1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* Copyright (c) 2018 Facebook */ 3 4 #include <uapi/linux/btf.h> 5 #include <uapi/linux/types.h> 6 #include <linux/seq_file.h> 7 #include <linux/compiler.h> 8 #include <linux/ctype.h> 9 #include <linux/errno.h> 10 #include <linux/slab.h> 11 #include <linux/anon_inodes.h> 12 #include <linux/file.h> 13 #include <linux/uaccess.h> 14 #include <linux/kernel.h> 15 #include <linux/idr.h> 16 #include <linux/sort.h> 17 #include <linux/bpf_verifier.h> 18 #include <linux/btf.h> 19 20 /* BTF (BPF Type Format) is the meta data format which describes 21 * the data types of BPF program/map. Hence, it basically focus 22 * on the C programming language which the modern BPF is primary 23 * using. 24 * 25 * ELF Section: 26 * ~~~~~~~~~~~ 27 * The BTF data is stored under the ".BTF" ELF section 28 * 29 * struct btf_type: 30 * ~~~~~~~~~~~~~~~ 31 * Each 'struct btf_type' object describes a C data type. 32 * Depending on the type it is describing, a 'struct btf_type' 33 * object may be followed by more data. F.e. 34 * To describe an array, 'struct btf_type' is followed by 35 * 'struct btf_array'. 36 * 37 * 'struct btf_type' and any extra data following it are 38 * 4 bytes aligned. 39 * 40 * Type section: 41 * ~~~~~~~~~~~~~ 42 * The BTF type section contains a list of 'struct btf_type' objects. 43 * Each one describes a C type. Recall from the above section 44 * that a 'struct btf_type' object could be immediately followed by extra 45 * data in order to desribe some particular C types. 46 * 47 * type_id: 48 * ~~~~~~~ 49 * Each btf_type object is identified by a type_id. The type_id 50 * is implicitly implied by the location of the btf_type object in 51 * the BTF type section. The first one has type_id 1. The second 52 * one has type_id 2...etc. Hence, an earlier btf_type has 53 * a smaller type_id. 54 * 55 * A btf_type object may refer to another btf_type object by using 56 * type_id (i.e. the "type" in the "struct btf_type"). 57 * 58 * NOTE that we cannot assume any reference-order. 59 * A btf_type object can refer to an earlier btf_type object 60 * but it can also refer to a later btf_type object. 61 * 62 * For example, to describe "const void *". A btf_type 63 * object describing "const" may refer to another btf_type 64 * object describing "void *". This type-reference is done 65 * by specifying type_id: 66 * 67 * [1] CONST (anon) type_id=2 68 * [2] PTR (anon) type_id=0 69 * 70 * The above is the btf_verifier debug log: 71 * - Each line started with "[?]" is a btf_type object 72 * - [?] is the type_id of the btf_type object. 73 * - CONST/PTR is the BTF_KIND_XXX 74 * - "(anon)" is the name of the type. It just 75 * happens that CONST and PTR has no name. 76 * - type_id=XXX is the 'u32 type' in btf_type 77 * 78 * NOTE: "void" has type_id 0 79 * 80 * String section: 81 * ~~~~~~~~~~~~~~ 82 * The BTF string section contains the names used by the type section. 83 * Each string is referred by an "offset" from the beginning of the 84 * string section. 85 * 86 * Each string is '\0' terminated. 87 * 88 * The first character in the string section must be '\0' 89 * which is used to mean 'anonymous'. Some btf_type may not 90 * have a name. 91 */ 92 93 /* BTF verification: 94 * 95 * To verify BTF data, two passes are needed. 96 * 97 * Pass #1 98 * ~~~~~~~ 99 * The first pass is to collect all btf_type objects to 100 * an array: "btf->types". 101 * 102 * Depending on the C type that a btf_type is describing, 103 * a btf_type may be followed by extra data. We don't know 104 * how many btf_type is there, and more importantly we don't 105 * know where each btf_type is located in the type section. 106 * 107 * Without knowing the location of each type_id, most verifications 108 * cannot be done. e.g. an earlier btf_type may refer to a later 109 * btf_type (recall the "const void *" above), so we cannot 110 * check this type-reference in the first pass. 111 * 112 * In the first pass, it still does some verifications (e.g. 113 * checking the name is a valid offset to the string section). 114 * 115 * Pass #2 116 * ~~~~~~~ 117 * The main focus is to resolve a btf_type that is referring 118 * to another type. 119 * 120 * We have to ensure the referring type: 121 * 1) does exist in the BTF (i.e. in btf->types[]) 122 * 2) does not cause a loop: 123 * struct A { 124 * struct B b; 125 * }; 126 * 127 * struct B { 128 * struct A a; 129 * }; 130 * 131 * btf_type_needs_resolve() decides if a btf_type needs 132 * to be resolved. 133 * 134 * The needs_resolve type implements the "resolve()" ops which 135 * essentially does a DFS and detects backedge. 136 * 137 * During resolve (or DFS), different C types have different 138 * "RESOLVED" conditions. 139 * 140 * When resolving a BTF_KIND_STRUCT, we need to resolve all its 141 * members because a member is always referring to another 142 * type. A struct's member can be treated as "RESOLVED" if 143 * it is referring to a BTF_KIND_PTR. Otherwise, the 144 * following valid C struct would be rejected: 145 * 146 * struct A { 147 * int m; 148 * struct A *a; 149 * }; 150 * 151 * When resolving a BTF_KIND_PTR, it needs to keep resolving if 152 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot 153 * detect a pointer loop, e.g.: 154 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR + 155 * ^ | 156 * +-----------------------------------------+ 157 * 158 */ 159 160 #define BITS_PER_U64 (sizeof(u64) * BITS_PER_BYTE) 161 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1) 162 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK) 163 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3) 164 #define BITS_ROUNDUP_BYTES(bits) \ 165 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits)) 166 167 #define BTF_INFO_MASK 0x0f00ffff 168 #define BTF_INT_MASK 0x0fffffff 169 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE) 170 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET) 171 172 /* 16MB for 64k structs and each has 16 members and 173 * a few MB spaces for the string section. 174 * The hard limit is S32_MAX. 175 */ 176 #define BTF_MAX_SIZE (16 * 1024 * 1024) 177 178 #define for_each_member(i, struct_type, member) \ 179 for (i = 0, member = btf_type_member(struct_type); \ 180 i < btf_type_vlen(struct_type); \ 181 i++, member++) 182 183 #define for_each_member_from(i, from, struct_type, member) \ 184 for (i = from, member = btf_type_member(struct_type) + from; \ 185 i < btf_type_vlen(struct_type); \ 186 i++, member++) 187 188 static DEFINE_IDR(btf_idr); 189 static DEFINE_SPINLOCK(btf_idr_lock); 190 191 struct btf { 192 void *data; 193 struct btf_type **types; 194 u32 *resolved_ids; 195 u32 *resolved_sizes; 196 const char *strings; 197 void *nohdr_data; 198 struct btf_header hdr; 199 u32 nr_types; 200 u32 types_size; 201 u32 data_size; 202 refcount_t refcnt; 203 u32 id; 204 struct rcu_head rcu; 205 }; 206 207 enum verifier_phase { 208 CHECK_META, 209 CHECK_TYPE, 210 }; 211 212 struct resolve_vertex { 213 const struct btf_type *t; 214 u32 type_id; 215 u16 next_member; 216 }; 217 218 enum visit_state { 219 NOT_VISITED, 220 VISITED, 221 RESOLVED, 222 }; 223 224 enum resolve_mode { 225 RESOLVE_TBD, /* To Be Determined */ 226 RESOLVE_PTR, /* Resolving for Pointer */ 227 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union 228 * or array 229 */ 230 }; 231 232 #define MAX_RESOLVE_DEPTH 32 233 234 struct btf_sec_info { 235 u32 off; 236 u32 len; 237 }; 238 239 struct btf_verifier_env { 240 struct btf *btf; 241 u8 *visit_states; 242 struct resolve_vertex stack[MAX_RESOLVE_DEPTH]; 243 struct bpf_verifier_log log; 244 u32 log_type_id; 245 u32 top_stack; 246 enum verifier_phase phase; 247 enum resolve_mode resolve_mode; 248 }; 249 250 static const char * const btf_kind_str[NR_BTF_KINDS] = { 251 [BTF_KIND_UNKN] = "UNKNOWN", 252 [BTF_KIND_INT] = "INT", 253 [BTF_KIND_PTR] = "PTR", 254 [BTF_KIND_ARRAY] = "ARRAY", 255 [BTF_KIND_STRUCT] = "STRUCT", 256 [BTF_KIND_UNION] = "UNION", 257 [BTF_KIND_ENUM] = "ENUM", 258 [BTF_KIND_FWD] = "FWD", 259 [BTF_KIND_TYPEDEF] = "TYPEDEF", 260 [BTF_KIND_VOLATILE] = "VOLATILE", 261 [BTF_KIND_CONST] = "CONST", 262 [BTF_KIND_RESTRICT] = "RESTRICT", 263 [BTF_KIND_FUNC] = "FUNC", 264 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO", 265 }; 266 267 struct btf_kind_operations { 268 s32 (*check_meta)(struct btf_verifier_env *env, 269 const struct btf_type *t, 270 u32 meta_left); 271 int (*resolve)(struct btf_verifier_env *env, 272 const struct resolve_vertex *v); 273 int (*check_member)(struct btf_verifier_env *env, 274 const struct btf_type *struct_type, 275 const struct btf_member *member, 276 const struct btf_type *member_type); 277 void (*log_details)(struct btf_verifier_env *env, 278 const struct btf_type *t); 279 void (*seq_show)(const struct btf *btf, const struct btf_type *t, 280 u32 type_id, void *data, u8 bits_offsets, 281 struct seq_file *m); 282 }; 283 284 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS]; 285 static struct btf_type btf_void; 286 287 static int btf_resolve(struct btf_verifier_env *env, 288 const struct btf_type *t, u32 type_id); 289 290 static bool btf_type_is_modifier(const struct btf_type *t) 291 { 292 /* Some of them is not strictly a C modifier 293 * but they are grouped into the same bucket 294 * for BTF concern: 295 * A type (t) that refers to another 296 * type through t->type AND its size cannot 297 * be determined without following the t->type. 298 * 299 * ptr does not fall into this bucket 300 * because its size is always sizeof(void *). 301 */ 302 switch (BTF_INFO_KIND(t->info)) { 303 case BTF_KIND_TYPEDEF: 304 case BTF_KIND_VOLATILE: 305 case BTF_KIND_CONST: 306 case BTF_KIND_RESTRICT: 307 return true; 308 } 309 310 return false; 311 } 312 313 static bool btf_type_is_void(const struct btf_type *t) 314 { 315 return t == &btf_void; 316 } 317 318 static bool btf_type_is_fwd(const struct btf_type *t) 319 { 320 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD; 321 } 322 323 static bool btf_type_is_func(const struct btf_type *t) 324 { 325 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC; 326 } 327 328 static bool btf_type_is_func_proto(const struct btf_type *t) 329 { 330 return BTF_INFO_KIND(t->info) == BTF_KIND_FUNC_PROTO; 331 } 332 333 static bool btf_type_nosize(const struct btf_type *t) 334 { 335 return btf_type_is_void(t) || btf_type_is_fwd(t) || 336 btf_type_is_func(t) || btf_type_is_func_proto(t); 337 } 338 339 static bool btf_type_nosize_or_null(const struct btf_type *t) 340 { 341 return !t || btf_type_nosize(t); 342 } 343 344 /* union is only a special case of struct: 345 * all its offsetof(member) == 0 346 */ 347 static bool btf_type_is_struct(const struct btf_type *t) 348 { 349 u8 kind = BTF_INFO_KIND(t->info); 350 351 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION; 352 } 353 354 static bool btf_type_is_array(const struct btf_type *t) 355 { 356 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY; 357 } 358 359 static bool btf_type_is_ptr(const struct btf_type *t) 360 { 361 return BTF_INFO_KIND(t->info) == BTF_KIND_PTR; 362 } 363 364 static bool btf_type_is_int(const struct btf_type *t) 365 { 366 return BTF_INFO_KIND(t->info) == BTF_KIND_INT; 367 } 368 369 /* What types need to be resolved? 370 * 371 * btf_type_is_modifier() is an obvious one. 372 * 373 * btf_type_is_struct() because its member refers to 374 * another type (through member->type). 375 376 * btf_type_is_array() because its element (array->type) 377 * refers to another type. Array can be thought of a 378 * special case of struct while array just has the same 379 * member-type repeated by array->nelems of times. 380 */ 381 static bool btf_type_needs_resolve(const struct btf_type *t) 382 { 383 return btf_type_is_modifier(t) || 384 btf_type_is_ptr(t) || 385 btf_type_is_struct(t) || 386 btf_type_is_array(t); 387 } 388 389 /* t->size can be used */ 390 static bool btf_type_has_size(const struct btf_type *t) 391 { 392 switch (BTF_INFO_KIND(t->info)) { 393 case BTF_KIND_INT: 394 case BTF_KIND_STRUCT: 395 case BTF_KIND_UNION: 396 case BTF_KIND_ENUM: 397 return true; 398 } 399 400 return false; 401 } 402 403 static const char *btf_int_encoding_str(u8 encoding) 404 { 405 if (encoding == 0) 406 return "(none)"; 407 else if (encoding == BTF_INT_SIGNED) 408 return "SIGNED"; 409 else if (encoding == BTF_INT_CHAR) 410 return "CHAR"; 411 else if (encoding == BTF_INT_BOOL) 412 return "BOOL"; 413 else 414 return "UNKN"; 415 } 416 417 static u16 btf_type_vlen(const struct btf_type *t) 418 { 419 return BTF_INFO_VLEN(t->info); 420 } 421 422 static u32 btf_type_int(const struct btf_type *t) 423 { 424 return *(u32 *)(t + 1); 425 } 426 427 static const struct btf_array *btf_type_array(const struct btf_type *t) 428 { 429 return (const struct btf_array *)(t + 1); 430 } 431 432 static const struct btf_member *btf_type_member(const struct btf_type *t) 433 { 434 return (const struct btf_member *)(t + 1); 435 } 436 437 static const struct btf_enum *btf_type_enum(const struct btf_type *t) 438 { 439 return (const struct btf_enum *)(t + 1); 440 } 441 442 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t) 443 { 444 return kind_ops[BTF_INFO_KIND(t->info)]; 445 } 446 447 bool btf_name_offset_valid(const struct btf *btf, u32 offset) 448 { 449 return BTF_STR_OFFSET_VALID(offset) && 450 offset < btf->hdr.str_len; 451 } 452 453 /* Only C-style identifier is permitted. This can be relaxed if 454 * necessary. 455 */ 456 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset) 457 { 458 /* offset must be valid */ 459 const char *src = &btf->strings[offset]; 460 const char *src_limit; 461 462 if (!isalpha(*src) && *src != '_') 463 return false; 464 465 /* set a limit on identifier length */ 466 src_limit = src + KSYM_NAME_LEN; 467 src++; 468 while (*src && src < src_limit) { 469 if (!isalnum(*src) && *src != '_') 470 return false; 471 src++; 472 } 473 474 return !*src; 475 } 476 477 const char *btf_name_by_offset(const struct btf *btf, u32 offset) 478 { 479 if (!offset) 480 return "(anon)"; 481 else if (offset < btf->hdr.str_len) 482 return &btf->strings[offset]; 483 else 484 return "(invalid-name-offset)"; 485 } 486 487 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id) 488 { 489 if (type_id > btf->nr_types) 490 return NULL; 491 492 return btf->types[type_id]; 493 } 494 495 /* 496 * Regular int is not a bit field and it must be either 497 * u8/u16/u32/u64. 498 */ 499 static bool btf_type_int_is_regular(const struct btf_type *t) 500 { 501 u8 nr_bits, nr_bytes; 502 u32 int_data; 503 504 int_data = btf_type_int(t); 505 nr_bits = BTF_INT_BITS(int_data); 506 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits); 507 if (BITS_PER_BYTE_MASKED(nr_bits) || 508 BTF_INT_OFFSET(int_data) || 509 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) && 510 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64))) { 511 return false; 512 } 513 514 return true; 515 } 516 517 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log, 518 const char *fmt, ...) 519 { 520 va_list args; 521 522 va_start(args, fmt); 523 bpf_verifier_vlog(log, fmt, args); 524 va_end(args); 525 } 526 527 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env, 528 const char *fmt, ...) 529 { 530 struct bpf_verifier_log *log = &env->log; 531 va_list args; 532 533 if (!bpf_verifier_log_needed(log)) 534 return; 535 536 va_start(args, fmt); 537 bpf_verifier_vlog(log, fmt, args); 538 va_end(args); 539 } 540 541 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env, 542 const struct btf_type *t, 543 bool log_details, 544 const char *fmt, ...) 545 { 546 struct bpf_verifier_log *log = &env->log; 547 u8 kind = BTF_INFO_KIND(t->info); 548 struct btf *btf = env->btf; 549 va_list args; 550 551 if (!bpf_verifier_log_needed(log)) 552 return; 553 554 __btf_verifier_log(log, "[%u] %s %s%s", 555 env->log_type_id, 556 btf_kind_str[kind], 557 btf_name_by_offset(btf, t->name_off), 558 log_details ? " " : ""); 559 560 if (log_details) 561 btf_type_ops(t)->log_details(env, t); 562 563 if (fmt && *fmt) { 564 __btf_verifier_log(log, " "); 565 va_start(args, fmt); 566 bpf_verifier_vlog(log, fmt, args); 567 va_end(args); 568 } 569 570 __btf_verifier_log(log, "\n"); 571 } 572 573 #define btf_verifier_log_type(env, t, ...) \ 574 __btf_verifier_log_type((env), (t), true, __VA_ARGS__) 575 #define btf_verifier_log_basic(env, t, ...) \ 576 __btf_verifier_log_type((env), (t), false, __VA_ARGS__) 577 578 __printf(4, 5) 579 static void btf_verifier_log_member(struct btf_verifier_env *env, 580 const struct btf_type *struct_type, 581 const struct btf_member *member, 582 const char *fmt, ...) 583 { 584 struct bpf_verifier_log *log = &env->log; 585 struct btf *btf = env->btf; 586 va_list args; 587 588 if (!bpf_verifier_log_needed(log)) 589 return; 590 591 /* The CHECK_META phase already did a btf dump. 592 * 593 * If member is logged again, it must hit an error in 594 * parsing this member. It is useful to print out which 595 * struct this member belongs to. 596 */ 597 if (env->phase != CHECK_META) 598 btf_verifier_log_type(env, struct_type, NULL); 599 600 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u", 601 btf_name_by_offset(btf, member->name_off), 602 member->type, member->offset); 603 604 if (fmt && *fmt) { 605 __btf_verifier_log(log, " "); 606 va_start(args, fmt); 607 bpf_verifier_vlog(log, fmt, args); 608 va_end(args); 609 } 610 611 __btf_verifier_log(log, "\n"); 612 } 613 614 static void btf_verifier_log_hdr(struct btf_verifier_env *env, 615 u32 btf_data_size) 616 { 617 struct bpf_verifier_log *log = &env->log; 618 const struct btf *btf = env->btf; 619 const struct btf_header *hdr; 620 621 if (!bpf_verifier_log_needed(log)) 622 return; 623 624 hdr = &btf->hdr; 625 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic); 626 __btf_verifier_log(log, "version: %u\n", hdr->version); 627 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags); 628 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len); 629 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off); 630 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len); 631 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off); 632 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len); 633 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size); 634 } 635 636 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t) 637 { 638 struct btf *btf = env->btf; 639 640 /* < 2 because +1 for btf_void which is always in btf->types[0]. 641 * btf_void is not accounted in btf->nr_types because btf_void 642 * does not come from the BTF file. 643 */ 644 if (btf->types_size - btf->nr_types < 2) { 645 /* Expand 'types' array */ 646 647 struct btf_type **new_types; 648 u32 expand_by, new_size; 649 650 if (btf->types_size == BTF_MAX_TYPE) { 651 btf_verifier_log(env, "Exceeded max num of types"); 652 return -E2BIG; 653 } 654 655 expand_by = max_t(u32, btf->types_size >> 2, 16); 656 new_size = min_t(u32, BTF_MAX_TYPE, 657 btf->types_size + expand_by); 658 659 new_types = kvcalloc(new_size, sizeof(*new_types), 660 GFP_KERNEL | __GFP_NOWARN); 661 if (!new_types) 662 return -ENOMEM; 663 664 if (btf->nr_types == 0) 665 new_types[0] = &btf_void; 666 else 667 memcpy(new_types, btf->types, 668 sizeof(*btf->types) * (btf->nr_types + 1)); 669 670 kvfree(btf->types); 671 btf->types = new_types; 672 btf->types_size = new_size; 673 } 674 675 btf->types[++(btf->nr_types)] = t; 676 677 return 0; 678 } 679 680 static int btf_alloc_id(struct btf *btf) 681 { 682 int id; 683 684 idr_preload(GFP_KERNEL); 685 spin_lock_bh(&btf_idr_lock); 686 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC); 687 if (id > 0) 688 btf->id = id; 689 spin_unlock_bh(&btf_idr_lock); 690 idr_preload_end(); 691 692 if (WARN_ON_ONCE(!id)) 693 return -ENOSPC; 694 695 return id > 0 ? 0 : id; 696 } 697 698 static void btf_free_id(struct btf *btf) 699 { 700 unsigned long flags; 701 702 /* 703 * In map-in-map, calling map_delete_elem() on outer 704 * map will call bpf_map_put on the inner map. 705 * It will then eventually call btf_free_id() 706 * on the inner map. Some of the map_delete_elem() 707 * implementation may have irq disabled, so 708 * we need to use the _irqsave() version instead 709 * of the _bh() version. 710 */ 711 spin_lock_irqsave(&btf_idr_lock, flags); 712 idr_remove(&btf_idr, btf->id); 713 spin_unlock_irqrestore(&btf_idr_lock, flags); 714 } 715 716 static void btf_free(struct btf *btf) 717 { 718 kvfree(btf->types); 719 kvfree(btf->resolved_sizes); 720 kvfree(btf->resolved_ids); 721 kvfree(btf->data); 722 kfree(btf); 723 } 724 725 static void btf_free_rcu(struct rcu_head *rcu) 726 { 727 struct btf *btf = container_of(rcu, struct btf, rcu); 728 729 btf_free(btf); 730 } 731 732 void btf_put(struct btf *btf) 733 { 734 if (btf && refcount_dec_and_test(&btf->refcnt)) { 735 btf_free_id(btf); 736 call_rcu(&btf->rcu, btf_free_rcu); 737 } 738 } 739 740 static int env_resolve_init(struct btf_verifier_env *env) 741 { 742 struct btf *btf = env->btf; 743 u32 nr_types = btf->nr_types; 744 u32 *resolved_sizes = NULL; 745 u32 *resolved_ids = NULL; 746 u8 *visit_states = NULL; 747 748 /* +1 for btf_void */ 749 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes), 750 GFP_KERNEL | __GFP_NOWARN); 751 if (!resolved_sizes) 752 goto nomem; 753 754 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids), 755 GFP_KERNEL | __GFP_NOWARN); 756 if (!resolved_ids) 757 goto nomem; 758 759 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states), 760 GFP_KERNEL | __GFP_NOWARN); 761 if (!visit_states) 762 goto nomem; 763 764 btf->resolved_sizes = resolved_sizes; 765 btf->resolved_ids = resolved_ids; 766 env->visit_states = visit_states; 767 768 return 0; 769 770 nomem: 771 kvfree(resolved_sizes); 772 kvfree(resolved_ids); 773 kvfree(visit_states); 774 return -ENOMEM; 775 } 776 777 static void btf_verifier_env_free(struct btf_verifier_env *env) 778 { 779 kvfree(env->visit_states); 780 kfree(env); 781 } 782 783 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env, 784 const struct btf_type *next_type) 785 { 786 switch (env->resolve_mode) { 787 case RESOLVE_TBD: 788 /* int, enum or void is a sink */ 789 return !btf_type_needs_resolve(next_type); 790 case RESOLVE_PTR: 791 /* int, enum, void, struct, array, func or func_proto is a sink 792 * for ptr 793 */ 794 return !btf_type_is_modifier(next_type) && 795 !btf_type_is_ptr(next_type); 796 case RESOLVE_STRUCT_OR_ARRAY: 797 /* int, enum, void, ptr, func or func_proto is a sink 798 * for struct and array 799 */ 800 return !btf_type_is_modifier(next_type) && 801 !btf_type_is_array(next_type) && 802 !btf_type_is_struct(next_type); 803 default: 804 BUG(); 805 } 806 } 807 808 static bool env_type_is_resolved(const struct btf_verifier_env *env, 809 u32 type_id) 810 { 811 return env->visit_states[type_id] == RESOLVED; 812 } 813 814 static int env_stack_push(struct btf_verifier_env *env, 815 const struct btf_type *t, u32 type_id) 816 { 817 struct resolve_vertex *v; 818 819 if (env->top_stack == MAX_RESOLVE_DEPTH) 820 return -E2BIG; 821 822 if (env->visit_states[type_id] != NOT_VISITED) 823 return -EEXIST; 824 825 env->visit_states[type_id] = VISITED; 826 827 v = &env->stack[env->top_stack++]; 828 v->t = t; 829 v->type_id = type_id; 830 v->next_member = 0; 831 832 if (env->resolve_mode == RESOLVE_TBD) { 833 if (btf_type_is_ptr(t)) 834 env->resolve_mode = RESOLVE_PTR; 835 else if (btf_type_is_struct(t) || btf_type_is_array(t)) 836 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY; 837 } 838 839 return 0; 840 } 841 842 static void env_stack_set_next_member(struct btf_verifier_env *env, 843 u16 next_member) 844 { 845 env->stack[env->top_stack - 1].next_member = next_member; 846 } 847 848 static void env_stack_pop_resolved(struct btf_verifier_env *env, 849 u32 resolved_type_id, 850 u32 resolved_size) 851 { 852 u32 type_id = env->stack[--(env->top_stack)].type_id; 853 struct btf *btf = env->btf; 854 855 btf->resolved_sizes[type_id] = resolved_size; 856 btf->resolved_ids[type_id] = resolved_type_id; 857 env->visit_states[type_id] = RESOLVED; 858 } 859 860 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env) 861 { 862 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL; 863 } 864 865 /* The input param "type_id" must point to a needs_resolve type */ 866 static const struct btf_type *btf_type_id_resolve(const struct btf *btf, 867 u32 *type_id) 868 { 869 *type_id = btf->resolved_ids[*type_id]; 870 return btf_type_by_id(btf, *type_id); 871 } 872 873 const struct btf_type *btf_type_id_size(const struct btf *btf, 874 u32 *type_id, u32 *ret_size) 875 { 876 const struct btf_type *size_type; 877 u32 size_type_id = *type_id; 878 u32 size = 0; 879 880 size_type = btf_type_by_id(btf, size_type_id); 881 if (btf_type_nosize_or_null(size_type)) 882 return NULL; 883 884 if (btf_type_has_size(size_type)) { 885 size = size_type->size; 886 } else if (btf_type_is_array(size_type)) { 887 size = btf->resolved_sizes[size_type_id]; 888 } else if (btf_type_is_ptr(size_type)) { 889 size = sizeof(void *); 890 } else { 891 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type))) 892 return NULL; 893 894 size = btf->resolved_sizes[size_type_id]; 895 size_type_id = btf->resolved_ids[size_type_id]; 896 size_type = btf_type_by_id(btf, size_type_id); 897 if (btf_type_nosize_or_null(size_type)) 898 return NULL; 899 } 900 901 *type_id = size_type_id; 902 if (ret_size) 903 *ret_size = size; 904 905 return size_type; 906 } 907 908 static int btf_df_check_member(struct btf_verifier_env *env, 909 const struct btf_type *struct_type, 910 const struct btf_member *member, 911 const struct btf_type *member_type) 912 { 913 btf_verifier_log_basic(env, struct_type, 914 "Unsupported check_member"); 915 return -EINVAL; 916 } 917 918 static int btf_df_resolve(struct btf_verifier_env *env, 919 const struct resolve_vertex *v) 920 { 921 btf_verifier_log_basic(env, v->t, "Unsupported resolve"); 922 return -EINVAL; 923 } 924 925 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t, 926 u32 type_id, void *data, u8 bits_offsets, 927 struct seq_file *m) 928 { 929 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info)); 930 } 931 932 static int btf_int_check_member(struct btf_verifier_env *env, 933 const struct btf_type *struct_type, 934 const struct btf_member *member, 935 const struct btf_type *member_type) 936 { 937 u32 int_data = btf_type_int(member_type); 938 u32 struct_bits_off = member->offset; 939 u32 struct_size = struct_type->size; 940 u32 nr_copy_bits; 941 u32 bytes_offset; 942 943 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) { 944 btf_verifier_log_member(env, struct_type, member, 945 "bits_offset exceeds U32_MAX"); 946 return -EINVAL; 947 } 948 949 struct_bits_off += BTF_INT_OFFSET(int_data); 950 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 951 nr_copy_bits = BTF_INT_BITS(int_data) + 952 BITS_PER_BYTE_MASKED(struct_bits_off); 953 954 if (nr_copy_bits > BITS_PER_U64) { 955 btf_verifier_log_member(env, struct_type, member, 956 "nr_copy_bits exceeds 64"); 957 return -EINVAL; 958 } 959 960 if (struct_size < bytes_offset || 961 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) { 962 btf_verifier_log_member(env, struct_type, member, 963 "Member exceeds struct_size"); 964 return -EINVAL; 965 } 966 967 return 0; 968 } 969 970 static s32 btf_int_check_meta(struct btf_verifier_env *env, 971 const struct btf_type *t, 972 u32 meta_left) 973 { 974 u32 int_data, nr_bits, meta_needed = sizeof(int_data); 975 u16 encoding; 976 977 if (meta_left < meta_needed) { 978 btf_verifier_log_basic(env, t, 979 "meta_left:%u meta_needed:%u", 980 meta_left, meta_needed); 981 return -EINVAL; 982 } 983 984 if (btf_type_vlen(t)) { 985 btf_verifier_log_type(env, t, "vlen != 0"); 986 return -EINVAL; 987 } 988 989 int_data = btf_type_int(t); 990 if (int_data & ~BTF_INT_MASK) { 991 btf_verifier_log_basic(env, t, "Invalid int_data:%x", 992 int_data); 993 return -EINVAL; 994 } 995 996 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data); 997 998 if (nr_bits > BITS_PER_U64) { 999 btf_verifier_log_type(env, t, "nr_bits exceeds %zu", 1000 BITS_PER_U64); 1001 return -EINVAL; 1002 } 1003 1004 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) { 1005 btf_verifier_log_type(env, t, "nr_bits exceeds type_size"); 1006 return -EINVAL; 1007 } 1008 1009 /* 1010 * Only one of the encoding bits is allowed and it 1011 * should be sufficient for the pretty print purpose (i.e. decoding). 1012 * Multiple bits can be allowed later if it is found 1013 * to be insufficient. 1014 */ 1015 encoding = BTF_INT_ENCODING(int_data); 1016 if (encoding && 1017 encoding != BTF_INT_SIGNED && 1018 encoding != BTF_INT_CHAR && 1019 encoding != BTF_INT_BOOL) { 1020 btf_verifier_log_type(env, t, "Unsupported encoding"); 1021 return -ENOTSUPP; 1022 } 1023 1024 btf_verifier_log_type(env, t, NULL); 1025 1026 return meta_needed; 1027 } 1028 1029 static void btf_int_log(struct btf_verifier_env *env, 1030 const struct btf_type *t) 1031 { 1032 int int_data = btf_type_int(t); 1033 1034 btf_verifier_log(env, 1035 "size=%u bits_offset=%u nr_bits=%u encoding=%s", 1036 t->size, BTF_INT_OFFSET(int_data), 1037 BTF_INT_BITS(int_data), 1038 btf_int_encoding_str(BTF_INT_ENCODING(int_data))); 1039 } 1040 1041 static void btf_int_bits_seq_show(const struct btf *btf, 1042 const struct btf_type *t, 1043 void *data, u8 bits_offset, 1044 struct seq_file *m) 1045 { 1046 u16 left_shift_bits, right_shift_bits; 1047 u32 int_data = btf_type_int(t); 1048 u8 nr_bits = BTF_INT_BITS(int_data); 1049 u8 total_bits_offset; 1050 u8 nr_copy_bytes; 1051 u8 nr_copy_bits; 1052 u64 print_num; 1053 1054 /* 1055 * bits_offset is at most 7. 1056 * BTF_INT_OFFSET() cannot exceed 64 bits. 1057 */ 1058 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data); 1059 data += BITS_ROUNDDOWN_BYTES(total_bits_offset); 1060 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset); 1061 nr_copy_bits = nr_bits + bits_offset; 1062 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits); 1063 1064 print_num = 0; 1065 memcpy(&print_num, data, nr_copy_bytes); 1066 1067 #ifdef __BIG_ENDIAN_BITFIELD 1068 left_shift_bits = bits_offset; 1069 #else 1070 left_shift_bits = BITS_PER_U64 - nr_copy_bits; 1071 #endif 1072 right_shift_bits = BITS_PER_U64 - nr_bits; 1073 1074 print_num <<= left_shift_bits; 1075 print_num >>= right_shift_bits; 1076 1077 seq_printf(m, "0x%llx", print_num); 1078 } 1079 1080 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t, 1081 u32 type_id, void *data, u8 bits_offset, 1082 struct seq_file *m) 1083 { 1084 u32 int_data = btf_type_int(t); 1085 u8 encoding = BTF_INT_ENCODING(int_data); 1086 bool sign = encoding & BTF_INT_SIGNED; 1087 u8 nr_bits = BTF_INT_BITS(int_data); 1088 1089 if (bits_offset || BTF_INT_OFFSET(int_data) || 1090 BITS_PER_BYTE_MASKED(nr_bits)) { 1091 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1092 return; 1093 } 1094 1095 switch (nr_bits) { 1096 case 64: 1097 if (sign) 1098 seq_printf(m, "%lld", *(s64 *)data); 1099 else 1100 seq_printf(m, "%llu", *(u64 *)data); 1101 break; 1102 case 32: 1103 if (sign) 1104 seq_printf(m, "%d", *(s32 *)data); 1105 else 1106 seq_printf(m, "%u", *(u32 *)data); 1107 break; 1108 case 16: 1109 if (sign) 1110 seq_printf(m, "%d", *(s16 *)data); 1111 else 1112 seq_printf(m, "%u", *(u16 *)data); 1113 break; 1114 case 8: 1115 if (sign) 1116 seq_printf(m, "%d", *(s8 *)data); 1117 else 1118 seq_printf(m, "%u", *(u8 *)data); 1119 break; 1120 default: 1121 btf_int_bits_seq_show(btf, t, data, bits_offset, m); 1122 } 1123 } 1124 1125 static const struct btf_kind_operations int_ops = { 1126 .check_meta = btf_int_check_meta, 1127 .resolve = btf_df_resolve, 1128 .check_member = btf_int_check_member, 1129 .log_details = btf_int_log, 1130 .seq_show = btf_int_seq_show, 1131 }; 1132 1133 static int btf_modifier_check_member(struct btf_verifier_env *env, 1134 const struct btf_type *struct_type, 1135 const struct btf_member *member, 1136 const struct btf_type *member_type) 1137 { 1138 const struct btf_type *resolved_type; 1139 u32 resolved_type_id = member->type; 1140 struct btf_member resolved_member; 1141 struct btf *btf = env->btf; 1142 1143 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL); 1144 if (!resolved_type) { 1145 btf_verifier_log_member(env, struct_type, member, 1146 "Invalid member"); 1147 return -EINVAL; 1148 } 1149 1150 resolved_member = *member; 1151 resolved_member.type = resolved_type_id; 1152 1153 return btf_type_ops(resolved_type)->check_member(env, struct_type, 1154 &resolved_member, 1155 resolved_type); 1156 } 1157 1158 static int btf_ptr_check_member(struct btf_verifier_env *env, 1159 const struct btf_type *struct_type, 1160 const struct btf_member *member, 1161 const struct btf_type *member_type) 1162 { 1163 u32 struct_size, struct_bits_off, bytes_offset; 1164 1165 struct_size = struct_type->size; 1166 struct_bits_off = member->offset; 1167 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1168 1169 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1170 btf_verifier_log_member(env, struct_type, member, 1171 "Member is not byte aligned"); 1172 return -EINVAL; 1173 } 1174 1175 if (struct_size - bytes_offset < sizeof(void *)) { 1176 btf_verifier_log_member(env, struct_type, member, 1177 "Member exceeds struct_size"); 1178 return -EINVAL; 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int btf_ref_type_check_meta(struct btf_verifier_env *env, 1185 const struct btf_type *t, 1186 u32 meta_left) 1187 { 1188 if (btf_type_vlen(t)) { 1189 btf_verifier_log_type(env, t, "vlen != 0"); 1190 return -EINVAL; 1191 } 1192 1193 if (!BTF_TYPE_ID_VALID(t->type)) { 1194 btf_verifier_log_type(env, t, "Invalid type_id"); 1195 return -EINVAL; 1196 } 1197 1198 /* typedef type must have a valid name, and other ref types, 1199 * volatile, const, restrict, should have a null name. 1200 */ 1201 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) { 1202 if (!t->name_off || 1203 !btf_name_valid_identifier(env->btf, t->name_off)) { 1204 btf_verifier_log_type(env, t, "Invalid name"); 1205 return -EINVAL; 1206 } 1207 } else { 1208 if (t->name_off) { 1209 btf_verifier_log_type(env, t, "Invalid name"); 1210 return -EINVAL; 1211 } 1212 } 1213 1214 btf_verifier_log_type(env, t, NULL); 1215 1216 return 0; 1217 } 1218 1219 static int btf_modifier_resolve(struct btf_verifier_env *env, 1220 const struct resolve_vertex *v) 1221 { 1222 const struct btf_type *t = v->t; 1223 const struct btf_type *next_type; 1224 u32 next_type_id = t->type; 1225 struct btf *btf = env->btf; 1226 u32 next_type_size = 0; 1227 1228 next_type = btf_type_by_id(btf, next_type_id); 1229 if (!next_type) { 1230 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1231 return -EINVAL; 1232 } 1233 1234 if (!env_type_is_resolve_sink(env, next_type) && 1235 !env_type_is_resolved(env, next_type_id)) 1236 return env_stack_push(env, next_type, next_type_id); 1237 1238 /* Figure out the resolved next_type_id with size. 1239 * They will be stored in the current modifier's 1240 * resolved_ids and resolved_sizes such that it can 1241 * save us a few type-following when we use it later (e.g. in 1242 * pretty print). 1243 */ 1244 if (!btf_type_id_size(btf, &next_type_id, &next_type_size)) { 1245 if (env_type_is_resolved(env, next_type_id)) 1246 next_type = btf_type_id_resolve(btf, &next_type_id); 1247 1248 /* "typedef void new_void", "const void"...etc */ 1249 if (!btf_type_is_void(next_type) && 1250 !btf_type_is_fwd(next_type)) { 1251 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1252 return -EINVAL; 1253 } 1254 } 1255 1256 env_stack_pop_resolved(env, next_type_id, next_type_size); 1257 1258 return 0; 1259 } 1260 1261 static int btf_ptr_resolve(struct btf_verifier_env *env, 1262 const struct resolve_vertex *v) 1263 { 1264 const struct btf_type *next_type; 1265 const struct btf_type *t = v->t; 1266 u32 next_type_id = t->type; 1267 struct btf *btf = env->btf; 1268 1269 next_type = btf_type_by_id(btf, next_type_id); 1270 if (!next_type) { 1271 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1272 return -EINVAL; 1273 } 1274 1275 if (!env_type_is_resolve_sink(env, next_type) && 1276 !env_type_is_resolved(env, next_type_id)) 1277 return env_stack_push(env, next_type, next_type_id); 1278 1279 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY, 1280 * the modifier may have stopped resolving when it was resolved 1281 * to a ptr (last-resolved-ptr). 1282 * 1283 * We now need to continue from the last-resolved-ptr to 1284 * ensure the last-resolved-ptr will not referring back to 1285 * the currenct ptr (t). 1286 */ 1287 if (btf_type_is_modifier(next_type)) { 1288 const struct btf_type *resolved_type; 1289 u32 resolved_type_id; 1290 1291 resolved_type_id = next_type_id; 1292 resolved_type = btf_type_id_resolve(btf, &resolved_type_id); 1293 1294 if (btf_type_is_ptr(resolved_type) && 1295 !env_type_is_resolve_sink(env, resolved_type) && 1296 !env_type_is_resolved(env, resolved_type_id)) 1297 return env_stack_push(env, resolved_type, 1298 resolved_type_id); 1299 } 1300 1301 if (!btf_type_id_size(btf, &next_type_id, NULL)) { 1302 if (env_type_is_resolved(env, next_type_id)) 1303 next_type = btf_type_id_resolve(btf, &next_type_id); 1304 1305 if (!btf_type_is_void(next_type) && 1306 !btf_type_is_fwd(next_type) && 1307 !btf_type_is_func_proto(next_type)) { 1308 btf_verifier_log_type(env, v->t, "Invalid type_id"); 1309 return -EINVAL; 1310 } 1311 } 1312 1313 env_stack_pop_resolved(env, next_type_id, 0); 1314 1315 return 0; 1316 } 1317 1318 static void btf_modifier_seq_show(const struct btf *btf, 1319 const struct btf_type *t, 1320 u32 type_id, void *data, 1321 u8 bits_offset, struct seq_file *m) 1322 { 1323 t = btf_type_id_resolve(btf, &type_id); 1324 1325 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m); 1326 } 1327 1328 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t, 1329 u32 type_id, void *data, u8 bits_offset, 1330 struct seq_file *m) 1331 { 1332 /* It is a hashed value */ 1333 seq_printf(m, "%p", *(void **)data); 1334 } 1335 1336 static void btf_ref_type_log(struct btf_verifier_env *env, 1337 const struct btf_type *t) 1338 { 1339 btf_verifier_log(env, "type_id=%u", t->type); 1340 } 1341 1342 static struct btf_kind_operations modifier_ops = { 1343 .check_meta = btf_ref_type_check_meta, 1344 .resolve = btf_modifier_resolve, 1345 .check_member = btf_modifier_check_member, 1346 .log_details = btf_ref_type_log, 1347 .seq_show = btf_modifier_seq_show, 1348 }; 1349 1350 static struct btf_kind_operations ptr_ops = { 1351 .check_meta = btf_ref_type_check_meta, 1352 .resolve = btf_ptr_resolve, 1353 .check_member = btf_ptr_check_member, 1354 .log_details = btf_ref_type_log, 1355 .seq_show = btf_ptr_seq_show, 1356 }; 1357 1358 static s32 btf_fwd_check_meta(struct btf_verifier_env *env, 1359 const struct btf_type *t, 1360 u32 meta_left) 1361 { 1362 if (btf_type_vlen(t)) { 1363 btf_verifier_log_type(env, t, "vlen != 0"); 1364 return -EINVAL; 1365 } 1366 1367 if (t->type) { 1368 btf_verifier_log_type(env, t, "type != 0"); 1369 return -EINVAL; 1370 } 1371 1372 /* fwd type must have a valid name */ 1373 if (!t->name_off || 1374 !btf_name_valid_identifier(env->btf, t->name_off)) { 1375 btf_verifier_log_type(env, t, "Invalid name"); 1376 return -EINVAL; 1377 } 1378 1379 btf_verifier_log_type(env, t, NULL); 1380 1381 return 0; 1382 } 1383 1384 static struct btf_kind_operations fwd_ops = { 1385 .check_meta = btf_fwd_check_meta, 1386 .resolve = btf_df_resolve, 1387 .check_member = btf_df_check_member, 1388 .log_details = btf_ref_type_log, 1389 .seq_show = btf_df_seq_show, 1390 }; 1391 1392 static int btf_array_check_member(struct btf_verifier_env *env, 1393 const struct btf_type *struct_type, 1394 const struct btf_member *member, 1395 const struct btf_type *member_type) 1396 { 1397 u32 struct_bits_off = member->offset; 1398 u32 struct_size, bytes_offset; 1399 u32 array_type_id, array_size; 1400 struct btf *btf = env->btf; 1401 1402 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1403 btf_verifier_log_member(env, struct_type, member, 1404 "Member is not byte aligned"); 1405 return -EINVAL; 1406 } 1407 1408 array_type_id = member->type; 1409 btf_type_id_size(btf, &array_type_id, &array_size); 1410 struct_size = struct_type->size; 1411 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1412 if (struct_size - bytes_offset < array_size) { 1413 btf_verifier_log_member(env, struct_type, member, 1414 "Member exceeds struct_size"); 1415 return -EINVAL; 1416 } 1417 1418 return 0; 1419 } 1420 1421 static s32 btf_array_check_meta(struct btf_verifier_env *env, 1422 const struct btf_type *t, 1423 u32 meta_left) 1424 { 1425 const struct btf_array *array = btf_type_array(t); 1426 u32 meta_needed = sizeof(*array); 1427 1428 if (meta_left < meta_needed) { 1429 btf_verifier_log_basic(env, t, 1430 "meta_left:%u meta_needed:%u", 1431 meta_left, meta_needed); 1432 return -EINVAL; 1433 } 1434 1435 /* array type should not have a name */ 1436 if (t->name_off) { 1437 btf_verifier_log_type(env, t, "Invalid name"); 1438 return -EINVAL; 1439 } 1440 1441 if (btf_type_vlen(t)) { 1442 btf_verifier_log_type(env, t, "vlen != 0"); 1443 return -EINVAL; 1444 } 1445 1446 if (t->size) { 1447 btf_verifier_log_type(env, t, "size != 0"); 1448 return -EINVAL; 1449 } 1450 1451 /* Array elem type and index type cannot be in type void, 1452 * so !array->type and !array->index_type are not allowed. 1453 */ 1454 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) { 1455 btf_verifier_log_type(env, t, "Invalid elem"); 1456 return -EINVAL; 1457 } 1458 1459 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) { 1460 btf_verifier_log_type(env, t, "Invalid index"); 1461 return -EINVAL; 1462 } 1463 1464 btf_verifier_log_type(env, t, NULL); 1465 1466 return meta_needed; 1467 } 1468 1469 static int btf_array_resolve(struct btf_verifier_env *env, 1470 const struct resolve_vertex *v) 1471 { 1472 const struct btf_array *array = btf_type_array(v->t); 1473 const struct btf_type *elem_type, *index_type; 1474 u32 elem_type_id, index_type_id; 1475 struct btf *btf = env->btf; 1476 u32 elem_size; 1477 1478 /* Check array->index_type */ 1479 index_type_id = array->index_type; 1480 index_type = btf_type_by_id(btf, index_type_id); 1481 if (btf_type_nosize_or_null(index_type)) { 1482 btf_verifier_log_type(env, v->t, "Invalid index"); 1483 return -EINVAL; 1484 } 1485 1486 if (!env_type_is_resolve_sink(env, index_type) && 1487 !env_type_is_resolved(env, index_type_id)) 1488 return env_stack_push(env, index_type, index_type_id); 1489 1490 index_type = btf_type_id_size(btf, &index_type_id, NULL); 1491 if (!index_type || !btf_type_is_int(index_type) || 1492 !btf_type_int_is_regular(index_type)) { 1493 btf_verifier_log_type(env, v->t, "Invalid index"); 1494 return -EINVAL; 1495 } 1496 1497 /* Check array->type */ 1498 elem_type_id = array->type; 1499 elem_type = btf_type_by_id(btf, elem_type_id); 1500 if (btf_type_nosize_or_null(elem_type)) { 1501 btf_verifier_log_type(env, v->t, 1502 "Invalid elem"); 1503 return -EINVAL; 1504 } 1505 1506 if (!env_type_is_resolve_sink(env, elem_type) && 1507 !env_type_is_resolved(env, elem_type_id)) 1508 return env_stack_push(env, elem_type, elem_type_id); 1509 1510 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1511 if (!elem_type) { 1512 btf_verifier_log_type(env, v->t, "Invalid elem"); 1513 return -EINVAL; 1514 } 1515 1516 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) { 1517 btf_verifier_log_type(env, v->t, "Invalid array of int"); 1518 return -EINVAL; 1519 } 1520 1521 if (array->nelems && elem_size > U32_MAX / array->nelems) { 1522 btf_verifier_log_type(env, v->t, 1523 "Array size overflows U32_MAX"); 1524 return -EINVAL; 1525 } 1526 1527 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems); 1528 1529 return 0; 1530 } 1531 1532 static void btf_array_log(struct btf_verifier_env *env, 1533 const struct btf_type *t) 1534 { 1535 const struct btf_array *array = btf_type_array(t); 1536 1537 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u", 1538 array->type, array->index_type, array->nelems); 1539 } 1540 1541 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t, 1542 u32 type_id, void *data, u8 bits_offset, 1543 struct seq_file *m) 1544 { 1545 const struct btf_array *array = btf_type_array(t); 1546 const struct btf_kind_operations *elem_ops; 1547 const struct btf_type *elem_type; 1548 u32 i, elem_size, elem_type_id; 1549 1550 elem_type_id = array->type; 1551 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 1552 elem_ops = btf_type_ops(elem_type); 1553 seq_puts(m, "["); 1554 for (i = 0; i < array->nelems; i++) { 1555 if (i) 1556 seq_puts(m, ","); 1557 1558 elem_ops->seq_show(btf, elem_type, elem_type_id, data, 1559 bits_offset, m); 1560 data += elem_size; 1561 } 1562 seq_puts(m, "]"); 1563 } 1564 1565 static struct btf_kind_operations array_ops = { 1566 .check_meta = btf_array_check_meta, 1567 .resolve = btf_array_resolve, 1568 .check_member = btf_array_check_member, 1569 .log_details = btf_array_log, 1570 .seq_show = btf_array_seq_show, 1571 }; 1572 1573 static int btf_struct_check_member(struct btf_verifier_env *env, 1574 const struct btf_type *struct_type, 1575 const struct btf_member *member, 1576 const struct btf_type *member_type) 1577 { 1578 u32 struct_bits_off = member->offset; 1579 u32 struct_size, bytes_offset; 1580 1581 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1582 btf_verifier_log_member(env, struct_type, member, 1583 "Member is not byte aligned"); 1584 return -EINVAL; 1585 } 1586 1587 struct_size = struct_type->size; 1588 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1589 if (struct_size - bytes_offset < member_type->size) { 1590 btf_verifier_log_member(env, struct_type, member, 1591 "Member exceeds struct_size"); 1592 return -EINVAL; 1593 } 1594 1595 return 0; 1596 } 1597 1598 static s32 btf_struct_check_meta(struct btf_verifier_env *env, 1599 const struct btf_type *t, 1600 u32 meta_left) 1601 { 1602 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION; 1603 const struct btf_member *member; 1604 u32 meta_needed, last_offset; 1605 struct btf *btf = env->btf; 1606 u32 struct_size = t->size; 1607 u16 i; 1608 1609 meta_needed = btf_type_vlen(t) * sizeof(*member); 1610 if (meta_left < meta_needed) { 1611 btf_verifier_log_basic(env, t, 1612 "meta_left:%u meta_needed:%u", 1613 meta_left, meta_needed); 1614 return -EINVAL; 1615 } 1616 1617 /* struct type either no name or a valid one */ 1618 if (t->name_off && 1619 !btf_name_valid_identifier(env->btf, t->name_off)) { 1620 btf_verifier_log_type(env, t, "Invalid name"); 1621 return -EINVAL; 1622 } 1623 1624 btf_verifier_log_type(env, t, NULL); 1625 1626 last_offset = 0; 1627 for_each_member(i, t, member) { 1628 if (!btf_name_offset_valid(btf, member->name_off)) { 1629 btf_verifier_log_member(env, t, member, 1630 "Invalid member name_offset:%u", 1631 member->name_off); 1632 return -EINVAL; 1633 } 1634 1635 /* struct member either no name or a valid one */ 1636 if (member->name_off && 1637 !btf_name_valid_identifier(btf, member->name_off)) { 1638 btf_verifier_log_member(env, t, member, "Invalid name"); 1639 return -EINVAL; 1640 } 1641 /* A member cannot be in type void */ 1642 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) { 1643 btf_verifier_log_member(env, t, member, 1644 "Invalid type_id"); 1645 return -EINVAL; 1646 } 1647 1648 if (is_union && member->offset) { 1649 btf_verifier_log_member(env, t, member, 1650 "Invalid member bits_offset"); 1651 return -EINVAL; 1652 } 1653 1654 /* 1655 * ">" instead of ">=" because the last member could be 1656 * "char a[0];" 1657 */ 1658 if (last_offset > member->offset) { 1659 btf_verifier_log_member(env, t, member, 1660 "Invalid member bits_offset"); 1661 return -EINVAL; 1662 } 1663 1664 if (BITS_ROUNDUP_BYTES(member->offset) > struct_size) { 1665 btf_verifier_log_member(env, t, member, 1666 "Member bits_offset exceeds its struct size"); 1667 return -EINVAL; 1668 } 1669 1670 btf_verifier_log_member(env, t, member, NULL); 1671 last_offset = member->offset; 1672 } 1673 1674 return meta_needed; 1675 } 1676 1677 static int btf_struct_resolve(struct btf_verifier_env *env, 1678 const struct resolve_vertex *v) 1679 { 1680 const struct btf_member *member; 1681 int err; 1682 u16 i; 1683 1684 /* Before continue resolving the next_member, 1685 * ensure the last member is indeed resolved to a 1686 * type with size info. 1687 */ 1688 if (v->next_member) { 1689 const struct btf_type *last_member_type; 1690 const struct btf_member *last_member; 1691 u16 last_member_type_id; 1692 1693 last_member = btf_type_member(v->t) + v->next_member - 1; 1694 last_member_type_id = last_member->type; 1695 if (WARN_ON_ONCE(!env_type_is_resolved(env, 1696 last_member_type_id))) 1697 return -EINVAL; 1698 1699 last_member_type = btf_type_by_id(env->btf, 1700 last_member_type_id); 1701 err = btf_type_ops(last_member_type)->check_member(env, v->t, 1702 last_member, 1703 last_member_type); 1704 if (err) 1705 return err; 1706 } 1707 1708 for_each_member_from(i, v->next_member, v->t, member) { 1709 u32 member_type_id = member->type; 1710 const struct btf_type *member_type = btf_type_by_id(env->btf, 1711 member_type_id); 1712 1713 if (btf_type_nosize_or_null(member_type)) { 1714 btf_verifier_log_member(env, v->t, member, 1715 "Invalid member"); 1716 return -EINVAL; 1717 } 1718 1719 if (!env_type_is_resolve_sink(env, member_type) && 1720 !env_type_is_resolved(env, member_type_id)) { 1721 env_stack_set_next_member(env, i + 1); 1722 return env_stack_push(env, member_type, member_type_id); 1723 } 1724 1725 err = btf_type_ops(member_type)->check_member(env, v->t, 1726 member, 1727 member_type); 1728 if (err) 1729 return err; 1730 } 1731 1732 env_stack_pop_resolved(env, 0, 0); 1733 1734 return 0; 1735 } 1736 1737 static void btf_struct_log(struct btf_verifier_env *env, 1738 const struct btf_type *t) 1739 { 1740 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1741 } 1742 1743 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t, 1744 u32 type_id, void *data, u8 bits_offset, 1745 struct seq_file *m) 1746 { 1747 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ","; 1748 const struct btf_member *member; 1749 u32 i; 1750 1751 seq_puts(m, "{"); 1752 for_each_member(i, t, member) { 1753 const struct btf_type *member_type = btf_type_by_id(btf, 1754 member->type); 1755 u32 member_offset = member->offset; 1756 u32 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset); 1757 u8 bits8_offset = BITS_PER_BYTE_MASKED(member_offset); 1758 const struct btf_kind_operations *ops; 1759 1760 if (i) 1761 seq_puts(m, seq); 1762 1763 ops = btf_type_ops(member_type); 1764 ops->seq_show(btf, member_type, member->type, 1765 data + bytes_offset, bits8_offset, m); 1766 } 1767 seq_puts(m, "}"); 1768 } 1769 1770 static struct btf_kind_operations struct_ops = { 1771 .check_meta = btf_struct_check_meta, 1772 .resolve = btf_struct_resolve, 1773 .check_member = btf_struct_check_member, 1774 .log_details = btf_struct_log, 1775 .seq_show = btf_struct_seq_show, 1776 }; 1777 1778 static int btf_enum_check_member(struct btf_verifier_env *env, 1779 const struct btf_type *struct_type, 1780 const struct btf_member *member, 1781 const struct btf_type *member_type) 1782 { 1783 u32 struct_bits_off = member->offset; 1784 u32 struct_size, bytes_offset; 1785 1786 if (BITS_PER_BYTE_MASKED(struct_bits_off)) { 1787 btf_verifier_log_member(env, struct_type, member, 1788 "Member is not byte aligned"); 1789 return -EINVAL; 1790 } 1791 1792 struct_size = struct_type->size; 1793 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off); 1794 if (struct_size - bytes_offset < sizeof(int)) { 1795 btf_verifier_log_member(env, struct_type, member, 1796 "Member exceeds struct_size"); 1797 return -EINVAL; 1798 } 1799 1800 return 0; 1801 } 1802 1803 static s32 btf_enum_check_meta(struct btf_verifier_env *env, 1804 const struct btf_type *t, 1805 u32 meta_left) 1806 { 1807 const struct btf_enum *enums = btf_type_enum(t); 1808 struct btf *btf = env->btf; 1809 u16 i, nr_enums; 1810 u32 meta_needed; 1811 1812 nr_enums = btf_type_vlen(t); 1813 meta_needed = nr_enums * sizeof(*enums); 1814 1815 if (meta_left < meta_needed) { 1816 btf_verifier_log_basic(env, t, 1817 "meta_left:%u meta_needed:%u", 1818 meta_left, meta_needed); 1819 return -EINVAL; 1820 } 1821 1822 if (t->size != sizeof(int)) { 1823 btf_verifier_log_type(env, t, "Expected size:%zu", 1824 sizeof(int)); 1825 return -EINVAL; 1826 } 1827 1828 /* enum type either no name or a valid one */ 1829 if (t->name_off && 1830 !btf_name_valid_identifier(env->btf, t->name_off)) { 1831 btf_verifier_log_type(env, t, "Invalid name"); 1832 return -EINVAL; 1833 } 1834 1835 btf_verifier_log_type(env, t, NULL); 1836 1837 for (i = 0; i < nr_enums; i++) { 1838 if (!btf_name_offset_valid(btf, enums[i].name_off)) { 1839 btf_verifier_log(env, "\tInvalid name_offset:%u", 1840 enums[i].name_off); 1841 return -EINVAL; 1842 } 1843 1844 /* enum member must have a valid name */ 1845 if (!enums[i].name_off || 1846 !btf_name_valid_identifier(btf, enums[i].name_off)) { 1847 btf_verifier_log_type(env, t, "Invalid name"); 1848 return -EINVAL; 1849 } 1850 1851 1852 btf_verifier_log(env, "\t%s val=%d\n", 1853 btf_name_by_offset(btf, enums[i].name_off), 1854 enums[i].val); 1855 } 1856 1857 return meta_needed; 1858 } 1859 1860 static void btf_enum_log(struct btf_verifier_env *env, 1861 const struct btf_type *t) 1862 { 1863 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t)); 1864 } 1865 1866 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t, 1867 u32 type_id, void *data, u8 bits_offset, 1868 struct seq_file *m) 1869 { 1870 const struct btf_enum *enums = btf_type_enum(t); 1871 u32 i, nr_enums = btf_type_vlen(t); 1872 int v = *(int *)data; 1873 1874 for (i = 0; i < nr_enums; i++) { 1875 if (v == enums[i].val) { 1876 seq_printf(m, "%s", 1877 btf_name_by_offset(btf, enums[i].name_off)); 1878 return; 1879 } 1880 } 1881 1882 seq_printf(m, "%d", v); 1883 } 1884 1885 static struct btf_kind_operations enum_ops = { 1886 .check_meta = btf_enum_check_meta, 1887 .resolve = btf_df_resolve, 1888 .check_member = btf_enum_check_member, 1889 .log_details = btf_enum_log, 1890 .seq_show = btf_enum_seq_show, 1891 }; 1892 1893 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env, 1894 const struct btf_type *t, 1895 u32 meta_left) 1896 { 1897 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param); 1898 1899 if (meta_left < meta_needed) { 1900 btf_verifier_log_basic(env, t, 1901 "meta_left:%u meta_needed:%u", 1902 meta_left, meta_needed); 1903 return -EINVAL; 1904 } 1905 1906 if (t->name_off) { 1907 btf_verifier_log_type(env, t, "Invalid name"); 1908 return -EINVAL; 1909 } 1910 1911 btf_verifier_log_type(env, t, NULL); 1912 1913 return meta_needed; 1914 } 1915 1916 static void btf_func_proto_log(struct btf_verifier_env *env, 1917 const struct btf_type *t) 1918 { 1919 const struct btf_param *args = (const struct btf_param *)(t + 1); 1920 u16 nr_args = btf_type_vlen(t), i; 1921 1922 btf_verifier_log(env, "return=%u args=(", t->type); 1923 if (!nr_args) { 1924 btf_verifier_log(env, "void"); 1925 goto done; 1926 } 1927 1928 if (nr_args == 1 && !args[0].type) { 1929 /* Only one vararg */ 1930 btf_verifier_log(env, "vararg"); 1931 goto done; 1932 } 1933 1934 btf_verifier_log(env, "%u %s", args[0].type, 1935 btf_name_by_offset(env->btf, 1936 args[0].name_off)); 1937 for (i = 1; i < nr_args - 1; i++) 1938 btf_verifier_log(env, ", %u %s", args[i].type, 1939 btf_name_by_offset(env->btf, 1940 args[i].name_off)); 1941 1942 if (nr_args > 1) { 1943 const struct btf_param *last_arg = &args[nr_args - 1]; 1944 1945 if (last_arg->type) 1946 btf_verifier_log(env, ", %u %s", last_arg->type, 1947 btf_name_by_offset(env->btf, 1948 last_arg->name_off)); 1949 else 1950 btf_verifier_log(env, ", vararg"); 1951 } 1952 1953 done: 1954 btf_verifier_log(env, ")"); 1955 } 1956 1957 static struct btf_kind_operations func_proto_ops = { 1958 .check_meta = btf_func_proto_check_meta, 1959 .resolve = btf_df_resolve, 1960 /* 1961 * BTF_KIND_FUNC_PROTO cannot be directly referred by 1962 * a struct's member. 1963 * 1964 * It should be a funciton pointer instead. 1965 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO) 1966 * 1967 * Hence, there is no btf_func_check_member(). 1968 */ 1969 .check_member = btf_df_check_member, 1970 .log_details = btf_func_proto_log, 1971 .seq_show = btf_df_seq_show, 1972 }; 1973 1974 static s32 btf_func_check_meta(struct btf_verifier_env *env, 1975 const struct btf_type *t, 1976 u32 meta_left) 1977 { 1978 if (!t->name_off || 1979 !btf_name_valid_identifier(env->btf, t->name_off)) { 1980 btf_verifier_log_type(env, t, "Invalid name"); 1981 return -EINVAL; 1982 } 1983 1984 if (btf_type_vlen(t)) { 1985 btf_verifier_log_type(env, t, "vlen != 0"); 1986 return -EINVAL; 1987 } 1988 1989 btf_verifier_log_type(env, t, NULL); 1990 1991 return 0; 1992 } 1993 1994 static struct btf_kind_operations func_ops = { 1995 .check_meta = btf_func_check_meta, 1996 .resolve = btf_df_resolve, 1997 .check_member = btf_df_check_member, 1998 .log_details = btf_ref_type_log, 1999 .seq_show = btf_df_seq_show, 2000 }; 2001 2002 static int btf_func_proto_check(struct btf_verifier_env *env, 2003 const struct btf_type *t) 2004 { 2005 const struct btf_type *ret_type; 2006 const struct btf_param *args; 2007 const struct btf *btf; 2008 u16 nr_args, i; 2009 int err; 2010 2011 btf = env->btf; 2012 args = (const struct btf_param *)(t + 1); 2013 nr_args = btf_type_vlen(t); 2014 2015 /* Check func return type which could be "void" (t->type == 0) */ 2016 if (t->type) { 2017 u32 ret_type_id = t->type; 2018 2019 ret_type = btf_type_by_id(btf, ret_type_id); 2020 if (!ret_type) { 2021 btf_verifier_log_type(env, t, "Invalid return type"); 2022 return -EINVAL; 2023 } 2024 2025 if (btf_type_needs_resolve(ret_type) && 2026 !env_type_is_resolved(env, ret_type_id)) { 2027 err = btf_resolve(env, ret_type, ret_type_id); 2028 if (err) 2029 return err; 2030 } 2031 2032 /* Ensure the return type is a type that has a size */ 2033 if (!btf_type_id_size(btf, &ret_type_id, NULL)) { 2034 btf_verifier_log_type(env, t, "Invalid return type"); 2035 return -EINVAL; 2036 } 2037 } 2038 2039 if (!nr_args) 2040 return 0; 2041 2042 /* Last func arg type_id could be 0 if it is a vararg */ 2043 if (!args[nr_args - 1].type) { 2044 if (args[nr_args - 1].name_off) { 2045 btf_verifier_log_type(env, t, "Invalid arg#%u", 2046 nr_args); 2047 return -EINVAL; 2048 } 2049 nr_args--; 2050 } 2051 2052 err = 0; 2053 for (i = 0; i < nr_args; i++) { 2054 const struct btf_type *arg_type; 2055 u32 arg_type_id; 2056 2057 arg_type_id = args[i].type; 2058 arg_type = btf_type_by_id(btf, arg_type_id); 2059 if (!arg_type) { 2060 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2061 err = -EINVAL; 2062 break; 2063 } 2064 2065 if (args[i].name_off && 2066 (!btf_name_offset_valid(btf, args[i].name_off) || 2067 !btf_name_valid_identifier(btf, args[i].name_off))) { 2068 btf_verifier_log_type(env, t, 2069 "Invalid arg#%u", i + 1); 2070 err = -EINVAL; 2071 break; 2072 } 2073 2074 if (btf_type_needs_resolve(arg_type) && 2075 !env_type_is_resolved(env, arg_type_id)) { 2076 err = btf_resolve(env, arg_type, arg_type_id); 2077 if (err) 2078 break; 2079 } 2080 2081 if (!btf_type_id_size(btf, &arg_type_id, NULL)) { 2082 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2083 err = -EINVAL; 2084 break; 2085 } 2086 } 2087 2088 return err; 2089 } 2090 2091 static int btf_func_check(struct btf_verifier_env *env, 2092 const struct btf_type *t) 2093 { 2094 const struct btf_type *proto_type; 2095 const struct btf_param *args; 2096 const struct btf *btf; 2097 u16 nr_args, i; 2098 2099 btf = env->btf; 2100 proto_type = btf_type_by_id(btf, t->type); 2101 2102 if (!proto_type || !btf_type_is_func_proto(proto_type)) { 2103 btf_verifier_log_type(env, t, "Invalid type_id"); 2104 return -EINVAL; 2105 } 2106 2107 args = (const struct btf_param *)(proto_type + 1); 2108 nr_args = btf_type_vlen(proto_type); 2109 for (i = 0; i < nr_args; i++) { 2110 if (!args[i].name_off && args[i].type) { 2111 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1); 2112 return -EINVAL; 2113 } 2114 } 2115 2116 return 0; 2117 } 2118 2119 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = { 2120 [BTF_KIND_INT] = &int_ops, 2121 [BTF_KIND_PTR] = &ptr_ops, 2122 [BTF_KIND_ARRAY] = &array_ops, 2123 [BTF_KIND_STRUCT] = &struct_ops, 2124 [BTF_KIND_UNION] = &struct_ops, 2125 [BTF_KIND_ENUM] = &enum_ops, 2126 [BTF_KIND_FWD] = &fwd_ops, 2127 [BTF_KIND_TYPEDEF] = &modifier_ops, 2128 [BTF_KIND_VOLATILE] = &modifier_ops, 2129 [BTF_KIND_CONST] = &modifier_ops, 2130 [BTF_KIND_RESTRICT] = &modifier_ops, 2131 [BTF_KIND_FUNC] = &func_ops, 2132 [BTF_KIND_FUNC_PROTO] = &func_proto_ops, 2133 }; 2134 2135 static s32 btf_check_meta(struct btf_verifier_env *env, 2136 const struct btf_type *t, 2137 u32 meta_left) 2138 { 2139 u32 saved_meta_left = meta_left; 2140 s32 var_meta_size; 2141 2142 if (meta_left < sizeof(*t)) { 2143 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu", 2144 env->log_type_id, meta_left, sizeof(*t)); 2145 return -EINVAL; 2146 } 2147 meta_left -= sizeof(*t); 2148 2149 if (t->info & ~BTF_INFO_MASK) { 2150 btf_verifier_log(env, "[%u] Invalid btf_info:%x", 2151 env->log_type_id, t->info); 2152 return -EINVAL; 2153 } 2154 2155 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX || 2156 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) { 2157 btf_verifier_log(env, "[%u] Invalid kind:%u", 2158 env->log_type_id, BTF_INFO_KIND(t->info)); 2159 return -EINVAL; 2160 } 2161 2162 if (!btf_name_offset_valid(env->btf, t->name_off)) { 2163 btf_verifier_log(env, "[%u] Invalid name_offset:%u", 2164 env->log_type_id, t->name_off); 2165 return -EINVAL; 2166 } 2167 2168 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left); 2169 if (var_meta_size < 0) 2170 return var_meta_size; 2171 2172 meta_left -= var_meta_size; 2173 2174 return saved_meta_left - meta_left; 2175 } 2176 2177 static int btf_check_all_metas(struct btf_verifier_env *env) 2178 { 2179 struct btf *btf = env->btf; 2180 struct btf_header *hdr; 2181 void *cur, *end; 2182 2183 hdr = &btf->hdr; 2184 cur = btf->nohdr_data + hdr->type_off; 2185 end = cur + hdr->type_len; 2186 2187 env->log_type_id = 1; 2188 while (cur < end) { 2189 struct btf_type *t = cur; 2190 s32 meta_size; 2191 2192 meta_size = btf_check_meta(env, t, end - cur); 2193 if (meta_size < 0) 2194 return meta_size; 2195 2196 btf_add_type(env, t); 2197 cur += meta_size; 2198 env->log_type_id++; 2199 } 2200 2201 return 0; 2202 } 2203 2204 static bool btf_resolve_valid(struct btf_verifier_env *env, 2205 const struct btf_type *t, 2206 u32 type_id) 2207 { 2208 struct btf *btf = env->btf; 2209 2210 if (!env_type_is_resolved(env, type_id)) 2211 return false; 2212 2213 if (btf_type_is_struct(t)) 2214 return !btf->resolved_ids[type_id] && 2215 !btf->resolved_sizes[type_id]; 2216 2217 if (btf_type_is_modifier(t) || btf_type_is_ptr(t)) { 2218 t = btf_type_id_resolve(btf, &type_id); 2219 return t && !btf_type_is_modifier(t); 2220 } 2221 2222 if (btf_type_is_array(t)) { 2223 const struct btf_array *array = btf_type_array(t); 2224 const struct btf_type *elem_type; 2225 u32 elem_type_id = array->type; 2226 u32 elem_size; 2227 2228 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size); 2229 return elem_type && !btf_type_is_modifier(elem_type) && 2230 (array->nelems * elem_size == 2231 btf->resolved_sizes[type_id]); 2232 } 2233 2234 return false; 2235 } 2236 2237 static int btf_resolve(struct btf_verifier_env *env, 2238 const struct btf_type *t, u32 type_id) 2239 { 2240 u32 save_log_type_id = env->log_type_id; 2241 const struct resolve_vertex *v; 2242 int err = 0; 2243 2244 env->resolve_mode = RESOLVE_TBD; 2245 env_stack_push(env, t, type_id); 2246 while (!err && (v = env_stack_peak(env))) { 2247 env->log_type_id = v->type_id; 2248 err = btf_type_ops(v->t)->resolve(env, v); 2249 } 2250 2251 env->log_type_id = type_id; 2252 if (err == -E2BIG) { 2253 btf_verifier_log_type(env, t, 2254 "Exceeded max resolving depth:%u", 2255 MAX_RESOLVE_DEPTH); 2256 } else if (err == -EEXIST) { 2257 btf_verifier_log_type(env, t, "Loop detected"); 2258 } 2259 2260 /* Final sanity check */ 2261 if (!err && !btf_resolve_valid(env, t, type_id)) { 2262 btf_verifier_log_type(env, t, "Invalid resolve state"); 2263 err = -EINVAL; 2264 } 2265 2266 env->log_type_id = save_log_type_id; 2267 return err; 2268 } 2269 2270 static int btf_check_all_types(struct btf_verifier_env *env) 2271 { 2272 struct btf *btf = env->btf; 2273 u32 type_id; 2274 int err; 2275 2276 err = env_resolve_init(env); 2277 if (err) 2278 return err; 2279 2280 env->phase++; 2281 for (type_id = 1; type_id <= btf->nr_types; type_id++) { 2282 const struct btf_type *t = btf_type_by_id(btf, type_id); 2283 2284 env->log_type_id = type_id; 2285 if (btf_type_needs_resolve(t) && 2286 !env_type_is_resolved(env, type_id)) { 2287 err = btf_resolve(env, t, type_id); 2288 if (err) 2289 return err; 2290 } 2291 2292 if (btf_type_is_func_proto(t)) { 2293 err = btf_func_proto_check(env, t); 2294 if (err) 2295 return err; 2296 } 2297 2298 if (btf_type_is_func(t)) { 2299 err = btf_func_check(env, t); 2300 if (err) 2301 return err; 2302 } 2303 } 2304 2305 return 0; 2306 } 2307 2308 static int btf_parse_type_sec(struct btf_verifier_env *env) 2309 { 2310 const struct btf_header *hdr = &env->btf->hdr; 2311 int err; 2312 2313 /* Type section must align to 4 bytes */ 2314 if (hdr->type_off & (sizeof(u32) - 1)) { 2315 btf_verifier_log(env, "Unaligned type_off"); 2316 return -EINVAL; 2317 } 2318 2319 if (!hdr->type_len) { 2320 btf_verifier_log(env, "No type found"); 2321 return -EINVAL; 2322 } 2323 2324 err = btf_check_all_metas(env); 2325 if (err) 2326 return err; 2327 2328 return btf_check_all_types(env); 2329 } 2330 2331 static int btf_parse_str_sec(struct btf_verifier_env *env) 2332 { 2333 const struct btf_header *hdr; 2334 struct btf *btf = env->btf; 2335 const char *start, *end; 2336 2337 hdr = &btf->hdr; 2338 start = btf->nohdr_data + hdr->str_off; 2339 end = start + hdr->str_len; 2340 2341 if (end != btf->data + btf->data_size) { 2342 btf_verifier_log(env, "String section is not at the end"); 2343 return -EINVAL; 2344 } 2345 2346 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || 2347 start[0] || end[-1]) { 2348 btf_verifier_log(env, "Invalid string section"); 2349 return -EINVAL; 2350 } 2351 2352 btf->strings = start; 2353 2354 return 0; 2355 } 2356 2357 static const size_t btf_sec_info_offset[] = { 2358 offsetof(struct btf_header, type_off), 2359 offsetof(struct btf_header, str_off), 2360 }; 2361 2362 static int btf_sec_info_cmp(const void *a, const void *b) 2363 { 2364 const struct btf_sec_info *x = a; 2365 const struct btf_sec_info *y = b; 2366 2367 return (int)(x->off - y->off) ? : (int)(x->len - y->len); 2368 } 2369 2370 static int btf_check_sec_info(struct btf_verifier_env *env, 2371 u32 btf_data_size) 2372 { 2373 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)]; 2374 u32 total, expected_total, i; 2375 const struct btf_header *hdr; 2376 const struct btf *btf; 2377 2378 btf = env->btf; 2379 hdr = &btf->hdr; 2380 2381 /* Populate the secs from hdr */ 2382 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) 2383 secs[i] = *(struct btf_sec_info *)((void *)hdr + 2384 btf_sec_info_offset[i]); 2385 2386 sort(secs, ARRAY_SIZE(btf_sec_info_offset), 2387 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL); 2388 2389 /* Check for gaps and overlap among sections */ 2390 total = 0; 2391 expected_total = btf_data_size - hdr->hdr_len; 2392 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) { 2393 if (expected_total < secs[i].off) { 2394 btf_verifier_log(env, "Invalid section offset"); 2395 return -EINVAL; 2396 } 2397 if (total < secs[i].off) { 2398 /* gap */ 2399 btf_verifier_log(env, "Unsupported section found"); 2400 return -EINVAL; 2401 } 2402 if (total > secs[i].off) { 2403 btf_verifier_log(env, "Section overlap found"); 2404 return -EINVAL; 2405 } 2406 if (expected_total - total < secs[i].len) { 2407 btf_verifier_log(env, 2408 "Total section length too long"); 2409 return -EINVAL; 2410 } 2411 total += secs[i].len; 2412 } 2413 2414 /* There is data other than hdr and known sections */ 2415 if (expected_total != total) { 2416 btf_verifier_log(env, "Unsupported section found"); 2417 return -EINVAL; 2418 } 2419 2420 return 0; 2421 } 2422 2423 static int btf_parse_hdr(struct btf_verifier_env *env) 2424 { 2425 u32 hdr_len, hdr_copy, btf_data_size; 2426 const struct btf_header *hdr; 2427 struct btf *btf; 2428 int err; 2429 2430 btf = env->btf; 2431 btf_data_size = btf->data_size; 2432 2433 if (btf_data_size < 2434 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) { 2435 btf_verifier_log(env, "hdr_len not found"); 2436 return -EINVAL; 2437 } 2438 2439 hdr = btf->data; 2440 hdr_len = hdr->hdr_len; 2441 if (btf_data_size < hdr_len) { 2442 btf_verifier_log(env, "btf_header not found"); 2443 return -EINVAL; 2444 } 2445 2446 /* Ensure the unsupported header fields are zero */ 2447 if (hdr_len > sizeof(btf->hdr)) { 2448 u8 *expected_zero = btf->data + sizeof(btf->hdr); 2449 u8 *end = btf->data + hdr_len; 2450 2451 for (; expected_zero < end; expected_zero++) { 2452 if (*expected_zero) { 2453 btf_verifier_log(env, "Unsupported btf_header"); 2454 return -E2BIG; 2455 } 2456 } 2457 } 2458 2459 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr)); 2460 memcpy(&btf->hdr, btf->data, hdr_copy); 2461 2462 hdr = &btf->hdr; 2463 2464 btf_verifier_log_hdr(env, btf_data_size); 2465 2466 if (hdr->magic != BTF_MAGIC) { 2467 btf_verifier_log(env, "Invalid magic"); 2468 return -EINVAL; 2469 } 2470 2471 if (hdr->version != BTF_VERSION) { 2472 btf_verifier_log(env, "Unsupported version"); 2473 return -ENOTSUPP; 2474 } 2475 2476 if (hdr->flags) { 2477 btf_verifier_log(env, "Unsupported flags"); 2478 return -ENOTSUPP; 2479 } 2480 2481 if (btf_data_size == hdr->hdr_len) { 2482 btf_verifier_log(env, "No data"); 2483 return -EINVAL; 2484 } 2485 2486 err = btf_check_sec_info(env, btf_data_size); 2487 if (err) 2488 return err; 2489 2490 return 0; 2491 } 2492 2493 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size, 2494 u32 log_level, char __user *log_ubuf, u32 log_size) 2495 { 2496 struct btf_verifier_env *env = NULL; 2497 struct bpf_verifier_log *log; 2498 struct btf *btf = NULL; 2499 u8 *data; 2500 int err; 2501 2502 if (btf_data_size > BTF_MAX_SIZE) 2503 return ERR_PTR(-E2BIG); 2504 2505 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN); 2506 if (!env) 2507 return ERR_PTR(-ENOMEM); 2508 2509 log = &env->log; 2510 if (log_level || log_ubuf || log_size) { 2511 /* user requested verbose verifier output 2512 * and supplied buffer to store the verification trace 2513 */ 2514 log->level = log_level; 2515 log->ubuf = log_ubuf; 2516 log->len_total = log_size; 2517 2518 /* log attributes have to be sane */ 2519 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || 2520 !log->level || !log->ubuf) { 2521 err = -EINVAL; 2522 goto errout; 2523 } 2524 } 2525 2526 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN); 2527 if (!btf) { 2528 err = -ENOMEM; 2529 goto errout; 2530 } 2531 env->btf = btf; 2532 2533 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN); 2534 if (!data) { 2535 err = -ENOMEM; 2536 goto errout; 2537 } 2538 2539 btf->data = data; 2540 btf->data_size = btf_data_size; 2541 2542 if (copy_from_user(data, btf_data, btf_data_size)) { 2543 err = -EFAULT; 2544 goto errout; 2545 } 2546 2547 err = btf_parse_hdr(env); 2548 if (err) 2549 goto errout; 2550 2551 btf->nohdr_data = btf->data + btf->hdr.hdr_len; 2552 2553 err = btf_parse_str_sec(env); 2554 if (err) 2555 goto errout; 2556 2557 err = btf_parse_type_sec(env); 2558 if (err) 2559 goto errout; 2560 2561 if (log->level && bpf_verifier_log_full(log)) { 2562 err = -ENOSPC; 2563 goto errout; 2564 } 2565 2566 btf_verifier_env_free(env); 2567 refcount_set(&btf->refcnt, 1); 2568 return btf; 2569 2570 errout: 2571 btf_verifier_env_free(env); 2572 if (btf) 2573 btf_free(btf); 2574 return ERR_PTR(err); 2575 } 2576 2577 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj, 2578 struct seq_file *m) 2579 { 2580 const struct btf_type *t = btf_type_by_id(btf, type_id); 2581 2582 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m); 2583 } 2584 2585 static int btf_release(struct inode *inode, struct file *filp) 2586 { 2587 btf_put(filp->private_data); 2588 return 0; 2589 } 2590 2591 const struct file_operations btf_fops = { 2592 .release = btf_release, 2593 }; 2594 2595 static int __btf_new_fd(struct btf *btf) 2596 { 2597 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC); 2598 } 2599 2600 int btf_new_fd(const union bpf_attr *attr) 2601 { 2602 struct btf *btf; 2603 int ret; 2604 2605 btf = btf_parse(u64_to_user_ptr(attr->btf), 2606 attr->btf_size, attr->btf_log_level, 2607 u64_to_user_ptr(attr->btf_log_buf), 2608 attr->btf_log_size); 2609 if (IS_ERR(btf)) 2610 return PTR_ERR(btf); 2611 2612 ret = btf_alloc_id(btf); 2613 if (ret) { 2614 btf_free(btf); 2615 return ret; 2616 } 2617 2618 /* 2619 * The BTF ID is published to the userspace. 2620 * All BTF free must go through call_rcu() from 2621 * now on (i.e. free by calling btf_put()). 2622 */ 2623 2624 ret = __btf_new_fd(btf); 2625 if (ret < 0) 2626 btf_put(btf); 2627 2628 return ret; 2629 } 2630 2631 struct btf *btf_get_by_fd(int fd) 2632 { 2633 struct btf *btf; 2634 struct fd f; 2635 2636 f = fdget(fd); 2637 2638 if (!f.file) 2639 return ERR_PTR(-EBADF); 2640 2641 if (f.file->f_op != &btf_fops) { 2642 fdput(f); 2643 return ERR_PTR(-EINVAL); 2644 } 2645 2646 btf = f.file->private_data; 2647 refcount_inc(&btf->refcnt); 2648 fdput(f); 2649 2650 return btf; 2651 } 2652 2653 int btf_get_info_by_fd(const struct btf *btf, 2654 const union bpf_attr *attr, 2655 union bpf_attr __user *uattr) 2656 { 2657 struct bpf_btf_info __user *uinfo; 2658 struct bpf_btf_info info = {}; 2659 u32 info_copy, btf_copy; 2660 void __user *ubtf; 2661 u32 uinfo_len; 2662 2663 uinfo = u64_to_user_ptr(attr->info.info); 2664 uinfo_len = attr->info.info_len; 2665 2666 info_copy = min_t(u32, uinfo_len, sizeof(info)); 2667 if (copy_from_user(&info, uinfo, info_copy)) 2668 return -EFAULT; 2669 2670 info.id = btf->id; 2671 ubtf = u64_to_user_ptr(info.btf); 2672 btf_copy = min_t(u32, btf->data_size, info.btf_size); 2673 if (copy_to_user(ubtf, btf->data, btf_copy)) 2674 return -EFAULT; 2675 info.btf_size = btf->data_size; 2676 2677 if (copy_to_user(uinfo, &info, info_copy) || 2678 put_user(info_copy, &uattr->info.info_len)) 2679 return -EFAULT; 2680 2681 return 0; 2682 } 2683 2684 int btf_get_fd_by_id(u32 id) 2685 { 2686 struct btf *btf; 2687 int fd; 2688 2689 rcu_read_lock(); 2690 btf = idr_find(&btf_idr, id); 2691 if (!btf || !refcount_inc_not_zero(&btf->refcnt)) 2692 btf = ERR_PTR(-ENOENT); 2693 rcu_read_unlock(); 2694 2695 if (IS_ERR(btf)) 2696 return PTR_ERR(btf); 2697 2698 fd = __btf_new_fd(btf); 2699 if (fd < 0) 2700 btf_put(btf); 2701 2702 return fd; 2703 } 2704 2705 u32 btf_id(const struct btf *btf) 2706 { 2707 return btf->id; 2708 } 2709