1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/bpf.h> 6 #include <uapi/linux/bpf_perf_event.h> 7 #include <uapi/linux/types.h> 8 #include <linux/seq_file.h> 9 #include <linux/compiler.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/slab.h> 13 #include <linux/anon_inodes.h> 14 #include <linux/file.h> 15 #include <linux/uaccess.h> 16 #include <linux/kernel.h> 17 #include <linux/idr.h> 18 #include <linux/sort.h> 19 #include <linux/bpf_verifier.h> 20 #include <linux/btf.h> 21 #include <linux/btf_ids.h> 22 #include <linux/bpf_lsm.h> 23 #include <linux/skmsg.h> 24 #include <linux/perf_event.h> 25 #include <linux/bsearch.h> 26 #include <linux/kobject.h> 27 #include <linux/sysfs.h> 28 29 #include <net/netfilter/nf_bpf_link.h> 30 31 #include <net/sock.h> 32 #include "../tools/lib/bpf/relo_core.h" 33 34 /* BTF (BPF Type Format) is the meta data format which describes 35 * the data types of BPF program/map. Hence, it basically focus 36 * on the C programming language which the modern BPF is primary 37 * using. 38 * 39 * ELF Section: 40 * ~~~~~~~~~~~ 41 * The BTF data is stored under the ".BTF" ELF section 42 * 43 * struct btf_type: 44 * ~~~~~~~~~~~~~~~ 45 * Each 'struct btf_type' object describes a C data type. 46 * Depending on the type it is describing, a 'struct btf_type' 47 * object may be followed by more data. F.e. 48 * To describe an array, 'struct btf_type' is followed by 49 * 'struct btf_array'. 50 * 51 * 'struct btf_type' and any extra data following it are 52 * 4 bytes aligned. 53 * 54 * Type section: 55 * ~~~~~~~~~~~~~ 56 * The BTF type section contains a list of 'struct btf_type' objects. 57 * Each one describes a C type. Recall from the above section 58 * that a 'struct btf_type' object could be immediately followed by extra 59 * data in order to describe some particular C types. 60 * 61 * type_id: 62 * ~~~~~~~ 63 * Each btf_type object is identified by a type_id. The type_id 64 * is implicitly implied by the location of the btf_type object in 65 * the BTF type section. The first one has type_id 1. The second 66 * one has type_id 2...etc. Hence, an earlier btf_type has 67 * a smaller type_id. 68 * 69 * A btf_type object may refer to another btf_type object by using 70 * type_id (i.e. the "type" in the "struct btf_type"). 71 * 72 * NOTE that we cannot assume any reference-order. 73 * A btf_type object can refer to an earlier btf_type object 74 * but it can also refer to a later btf_type object. 75 * 76 * For example, to describe "const void *". A btf_type 77 * object describing "const" may refer to another btf_type 78 * object describing "void *". This type-reference is done 79 * by specifying type_id: 80 * 81 * [1] CONST (anon) type_id=2 82 * [2] PTR (anon) type_id=0 83 * 84 * The above is the btf_verifier debug log: 85 * - Each line started with "[?]" is a btf_type object 86 * - [?] is the type_id of the btf_type object. 87 * - CONST/PTR is the BTF_KIND_XXX 88 * - "(anon)" is the name of the type. It just 89 * happens that CONST and PTR has no name. 90 * - type_id=XXX is the 'u32 type' in btf_type 91 * 92 * NOTE: "void" has type_id 0 93 * 94 * String section: 95 * ~~~~~~~~~~~~~~ 96 * The BTF string section contains the names used by the type section. 97 * Each string is referred by an "offset" from the beginning of the 98 * string section. 99 * 100 * Each string is '\0' terminated. 101 * 102 * The first character in the string section must be '\0' 103 * which is used to mean 'anonymous'. Some btf_type may not 104 * have a name. 105 */ 106 107 /* BTF verification: 108 * 109 * To verify BTF data, two passes are needed. 110 * 111 * Pass #1 112 * ~~~~~~~ 113 * The first pass is to collect all btf_type objects to 114 * an array: "btf->types". 115 * 116 * Depending on the C type that a btf_type is describing, 117 * a btf_type may be followed by extra data. We don't know 118 * how many btf_type is there, and more importantly we don't 119 * know where each btf_type is located in the type section. 120 * 121 * Without knowing the location of each type_id, most verifications 122 * cannot be done. e.g. an earlier btf_type may refer to a later 123 * btf_type (recall the "const void *" above), so we cannot 124 * check this type-reference in the first pass. 125 * 126 * In the first pass, it still does some verifications (e.g. 127 * checking the name is a valid offset to the string section). 128 * 129 * Pass #2 130 * ~~~~~~~ 131 * The main focus is to resolve a btf_type that is referring 132 * to another type. 133 * 134 * We have to ensure the referring type: 135 * 1) does exist in the BTF (i.e. in btf->types[]) 136 * 2) does not cause a loop: 137 * struct A { 138 * struct B b; 139 * }; 140 * 141 * struct B { 142 * struct A a; 143 * }; 144 * 145 * btf_type_needs_resolve() decides if a btf_type needs 146 * to be resolved. 147 * 148 * The needs_resolve type implements the "resolve()" ops which 149 * essentially does a DFS and detects backedge. 150 * 151 * During resolve (or DFS), different C types have different 152 * "RESOLVED" conditions. 153 * 154 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 155 * members because a member is always referring to another 156 * type. A struct's member can be treated as "RESOLVED" if 157 * it is referring to a BTF_KIND_PTR. Otherwise, the 158 * following valid C struct would be rejected: 159 * 160 * struct A { 161 * int m; 162 * struct A *a; 163 * }; 164 * 165 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 166 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 167 * detect a pointer loop, e.g.: 168 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 169 * ^ | 170 * +-----------------------------------------+ 171 * 172 */ 173 174 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2) 175 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 176 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 177 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 178 #define BITS_ROUNDUP_BYTES(bits) \ 179 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 180 181 #define BTF_INFO_MASK 0x9f00ffff 182 #define BTF_INT_MASK 0x0fffffff 183 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 184 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 185 186 /* 16MB for 64k structs and each has 16 members and 187 * a few MB spaces for the string section. 188 * The hard limit is S32_MAX. 189 */ 190 #define BTF_MAX_SIZE (16 * 1024 * 1024) 191 192 #define for_each_member_from(i, from, struct_type, member) \ 193 for (i = from, member = btf_type_member(struct_type) + from; \ 194 i < btf_type_vlen(struct_type); \ 195 i++, member++) 196 197 #define for_each_vsi_from(i, from, struct_type, member) \ 198 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \ 199 i < btf_type_vlen(struct_type); \ 200 i++, member++) 201 202 DEFINE_IDR(btf_idr); 203 DEFINE_SPINLOCK(btf_idr_lock); 204 205 enum btf_kfunc_hook { 206 BTF_KFUNC_HOOK_COMMON, 207 BTF_KFUNC_HOOK_XDP, 208 BTF_KFUNC_HOOK_TC, 209 BTF_KFUNC_HOOK_STRUCT_OPS, 210 BTF_KFUNC_HOOK_TRACING, 211 BTF_KFUNC_HOOK_SYSCALL, 212 BTF_KFUNC_HOOK_FMODRET, 213 BTF_KFUNC_HOOK_CGROUP_SKB, 214 BTF_KFUNC_HOOK_SCHED_ACT, 215 BTF_KFUNC_HOOK_SK_SKB, 216 BTF_KFUNC_HOOK_SOCKET_FILTER, 217 BTF_KFUNC_HOOK_LWT, 218 BTF_KFUNC_HOOK_NETFILTER, 219 BTF_KFUNC_HOOK_MAX, 220 }; 221 222 enum { 223 BTF_KFUNC_SET_MAX_CNT = 256, 224 BTF_DTOR_KFUNC_MAX_CNT = 256, 225 }; 226 227 struct btf_kfunc_set_tab { 228 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX]; 229 }; 230 231 struct btf_id_dtor_kfunc_tab { 232 u32 cnt; 233 struct btf_id_dtor_kfunc dtors[]; 234 }; 235 236 struct btf { 237 void *data; 238 struct btf_type **types; 239 u32 *resolved_ids; 240 u32 *resolved_sizes; 241 const char *strings; 242 void *nohdr_data; 243 struct btf_header hdr; 244 u32 nr_types; /* includes VOID for base BTF */ 245 u32 types_size; 246 u32 data_size; 247 refcount_t refcnt; 248 u32 id; 249 struct rcu_head rcu; 250 struct btf_kfunc_set_tab *kfunc_set_tab; 251 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab; 252 struct btf_struct_metas *struct_meta_tab; 253 254 /* split BTF support */ 255 struct btf *base_btf; 256 u32 start_id; /* first type ID in this BTF (0 for base BTF) */ 257 u32 start_str_off; /* first string offset (0 for base BTF) */ 258 char name[MODULE_NAME_LEN]; 259 bool kernel_btf; 260 }; 261 262 enum verifier_phase { 263 CHECK_META, 264 CHECK_TYPE, 265 }; 266 267 struct resolve_vertex { 268 const struct btf_type *t; 269 u32 type_id; 270 u16 next_member; 271 }; 272 273 enum visit_state { 274 NOT_VISITED, 275 VISITED, 276 RESOLVED, 277 }; 278 279 enum resolve_mode { 280 RESOLVE_TBD, /* To Be Determined */ 281 RESOLVE_PTR, /* Resolving for Pointer */ 282 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 283 * or array 284 */ 285 }; 286 287 #define MAX_RESOLVE_DEPTH 32 288 289 struct btf_sec_info { 290 u32 off; 291 u32 len; 292 }; 293 294 struct btf_verifier_env { 295 struct btf *btf; 296 u8 *visit_states; 297 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 298 struct bpf_verifier_log log; 299 u32 log_type_id; 300 u32 top_stack; 301 enum verifier_phase phase; 302 enum resolve_mode resolve_mode; 303 }; 304 305 static const char * const btf_kind_str[NR_BTF_KINDS] = { 306 [BTF_KIND_UNKN] = "UNKNOWN", 307 [BTF_KIND_INT] = "INT", 308 [BTF_KIND_PTR] = "PTR", 309 [BTF_KIND_ARRAY] = "ARRAY", 310 [BTF_KIND_STRUCT] = "STRUCT", 311 [BTF_KIND_UNION] = "UNION", 312 [BTF_KIND_ENUM] = "ENUM", 313 [BTF_KIND_FWD] = "FWD", 314 [BTF_KIND_TYPEDEF] = "TYPEDEF", 315 [BTF_KIND_VOLATILE] = "VOLATILE", 316 [BTF_KIND_CONST] = "CONST", 317 [BTF_KIND_RESTRICT] = "RESTRICT", 318 [BTF_KIND_FUNC] = "FUNC", 319 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 320 [BTF_KIND_VAR] = "VAR", 321 [BTF_KIND_DATASEC] = "DATASEC", 322 [BTF_KIND_FLOAT] = "FLOAT", 323 [BTF_KIND_DECL_TAG] = "DECL_TAG", 324 [BTF_KIND_TYPE_TAG] = "TYPE_TAG", 325 [BTF_KIND_ENUM64] = "ENUM64", 326 }; 327 328 const char *btf_type_str(const struct btf_type *t) 329 { 330 return btf_kind_str[BTF_INFO_KIND(t->info)]; 331 } 332 333 /* Chunk size we use in safe copy of data to be shown. */ 334 #define BTF_SHOW_OBJ_SAFE_SIZE 32 335 336 /* 337 * This is the maximum size of a base type value (equivalent to a 338 * 128-bit int); if we are at the end of our safe buffer and have 339 * less than 16 bytes space we can't be assured of being able 340 * to copy the next type safely, so in such cases we will initiate 341 * a new copy. 342 */ 343 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16 344 345 /* Type name size */ 346 #define BTF_SHOW_NAME_SIZE 80 347 348 /* 349 * The suffix of a type that indicates it cannot alias another type when 350 * comparing BTF IDs for kfunc invocations. 351 */ 352 #define NOCAST_ALIAS_SUFFIX "___init" 353 354 /* 355 * Common data to all BTF show operations. Private show functions can add 356 * their own data to a structure containing a struct btf_show and consult it 357 * in the show callback. See btf_type_show() below. 358 * 359 * One challenge with showing nested data is we want to skip 0-valued 360 * data, but in order to figure out whether a nested object is all zeros 361 * we need to walk through it. As a result, we need to make two passes 362 * when handling structs, unions and arrays; the first path simply looks 363 * for nonzero data, while the second actually does the display. The first 364 * pass is signalled by show->state.depth_check being set, and if we 365 * encounter a non-zero value we set show->state.depth_to_show to 366 * the depth at which we encountered it. When we have completed the 367 * first pass, we will know if anything needs to be displayed if 368 * depth_to_show > depth. See btf_[struct,array]_show() for the 369 * implementation of this. 370 * 371 * Another problem is we want to ensure the data for display is safe to 372 * access. To support this, the anonymous "struct {} obj" tracks the data 373 * object and our safe copy of it. We copy portions of the data needed 374 * to the object "copy" buffer, but because its size is limited to 375 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we 376 * traverse larger objects for display. 377 * 378 * The various data type show functions all start with a call to 379 * btf_show_start_type() which returns a pointer to the safe copy 380 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the 381 * raw data itself). btf_show_obj_safe() is responsible for 382 * using copy_from_kernel_nofault() to update the safe data if necessary 383 * as we traverse the object's data. skbuff-like semantics are 384 * used: 385 * 386 * - obj.head points to the start of the toplevel object for display 387 * - obj.size is the size of the toplevel object 388 * - obj.data points to the current point in the original data at 389 * which our safe data starts. obj.data will advance as we copy 390 * portions of the data. 391 * 392 * In most cases a single copy will suffice, but larger data structures 393 * such as "struct task_struct" will require many copies. The logic in 394 * btf_show_obj_safe() handles the logic that determines if a new 395 * copy_from_kernel_nofault() is needed. 396 */ 397 struct btf_show { 398 u64 flags; 399 void *target; /* target of show operation (seq file, buffer) */ 400 void (*showfn)(struct btf_show *show, const char *fmt, va_list args); 401 const struct btf *btf; 402 /* below are used during iteration */ 403 struct { 404 u8 depth; 405 u8 depth_to_show; 406 u8 depth_check; 407 u8 array_member:1, 408 array_terminated:1; 409 u16 array_encoding; 410 u32 type_id; 411 int status; /* non-zero for error */ 412 const struct btf_type *type; 413 const struct btf_member *member; 414 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */ 415 } state; 416 struct { 417 u32 size; 418 void *head; 419 void *data; 420 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE]; 421 } obj; 422 }; 423 424 struct btf_kind_operations { 425 s32 (*check_meta)(struct btf_verifier_env *env, 426 const struct btf_type *t, 427 u32 meta_left); 428 int (*resolve)(struct btf_verifier_env *env, 429 const struct resolve_vertex *v); 430 int (*check_member)(struct btf_verifier_env *env, 431 const struct btf_type *struct_type, 432 const struct btf_member *member, 433 const struct btf_type *member_type); 434 int (*check_kflag_member)(struct btf_verifier_env *env, 435 const struct btf_type *struct_type, 436 const struct btf_member *member, 437 const struct btf_type *member_type); 438 void (*log_details)(struct btf_verifier_env *env, 439 const struct btf_type *t); 440 void (*show)(const struct btf *btf, const struct btf_type *t, 441 u32 type_id, void *data, u8 bits_offsets, 442 struct btf_show *show); 443 }; 444 445 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 446 static struct btf_type btf_void; 447 448 static int btf_resolve(struct btf_verifier_env *env, 449 const struct btf_type *t, u32 type_id); 450 451 static int btf_func_check(struct btf_verifier_env *env, 452 const struct btf_type *t); 453 454 static bool btf_type_is_modifier(const struct btf_type *t) 455 { 456 /* Some of them is not strictly a C modifier 457 * but they are grouped into the same bucket 458 * for BTF concern: 459 * A type (t) that refers to another 460 * type through t->type AND its size cannot 461 * be determined without following the t->type. 462 * 463 * ptr does not fall into this bucket 464 * because its size is always sizeof(void *). 465 */ 466 switch (BTF_INFO_KIND(t->info)) { 467 case BTF_KIND_TYPEDEF: 468 case BTF_KIND_VOLATILE: 469 case BTF_KIND_CONST: 470 case BTF_KIND_RESTRICT: 471 case BTF_KIND_TYPE_TAG: 472 return true; 473 } 474 475 return false; 476 } 477 478 bool btf_type_is_void(const struct btf_type *t) 479 { 480 return t == &btf_void; 481 } 482 483 static bool btf_type_is_fwd(const struct btf_type *t) 484 { 485 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 486 } 487 488 static bool btf_type_nosize(const struct btf_type *t) 489 { 490 return btf_type_is_void(t) || btf_type_is_fwd(t) || 491 btf_type_is_func(t) || btf_type_is_func_proto(t); 492 } 493 494 static bool btf_type_nosize_or_null(const struct btf_type *t) 495 { 496 return !t || btf_type_nosize(t); 497 } 498 499 static bool btf_type_is_datasec(const struct btf_type *t) 500 { 501 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC; 502 } 503 504 static bool btf_type_is_decl_tag(const struct btf_type *t) 505 { 506 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG; 507 } 508 509 static bool btf_type_is_decl_tag_target(const struct btf_type *t) 510 { 511 return btf_type_is_func(t) || btf_type_is_struct(t) || 512 btf_type_is_var(t) || btf_type_is_typedef(t); 513 } 514 515 u32 btf_nr_types(const struct btf *btf) 516 { 517 u32 total = 0; 518 519 while (btf) { 520 total += btf->nr_types; 521 btf = btf->base_btf; 522 } 523 524 return total; 525 } 526 527 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind) 528 { 529 const struct btf_type *t; 530 const char *tname; 531 u32 i, total; 532 533 total = btf_nr_types(btf); 534 for (i = 1; i < total; i++) { 535 t = btf_type_by_id(btf, i); 536 if (BTF_INFO_KIND(t->info) != kind) 537 continue; 538 539 tname = btf_name_by_offset(btf, t->name_off); 540 if (!strcmp(tname, name)) 541 return i; 542 } 543 544 return -ENOENT; 545 } 546 547 static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p) 548 { 549 struct btf *btf; 550 s32 ret; 551 int id; 552 553 btf = bpf_get_btf_vmlinux(); 554 if (IS_ERR(btf)) 555 return PTR_ERR(btf); 556 if (!btf) 557 return -EINVAL; 558 559 ret = btf_find_by_name_kind(btf, name, kind); 560 /* ret is never zero, since btf_find_by_name_kind returns 561 * positive btf_id or negative error. 562 */ 563 if (ret > 0) { 564 btf_get(btf); 565 *btf_p = btf; 566 return ret; 567 } 568 569 /* If name is not found in vmlinux's BTF then search in module's BTFs */ 570 spin_lock_bh(&btf_idr_lock); 571 idr_for_each_entry(&btf_idr, btf, id) { 572 if (!btf_is_module(btf)) 573 continue; 574 /* linear search could be slow hence unlock/lock 575 * the IDR to avoiding holding it for too long 576 */ 577 btf_get(btf); 578 spin_unlock_bh(&btf_idr_lock); 579 ret = btf_find_by_name_kind(btf, name, kind); 580 if (ret > 0) { 581 *btf_p = btf; 582 return ret; 583 } 584 btf_put(btf); 585 spin_lock_bh(&btf_idr_lock); 586 } 587 spin_unlock_bh(&btf_idr_lock); 588 return ret; 589 } 590 591 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf, 592 u32 id, u32 *res_id) 593 { 594 const struct btf_type *t = btf_type_by_id(btf, id); 595 596 while (btf_type_is_modifier(t)) { 597 id = t->type; 598 t = btf_type_by_id(btf, t->type); 599 } 600 601 if (res_id) 602 *res_id = id; 603 604 return t; 605 } 606 607 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf, 608 u32 id, u32 *res_id) 609 { 610 const struct btf_type *t; 611 612 t = btf_type_skip_modifiers(btf, id, NULL); 613 if (!btf_type_is_ptr(t)) 614 return NULL; 615 616 return btf_type_skip_modifiers(btf, t->type, res_id); 617 } 618 619 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf, 620 u32 id, u32 *res_id) 621 { 622 const struct btf_type *ptype; 623 624 ptype = btf_type_resolve_ptr(btf, id, res_id); 625 if (ptype && btf_type_is_func_proto(ptype)) 626 return ptype; 627 628 return NULL; 629 } 630 631 /* Types that act only as a source, not sink or intermediate 632 * type when resolving. 633 */ 634 static bool btf_type_is_resolve_source_only(const struct btf_type *t) 635 { 636 return btf_type_is_var(t) || 637 btf_type_is_decl_tag(t) || 638 btf_type_is_datasec(t); 639 } 640 641 /* What types need to be resolved? 642 * 643 * btf_type_is_modifier() is an obvious one. 644 * 645 * btf_type_is_struct() because its member refers to 646 * another type (through member->type). 647 * 648 * btf_type_is_var() because the variable refers to 649 * another type. btf_type_is_datasec() holds multiple 650 * btf_type_is_var() types that need resolving. 651 * 652 * btf_type_is_array() because its element (array->type) 653 * refers to another type. Array can be thought of a 654 * special case of struct while array just has the same 655 * member-type repeated by array->nelems of times. 656 */ 657 static bool btf_type_needs_resolve(const struct btf_type *t) 658 { 659 return btf_type_is_modifier(t) || 660 btf_type_is_ptr(t) || 661 btf_type_is_struct(t) || 662 btf_type_is_array(t) || 663 btf_type_is_var(t) || 664 btf_type_is_func(t) || 665 btf_type_is_decl_tag(t) || 666 btf_type_is_datasec(t); 667 } 668 669 /* t->size can be used */ 670 static bool btf_type_has_size(const struct btf_type *t) 671 { 672 switch (BTF_INFO_KIND(t->info)) { 673 case BTF_KIND_INT: 674 case BTF_KIND_STRUCT: 675 case BTF_KIND_UNION: 676 case BTF_KIND_ENUM: 677 case BTF_KIND_DATASEC: 678 case BTF_KIND_FLOAT: 679 case BTF_KIND_ENUM64: 680 return true; 681 } 682 683 return false; 684 } 685 686 static const char *btf_int_encoding_str(u8 encoding) 687 { 688 if (encoding == 0) 689 return "(none)"; 690 else if (encoding == BTF_INT_SIGNED) 691 return "SIGNED"; 692 else if (encoding == BTF_INT_CHAR) 693 return "CHAR"; 694 else if (encoding == BTF_INT_BOOL) 695 return "BOOL"; 696 else 697 return "UNKN"; 698 } 699 700 static u32 btf_type_int(const struct btf_type *t) 701 { 702 return *(u32 *)(t + 1); 703 } 704 705 static const struct btf_array *btf_type_array(const struct btf_type *t) 706 { 707 return (const struct btf_array *)(t + 1); 708 } 709 710 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 711 { 712 return (const struct btf_enum *)(t + 1); 713 } 714 715 static const struct btf_var *btf_type_var(const struct btf_type *t) 716 { 717 return (const struct btf_var *)(t + 1); 718 } 719 720 static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t) 721 { 722 return (const struct btf_decl_tag *)(t + 1); 723 } 724 725 static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t) 726 { 727 return (const struct btf_enum64 *)(t + 1); 728 } 729 730 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 731 { 732 return kind_ops[BTF_INFO_KIND(t->info)]; 733 } 734 735 static bool btf_name_offset_valid(const struct btf *btf, u32 offset) 736 { 737 if (!BTF_STR_OFFSET_VALID(offset)) 738 return false; 739 740 while (offset < btf->start_str_off) 741 btf = btf->base_btf; 742 743 offset -= btf->start_str_off; 744 return offset < btf->hdr.str_len; 745 } 746 747 static bool __btf_name_char_ok(char c, bool first) 748 { 749 if ((first ? !isalpha(c) : 750 !isalnum(c)) && 751 c != '_' && 752 c != '.') 753 return false; 754 return true; 755 } 756 757 static const char *btf_str_by_offset(const struct btf *btf, u32 offset) 758 { 759 while (offset < btf->start_str_off) 760 btf = btf->base_btf; 761 762 offset -= btf->start_str_off; 763 if (offset < btf->hdr.str_len) 764 return &btf->strings[offset]; 765 766 return NULL; 767 } 768 769 static bool __btf_name_valid(const struct btf *btf, u32 offset) 770 { 771 /* offset must be valid */ 772 const char *src = btf_str_by_offset(btf, offset); 773 const char *src_limit; 774 775 if (!__btf_name_char_ok(*src, true)) 776 return false; 777 778 /* set a limit on identifier length */ 779 src_limit = src + KSYM_NAME_LEN; 780 src++; 781 while (*src && src < src_limit) { 782 if (!__btf_name_char_ok(*src, false)) 783 return false; 784 src++; 785 } 786 787 return !*src; 788 } 789 790 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 791 { 792 return __btf_name_valid(btf, offset); 793 } 794 795 static bool btf_name_valid_section(const struct btf *btf, u32 offset) 796 { 797 return __btf_name_valid(btf, offset); 798 } 799 800 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset) 801 { 802 const char *name; 803 804 if (!offset) 805 return "(anon)"; 806 807 name = btf_str_by_offset(btf, offset); 808 return name ?: "(invalid-name-offset)"; 809 } 810 811 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 812 { 813 return btf_str_by_offset(btf, offset); 814 } 815 816 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 817 { 818 while (type_id < btf->start_id) 819 btf = btf->base_btf; 820 821 type_id -= btf->start_id; 822 if (type_id >= btf->nr_types) 823 return NULL; 824 return btf->types[type_id]; 825 } 826 EXPORT_SYMBOL_GPL(btf_type_by_id); 827 828 /* 829 * Regular int is not a bit field and it must be either 830 * u8/u16/u32/u64 or __int128. 831 */ 832 static bool btf_type_int_is_regular(const struct btf_type *t) 833 { 834 u8 nr_bits, nr_bytes; 835 u32 int_data; 836 837 int_data = btf_type_int(t); 838 nr_bits = BTF_INT_BITS(int_data); 839 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 840 if (BITS_PER_BYTE_MASKED(nr_bits) || 841 BTF_INT_OFFSET(int_data) || 842 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 843 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) && 844 nr_bytes != (2 * sizeof(u64)))) { 845 return false; 846 } 847 848 return true; 849 } 850 851 /* 852 * Check that given struct member is a regular int with expected 853 * offset and size. 854 */ 855 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s, 856 const struct btf_member *m, 857 u32 expected_offset, u32 expected_size) 858 { 859 const struct btf_type *t; 860 u32 id, int_data; 861 u8 nr_bits; 862 863 id = m->type; 864 t = btf_type_id_size(btf, &id, NULL); 865 if (!t || !btf_type_is_int(t)) 866 return false; 867 868 int_data = btf_type_int(t); 869 nr_bits = BTF_INT_BITS(int_data); 870 if (btf_type_kflag(s)) { 871 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset); 872 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset); 873 874 /* if kflag set, int should be a regular int and 875 * bit offset should be at byte boundary. 876 */ 877 return !bitfield_size && 878 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset && 879 BITS_ROUNDUP_BYTES(nr_bits) == expected_size; 880 } 881 882 if (BTF_INT_OFFSET(int_data) || 883 BITS_PER_BYTE_MASKED(m->offset) || 884 BITS_ROUNDUP_BYTES(m->offset) != expected_offset || 885 BITS_PER_BYTE_MASKED(nr_bits) || 886 BITS_ROUNDUP_BYTES(nr_bits) != expected_size) 887 return false; 888 889 return true; 890 } 891 892 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */ 893 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf, 894 u32 id) 895 { 896 const struct btf_type *t = btf_type_by_id(btf, id); 897 898 while (btf_type_is_modifier(t) && 899 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) { 900 t = btf_type_by_id(btf, t->type); 901 } 902 903 return t; 904 } 905 906 #define BTF_SHOW_MAX_ITER 10 907 908 #define BTF_KIND_BIT(kind) (1ULL << kind) 909 910 /* 911 * Populate show->state.name with type name information. 912 * Format of type name is 913 * 914 * [.member_name = ] (type_name) 915 */ 916 static const char *btf_show_name(struct btf_show *show) 917 { 918 /* BTF_MAX_ITER array suffixes "[]" */ 919 const char *array_suffixes = "[][][][][][][][][][]"; 920 const char *array_suffix = &array_suffixes[strlen(array_suffixes)]; 921 /* BTF_MAX_ITER pointer suffixes "*" */ 922 const char *ptr_suffixes = "**********"; 923 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)]; 924 const char *name = NULL, *prefix = "", *parens = ""; 925 const struct btf_member *m = show->state.member; 926 const struct btf_type *t; 927 const struct btf_array *array; 928 u32 id = show->state.type_id; 929 const char *member = NULL; 930 bool show_member = false; 931 u64 kinds = 0; 932 int i; 933 934 show->state.name[0] = '\0'; 935 936 /* 937 * Don't show type name if we're showing an array member; 938 * in that case we show the array type so don't need to repeat 939 * ourselves for each member. 940 */ 941 if (show->state.array_member) 942 return ""; 943 944 /* Retrieve member name, if any. */ 945 if (m) { 946 member = btf_name_by_offset(show->btf, m->name_off); 947 show_member = strlen(member) > 0; 948 id = m->type; 949 } 950 951 /* 952 * Start with type_id, as we have resolved the struct btf_type * 953 * via btf_modifier_show() past the parent typedef to the child 954 * struct, int etc it is defined as. In such cases, the type_id 955 * still represents the starting type while the struct btf_type * 956 * in our show->state points at the resolved type of the typedef. 957 */ 958 t = btf_type_by_id(show->btf, id); 959 if (!t) 960 return ""; 961 962 /* 963 * The goal here is to build up the right number of pointer and 964 * array suffixes while ensuring the type name for a typedef 965 * is represented. Along the way we accumulate a list of 966 * BTF kinds we have encountered, since these will inform later 967 * display; for example, pointer types will not require an 968 * opening "{" for struct, we will just display the pointer value. 969 * 970 * We also want to accumulate the right number of pointer or array 971 * indices in the format string while iterating until we get to 972 * the typedef/pointee/array member target type. 973 * 974 * We start by pointing at the end of pointer and array suffix 975 * strings; as we accumulate pointers and arrays we move the pointer 976 * or array string backwards so it will show the expected number of 977 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers 978 * and/or arrays and typedefs are supported as a precaution. 979 * 980 * We also want to get typedef name while proceeding to resolve 981 * type it points to so that we can add parentheses if it is a 982 * "typedef struct" etc. 983 */ 984 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) { 985 986 switch (BTF_INFO_KIND(t->info)) { 987 case BTF_KIND_TYPEDEF: 988 if (!name) 989 name = btf_name_by_offset(show->btf, 990 t->name_off); 991 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF); 992 id = t->type; 993 break; 994 case BTF_KIND_ARRAY: 995 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY); 996 parens = "["; 997 if (!t) 998 return ""; 999 array = btf_type_array(t); 1000 if (array_suffix > array_suffixes) 1001 array_suffix -= 2; 1002 id = array->type; 1003 break; 1004 case BTF_KIND_PTR: 1005 kinds |= BTF_KIND_BIT(BTF_KIND_PTR); 1006 if (ptr_suffix > ptr_suffixes) 1007 ptr_suffix -= 1; 1008 id = t->type; 1009 break; 1010 default: 1011 id = 0; 1012 break; 1013 } 1014 if (!id) 1015 break; 1016 t = btf_type_skip_qualifiers(show->btf, id); 1017 } 1018 /* We may not be able to represent this type; bail to be safe */ 1019 if (i == BTF_SHOW_MAX_ITER) 1020 return ""; 1021 1022 if (!name) 1023 name = btf_name_by_offset(show->btf, t->name_off); 1024 1025 switch (BTF_INFO_KIND(t->info)) { 1026 case BTF_KIND_STRUCT: 1027 case BTF_KIND_UNION: 1028 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ? 1029 "struct" : "union"; 1030 /* if it's an array of struct/union, parens is already set */ 1031 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY)))) 1032 parens = "{"; 1033 break; 1034 case BTF_KIND_ENUM: 1035 case BTF_KIND_ENUM64: 1036 prefix = "enum"; 1037 break; 1038 default: 1039 break; 1040 } 1041 1042 /* pointer does not require parens */ 1043 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR)) 1044 parens = ""; 1045 /* typedef does not require struct/union/enum prefix */ 1046 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF)) 1047 prefix = ""; 1048 1049 if (!name) 1050 name = ""; 1051 1052 /* Even if we don't want type name info, we want parentheses etc */ 1053 if (show->flags & BTF_SHOW_NONAME) 1054 snprintf(show->state.name, sizeof(show->state.name), "%s", 1055 parens); 1056 else 1057 snprintf(show->state.name, sizeof(show->state.name), 1058 "%s%s%s(%s%s%s%s%s%s)%s", 1059 /* first 3 strings comprise ".member = " */ 1060 show_member ? "." : "", 1061 show_member ? member : "", 1062 show_member ? " = " : "", 1063 /* ...next is our prefix (struct, enum, etc) */ 1064 prefix, 1065 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "", 1066 /* ...this is the type name itself */ 1067 name, 1068 /* ...suffixed by the appropriate '*', '[]' suffixes */ 1069 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix, 1070 array_suffix, parens); 1071 1072 return show->state.name; 1073 } 1074 1075 static const char *__btf_show_indent(struct btf_show *show) 1076 { 1077 const char *indents = " "; 1078 const char *indent = &indents[strlen(indents)]; 1079 1080 if ((indent - show->state.depth) >= indents) 1081 return indent - show->state.depth; 1082 return indents; 1083 } 1084 1085 static const char *btf_show_indent(struct btf_show *show) 1086 { 1087 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show); 1088 } 1089 1090 static const char *btf_show_newline(struct btf_show *show) 1091 { 1092 return show->flags & BTF_SHOW_COMPACT ? "" : "\n"; 1093 } 1094 1095 static const char *btf_show_delim(struct btf_show *show) 1096 { 1097 if (show->state.depth == 0) 1098 return ""; 1099 1100 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type && 1101 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION) 1102 return "|"; 1103 1104 return ","; 1105 } 1106 1107 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...) 1108 { 1109 va_list args; 1110 1111 if (!show->state.depth_check) { 1112 va_start(args, fmt); 1113 show->showfn(show, fmt, args); 1114 va_end(args); 1115 } 1116 } 1117 1118 /* Macros are used here as btf_show_type_value[s]() prepends and appends 1119 * format specifiers to the format specifier passed in; these do the work of 1120 * adding indentation, delimiters etc while the caller simply has to specify 1121 * the type value(s) in the format specifier + value(s). 1122 */ 1123 #define btf_show_type_value(show, fmt, value) \ 1124 do { \ 1125 if ((value) != (__typeof__(value))0 || \ 1126 (show->flags & BTF_SHOW_ZERO) || \ 1127 show->state.depth == 0) { \ 1128 btf_show(show, "%s%s" fmt "%s%s", \ 1129 btf_show_indent(show), \ 1130 btf_show_name(show), \ 1131 value, btf_show_delim(show), \ 1132 btf_show_newline(show)); \ 1133 if (show->state.depth > show->state.depth_to_show) \ 1134 show->state.depth_to_show = show->state.depth; \ 1135 } \ 1136 } while (0) 1137 1138 #define btf_show_type_values(show, fmt, ...) \ 1139 do { \ 1140 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \ 1141 btf_show_name(show), \ 1142 __VA_ARGS__, btf_show_delim(show), \ 1143 btf_show_newline(show)); \ 1144 if (show->state.depth > show->state.depth_to_show) \ 1145 show->state.depth_to_show = show->state.depth; \ 1146 } while (0) 1147 1148 /* How much is left to copy to safe buffer after @data? */ 1149 static int btf_show_obj_size_left(struct btf_show *show, void *data) 1150 { 1151 return show->obj.head + show->obj.size - data; 1152 } 1153 1154 /* Is object pointed to by @data of @size already copied to our safe buffer? */ 1155 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size) 1156 { 1157 return data >= show->obj.data && 1158 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE); 1159 } 1160 1161 /* 1162 * If object pointed to by @data of @size falls within our safe buffer, return 1163 * the equivalent pointer to the same safe data. Assumes 1164 * copy_from_kernel_nofault() has already happened and our safe buffer is 1165 * populated. 1166 */ 1167 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size) 1168 { 1169 if (btf_show_obj_is_safe(show, data, size)) 1170 return show->obj.safe + (data - show->obj.data); 1171 return NULL; 1172 } 1173 1174 /* 1175 * Return a safe-to-access version of data pointed to by @data. 1176 * We do this by copying the relevant amount of information 1177 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault(). 1178 * 1179 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no 1180 * safe copy is needed. 1181 * 1182 * Otherwise we need to determine if we have the required amount 1183 * of data (determined by the @data pointer and the size of the 1184 * largest base type we can encounter (represented by 1185 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures 1186 * that we will be able to print some of the current object, 1187 * and if more is needed a copy will be triggered. 1188 * Some objects such as structs will not fit into the buffer; 1189 * in such cases additional copies when we iterate over their 1190 * members may be needed. 1191 * 1192 * btf_show_obj_safe() is used to return a safe buffer for 1193 * btf_show_start_type(); this ensures that as we recurse into 1194 * nested types we always have safe data for the given type. 1195 * This approach is somewhat wasteful; it's possible for example 1196 * that when iterating over a large union we'll end up copying the 1197 * same data repeatedly, but the goal is safety not performance. 1198 * We use stack data as opposed to per-CPU buffers because the 1199 * iteration over a type can take some time, and preemption handling 1200 * would greatly complicate use of the safe buffer. 1201 */ 1202 static void *btf_show_obj_safe(struct btf_show *show, 1203 const struct btf_type *t, 1204 void *data) 1205 { 1206 const struct btf_type *rt; 1207 int size_left, size; 1208 void *safe = NULL; 1209 1210 if (show->flags & BTF_SHOW_UNSAFE) 1211 return data; 1212 1213 rt = btf_resolve_size(show->btf, t, &size); 1214 if (IS_ERR(rt)) { 1215 show->state.status = PTR_ERR(rt); 1216 return NULL; 1217 } 1218 1219 /* 1220 * Is this toplevel object? If so, set total object size and 1221 * initialize pointers. Otherwise check if we still fall within 1222 * our safe object data. 1223 */ 1224 if (show->state.depth == 0) { 1225 show->obj.size = size; 1226 show->obj.head = data; 1227 } else { 1228 /* 1229 * If the size of the current object is > our remaining 1230 * safe buffer we _may_ need to do a new copy. However 1231 * consider the case of a nested struct; it's size pushes 1232 * us over the safe buffer limit, but showing any individual 1233 * struct members does not. In such cases, we don't need 1234 * to initiate a fresh copy yet; however we definitely need 1235 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left 1236 * in our buffer, regardless of the current object size. 1237 * The logic here is that as we resolve types we will 1238 * hit a base type at some point, and we need to be sure 1239 * the next chunk of data is safely available to display 1240 * that type info safely. We cannot rely on the size of 1241 * the current object here because it may be much larger 1242 * than our current buffer (e.g. task_struct is 8k). 1243 * All we want to do here is ensure that we can print the 1244 * next basic type, which we can if either 1245 * - the current type size is within the safe buffer; or 1246 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in 1247 * the safe buffer. 1248 */ 1249 safe = __btf_show_obj_safe(show, data, 1250 min(size, 1251 BTF_SHOW_OBJ_BASE_TYPE_SIZE)); 1252 } 1253 1254 /* 1255 * We need a new copy to our safe object, either because we haven't 1256 * yet copied and are initializing safe data, or because the data 1257 * we want falls outside the boundaries of the safe object. 1258 */ 1259 if (!safe) { 1260 size_left = btf_show_obj_size_left(show, data); 1261 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE) 1262 size_left = BTF_SHOW_OBJ_SAFE_SIZE; 1263 show->state.status = copy_from_kernel_nofault(show->obj.safe, 1264 data, size_left); 1265 if (!show->state.status) { 1266 show->obj.data = data; 1267 safe = show->obj.safe; 1268 } 1269 } 1270 1271 return safe; 1272 } 1273 1274 /* 1275 * Set the type we are starting to show and return a safe data pointer 1276 * to be used for showing the associated data. 1277 */ 1278 static void *btf_show_start_type(struct btf_show *show, 1279 const struct btf_type *t, 1280 u32 type_id, void *data) 1281 { 1282 show->state.type = t; 1283 show->state.type_id = type_id; 1284 show->state.name[0] = '\0'; 1285 1286 return btf_show_obj_safe(show, t, data); 1287 } 1288 1289 static void btf_show_end_type(struct btf_show *show) 1290 { 1291 show->state.type = NULL; 1292 show->state.type_id = 0; 1293 show->state.name[0] = '\0'; 1294 } 1295 1296 static void *btf_show_start_aggr_type(struct btf_show *show, 1297 const struct btf_type *t, 1298 u32 type_id, void *data) 1299 { 1300 void *safe_data = btf_show_start_type(show, t, type_id, data); 1301 1302 if (!safe_data) 1303 return safe_data; 1304 1305 btf_show(show, "%s%s%s", btf_show_indent(show), 1306 btf_show_name(show), 1307 btf_show_newline(show)); 1308 show->state.depth++; 1309 return safe_data; 1310 } 1311 1312 static void btf_show_end_aggr_type(struct btf_show *show, 1313 const char *suffix) 1314 { 1315 show->state.depth--; 1316 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix, 1317 btf_show_delim(show), btf_show_newline(show)); 1318 btf_show_end_type(show); 1319 } 1320 1321 static void btf_show_start_member(struct btf_show *show, 1322 const struct btf_member *m) 1323 { 1324 show->state.member = m; 1325 } 1326 1327 static void btf_show_start_array_member(struct btf_show *show) 1328 { 1329 show->state.array_member = 1; 1330 btf_show_start_member(show, NULL); 1331 } 1332 1333 static void btf_show_end_member(struct btf_show *show) 1334 { 1335 show->state.member = NULL; 1336 } 1337 1338 static void btf_show_end_array_member(struct btf_show *show) 1339 { 1340 show->state.array_member = 0; 1341 btf_show_end_member(show); 1342 } 1343 1344 static void *btf_show_start_array_type(struct btf_show *show, 1345 const struct btf_type *t, 1346 u32 type_id, 1347 u16 array_encoding, 1348 void *data) 1349 { 1350 show->state.array_encoding = array_encoding; 1351 show->state.array_terminated = 0; 1352 return btf_show_start_aggr_type(show, t, type_id, data); 1353 } 1354 1355 static void btf_show_end_array_type(struct btf_show *show) 1356 { 1357 show->state.array_encoding = 0; 1358 show->state.array_terminated = 0; 1359 btf_show_end_aggr_type(show, "]"); 1360 } 1361 1362 static void *btf_show_start_struct_type(struct btf_show *show, 1363 const struct btf_type *t, 1364 u32 type_id, 1365 void *data) 1366 { 1367 return btf_show_start_aggr_type(show, t, type_id, data); 1368 } 1369 1370 static void btf_show_end_struct_type(struct btf_show *show) 1371 { 1372 btf_show_end_aggr_type(show, "}"); 1373 } 1374 1375 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 1376 const char *fmt, ...) 1377 { 1378 va_list args; 1379 1380 va_start(args, fmt); 1381 bpf_verifier_vlog(log, fmt, args); 1382 va_end(args); 1383 } 1384 1385 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 1386 const char *fmt, ...) 1387 { 1388 struct bpf_verifier_log *log = &env->log; 1389 va_list args; 1390 1391 if (!bpf_verifier_log_needed(log)) 1392 return; 1393 1394 va_start(args, fmt); 1395 bpf_verifier_vlog(log, fmt, args); 1396 va_end(args); 1397 } 1398 1399 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 1400 const struct btf_type *t, 1401 bool log_details, 1402 const char *fmt, ...) 1403 { 1404 struct bpf_verifier_log *log = &env->log; 1405 struct btf *btf = env->btf; 1406 va_list args; 1407 1408 if (!bpf_verifier_log_needed(log)) 1409 return; 1410 1411 if (log->level == BPF_LOG_KERNEL) { 1412 /* btf verifier prints all types it is processing via 1413 * btf_verifier_log_type(..., fmt = NULL). 1414 * Skip those prints for in-kernel BTF verification. 1415 */ 1416 if (!fmt) 1417 return; 1418 1419 /* Skip logging when loading module BTF with mismatches permitted */ 1420 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1421 return; 1422 } 1423 1424 __btf_verifier_log(log, "[%u] %s %s%s", 1425 env->log_type_id, 1426 btf_type_str(t), 1427 __btf_name_by_offset(btf, t->name_off), 1428 log_details ? " " : ""); 1429 1430 if (log_details) 1431 btf_type_ops(t)->log_details(env, t); 1432 1433 if (fmt && *fmt) { 1434 __btf_verifier_log(log, " "); 1435 va_start(args, fmt); 1436 bpf_verifier_vlog(log, fmt, args); 1437 va_end(args); 1438 } 1439 1440 __btf_verifier_log(log, "\n"); 1441 } 1442 1443 #define btf_verifier_log_type(env, t, ...) \ 1444 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 1445 #define btf_verifier_log_basic(env, t, ...) \ 1446 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 1447 1448 __printf(4, 5) 1449 static void btf_verifier_log_member(struct btf_verifier_env *env, 1450 const struct btf_type *struct_type, 1451 const struct btf_member *member, 1452 const char *fmt, ...) 1453 { 1454 struct bpf_verifier_log *log = &env->log; 1455 struct btf *btf = env->btf; 1456 va_list args; 1457 1458 if (!bpf_verifier_log_needed(log)) 1459 return; 1460 1461 if (log->level == BPF_LOG_KERNEL) { 1462 if (!fmt) 1463 return; 1464 1465 /* Skip logging when loading module BTF with mismatches permitted */ 1466 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) 1467 return; 1468 } 1469 1470 /* The CHECK_META phase already did a btf dump. 1471 * 1472 * If member is logged again, it must hit an error in 1473 * parsing this member. It is useful to print out which 1474 * struct this member belongs to. 1475 */ 1476 if (env->phase != CHECK_META) 1477 btf_verifier_log_type(env, struct_type, NULL); 1478 1479 if (btf_type_kflag(struct_type)) 1480 __btf_verifier_log(log, 1481 "\t%s type_id=%u bitfield_size=%u bits_offset=%u", 1482 __btf_name_by_offset(btf, member->name_off), 1483 member->type, 1484 BTF_MEMBER_BITFIELD_SIZE(member->offset), 1485 BTF_MEMBER_BIT_OFFSET(member->offset)); 1486 else 1487 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 1488 __btf_name_by_offset(btf, member->name_off), 1489 member->type, member->offset); 1490 1491 if (fmt && *fmt) { 1492 __btf_verifier_log(log, " "); 1493 va_start(args, fmt); 1494 bpf_verifier_vlog(log, fmt, args); 1495 va_end(args); 1496 } 1497 1498 __btf_verifier_log(log, "\n"); 1499 } 1500 1501 __printf(4, 5) 1502 static void btf_verifier_log_vsi(struct btf_verifier_env *env, 1503 const struct btf_type *datasec_type, 1504 const struct btf_var_secinfo *vsi, 1505 const char *fmt, ...) 1506 { 1507 struct bpf_verifier_log *log = &env->log; 1508 va_list args; 1509 1510 if (!bpf_verifier_log_needed(log)) 1511 return; 1512 if (log->level == BPF_LOG_KERNEL && !fmt) 1513 return; 1514 if (env->phase != CHECK_META) 1515 btf_verifier_log_type(env, datasec_type, NULL); 1516 1517 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u", 1518 vsi->type, vsi->offset, vsi->size); 1519 if (fmt && *fmt) { 1520 __btf_verifier_log(log, " "); 1521 va_start(args, fmt); 1522 bpf_verifier_vlog(log, fmt, args); 1523 va_end(args); 1524 } 1525 1526 __btf_verifier_log(log, "\n"); 1527 } 1528 1529 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 1530 u32 btf_data_size) 1531 { 1532 struct bpf_verifier_log *log = &env->log; 1533 const struct btf *btf = env->btf; 1534 const struct btf_header *hdr; 1535 1536 if (!bpf_verifier_log_needed(log)) 1537 return; 1538 1539 if (log->level == BPF_LOG_KERNEL) 1540 return; 1541 hdr = &btf->hdr; 1542 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 1543 __btf_verifier_log(log, "version: %u\n", hdr->version); 1544 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 1545 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 1546 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 1547 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 1548 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 1549 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 1550 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 1551 } 1552 1553 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 1554 { 1555 struct btf *btf = env->btf; 1556 1557 if (btf->types_size == btf->nr_types) { 1558 /* Expand 'types' array */ 1559 1560 struct btf_type **new_types; 1561 u32 expand_by, new_size; 1562 1563 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) { 1564 btf_verifier_log(env, "Exceeded max num of types"); 1565 return -E2BIG; 1566 } 1567 1568 expand_by = max_t(u32, btf->types_size >> 2, 16); 1569 new_size = min_t(u32, BTF_MAX_TYPE, 1570 btf->types_size + expand_by); 1571 1572 new_types = kvcalloc(new_size, sizeof(*new_types), 1573 GFP_KERNEL | __GFP_NOWARN); 1574 if (!new_types) 1575 return -ENOMEM; 1576 1577 if (btf->nr_types == 0) { 1578 if (!btf->base_btf) { 1579 /* lazily init VOID type */ 1580 new_types[0] = &btf_void; 1581 btf->nr_types++; 1582 } 1583 } else { 1584 memcpy(new_types, btf->types, 1585 sizeof(*btf->types) * btf->nr_types); 1586 } 1587 1588 kvfree(btf->types); 1589 btf->types = new_types; 1590 btf->types_size = new_size; 1591 } 1592 1593 btf->types[btf->nr_types++] = t; 1594 1595 return 0; 1596 } 1597 1598 static int btf_alloc_id(struct btf *btf) 1599 { 1600 int id; 1601 1602 idr_preload(GFP_KERNEL); 1603 spin_lock_bh(&btf_idr_lock); 1604 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 1605 if (id > 0) 1606 btf->id = id; 1607 spin_unlock_bh(&btf_idr_lock); 1608 idr_preload_end(); 1609 1610 if (WARN_ON_ONCE(!id)) 1611 return -ENOSPC; 1612 1613 return id > 0 ? 0 : id; 1614 } 1615 1616 static void btf_free_id(struct btf *btf) 1617 { 1618 unsigned long flags; 1619 1620 /* 1621 * In map-in-map, calling map_delete_elem() on outer 1622 * map will call bpf_map_put on the inner map. 1623 * It will then eventually call btf_free_id() 1624 * on the inner map. Some of the map_delete_elem() 1625 * implementation may have irq disabled, so 1626 * we need to use the _irqsave() version instead 1627 * of the _bh() version. 1628 */ 1629 spin_lock_irqsave(&btf_idr_lock, flags); 1630 idr_remove(&btf_idr, btf->id); 1631 spin_unlock_irqrestore(&btf_idr_lock, flags); 1632 } 1633 1634 static void btf_free_kfunc_set_tab(struct btf *btf) 1635 { 1636 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab; 1637 int hook; 1638 1639 if (!tab) 1640 return; 1641 /* For module BTF, we directly assign the sets being registered, so 1642 * there is nothing to free except kfunc_set_tab. 1643 */ 1644 if (btf_is_module(btf)) 1645 goto free_tab; 1646 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++) 1647 kfree(tab->sets[hook]); 1648 free_tab: 1649 kfree(tab); 1650 btf->kfunc_set_tab = NULL; 1651 } 1652 1653 static void btf_free_dtor_kfunc_tab(struct btf *btf) 1654 { 1655 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 1656 1657 if (!tab) 1658 return; 1659 kfree(tab); 1660 btf->dtor_kfunc_tab = NULL; 1661 } 1662 1663 static void btf_struct_metas_free(struct btf_struct_metas *tab) 1664 { 1665 int i; 1666 1667 if (!tab) 1668 return; 1669 for (i = 0; i < tab->cnt; i++) 1670 btf_record_free(tab->types[i].record); 1671 kfree(tab); 1672 } 1673 1674 static void btf_free_struct_meta_tab(struct btf *btf) 1675 { 1676 struct btf_struct_metas *tab = btf->struct_meta_tab; 1677 1678 btf_struct_metas_free(tab); 1679 btf->struct_meta_tab = NULL; 1680 } 1681 1682 static void btf_free(struct btf *btf) 1683 { 1684 btf_free_struct_meta_tab(btf); 1685 btf_free_dtor_kfunc_tab(btf); 1686 btf_free_kfunc_set_tab(btf); 1687 kvfree(btf->types); 1688 kvfree(btf->resolved_sizes); 1689 kvfree(btf->resolved_ids); 1690 kvfree(btf->data); 1691 kfree(btf); 1692 } 1693 1694 static void btf_free_rcu(struct rcu_head *rcu) 1695 { 1696 struct btf *btf = container_of(rcu, struct btf, rcu); 1697 1698 btf_free(btf); 1699 } 1700 1701 void btf_get(struct btf *btf) 1702 { 1703 refcount_inc(&btf->refcnt); 1704 } 1705 1706 void btf_put(struct btf *btf) 1707 { 1708 if (btf && refcount_dec_and_test(&btf->refcnt)) { 1709 btf_free_id(btf); 1710 call_rcu(&btf->rcu, btf_free_rcu); 1711 } 1712 } 1713 1714 static int env_resolve_init(struct btf_verifier_env *env) 1715 { 1716 struct btf *btf = env->btf; 1717 u32 nr_types = btf->nr_types; 1718 u32 *resolved_sizes = NULL; 1719 u32 *resolved_ids = NULL; 1720 u8 *visit_states = NULL; 1721 1722 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes), 1723 GFP_KERNEL | __GFP_NOWARN); 1724 if (!resolved_sizes) 1725 goto nomem; 1726 1727 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids), 1728 GFP_KERNEL | __GFP_NOWARN); 1729 if (!resolved_ids) 1730 goto nomem; 1731 1732 visit_states = kvcalloc(nr_types, sizeof(*visit_states), 1733 GFP_KERNEL | __GFP_NOWARN); 1734 if (!visit_states) 1735 goto nomem; 1736 1737 btf->resolved_sizes = resolved_sizes; 1738 btf->resolved_ids = resolved_ids; 1739 env->visit_states = visit_states; 1740 1741 return 0; 1742 1743 nomem: 1744 kvfree(resolved_sizes); 1745 kvfree(resolved_ids); 1746 kvfree(visit_states); 1747 return -ENOMEM; 1748 } 1749 1750 static void btf_verifier_env_free(struct btf_verifier_env *env) 1751 { 1752 kvfree(env->visit_states); 1753 kfree(env); 1754 } 1755 1756 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 1757 const struct btf_type *next_type) 1758 { 1759 switch (env->resolve_mode) { 1760 case RESOLVE_TBD: 1761 /* int, enum or void is a sink */ 1762 return !btf_type_needs_resolve(next_type); 1763 case RESOLVE_PTR: 1764 /* int, enum, void, struct, array, func or func_proto is a sink 1765 * for ptr 1766 */ 1767 return !btf_type_is_modifier(next_type) && 1768 !btf_type_is_ptr(next_type); 1769 case RESOLVE_STRUCT_OR_ARRAY: 1770 /* int, enum, void, ptr, func or func_proto is a sink 1771 * for struct and array 1772 */ 1773 return !btf_type_is_modifier(next_type) && 1774 !btf_type_is_array(next_type) && 1775 !btf_type_is_struct(next_type); 1776 default: 1777 BUG(); 1778 } 1779 } 1780 1781 static bool env_type_is_resolved(const struct btf_verifier_env *env, 1782 u32 type_id) 1783 { 1784 /* base BTF types should be resolved by now */ 1785 if (type_id < env->btf->start_id) 1786 return true; 1787 1788 return env->visit_states[type_id - env->btf->start_id] == RESOLVED; 1789 } 1790 1791 static int env_stack_push(struct btf_verifier_env *env, 1792 const struct btf_type *t, u32 type_id) 1793 { 1794 const struct btf *btf = env->btf; 1795 struct resolve_vertex *v; 1796 1797 if (env->top_stack == MAX_RESOLVE_DEPTH) 1798 return -E2BIG; 1799 1800 if (type_id < btf->start_id 1801 || env->visit_states[type_id - btf->start_id] != NOT_VISITED) 1802 return -EEXIST; 1803 1804 env->visit_states[type_id - btf->start_id] = VISITED; 1805 1806 v = &env->stack[env->top_stack++]; 1807 v->t = t; 1808 v->type_id = type_id; 1809 v->next_member = 0; 1810 1811 if (env->resolve_mode == RESOLVE_TBD) { 1812 if (btf_type_is_ptr(t)) 1813 env->resolve_mode = RESOLVE_PTR; 1814 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 1815 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 1816 } 1817 1818 return 0; 1819 } 1820 1821 static void env_stack_set_next_member(struct btf_verifier_env *env, 1822 u16 next_member) 1823 { 1824 env->stack[env->top_stack - 1].next_member = next_member; 1825 } 1826 1827 static void env_stack_pop_resolved(struct btf_verifier_env *env, 1828 u32 resolved_type_id, 1829 u32 resolved_size) 1830 { 1831 u32 type_id = env->stack[--(env->top_stack)].type_id; 1832 struct btf *btf = env->btf; 1833 1834 type_id -= btf->start_id; /* adjust to local type id */ 1835 btf->resolved_sizes[type_id] = resolved_size; 1836 btf->resolved_ids[type_id] = resolved_type_id; 1837 env->visit_states[type_id] = RESOLVED; 1838 } 1839 1840 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 1841 { 1842 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 1843 } 1844 1845 /* Resolve the size of a passed-in "type" 1846 * 1847 * type: is an array (e.g. u32 array[x][y]) 1848 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY, 1849 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always 1850 * corresponds to the return type. 1851 * *elem_type: u32 1852 * *elem_id: id of u32 1853 * *total_nelems: (x * y). Hence, individual elem size is 1854 * (*type_size / *total_nelems) 1855 * *type_id: id of type if it's changed within the function, 0 if not 1856 * 1857 * type: is not an array (e.g. const struct X) 1858 * return type: type "struct X" 1859 * *type_size: sizeof(struct X) 1860 * *elem_type: same as return type ("struct X") 1861 * *elem_id: 0 1862 * *total_nelems: 1 1863 * *type_id: id of type if it's changed within the function, 0 if not 1864 */ 1865 static const struct btf_type * 1866 __btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1867 u32 *type_size, const struct btf_type **elem_type, 1868 u32 *elem_id, u32 *total_nelems, u32 *type_id) 1869 { 1870 const struct btf_type *array_type = NULL; 1871 const struct btf_array *array = NULL; 1872 u32 i, size, nelems = 1, id = 0; 1873 1874 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) { 1875 switch (BTF_INFO_KIND(type->info)) { 1876 /* type->size can be used */ 1877 case BTF_KIND_INT: 1878 case BTF_KIND_STRUCT: 1879 case BTF_KIND_UNION: 1880 case BTF_KIND_ENUM: 1881 case BTF_KIND_FLOAT: 1882 case BTF_KIND_ENUM64: 1883 size = type->size; 1884 goto resolved; 1885 1886 case BTF_KIND_PTR: 1887 size = sizeof(void *); 1888 goto resolved; 1889 1890 /* Modifiers */ 1891 case BTF_KIND_TYPEDEF: 1892 case BTF_KIND_VOLATILE: 1893 case BTF_KIND_CONST: 1894 case BTF_KIND_RESTRICT: 1895 case BTF_KIND_TYPE_TAG: 1896 id = type->type; 1897 type = btf_type_by_id(btf, type->type); 1898 break; 1899 1900 case BTF_KIND_ARRAY: 1901 if (!array_type) 1902 array_type = type; 1903 array = btf_type_array(type); 1904 if (nelems && array->nelems > U32_MAX / nelems) 1905 return ERR_PTR(-EINVAL); 1906 nelems *= array->nelems; 1907 type = btf_type_by_id(btf, array->type); 1908 break; 1909 1910 /* type without size */ 1911 default: 1912 return ERR_PTR(-EINVAL); 1913 } 1914 } 1915 1916 return ERR_PTR(-EINVAL); 1917 1918 resolved: 1919 if (nelems && size > U32_MAX / nelems) 1920 return ERR_PTR(-EINVAL); 1921 1922 *type_size = nelems * size; 1923 if (total_nelems) 1924 *total_nelems = nelems; 1925 if (elem_type) 1926 *elem_type = type; 1927 if (elem_id) 1928 *elem_id = array ? array->type : 0; 1929 if (type_id && id) 1930 *type_id = id; 1931 1932 return array_type ? : type; 1933 } 1934 1935 const struct btf_type * 1936 btf_resolve_size(const struct btf *btf, const struct btf_type *type, 1937 u32 *type_size) 1938 { 1939 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL); 1940 } 1941 1942 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id) 1943 { 1944 while (type_id < btf->start_id) 1945 btf = btf->base_btf; 1946 1947 return btf->resolved_ids[type_id - btf->start_id]; 1948 } 1949 1950 /* The input param "type_id" must point to a needs_resolve type */ 1951 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 1952 u32 *type_id) 1953 { 1954 *type_id = btf_resolved_type_id(btf, *type_id); 1955 return btf_type_by_id(btf, *type_id); 1956 } 1957 1958 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id) 1959 { 1960 while (type_id < btf->start_id) 1961 btf = btf->base_btf; 1962 1963 return btf->resolved_sizes[type_id - btf->start_id]; 1964 } 1965 1966 const struct btf_type *btf_type_id_size(const struct btf *btf, 1967 u32 *type_id, u32 *ret_size) 1968 { 1969 const struct btf_type *size_type; 1970 u32 size_type_id = *type_id; 1971 u32 size = 0; 1972 1973 size_type = btf_type_by_id(btf, size_type_id); 1974 if (btf_type_nosize_or_null(size_type)) 1975 return NULL; 1976 1977 if (btf_type_has_size(size_type)) { 1978 size = size_type->size; 1979 } else if (btf_type_is_array(size_type)) { 1980 size = btf_resolved_type_size(btf, size_type_id); 1981 } else if (btf_type_is_ptr(size_type)) { 1982 size = sizeof(void *); 1983 } else { 1984 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) && 1985 !btf_type_is_var(size_type))) 1986 return NULL; 1987 1988 size_type_id = btf_resolved_type_id(btf, size_type_id); 1989 size_type = btf_type_by_id(btf, size_type_id); 1990 if (btf_type_nosize_or_null(size_type)) 1991 return NULL; 1992 else if (btf_type_has_size(size_type)) 1993 size = size_type->size; 1994 else if (btf_type_is_array(size_type)) 1995 size = btf_resolved_type_size(btf, size_type_id); 1996 else if (btf_type_is_ptr(size_type)) 1997 size = sizeof(void *); 1998 else 1999 return NULL; 2000 } 2001 2002 *type_id = size_type_id; 2003 if (ret_size) 2004 *ret_size = size; 2005 2006 return size_type; 2007 } 2008 2009 static int btf_df_check_member(struct btf_verifier_env *env, 2010 const struct btf_type *struct_type, 2011 const struct btf_member *member, 2012 const struct btf_type *member_type) 2013 { 2014 btf_verifier_log_basic(env, struct_type, 2015 "Unsupported check_member"); 2016 return -EINVAL; 2017 } 2018 2019 static int btf_df_check_kflag_member(struct btf_verifier_env *env, 2020 const struct btf_type *struct_type, 2021 const struct btf_member *member, 2022 const struct btf_type *member_type) 2023 { 2024 btf_verifier_log_basic(env, struct_type, 2025 "Unsupported check_kflag_member"); 2026 return -EINVAL; 2027 } 2028 2029 /* Used for ptr, array struct/union and float type members. 2030 * int, enum and modifier types have their specific callback functions. 2031 */ 2032 static int btf_generic_check_kflag_member(struct btf_verifier_env *env, 2033 const struct btf_type *struct_type, 2034 const struct btf_member *member, 2035 const struct btf_type *member_type) 2036 { 2037 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) { 2038 btf_verifier_log_member(env, struct_type, member, 2039 "Invalid member bitfield_size"); 2040 return -EINVAL; 2041 } 2042 2043 /* bitfield size is 0, so member->offset represents bit offset only. 2044 * It is safe to call non kflag check_member variants. 2045 */ 2046 return btf_type_ops(member_type)->check_member(env, struct_type, 2047 member, 2048 member_type); 2049 } 2050 2051 static int btf_df_resolve(struct btf_verifier_env *env, 2052 const struct resolve_vertex *v) 2053 { 2054 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 2055 return -EINVAL; 2056 } 2057 2058 static void btf_df_show(const struct btf *btf, const struct btf_type *t, 2059 u32 type_id, void *data, u8 bits_offsets, 2060 struct btf_show *show) 2061 { 2062 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 2063 } 2064 2065 static int btf_int_check_member(struct btf_verifier_env *env, 2066 const struct btf_type *struct_type, 2067 const struct btf_member *member, 2068 const struct btf_type *member_type) 2069 { 2070 u32 int_data = btf_type_int(member_type); 2071 u32 struct_bits_off = member->offset; 2072 u32 struct_size = struct_type->size; 2073 u32 nr_copy_bits; 2074 u32 bytes_offset; 2075 2076 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 2077 btf_verifier_log_member(env, struct_type, member, 2078 "bits_offset exceeds U32_MAX"); 2079 return -EINVAL; 2080 } 2081 2082 struct_bits_off += BTF_INT_OFFSET(int_data); 2083 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2084 nr_copy_bits = BTF_INT_BITS(int_data) + 2085 BITS_PER_BYTE_MASKED(struct_bits_off); 2086 2087 if (nr_copy_bits > BITS_PER_U128) { 2088 btf_verifier_log_member(env, struct_type, member, 2089 "nr_copy_bits exceeds 128"); 2090 return -EINVAL; 2091 } 2092 2093 if (struct_size < bytes_offset || 2094 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2095 btf_verifier_log_member(env, struct_type, member, 2096 "Member exceeds struct_size"); 2097 return -EINVAL; 2098 } 2099 2100 return 0; 2101 } 2102 2103 static int btf_int_check_kflag_member(struct btf_verifier_env *env, 2104 const struct btf_type *struct_type, 2105 const struct btf_member *member, 2106 const struct btf_type *member_type) 2107 { 2108 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset; 2109 u32 int_data = btf_type_int(member_type); 2110 u32 struct_size = struct_type->size; 2111 u32 nr_copy_bits; 2112 2113 /* a regular int type is required for the kflag int member */ 2114 if (!btf_type_int_is_regular(member_type)) { 2115 btf_verifier_log_member(env, struct_type, member, 2116 "Invalid member base type"); 2117 return -EINVAL; 2118 } 2119 2120 /* check sanity of bitfield size */ 2121 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 2122 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 2123 nr_int_data_bits = BTF_INT_BITS(int_data); 2124 if (!nr_bits) { 2125 /* Not a bitfield member, member offset must be at byte 2126 * boundary. 2127 */ 2128 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2129 btf_verifier_log_member(env, struct_type, member, 2130 "Invalid member offset"); 2131 return -EINVAL; 2132 } 2133 2134 nr_bits = nr_int_data_bits; 2135 } else if (nr_bits > nr_int_data_bits) { 2136 btf_verifier_log_member(env, struct_type, member, 2137 "Invalid member bitfield_size"); 2138 return -EINVAL; 2139 } 2140 2141 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2142 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off); 2143 if (nr_copy_bits > BITS_PER_U128) { 2144 btf_verifier_log_member(env, struct_type, member, 2145 "nr_copy_bits exceeds 128"); 2146 return -EINVAL; 2147 } 2148 2149 if (struct_size < bytes_offset || 2150 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 2151 btf_verifier_log_member(env, struct_type, member, 2152 "Member exceeds struct_size"); 2153 return -EINVAL; 2154 } 2155 2156 return 0; 2157 } 2158 2159 static s32 btf_int_check_meta(struct btf_verifier_env *env, 2160 const struct btf_type *t, 2161 u32 meta_left) 2162 { 2163 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 2164 u16 encoding; 2165 2166 if (meta_left < meta_needed) { 2167 btf_verifier_log_basic(env, t, 2168 "meta_left:%u meta_needed:%u", 2169 meta_left, meta_needed); 2170 return -EINVAL; 2171 } 2172 2173 if (btf_type_vlen(t)) { 2174 btf_verifier_log_type(env, t, "vlen != 0"); 2175 return -EINVAL; 2176 } 2177 2178 if (btf_type_kflag(t)) { 2179 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2180 return -EINVAL; 2181 } 2182 2183 int_data = btf_type_int(t); 2184 if (int_data & ~BTF_INT_MASK) { 2185 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 2186 int_data); 2187 return -EINVAL; 2188 } 2189 2190 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 2191 2192 if (nr_bits > BITS_PER_U128) { 2193 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 2194 BITS_PER_U128); 2195 return -EINVAL; 2196 } 2197 2198 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 2199 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 2200 return -EINVAL; 2201 } 2202 2203 /* 2204 * Only one of the encoding bits is allowed and it 2205 * should be sufficient for the pretty print purpose (i.e. decoding). 2206 * Multiple bits can be allowed later if it is found 2207 * to be insufficient. 2208 */ 2209 encoding = BTF_INT_ENCODING(int_data); 2210 if (encoding && 2211 encoding != BTF_INT_SIGNED && 2212 encoding != BTF_INT_CHAR && 2213 encoding != BTF_INT_BOOL) { 2214 btf_verifier_log_type(env, t, "Unsupported encoding"); 2215 return -ENOTSUPP; 2216 } 2217 2218 btf_verifier_log_type(env, t, NULL); 2219 2220 return meta_needed; 2221 } 2222 2223 static void btf_int_log(struct btf_verifier_env *env, 2224 const struct btf_type *t) 2225 { 2226 int int_data = btf_type_int(t); 2227 2228 btf_verifier_log(env, 2229 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 2230 t->size, BTF_INT_OFFSET(int_data), 2231 BTF_INT_BITS(int_data), 2232 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 2233 } 2234 2235 static void btf_int128_print(struct btf_show *show, void *data) 2236 { 2237 /* data points to a __int128 number. 2238 * Suppose 2239 * int128_num = *(__int128 *)data; 2240 * The below formulas shows what upper_num and lower_num represents: 2241 * upper_num = int128_num >> 64; 2242 * lower_num = int128_num & 0xffffffffFFFFFFFFULL; 2243 */ 2244 u64 upper_num, lower_num; 2245 2246 #ifdef __BIG_ENDIAN_BITFIELD 2247 upper_num = *(u64 *)data; 2248 lower_num = *(u64 *)(data + 8); 2249 #else 2250 upper_num = *(u64 *)(data + 8); 2251 lower_num = *(u64 *)data; 2252 #endif 2253 if (upper_num == 0) 2254 btf_show_type_value(show, "0x%llx", lower_num); 2255 else 2256 btf_show_type_values(show, "0x%llx%016llx", upper_num, 2257 lower_num); 2258 } 2259 2260 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits, 2261 u16 right_shift_bits) 2262 { 2263 u64 upper_num, lower_num; 2264 2265 #ifdef __BIG_ENDIAN_BITFIELD 2266 upper_num = print_num[0]; 2267 lower_num = print_num[1]; 2268 #else 2269 upper_num = print_num[1]; 2270 lower_num = print_num[0]; 2271 #endif 2272 2273 /* shake out un-needed bits by shift/or operations */ 2274 if (left_shift_bits >= 64) { 2275 upper_num = lower_num << (left_shift_bits - 64); 2276 lower_num = 0; 2277 } else { 2278 upper_num = (upper_num << left_shift_bits) | 2279 (lower_num >> (64 - left_shift_bits)); 2280 lower_num = lower_num << left_shift_bits; 2281 } 2282 2283 if (right_shift_bits >= 64) { 2284 lower_num = upper_num >> (right_shift_bits - 64); 2285 upper_num = 0; 2286 } else { 2287 lower_num = (lower_num >> right_shift_bits) | 2288 (upper_num << (64 - right_shift_bits)); 2289 upper_num = upper_num >> right_shift_bits; 2290 } 2291 2292 #ifdef __BIG_ENDIAN_BITFIELD 2293 print_num[0] = upper_num; 2294 print_num[1] = lower_num; 2295 #else 2296 print_num[0] = lower_num; 2297 print_num[1] = upper_num; 2298 #endif 2299 } 2300 2301 static void btf_bitfield_show(void *data, u8 bits_offset, 2302 u8 nr_bits, struct btf_show *show) 2303 { 2304 u16 left_shift_bits, right_shift_bits; 2305 u8 nr_copy_bytes; 2306 u8 nr_copy_bits; 2307 u64 print_num[2] = {}; 2308 2309 nr_copy_bits = nr_bits + bits_offset; 2310 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 2311 2312 memcpy(print_num, data, nr_copy_bytes); 2313 2314 #ifdef __BIG_ENDIAN_BITFIELD 2315 left_shift_bits = bits_offset; 2316 #else 2317 left_shift_bits = BITS_PER_U128 - nr_copy_bits; 2318 #endif 2319 right_shift_bits = BITS_PER_U128 - nr_bits; 2320 2321 btf_int128_shift(print_num, left_shift_bits, right_shift_bits); 2322 btf_int128_print(show, print_num); 2323 } 2324 2325 2326 static void btf_int_bits_show(const struct btf *btf, 2327 const struct btf_type *t, 2328 void *data, u8 bits_offset, 2329 struct btf_show *show) 2330 { 2331 u32 int_data = btf_type_int(t); 2332 u8 nr_bits = BTF_INT_BITS(int_data); 2333 u8 total_bits_offset; 2334 2335 /* 2336 * bits_offset is at most 7. 2337 * BTF_INT_OFFSET() cannot exceed 128 bits. 2338 */ 2339 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 2340 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 2341 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 2342 btf_bitfield_show(data, bits_offset, nr_bits, show); 2343 } 2344 2345 static void btf_int_show(const struct btf *btf, const struct btf_type *t, 2346 u32 type_id, void *data, u8 bits_offset, 2347 struct btf_show *show) 2348 { 2349 u32 int_data = btf_type_int(t); 2350 u8 encoding = BTF_INT_ENCODING(int_data); 2351 bool sign = encoding & BTF_INT_SIGNED; 2352 u8 nr_bits = BTF_INT_BITS(int_data); 2353 void *safe_data; 2354 2355 safe_data = btf_show_start_type(show, t, type_id, data); 2356 if (!safe_data) 2357 return; 2358 2359 if (bits_offset || BTF_INT_OFFSET(int_data) || 2360 BITS_PER_BYTE_MASKED(nr_bits)) { 2361 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2362 goto out; 2363 } 2364 2365 switch (nr_bits) { 2366 case 128: 2367 btf_int128_print(show, safe_data); 2368 break; 2369 case 64: 2370 if (sign) 2371 btf_show_type_value(show, "%lld", *(s64 *)safe_data); 2372 else 2373 btf_show_type_value(show, "%llu", *(u64 *)safe_data); 2374 break; 2375 case 32: 2376 if (sign) 2377 btf_show_type_value(show, "%d", *(s32 *)safe_data); 2378 else 2379 btf_show_type_value(show, "%u", *(u32 *)safe_data); 2380 break; 2381 case 16: 2382 if (sign) 2383 btf_show_type_value(show, "%d", *(s16 *)safe_data); 2384 else 2385 btf_show_type_value(show, "%u", *(u16 *)safe_data); 2386 break; 2387 case 8: 2388 if (show->state.array_encoding == BTF_INT_CHAR) { 2389 /* check for null terminator */ 2390 if (show->state.array_terminated) 2391 break; 2392 if (*(char *)data == '\0') { 2393 show->state.array_terminated = 1; 2394 break; 2395 } 2396 if (isprint(*(char *)data)) { 2397 btf_show_type_value(show, "'%c'", 2398 *(char *)safe_data); 2399 break; 2400 } 2401 } 2402 if (sign) 2403 btf_show_type_value(show, "%d", *(s8 *)safe_data); 2404 else 2405 btf_show_type_value(show, "%u", *(u8 *)safe_data); 2406 break; 2407 default: 2408 btf_int_bits_show(btf, t, safe_data, bits_offset, show); 2409 break; 2410 } 2411 out: 2412 btf_show_end_type(show); 2413 } 2414 2415 static const struct btf_kind_operations int_ops = { 2416 .check_meta = btf_int_check_meta, 2417 .resolve = btf_df_resolve, 2418 .check_member = btf_int_check_member, 2419 .check_kflag_member = btf_int_check_kflag_member, 2420 .log_details = btf_int_log, 2421 .show = btf_int_show, 2422 }; 2423 2424 static int btf_modifier_check_member(struct btf_verifier_env *env, 2425 const struct btf_type *struct_type, 2426 const struct btf_member *member, 2427 const struct btf_type *member_type) 2428 { 2429 const struct btf_type *resolved_type; 2430 u32 resolved_type_id = member->type; 2431 struct btf_member resolved_member; 2432 struct btf *btf = env->btf; 2433 2434 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2435 if (!resolved_type) { 2436 btf_verifier_log_member(env, struct_type, member, 2437 "Invalid member"); 2438 return -EINVAL; 2439 } 2440 2441 resolved_member = *member; 2442 resolved_member.type = resolved_type_id; 2443 2444 return btf_type_ops(resolved_type)->check_member(env, struct_type, 2445 &resolved_member, 2446 resolved_type); 2447 } 2448 2449 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env, 2450 const struct btf_type *struct_type, 2451 const struct btf_member *member, 2452 const struct btf_type *member_type) 2453 { 2454 const struct btf_type *resolved_type; 2455 u32 resolved_type_id = member->type; 2456 struct btf_member resolved_member; 2457 struct btf *btf = env->btf; 2458 2459 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 2460 if (!resolved_type) { 2461 btf_verifier_log_member(env, struct_type, member, 2462 "Invalid member"); 2463 return -EINVAL; 2464 } 2465 2466 resolved_member = *member; 2467 resolved_member.type = resolved_type_id; 2468 2469 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type, 2470 &resolved_member, 2471 resolved_type); 2472 } 2473 2474 static int btf_ptr_check_member(struct btf_verifier_env *env, 2475 const struct btf_type *struct_type, 2476 const struct btf_member *member, 2477 const struct btf_type *member_type) 2478 { 2479 u32 struct_size, struct_bits_off, bytes_offset; 2480 2481 struct_size = struct_type->size; 2482 struct_bits_off = member->offset; 2483 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2484 2485 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2486 btf_verifier_log_member(env, struct_type, member, 2487 "Member is not byte aligned"); 2488 return -EINVAL; 2489 } 2490 2491 if (struct_size - bytes_offset < sizeof(void *)) { 2492 btf_verifier_log_member(env, struct_type, member, 2493 "Member exceeds struct_size"); 2494 return -EINVAL; 2495 } 2496 2497 return 0; 2498 } 2499 2500 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 2501 const struct btf_type *t, 2502 u32 meta_left) 2503 { 2504 const char *value; 2505 2506 if (btf_type_vlen(t)) { 2507 btf_verifier_log_type(env, t, "vlen != 0"); 2508 return -EINVAL; 2509 } 2510 2511 if (btf_type_kflag(t)) { 2512 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2513 return -EINVAL; 2514 } 2515 2516 if (!BTF_TYPE_ID_VALID(t->type)) { 2517 btf_verifier_log_type(env, t, "Invalid type_id"); 2518 return -EINVAL; 2519 } 2520 2521 /* typedef/type_tag type must have a valid name, and other ref types, 2522 * volatile, const, restrict, should have a null name. 2523 */ 2524 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 2525 if (!t->name_off || 2526 !btf_name_valid_identifier(env->btf, t->name_off)) { 2527 btf_verifier_log_type(env, t, "Invalid name"); 2528 return -EINVAL; 2529 } 2530 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) { 2531 value = btf_name_by_offset(env->btf, t->name_off); 2532 if (!value || !value[0]) { 2533 btf_verifier_log_type(env, t, "Invalid name"); 2534 return -EINVAL; 2535 } 2536 } else { 2537 if (t->name_off) { 2538 btf_verifier_log_type(env, t, "Invalid name"); 2539 return -EINVAL; 2540 } 2541 } 2542 2543 btf_verifier_log_type(env, t, NULL); 2544 2545 return 0; 2546 } 2547 2548 static int btf_modifier_resolve(struct btf_verifier_env *env, 2549 const struct resolve_vertex *v) 2550 { 2551 const struct btf_type *t = v->t; 2552 const struct btf_type *next_type; 2553 u32 next_type_id = t->type; 2554 struct btf *btf = env->btf; 2555 2556 next_type = btf_type_by_id(btf, next_type_id); 2557 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2558 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2559 return -EINVAL; 2560 } 2561 2562 if (!env_type_is_resolve_sink(env, next_type) && 2563 !env_type_is_resolved(env, next_type_id)) 2564 return env_stack_push(env, next_type, next_type_id); 2565 2566 /* Figure out the resolved next_type_id with size. 2567 * They will be stored in the current modifier's 2568 * resolved_ids and resolved_sizes such that it can 2569 * save us a few type-following when we use it later (e.g. in 2570 * pretty print). 2571 */ 2572 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2573 if (env_type_is_resolved(env, next_type_id)) 2574 next_type = btf_type_id_resolve(btf, &next_type_id); 2575 2576 /* "typedef void new_void", "const void"...etc */ 2577 if (!btf_type_is_void(next_type) && 2578 !btf_type_is_fwd(next_type) && 2579 !btf_type_is_func_proto(next_type)) { 2580 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2581 return -EINVAL; 2582 } 2583 } 2584 2585 env_stack_pop_resolved(env, next_type_id, 0); 2586 2587 return 0; 2588 } 2589 2590 static int btf_var_resolve(struct btf_verifier_env *env, 2591 const struct resolve_vertex *v) 2592 { 2593 const struct btf_type *next_type; 2594 const struct btf_type *t = v->t; 2595 u32 next_type_id = t->type; 2596 struct btf *btf = env->btf; 2597 2598 next_type = btf_type_by_id(btf, next_type_id); 2599 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2600 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2601 return -EINVAL; 2602 } 2603 2604 if (!env_type_is_resolve_sink(env, next_type) && 2605 !env_type_is_resolved(env, next_type_id)) 2606 return env_stack_push(env, next_type, next_type_id); 2607 2608 if (btf_type_is_modifier(next_type)) { 2609 const struct btf_type *resolved_type; 2610 u32 resolved_type_id; 2611 2612 resolved_type_id = next_type_id; 2613 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2614 2615 if (btf_type_is_ptr(resolved_type) && 2616 !env_type_is_resolve_sink(env, resolved_type) && 2617 !env_type_is_resolved(env, resolved_type_id)) 2618 return env_stack_push(env, resolved_type, 2619 resolved_type_id); 2620 } 2621 2622 /* We must resolve to something concrete at this point, no 2623 * forward types or similar that would resolve to size of 2624 * zero is allowed. 2625 */ 2626 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2627 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2628 return -EINVAL; 2629 } 2630 2631 env_stack_pop_resolved(env, next_type_id, 0); 2632 2633 return 0; 2634 } 2635 2636 static int btf_ptr_resolve(struct btf_verifier_env *env, 2637 const struct resolve_vertex *v) 2638 { 2639 const struct btf_type *next_type; 2640 const struct btf_type *t = v->t; 2641 u32 next_type_id = t->type; 2642 struct btf *btf = env->btf; 2643 2644 next_type = btf_type_by_id(btf, next_type_id); 2645 if (!next_type || btf_type_is_resolve_source_only(next_type)) { 2646 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2647 return -EINVAL; 2648 } 2649 2650 if (!env_type_is_resolve_sink(env, next_type) && 2651 !env_type_is_resolved(env, next_type_id)) 2652 return env_stack_push(env, next_type, next_type_id); 2653 2654 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 2655 * the modifier may have stopped resolving when it was resolved 2656 * to a ptr (last-resolved-ptr). 2657 * 2658 * We now need to continue from the last-resolved-ptr to 2659 * ensure the last-resolved-ptr will not referring back to 2660 * the current ptr (t). 2661 */ 2662 if (btf_type_is_modifier(next_type)) { 2663 const struct btf_type *resolved_type; 2664 u32 resolved_type_id; 2665 2666 resolved_type_id = next_type_id; 2667 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 2668 2669 if (btf_type_is_ptr(resolved_type) && 2670 !env_type_is_resolve_sink(env, resolved_type) && 2671 !env_type_is_resolved(env, resolved_type_id)) 2672 return env_stack_push(env, resolved_type, 2673 resolved_type_id); 2674 } 2675 2676 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 2677 if (env_type_is_resolved(env, next_type_id)) 2678 next_type = btf_type_id_resolve(btf, &next_type_id); 2679 2680 if (!btf_type_is_void(next_type) && 2681 !btf_type_is_fwd(next_type) && 2682 !btf_type_is_func_proto(next_type)) { 2683 btf_verifier_log_type(env, v->t, "Invalid type_id"); 2684 return -EINVAL; 2685 } 2686 } 2687 2688 env_stack_pop_resolved(env, next_type_id, 0); 2689 2690 return 0; 2691 } 2692 2693 static void btf_modifier_show(const struct btf *btf, 2694 const struct btf_type *t, 2695 u32 type_id, void *data, 2696 u8 bits_offset, struct btf_show *show) 2697 { 2698 if (btf->resolved_ids) 2699 t = btf_type_id_resolve(btf, &type_id); 2700 else 2701 t = btf_type_skip_modifiers(btf, type_id, NULL); 2702 2703 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2704 } 2705 2706 static void btf_var_show(const struct btf *btf, const struct btf_type *t, 2707 u32 type_id, void *data, u8 bits_offset, 2708 struct btf_show *show) 2709 { 2710 t = btf_type_id_resolve(btf, &type_id); 2711 2712 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show); 2713 } 2714 2715 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t, 2716 u32 type_id, void *data, u8 bits_offset, 2717 struct btf_show *show) 2718 { 2719 void *safe_data; 2720 2721 safe_data = btf_show_start_type(show, t, type_id, data); 2722 if (!safe_data) 2723 return; 2724 2725 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */ 2726 if (show->flags & BTF_SHOW_PTR_RAW) 2727 btf_show_type_value(show, "0x%px", *(void **)safe_data); 2728 else 2729 btf_show_type_value(show, "0x%p", *(void **)safe_data); 2730 btf_show_end_type(show); 2731 } 2732 2733 static void btf_ref_type_log(struct btf_verifier_env *env, 2734 const struct btf_type *t) 2735 { 2736 btf_verifier_log(env, "type_id=%u", t->type); 2737 } 2738 2739 static struct btf_kind_operations modifier_ops = { 2740 .check_meta = btf_ref_type_check_meta, 2741 .resolve = btf_modifier_resolve, 2742 .check_member = btf_modifier_check_member, 2743 .check_kflag_member = btf_modifier_check_kflag_member, 2744 .log_details = btf_ref_type_log, 2745 .show = btf_modifier_show, 2746 }; 2747 2748 static struct btf_kind_operations ptr_ops = { 2749 .check_meta = btf_ref_type_check_meta, 2750 .resolve = btf_ptr_resolve, 2751 .check_member = btf_ptr_check_member, 2752 .check_kflag_member = btf_generic_check_kflag_member, 2753 .log_details = btf_ref_type_log, 2754 .show = btf_ptr_show, 2755 }; 2756 2757 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 2758 const struct btf_type *t, 2759 u32 meta_left) 2760 { 2761 if (btf_type_vlen(t)) { 2762 btf_verifier_log_type(env, t, "vlen != 0"); 2763 return -EINVAL; 2764 } 2765 2766 if (t->type) { 2767 btf_verifier_log_type(env, t, "type != 0"); 2768 return -EINVAL; 2769 } 2770 2771 /* fwd type must have a valid name */ 2772 if (!t->name_off || 2773 !btf_name_valid_identifier(env->btf, t->name_off)) { 2774 btf_verifier_log_type(env, t, "Invalid name"); 2775 return -EINVAL; 2776 } 2777 2778 btf_verifier_log_type(env, t, NULL); 2779 2780 return 0; 2781 } 2782 2783 static void btf_fwd_type_log(struct btf_verifier_env *env, 2784 const struct btf_type *t) 2785 { 2786 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct"); 2787 } 2788 2789 static struct btf_kind_operations fwd_ops = { 2790 .check_meta = btf_fwd_check_meta, 2791 .resolve = btf_df_resolve, 2792 .check_member = btf_df_check_member, 2793 .check_kflag_member = btf_df_check_kflag_member, 2794 .log_details = btf_fwd_type_log, 2795 .show = btf_df_show, 2796 }; 2797 2798 static int btf_array_check_member(struct btf_verifier_env *env, 2799 const struct btf_type *struct_type, 2800 const struct btf_member *member, 2801 const struct btf_type *member_type) 2802 { 2803 u32 struct_bits_off = member->offset; 2804 u32 struct_size, bytes_offset; 2805 u32 array_type_id, array_size; 2806 struct btf *btf = env->btf; 2807 2808 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 2809 btf_verifier_log_member(env, struct_type, member, 2810 "Member is not byte aligned"); 2811 return -EINVAL; 2812 } 2813 2814 array_type_id = member->type; 2815 btf_type_id_size(btf, &array_type_id, &array_size); 2816 struct_size = struct_type->size; 2817 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 2818 if (struct_size - bytes_offset < array_size) { 2819 btf_verifier_log_member(env, struct_type, member, 2820 "Member exceeds struct_size"); 2821 return -EINVAL; 2822 } 2823 2824 return 0; 2825 } 2826 2827 static s32 btf_array_check_meta(struct btf_verifier_env *env, 2828 const struct btf_type *t, 2829 u32 meta_left) 2830 { 2831 const struct btf_array *array = btf_type_array(t); 2832 u32 meta_needed = sizeof(*array); 2833 2834 if (meta_left < meta_needed) { 2835 btf_verifier_log_basic(env, t, 2836 "meta_left:%u meta_needed:%u", 2837 meta_left, meta_needed); 2838 return -EINVAL; 2839 } 2840 2841 /* array type should not have a name */ 2842 if (t->name_off) { 2843 btf_verifier_log_type(env, t, "Invalid name"); 2844 return -EINVAL; 2845 } 2846 2847 if (btf_type_vlen(t)) { 2848 btf_verifier_log_type(env, t, "vlen != 0"); 2849 return -EINVAL; 2850 } 2851 2852 if (btf_type_kflag(t)) { 2853 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 2854 return -EINVAL; 2855 } 2856 2857 if (t->size) { 2858 btf_verifier_log_type(env, t, "size != 0"); 2859 return -EINVAL; 2860 } 2861 2862 /* Array elem type and index type cannot be in type void, 2863 * so !array->type and !array->index_type are not allowed. 2864 */ 2865 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 2866 btf_verifier_log_type(env, t, "Invalid elem"); 2867 return -EINVAL; 2868 } 2869 2870 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 2871 btf_verifier_log_type(env, t, "Invalid index"); 2872 return -EINVAL; 2873 } 2874 2875 btf_verifier_log_type(env, t, NULL); 2876 2877 return meta_needed; 2878 } 2879 2880 static int btf_array_resolve(struct btf_verifier_env *env, 2881 const struct resolve_vertex *v) 2882 { 2883 const struct btf_array *array = btf_type_array(v->t); 2884 const struct btf_type *elem_type, *index_type; 2885 u32 elem_type_id, index_type_id; 2886 struct btf *btf = env->btf; 2887 u32 elem_size; 2888 2889 /* Check array->index_type */ 2890 index_type_id = array->index_type; 2891 index_type = btf_type_by_id(btf, index_type_id); 2892 if (btf_type_nosize_or_null(index_type) || 2893 btf_type_is_resolve_source_only(index_type)) { 2894 btf_verifier_log_type(env, v->t, "Invalid index"); 2895 return -EINVAL; 2896 } 2897 2898 if (!env_type_is_resolve_sink(env, index_type) && 2899 !env_type_is_resolved(env, index_type_id)) 2900 return env_stack_push(env, index_type, index_type_id); 2901 2902 index_type = btf_type_id_size(btf, &index_type_id, NULL); 2903 if (!index_type || !btf_type_is_int(index_type) || 2904 !btf_type_int_is_regular(index_type)) { 2905 btf_verifier_log_type(env, v->t, "Invalid index"); 2906 return -EINVAL; 2907 } 2908 2909 /* Check array->type */ 2910 elem_type_id = array->type; 2911 elem_type = btf_type_by_id(btf, elem_type_id); 2912 if (btf_type_nosize_or_null(elem_type) || 2913 btf_type_is_resolve_source_only(elem_type)) { 2914 btf_verifier_log_type(env, v->t, 2915 "Invalid elem"); 2916 return -EINVAL; 2917 } 2918 2919 if (!env_type_is_resolve_sink(env, elem_type) && 2920 !env_type_is_resolved(env, elem_type_id)) 2921 return env_stack_push(env, elem_type, elem_type_id); 2922 2923 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2924 if (!elem_type) { 2925 btf_verifier_log_type(env, v->t, "Invalid elem"); 2926 return -EINVAL; 2927 } 2928 2929 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 2930 btf_verifier_log_type(env, v->t, "Invalid array of int"); 2931 return -EINVAL; 2932 } 2933 2934 if (array->nelems && elem_size > U32_MAX / array->nelems) { 2935 btf_verifier_log_type(env, v->t, 2936 "Array size overflows U32_MAX"); 2937 return -EINVAL; 2938 } 2939 2940 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 2941 2942 return 0; 2943 } 2944 2945 static void btf_array_log(struct btf_verifier_env *env, 2946 const struct btf_type *t) 2947 { 2948 const struct btf_array *array = btf_type_array(t); 2949 2950 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 2951 array->type, array->index_type, array->nelems); 2952 } 2953 2954 static void __btf_array_show(const struct btf *btf, const struct btf_type *t, 2955 u32 type_id, void *data, u8 bits_offset, 2956 struct btf_show *show) 2957 { 2958 const struct btf_array *array = btf_type_array(t); 2959 const struct btf_kind_operations *elem_ops; 2960 const struct btf_type *elem_type; 2961 u32 i, elem_size = 0, elem_type_id; 2962 u16 encoding = 0; 2963 2964 elem_type_id = array->type; 2965 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL); 2966 if (elem_type && btf_type_has_size(elem_type)) 2967 elem_size = elem_type->size; 2968 2969 if (elem_type && btf_type_is_int(elem_type)) { 2970 u32 int_type = btf_type_int(elem_type); 2971 2972 encoding = BTF_INT_ENCODING(int_type); 2973 2974 /* 2975 * BTF_INT_CHAR encoding never seems to be set for 2976 * char arrays, so if size is 1 and element is 2977 * printable as a char, we'll do that. 2978 */ 2979 if (elem_size == 1) 2980 encoding = BTF_INT_CHAR; 2981 } 2982 2983 if (!btf_show_start_array_type(show, t, type_id, encoding, data)) 2984 return; 2985 2986 if (!elem_type) 2987 goto out; 2988 elem_ops = btf_type_ops(elem_type); 2989 2990 for (i = 0; i < array->nelems; i++) { 2991 2992 btf_show_start_array_member(show); 2993 2994 elem_ops->show(btf, elem_type, elem_type_id, data, 2995 bits_offset, show); 2996 data += elem_size; 2997 2998 btf_show_end_array_member(show); 2999 3000 if (show->state.array_terminated) 3001 break; 3002 } 3003 out: 3004 btf_show_end_array_type(show); 3005 } 3006 3007 static void btf_array_show(const struct btf *btf, const struct btf_type *t, 3008 u32 type_id, void *data, u8 bits_offset, 3009 struct btf_show *show) 3010 { 3011 const struct btf_member *m = show->state.member; 3012 3013 /* 3014 * First check if any members would be shown (are non-zero). 3015 * See comments above "struct btf_show" definition for more 3016 * details on how this works at a high-level. 3017 */ 3018 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3019 if (!show->state.depth_check) { 3020 show->state.depth_check = show->state.depth + 1; 3021 show->state.depth_to_show = 0; 3022 } 3023 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3024 show->state.member = m; 3025 3026 if (show->state.depth_check != show->state.depth + 1) 3027 return; 3028 show->state.depth_check = 0; 3029 3030 if (show->state.depth_to_show <= show->state.depth) 3031 return; 3032 /* 3033 * Reaching here indicates we have recursed and found 3034 * non-zero array member(s). 3035 */ 3036 } 3037 __btf_array_show(btf, t, type_id, data, bits_offset, show); 3038 } 3039 3040 static struct btf_kind_operations array_ops = { 3041 .check_meta = btf_array_check_meta, 3042 .resolve = btf_array_resolve, 3043 .check_member = btf_array_check_member, 3044 .check_kflag_member = btf_generic_check_kflag_member, 3045 .log_details = btf_array_log, 3046 .show = btf_array_show, 3047 }; 3048 3049 static int btf_struct_check_member(struct btf_verifier_env *env, 3050 const struct btf_type *struct_type, 3051 const struct btf_member *member, 3052 const struct btf_type *member_type) 3053 { 3054 u32 struct_bits_off = member->offset; 3055 u32 struct_size, bytes_offset; 3056 3057 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3058 btf_verifier_log_member(env, struct_type, member, 3059 "Member is not byte aligned"); 3060 return -EINVAL; 3061 } 3062 3063 struct_size = struct_type->size; 3064 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 3065 if (struct_size - bytes_offset < member_type->size) { 3066 btf_verifier_log_member(env, struct_type, member, 3067 "Member exceeds struct_size"); 3068 return -EINVAL; 3069 } 3070 3071 return 0; 3072 } 3073 3074 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 3075 const struct btf_type *t, 3076 u32 meta_left) 3077 { 3078 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 3079 const struct btf_member *member; 3080 u32 meta_needed, last_offset; 3081 struct btf *btf = env->btf; 3082 u32 struct_size = t->size; 3083 u32 offset; 3084 u16 i; 3085 3086 meta_needed = btf_type_vlen(t) * sizeof(*member); 3087 if (meta_left < meta_needed) { 3088 btf_verifier_log_basic(env, t, 3089 "meta_left:%u meta_needed:%u", 3090 meta_left, meta_needed); 3091 return -EINVAL; 3092 } 3093 3094 /* struct type either no name or a valid one */ 3095 if (t->name_off && 3096 !btf_name_valid_identifier(env->btf, t->name_off)) { 3097 btf_verifier_log_type(env, t, "Invalid name"); 3098 return -EINVAL; 3099 } 3100 3101 btf_verifier_log_type(env, t, NULL); 3102 3103 last_offset = 0; 3104 for_each_member(i, t, member) { 3105 if (!btf_name_offset_valid(btf, member->name_off)) { 3106 btf_verifier_log_member(env, t, member, 3107 "Invalid member name_offset:%u", 3108 member->name_off); 3109 return -EINVAL; 3110 } 3111 3112 /* struct member either no name or a valid one */ 3113 if (member->name_off && 3114 !btf_name_valid_identifier(btf, member->name_off)) { 3115 btf_verifier_log_member(env, t, member, "Invalid name"); 3116 return -EINVAL; 3117 } 3118 /* A member cannot be in type void */ 3119 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 3120 btf_verifier_log_member(env, t, member, 3121 "Invalid type_id"); 3122 return -EINVAL; 3123 } 3124 3125 offset = __btf_member_bit_offset(t, member); 3126 if (is_union && offset) { 3127 btf_verifier_log_member(env, t, member, 3128 "Invalid member bits_offset"); 3129 return -EINVAL; 3130 } 3131 3132 /* 3133 * ">" instead of ">=" because the last member could be 3134 * "char a[0];" 3135 */ 3136 if (last_offset > offset) { 3137 btf_verifier_log_member(env, t, member, 3138 "Invalid member bits_offset"); 3139 return -EINVAL; 3140 } 3141 3142 if (BITS_ROUNDUP_BYTES(offset) > struct_size) { 3143 btf_verifier_log_member(env, t, member, 3144 "Member bits_offset exceeds its struct size"); 3145 return -EINVAL; 3146 } 3147 3148 btf_verifier_log_member(env, t, member, NULL); 3149 last_offset = offset; 3150 } 3151 3152 return meta_needed; 3153 } 3154 3155 static int btf_struct_resolve(struct btf_verifier_env *env, 3156 const struct resolve_vertex *v) 3157 { 3158 const struct btf_member *member; 3159 int err; 3160 u16 i; 3161 3162 /* Before continue resolving the next_member, 3163 * ensure the last member is indeed resolved to a 3164 * type with size info. 3165 */ 3166 if (v->next_member) { 3167 const struct btf_type *last_member_type; 3168 const struct btf_member *last_member; 3169 u32 last_member_type_id; 3170 3171 last_member = btf_type_member(v->t) + v->next_member - 1; 3172 last_member_type_id = last_member->type; 3173 if (WARN_ON_ONCE(!env_type_is_resolved(env, 3174 last_member_type_id))) 3175 return -EINVAL; 3176 3177 last_member_type = btf_type_by_id(env->btf, 3178 last_member_type_id); 3179 if (btf_type_kflag(v->t)) 3180 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t, 3181 last_member, 3182 last_member_type); 3183 else 3184 err = btf_type_ops(last_member_type)->check_member(env, v->t, 3185 last_member, 3186 last_member_type); 3187 if (err) 3188 return err; 3189 } 3190 3191 for_each_member_from(i, v->next_member, v->t, member) { 3192 u32 member_type_id = member->type; 3193 const struct btf_type *member_type = btf_type_by_id(env->btf, 3194 member_type_id); 3195 3196 if (btf_type_nosize_or_null(member_type) || 3197 btf_type_is_resolve_source_only(member_type)) { 3198 btf_verifier_log_member(env, v->t, member, 3199 "Invalid member"); 3200 return -EINVAL; 3201 } 3202 3203 if (!env_type_is_resolve_sink(env, member_type) && 3204 !env_type_is_resolved(env, member_type_id)) { 3205 env_stack_set_next_member(env, i + 1); 3206 return env_stack_push(env, member_type, member_type_id); 3207 } 3208 3209 if (btf_type_kflag(v->t)) 3210 err = btf_type_ops(member_type)->check_kflag_member(env, v->t, 3211 member, 3212 member_type); 3213 else 3214 err = btf_type_ops(member_type)->check_member(env, v->t, 3215 member, 3216 member_type); 3217 if (err) 3218 return err; 3219 } 3220 3221 env_stack_pop_resolved(env, 0, 0); 3222 3223 return 0; 3224 } 3225 3226 static void btf_struct_log(struct btf_verifier_env *env, 3227 const struct btf_type *t) 3228 { 3229 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 3230 } 3231 3232 enum { 3233 BTF_FIELD_IGNORE = 0, 3234 BTF_FIELD_FOUND = 1, 3235 }; 3236 3237 struct btf_field_info { 3238 enum btf_field_type type; 3239 u32 off; 3240 union { 3241 struct { 3242 u32 type_id; 3243 } kptr; 3244 struct { 3245 const char *node_name; 3246 u32 value_btf_id; 3247 } graph_root; 3248 }; 3249 }; 3250 3251 static int btf_find_struct(const struct btf *btf, const struct btf_type *t, 3252 u32 off, int sz, enum btf_field_type field_type, 3253 struct btf_field_info *info) 3254 { 3255 if (!__btf_type_is_struct(t)) 3256 return BTF_FIELD_IGNORE; 3257 if (t->size != sz) 3258 return BTF_FIELD_IGNORE; 3259 info->type = field_type; 3260 info->off = off; 3261 return BTF_FIELD_FOUND; 3262 } 3263 3264 static int btf_find_kptr(const struct btf *btf, const struct btf_type *t, 3265 u32 off, int sz, struct btf_field_info *info) 3266 { 3267 enum btf_field_type type; 3268 u32 res_id; 3269 3270 /* Permit modifiers on the pointer itself */ 3271 if (btf_type_is_volatile(t)) 3272 t = btf_type_by_id(btf, t->type); 3273 /* For PTR, sz is always == 8 */ 3274 if (!btf_type_is_ptr(t)) 3275 return BTF_FIELD_IGNORE; 3276 t = btf_type_by_id(btf, t->type); 3277 3278 if (!btf_type_is_type_tag(t)) 3279 return BTF_FIELD_IGNORE; 3280 /* Reject extra tags */ 3281 if (btf_type_is_type_tag(btf_type_by_id(btf, t->type))) 3282 return -EINVAL; 3283 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off))) 3284 type = BPF_KPTR_UNREF; 3285 else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off))) 3286 type = BPF_KPTR_REF; 3287 else 3288 return -EINVAL; 3289 3290 /* Get the base type */ 3291 t = btf_type_skip_modifiers(btf, t->type, &res_id); 3292 /* Only pointer to struct is allowed */ 3293 if (!__btf_type_is_struct(t)) 3294 return -EINVAL; 3295 3296 info->type = type; 3297 info->off = off; 3298 info->kptr.type_id = res_id; 3299 return BTF_FIELD_FOUND; 3300 } 3301 3302 static const char *btf_find_decl_tag_value(const struct btf *btf, 3303 const struct btf_type *pt, 3304 int comp_idx, const char *tag_key) 3305 { 3306 int i; 3307 3308 for (i = 1; i < btf_nr_types(btf); i++) { 3309 const struct btf_type *t = btf_type_by_id(btf, i); 3310 int len = strlen(tag_key); 3311 3312 if (!btf_type_is_decl_tag(t)) 3313 continue; 3314 if (pt != btf_type_by_id(btf, t->type) || 3315 btf_type_decl_tag(t)->component_idx != comp_idx) 3316 continue; 3317 if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len)) 3318 continue; 3319 return __btf_name_by_offset(btf, t->name_off) + len; 3320 } 3321 return NULL; 3322 } 3323 3324 static int 3325 btf_find_graph_root(const struct btf *btf, const struct btf_type *pt, 3326 const struct btf_type *t, int comp_idx, u32 off, 3327 int sz, struct btf_field_info *info, 3328 enum btf_field_type head_type) 3329 { 3330 const char *node_field_name; 3331 const char *value_type; 3332 s32 id; 3333 3334 if (!__btf_type_is_struct(t)) 3335 return BTF_FIELD_IGNORE; 3336 if (t->size != sz) 3337 return BTF_FIELD_IGNORE; 3338 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:"); 3339 if (!value_type) 3340 return -EINVAL; 3341 node_field_name = strstr(value_type, ":"); 3342 if (!node_field_name) 3343 return -EINVAL; 3344 value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN); 3345 if (!value_type) 3346 return -ENOMEM; 3347 id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT); 3348 kfree(value_type); 3349 if (id < 0) 3350 return id; 3351 node_field_name++; 3352 if (str_is_empty(node_field_name)) 3353 return -EINVAL; 3354 info->type = head_type; 3355 info->off = off; 3356 info->graph_root.value_btf_id = id; 3357 info->graph_root.node_name = node_field_name; 3358 return BTF_FIELD_FOUND; 3359 } 3360 3361 #define field_mask_test_name(field_type, field_type_str) \ 3362 if (field_mask & field_type && !strcmp(name, field_type_str)) { \ 3363 type = field_type; \ 3364 goto end; \ 3365 } 3366 3367 static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask, 3368 int *align, int *sz) 3369 { 3370 int type = 0; 3371 3372 if (field_mask & BPF_SPIN_LOCK) { 3373 if (!strcmp(name, "bpf_spin_lock")) { 3374 if (*seen_mask & BPF_SPIN_LOCK) 3375 return -E2BIG; 3376 *seen_mask |= BPF_SPIN_LOCK; 3377 type = BPF_SPIN_LOCK; 3378 goto end; 3379 } 3380 } 3381 if (field_mask & BPF_TIMER) { 3382 if (!strcmp(name, "bpf_timer")) { 3383 if (*seen_mask & BPF_TIMER) 3384 return -E2BIG; 3385 *seen_mask |= BPF_TIMER; 3386 type = BPF_TIMER; 3387 goto end; 3388 } 3389 } 3390 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head"); 3391 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node"); 3392 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root"); 3393 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node"); 3394 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount"); 3395 3396 /* Only return BPF_KPTR when all other types with matchable names fail */ 3397 if (field_mask & BPF_KPTR) { 3398 type = BPF_KPTR_REF; 3399 goto end; 3400 } 3401 return 0; 3402 end: 3403 *sz = btf_field_type_size(type); 3404 *align = btf_field_type_align(type); 3405 return type; 3406 } 3407 3408 #undef field_mask_test_name 3409 3410 static int btf_find_struct_field(const struct btf *btf, 3411 const struct btf_type *t, u32 field_mask, 3412 struct btf_field_info *info, int info_cnt) 3413 { 3414 int ret, idx = 0, align, sz, field_type; 3415 const struct btf_member *member; 3416 struct btf_field_info tmp; 3417 u32 i, off, seen_mask = 0; 3418 3419 for_each_member(i, t, member) { 3420 const struct btf_type *member_type = btf_type_by_id(btf, 3421 member->type); 3422 3423 field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off), 3424 field_mask, &seen_mask, &align, &sz); 3425 if (field_type == 0) 3426 continue; 3427 if (field_type < 0) 3428 return field_type; 3429 3430 off = __btf_member_bit_offset(t, member); 3431 if (off % 8) 3432 /* valid C code cannot generate such BTF */ 3433 return -EINVAL; 3434 off /= 8; 3435 if (off % align) 3436 continue; 3437 3438 switch (field_type) { 3439 case BPF_SPIN_LOCK: 3440 case BPF_TIMER: 3441 case BPF_LIST_NODE: 3442 case BPF_RB_NODE: 3443 case BPF_REFCOUNT: 3444 ret = btf_find_struct(btf, member_type, off, sz, field_type, 3445 idx < info_cnt ? &info[idx] : &tmp); 3446 if (ret < 0) 3447 return ret; 3448 break; 3449 case BPF_KPTR_UNREF: 3450 case BPF_KPTR_REF: 3451 ret = btf_find_kptr(btf, member_type, off, sz, 3452 idx < info_cnt ? &info[idx] : &tmp); 3453 if (ret < 0) 3454 return ret; 3455 break; 3456 case BPF_LIST_HEAD: 3457 case BPF_RB_ROOT: 3458 ret = btf_find_graph_root(btf, t, member_type, 3459 i, off, sz, 3460 idx < info_cnt ? &info[idx] : &tmp, 3461 field_type); 3462 if (ret < 0) 3463 return ret; 3464 break; 3465 default: 3466 return -EFAULT; 3467 } 3468 3469 if (ret == BTF_FIELD_IGNORE) 3470 continue; 3471 if (idx >= info_cnt) 3472 return -E2BIG; 3473 ++idx; 3474 } 3475 return idx; 3476 } 3477 3478 static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t, 3479 u32 field_mask, struct btf_field_info *info, 3480 int info_cnt) 3481 { 3482 int ret, idx = 0, align, sz, field_type; 3483 const struct btf_var_secinfo *vsi; 3484 struct btf_field_info tmp; 3485 u32 i, off, seen_mask = 0; 3486 3487 for_each_vsi(i, t, vsi) { 3488 const struct btf_type *var = btf_type_by_id(btf, vsi->type); 3489 const struct btf_type *var_type = btf_type_by_id(btf, var->type); 3490 3491 field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off), 3492 field_mask, &seen_mask, &align, &sz); 3493 if (field_type == 0) 3494 continue; 3495 if (field_type < 0) 3496 return field_type; 3497 3498 off = vsi->offset; 3499 if (vsi->size != sz) 3500 continue; 3501 if (off % align) 3502 continue; 3503 3504 switch (field_type) { 3505 case BPF_SPIN_LOCK: 3506 case BPF_TIMER: 3507 case BPF_LIST_NODE: 3508 case BPF_RB_NODE: 3509 case BPF_REFCOUNT: 3510 ret = btf_find_struct(btf, var_type, off, sz, field_type, 3511 idx < info_cnt ? &info[idx] : &tmp); 3512 if (ret < 0) 3513 return ret; 3514 break; 3515 case BPF_KPTR_UNREF: 3516 case BPF_KPTR_REF: 3517 ret = btf_find_kptr(btf, var_type, off, sz, 3518 idx < info_cnt ? &info[idx] : &tmp); 3519 if (ret < 0) 3520 return ret; 3521 break; 3522 case BPF_LIST_HEAD: 3523 case BPF_RB_ROOT: 3524 ret = btf_find_graph_root(btf, var, var_type, 3525 -1, off, sz, 3526 idx < info_cnt ? &info[idx] : &tmp, 3527 field_type); 3528 if (ret < 0) 3529 return ret; 3530 break; 3531 default: 3532 return -EFAULT; 3533 } 3534 3535 if (ret == BTF_FIELD_IGNORE) 3536 continue; 3537 if (idx >= info_cnt) 3538 return -E2BIG; 3539 ++idx; 3540 } 3541 return idx; 3542 } 3543 3544 static int btf_find_field(const struct btf *btf, const struct btf_type *t, 3545 u32 field_mask, struct btf_field_info *info, 3546 int info_cnt) 3547 { 3548 if (__btf_type_is_struct(t)) 3549 return btf_find_struct_field(btf, t, field_mask, info, info_cnt); 3550 else if (btf_type_is_datasec(t)) 3551 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt); 3552 return -EINVAL; 3553 } 3554 3555 static int btf_parse_kptr(const struct btf *btf, struct btf_field *field, 3556 struct btf_field_info *info) 3557 { 3558 struct module *mod = NULL; 3559 const struct btf_type *t; 3560 /* If a matching btf type is found in kernel or module BTFs, kptr_ref 3561 * is that BTF, otherwise it's program BTF 3562 */ 3563 struct btf *kptr_btf; 3564 int ret; 3565 s32 id; 3566 3567 /* Find type in map BTF, and use it to look up the matching type 3568 * in vmlinux or module BTFs, by name and kind. 3569 */ 3570 t = btf_type_by_id(btf, info->kptr.type_id); 3571 id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info), 3572 &kptr_btf); 3573 if (id == -ENOENT) { 3574 /* btf_parse_kptr should only be called w/ btf = program BTF */ 3575 WARN_ON_ONCE(btf_is_kernel(btf)); 3576 3577 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC 3578 * kptr allocated via bpf_obj_new 3579 */ 3580 field->kptr.dtor = NULL; 3581 id = info->kptr.type_id; 3582 kptr_btf = (struct btf *)btf; 3583 btf_get(kptr_btf); 3584 goto found_dtor; 3585 } 3586 if (id < 0) 3587 return id; 3588 3589 /* Find and stash the function pointer for the destruction function that 3590 * needs to be eventually invoked from the map free path. 3591 */ 3592 if (info->type == BPF_KPTR_REF) { 3593 const struct btf_type *dtor_func; 3594 const char *dtor_func_name; 3595 unsigned long addr; 3596 s32 dtor_btf_id; 3597 3598 /* This call also serves as a whitelist of allowed objects that 3599 * can be used as a referenced pointer and be stored in a map at 3600 * the same time. 3601 */ 3602 dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id); 3603 if (dtor_btf_id < 0) { 3604 ret = dtor_btf_id; 3605 goto end_btf; 3606 } 3607 3608 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id); 3609 if (!dtor_func) { 3610 ret = -ENOENT; 3611 goto end_btf; 3612 } 3613 3614 if (btf_is_module(kptr_btf)) { 3615 mod = btf_try_get_module(kptr_btf); 3616 if (!mod) { 3617 ret = -ENXIO; 3618 goto end_btf; 3619 } 3620 } 3621 3622 /* We already verified dtor_func to be btf_type_is_func 3623 * in register_btf_id_dtor_kfuncs. 3624 */ 3625 dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off); 3626 addr = kallsyms_lookup_name(dtor_func_name); 3627 if (!addr) { 3628 ret = -EINVAL; 3629 goto end_mod; 3630 } 3631 field->kptr.dtor = (void *)addr; 3632 } 3633 3634 found_dtor: 3635 field->kptr.btf_id = id; 3636 field->kptr.btf = kptr_btf; 3637 field->kptr.module = mod; 3638 return 0; 3639 end_mod: 3640 module_put(mod); 3641 end_btf: 3642 btf_put(kptr_btf); 3643 return ret; 3644 } 3645 3646 static int btf_parse_graph_root(const struct btf *btf, 3647 struct btf_field *field, 3648 struct btf_field_info *info, 3649 const char *node_type_name, 3650 size_t node_type_align) 3651 { 3652 const struct btf_type *t, *n = NULL; 3653 const struct btf_member *member; 3654 u32 offset; 3655 int i; 3656 3657 t = btf_type_by_id(btf, info->graph_root.value_btf_id); 3658 /* We've already checked that value_btf_id is a struct type. We 3659 * just need to figure out the offset of the list_node, and 3660 * verify its type. 3661 */ 3662 for_each_member(i, t, member) { 3663 if (strcmp(info->graph_root.node_name, 3664 __btf_name_by_offset(btf, member->name_off))) 3665 continue; 3666 /* Invalid BTF, two members with same name */ 3667 if (n) 3668 return -EINVAL; 3669 n = btf_type_by_id(btf, member->type); 3670 if (!__btf_type_is_struct(n)) 3671 return -EINVAL; 3672 if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off))) 3673 return -EINVAL; 3674 offset = __btf_member_bit_offset(n, member); 3675 if (offset % 8) 3676 return -EINVAL; 3677 offset /= 8; 3678 if (offset % node_type_align) 3679 return -EINVAL; 3680 3681 field->graph_root.btf = (struct btf *)btf; 3682 field->graph_root.value_btf_id = info->graph_root.value_btf_id; 3683 field->graph_root.node_offset = offset; 3684 } 3685 if (!n) 3686 return -ENOENT; 3687 return 0; 3688 } 3689 3690 static int btf_parse_list_head(const struct btf *btf, struct btf_field *field, 3691 struct btf_field_info *info) 3692 { 3693 return btf_parse_graph_root(btf, field, info, "bpf_list_node", 3694 __alignof__(struct bpf_list_node)); 3695 } 3696 3697 static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field, 3698 struct btf_field_info *info) 3699 { 3700 return btf_parse_graph_root(btf, field, info, "bpf_rb_node", 3701 __alignof__(struct bpf_rb_node)); 3702 } 3703 3704 static int btf_field_cmp(const void *_a, const void *_b, const void *priv) 3705 { 3706 const struct btf_field *a = (const struct btf_field *)_a; 3707 const struct btf_field *b = (const struct btf_field *)_b; 3708 3709 if (a->offset < b->offset) 3710 return -1; 3711 else if (a->offset > b->offset) 3712 return 1; 3713 return 0; 3714 } 3715 3716 struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t, 3717 u32 field_mask, u32 value_size) 3718 { 3719 struct btf_field_info info_arr[BTF_FIELDS_MAX]; 3720 u32 next_off = 0, field_type_size; 3721 struct btf_record *rec; 3722 int ret, i, cnt; 3723 3724 ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr)); 3725 if (ret < 0) 3726 return ERR_PTR(ret); 3727 if (!ret) 3728 return NULL; 3729 3730 cnt = ret; 3731 /* This needs to be kzalloc to zero out padding and unused fields, see 3732 * comment in btf_record_equal. 3733 */ 3734 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN); 3735 if (!rec) 3736 return ERR_PTR(-ENOMEM); 3737 3738 rec->spin_lock_off = -EINVAL; 3739 rec->timer_off = -EINVAL; 3740 rec->refcount_off = -EINVAL; 3741 for (i = 0; i < cnt; i++) { 3742 field_type_size = btf_field_type_size(info_arr[i].type); 3743 if (info_arr[i].off + field_type_size > value_size) { 3744 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size); 3745 ret = -EFAULT; 3746 goto end; 3747 } 3748 if (info_arr[i].off < next_off) { 3749 ret = -EEXIST; 3750 goto end; 3751 } 3752 next_off = info_arr[i].off + field_type_size; 3753 3754 rec->field_mask |= info_arr[i].type; 3755 rec->fields[i].offset = info_arr[i].off; 3756 rec->fields[i].type = info_arr[i].type; 3757 rec->fields[i].size = field_type_size; 3758 3759 switch (info_arr[i].type) { 3760 case BPF_SPIN_LOCK: 3761 WARN_ON_ONCE(rec->spin_lock_off >= 0); 3762 /* Cache offset for faster lookup at runtime */ 3763 rec->spin_lock_off = rec->fields[i].offset; 3764 break; 3765 case BPF_TIMER: 3766 WARN_ON_ONCE(rec->timer_off >= 0); 3767 /* Cache offset for faster lookup at runtime */ 3768 rec->timer_off = rec->fields[i].offset; 3769 break; 3770 case BPF_REFCOUNT: 3771 WARN_ON_ONCE(rec->refcount_off >= 0); 3772 /* Cache offset for faster lookup at runtime */ 3773 rec->refcount_off = rec->fields[i].offset; 3774 break; 3775 case BPF_KPTR_UNREF: 3776 case BPF_KPTR_REF: 3777 ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]); 3778 if (ret < 0) 3779 goto end; 3780 break; 3781 case BPF_LIST_HEAD: 3782 ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]); 3783 if (ret < 0) 3784 goto end; 3785 break; 3786 case BPF_RB_ROOT: 3787 ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]); 3788 if (ret < 0) 3789 goto end; 3790 break; 3791 case BPF_LIST_NODE: 3792 case BPF_RB_NODE: 3793 break; 3794 default: 3795 ret = -EFAULT; 3796 goto end; 3797 } 3798 rec->cnt++; 3799 } 3800 3801 /* bpf_{list_head, rb_node} require bpf_spin_lock */ 3802 if ((btf_record_has_field(rec, BPF_LIST_HEAD) || 3803 btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) { 3804 ret = -EINVAL; 3805 goto end; 3806 } 3807 3808 if (rec->refcount_off < 0 && 3809 btf_record_has_field(rec, BPF_LIST_NODE) && 3810 btf_record_has_field(rec, BPF_RB_NODE)) { 3811 ret = -EINVAL; 3812 goto end; 3813 } 3814 3815 sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp, 3816 NULL, rec); 3817 3818 return rec; 3819 end: 3820 btf_record_free(rec); 3821 return ERR_PTR(ret); 3822 } 3823 3824 #define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT) 3825 #define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE) 3826 3827 int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec) 3828 { 3829 int i; 3830 3831 /* There are three types that signify ownership of some other type: 3832 * kptr_ref, bpf_list_head, bpf_rb_root. 3833 * kptr_ref only supports storing kernel types, which can't store 3834 * references to program allocated local types. 3835 * 3836 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership 3837 * does not form cycles. 3838 */ 3839 if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & GRAPH_ROOT_MASK)) 3840 return 0; 3841 for (i = 0; i < rec->cnt; i++) { 3842 struct btf_struct_meta *meta; 3843 u32 btf_id; 3844 3845 if (!(rec->fields[i].type & GRAPH_ROOT_MASK)) 3846 continue; 3847 btf_id = rec->fields[i].graph_root.value_btf_id; 3848 meta = btf_find_struct_meta(btf, btf_id); 3849 if (!meta) 3850 return -EFAULT; 3851 rec->fields[i].graph_root.value_rec = meta->record; 3852 3853 /* We need to set value_rec for all root types, but no need 3854 * to check ownership cycle for a type unless it's also a 3855 * node type. 3856 */ 3857 if (!(rec->field_mask & GRAPH_NODE_MASK)) 3858 continue; 3859 3860 /* We need to ensure ownership acyclicity among all types. The 3861 * proper way to do it would be to topologically sort all BTF 3862 * IDs based on the ownership edges, since there can be multiple 3863 * bpf_{list_head,rb_node} in a type. Instead, we use the 3864 * following resaoning: 3865 * 3866 * - A type can only be owned by another type in user BTF if it 3867 * has a bpf_{list,rb}_node. Let's call these node types. 3868 * - A type can only _own_ another type in user BTF if it has a 3869 * bpf_{list_head,rb_root}. Let's call these root types. 3870 * 3871 * We ensure that if a type is both a root and node, its 3872 * element types cannot be root types. 3873 * 3874 * To ensure acyclicity: 3875 * 3876 * When A is an root type but not a node, its ownership 3877 * chain can be: 3878 * A -> B -> C 3879 * Where: 3880 * - A is an root, e.g. has bpf_rb_root. 3881 * - B is both a root and node, e.g. has bpf_rb_node and 3882 * bpf_list_head. 3883 * - C is only an root, e.g. has bpf_list_node 3884 * 3885 * When A is both a root and node, some other type already 3886 * owns it in the BTF domain, hence it can not own 3887 * another root type through any of the ownership edges. 3888 * A -> B 3889 * Where: 3890 * - A is both an root and node. 3891 * - B is only an node. 3892 */ 3893 if (meta->record->field_mask & GRAPH_ROOT_MASK) 3894 return -ELOOP; 3895 } 3896 return 0; 3897 } 3898 3899 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t, 3900 u32 type_id, void *data, u8 bits_offset, 3901 struct btf_show *show) 3902 { 3903 const struct btf_member *member; 3904 void *safe_data; 3905 u32 i; 3906 3907 safe_data = btf_show_start_struct_type(show, t, type_id, data); 3908 if (!safe_data) 3909 return; 3910 3911 for_each_member(i, t, member) { 3912 const struct btf_type *member_type = btf_type_by_id(btf, 3913 member->type); 3914 const struct btf_kind_operations *ops; 3915 u32 member_offset, bitfield_size; 3916 u32 bytes_offset; 3917 u8 bits8_offset; 3918 3919 btf_show_start_member(show, member); 3920 3921 member_offset = __btf_member_bit_offset(t, member); 3922 bitfield_size = __btf_member_bitfield_size(t, member); 3923 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 3924 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 3925 if (bitfield_size) { 3926 safe_data = btf_show_start_type(show, member_type, 3927 member->type, 3928 data + bytes_offset); 3929 if (safe_data) 3930 btf_bitfield_show(safe_data, 3931 bits8_offset, 3932 bitfield_size, show); 3933 btf_show_end_type(show); 3934 } else { 3935 ops = btf_type_ops(member_type); 3936 ops->show(btf, member_type, member->type, 3937 data + bytes_offset, bits8_offset, show); 3938 } 3939 3940 btf_show_end_member(show); 3941 } 3942 3943 btf_show_end_struct_type(show); 3944 } 3945 3946 static void btf_struct_show(const struct btf *btf, const struct btf_type *t, 3947 u32 type_id, void *data, u8 bits_offset, 3948 struct btf_show *show) 3949 { 3950 const struct btf_member *m = show->state.member; 3951 3952 /* 3953 * First check if any members would be shown (are non-zero). 3954 * See comments above "struct btf_show" definition for more 3955 * details on how this works at a high-level. 3956 */ 3957 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) { 3958 if (!show->state.depth_check) { 3959 show->state.depth_check = show->state.depth + 1; 3960 show->state.depth_to_show = 0; 3961 } 3962 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3963 /* Restore saved member data here */ 3964 show->state.member = m; 3965 if (show->state.depth_check != show->state.depth + 1) 3966 return; 3967 show->state.depth_check = 0; 3968 3969 if (show->state.depth_to_show <= show->state.depth) 3970 return; 3971 /* 3972 * Reaching here indicates we have recursed and found 3973 * non-zero child values. 3974 */ 3975 } 3976 3977 __btf_struct_show(btf, t, type_id, data, bits_offset, show); 3978 } 3979 3980 static struct btf_kind_operations struct_ops = { 3981 .check_meta = btf_struct_check_meta, 3982 .resolve = btf_struct_resolve, 3983 .check_member = btf_struct_check_member, 3984 .check_kflag_member = btf_generic_check_kflag_member, 3985 .log_details = btf_struct_log, 3986 .show = btf_struct_show, 3987 }; 3988 3989 static int btf_enum_check_member(struct btf_verifier_env *env, 3990 const struct btf_type *struct_type, 3991 const struct btf_member *member, 3992 const struct btf_type *member_type) 3993 { 3994 u32 struct_bits_off = member->offset; 3995 u32 struct_size, bytes_offset; 3996 3997 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 3998 btf_verifier_log_member(env, struct_type, member, 3999 "Member is not byte aligned"); 4000 return -EINVAL; 4001 } 4002 4003 struct_size = struct_type->size; 4004 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 4005 if (struct_size - bytes_offset < member_type->size) { 4006 btf_verifier_log_member(env, struct_type, member, 4007 "Member exceeds struct_size"); 4008 return -EINVAL; 4009 } 4010 4011 return 0; 4012 } 4013 4014 static int btf_enum_check_kflag_member(struct btf_verifier_env *env, 4015 const struct btf_type *struct_type, 4016 const struct btf_member *member, 4017 const struct btf_type *member_type) 4018 { 4019 u32 struct_bits_off, nr_bits, bytes_end, struct_size; 4020 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE; 4021 4022 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset); 4023 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset); 4024 if (!nr_bits) { 4025 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 4026 btf_verifier_log_member(env, struct_type, member, 4027 "Member is not byte aligned"); 4028 return -EINVAL; 4029 } 4030 4031 nr_bits = int_bitsize; 4032 } else if (nr_bits > int_bitsize) { 4033 btf_verifier_log_member(env, struct_type, member, 4034 "Invalid member bitfield_size"); 4035 return -EINVAL; 4036 } 4037 4038 struct_size = struct_type->size; 4039 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits); 4040 if (struct_size < bytes_end) { 4041 btf_verifier_log_member(env, struct_type, member, 4042 "Member exceeds struct_size"); 4043 return -EINVAL; 4044 } 4045 4046 return 0; 4047 } 4048 4049 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 4050 const struct btf_type *t, 4051 u32 meta_left) 4052 { 4053 const struct btf_enum *enums = btf_type_enum(t); 4054 struct btf *btf = env->btf; 4055 const char *fmt_str; 4056 u16 i, nr_enums; 4057 u32 meta_needed; 4058 4059 nr_enums = btf_type_vlen(t); 4060 meta_needed = nr_enums * sizeof(*enums); 4061 4062 if (meta_left < meta_needed) { 4063 btf_verifier_log_basic(env, t, 4064 "meta_left:%u meta_needed:%u", 4065 meta_left, meta_needed); 4066 return -EINVAL; 4067 } 4068 4069 if (t->size > 8 || !is_power_of_2(t->size)) { 4070 btf_verifier_log_type(env, t, "Unexpected size"); 4071 return -EINVAL; 4072 } 4073 4074 /* enum type either no name or a valid one */ 4075 if (t->name_off && 4076 !btf_name_valid_identifier(env->btf, t->name_off)) { 4077 btf_verifier_log_type(env, t, "Invalid name"); 4078 return -EINVAL; 4079 } 4080 4081 btf_verifier_log_type(env, t, NULL); 4082 4083 for (i = 0; i < nr_enums; i++) { 4084 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4085 btf_verifier_log(env, "\tInvalid name_offset:%u", 4086 enums[i].name_off); 4087 return -EINVAL; 4088 } 4089 4090 /* enum member must have a valid name */ 4091 if (!enums[i].name_off || 4092 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4093 btf_verifier_log_type(env, t, "Invalid name"); 4094 return -EINVAL; 4095 } 4096 4097 if (env->log.level == BPF_LOG_KERNEL) 4098 continue; 4099 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n"; 4100 btf_verifier_log(env, fmt_str, 4101 __btf_name_by_offset(btf, enums[i].name_off), 4102 enums[i].val); 4103 } 4104 4105 return meta_needed; 4106 } 4107 4108 static void btf_enum_log(struct btf_verifier_env *env, 4109 const struct btf_type *t) 4110 { 4111 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4112 } 4113 4114 static void btf_enum_show(const struct btf *btf, const struct btf_type *t, 4115 u32 type_id, void *data, u8 bits_offset, 4116 struct btf_show *show) 4117 { 4118 const struct btf_enum *enums = btf_type_enum(t); 4119 u32 i, nr_enums = btf_type_vlen(t); 4120 void *safe_data; 4121 int v; 4122 4123 safe_data = btf_show_start_type(show, t, type_id, data); 4124 if (!safe_data) 4125 return; 4126 4127 v = *(int *)safe_data; 4128 4129 for (i = 0; i < nr_enums; i++) { 4130 if (v != enums[i].val) 4131 continue; 4132 4133 btf_show_type_value(show, "%s", 4134 __btf_name_by_offset(btf, 4135 enums[i].name_off)); 4136 4137 btf_show_end_type(show); 4138 return; 4139 } 4140 4141 if (btf_type_kflag(t)) 4142 btf_show_type_value(show, "%d", v); 4143 else 4144 btf_show_type_value(show, "%u", v); 4145 btf_show_end_type(show); 4146 } 4147 4148 static struct btf_kind_operations enum_ops = { 4149 .check_meta = btf_enum_check_meta, 4150 .resolve = btf_df_resolve, 4151 .check_member = btf_enum_check_member, 4152 .check_kflag_member = btf_enum_check_kflag_member, 4153 .log_details = btf_enum_log, 4154 .show = btf_enum_show, 4155 }; 4156 4157 static s32 btf_enum64_check_meta(struct btf_verifier_env *env, 4158 const struct btf_type *t, 4159 u32 meta_left) 4160 { 4161 const struct btf_enum64 *enums = btf_type_enum64(t); 4162 struct btf *btf = env->btf; 4163 const char *fmt_str; 4164 u16 i, nr_enums; 4165 u32 meta_needed; 4166 4167 nr_enums = btf_type_vlen(t); 4168 meta_needed = nr_enums * sizeof(*enums); 4169 4170 if (meta_left < meta_needed) { 4171 btf_verifier_log_basic(env, t, 4172 "meta_left:%u meta_needed:%u", 4173 meta_left, meta_needed); 4174 return -EINVAL; 4175 } 4176 4177 if (t->size > 8 || !is_power_of_2(t->size)) { 4178 btf_verifier_log_type(env, t, "Unexpected size"); 4179 return -EINVAL; 4180 } 4181 4182 /* enum type either no name or a valid one */ 4183 if (t->name_off && 4184 !btf_name_valid_identifier(env->btf, t->name_off)) { 4185 btf_verifier_log_type(env, t, "Invalid name"); 4186 return -EINVAL; 4187 } 4188 4189 btf_verifier_log_type(env, t, NULL); 4190 4191 for (i = 0; i < nr_enums; i++) { 4192 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 4193 btf_verifier_log(env, "\tInvalid name_offset:%u", 4194 enums[i].name_off); 4195 return -EINVAL; 4196 } 4197 4198 /* enum member must have a valid name */ 4199 if (!enums[i].name_off || 4200 !btf_name_valid_identifier(btf, enums[i].name_off)) { 4201 btf_verifier_log_type(env, t, "Invalid name"); 4202 return -EINVAL; 4203 } 4204 4205 if (env->log.level == BPF_LOG_KERNEL) 4206 continue; 4207 4208 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n"; 4209 btf_verifier_log(env, fmt_str, 4210 __btf_name_by_offset(btf, enums[i].name_off), 4211 btf_enum64_value(enums + i)); 4212 } 4213 4214 return meta_needed; 4215 } 4216 4217 static void btf_enum64_show(const struct btf *btf, const struct btf_type *t, 4218 u32 type_id, void *data, u8 bits_offset, 4219 struct btf_show *show) 4220 { 4221 const struct btf_enum64 *enums = btf_type_enum64(t); 4222 u32 i, nr_enums = btf_type_vlen(t); 4223 void *safe_data; 4224 s64 v; 4225 4226 safe_data = btf_show_start_type(show, t, type_id, data); 4227 if (!safe_data) 4228 return; 4229 4230 v = *(u64 *)safe_data; 4231 4232 for (i = 0; i < nr_enums; i++) { 4233 if (v != btf_enum64_value(enums + i)) 4234 continue; 4235 4236 btf_show_type_value(show, "%s", 4237 __btf_name_by_offset(btf, 4238 enums[i].name_off)); 4239 4240 btf_show_end_type(show); 4241 return; 4242 } 4243 4244 if (btf_type_kflag(t)) 4245 btf_show_type_value(show, "%lld", v); 4246 else 4247 btf_show_type_value(show, "%llu", v); 4248 btf_show_end_type(show); 4249 } 4250 4251 static struct btf_kind_operations enum64_ops = { 4252 .check_meta = btf_enum64_check_meta, 4253 .resolve = btf_df_resolve, 4254 .check_member = btf_enum_check_member, 4255 .check_kflag_member = btf_enum_check_kflag_member, 4256 .log_details = btf_enum_log, 4257 .show = btf_enum64_show, 4258 }; 4259 4260 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 4261 const struct btf_type *t, 4262 u32 meta_left) 4263 { 4264 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 4265 4266 if (meta_left < meta_needed) { 4267 btf_verifier_log_basic(env, t, 4268 "meta_left:%u meta_needed:%u", 4269 meta_left, meta_needed); 4270 return -EINVAL; 4271 } 4272 4273 if (t->name_off) { 4274 btf_verifier_log_type(env, t, "Invalid name"); 4275 return -EINVAL; 4276 } 4277 4278 if (btf_type_kflag(t)) { 4279 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4280 return -EINVAL; 4281 } 4282 4283 btf_verifier_log_type(env, t, NULL); 4284 4285 return meta_needed; 4286 } 4287 4288 static void btf_func_proto_log(struct btf_verifier_env *env, 4289 const struct btf_type *t) 4290 { 4291 const struct btf_param *args = (const struct btf_param *)(t + 1); 4292 u16 nr_args = btf_type_vlen(t), i; 4293 4294 btf_verifier_log(env, "return=%u args=(", t->type); 4295 if (!nr_args) { 4296 btf_verifier_log(env, "void"); 4297 goto done; 4298 } 4299 4300 if (nr_args == 1 && !args[0].type) { 4301 /* Only one vararg */ 4302 btf_verifier_log(env, "vararg"); 4303 goto done; 4304 } 4305 4306 btf_verifier_log(env, "%u %s", args[0].type, 4307 __btf_name_by_offset(env->btf, 4308 args[0].name_off)); 4309 for (i = 1; i < nr_args - 1; i++) 4310 btf_verifier_log(env, ", %u %s", args[i].type, 4311 __btf_name_by_offset(env->btf, 4312 args[i].name_off)); 4313 4314 if (nr_args > 1) { 4315 const struct btf_param *last_arg = &args[nr_args - 1]; 4316 4317 if (last_arg->type) 4318 btf_verifier_log(env, ", %u %s", last_arg->type, 4319 __btf_name_by_offset(env->btf, 4320 last_arg->name_off)); 4321 else 4322 btf_verifier_log(env, ", vararg"); 4323 } 4324 4325 done: 4326 btf_verifier_log(env, ")"); 4327 } 4328 4329 static struct btf_kind_operations func_proto_ops = { 4330 .check_meta = btf_func_proto_check_meta, 4331 .resolve = btf_df_resolve, 4332 /* 4333 * BTF_KIND_FUNC_PROTO cannot be directly referred by 4334 * a struct's member. 4335 * 4336 * It should be a function pointer instead. 4337 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 4338 * 4339 * Hence, there is no btf_func_check_member(). 4340 */ 4341 .check_member = btf_df_check_member, 4342 .check_kflag_member = btf_df_check_kflag_member, 4343 .log_details = btf_func_proto_log, 4344 .show = btf_df_show, 4345 }; 4346 4347 static s32 btf_func_check_meta(struct btf_verifier_env *env, 4348 const struct btf_type *t, 4349 u32 meta_left) 4350 { 4351 if (!t->name_off || 4352 !btf_name_valid_identifier(env->btf, t->name_off)) { 4353 btf_verifier_log_type(env, t, "Invalid name"); 4354 return -EINVAL; 4355 } 4356 4357 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) { 4358 btf_verifier_log_type(env, t, "Invalid func linkage"); 4359 return -EINVAL; 4360 } 4361 4362 if (btf_type_kflag(t)) { 4363 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4364 return -EINVAL; 4365 } 4366 4367 btf_verifier_log_type(env, t, NULL); 4368 4369 return 0; 4370 } 4371 4372 static int btf_func_resolve(struct btf_verifier_env *env, 4373 const struct resolve_vertex *v) 4374 { 4375 const struct btf_type *t = v->t; 4376 u32 next_type_id = t->type; 4377 int err; 4378 4379 err = btf_func_check(env, t); 4380 if (err) 4381 return err; 4382 4383 env_stack_pop_resolved(env, next_type_id, 0); 4384 return 0; 4385 } 4386 4387 static struct btf_kind_operations func_ops = { 4388 .check_meta = btf_func_check_meta, 4389 .resolve = btf_func_resolve, 4390 .check_member = btf_df_check_member, 4391 .check_kflag_member = btf_df_check_kflag_member, 4392 .log_details = btf_ref_type_log, 4393 .show = btf_df_show, 4394 }; 4395 4396 static s32 btf_var_check_meta(struct btf_verifier_env *env, 4397 const struct btf_type *t, 4398 u32 meta_left) 4399 { 4400 const struct btf_var *var; 4401 u32 meta_needed = sizeof(*var); 4402 4403 if (meta_left < meta_needed) { 4404 btf_verifier_log_basic(env, t, 4405 "meta_left:%u meta_needed:%u", 4406 meta_left, meta_needed); 4407 return -EINVAL; 4408 } 4409 4410 if (btf_type_vlen(t)) { 4411 btf_verifier_log_type(env, t, "vlen != 0"); 4412 return -EINVAL; 4413 } 4414 4415 if (btf_type_kflag(t)) { 4416 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4417 return -EINVAL; 4418 } 4419 4420 if (!t->name_off || 4421 !__btf_name_valid(env->btf, t->name_off)) { 4422 btf_verifier_log_type(env, t, "Invalid name"); 4423 return -EINVAL; 4424 } 4425 4426 /* A var cannot be in type void */ 4427 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) { 4428 btf_verifier_log_type(env, t, "Invalid type_id"); 4429 return -EINVAL; 4430 } 4431 4432 var = btf_type_var(t); 4433 if (var->linkage != BTF_VAR_STATIC && 4434 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 4435 btf_verifier_log_type(env, t, "Linkage not supported"); 4436 return -EINVAL; 4437 } 4438 4439 btf_verifier_log_type(env, t, NULL); 4440 4441 return meta_needed; 4442 } 4443 4444 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t) 4445 { 4446 const struct btf_var *var = btf_type_var(t); 4447 4448 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage); 4449 } 4450 4451 static const struct btf_kind_operations var_ops = { 4452 .check_meta = btf_var_check_meta, 4453 .resolve = btf_var_resolve, 4454 .check_member = btf_df_check_member, 4455 .check_kflag_member = btf_df_check_kflag_member, 4456 .log_details = btf_var_log, 4457 .show = btf_var_show, 4458 }; 4459 4460 static s32 btf_datasec_check_meta(struct btf_verifier_env *env, 4461 const struct btf_type *t, 4462 u32 meta_left) 4463 { 4464 const struct btf_var_secinfo *vsi; 4465 u64 last_vsi_end_off = 0, sum = 0; 4466 u32 i, meta_needed; 4467 4468 meta_needed = btf_type_vlen(t) * sizeof(*vsi); 4469 if (meta_left < meta_needed) { 4470 btf_verifier_log_basic(env, t, 4471 "meta_left:%u meta_needed:%u", 4472 meta_left, meta_needed); 4473 return -EINVAL; 4474 } 4475 4476 if (!t->size) { 4477 btf_verifier_log_type(env, t, "size == 0"); 4478 return -EINVAL; 4479 } 4480 4481 if (btf_type_kflag(t)) { 4482 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4483 return -EINVAL; 4484 } 4485 4486 if (!t->name_off || 4487 !btf_name_valid_section(env->btf, t->name_off)) { 4488 btf_verifier_log_type(env, t, "Invalid name"); 4489 return -EINVAL; 4490 } 4491 4492 btf_verifier_log_type(env, t, NULL); 4493 4494 for_each_vsi(i, t, vsi) { 4495 /* A var cannot be in type void */ 4496 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) { 4497 btf_verifier_log_vsi(env, t, vsi, 4498 "Invalid type_id"); 4499 return -EINVAL; 4500 } 4501 4502 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) { 4503 btf_verifier_log_vsi(env, t, vsi, 4504 "Invalid offset"); 4505 return -EINVAL; 4506 } 4507 4508 if (!vsi->size || vsi->size > t->size) { 4509 btf_verifier_log_vsi(env, t, vsi, 4510 "Invalid size"); 4511 return -EINVAL; 4512 } 4513 4514 last_vsi_end_off = vsi->offset + vsi->size; 4515 if (last_vsi_end_off > t->size) { 4516 btf_verifier_log_vsi(env, t, vsi, 4517 "Invalid offset+size"); 4518 return -EINVAL; 4519 } 4520 4521 btf_verifier_log_vsi(env, t, vsi, NULL); 4522 sum += vsi->size; 4523 } 4524 4525 if (t->size < sum) { 4526 btf_verifier_log_type(env, t, "Invalid btf_info size"); 4527 return -EINVAL; 4528 } 4529 4530 return meta_needed; 4531 } 4532 4533 static int btf_datasec_resolve(struct btf_verifier_env *env, 4534 const struct resolve_vertex *v) 4535 { 4536 const struct btf_var_secinfo *vsi; 4537 struct btf *btf = env->btf; 4538 u16 i; 4539 4540 env->resolve_mode = RESOLVE_TBD; 4541 for_each_vsi_from(i, v->next_member, v->t, vsi) { 4542 u32 var_type_id = vsi->type, type_id, type_size = 0; 4543 const struct btf_type *var_type = btf_type_by_id(env->btf, 4544 var_type_id); 4545 if (!var_type || !btf_type_is_var(var_type)) { 4546 btf_verifier_log_vsi(env, v->t, vsi, 4547 "Not a VAR kind member"); 4548 return -EINVAL; 4549 } 4550 4551 if (!env_type_is_resolve_sink(env, var_type) && 4552 !env_type_is_resolved(env, var_type_id)) { 4553 env_stack_set_next_member(env, i + 1); 4554 return env_stack_push(env, var_type, var_type_id); 4555 } 4556 4557 type_id = var_type->type; 4558 if (!btf_type_id_size(btf, &type_id, &type_size)) { 4559 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type"); 4560 return -EINVAL; 4561 } 4562 4563 if (vsi->size < type_size) { 4564 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size"); 4565 return -EINVAL; 4566 } 4567 } 4568 4569 env_stack_pop_resolved(env, 0, 0); 4570 return 0; 4571 } 4572 4573 static void btf_datasec_log(struct btf_verifier_env *env, 4574 const struct btf_type *t) 4575 { 4576 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 4577 } 4578 4579 static void btf_datasec_show(const struct btf *btf, 4580 const struct btf_type *t, u32 type_id, 4581 void *data, u8 bits_offset, 4582 struct btf_show *show) 4583 { 4584 const struct btf_var_secinfo *vsi; 4585 const struct btf_type *var; 4586 u32 i; 4587 4588 if (!btf_show_start_type(show, t, type_id, data)) 4589 return; 4590 4591 btf_show_type_value(show, "section (\"%s\") = {", 4592 __btf_name_by_offset(btf, t->name_off)); 4593 for_each_vsi(i, t, vsi) { 4594 var = btf_type_by_id(btf, vsi->type); 4595 if (i) 4596 btf_show(show, ","); 4597 btf_type_ops(var)->show(btf, var, vsi->type, 4598 data + vsi->offset, bits_offset, show); 4599 } 4600 btf_show_end_type(show); 4601 } 4602 4603 static const struct btf_kind_operations datasec_ops = { 4604 .check_meta = btf_datasec_check_meta, 4605 .resolve = btf_datasec_resolve, 4606 .check_member = btf_df_check_member, 4607 .check_kflag_member = btf_df_check_kflag_member, 4608 .log_details = btf_datasec_log, 4609 .show = btf_datasec_show, 4610 }; 4611 4612 static s32 btf_float_check_meta(struct btf_verifier_env *env, 4613 const struct btf_type *t, 4614 u32 meta_left) 4615 { 4616 if (btf_type_vlen(t)) { 4617 btf_verifier_log_type(env, t, "vlen != 0"); 4618 return -EINVAL; 4619 } 4620 4621 if (btf_type_kflag(t)) { 4622 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4623 return -EINVAL; 4624 } 4625 4626 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 && 4627 t->size != 16) { 4628 btf_verifier_log_type(env, t, "Invalid type_size"); 4629 return -EINVAL; 4630 } 4631 4632 btf_verifier_log_type(env, t, NULL); 4633 4634 return 0; 4635 } 4636 4637 static int btf_float_check_member(struct btf_verifier_env *env, 4638 const struct btf_type *struct_type, 4639 const struct btf_member *member, 4640 const struct btf_type *member_type) 4641 { 4642 u64 start_offset_bytes; 4643 u64 end_offset_bytes; 4644 u64 misalign_bits; 4645 u64 align_bytes; 4646 u64 align_bits; 4647 4648 /* Different architectures have different alignment requirements, so 4649 * here we check only for the reasonable minimum. This way we ensure 4650 * that types after CO-RE can pass the kernel BTF verifier. 4651 */ 4652 align_bytes = min_t(u64, sizeof(void *), member_type->size); 4653 align_bits = align_bytes * BITS_PER_BYTE; 4654 div64_u64_rem(member->offset, align_bits, &misalign_bits); 4655 if (misalign_bits) { 4656 btf_verifier_log_member(env, struct_type, member, 4657 "Member is not properly aligned"); 4658 return -EINVAL; 4659 } 4660 4661 start_offset_bytes = member->offset / BITS_PER_BYTE; 4662 end_offset_bytes = start_offset_bytes + member_type->size; 4663 if (end_offset_bytes > struct_type->size) { 4664 btf_verifier_log_member(env, struct_type, member, 4665 "Member exceeds struct_size"); 4666 return -EINVAL; 4667 } 4668 4669 return 0; 4670 } 4671 4672 static void btf_float_log(struct btf_verifier_env *env, 4673 const struct btf_type *t) 4674 { 4675 btf_verifier_log(env, "size=%u", t->size); 4676 } 4677 4678 static const struct btf_kind_operations float_ops = { 4679 .check_meta = btf_float_check_meta, 4680 .resolve = btf_df_resolve, 4681 .check_member = btf_float_check_member, 4682 .check_kflag_member = btf_generic_check_kflag_member, 4683 .log_details = btf_float_log, 4684 .show = btf_df_show, 4685 }; 4686 4687 static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env, 4688 const struct btf_type *t, 4689 u32 meta_left) 4690 { 4691 const struct btf_decl_tag *tag; 4692 u32 meta_needed = sizeof(*tag); 4693 s32 component_idx; 4694 const char *value; 4695 4696 if (meta_left < meta_needed) { 4697 btf_verifier_log_basic(env, t, 4698 "meta_left:%u meta_needed:%u", 4699 meta_left, meta_needed); 4700 return -EINVAL; 4701 } 4702 4703 value = btf_name_by_offset(env->btf, t->name_off); 4704 if (!value || !value[0]) { 4705 btf_verifier_log_type(env, t, "Invalid value"); 4706 return -EINVAL; 4707 } 4708 4709 if (btf_type_vlen(t)) { 4710 btf_verifier_log_type(env, t, "vlen != 0"); 4711 return -EINVAL; 4712 } 4713 4714 if (btf_type_kflag(t)) { 4715 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag"); 4716 return -EINVAL; 4717 } 4718 4719 component_idx = btf_type_decl_tag(t)->component_idx; 4720 if (component_idx < -1) { 4721 btf_verifier_log_type(env, t, "Invalid component_idx"); 4722 return -EINVAL; 4723 } 4724 4725 btf_verifier_log_type(env, t, NULL); 4726 4727 return meta_needed; 4728 } 4729 4730 static int btf_decl_tag_resolve(struct btf_verifier_env *env, 4731 const struct resolve_vertex *v) 4732 { 4733 const struct btf_type *next_type; 4734 const struct btf_type *t = v->t; 4735 u32 next_type_id = t->type; 4736 struct btf *btf = env->btf; 4737 s32 component_idx; 4738 u32 vlen; 4739 4740 next_type = btf_type_by_id(btf, next_type_id); 4741 if (!next_type || !btf_type_is_decl_tag_target(next_type)) { 4742 btf_verifier_log_type(env, v->t, "Invalid type_id"); 4743 return -EINVAL; 4744 } 4745 4746 if (!env_type_is_resolve_sink(env, next_type) && 4747 !env_type_is_resolved(env, next_type_id)) 4748 return env_stack_push(env, next_type, next_type_id); 4749 4750 component_idx = btf_type_decl_tag(t)->component_idx; 4751 if (component_idx != -1) { 4752 if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) { 4753 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4754 return -EINVAL; 4755 } 4756 4757 if (btf_type_is_struct(next_type)) { 4758 vlen = btf_type_vlen(next_type); 4759 } else { 4760 /* next_type should be a function */ 4761 next_type = btf_type_by_id(btf, next_type->type); 4762 vlen = btf_type_vlen(next_type); 4763 } 4764 4765 if ((u32)component_idx >= vlen) { 4766 btf_verifier_log_type(env, v->t, "Invalid component_idx"); 4767 return -EINVAL; 4768 } 4769 } 4770 4771 env_stack_pop_resolved(env, next_type_id, 0); 4772 4773 return 0; 4774 } 4775 4776 static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t) 4777 { 4778 btf_verifier_log(env, "type=%u component_idx=%d", t->type, 4779 btf_type_decl_tag(t)->component_idx); 4780 } 4781 4782 static const struct btf_kind_operations decl_tag_ops = { 4783 .check_meta = btf_decl_tag_check_meta, 4784 .resolve = btf_decl_tag_resolve, 4785 .check_member = btf_df_check_member, 4786 .check_kflag_member = btf_df_check_kflag_member, 4787 .log_details = btf_decl_tag_log, 4788 .show = btf_df_show, 4789 }; 4790 4791 static int btf_func_proto_check(struct btf_verifier_env *env, 4792 const struct btf_type *t) 4793 { 4794 const struct btf_type *ret_type; 4795 const struct btf_param *args; 4796 const struct btf *btf; 4797 u16 nr_args, i; 4798 int err; 4799 4800 btf = env->btf; 4801 args = (const struct btf_param *)(t + 1); 4802 nr_args = btf_type_vlen(t); 4803 4804 /* Check func return type which could be "void" (t->type == 0) */ 4805 if (t->type) { 4806 u32 ret_type_id = t->type; 4807 4808 ret_type = btf_type_by_id(btf, ret_type_id); 4809 if (!ret_type) { 4810 btf_verifier_log_type(env, t, "Invalid return type"); 4811 return -EINVAL; 4812 } 4813 4814 if (btf_type_is_resolve_source_only(ret_type)) { 4815 btf_verifier_log_type(env, t, "Invalid return type"); 4816 return -EINVAL; 4817 } 4818 4819 if (btf_type_needs_resolve(ret_type) && 4820 !env_type_is_resolved(env, ret_type_id)) { 4821 err = btf_resolve(env, ret_type, ret_type_id); 4822 if (err) 4823 return err; 4824 } 4825 4826 /* Ensure the return type is a type that has a size */ 4827 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 4828 btf_verifier_log_type(env, t, "Invalid return type"); 4829 return -EINVAL; 4830 } 4831 } 4832 4833 if (!nr_args) 4834 return 0; 4835 4836 /* Last func arg type_id could be 0 if it is a vararg */ 4837 if (!args[nr_args - 1].type) { 4838 if (args[nr_args - 1].name_off) { 4839 btf_verifier_log_type(env, t, "Invalid arg#%u", 4840 nr_args); 4841 return -EINVAL; 4842 } 4843 nr_args--; 4844 } 4845 4846 for (i = 0; i < nr_args; i++) { 4847 const struct btf_type *arg_type; 4848 u32 arg_type_id; 4849 4850 arg_type_id = args[i].type; 4851 arg_type = btf_type_by_id(btf, arg_type_id); 4852 if (!arg_type) { 4853 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4854 return -EINVAL; 4855 } 4856 4857 if (btf_type_is_resolve_source_only(arg_type)) { 4858 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4859 return -EINVAL; 4860 } 4861 4862 if (args[i].name_off && 4863 (!btf_name_offset_valid(btf, args[i].name_off) || 4864 !btf_name_valid_identifier(btf, args[i].name_off))) { 4865 btf_verifier_log_type(env, t, 4866 "Invalid arg#%u", i + 1); 4867 return -EINVAL; 4868 } 4869 4870 if (btf_type_needs_resolve(arg_type) && 4871 !env_type_is_resolved(env, arg_type_id)) { 4872 err = btf_resolve(env, arg_type, arg_type_id); 4873 if (err) 4874 return err; 4875 } 4876 4877 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 4878 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4879 return -EINVAL; 4880 } 4881 } 4882 4883 return 0; 4884 } 4885 4886 static int btf_func_check(struct btf_verifier_env *env, 4887 const struct btf_type *t) 4888 { 4889 const struct btf_type *proto_type; 4890 const struct btf_param *args; 4891 const struct btf *btf; 4892 u16 nr_args, i; 4893 4894 btf = env->btf; 4895 proto_type = btf_type_by_id(btf, t->type); 4896 4897 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 4898 btf_verifier_log_type(env, t, "Invalid type_id"); 4899 return -EINVAL; 4900 } 4901 4902 args = (const struct btf_param *)(proto_type + 1); 4903 nr_args = btf_type_vlen(proto_type); 4904 for (i = 0; i < nr_args; i++) { 4905 if (!args[i].name_off && args[i].type) { 4906 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 4907 return -EINVAL; 4908 } 4909 } 4910 4911 return 0; 4912 } 4913 4914 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 4915 [BTF_KIND_INT] = &int_ops, 4916 [BTF_KIND_PTR] = &ptr_ops, 4917 [BTF_KIND_ARRAY] = &array_ops, 4918 [BTF_KIND_STRUCT] = &struct_ops, 4919 [BTF_KIND_UNION] = &struct_ops, 4920 [BTF_KIND_ENUM] = &enum_ops, 4921 [BTF_KIND_FWD] = &fwd_ops, 4922 [BTF_KIND_TYPEDEF] = &modifier_ops, 4923 [BTF_KIND_VOLATILE] = &modifier_ops, 4924 [BTF_KIND_CONST] = &modifier_ops, 4925 [BTF_KIND_RESTRICT] = &modifier_ops, 4926 [BTF_KIND_FUNC] = &func_ops, 4927 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 4928 [BTF_KIND_VAR] = &var_ops, 4929 [BTF_KIND_DATASEC] = &datasec_ops, 4930 [BTF_KIND_FLOAT] = &float_ops, 4931 [BTF_KIND_DECL_TAG] = &decl_tag_ops, 4932 [BTF_KIND_TYPE_TAG] = &modifier_ops, 4933 [BTF_KIND_ENUM64] = &enum64_ops, 4934 }; 4935 4936 static s32 btf_check_meta(struct btf_verifier_env *env, 4937 const struct btf_type *t, 4938 u32 meta_left) 4939 { 4940 u32 saved_meta_left = meta_left; 4941 s32 var_meta_size; 4942 4943 if (meta_left < sizeof(*t)) { 4944 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 4945 env->log_type_id, meta_left, sizeof(*t)); 4946 return -EINVAL; 4947 } 4948 meta_left -= sizeof(*t); 4949 4950 if (t->info & ~BTF_INFO_MASK) { 4951 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 4952 env->log_type_id, t->info); 4953 return -EINVAL; 4954 } 4955 4956 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 4957 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 4958 btf_verifier_log(env, "[%u] Invalid kind:%u", 4959 env->log_type_id, BTF_INFO_KIND(t->info)); 4960 return -EINVAL; 4961 } 4962 4963 if (!btf_name_offset_valid(env->btf, t->name_off)) { 4964 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 4965 env->log_type_id, t->name_off); 4966 return -EINVAL; 4967 } 4968 4969 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 4970 if (var_meta_size < 0) 4971 return var_meta_size; 4972 4973 meta_left -= var_meta_size; 4974 4975 return saved_meta_left - meta_left; 4976 } 4977 4978 static int btf_check_all_metas(struct btf_verifier_env *env) 4979 { 4980 struct btf *btf = env->btf; 4981 struct btf_header *hdr; 4982 void *cur, *end; 4983 4984 hdr = &btf->hdr; 4985 cur = btf->nohdr_data + hdr->type_off; 4986 end = cur + hdr->type_len; 4987 4988 env->log_type_id = btf->base_btf ? btf->start_id : 1; 4989 while (cur < end) { 4990 struct btf_type *t = cur; 4991 s32 meta_size; 4992 4993 meta_size = btf_check_meta(env, t, end - cur); 4994 if (meta_size < 0) 4995 return meta_size; 4996 4997 btf_add_type(env, t); 4998 cur += meta_size; 4999 env->log_type_id++; 5000 } 5001 5002 return 0; 5003 } 5004 5005 static bool btf_resolve_valid(struct btf_verifier_env *env, 5006 const struct btf_type *t, 5007 u32 type_id) 5008 { 5009 struct btf *btf = env->btf; 5010 5011 if (!env_type_is_resolved(env, type_id)) 5012 return false; 5013 5014 if (btf_type_is_struct(t) || btf_type_is_datasec(t)) 5015 return !btf_resolved_type_id(btf, type_id) && 5016 !btf_resolved_type_size(btf, type_id); 5017 5018 if (btf_type_is_decl_tag(t) || btf_type_is_func(t)) 5019 return btf_resolved_type_id(btf, type_id) && 5020 !btf_resolved_type_size(btf, type_id); 5021 5022 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) || 5023 btf_type_is_var(t)) { 5024 t = btf_type_id_resolve(btf, &type_id); 5025 return t && 5026 !btf_type_is_modifier(t) && 5027 !btf_type_is_var(t) && 5028 !btf_type_is_datasec(t); 5029 } 5030 5031 if (btf_type_is_array(t)) { 5032 const struct btf_array *array = btf_type_array(t); 5033 const struct btf_type *elem_type; 5034 u32 elem_type_id = array->type; 5035 u32 elem_size; 5036 5037 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 5038 return elem_type && !btf_type_is_modifier(elem_type) && 5039 (array->nelems * elem_size == 5040 btf_resolved_type_size(btf, type_id)); 5041 } 5042 5043 return false; 5044 } 5045 5046 static int btf_resolve(struct btf_verifier_env *env, 5047 const struct btf_type *t, u32 type_id) 5048 { 5049 u32 save_log_type_id = env->log_type_id; 5050 const struct resolve_vertex *v; 5051 int err = 0; 5052 5053 env->resolve_mode = RESOLVE_TBD; 5054 env_stack_push(env, t, type_id); 5055 while (!err && (v = env_stack_peak(env))) { 5056 env->log_type_id = v->type_id; 5057 err = btf_type_ops(v->t)->resolve(env, v); 5058 } 5059 5060 env->log_type_id = type_id; 5061 if (err == -E2BIG) { 5062 btf_verifier_log_type(env, t, 5063 "Exceeded max resolving depth:%u", 5064 MAX_RESOLVE_DEPTH); 5065 } else if (err == -EEXIST) { 5066 btf_verifier_log_type(env, t, "Loop detected"); 5067 } 5068 5069 /* Final sanity check */ 5070 if (!err && !btf_resolve_valid(env, t, type_id)) { 5071 btf_verifier_log_type(env, t, "Invalid resolve state"); 5072 err = -EINVAL; 5073 } 5074 5075 env->log_type_id = save_log_type_id; 5076 return err; 5077 } 5078 5079 static int btf_check_all_types(struct btf_verifier_env *env) 5080 { 5081 struct btf *btf = env->btf; 5082 const struct btf_type *t; 5083 u32 type_id, i; 5084 int err; 5085 5086 err = env_resolve_init(env); 5087 if (err) 5088 return err; 5089 5090 env->phase++; 5091 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) { 5092 type_id = btf->start_id + i; 5093 t = btf_type_by_id(btf, type_id); 5094 5095 env->log_type_id = type_id; 5096 if (btf_type_needs_resolve(t) && 5097 !env_type_is_resolved(env, type_id)) { 5098 err = btf_resolve(env, t, type_id); 5099 if (err) 5100 return err; 5101 } 5102 5103 if (btf_type_is_func_proto(t)) { 5104 err = btf_func_proto_check(env, t); 5105 if (err) 5106 return err; 5107 } 5108 } 5109 5110 return 0; 5111 } 5112 5113 static int btf_parse_type_sec(struct btf_verifier_env *env) 5114 { 5115 const struct btf_header *hdr = &env->btf->hdr; 5116 int err; 5117 5118 /* Type section must align to 4 bytes */ 5119 if (hdr->type_off & (sizeof(u32) - 1)) { 5120 btf_verifier_log(env, "Unaligned type_off"); 5121 return -EINVAL; 5122 } 5123 5124 if (!env->btf->base_btf && !hdr->type_len) { 5125 btf_verifier_log(env, "No type found"); 5126 return -EINVAL; 5127 } 5128 5129 err = btf_check_all_metas(env); 5130 if (err) 5131 return err; 5132 5133 return btf_check_all_types(env); 5134 } 5135 5136 static int btf_parse_str_sec(struct btf_verifier_env *env) 5137 { 5138 const struct btf_header *hdr; 5139 struct btf *btf = env->btf; 5140 const char *start, *end; 5141 5142 hdr = &btf->hdr; 5143 start = btf->nohdr_data + hdr->str_off; 5144 end = start + hdr->str_len; 5145 5146 if (end != btf->data + btf->data_size) { 5147 btf_verifier_log(env, "String section is not at the end"); 5148 return -EINVAL; 5149 } 5150 5151 btf->strings = start; 5152 5153 if (btf->base_btf && !hdr->str_len) 5154 return 0; 5155 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) { 5156 btf_verifier_log(env, "Invalid string section"); 5157 return -EINVAL; 5158 } 5159 if (!btf->base_btf && start[0]) { 5160 btf_verifier_log(env, "Invalid string section"); 5161 return -EINVAL; 5162 } 5163 5164 return 0; 5165 } 5166 5167 static const size_t btf_sec_info_offset[] = { 5168 offsetof(struct btf_header, type_off), 5169 offsetof(struct btf_header, str_off), 5170 }; 5171 5172 static int btf_sec_info_cmp(const void *a, const void *b) 5173 { 5174 const struct btf_sec_info *x = a; 5175 const struct btf_sec_info *y = b; 5176 5177 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 5178 } 5179 5180 static int btf_check_sec_info(struct btf_verifier_env *env, 5181 u32 btf_data_size) 5182 { 5183 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 5184 u32 total, expected_total, i; 5185 const struct btf_header *hdr; 5186 const struct btf *btf; 5187 5188 btf = env->btf; 5189 hdr = &btf->hdr; 5190 5191 /* Populate the secs from hdr */ 5192 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 5193 secs[i] = *(struct btf_sec_info *)((void *)hdr + 5194 btf_sec_info_offset[i]); 5195 5196 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 5197 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 5198 5199 /* Check for gaps and overlap among sections */ 5200 total = 0; 5201 expected_total = btf_data_size - hdr->hdr_len; 5202 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 5203 if (expected_total < secs[i].off) { 5204 btf_verifier_log(env, "Invalid section offset"); 5205 return -EINVAL; 5206 } 5207 if (total < secs[i].off) { 5208 /* gap */ 5209 btf_verifier_log(env, "Unsupported section found"); 5210 return -EINVAL; 5211 } 5212 if (total > secs[i].off) { 5213 btf_verifier_log(env, "Section overlap found"); 5214 return -EINVAL; 5215 } 5216 if (expected_total - total < secs[i].len) { 5217 btf_verifier_log(env, 5218 "Total section length too long"); 5219 return -EINVAL; 5220 } 5221 total += secs[i].len; 5222 } 5223 5224 /* There is data other than hdr and known sections */ 5225 if (expected_total != total) { 5226 btf_verifier_log(env, "Unsupported section found"); 5227 return -EINVAL; 5228 } 5229 5230 return 0; 5231 } 5232 5233 static int btf_parse_hdr(struct btf_verifier_env *env) 5234 { 5235 u32 hdr_len, hdr_copy, btf_data_size; 5236 const struct btf_header *hdr; 5237 struct btf *btf; 5238 5239 btf = env->btf; 5240 btf_data_size = btf->data_size; 5241 5242 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) { 5243 btf_verifier_log(env, "hdr_len not found"); 5244 return -EINVAL; 5245 } 5246 5247 hdr = btf->data; 5248 hdr_len = hdr->hdr_len; 5249 if (btf_data_size < hdr_len) { 5250 btf_verifier_log(env, "btf_header not found"); 5251 return -EINVAL; 5252 } 5253 5254 /* Ensure the unsupported header fields are zero */ 5255 if (hdr_len > sizeof(btf->hdr)) { 5256 u8 *expected_zero = btf->data + sizeof(btf->hdr); 5257 u8 *end = btf->data + hdr_len; 5258 5259 for (; expected_zero < end; expected_zero++) { 5260 if (*expected_zero) { 5261 btf_verifier_log(env, "Unsupported btf_header"); 5262 return -E2BIG; 5263 } 5264 } 5265 } 5266 5267 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 5268 memcpy(&btf->hdr, btf->data, hdr_copy); 5269 5270 hdr = &btf->hdr; 5271 5272 btf_verifier_log_hdr(env, btf_data_size); 5273 5274 if (hdr->magic != BTF_MAGIC) { 5275 btf_verifier_log(env, "Invalid magic"); 5276 return -EINVAL; 5277 } 5278 5279 if (hdr->version != BTF_VERSION) { 5280 btf_verifier_log(env, "Unsupported version"); 5281 return -ENOTSUPP; 5282 } 5283 5284 if (hdr->flags) { 5285 btf_verifier_log(env, "Unsupported flags"); 5286 return -ENOTSUPP; 5287 } 5288 5289 if (!btf->base_btf && btf_data_size == hdr->hdr_len) { 5290 btf_verifier_log(env, "No data"); 5291 return -EINVAL; 5292 } 5293 5294 return btf_check_sec_info(env, btf_data_size); 5295 } 5296 5297 static const char *alloc_obj_fields[] = { 5298 "bpf_spin_lock", 5299 "bpf_list_head", 5300 "bpf_list_node", 5301 "bpf_rb_root", 5302 "bpf_rb_node", 5303 "bpf_refcount", 5304 }; 5305 5306 static struct btf_struct_metas * 5307 btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf) 5308 { 5309 union { 5310 struct btf_id_set set; 5311 struct { 5312 u32 _cnt; 5313 u32 _ids[ARRAY_SIZE(alloc_obj_fields)]; 5314 } _arr; 5315 } aof; 5316 struct btf_struct_metas *tab = NULL; 5317 int i, n, id, ret; 5318 5319 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0); 5320 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32)); 5321 5322 memset(&aof, 0, sizeof(aof)); 5323 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) { 5324 /* Try to find whether this special type exists in user BTF, and 5325 * if so remember its ID so we can easily find it among members 5326 * of structs that we iterate in the next loop. 5327 */ 5328 id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT); 5329 if (id < 0) 5330 continue; 5331 aof.set.ids[aof.set.cnt++] = id; 5332 } 5333 5334 if (!aof.set.cnt) 5335 return NULL; 5336 sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL); 5337 5338 n = btf_nr_types(btf); 5339 for (i = 1; i < n; i++) { 5340 struct btf_struct_metas *new_tab; 5341 const struct btf_member *member; 5342 struct btf_struct_meta *type; 5343 struct btf_record *record; 5344 const struct btf_type *t; 5345 int j, tab_cnt; 5346 5347 t = btf_type_by_id(btf, i); 5348 if (!t) { 5349 ret = -EINVAL; 5350 goto free; 5351 } 5352 if (!__btf_type_is_struct(t)) 5353 continue; 5354 5355 cond_resched(); 5356 5357 for_each_member(j, t, member) { 5358 if (btf_id_set_contains(&aof.set, member->type)) 5359 goto parse; 5360 } 5361 continue; 5362 parse: 5363 tab_cnt = tab ? tab->cnt : 0; 5364 new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]), 5365 GFP_KERNEL | __GFP_NOWARN); 5366 if (!new_tab) { 5367 ret = -ENOMEM; 5368 goto free; 5369 } 5370 if (!tab) 5371 new_tab->cnt = 0; 5372 tab = new_tab; 5373 5374 type = &tab->types[tab->cnt]; 5375 type->btf_id = i; 5376 record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE | 5377 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size); 5378 /* The record cannot be unset, treat it as an error if so */ 5379 if (IS_ERR_OR_NULL(record)) { 5380 ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT; 5381 goto free; 5382 } 5383 type->record = record; 5384 tab->cnt++; 5385 } 5386 return tab; 5387 free: 5388 btf_struct_metas_free(tab); 5389 return ERR_PTR(ret); 5390 } 5391 5392 struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id) 5393 { 5394 struct btf_struct_metas *tab; 5395 5396 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0); 5397 tab = btf->struct_meta_tab; 5398 if (!tab) 5399 return NULL; 5400 return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func); 5401 } 5402 5403 static int btf_check_type_tags(struct btf_verifier_env *env, 5404 struct btf *btf, int start_id) 5405 { 5406 int i, n, good_id = start_id - 1; 5407 bool in_tags; 5408 5409 n = btf_nr_types(btf); 5410 for (i = start_id; i < n; i++) { 5411 const struct btf_type *t; 5412 int chain_limit = 32; 5413 u32 cur_id = i; 5414 5415 t = btf_type_by_id(btf, i); 5416 if (!t) 5417 return -EINVAL; 5418 if (!btf_type_is_modifier(t)) 5419 continue; 5420 5421 cond_resched(); 5422 5423 in_tags = btf_type_is_type_tag(t); 5424 while (btf_type_is_modifier(t)) { 5425 if (!chain_limit--) { 5426 btf_verifier_log(env, "Max chain length or cycle detected"); 5427 return -ELOOP; 5428 } 5429 if (btf_type_is_type_tag(t)) { 5430 if (!in_tags) { 5431 btf_verifier_log(env, "Type tags don't precede modifiers"); 5432 return -EINVAL; 5433 } 5434 } else if (in_tags) { 5435 in_tags = false; 5436 } 5437 if (cur_id <= good_id) 5438 break; 5439 /* Move to next type */ 5440 cur_id = t->type; 5441 t = btf_type_by_id(btf, cur_id); 5442 if (!t) 5443 return -EINVAL; 5444 } 5445 good_id = i; 5446 } 5447 return 0; 5448 } 5449 5450 static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size) 5451 { 5452 u32 log_true_size; 5453 int err; 5454 5455 err = bpf_vlog_finalize(log, &log_true_size); 5456 5457 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) && 5458 copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size), 5459 &log_true_size, sizeof(log_true_size))) 5460 err = -EFAULT; 5461 5462 return err; 5463 } 5464 5465 static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 5466 { 5467 bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel); 5468 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf); 5469 struct btf_struct_metas *struct_meta_tab; 5470 struct btf_verifier_env *env = NULL; 5471 struct btf *btf = NULL; 5472 u8 *data; 5473 int err, ret; 5474 5475 if (attr->btf_size > BTF_MAX_SIZE) 5476 return ERR_PTR(-E2BIG); 5477 5478 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5479 if (!env) 5480 return ERR_PTR(-ENOMEM); 5481 5482 /* user could have requested verbose verifier output 5483 * and supplied buffer to store the verification trace 5484 */ 5485 err = bpf_vlog_init(&env->log, attr->btf_log_level, 5486 log_ubuf, attr->btf_log_size); 5487 if (err) 5488 goto errout_free; 5489 5490 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5491 if (!btf) { 5492 err = -ENOMEM; 5493 goto errout; 5494 } 5495 env->btf = btf; 5496 5497 data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN); 5498 if (!data) { 5499 err = -ENOMEM; 5500 goto errout; 5501 } 5502 5503 btf->data = data; 5504 btf->data_size = attr->btf_size; 5505 5506 if (copy_from_bpfptr(data, btf_data, attr->btf_size)) { 5507 err = -EFAULT; 5508 goto errout; 5509 } 5510 5511 err = btf_parse_hdr(env); 5512 if (err) 5513 goto errout; 5514 5515 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5516 5517 err = btf_parse_str_sec(env); 5518 if (err) 5519 goto errout; 5520 5521 err = btf_parse_type_sec(env); 5522 if (err) 5523 goto errout; 5524 5525 err = btf_check_type_tags(env, btf, 1); 5526 if (err) 5527 goto errout; 5528 5529 struct_meta_tab = btf_parse_struct_metas(&env->log, btf); 5530 if (IS_ERR(struct_meta_tab)) { 5531 err = PTR_ERR(struct_meta_tab); 5532 goto errout; 5533 } 5534 btf->struct_meta_tab = struct_meta_tab; 5535 5536 if (struct_meta_tab) { 5537 int i; 5538 5539 for (i = 0; i < struct_meta_tab->cnt; i++) { 5540 err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record); 5541 if (err < 0) 5542 goto errout_meta; 5543 } 5544 } 5545 5546 err = finalize_log(&env->log, uattr, uattr_size); 5547 if (err) 5548 goto errout_free; 5549 5550 btf_verifier_env_free(env); 5551 refcount_set(&btf->refcnt, 1); 5552 return btf; 5553 5554 errout_meta: 5555 btf_free_struct_meta_tab(btf); 5556 errout: 5557 /* overwrite err with -ENOSPC or -EFAULT */ 5558 ret = finalize_log(&env->log, uattr, uattr_size); 5559 if (ret) 5560 err = ret; 5561 errout_free: 5562 btf_verifier_env_free(env); 5563 if (btf) 5564 btf_free(btf); 5565 return ERR_PTR(err); 5566 } 5567 5568 extern char __weak __start_BTF[]; 5569 extern char __weak __stop_BTF[]; 5570 extern struct btf *btf_vmlinux; 5571 5572 #define BPF_MAP_TYPE(_id, _ops) 5573 #define BPF_LINK_TYPE(_id, _name) 5574 static union { 5575 struct bpf_ctx_convert { 5576 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5577 prog_ctx_type _id##_prog; \ 5578 kern_ctx_type _id##_kern; 5579 #include <linux/bpf_types.h> 5580 #undef BPF_PROG_TYPE 5581 } *__t; 5582 /* 't' is written once under lock. Read many times. */ 5583 const struct btf_type *t; 5584 } bpf_ctx_convert; 5585 enum { 5586 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5587 __ctx_convert##_id, 5588 #include <linux/bpf_types.h> 5589 #undef BPF_PROG_TYPE 5590 __ctx_convert_unused, /* to avoid empty enum in extreme .config */ 5591 }; 5592 static u8 bpf_ctx_convert_map[] = { 5593 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \ 5594 [_id] = __ctx_convert##_id, 5595 #include <linux/bpf_types.h> 5596 #undef BPF_PROG_TYPE 5597 0, /* avoid empty array */ 5598 }; 5599 #undef BPF_MAP_TYPE 5600 #undef BPF_LINK_TYPE 5601 5602 const struct btf_member * 5603 btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf, 5604 const struct btf_type *t, enum bpf_prog_type prog_type, 5605 int arg) 5606 { 5607 const struct btf_type *conv_struct; 5608 const struct btf_type *ctx_struct; 5609 const struct btf_member *ctx_type; 5610 const char *tname, *ctx_tname; 5611 5612 conv_struct = bpf_ctx_convert.t; 5613 if (!conv_struct) { 5614 bpf_log(log, "btf_vmlinux is malformed\n"); 5615 return NULL; 5616 } 5617 t = btf_type_by_id(btf, t->type); 5618 while (btf_type_is_modifier(t)) 5619 t = btf_type_by_id(btf, t->type); 5620 if (!btf_type_is_struct(t)) { 5621 /* Only pointer to struct is supported for now. 5622 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF 5623 * is not supported yet. 5624 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine. 5625 */ 5626 return NULL; 5627 } 5628 tname = btf_name_by_offset(btf, t->name_off); 5629 if (!tname) { 5630 bpf_log(log, "arg#%d struct doesn't have a name\n", arg); 5631 return NULL; 5632 } 5633 /* prog_type is valid bpf program type. No need for bounds check. */ 5634 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2; 5635 /* ctx_struct is a pointer to prog_ctx_type in vmlinux. 5636 * Like 'struct __sk_buff' 5637 */ 5638 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type); 5639 if (!ctx_struct) 5640 /* should not happen */ 5641 return NULL; 5642 again: 5643 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off); 5644 if (!ctx_tname) { 5645 /* should not happen */ 5646 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n"); 5647 return NULL; 5648 } 5649 /* only compare that prog's ctx type name is the same as 5650 * kernel expects. No need to compare field by field. 5651 * It's ok for bpf prog to do: 5652 * struct __sk_buff {}; 5653 * int socket_filter_bpf_prog(struct __sk_buff *skb) 5654 * { // no fields of skb are ever used } 5655 */ 5656 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0) 5657 return ctx_type; 5658 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0) 5659 return ctx_type; 5660 if (strcmp(ctx_tname, tname)) { 5661 /* bpf_user_pt_regs_t is a typedef, so resolve it to 5662 * underlying struct and check name again 5663 */ 5664 if (!btf_type_is_modifier(ctx_struct)) 5665 return NULL; 5666 while (btf_type_is_modifier(ctx_struct)) 5667 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type); 5668 goto again; 5669 } 5670 return ctx_type; 5671 } 5672 5673 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log, 5674 struct btf *btf, 5675 const struct btf_type *t, 5676 enum bpf_prog_type prog_type, 5677 int arg) 5678 { 5679 const struct btf_member *prog_ctx_type, *kern_ctx_type; 5680 5681 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg); 5682 if (!prog_ctx_type) 5683 return -ENOENT; 5684 kern_ctx_type = prog_ctx_type + 1; 5685 return kern_ctx_type->type; 5686 } 5687 5688 int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type) 5689 { 5690 const struct btf_member *kctx_member; 5691 const struct btf_type *conv_struct; 5692 const struct btf_type *kctx_type; 5693 u32 kctx_type_id; 5694 5695 conv_struct = bpf_ctx_convert.t; 5696 /* get member for kernel ctx type */ 5697 kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1; 5698 kctx_type_id = kctx_member->type; 5699 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id); 5700 if (!btf_type_is_struct(kctx_type)) { 5701 bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id); 5702 return -EINVAL; 5703 } 5704 5705 return kctx_type_id; 5706 } 5707 5708 BTF_ID_LIST(bpf_ctx_convert_btf_id) 5709 BTF_ID(struct, bpf_ctx_convert) 5710 5711 struct btf *btf_parse_vmlinux(void) 5712 { 5713 struct btf_verifier_env *env = NULL; 5714 struct bpf_verifier_log *log; 5715 struct btf *btf = NULL; 5716 int err; 5717 5718 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5719 if (!env) 5720 return ERR_PTR(-ENOMEM); 5721 5722 log = &env->log; 5723 log->level = BPF_LOG_KERNEL; 5724 5725 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5726 if (!btf) { 5727 err = -ENOMEM; 5728 goto errout; 5729 } 5730 env->btf = btf; 5731 5732 btf->data = __start_BTF; 5733 btf->data_size = __stop_BTF - __start_BTF; 5734 btf->kernel_btf = true; 5735 snprintf(btf->name, sizeof(btf->name), "vmlinux"); 5736 5737 err = btf_parse_hdr(env); 5738 if (err) 5739 goto errout; 5740 5741 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5742 5743 err = btf_parse_str_sec(env); 5744 if (err) 5745 goto errout; 5746 5747 err = btf_check_all_metas(env); 5748 if (err) 5749 goto errout; 5750 5751 err = btf_check_type_tags(env, btf, 1); 5752 if (err) 5753 goto errout; 5754 5755 /* btf_parse_vmlinux() runs under bpf_verifier_lock */ 5756 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]); 5757 5758 bpf_struct_ops_init(btf, log); 5759 5760 refcount_set(&btf->refcnt, 1); 5761 5762 err = btf_alloc_id(btf); 5763 if (err) 5764 goto errout; 5765 5766 btf_verifier_env_free(env); 5767 return btf; 5768 5769 errout: 5770 btf_verifier_env_free(env); 5771 if (btf) { 5772 kvfree(btf->types); 5773 kfree(btf); 5774 } 5775 return ERR_PTR(err); 5776 } 5777 5778 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 5779 5780 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size) 5781 { 5782 struct btf_verifier_env *env = NULL; 5783 struct bpf_verifier_log *log; 5784 struct btf *btf = NULL, *base_btf; 5785 int err; 5786 5787 base_btf = bpf_get_btf_vmlinux(); 5788 if (IS_ERR(base_btf)) 5789 return base_btf; 5790 if (!base_btf) 5791 return ERR_PTR(-EINVAL); 5792 5793 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 5794 if (!env) 5795 return ERR_PTR(-ENOMEM); 5796 5797 log = &env->log; 5798 log->level = BPF_LOG_KERNEL; 5799 5800 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 5801 if (!btf) { 5802 err = -ENOMEM; 5803 goto errout; 5804 } 5805 env->btf = btf; 5806 5807 btf->base_btf = base_btf; 5808 btf->start_id = base_btf->nr_types; 5809 btf->start_str_off = base_btf->hdr.str_len; 5810 btf->kernel_btf = true; 5811 snprintf(btf->name, sizeof(btf->name), "%s", module_name); 5812 5813 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN); 5814 if (!btf->data) { 5815 err = -ENOMEM; 5816 goto errout; 5817 } 5818 memcpy(btf->data, data, data_size); 5819 btf->data_size = data_size; 5820 5821 err = btf_parse_hdr(env); 5822 if (err) 5823 goto errout; 5824 5825 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 5826 5827 err = btf_parse_str_sec(env); 5828 if (err) 5829 goto errout; 5830 5831 err = btf_check_all_metas(env); 5832 if (err) 5833 goto errout; 5834 5835 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf)); 5836 if (err) 5837 goto errout; 5838 5839 btf_verifier_env_free(env); 5840 refcount_set(&btf->refcnt, 1); 5841 return btf; 5842 5843 errout: 5844 btf_verifier_env_free(env); 5845 if (btf) { 5846 kvfree(btf->data); 5847 kvfree(btf->types); 5848 kfree(btf); 5849 } 5850 return ERR_PTR(err); 5851 } 5852 5853 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 5854 5855 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog) 5856 { 5857 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5858 5859 if (tgt_prog) 5860 return tgt_prog->aux->btf; 5861 else 5862 return prog->aux->attach_btf; 5863 } 5864 5865 static bool is_int_ptr(struct btf *btf, const struct btf_type *t) 5866 { 5867 /* skip modifiers */ 5868 t = btf_type_skip_modifiers(btf, t->type, NULL); 5869 5870 return btf_type_is_int(t); 5871 } 5872 5873 static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto, 5874 int off) 5875 { 5876 const struct btf_param *args; 5877 const struct btf_type *t; 5878 u32 offset = 0, nr_args; 5879 int i; 5880 5881 if (!func_proto) 5882 return off / 8; 5883 5884 nr_args = btf_type_vlen(func_proto); 5885 args = (const struct btf_param *)(func_proto + 1); 5886 for (i = 0; i < nr_args; i++) { 5887 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 5888 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5889 if (off < offset) 5890 return i; 5891 } 5892 5893 t = btf_type_skip_modifiers(btf, func_proto->type, NULL); 5894 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8); 5895 if (off < offset) 5896 return nr_args; 5897 5898 return nr_args + 1; 5899 } 5900 5901 static bool prog_args_trusted(const struct bpf_prog *prog) 5902 { 5903 enum bpf_attach_type atype = prog->expected_attach_type; 5904 5905 switch (prog->type) { 5906 case BPF_PROG_TYPE_TRACING: 5907 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER; 5908 case BPF_PROG_TYPE_LSM: 5909 return bpf_lsm_is_trusted(prog); 5910 case BPF_PROG_TYPE_STRUCT_OPS: 5911 return true; 5912 default: 5913 return false; 5914 } 5915 } 5916 5917 bool btf_ctx_access(int off, int size, enum bpf_access_type type, 5918 const struct bpf_prog *prog, 5919 struct bpf_insn_access_aux *info) 5920 { 5921 const struct btf_type *t = prog->aux->attach_func_proto; 5922 struct bpf_prog *tgt_prog = prog->aux->dst_prog; 5923 struct btf *btf = bpf_prog_get_target_btf(prog); 5924 const char *tname = prog->aux->attach_func_name; 5925 struct bpf_verifier_log *log = info->log; 5926 const struct btf_param *args; 5927 const char *tag_value; 5928 u32 nr_args, arg; 5929 int i, ret; 5930 5931 if (off % 8) { 5932 bpf_log(log, "func '%s' offset %d is not multiple of 8\n", 5933 tname, off); 5934 return false; 5935 } 5936 arg = get_ctx_arg_idx(btf, t, off); 5937 args = (const struct btf_param *)(t + 1); 5938 /* if (t == NULL) Fall back to default BPF prog with 5939 * MAX_BPF_FUNC_REG_ARGS u64 arguments. 5940 */ 5941 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS; 5942 if (prog->aux->attach_btf_trace) { 5943 /* skip first 'void *__data' argument in btf_trace_##name typedef */ 5944 args++; 5945 nr_args--; 5946 } 5947 5948 if (arg > nr_args) { 5949 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5950 tname, arg + 1); 5951 return false; 5952 } 5953 5954 if (arg == nr_args) { 5955 switch (prog->expected_attach_type) { 5956 case BPF_LSM_CGROUP: 5957 case BPF_LSM_MAC: 5958 case BPF_TRACE_FEXIT: 5959 /* When LSM programs are attached to void LSM hooks 5960 * they use FEXIT trampolines and when attached to 5961 * int LSM hooks, they use MODIFY_RETURN trampolines. 5962 * 5963 * While the LSM programs are BPF_MODIFY_RETURN-like 5964 * the check: 5965 * 5966 * if (ret_type != 'int') 5967 * return -EINVAL; 5968 * 5969 * is _not_ done here. This is still safe as LSM hooks 5970 * have only void and int return types. 5971 */ 5972 if (!t) 5973 return true; 5974 t = btf_type_by_id(btf, t->type); 5975 break; 5976 case BPF_MODIFY_RETURN: 5977 /* For now the BPF_MODIFY_RETURN can only be attached to 5978 * functions that return an int. 5979 */ 5980 if (!t) 5981 return false; 5982 5983 t = btf_type_skip_modifiers(btf, t->type, NULL); 5984 if (!btf_type_is_small_int(t)) { 5985 bpf_log(log, 5986 "ret type %s not allowed for fmod_ret\n", 5987 btf_type_str(t)); 5988 return false; 5989 } 5990 break; 5991 default: 5992 bpf_log(log, "func '%s' doesn't have %d-th argument\n", 5993 tname, arg + 1); 5994 return false; 5995 } 5996 } else { 5997 if (!t) 5998 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */ 5999 return true; 6000 t = btf_type_by_id(btf, args[arg].type); 6001 } 6002 6003 /* skip modifiers */ 6004 while (btf_type_is_modifier(t)) 6005 t = btf_type_by_id(btf, t->type); 6006 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6007 /* accessing a scalar */ 6008 return true; 6009 if (!btf_type_is_ptr(t)) { 6010 bpf_log(log, 6011 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n", 6012 tname, arg, 6013 __btf_name_by_offset(btf, t->name_off), 6014 btf_type_str(t)); 6015 return false; 6016 } 6017 6018 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */ 6019 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6020 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6021 u32 type, flag; 6022 6023 type = base_type(ctx_arg_info->reg_type); 6024 flag = type_flag(ctx_arg_info->reg_type); 6025 if (ctx_arg_info->offset == off && type == PTR_TO_BUF && 6026 (flag & PTR_MAYBE_NULL)) { 6027 info->reg_type = ctx_arg_info->reg_type; 6028 return true; 6029 } 6030 } 6031 6032 if (t->type == 0) 6033 /* This is a pointer to void. 6034 * It is the same as scalar from the verifier safety pov. 6035 * No further pointer walking is allowed. 6036 */ 6037 return true; 6038 6039 if (is_int_ptr(btf, t)) 6040 return true; 6041 6042 /* this is a pointer to another type */ 6043 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) { 6044 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i]; 6045 6046 if (ctx_arg_info->offset == off) { 6047 if (!ctx_arg_info->btf_id) { 6048 bpf_log(log,"invalid btf_id for context argument offset %u\n", off); 6049 return false; 6050 } 6051 6052 info->reg_type = ctx_arg_info->reg_type; 6053 info->btf = btf_vmlinux; 6054 info->btf_id = ctx_arg_info->btf_id; 6055 return true; 6056 } 6057 } 6058 6059 info->reg_type = PTR_TO_BTF_ID; 6060 if (prog_args_trusted(prog)) 6061 info->reg_type |= PTR_TRUSTED; 6062 6063 if (tgt_prog) { 6064 enum bpf_prog_type tgt_type; 6065 6066 if (tgt_prog->type == BPF_PROG_TYPE_EXT) 6067 tgt_type = tgt_prog->aux->saved_dst_prog_type; 6068 else 6069 tgt_type = tgt_prog->type; 6070 6071 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg); 6072 if (ret > 0) { 6073 info->btf = btf_vmlinux; 6074 info->btf_id = ret; 6075 return true; 6076 } else { 6077 return false; 6078 } 6079 } 6080 6081 info->btf = btf; 6082 info->btf_id = t->type; 6083 t = btf_type_by_id(btf, t->type); 6084 6085 if (btf_type_is_type_tag(t)) { 6086 tag_value = __btf_name_by_offset(btf, t->name_off); 6087 if (strcmp(tag_value, "user") == 0) 6088 info->reg_type |= MEM_USER; 6089 if (strcmp(tag_value, "percpu") == 0) 6090 info->reg_type |= MEM_PERCPU; 6091 } 6092 6093 /* skip modifiers */ 6094 while (btf_type_is_modifier(t)) { 6095 info->btf_id = t->type; 6096 t = btf_type_by_id(btf, t->type); 6097 } 6098 if (!btf_type_is_struct(t)) { 6099 bpf_log(log, 6100 "func '%s' arg%d type %s is not a struct\n", 6101 tname, arg, btf_type_str(t)); 6102 return false; 6103 } 6104 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n", 6105 tname, arg, info->btf_id, btf_type_str(t), 6106 __btf_name_by_offset(btf, t->name_off)); 6107 return true; 6108 } 6109 6110 enum bpf_struct_walk_result { 6111 /* < 0 error */ 6112 WALK_SCALAR = 0, 6113 WALK_PTR, 6114 WALK_STRUCT, 6115 }; 6116 6117 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf, 6118 const struct btf_type *t, int off, int size, 6119 u32 *next_btf_id, enum bpf_type_flag *flag, 6120 const char **field_name) 6121 { 6122 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0; 6123 const struct btf_type *mtype, *elem_type = NULL; 6124 const struct btf_member *member; 6125 const char *tname, *mname, *tag_value; 6126 u32 vlen, elem_id, mid; 6127 6128 *flag = 0; 6129 again: 6130 tname = __btf_name_by_offset(btf, t->name_off); 6131 if (!btf_type_is_struct(t)) { 6132 bpf_log(log, "Type '%s' is not a struct\n", tname); 6133 return -EINVAL; 6134 } 6135 6136 vlen = btf_type_vlen(t); 6137 if (off + size > t->size) { 6138 /* If the last element is a variable size array, we may 6139 * need to relax the rule. 6140 */ 6141 struct btf_array *array_elem; 6142 6143 if (vlen == 0) 6144 goto error; 6145 6146 member = btf_type_member(t) + vlen - 1; 6147 mtype = btf_type_skip_modifiers(btf, member->type, 6148 NULL); 6149 if (!btf_type_is_array(mtype)) 6150 goto error; 6151 6152 array_elem = (struct btf_array *)(mtype + 1); 6153 if (array_elem->nelems != 0) 6154 goto error; 6155 6156 moff = __btf_member_bit_offset(t, member) / 8; 6157 if (off < moff) 6158 goto error; 6159 6160 /* allow structure and integer */ 6161 t = btf_type_skip_modifiers(btf, array_elem->type, 6162 NULL); 6163 6164 if (btf_type_is_int(t)) 6165 return WALK_SCALAR; 6166 6167 if (!btf_type_is_struct(t)) 6168 goto error; 6169 6170 off = (off - moff) % t->size; 6171 goto again; 6172 6173 error: 6174 bpf_log(log, "access beyond struct %s at off %u size %u\n", 6175 tname, off, size); 6176 return -EACCES; 6177 } 6178 6179 for_each_member(i, t, member) { 6180 /* offset of the field in bytes */ 6181 moff = __btf_member_bit_offset(t, member) / 8; 6182 if (off + size <= moff) 6183 /* won't find anything, field is already too far */ 6184 break; 6185 6186 if (__btf_member_bitfield_size(t, member)) { 6187 u32 end_bit = __btf_member_bit_offset(t, member) + 6188 __btf_member_bitfield_size(t, member); 6189 6190 /* off <= moff instead of off == moff because clang 6191 * does not generate a BTF member for anonymous 6192 * bitfield like the ":16" here: 6193 * struct { 6194 * int :16; 6195 * int x:8; 6196 * }; 6197 */ 6198 if (off <= moff && 6199 BITS_ROUNDUP_BYTES(end_bit) <= off + size) 6200 return WALK_SCALAR; 6201 6202 /* off may be accessing a following member 6203 * 6204 * or 6205 * 6206 * Doing partial access at either end of this 6207 * bitfield. Continue on this case also to 6208 * treat it as not accessing this bitfield 6209 * and eventually error out as field not 6210 * found to keep it simple. 6211 * It could be relaxed if there was a legit 6212 * partial access case later. 6213 */ 6214 continue; 6215 } 6216 6217 /* In case of "off" is pointing to holes of a struct */ 6218 if (off < moff) 6219 break; 6220 6221 /* type of the field */ 6222 mid = member->type; 6223 mtype = btf_type_by_id(btf, member->type); 6224 mname = __btf_name_by_offset(btf, member->name_off); 6225 6226 mtype = __btf_resolve_size(btf, mtype, &msize, 6227 &elem_type, &elem_id, &total_nelems, 6228 &mid); 6229 if (IS_ERR(mtype)) { 6230 bpf_log(log, "field %s doesn't have size\n", mname); 6231 return -EFAULT; 6232 } 6233 6234 mtrue_end = moff + msize; 6235 if (off >= mtrue_end) 6236 /* no overlap with member, keep iterating */ 6237 continue; 6238 6239 if (btf_type_is_array(mtype)) { 6240 u32 elem_idx; 6241 6242 /* __btf_resolve_size() above helps to 6243 * linearize a multi-dimensional array. 6244 * 6245 * The logic here is treating an array 6246 * in a struct as the following way: 6247 * 6248 * struct outer { 6249 * struct inner array[2][2]; 6250 * }; 6251 * 6252 * looks like: 6253 * 6254 * struct outer { 6255 * struct inner array_elem0; 6256 * struct inner array_elem1; 6257 * struct inner array_elem2; 6258 * struct inner array_elem3; 6259 * }; 6260 * 6261 * When accessing outer->array[1][0], it moves 6262 * moff to "array_elem2", set mtype to 6263 * "struct inner", and msize also becomes 6264 * sizeof(struct inner). Then most of the 6265 * remaining logic will fall through without 6266 * caring the current member is an array or 6267 * not. 6268 * 6269 * Unlike mtype/msize/moff, mtrue_end does not 6270 * change. The naming difference ("_true") tells 6271 * that it is not always corresponding to 6272 * the current mtype/msize/moff. 6273 * It is the true end of the current 6274 * member (i.e. array in this case). That 6275 * will allow an int array to be accessed like 6276 * a scratch space, 6277 * i.e. allow access beyond the size of 6278 * the array's element as long as it is 6279 * within the mtrue_end boundary. 6280 */ 6281 6282 /* skip empty array */ 6283 if (moff == mtrue_end) 6284 continue; 6285 6286 msize /= total_nelems; 6287 elem_idx = (off - moff) / msize; 6288 moff += elem_idx * msize; 6289 mtype = elem_type; 6290 mid = elem_id; 6291 } 6292 6293 /* the 'off' we're looking for is either equal to start 6294 * of this field or inside of this struct 6295 */ 6296 if (btf_type_is_struct(mtype)) { 6297 if (BTF_INFO_KIND(mtype->info) == BTF_KIND_UNION && 6298 btf_type_vlen(mtype) != 1) 6299 /* 6300 * walking unions yields untrusted pointers 6301 * with exception of __bpf_md_ptr and other 6302 * unions with a single member 6303 */ 6304 *flag |= PTR_UNTRUSTED; 6305 6306 /* our field must be inside that union or struct */ 6307 t = mtype; 6308 6309 /* return if the offset matches the member offset */ 6310 if (off == moff) { 6311 *next_btf_id = mid; 6312 return WALK_STRUCT; 6313 } 6314 6315 /* adjust offset we're looking for */ 6316 off -= moff; 6317 goto again; 6318 } 6319 6320 if (btf_type_is_ptr(mtype)) { 6321 const struct btf_type *stype, *t; 6322 enum bpf_type_flag tmp_flag = 0; 6323 u32 id; 6324 6325 if (msize != size || off != moff) { 6326 bpf_log(log, 6327 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n", 6328 mname, moff, tname, off, size); 6329 return -EACCES; 6330 } 6331 6332 /* check type tag */ 6333 t = btf_type_by_id(btf, mtype->type); 6334 if (btf_type_is_type_tag(t)) { 6335 tag_value = __btf_name_by_offset(btf, t->name_off); 6336 /* check __user tag */ 6337 if (strcmp(tag_value, "user") == 0) 6338 tmp_flag = MEM_USER; 6339 /* check __percpu tag */ 6340 if (strcmp(tag_value, "percpu") == 0) 6341 tmp_flag = MEM_PERCPU; 6342 /* check __rcu tag */ 6343 if (strcmp(tag_value, "rcu") == 0) 6344 tmp_flag = MEM_RCU; 6345 } 6346 6347 stype = btf_type_skip_modifiers(btf, mtype->type, &id); 6348 if (btf_type_is_struct(stype)) { 6349 *next_btf_id = id; 6350 *flag |= tmp_flag; 6351 if (field_name) 6352 *field_name = mname; 6353 return WALK_PTR; 6354 } 6355 } 6356 6357 /* Allow more flexible access within an int as long as 6358 * it is within mtrue_end. 6359 * Since mtrue_end could be the end of an array, 6360 * that also allows using an array of int as a scratch 6361 * space. e.g. skb->cb[]. 6362 */ 6363 if (off + size > mtrue_end) { 6364 bpf_log(log, 6365 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n", 6366 mname, mtrue_end, tname, off, size); 6367 return -EACCES; 6368 } 6369 6370 return WALK_SCALAR; 6371 } 6372 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off); 6373 return -EINVAL; 6374 } 6375 6376 int btf_struct_access(struct bpf_verifier_log *log, 6377 const struct bpf_reg_state *reg, 6378 int off, int size, enum bpf_access_type atype __maybe_unused, 6379 u32 *next_btf_id, enum bpf_type_flag *flag, 6380 const char **field_name) 6381 { 6382 const struct btf *btf = reg->btf; 6383 enum bpf_type_flag tmp_flag = 0; 6384 const struct btf_type *t; 6385 u32 id = reg->btf_id; 6386 int err; 6387 6388 while (type_is_alloc(reg->type)) { 6389 struct btf_struct_meta *meta; 6390 struct btf_record *rec; 6391 int i; 6392 6393 meta = btf_find_struct_meta(btf, id); 6394 if (!meta) 6395 break; 6396 rec = meta->record; 6397 for (i = 0; i < rec->cnt; i++) { 6398 struct btf_field *field = &rec->fields[i]; 6399 u32 offset = field->offset; 6400 if (off < offset + btf_field_type_size(field->type) && offset < off + size) { 6401 bpf_log(log, 6402 "direct access to %s is disallowed\n", 6403 btf_field_type_name(field->type)); 6404 return -EACCES; 6405 } 6406 } 6407 break; 6408 } 6409 6410 t = btf_type_by_id(btf, id); 6411 do { 6412 err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name); 6413 6414 switch (err) { 6415 case WALK_PTR: 6416 /* For local types, the destination register cannot 6417 * become a pointer again. 6418 */ 6419 if (type_is_alloc(reg->type)) 6420 return SCALAR_VALUE; 6421 /* If we found the pointer or scalar on t+off, 6422 * we're done. 6423 */ 6424 *next_btf_id = id; 6425 *flag = tmp_flag; 6426 return PTR_TO_BTF_ID; 6427 case WALK_SCALAR: 6428 return SCALAR_VALUE; 6429 case WALK_STRUCT: 6430 /* We found nested struct, so continue the search 6431 * by diving in it. At this point the offset is 6432 * aligned with the new type, so set it to 0. 6433 */ 6434 t = btf_type_by_id(btf, id); 6435 off = 0; 6436 break; 6437 default: 6438 /* It's either error or unknown return value.. 6439 * scream and leave. 6440 */ 6441 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value")) 6442 return -EINVAL; 6443 return err; 6444 } 6445 } while (t); 6446 6447 return -EINVAL; 6448 } 6449 6450 /* Check that two BTF types, each specified as an BTF object + id, are exactly 6451 * the same. Trivial ID check is not enough due to module BTFs, because we can 6452 * end up with two different module BTFs, but IDs point to the common type in 6453 * vmlinux BTF. 6454 */ 6455 bool btf_types_are_same(const struct btf *btf1, u32 id1, 6456 const struct btf *btf2, u32 id2) 6457 { 6458 if (id1 != id2) 6459 return false; 6460 if (btf1 == btf2) 6461 return true; 6462 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2); 6463 } 6464 6465 bool btf_struct_ids_match(struct bpf_verifier_log *log, 6466 const struct btf *btf, u32 id, int off, 6467 const struct btf *need_btf, u32 need_type_id, 6468 bool strict) 6469 { 6470 const struct btf_type *type; 6471 enum bpf_type_flag flag; 6472 int err; 6473 6474 /* Are we already done? */ 6475 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id)) 6476 return true; 6477 /* In case of strict type match, we do not walk struct, the top level 6478 * type match must succeed. When strict is true, off should have already 6479 * been 0. 6480 */ 6481 if (strict) 6482 return false; 6483 again: 6484 type = btf_type_by_id(btf, id); 6485 if (!type) 6486 return false; 6487 err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL); 6488 if (err != WALK_STRUCT) 6489 return false; 6490 6491 /* We found nested struct object. If it matches 6492 * the requested ID, we're done. Otherwise let's 6493 * continue the search with offset 0 in the new 6494 * type. 6495 */ 6496 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) { 6497 off = 0; 6498 goto again; 6499 } 6500 6501 return true; 6502 } 6503 6504 static int __get_type_size(struct btf *btf, u32 btf_id, 6505 const struct btf_type **ret_type) 6506 { 6507 const struct btf_type *t; 6508 6509 *ret_type = btf_type_by_id(btf, 0); 6510 if (!btf_id) 6511 /* void */ 6512 return 0; 6513 t = btf_type_by_id(btf, btf_id); 6514 while (t && btf_type_is_modifier(t)) 6515 t = btf_type_by_id(btf, t->type); 6516 if (!t) 6517 return -EINVAL; 6518 *ret_type = t; 6519 if (btf_type_is_ptr(t)) 6520 /* kernel size of pointer. Not BPF's size of pointer*/ 6521 return sizeof(void *); 6522 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t)) 6523 return t->size; 6524 return -EINVAL; 6525 } 6526 6527 static u8 __get_type_fmodel_flags(const struct btf_type *t) 6528 { 6529 u8 flags = 0; 6530 6531 if (__btf_type_is_struct(t)) 6532 flags |= BTF_FMODEL_STRUCT_ARG; 6533 if (btf_type_is_signed_int(t)) 6534 flags |= BTF_FMODEL_SIGNED_ARG; 6535 6536 return flags; 6537 } 6538 6539 int btf_distill_func_proto(struct bpf_verifier_log *log, 6540 struct btf *btf, 6541 const struct btf_type *func, 6542 const char *tname, 6543 struct btf_func_model *m) 6544 { 6545 const struct btf_param *args; 6546 const struct btf_type *t; 6547 u32 i, nargs; 6548 int ret; 6549 6550 if (!func) { 6551 /* BTF function prototype doesn't match the verifier types. 6552 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args. 6553 */ 6554 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) { 6555 m->arg_size[i] = 8; 6556 m->arg_flags[i] = 0; 6557 } 6558 m->ret_size = 8; 6559 m->ret_flags = 0; 6560 m->nr_args = MAX_BPF_FUNC_REG_ARGS; 6561 return 0; 6562 } 6563 args = (const struct btf_param *)(func + 1); 6564 nargs = btf_type_vlen(func); 6565 if (nargs > MAX_BPF_FUNC_ARGS) { 6566 bpf_log(log, 6567 "The function %s has %d arguments. Too many.\n", 6568 tname, nargs); 6569 return -EINVAL; 6570 } 6571 ret = __get_type_size(btf, func->type, &t); 6572 if (ret < 0 || __btf_type_is_struct(t)) { 6573 bpf_log(log, 6574 "The function %s return type %s is unsupported.\n", 6575 tname, btf_type_str(t)); 6576 return -EINVAL; 6577 } 6578 m->ret_size = ret; 6579 m->ret_flags = __get_type_fmodel_flags(t); 6580 6581 for (i = 0; i < nargs; i++) { 6582 if (i == nargs - 1 && args[i].type == 0) { 6583 bpf_log(log, 6584 "The function %s with variable args is unsupported.\n", 6585 tname); 6586 return -EINVAL; 6587 } 6588 ret = __get_type_size(btf, args[i].type, &t); 6589 6590 /* No support of struct argument size greater than 16 bytes */ 6591 if (ret < 0 || ret > 16) { 6592 bpf_log(log, 6593 "The function %s arg%d type %s is unsupported.\n", 6594 tname, i, btf_type_str(t)); 6595 return -EINVAL; 6596 } 6597 if (ret == 0) { 6598 bpf_log(log, 6599 "The function %s has malformed void argument.\n", 6600 tname); 6601 return -EINVAL; 6602 } 6603 m->arg_size[i] = ret; 6604 m->arg_flags[i] = __get_type_fmodel_flags(t); 6605 } 6606 m->nr_args = nargs; 6607 return 0; 6608 } 6609 6610 /* Compare BTFs of two functions assuming only scalars and pointers to context. 6611 * t1 points to BTF_KIND_FUNC in btf1 6612 * t2 points to BTF_KIND_FUNC in btf2 6613 * Returns: 6614 * EINVAL - function prototype mismatch 6615 * EFAULT - verifier bug 6616 * 0 - 99% match. The last 1% is validated by the verifier. 6617 */ 6618 static int btf_check_func_type_match(struct bpf_verifier_log *log, 6619 struct btf *btf1, const struct btf_type *t1, 6620 struct btf *btf2, const struct btf_type *t2) 6621 { 6622 const struct btf_param *args1, *args2; 6623 const char *fn1, *fn2, *s1, *s2; 6624 u32 nargs1, nargs2, i; 6625 6626 fn1 = btf_name_by_offset(btf1, t1->name_off); 6627 fn2 = btf_name_by_offset(btf2, t2->name_off); 6628 6629 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) { 6630 bpf_log(log, "%s() is not a global function\n", fn1); 6631 return -EINVAL; 6632 } 6633 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) { 6634 bpf_log(log, "%s() is not a global function\n", fn2); 6635 return -EINVAL; 6636 } 6637 6638 t1 = btf_type_by_id(btf1, t1->type); 6639 if (!t1 || !btf_type_is_func_proto(t1)) 6640 return -EFAULT; 6641 t2 = btf_type_by_id(btf2, t2->type); 6642 if (!t2 || !btf_type_is_func_proto(t2)) 6643 return -EFAULT; 6644 6645 args1 = (const struct btf_param *)(t1 + 1); 6646 nargs1 = btf_type_vlen(t1); 6647 args2 = (const struct btf_param *)(t2 + 1); 6648 nargs2 = btf_type_vlen(t2); 6649 6650 if (nargs1 != nargs2) { 6651 bpf_log(log, "%s() has %d args while %s() has %d args\n", 6652 fn1, nargs1, fn2, nargs2); 6653 return -EINVAL; 6654 } 6655 6656 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6657 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6658 if (t1->info != t2->info) { 6659 bpf_log(log, 6660 "Return type %s of %s() doesn't match type %s of %s()\n", 6661 btf_type_str(t1), fn1, 6662 btf_type_str(t2), fn2); 6663 return -EINVAL; 6664 } 6665 6666 for (i = 0; i < nargs1; i++) { 6667 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL); 6668 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL); 6669 6670 if (t1->info != t2->info) { 6671 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n", 6672 i, fn1, btf_type_str(t1), 6673 fn2, btf_type_str(t2)); 6674 return -EINVAL; 6675 } 6676 if (btf_type_has_size(t1) && t1->size != t2->size) { 6677 bpf_log(log, 6678 "arg%d in %s() has size %d while %s() has %d\n", 6679 i, fn1, t1->size, 6680 fn2, t2->size); 6681 return -EINVAL; 6682 } 6683 6684 /* global functions are validated with scalars and pointers 6685 * to context only. And only global functions can be replaced. 6686 * Hence type check only those types. 6687 */ 6688 if (btf_type_is_int(t1) || btf_is_any_enum(t1)) 6689 continue; 6690 if (!btf_type_is_ptr(t1)) { 6691 bpf_log(log, 6692 "arg%d in %s() has unrecognized type\n", 6693 i, fn1); 6694 return -EINVAL; 6695 } 6696 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL); 6697 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL); 6698 if (!btf_type_is_struct(t1)) { 6699 bpf_log(log, 6700 "arg%d in %s() is not a pointer to context\n", 6701 i, fn1); 6702 return -EINVAL; 6703 } 6704 if (!btf_type_is_struct(t2)) { 6705 bpf_log(log, 6706 "arg%d in %s() is not a pointer to context\n", 6707 i, fn2); 6708 return -EINVAL; 6709 } 6710 /* This is an optional check to make program writing easier. 6711 * Compare names of structs and report an error to the user. 6712 * btf_prepare_func_args() already checked that t2 struct 6713 * is a context type. btf_prepare_func_args() will check 6714 * later that t1 struct is a context type as well. 6715 */ 6716 s1 = btf_name_by_offset(btf1, t1->name_off); 6717 s2 = btf_name_by_offset(btf2, t2->name_off); 6718 if (strcmp(s1, s2)) { 6719 bpf_log(log, 6720 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n", 6721 i, fn1, s1, fn2, s2); 6722 return -EINVAL; 6723 } 6724 } 6725 return 0; 6726 } 6727 6728 /* Compare BTFs of given program with BTF of target program */ 6729 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog, 6730 struct btf *btf2, const struct btf_type *t2) 6731 { 6732 struct btf *btf1 = prog->aux->btf; 6733 const struct btf_type *t1; 6734 u32 btf_id = 0; 6735 6736 if (!prog->aux->func_info) { 6737 bpf_log(log, "Program extension requires BTF\n"); 6738 return -EINVAL; 6739 } 6740 6741 btf_id = prog->aux->func_info[0].type_id; 6742 if (!btf_id) 6743 return -EFAULT; 6744 6745 t1 = btf_type_by_id(btf1, btf_id); 6746 if (!t1 || !btf_type_is_func(t1)) 6747 return -EFAULT; 6748 6749 return btf_check_func_type_match(log, btf1, t1, btf2, t2); 6750 } 6751 6752 static int btf_check_func_arg_match(struct bpf_verifier_env *env, 6753 const struct btf *btf, u32 func_id, 6754 struct bpf_reg_state *regs, 6755 bool ptr_to_mem_ok, 6756 bool processing_call) 6757 { 6758 enum bpf_prog_type prog_type = resolve_prog_type(env->prog); 6759 struct bpf_verifier_log *log = &env->log; 6760 const char *func_name, *ref_tname; 6761 const struct btf_type *t, *ref_t; 6762 const struct btf_param *args; 6763 u32 i, nargs, ref_id; 6764 int ret; 6765 6766 t = btf_type_by_id(btf, func_id); 6767 if (!t || !btf_type_is_func(t)) { 6768 /* These checks were already done by the verifier while loading 6769 * struct bpf_func_info or in add_kfunc_call(). 6770 */ 6771 bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n", 6772 func_id); 6773 return -EFAULT; 6774 } 6775 func_name = btf_name_by_offset(btf, t->name_off); 6776 6777 t = btf_type_by_id(btf, t->type); 6778 if (!t || !btf_type_is_func_proto(t)) { 6779 bpf_log(log, "Invalid BTF of func %s\n", func_name); 6780 return -EFAULT; 6781 } 6782 args = (const struct btf_param *)(t + 1); 6783 nargs = btf_type_vlen(t); 6784 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6785 bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs, 6786 MAX_BPF_FUNC_REG_ARGS); 6787 return -EINVAL; 6788 } 6789 6790 /* check that BTF function arguments match actual types that the 6791 * verifier sees. 6792 */ 6793 for (i = 0; i < nargs; i++) { 6794 enum bpf_arg_type arg_type = ARG_DONTCARE; 6795 u32 regno = i + 1; 6796 struct bpf_reg_state *reg = ®s[regno]; 6797 6798 t = btf_type_skip_modifiers(btf, args[i].type, NULL); 6799 if (btf_type_is_scalar(t)) { 6800 if (reg->type == SCALAR_VALUE) 6801 continue; 6802 bpf_log(log, "R%d is not a scalar\n", regno); 6803 return -EINVAL; 6804 } 6805 6806 if (!btf_type_is_ptr(t)) { 6807 bpf_log(log, "Unrecognized arg#%d type %s\n", 6808 i, btf_type_str(t)); 6809 return -EINVAL; 6810 } 6811 6812 ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id); 6813 ref_tname = btf_name_by_offset(btf, ref_t->name_off); 6814 6815 ret = check_func_arg_reg_off(env, reg, regno, arg_type); 6816 if (ret < 0) 6817 return ret; 6818 6819 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 6820 /* If function expects ctx type in BTF check that caller 6821 * is passing PTR_TO_CTX. 6822 */ 6823 if (reg->type != PTR_TO_CTX) { 6824 bpf_log(log, 6825 "arg#%d expected pointer to ctx, but got %s\n", 6826 i, btf_type_str(t)); 6827 return -EINVAL; 6828 } 6829 } else if (ptr_to_mem_ok && processing_call) { 6830 const struct btf_type *resolve_ret; 6831 u32 type_size; 6832 6833 resolve_ret = btf_resolve_size(btf, ref_t, &type_size); 6834 if (IS_ERR(resolve_ret)) { 6835 bpf_log(log, 6836 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 6837 i, btf_type_str(ref_t), ref_tname, 6838 PTR_ERR(resolve_ret)); 6839 return -EINVAL; 6840 } 6841 6842 if (check_mem_reg(env, reg, regno, type_size)) 6843 return -EINVAL; 6844 } else { 6845 bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i, 6846 func_name, func_id); 6847 return -EINVAL; 6848 } 6849 } 6850 6851 return 0; 6852 } 6853 6854 /* Compare BTF of a function declaration with given bpf_reg_state. 6855 * Returns: 6856 * EFAULT - there is a verifier bug. Abort verification. 6857 * EINVAL - there is a type mismatch or BTF is not available. 6858 * 0 - BTF matches with what bpf_reg_state expects. 6859 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6860 */ 6861 int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog, 6862 struct bpf_reg_state *regs) 6863 { 6864 struct bpf_prog *prog = env->prog; 6865 struct btf *btf = prog->aux->btf; 6866 bool is_global; 6867 u32 btf_id; 6868 int err; 6869 6870 if (!prog->aux->func_info) 6871 return -EINVAL; 6872 6873 btf_id = prog->aux->func_info[subprog].type_id; 6874 if (!btf_id) 6875 return -EFAULT; 6876 6877 if (prog->aux->func_info_aux[subprog].unreliable) 6878 return -EINVAL; 6879 6880 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6881 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false); 6882 6883 /* Compiler optimizations can remove arguments from static functions 6884 * or mismatched type can be passed into a global function. 6885 * In such cases mark the function as unreliable from BTF point of view. 6886 */ 6887 if (err) 6888 prog->aux->func_info_aux[subprog].unreliable = true; 6889 return err; 6890 } 6891 6892 /* Compare BTF of a function call with given bpf_reg_state. 6893 * Returns: 6894 * EFAULT - there is a verifier bug. Abort verification. 6895 * EINVAL - there is a type mismatch or BTF is not available. 6896 * 0 - BTF matches with what bpf_reg_state expects. 6897 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized. 6898 * 6899 * NOTE: the code is duplicated from btf_check_subprog_arg_match() 6900 * because btf_check_func_arg_match() is still doing both. Once that 6901 * function is split in 2, we can call from here btf_check_subprog_arg_match() 6902 * first, and then treat the calling part in a new code path. 6903 */ 6904 int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog, 6905 struct bpf_reg_state *regs) 6906 { 6907 struct bpf_prog *prog = env->prog; 6908 struct btf *btf = prog->aux->btf; 6909 bool is_global; 6910 u32 btf_id; 6911 int err; 6912 6913 if (!prog->aux->func_info) 6914 return -EINVAL; 6915 6916 btf_id = prog->aux->func_info[subprog].type_id; 6917 if (!btf_id) 6918 return -EFAULT; 6919 6920 if (prog->aux->func_info_aux[subprog].unreliable) 6921 return -EINVAL; 6922 6923 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL; 6924 err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true); 6925 6926 /* Compiler optimizations can remove arguments from static functions 6927 * or mismatched type can be passed into a global function. 6928 * In such cases mark the function as unreliable from BTF point of view. 6929 */ 6930 if (err) 6931 prog->aux->func_info_aux[subprog].unreliable = true; 6932 return err; 6933 } 6934 6935 /* Convert BTF of a function into bpf_reg_state if possible 6936 * Returns: 6937 * EFAULT - there is a verifier bug. Abort verification. 6938 * EINVAL - cannot convert BTF. 6939 * 0 - Successfully converted BTF into bpf_reg_state 6940 * (either PTR_TO_CTX or SCALAR_VALUE). 6941 */ 6942 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog, 6943 struct bpf_reg_state *regs) 6944 { 6945 struct bpf_verifier_log *log = &env->log; 6946 struct bpf_prog *prog = env->prog; 6947 enum bpf_prog_type prog_type = prog->type; 6948 struct btf *btf = prog->aux->btf; 6949 const struct btf_param *args; 6950 const struct btf_type *t, *ref_t; 6951 u32 i, nargs, btf_id; 6952 const char *tname; 6953 6954 if (!prog->aux->func_info || 6955 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) { 6956 bpf_log(log, "Verifier bug\n"); 6957 return -EFAULT; 6958 } 6959 6960 btf_id = prog->aux->func_info[subprog].type_id; 6961 if (!btf_id) { 6962 bpf_log(log, "Global functions need valid BTF\n"); 6963 return -EFAULT; 6964 } 6965 6966 t = btf_type_by_id(btf, btf_id); 6967 if (!t || !btf_type_is_func(t)) { 6968 /* These checks were already done by the verifier while loading 6969 * struct bpf_func_info 6970 */ 6971 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n", 6972 subprog); 6973 return -EFAULT; 6974 } 6975 tname = btf_name_by_offset(btf, t->name_off); 6976 6977 if (log->level & BPF_LOG_LEVEL) 6978 bpf_log(log, "Validating %s() func#%d...\n", 6979 tname, subprog); 6980 6981 if (prog->aux->func_info_aux[subprog].unreliable) { 6982 bpf_log(log, "Verifier bug in function %s()\n", tname); 6983 return -EFAULT; 6984 } 6985 if (prog_type == BPF_PROG_TYPE_EXT) 6986 prog_type = prog->aux->dst_prog->type; 6987 6988 t = btf_type_by_id(btf, t->type); 6989 if (!t || !btf_type_is_func_proto(t)) { 6990 bpf_log(log, "Invalid type of function %s()\n", tname); 6991 return -EFAULT; 6992 } 6993 args = (const struct btf_param *)(t + 1); 6994 nargs = btf_type_vlen(t); 6995 if (nargs > MAX_BPF_FUNC_REG_ARGS) { 6996 bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n", 6997 tname, nargs, MAX_BPF_FUNC_REG_ARGS); 6998 return -EINVAL; 6999 } 7000 /* check that function returns int */ 7001 t = btf_type_by_id(btf, t->type); 7002 while (btf_type_is_modifier(t)) 7003 t = btf_type_by_id(btf, t->type); 7004 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) { 7005 bpf_log(log, 7006 "Global function %s() doesn't return scalar. Only those are supported.\n", 7007 tname); 7008 return -EINVAL; 7009 } 7010 /* Convert BTF function arguments into verifier types. 7011 * Only PTR_TO_CTX and SCALAR are supported atm. 7012 */ 7013 for (i = 0; i < nargs; i++) { 7014 struct bpf_reg_state *reg = ®s[i + 1]; 7015 7016 t = btf_type_by_id(btf, args[i].type); 7017 while (btf_type_is_modifier(t)) 7018 t = btf_type_by_id(btf, t->type); 7019 if (btf_type_is_int(t) || btf_is_any_enum(t)) { 7020 reg->type = SCALAR_VALUE; 7021 continue; 7022 } 7023 if (btf_type_is_ptr(t)) { 7024 if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) { 7025 reg->type = PTR_TO_CTX; 7026 continue; 7027 } 7028 7029 t = btf_type_skip_modifiers(btf, t->type, NULL); 7030 7031 ref_t = btf_resolve_size(btf, t, ®->mem_size); 7032 if (IS_ERR(ref_t)) { 7033 bpf_log(log, 7034 "arg#%d reference type('%s %s') size cannot be determined: %ld\n", 7035 i, btf_type_str(t), btf_name_by_offset(btf, t->name_off), 7036 PTR_ERR(ref_t)); 7037 return -EINVAL; 7038 } 7039 7040 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL; 7041 reg->id = ++env->id_gen; 7042 7043 continue; 7044 } 7045 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n", 7046 i, btf_type_str(t), tname); 7047 return -EINVAL; 7048 } 7049 return 0; 7050 } 7051 7052 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj, 7053 struct btf_show *show) 7054 { 7055 const struct btf_type *t = btf_type_by_id(btf, type_id); 7056 7057 show->btf = btf; 7058 memset(&show->state, 0, sizeof(show->state)); 7059 memset(&show->obj, 0, sizeof(show->obj)); 7060 7061 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show); 7062 } 7063 7064 static void btf_seq_show(struct btf_show *show, const char *fmt, 7065 va_list args) 7066 { 7067 seq_vprintf((struct seq_file *)show->target, fmt, args); 7068 } 7069 7070 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id, 7071 void *obj, struct seq_file *m, u64 flags) 7072 { 7073 struct btf_show sseq; 7074 7075 sseq.target = m; 7076 sseq.showfn = btf_seq_show; 7077 sseq.flags = flags; 7078 7079 btf_type_show(btf, type_id, obj, &sseq); 7080 7081 return sseq.state.status; 7082 } 7083 7084 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 7085 struct seq_file *m) 7086 { 7087 (void) btf_type_seq_show_flags(btf, type_id, obj, m, 7088 BTF_SHOW_NONAME | BTF_SHOW_COMPACT | 7089 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE); 7090 } 7091 7092 struct btf_show_snprintf { 7093 struct btf_show show; 7094 int len_left; /* space left in string */ 7095 int len; /* length we would have written */ 7096 }; 7097 7098 static void btf_snprintf_show(struct btf_show *show, const char *fmt, 7099 va_list args) 7100 { 7101 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show; 7102 int len; 7103 7104 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args); 7105 7106 if (len < 0) { 7107 ssnprintf->len_left = 0; 7108 ssnprintf->len = len; 7109 } else if (len >= ssnprintf->len_left) { 7110 /* no space, drive on to get length we would have written */ 7111 ssnprintf->len_left = 0; 7112 ssnprintf->len += len; 7113 } else { 7114 ssnprintf->len_left -= len; 7115 ssnprintf->len += len; 7116 show->target += len; 7117 } 7118 } 7119 7120 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj, 7121 char *buf, int len, u64 flags) 7122 { 7123 struct btf_show_snprintf ssnprintf; 7124 7125 ssnprintf.show.target = buf; 7126 ssnprintf.show.flags = flags; 7127 ssnprintf.show.showfn = btf_snprintf_show; 7128 ssnprintf.len_left = len; 7129 ssnprintf.len = 0; 7130 7131 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf); 7132 7133 /* If we encountered an error, return it. */ 7134 if (ssnprintf.show.state.status) 7135 return ssnprintf.show.state.status; 7136 7137 /* Otherwise return length we would have written */ 7138 return ssnprintf.len; 7139 } 7140 7141 #ifdef CONFIG_PROC_FS 7142 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp) 7143 { 7144 const struct btf *btf = filp->private_data; 7145 7146 seq_printf(m, "btf_id:\t%u\n", btf->id); 7147 } 7148 #endif 7149 7150 static int btf_release(struct inode *inode, struct file *filp) 7151 { 7152 btf_put(filp->private_data); 7153 return 0; 7154 } 7155 7156 const struct file_operations btf_fops = { 7157 #ifdef CONFIG_PROC_FS 7158 .show_fdinfo = bpf_btf_show_fdinfo, 7159 #endif 7160 .release = btf_release, 7161 }; 7162 7163 static int __btf_new_fd(struct btf *btf) 7164 { 7165 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 7166 } 7167 7168 int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size) 7169 { 7170 struct btf *btf; 7171 int ret; 7172 7173 btf = btf_parse(attr, uattr, uattr_size); 7174 if (IS_ERR(btf)) 7175 return PTR_ERR(btf); 7176 7177 ret = btf_alloc_id(btf); 7178 if (ret) { 7179 btf_free(btf); 7180 return ret; 7181 } 7182 7183 /* 7184 * The BTF ID is published to the userspace. 7185 * All BTF free must go through call_rcu() from 7186 * now on (i.e. free by calling btf_put()). 7187 */ 7188 7189 ret = __btf_new_fd(btf); 7190 if (ret < 0) 7191 btf_put(btf); 7192 7193 return ret; 7194 } 7195 7196 struct btf *btf_get_by_fd(int fd) 7197 { 7198 struct btf *btf; 7199 struct fd f; 7200 7201 f = fdget(fd); 7202 7203 if (!f.file) 7204 return ERR_PTR(-EBADF); 7205 7206 if (f.file->f_op != &btf_fops) { 7207 fdput(f); 7208 return ERR_PTR(-EINVAL); 7209 } 7210 7211 btf = f.file->private_data; 7212 refcount_inc(&btf->refcnt); 7213 fdput(f); 7214 7215 return btf; 7216 } 7217 7218 int btf_get_info_by_fd(const struct btf *btf, 7219 const union bpf_attr *attr, 7220 union bpf_attr __user *uattr) 7221 { 7222 struct bpf_btf_info __user *uinfo; 7223 struct bpf_btf_info info; 7224 u32 info_copy, btf_copy; 7225 void __user *ubtf; 7226 char __user *uname; 7227 u32 uinfo_len, uname_len, name_len; 7228 int ret = 0; 7229 7230 uinfo = u64_to_user_ptr(attr->info.info); 7231 uinfo_len = attr->info.info_len; 7232 7233 info_copy = min_t(u32, uinfo_len, sizeof(info)); 7234 memset(&info, 0, sizeof(info)); 7235 if (copy_from_user(&info, uinfo, info_copy)) 7236 return -EFAULT; 7237 7238 info.id = btf->id; 7239 ubtf = u64_to_user_ptr(info.btf); 7240 btf_copy = min_t(u32, btf->data_size, info.btf_size); 7241 if (copy_to_user(ubtf, btf->data, btf_copy)) 7242 return -EFAULT; 7243 info.btf_size = btf->data_size; 7244 7245 info.kernel_btf = btf->kernel_btf; 7246 7247 uname = u64_to_user_ptr(info.name); 7248 uname_len = info.name_len; 7249 if (!uname ^ !uname_len) 7250 return -EINVAL; 7251 7252 name_len = strlen(btf->name); 7253 info.name_len = name_len; 7254 7255 if (uname) { 7256 if (uname_len >= name_len + 1) { 7257 if (copy_to_user(uname, btf->name, name_len + 1)) 7258 return -EFAULT; 7259 } else { 7260 char zero = '\0'; 7261 7262 if (copy_to_user(uname, btf->name, uname_len - 1)) 7263 return -EFAULT; 7264 if (put_user(zero, uname + uname_len - 1)) 7265 return -EFAULT; 7266 /* let user-space know about too short buffer */ 7267 ret = -ENOSPC; 7268 } 7269 } 7270 7271 if (copy_to_user(uinfo, &info, info_copy) || 7272 put_user(info_copy, &uattr->info.info_len)) 7273 return -EFAULT; 7274 7275 return ret; 7276 } 7277 7278 int btf_get_fd_by_id(u32 id) 7279 { 7280 struct btf *btf; 7281 int fd; 7282 7283 rcu_read_lock(); 7284 btf = idr_find(&btf_idr, id); 7285 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 7286 btf = ERR_PTR(-ENOENT); 7287 rcu_read_unlock(); 7288 7289 if (IS_ERR(btf)) 7290 return PTR_ERR(btf); 7291 7292 fd = __btf_new_fd(btf); 7293 if (fd < 0) 7294 btf_put(btf); 7295 7296 return fd; 7297 } 7298 7299 u32 btf_obj_id(const struct btf *btf) 7300 { 7301 return btf->id; 7302 } 7303 7304 bool btf_is_kernel(const struct btf *btf) 7305 { 7306 return btf->kernel_btf; 7307 } 7308 7309 bool btf_is_module(const struct btf *btf) 7310 { 7311 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0; 7312 } 7313 7314 enum { 7315 BTF_MODULE_F_LIVE = (1 << 0), 7316 }; 7317 7318 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7319 struct btf_module { 7320 struct list_head list; 7321 struct module *module; 7322 struct btf *btf; 7323 struct bin_attribute *sysfs_attr; 7324 int flags; 7325 }; 7326 7327 static LIST_HEAD(btf_modules); 7328 static DEFINE_MUTEX(btf_module_mutex); 7329 7330 static ssize_t 7331 btf_module_read(struct file *file, struct kobject *kobj, 7332 struct bin_attribute *bin_attr, 7333 char *buf, loff_t off, size_t len) 7334 { 7335 const struct btf *btf = bin_attr->private; 7336 7337 memcpy(buf, btf->data + off, len); 7338 return len; 7339 } 7340 7341 static void purge_cand_cache(struct btf *btf); 7342 7343 static int btf_module_notify(struct notifier_block *nb, unsigned long op, 7344 void *module) 7345 { 7346 struct btf_module *btf_mod, *tmp; 7347 struct module *mod = module; 7348 struct btf *btf; 7349 int err = 0; 7350 7351 if (mod->btf_data_size == 0 || 7352 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE && 7353 op != MODULE_STATE_GOING)) 7354 goto out; 7355 7356 switch (op) { 7357 case MODULE_STATE_COMING: 7358 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL); 7359 if (!btf_mod) { 7360 err = -ENOMEM; 7361 goto out; 7362 } 7363 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size); 7364 if (IS_ERR(btf)) { 7365 kfree(btf_mod); 7366 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) { 7367 pr_warn("failed to validate module [%s] BTF: %ld\n", 7368 mod->name, PTR_ERR(btf)); 7369 err = PTR_ERR(btf); 7370 } else { 7371 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n"); 7372 } 7373 goto out; 7374 } 7375 err = btf_alloc_id(btf); 7376 if (err) { 7377 btf_free(btf); 7378 kfree(btf_mod); 7379 goto out; 7380 } 7381 7382 purge_cand_cache(NULL); 7383 mutex_lock(&btf_module_mutex); 7384 btf_mod->module = module; 7385 btf_mod->btf = btf; 7386 list_add(&btf_mod->list, &btf_modules); 7387 mutex_unlock(&btf_module_mutex); 7388 7389 if (IS_ENABLED(CONFIG_SYSFS)) { 7390 struct bin_attribute *attr; 7391 7392 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 7393 if (!attr) 7394 goto out; 7395 7396 sysfs_bin_attr_init(attr); 7397 attr->attr.name = btf->name; 7398 attr->attr.mode = 0444; 7399 attr->size = btf->data_size; 7400 attr->private = btf; 7401 attr->read = btf_module_read; 7402 7403 err = sysfs_create_bin_file(btf_kobj, attr); 7404 if (err) { 7405 pr_warn("failed to register module [%s] BTF in sysfs: %d\n", 7406 mod->name, err); 7407 kfree(attr); 7408 err = 0; 7409 goto out; 7410 } 7411 7412 btf_mod->sysfs_attr = attr; 7413 } 7414 7415 break; 7416 case MODULE_STATE_LIVE: 7417 mutex_lock(&btf_module_mutex); 7418 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7419 if (btf_mod->module != module) 7420 continue; 7421 7422 btf_mod->flags |= BTF_MODULE_F_LIVE; 7423 break; 7424 } 7425 mutex_unlock(&btf_module_mutex); 7426 break; 7427 case MODULE_STATE_GOING: 7428 mutex_lock(&btf_module_mutex); 7429 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7430 if (btf_mod->module != module) 7431 continue; 7432 7433 list_del(&btf_mod->list); 7434 if (btf_mod->sysfs_attr) 7435 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr); 7436 purge_cand_cache(btf_mod->btf); 7437 btf_put(btf_mod->btf); 7438 kfree(btf_mod->sysfs_attr); 7439 kfree(btf_mod); 7440 break; 7441 } 7442 mutex_unlock(&btf_module_mutex); 7443 break; 7444 } 7445 out: 7446 return notifier_from_errno(err); 7447 } 7448 7449 static struct notifier_block btf_module_nb = { 7450 .notifier_call = btf_module_notify, 7451 }; 7452 7453 static int __init btf_module_init(void) 7454 { 7455 register_module_notifier(&btf_module_nb); 7456 return 0; 7457 } 7458 7459 fs_initcall(btf_module_init); 7460 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */ 7461 7462 struct module *btf_try_get_module(const struct btf *btf) 7463 { 7464 struct module *res = NULL; 7465 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7466 struct btf_module *btf_mod, *tmp; 7467 7468 mutex_lock(&btf_module_mutex); 7469 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7470 if (btf_mod->btf != btf) 7471 continue; 7472 7473 /* We must only consider module whose __init routine has 7474 * finished, hence we must check for BTF_MODULE_F_LIVE flag, 7475 * which is set from the notifier callback for 7476 * MODULE_STATE_LIVE. 7477 */ 7478 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module)) 7479 res = btf_mod->module; 7480 7481 break; 7482 } 7483 mutex_unlock(&btf_module_mutex); 7484 #endif 7485 7486 return res; 7487 } 7488 7489 /* Returns struct btf corresponding to the struct module. 7490 * This function can return NULL or ERR_PTR. 7491 */ 7492 static struct btf *btf_get_module_btf(const struct module *module) 7493 { 7494 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7495 struct btf_module *btf_mod, *tmp; 7496 #endif 7497 struct btf *btf = NULL; 7498 7499 if (!module) { 7500 btf = bpf_get_btf_vmlinux(); 7501 if (!IS_ERR_OR_NULL(btf)) 7502 btf_get(btf); 7503 return btf; 7504 } 7505 7506 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 7507 mutex_lock(&btf_module_mutex); 7508 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) { 7509 if (btf_mod->module != module) 7510 continue; 7511 7512 btf_get(btf_mod->btf); 7513 btf = btf_mod->btf; 7514 break; 7515 } 7516 mutex_unlock(&btf_module_mutex); 7517 #endif 7518 7519 return btf; 7520 } 7521 7522 BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags) 7523 { 7524 struct btf *btf = NULL; 7525 int btf_obj_fd = 0; 7526 long ret; 7527 7528 if (flags) 7529 return -EINVAL; 7530 7531 if (name_sz <= 1 || name[name_sz - 1]) 7532 return -EINVAL; 7533 7534 ret = bpf_find_btf_id(name, kind, &btf); 7535 if (ret > 0 && btf_is_module(btf)) { 7536 btf_obj_fd = __btf_new_fd(btf); 7537 if (btf_obj_fd < 0) { 7538 btf_put(btf); 7539 return btf_obj_fd; 7540 } 7541 return ret | (((u64)btf_obj_fd) << 32); 7542 } 7543 if (ret > 0) 7544 btf_put(btf); 7545 return ret; 7546 } 7547 7548 const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = { 7549 .func = bpf_btf_find_by_name_kind, 7550 .gpl_only = false, 7551 .ret_type = RET_INTEGER, 7552 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY, 7553 .arg2_type = ARG_CONST_SIZE, 7554 .arg3_type = ARG_ANYTHING, 7555 .arg4_type = ARG_ANYTHING, 7556 }; 7557 7558 BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE) 7559 #define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type) 7560 BTF_TRACING_TYPE_xxx 7561 #undef BTF_TRACING_TYPE 7562 7563 static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name, 7564 const struct btf_type *func, u32 func_flags) 7565 { 7566 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY); 7567 const char *name, *sfx, *iter_name; 7568 const struct btf_param *arg; 7569 const struct btf_type *t; 7570 char exp_name[128]; 7571 u32 nr_args; 7572 7573 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */ 7574 if (!flags || (flags & (flags - 1))) 7575 return -EINVAL; 7576 7577 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */ 7578 nr_args = btf_type_vlen(func); 7579 if (nr_args < 1) 7580 return -EINVAL; 7581 7582 arg = &btf_params(func)[0]; 7583 t = btf_type_skip_modifiers(btf, arg->type, NULL); 7584 if (!t || !btf_type_is_ptr(t)) 7585 return -EINVAL; 7586 t = btf_type_skip_modifiers(btf, t->type, NULL); 7587 if (!t || !__btf_type_is_struct(t)) 7588 return -EINVAL; 7589 7590 name = btf_name_by_offset(btf, t->name_off); 7591 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1)) 7592 return -EINVAL; 7593 7594 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to 7595 * fit nicely in stack slots 7596 */ 7597 if (t->size == 0 || (t->size % 8)) 7598 return -EINVAL; 7599 7600 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *) 7601 * naming pattern 7602 */ 7603 iter_name = name + sizeof(ITER_PREFIX) - 1; 7604 if (flags & KF_ITER_NEW) 7605 sfx = "new"; 7606 else if (flags & KF_ITER_NEXT) 7607 sfx = "next"; 7608 else /* (flags & KF_ITER_DESTROY) */ 7609 sfx = "destroy"; 7610 7611 snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx); 7612 if (strcmp(func_name, exp_name)) 7613 return -EINVAL; 7614 7615 /* only iter constructor should have extra arguments */ 7616 if (!(flags & KF_ITER_NEW) && nr_args != 1) 7617 return -EINVAL; 7618 7619 if (flags & KF_ITER_NEXT) { 7620 /* bpf_iter_<type>_next() should return pointer */ 7621 t = btf_type_skip_modifiers(btf, func->type, NULL); 7622 if (!t || !btf_type_is_ptr(t)) 7623 return -EINVAL; 7624 } 7625 7626 if (flags & KF_ITER_DESTROY) { 7627 /* bpf_iter_<type>_destroy() should return void */ 7628 t = btf_type_by_id(btf, func->type); 7629 if (!t || !btf_type_is_void(t)) 7630 return -EINVAL; 7631 } 7632 7633 return 0; 7634 } 7635 7636 static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags) 7637 { 7638 const struct btf_type *func; 7639 const char *func_name; 7640 int err; 7641 7642 /* any kfunc should be FUNC -> FUNC_PROTO */ 7643 func = btf_type_by_id(btf, func_id); 7644 if (!func || !btf_type_is_func(func)) 7645 return -EINVAL; 7646 7647 /* sanity check kfunc name */ 7648 func_name = btf_name_by_offset(btf, func->name_off); 7649 if (!func_name || !func_name[0]) 7650 return -EINVAL; 7651 7652 func = btf_type_by_id(btf, func->type); 7653 if (!func || !btf_type_is_func_proto(func)) 7654 return -EINVAL; 7655 7656 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) { 7657 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags); 7658 if (err) 7659 return err; 7660 } 7661 7662 return 0; 7663 } 7664 7665 /* Kernel Function (kfunc) BTF ID set registration API */ 7666 7667 static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook, 7668 struct btf_id_set8 *add_set) 7669 { 7670 bool vmlinux_set = !btf_is_module(btf); 7671 struct btf_kfunc_set_tab *tab; 7672 struct btf_id_set8 *set; 7673 u32 set_cnt; 7674 int ret; 7675 7676 if (hook >= BTF_KFUNC_HOOK_MAX) { 7677 ret = -EINVAL; 7678 goto end; 7679 } 7680 7681 if (!add_set->cnt) 7682 return 0; 7683 7684 tab = btf->kfunc_set_tab; 7685 if (!tab) { 7686 tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN); 7687 if (!tab) 7688 return -ENOMEM; 7689 btf->kfunc_set_tab = tab; 7690 } 7691 7692 set = tab->sets[hook]; 7693 /* Warn when register_btf_kfunc_id_set is called twice for the same hook 7694 * for module sets. 7695 */ 7696 if (WARN_ON_ONCE(set && !vmlinux_set)) { 7697 ret = -EINVAL; 7698 goto end; 7699 } 7700 7701 /* We don't need to allocate, concatenate, and sort module sets, because 7702 * only one is allowed per hook. Hence, we can directly assign the 7703 * pointer and return. 7704 */ 7705 if (!vmlinux_set) { 7706 tab->sets[hook] = add_set; 7707 return 0; 7708 } 7709 7710 /* In case of vmlinux sets, there may be more than one set being 7711 * registered per hook. To create a unified set, we allocate a new set 7712 * and concatenate all individual sets being registered. While each set 7713 * is individually sorted, they may become unsorted when concatenated, 7714 * hence re-sorting the final set again is required to make binary 7715 * searching the set using btf_id_set8_contains function work. 7716 */ 7717 set_cnt = set ? set->cnt : 0; 7718 7719 if (set_cnt > U32_MAX - add_set->cnt) { 7720 ret = -EOVERFLOW; 7721 goto end; 7722 } 7723 7724 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) { 7725 ret = -E2BIG; 7726 goto end; 7727 } 7728 7729 /* Grow set */ 7730 set = krealloc(tab->sets[hook], 7731 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]), 7732 GFP_KERNEL | __GFP_NOWARN); 7733 if (!set) { 7734 ret = -ENOMEM; 7735 goto end; 7736 } 7737 7738 /* For newly allocated set, initialize set->cnt to 0 */ 7739 if (!tab->sets[hook]) 7740 set->cnt = 0; 7741 tab->sets[hook] = set; 7742 7743 /* Concatenate the two sets */ 7744 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0])); 7745 set->cnt += add_set->cnt; 7746 7747 sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL); 7748 7749 return 0; 7750 end: 7751 btf_free_kfunc_set_tab(btf); 7752 return ret; 7753 } 7754 7755 static u32 *__btf_kfunc_id_set_contains(const struct btf *btf, 7756 enum btf_kfunc_hook hook, 7757 u32 kfunc_btf_id) 7758 { 7759 struct btf_id_set8 *set; 7760 u32 *id; 7761 7762 if (hook >= BTF_KFUNC_HOOK_MAX) 7763 return NULL; 7764 if (!btf->kfunc_set_tab) 7765 return NULL; 7766 set = btf->kfunc_set_tab->sets[hook]; 7767 if (!set) 7768 return NULL; 7769 id = btf_id_set8_contains(set, kfunc_btf_id); 7770 if (!id) 7771 return NULL; 7772 /* The flags for BTF ID are located next to it */ 7773 return id + 1; 7774 } 7775 7776 static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type) 7777 { 7778 switch (prog_type) { 7779 case BPF_PROG_TYPE_UNSPEC: 7780 return BTF_KFUNC_HOOK_COMMON; 7781 case BPF_PROG_TYPE_XDP: 7782 return BTF_KFUNC_HOOK_XDP; 7783 case BPF_PROG_TYPE_SCHED_CLS: 7784 return BTF_KFUNC_HOOK_TC; 7785 case BPF_PROG_TYPE_STRUCT_OPS: 7786 return BTF_KFUNC_HOOK_STRUCT_OPS; 7787 case BPF_PROG_TYPE_TRACING: 7788 case BPF_PROG_TYPE_LSM: 7789 return BTF_KFUNC_HOOK_TRACING; 7790 case BPF_PROG_TYPE_SYSCALL: 7791 return BTF_KFUNC_HOOK_SYSCALL; 7792 case BPF_PROG_TYPE_CGROUP_SKB: 7793 return BTF_KFUNC_HOOK_CGROUP_SKB; 7794 case BPF_PROG_TYPE_SCHED_ACT: 7795 return BTF_KFUNC_HOOK_SCHED_ACT; 7796 case BPF_PROG_TYPE_SK_SKB: 7797 return BTF_KFUNC_HOOK_SK_SKB; 7798 case BPF_PROG_TYPE_SOCKET_FILTER: 7799 return BTF_KFUNC_HOOK_SOCKET_FILTER; 7800 case BPF_PROG_TYPE_LWT_OUT: 7801 case BPF_PROG_TYPE_LWT_IN: 7802 case BPF_PROG_TYPE_LWT_XMIT: 7803 case BPF_PROG_TYPE_LWT_SEG6LOCAL: 7804 return BTF_KFUNC_HOOK_LWT; 7805 case BPF_PROG_TYPE_NETFILTER: 7806 return BTF_KFUNC_HOOK_NETFILTER; 7807 default: 7808 return BTF_KFUNC_HOOK_MAX; 7809 } 7810 } 7811 7812 /* Caution: 7813 * Reference to the module (obtained using btf_try_get_module) corresponding to 7814 * the struct btf *MUST* be held when calling this function from verifier 7815 * context. This is usually true as we stash references in prog's kfunc_btf_tab; 7816 * keeping the reference for the duration of the call provides the necessary 7817 * protection for looking up a well-formed btf->kfunc_set_tab. 7818 */ 7819 u32 *btf_kfunc_id_set_contains(const struct btf *btf, 7820 enum bpf_prog_type prog_type, 7821 u32 kfunc_btf_id) 7822 { 7823 enum btf_kfunc_hook hook; 7824 u32 *kfunc_flags; 7825 7826 kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id); 7827 if (kfunc_flags) 7828 return kfunc_flags; 7829 7830 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7831 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id); 7832 } 7833 7834 u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id) 7835 { 7836 return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id); 7837 } 7838 7839 static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook, 7840 const struct btf_kfunc_id_set *kset) 7841 { 7842 struct btf *btf; 7843 int ret, i; 7844 7845 btf = btf_get_module_btf(kset->owner); 7846 if (!btf) { 7847 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7848 pr_err("missing vmlinux BTF, cannot register kfuncs\n"); 7849 return -ENOENT; 7850 } 7851 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7852 pr_err("missing module BTF, cannot register kfuncs\n"); 7853 return -ENOENT; 7854 } 7855 return 0; 7856 } 7857 if (IS_ERR(btf)) 7858 return PTR_ERR(btf); 7859 7860 for (i = 0; i < kset->set->cnt; i++) { 7861 ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id, 7862 kset->set->pairs[i].flags); 7863 if (ret) 7864 goto err_out; 7865 } 7866 7867 ret = btf_populate_kfunc_set(btf, hook, kset->set); 7868 err_out: 7869 btf_put(btf); 7870 return ret; 7871 } 7872 7873 /* This function must be invoked only from initcalls/module init functions */ 7874 int register_btf_kfunc_id_set(enum bpf_prog_type prog_type, 7875 const struct btf_kfunc_id_set *kset) 7876 { 7877 enum btf_kfunc_hook hook; 7878 7879 hook = bpf_prog_type_to_kfunc_hook(prog_type); 7880 return __register_btf_kfunc_id_set(hook, kset); 7881 } 7882 EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set); 7883 7884 /* This function must be invoked only from initcalls/module init functions */ 7885 int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset) 7886 { 7887 return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset); 7888 } 7889 EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set); 7890 7891 s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id) 7892 { 7893 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab; 7894 struct btf_id_dtor_kfunc *dtor; 7895 7896 if (!tab) 7897 return -ENOENT; 7898 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need 7899 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func. 7900 */ 7901 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0); 7902 dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func); 7903 if (!dtor) 7904 return -ENOENT; 7905 return dtor->kfunc_btf_id; 7906 } 7907 7908 static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt) 7909 { 7910 const struct btf_type *dtor_func, *dtor_func_proto, *t; 7911 const struct btf_param *args; 7912 s32 dtor_btf_id; 7913 u32 nr_args, i; 7914 7915 for (i = 0; i < cnt; i++) { 7916 dtor_btf_id = dtors[i].kfunc_btf_id; 7917 7918 dtor_func = btf_type_by_id(btf, dtor_btf_id); 7919 if (!dtor_func || !btf_type_is_func(dtor_func)) 7920 return -EINVAL; 7921 7922 dtor_func_proto = btf_type_by_id(btf, dtor_func->type); 7923 if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto)) 7924 return -EINVAL; 7925 7926 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */ 7927 t = btf_type_by_id(btf, dtor_func_proto->type); 7928 if (!t || !btf_type_is_void(t)) 7929 return -EINVAL; 7930 7931 nr_args = btf_type_vlen(dtor_func_proto); 7932 if (nr_args != 1) 7933 return -EINVAL; 7934 args = btf_params(dtor_func_proto); 7935 t = btf_type_by_id(btf, args[0].type); 7936 /* Allow any pointer type, as width on targets Linux supports 7937 * will be same for all pointer types (i.e. sizeof(void *)) 7938 */ 7939 if (!t || !btf_type_is_ptr(t)) 7940 return -EINVAL; 7941 } 7942 return 0; 7943 } 7944 7945 /* This function must be invoked only from initcalls/module init functions */ 7946 int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt, 7947 struct module *owner) 7948 { 7949 struct btf_id_dtor_kfunc_tab *tab; 7950 struct btf *btf; 7951 u32 tab_cnt; 7952 int ret; 7953 7954 btf = btf_get_module_btf(owner); 7955 if (!btf) { 7956 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) { 7957 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n"); 7958 return -ENOENT; 7959 } 7960 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) { 7961 pr_err("missing module BTF, cannot register dtor kfuncs\n"); 7962 return -ENOENT; 7963 } 7964 return 0; 7965 } 7966 if (IS_ERR(btf)) 7967 return PTR_ERR(btf); 7968 7969 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7970 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7971 ret = -E2BIG; 7972 goto end; 7973 } 7974 7975 /* Ensure that the prototype of dtor kfuncs being registered is sane */ 7976 ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt); 7977 if (ret < 0) 7978 goto end; 7979 7980 tab = btf->dtor_kfunc_tab; 7981 /* Only one call allowed for modules */ 7982 if (WARN_ON_ONCE(tab && btf_is_module(btf))) { 7983 ret = -EINVAL; 7984 goto end; 7985 } 7986 7987 tab_cnt = tab ? tab->cnt : 0; 7988 if (tab_cnt > U32_MAX - add_cnt) { 7989 ret = -EOVERFLOW; 7990 goto end; 7991 } 7992 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) { 7993 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT); 7994 ret = -E2BIG; 7995 goto end; 7996 } 7997 7998 tab = krealloc(btf->dtor_kfunc_tab, 7999 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]), 8000 GFP_KERNEL | __GFP_NOWARN); 8001 if (!tab) { 8002 ret = -ENOMEM; 8003 goto end; 8004 } 8005 8006 if (!btf->dtor_kfunc_tab) 8007 tab->cnt = 0; 8008 btf->dtor_kfunc_tab = tab; 8009 8010 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0])); 8011 tab->cnt += add_cnt; 8012 8013 sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL); 8014 8015 end: 8016 if (ret) 8017 btf_free_dtor_kfunc_tab(btf); 8018 btf_put(btf); 8019 return ret; 8020 } 8021 EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs); 8022 8023 #define MAX_TYPES_ARE_COMPAT_DEPTH 2 8024 8025 /* Check local and target types for compatibility. This check is used for 8026 * type-based CO-RE relocations and follow slightly different rules than 8027 * field-based relocations. This function assumes that root types were already 8028 * checked for name match. Beyond that initial root-level name check, names 8029 * are completely ignored. Compatibility rules are as follows: 8030 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but 8031 * kind should match for local and target types (i.e., STRUCT is not 8032 * compatible with UNION); 8033 * - for ENUMs/ENUM64s, the size is ignored; 8034 * - for INT, size and signedness are ignored; 8035 * - for ARRAY, dimensionality is ignored, element types are checked for 8036 * compatibility recursively; 8037 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 8038 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 8039 * - FUNC_PROTOs are compatible if they have compatible signature: same 8040 * number of input args and compatible return and argument types. 8041 * These rules are not set in stone and probably will be adjusted as we get 8042 * more experience with using BPF CO-RE relocations. 8043 */ 8044 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 8045 const struct btf *targ_btf, __u32 targ_id) 8046 { 8047 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 8048 MAX_TYPES_ARE_COMPAT_DEPTH); 8049 } 8050 8051 #define MAX_TYPES_MATCH_DEPTH 2 8052 8053 int bpf_core_types_match(const struct btf *local_btf, u32 local_id, 8054 const struct btf *targ_btf, u32 targ_id) 8055 { 8056 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 8057 MAX_TYPES_MATCH_DEPTH); 8058 } 8059 8060 static bool bpf_core_is_flavor_sep(const char *s) 8061 { 8062 /* check X___Y name pattern, where X and Y are not underscores */ 8063 return s[0] != '_' && /* X */ 8064 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 8065 s[4] != '_'; /* Y */ 8066 } 8067 8068 size_t bpf_core_essential_name_len(const char *name) 8069 { 8070 size_t n = strlen(name); 8071 int i; 8072 8073 for (i = n - 5; i >= 0; i--) { 8074 if (bpf_core_is_flavor_sep(name + i)) 8075 return i + 1; 8076 } 8077 return n; 8078 } 8079 8080 struct bpf_cand_cache { 8081 const char *name; 8082 u32 name_len; 8083 u16 kind; 8084 u16 cnt; 8085 struct { 8086 const struct btf *btf; 8087 u32 id; 8088 } cands[]; 8089 }; 8090 8091 static void bpf_free_cands(struct bpf_cand_cache *cands) 8092 { 8093 if (!cands->cnt) 8094 /* empty candidate array was allocated on stack */ 8095 return; 8096 kfree(cands); 8097 } 8098 8099 static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands) 8100 { 8101 kfree(cands->name); 8102 kfree(cands); 8103 } 8104 8105 #define VMLINUX_CAND_CACHE_SIZE 31 8106 static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE]; 8107 8108 #define MODULE_CAND_CACHE_SIZE 31 8109 static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE]; 8110 8111 static DEFINE_MUTEX(cand_cache_mutex); 8112 8113 static void __print_cand_cache(struct bpf_verifier_log *log, 8114 struct bpf_cand_cache **cache, 8115 int cache_size) 8116 { 8117 struct bpf_cand_cache *cc; 8118 int i, j; 8119 8120 for (i = 0; i < cache_size; i++) { 8121 cc = cache[i]; 8122 if (!cc) 8123 continue; 8124 bpf_log(log, "[%d]%s(", i, cc->name); 8125 for (j = 0; j < cc->cnt; j++) { 8126 bpf_log(log, "%d", cc->cands[j].id); 8127 if (j < cc->cnt - 1) 8128 bpf_log(log, " "); 8129 } 8130 bpf_log(log, "), "); 8131 } 8132 } 8133 8134 static void print_cand_cache(struct bpf_verifier_log *log) 8135 { 8136 mutex_lock(&cand_cache_mutex); 8137 bpf_log(log, "vmlinux_cand_cache:"); 8138 __print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8139 bpf_log(log, "\nmodule_cand_cache:"); 8140 __print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8141 bpf_log(log, "\n"); 8142 mutex_unlock(&cand_cache_mutex); 8143 } 8144 8145 static u32 hash_cands(struct bpf_cand_cache *cands) 8146 { 8147 return jhash(cands->name, cands->name_len, 0); 8148 } 8149 8150 static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands, 8151 struct bpf_cand_cache **cache, 8152 int cache_size) 8153 { 8154 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size]; 8155 8156 if (cc && cc->name_len == cands->name_len && 8157 !strncmp(cc->name, cands->name, cands->name_len)) 8158 return cc; 8159 return NULL; 8160 } 8161 8162 static size_t sizeof_cands(int cnt) 8163 { 8164 return offsetof(struct bpf_cand_cache, cands[cnt]); 8165 } 8166 8167 static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands, 8168 struct bpf_cand_cache **cache, 8169 int cache_size) 8170 { 8171 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands; 8172 8173 if (*cc) { 8174 bpf_free_cands_from_cache(*cc); 8175 *cc = NULL; 8176 } 8177 new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL); 8178 if (!new_cands) { 8179 bpf_free_cands(cands); 8180 return ERR_PTR(-ENOMEM); 8181 } 8182 /* strdup the name, since it will stay in cache. 8183 * the cands->name points to strings in prog's BTF and the prog can be unloaded. 8184 */ 8185 new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL); 8186 bpf_free_cands(cands); 8187 if (!new_cands->name) { 8188 kfree(new_cands); 8189 return ERR_PTR(-ENOMEM); 8190 } 8191 *cc = new_cands; 8192 return new_cands; 8193 } 8194 8195 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 8196 static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache, 8197 int cache_size) 8198 { 8199 struct bpf_cand_cache *cc; 8200 int i, j; 8201 8202 for (i = 0; i < cache_size; i++) { 8203 cc = cache[i]; 8204 if (!cc) 8205 continue; 8206 if (!btf) { 8207 /* when new module is loaded purge all of module_cand_cache, 8208 * since new module might have candidates with the name 8209 * that matches cached cands. 8210 */ 8211 bpf_free_cands_from_cache(cc); 8212 cache[i] = NULL; 8213 continue; 8214 } 8215 /* when module is unloaded purge cache entries 8216 * that match module's btf 8217 */ 8218 for (j = 0; j < cc->cnt; j++) 8219 if (cc->cands[j].btf == btf) { 8220 bpf_free_cands_from_cache(cc); 8221 cache[i] = NULL; 8222 break; 8223 } 8224 } 8225 8226 } 8227 8228 static void purge_cand_cache(struct btf *btf) 8229 { 8230 mutex_lock(&cand_cache_mutex); 8231 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8232 mutex_unlock(&cand_cache_mutex); 8233 } 8234 #endif 8235 8236 static struct bpf_cand_cache * 8237 bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf, 8238 int targ_start_id) 8239 { 8240 struct bpf_cand_cache *new_cands; 8241 const struct btf_type *t; 8242 const char *targ_name; 8243 size_t targ_essent_len; 8244 int n, i; 8245 8246 n = btf_nr_types(targ_btf); 8247 for (i = targ_start_id; i < n; i++) { 8248 t = btf_type_by_id(targ_btf, i); 8249 if (btf_kind(t) != cands->kind) 8250 continue; 8251 8252 targ_name = btf_name_by_offset(targ_btf, t->name_off); 8253 if (!targ_name) 8254 continue; 8255 8256 /* the resched point is before strncmp to make sure that search 8257 * for non-existing name will have a chance to schedule(). 8258 */ 8259 cond_resched(); 8260 8261 if (strncmp(cands->name, targ_name, cands->name_len) != 0) 8262 continue; 8263 8264 targ_essent_len = bpf_core_essential_name_len(targ_name); 8265 if (targ_essent_len != cands->name_len) 8266 continue; 8267 8268 /* most of the time there is only one candidate for a given kind+name pair */ 8269 new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL); 8270 if (!new_cands) { 8271 bpf_free_cands(cands); 8272 return ERR_PTR(-ENOMEM); 8273 } 8274 8275 memcpy(new_cands, cands, sizeof_cands(cands->cnt)); 8276 bpf_free_cands(cands); 8277 cands = new_cands; 8278 cands->cands[cands->cnt].btf = targ_btf; 8279 cands->cands[cands->cnt].id = i; 8280 cands->cnt++; 8281 } 8282 return cands; 8283 } 8284 8285 static struct bpf_cand_cache * 8286 bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id) 8287 { 8288 struct bpf_cand_cache *cands, *cc, local_cand = {}; 8289 const struct btf *local_btf = ctx->btf; 8290 const struct btf_type *local_type; 8291 const struct btf *main_btf; 8292 size_t local_essent_len; 8293 struct btf *mod_btf; 8294 const char *name; 8295 int id; 8296 8297 main_btf = bpf_get_btf_vmlinux(); 8298 if (IS_ERR(main_btf)) 8299 return ERR_CAST(main_btf); 8300 if (!main_btf) 8301 return ERR_PTR(-EINVAL); 8302 8303 local_type = btf_type_by_id(local_btf, local_type_id); 8304 if (!local_type) 8305 return ERR_PTR(-EINVAL); 8306 8307 name = btf_name_by_offset(local_btf, local_type->name_off); 8308 if (str_is_empty(name)) 8309 return ERR_PTR(-EINVAL); 8310 local_essent_len = bpf_core_essential_name_len(name); 8311 8312 cands = &local_cand; 8313 cands->name = name; 8314 cands->kind = btf_kind(local_type); 8315 cands->name_len = local_essent_len; 8316 8317 cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8318 /* cands is a pointer to stack here */ 8319 if (cc) { 8320 if (cc->cnt) 8321 return cc; 8322 goto check_modules; 8323 } 8324 8325 /* Attempt to find target candidates in vmlinux BTF first */ 8326 cands = bpf_core_add_cands(cands, main_btf, 1); 8327 if (IS_ERR(cands)) 8328 return ERR_CAST(cands); 8329 8330 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */ 8331 8332 /* populate cache even when cands->cnt == 0 */ 8333 cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE); 8334 if (IS_ERR(cc)) 8335 return ERR_CAST(cc); 8336 8337 /* if vmlinux BTF has any candidate, don't go for module BTFs */ 8338 if (cc->cnt) 8339 return cc; 8340 8341 check_modules: 8342 /* cands is a pointer to stack here and cands->cnt == 0 */ 8343 cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8344 if (cc) 8345 /* if cache has it return it even if cc->cnt == 0 */ 8346 return cc; 8347 8348 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */ 8349 spin_lock_bh(&btf_idr_lock); 8350 idr_for_each_entry(&btf_idr, mod_btf, id) { 8351 if (!btf_is_module(mod_btf)) 8352 continue; 8353 /* linear search could be slow hence unlock/lock 8354 * the IDR to avoiding holding it for too long 8355 */ 8356 btf_get(mod_btf); 8357 spin_unlock_bh(&btf_idr_lock); 8358 cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf)); 8359 btf_put(mod_btf); 8360 if (IS_ERR(cands)) 8361 return ERR_CAST(cands); 8362 spin_lock_bh(&btf_idr_lock); 8363 } 8364 spin_unlock_bh(&btf_idr_lock); 8365 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 8366 * or pointer to stack if cands->cnd == 0. 8367 * Copy it into the cache even when cands->cnt == 0 and 8368 * return the result. 8369 */ 8370 return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE); 8371 } 8372 8373 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo, 8374 int relo_idx, void *insn) 8375 { 8376 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL; 8377 struct bpf_core_cand_list cands = {}; 8378 struct bpf_core_relo_res targ_res; 8379 struct bpf_core_spec *specs; 8380 int err; 8381 8382 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5" 8383 * into arrays of btf_ids of struct fields and array indices. 8384 */ 8385 specs = kcalloc(3, sizeof(*specs), GFP_KERNEL); 8386 if (!specs) 8387 return -ENOMEM; 8388 8389 if (need_cands) { 8390 struct bpf_cand_cache *cc; 8391 int i; 8392 8393 mutex_lock(&cand_cache_mutex); 8394 cc = bpf_core_find_cands(ctx, relo->type_id); 8395 if (IS_ERR(cc)) { 8396 bpf_log(ctx->log, "target candidate search failed for %d\n", 8397 relo->type_id); 8398 err = PTR_ERR(cc); 8399 goto out; 8400 } 8401 if (cc->cnt) { 8402 cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL); 8403 if (!cands.cands) { 8404 err = -ENOMEM; 8405 goto out; 8406 } 8407 } 8408 for (i = 0; i < cc->cnt; i++) { 8409 bpf_log(ctx->log, 8410 "CO-RE relocating %s %s: found target candidate [%d]\n", 8411 btf_kind_str[cc->kind], cc->name, cc->cands[i].id); 8412 cands.cands[i].btf = cc->cands[i].btf; 8413 cands.cands[i].id = cc->cands[i].id; 8414 } 8415 cands.len = cc->cnt; 8416 /* cand_cache_mutex needs to span the cache lookup and 8417 * copy of btf pointer into bpf_core_cand_list, 8418 * since module can be unloaded while bpf_core_calc_relo_insn 8419 * is working with module's btf. 8420 */ 8421 } 8422 8423 err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs, 8424 &targ_res); 8425 if (err) 8426 goto out; 8427 8428 err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx, 8429 &targ_res); 8430 8431 out: 8432 kfree(specs); 8433 if (need_cands) { 8434 kfree(cands.cands); 8435 mutex_unlock(&cand_cache_mutex); 8436 if (ctx->log->level & BPF_LOG_LEVEL2) 8437 print_cand_cache(ctx->log); 8438 } 8439 return err; 8440 } 8441 8442 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log, 8443 const struct bpf_reg_state *reg, 8444 const char *field_name, u32 btf_id, const char *suffix) 8445 { 8446 struct btf *btf = reg->btf; 8447 const struct btf_type *walk_type, *safe_type; 8448 const char *tname; 8449 char safe_tname[64]; 8450 long ret, safe_id; 8451 const struct btf_member *member; 8452 u32 i; 8453 8454 walk_type = btf_type_by_id(btf, reg->btf_id); 8455 if (!walk_type) 8456 return false; 8457 8458 tname = btf_name_by_offset(btf, walk_type->name_off); 8459 8460 ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix); 8461 if (ret < 0) 8462 return false; 8463 8464 safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info)); 8465 if (safe_id < 0) 8466 return false; 8467 8468 safe_type = btf_type_by_id(btf, safe_id); 8469 if (!safe_type) 8470 return false; 8471 8472 for_each_member(i, safe_type, member) { 8473 const char *m_name = __btf_name_by_offset(btf, member->name_off); 8474 const struct btf_type *mtype = btf_type_by_id(btf, member->type); 8475 u32 id; 8476 8477 if (!btf_type_is_ptr(mtype)) 8478 continue; 8479 8480 btf_type_skip_modifiers(btf, mtype->type, &id); 8481 /* If we match on both type and name, the field is considered trusted. */ 8482 if (btf_id == id && !strcmp(field_name, m_name)) 8483 return true; 8484 } 8485 8486 return false; 8487 } 8488 8489 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log, 8490 const struct btf *reg_btf, u32 reg_id, 8491 const struct btf *arg_btf, u32 arg_id) 8492 { 8493 const char *reg_name, *arg_name, *search_needle; 8494 const struct btf_type *reg_type, *arg_type; 8495 int reg_len, arg_len, cmp_len; 8496 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char); 8497 8498 reg_type = btf_type_by_id(reg_btf, reg_id); 8499 if (!reg_type) 8500 return false; 8501 8502 arg_type = btf_type_by_id(arg_btf, arg_id); 8503 if (!arg_type) 8504 return false; 8505 8506 reg_name = btf_name_by_offset(reg_btf, reg_type->name_off); 8507 arg_name = btf_name_by_offset(arg_btf, arg_type->name_off); 8508 8509 reg_len = strlen(reg_name); 8510 arg_len = strlen(arg_name); 8511 8512 /* Exactly one of the two type names may be suffixed with ___init, so 8513 * if the strings are the same size, they can't possibly be no-cast 8514 * aliases of one another. If you have two of the same type names, e.g. 8515 * they're both nf_conn___init, it would be improper to return true 8516 * because they are _not_ no-cast aliases, they are the same type. 8517 */ 8518 if (reg_len == arg_len) 8519 return false; 8520 8521 /* Either of the two names must be the other name, suffixed with ___init. */ 8522 if ((reg_len != arg_len + pattern_len) && 8523 (arg_len != reg_len + pattern_len)) 8524 return false; 8525 8526 if (reg_len < arg_len) { 8527 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX); 8528 cmp_len = reg_len; 8529 } else { 8530 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX); 8531 cmp_len = arg_len; 8532 } 8533 8534 if (!search_needle) 8535 return false; 8536 8537 /* ___init suffix must come at the end of the name */ 8538 if (*(search_needle + pattern_len) != '\0') 8539 return false; 8540 8541 return !strncmp(reg_name, arg_name, cmp_len); 8542 } 8543