		btf_put(btf);
2356 
2357 	return ret;
2358 }
2359 
2360 struct btf *btf_get_by_fd(int fd)
2361 {
2362 	struct btf *btf;
2363 	struct fd f;
2364 
2365 	f = fdget(fd);
2366 
2367 	if (!f.file)
2368 		return ERR_PTR(-EBADF);
2369 
2370 	if (f.file->f_op != &btf_fops) {
2371 		fdput(f);
2372 		return ERR_PTR(-EINVAL);
2373 	}
2374 
2375 	btf = f.file->private_data;
2376 	refcount_inc(&btf->refcnt);
2377 	fdput(f);
2378 
2379 	return btf;
2380 }
2381 
2382 int btf_get_info_by_fd(const struct btf *btf,
2383 		       const union bpf_attr *attr,
2384 		       union bpf_attr __user *uattr)
2385 {
2386 	struct bpf_btf_info __user *uinfo;
2387 	struct bpf_btf_info info = {};
2388 	u32 info_copy, btf_copy;
2389 	void __user *ubtf;
2390 	u32 uinfo_len;
2391 
2392 	uinfo = u64_to_user_ptr(attr->info.info);
2393 	uinfo_len = attr->info.info_len;
2394 
2395 	info_copy = min_t(u32, uinfo_len, sizeof(info));
2396 	if (copy_from_user(&info, uinfo, info_copy))
2397 		return -EFAULT;
2398 
2399 	info.id = btf->id;
2400 	ubtf = u64_to_user_ptr(info.btf);
2401 	btf_copy = min_t(u32, btf->data_size, info.btf_size);
2402 	if (copy_to_user(ubtf, btf->data, btf_copy))
2403 		return -EFAULT;
2404 	info.btf_size = btf->data_size;
2405 
2406 	if (copy_to_user(uinfo, &info, info_copy) ||
2407 	    put_user(info_copy, &uattr->info.info_len))
2408 		return -EFAULT;
2409 
2410 	return 0;
2411 }
2412 
2413 int btf_get_fd_by_id(u32 id)
2414 {
2415 	struct btf *btf;
2416 	int fd;
2417 
2418 	rcu_read_lock();
2419 	btf = idr_find(&btf_idr, id);
2420 	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
2421 		btf = ERR_PTR(-ENOENT);
2422 	rcu_read_unlock();
2423 
2424 	if (IS_ERR(btf))
2425 		return PTR_ERR(btf);
2426 
2427 	fd = __btf_new_fd(btf);
2428 	if (fd < 0)
2429 		btf_put(btf);
2430 
2431 	return fd;
2432 }
2433 
2434 u32 btf_id(const struct btf *btf)
2435 {
2436 	return btf->id;
2437 }
2438