1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 14 #include "map_in_map.h" 15 16 #define ARRAY_CREATE_FLAG_MASK \ 17 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK) 18 19 static void bpf_array_free_percpu(struct bpf_array *array) 20 { 21 int i; 22 23 for (i = 0; i < array->map.max_entries; i++) { 24 free_percpu(array->pptrs[i]); 25 cond_resched(); 26 } 27 } 28 29 static int bpf_array_alloc_percpu(struct bpf_array *array) 30 { 31 void __percpu *ptr; 32 int i; 33 34 for (i = 0; i < array->map.max_entries; i++) { 35 ptr = __alloc_percpu_gfp(array->elem_size, 8, 36 GFP_USER | __GFP_NOWARN); 37 if (!ptr) { 38 bpf_array_free_percpu(array); 39 return -ENOMEM; 40 } 41 array->pptrs[i] = ptr; 42 cond_resched(); 43 } 44 45 return 0; 46 } 47 48 /* Called from syscall */ 49 int array_map_alloc_check(union bpf_attr *attr) 50 { 51 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 52 int numa_node = bpf_map_attr_numa_node(attr); 53 54 /* check sanity of attributes */ 55 if (attr->max_entries == 0 || attr->key_size != 4 || 56 attr->value_size == 0 || 57 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 58 !bpf_map_flags_access_ok(attr->map_flags) || 59 (percpu && numa_node != NUMA_NO_NODE)) 60 return -EINVAL; 61 62 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 63 attr->map_flags & BPF_F_MMAPABLE) 64 return -EINVAL; 65 66 if (attr->value_size > KMALLOC_MAX_SIZE) 67 /* if value_size is bigger, the user space won't be able to 68 * access the elements. 69 */ 70 return -E2BIG; 71 72 return 0; 73 } 74 75 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 76 { 77 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 78 int ret, numa_node = bpf_map_attr_numa_node(attr); 79 u32 elem_size, index_mask, max_entries; 80 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 81 u64 cost, array_size, mask64; 82 struct bpf_map_memory mem; 83 struct bpf_array *array; 84 85 elem_size = round_up(attr->value_size, 8); 86 87 max_entries = attr->max_entries; 88 89 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 90 * upper most bit set in u32 space is undefined behavior due to 91 * resulting 1U << 32, so do it manually here in u64 space. 92 */ 93 mask64 = fls_long(max_entries - 1); 94 mask64 = 1ULL << mask64; 95 mask64 -= 1; 96 97 index_mask = mask64; 98 if (!bypass_spec_v1) { 99 /* round up array size to nearest power of 2, 100 * since cpu will speculate within index_mask limits 101 */ 102 max_entries = index_mask + 1; 103 /* Check for overflows. */ 104 if (max_entries < attr->max_entries) 105 return ERR_PTR(-E2BIG); 106 } 107 108 array_size = sizeof(*array); 109 if (percpu) { 110 array_size += (u64) max_entries * sizeof(void *); 111 } else { 112 /* rely on vmalloc() to return page-aligned memory and 113 * ensure array->value is exactly page-aligned 114 */ 115 if (attr->map_flags & BPF_F_MMAPABLE) { 116 array_size = PAGE_ALIGN(array_size); 117 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 118 } else { 119 array_size += (u64) max_entries * elem_size; 120 } 121 } 122 123 /* make sure there is no u32 overflow later in round_up() */ 124 cost = array_size; 125 if (percpu) 126 cost += (u64)attr->max_entries * elem_size * num_possible_cpus(); 127 128 ret = bpf_map_charge_init(&mem, cost); 129 if (ret < 0) 130 return ERR_PTR(ret); 131 132 /* allocate all map elements and zero-initialize them */ 133 if (attr->map_flags & BPF_F_MMAPABLE) { 134 void *data; 135 136 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 137 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 138 if (!data) { 139 bpf_map_charge_finish(&mem); 140 return ERR_PTR(-ENOMEM); 141 } 142 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 143 - offsetof(struct bpf_array, value); 144 } else { 145 array = bpf_map_area_alloc(array_size, numa_node); 146 } 147 if (!array) { 148 bpf_map_charge_finish(&mem); 149 return ERR_PTR(-ENOMEM); 150 } 151 array->index_mask = index_mask; 152 array->map.bypass_spec_v1 = bypass_spec_v1; 153 154 /* copy mandatory map attributes */ 155 bpf_map_init_from_attr(&array->map, attr); 156 bpf_map_charge_move(&array->map.memory, &mem); 157 array->elem_size = elem_size; 158 159 if (percpu && bpf_array_alloc_percpu(array)) { 160 bpf_map_charge_finish(&array->map.memory); 161 bpf_map_area_free(array); 162 return ERR_PTR(-ENOMEM); 163 } 164 165 return &array->map; 166 } 167 168 /* Called from syscall or from eBPF program */ 169 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 170 { 171 struct bpf_array *array = container_of(map, struct bpf_array, map); 172 u32 index = *(u32 *)key; 173 174 if (unlikely(index >= array->map.max_entries)) 175 return NULL; 176 177 return array->value + array->elem_size * (index & array->index_mask); 178 } 179 180 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 181 u32 off) 182 { 183 struct bpf_array *array = container_of(map, struct bpf_array, map); 184 185 if (map->max_entries != 1) 186 return -ENOTSUPP; 187 if (off >= map->value_size) 188 return -EINVAL; 189 190 *imm = (unsigned long)array->value; 191 return 0; 192 } 193 194 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 195 u32 *off) 196 { 197 struct bpf_array *array = container_of(map, struct bpf_array, map); 198 u64 base = (unsigned long)array->value; 199 u64 range = array->elem_size; 200 201 if (map->max_entries != 1) 202 return -ENOTSUPP; 203 if (imm < base || imm >= base + range) 204 return -ENOENT; 205 206 *off = imm - base; 207 return 0; 208 } 209 210 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 211 static u32 array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 212 { 213 struct bpf_array *array = container_of(map, struct bpf_array, map); 214 struct bpf_insn *insn = insn_buf; 215 u32 elem_size = round_up(map->value_size, 8); 216 const int ret = BPF_REG_0; 217 const int map_ptr = BPF_REG_1; 218 const int index = BPF_REG_2; 219 220 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 221 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 222 if (!map->bypass_spec_v1) { 223 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 224 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 225 } else { 226 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 227 } 228 229 if (is_power_of_2(elem_size)) { 230 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 231 } else { 232 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 233 } 234 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 235 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 236 *insn++ = BPF_MOV64_IMM(ret, 0); 237 return insn - insn_buf; 238 } 239 240 /* Called from eBPF program */ 241 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 242 { 243 struct bpf_array *array = container_of(map, struct bpf_array, map); 244 u32 index = *(u32 *)key; 245 246 if (unlikely(index >= array->map.max_entries)) 247 return NULL; 248 249 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 250 } 251 252 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 253 { 254 struct bpf_array *array = container_of(map, struct bpf_array, map); 255 u32 index = *(u32 *)key; 256 void __percpu *pptr; 257 int cpu, off = 0; 258 u32 size; 259 260 if (unlikely(index >= array->map.max_entries)) 261 return -ENOENT; 262 263 /* per_cpu areas are zero-filled and bpf programs can only 264 * access 'value_size' of them, so copying rounded areas 265 * will not leak any kernel data 266 */ 267 size = round_up(map->value_size, 8); 268 rcu_read_lock(); 269 pptr = array->pptrs[index & array->index_mask]; 270 for_each_possible_cpu(cpu) { 271 bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); 272 off += size; 273 } 274 rcu_read_unlock(); 275 return 0; 276 } 277 278 /* Called from syscall */ 279 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 280 { 281 struct bpf_array *array = container_of(map, struct bpf_array, map); 282 u32 index = key ? *(u32 *)key : U32_MAX; 283 u32 *next = (u32 *)next_key; 284 285 if (index >= array->map.max_entries) { 286 *next = 0; 287 return 0; 288 } 289 290 if (index == array->map.max_entries - 1) 291 return -ENOENT; 292 293 *next = index + 1; 294 return 0; 295 } 296 297 /* Called from syscall or from eBPF program */ 298 static int array_map_update_elem(struct bpf_map *map, void *key, void *value, 299 u64 map_flags) 300 { 301 struct bpf_array *array = container_of(map, struct bpf_array, map); 302 u32 index = *(u32 *)key; 303 char *val; 304 305 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 306 /* unknown flags */ 307 return -EINVAL; 308 309 if (unlikely(index >= array->map.max_entries)) 310 /* all elements were pre-allocated, cannot insert a new one */ 311 return -E2BIG; 312 313 if (unlikely(map_flags & BPF_NOEXIST)) 314 /* all elements already exist */ 315 return -EEXIST; 316 317 if (unlikely((map_flags & BPF_F_LOCK) && 318 !map_value_has_spin_lock(map))) 319 return -EINVAL; 320 321 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 322 memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), 323 value, map->value_size); 324 } else { 325 val = array->value + 326 array->elem_size * (index & array->index_mask); 327 if (map_flags & BPF_F_LOCK) 328 copy_map_value_locked(map, val, value, false); 329 else 330 copy_map_value(map, val, value); 331 } 332 return 0; 333 } 334 335 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 336 u64 map_flags) 337 { 338 struct bpf_array *array = container_of(map, struct bpf_array, map); 339 u32 index = *(u32 *)key; 340 void __percpu *pptr; 341 int cpu, off = 0; 342 u32 size; 343 344 if (unlikely(map_flags > BPF_EXIST)) 345 /* unknown flags */ 346 return -EINVAL; 347 348 if (unlikely(index >= array->map.max_entries)) 349 /* all elements were pre-allocated, cannot insert a new one */ 350 return -E2BIG; 351 352 if (unlikely(map_flags == BPF_NOEXIST)) 353 /* all elements already exist */ 354 return -EEXIST; 355 356 /* the user space will provide round_up(value_size, 8) bytes that 357 * will be copied into per-cpu area. bpf programs can only access 358 * value_size of it. During lookup the same extra bytes will be 359 * returned or zeros which were zero-filled by percpu_alloc, 360 * so no kernel data leaks possible 361 */ 362 size = round_up(map->value_size, 8); 363 rcu_read_lock(); 364 pptr = array->pptrs[index & array->index_mask]; 365 for_each_possible_cpu(cpu) { 366 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); 367 off += size; 368 } 369 rcu_read_unlock(); 370 return 0; 371 } 372 373 /* Called from syscall or from eBPF program */ 374 static int array_map_delete_elem(struct bpf_map *map, void *key) 375 { 376 return -EINVAL; 377 } 378 379 static void *array_map_vmalloc_addr(struct bpf_array *array) 380 { 381 return (void *)round_down((unsigned long)array, PAGE_SIZE); 382 } 383 384 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 385 static void array_map_free(struct bpf_map *map) 386 { 387 struct bpf_array *array = container_of(map, struct bpf_array, map); 388 389 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 390 bpf_array_free_percpu(array); 391 392 if (array->map.map_flags & BPF_F_MMAPABLE) 393 bpf_map_area_free(array_map_vmalloc_addr(array)); 394 else 395 bpf_map_area_free(array); 396 } 397 398 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 399 struct seq_file *m) 400 { 401 void *value; 402 403 rcu_read_lock(); 404 405 value = array_map_lookup_elem(map, key); 406 if (!value) { 407 rcu_read_unlock(); 408 return; 409 } 410 411 if (map->btf_key_type_id) 412 seq_printf(m, "%u: ", *(u32 *)key); 413 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 414 seq_puts(m, "\n"); 415 416 rcu_read_unlock(); 417 } 418 419 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 420 struct seq_file *m) 421 { 422 struct bpf_array *array = container_of(map, struct bpf_array, map); 423 u32 index = *(u32 *)key; 424 void __percpu *pptr; 425 int cpu; 426 427 rcu_read_lock(); 428 429 seq_printf(m, "%u: {\n", *(u32 *)key); 430 pptr = array->pptrs[index & array->index_mask]; 431 for_each_possible_cpu(cpu) { 432 seq_printf(m, "\tcpu%d: ", cpu); 433 btf_type_seq_show(map->btf, map->btf_value_type_id, 434 per_cpu_ptr(pptr, cpu), m); 435 seq_puts(m, "\n"); 436 } 437 seq_puts(m, "}\n"); 438 439 rcu_read_unlock(); 440 } 441 442 static int array_map_check_btf(const struct bpf_map *map, 443 const struct btf *btf, 444 const struct btf_type *key_type, 445 const struct btf_type *value_type) 446 { 447 u32 int_data; 448 449 /* One exception for keyless BTF: .bss/.data/.rodata map */ 450 if (btf_type_is_void(key_type)) { 451 if (map->map_type != BPF_MAP_TYPE_ARRAY || 452 map->max_entries != 1) 453 return -EINVAL; 454 455 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 456 return -EINVAL; 457 458 return 0; 459 } 460 461 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 462 return -EINVAL; 463 464 int_data = *(u32 *)(key_type + 1); 465 /* bpf array can only take a u32 key. This check makes sure 466 * that the btf matches the attr used during map_create. 467 */ 468 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 469 return -EINVAL; 470 471 return 0; 472 } 473 474 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 475 { 476 struct bpf_array *array = container_of(map, struct bpf_array, map); 477 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 478 479 if (!(map->map_flags & BPF_F_MMAPABLE)) 480 return -EINVAL; 481 482 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 483 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 484 return -EINVAL; 485 486 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 487 vma->vm_pgoff + pgoff); 488 } 489 490 static int array_map_btf_id; 491 const struct bpf_map_ops array_map_ops = { 492 .map_alloc_check = array_map_alloc_check, 493 .map_alloc = array_map_alloc, 494 .map_free = array_map_free, 495 .map_get_next_key = array_map_get_next_key, 496 .map_lookup_elem = array_map_lookup_elem, 497 .map_update_elem = array_map_update_elem, 498 .map_delete_elem = array_map_delete_elem, 499 .map_gen_lookup = array_map_gen_lookup, 500 .map_direct_value_addr = array_map_direct_value_addr, 501 .map_direct_value_meta = array_map_direct_value_meta, 502 .map_mmap = array_map_mmap, 503 .map_seq_show_elem = array_map_seq_show_elem, 504 .map_check_btf = array_map_check_btf, 505 .map_lookup_batch = generic_map_lookup_batch, 506 .map_update_batch = generic_map_update_batch, 507 .map_btf_name = "bpf_array", 508 .map_btf_id = &array_map_btf_id, 509 }; 510 511 static int percpu_array_map_btf_id; 512 const struct bpf_map_ops percpu_array_map_ops = { 513 .map_alloc_check = array_map_alloc_check, 514 .map_alloc = array_map_alloc, 515 .map_free = array_map_free, 516 .map_get_next_key = array_map_get_next_key, 517 .map_lookup_elem = percpu_array_map_lookup_elem, 518 .map_update_elem = array_map_update_elem, 519 .map_delete_elem = array_map_delete_elem, 520 .map_seq_show_elem = percpu_array_map_seq_show_elem, 521 .map_check_btf = array_map_check_btf, 522 .map_btf_name = "bpf_array", 523 .map_btf_id = &percpu_array_map_btf_id, 524 }; 525 526 static int fd_array_map_alloc_check(union bpf_attr *attr) 527 { 528 /* only file descriptors can be stored in this type of map */ 529 if (attr->value_size != sizeof(u32)) 530 return -EINVAL; 531 /* Program read-only/write-only not supported for special maps yet. */ 532 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 533 return -EINVAL; 534 return array_map_alloc_check(attr); 535 } 536 537 static void fd_array_map_free(struct bpf_map *map) 538 { 539 struct bpf_array *array = container_of(map, struct bpf_array, map); 540 int i; 541 542 /* make sure it's empty */ 543 for (i = 0; i < array->map.max_entries; i++) 544 BUG_ON(array->ptrs[i] != NULL); 545 546 bpf_map_area_free(array); 547 } 548 549 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 550 { 551 return ERR_PTR(-EOPNOTSUPP); 552 } 553 554 /* only called from syscall */ 555 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 556 { 557 void **elem, *ptr; 558 int ret = 0; 559 560 if (!map->ops->map_fd_sys_lookup_elem) 561 return -ENOTSUPP; 562 563 rcu_read_lock(); 564 elem = array_map_lookup_elem(map, key); 565 if (elem && (ptr = READ_ONCE(*elem))) 566 *value = map->ops->map_fd_sys_lookup_elem(ptr); 567 else 568 ret = -ENOENT; 569 rcu_read_unlock(); 570 571 return ret; 572 } 573 574 /* only called from syscall */ 575 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 576 void *key, void *value, u64 map_flags) 577 { 578 struct bpf_array *array = container_of(map, struct bpf_array, map); 579 void *new_ptr, *old_ptr; 580 u32 index = *(u32 *)key, ufd; 581 582 if (map_flags != BPF_ANY) 583 return -EINVAL; 584 585 if (index >= array->map.max_entries) 586 return -E2BIG; 587 588 ufd = *(u32 *)value; 589 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 590 if (IS_ERR(new_ptr)) 591 return PTR_ERR(new_ptr); 592 593 if (map->ops->map_poke_run) { 594 mutex_lock(&array->aux->poke_mutex); 595 old_ptr = xchg(array->ptrs + index, new_ptr); 596 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 597 mutex_unlock(&array->aux->poke_mutex); 598 } else { 599 old_ptr = xchg(array->ptrs + index, new_ptr); 600 } 601 602 if (old_ptr) 603 map->ops->map_fd_put_ptr(old_ptr); 604 return 0; 605 } 606 607 static int fd_array_map_delete_elem(struct bpf_map *map, void *key) 608 { 609 struct bpf_array *array = container_of(map, struct bpf_array, map); 610 void *old_ptr; 611 u32 index = *(u32 *)key; 612 613 if (index >= array->map.max_entries) 614 return -E2BIG; 615 616 if (map->ops->map_poke_run) { 617 mutex_lock(&array->aux->poke_mutex); 618 old_ptr = xchg(array->ptrs + index, NULL); 619 map->ops->map_poke_run(map, index, old_ptr, NULL); 620 mutex_unlock(&array->aux->poke_mutex); 621 } else { 622 old_ptr = xchg(array->ptrs + index, NULL); 623 } 624 625 if (old_ptr) { 626 map->ops->map_fd_put_ptr(old_ptr); 627 return 0; 628 } else { 629 return -ENOENT; 630 } 631 } 632 633 static void *prog_fd_array_get_ptr(struct bpf_map *map, 634 struct file *map_file, int fd) 635 { 636 struct bpf_array *array = container_of(map, struct bpf_array, map); 637 struct bpf_prog *prog = bpf_prog_get(fd); 638 639 if (IS_ERR(prog)) 640 return prog; 641 642 if (!bpf_prog_array_compatible(array, prog)) { 643 bpf_prog_put(prog); 644 return ERR_PTR(-EINVAL); 645 } 646 647 return prog; 648 } 649 650 static void prog_fd_array_put_ptr(void *ptr) 651 { 652 bpf_prog_put(ptr); 653 } 654 655 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 656 { 657 return ((struct bpf_prog *)ptr)->aux->id; 658 } 659 660 /* decrement refcnt of all bpf_progs that are stored in this map */ 661 static void bpf_fd_array_map_clear(struct bpf_map *map) 662 { 663 struct bpf_array *array = container_of(map, struct bpf_array, map); 664 int i; 665 666 for (i = 0; i < array->map.max_entries; i++) 667 fd_array_map_delete_elem(map, &i); 668 } 669 670 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 671 struct seq_file *m) 672 { 673 void **elem, *ptr; 674 u32 prog_id; 675 676 rcu_read_lock(); 677 678 elem = array_map_lookup_elem(map, key); 679 if (elem) { 680 ptr = READ_ONCE(*elem); 681 if (ptr) { 682 seq_printf(m, "%u: ", *(u32 *)key); 683 prog_id = prog_fd_array_sys_lookup_elem(ptr); 684 btf_type_seq_show(map->btf, map->btf_value_type_id, 685 &prog_id, m); 686 seq_puts(m, "\n"); 687 } 688 } 689 690 rcu_read_unlock(); 691 } 692 693 struct prog_poke_elem { 694 struct list_head list; 695 struct bpf_prog_aux *aux; 696 }; 697 698 static int prog_array_map_poke_track(struct bpf_map *map, 699 struct bpf_prog_aux *prog_aux) 700 { 701 struct prog_poke_elem *elem; 702 struct bpf_array_aux *aux; 703 int ret = 0; 704 705 aux = container_of(map, struct bpf_array, map)->aux; 706 mutex_lock(&aux->poke_mutex); 707 list_for_each_entry(elem, &aux->poke_progs, list) { 708 if (elem->aux == prog_aux) 709 goto out; 710 } 711 712 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 713 if (!elem) { 714 ret = -ENOMEM; 715 goto out; 716 } 717 718 INIT_LIST_HEAD(&elem->list); 719 /* We must track the program's aux info at this point in time 720 * since the program pointer itself may not be stable yet, see 721 * also comment in prog_array_map_poke_run(). 722 */ 723 elem->aux = prog_aux; 724 725 list_add_tail(&elem->list, &aux->poke_progs); 726 out: 727 mutex_unlock(&aux->poke_mutex); 728 return ret; 729 } 730 731 static void prog_array_map_poke_untrack(struct bpf_map *map, 732 struct bpf_prog_aux *prog_aux) 733 { 734 struct prog_poke_elem *elem, *tmp; 735 struct bpf_array_aux *aux; 736 737 aux = container_of(map, struct bpf_array, map)->aux; 738 mutex_lock(&aux->poke_mutex); 739 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 740 if (elem->aux == prog_aux) { 741 list_del_init(&elem->list); 742 kfree(elem); 743 break; 744 } 745 } 746 mutex_unlock(&aux->poke_mutex); 747 } 748 749 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 750 struct bpf_prog *old, 751 struct bpf_prog *new) 752 { 753 struct prog_poke_elem *elem; 754 struct bpf_array_aux *aux; 755 756 aux = container_of(map, struct bpf_array, map)->aux; 757 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 758 759 list_for_each_entry(elem, &aux->poke_progs, list) { 760 struct bpf_jit_poke_descriptor *poke; 761 int i, ret; 762 763 for (i = 0; i < elem->aux->size_poke_tab; i++) { 764 poke = &elem->aux->poke_tab[i]; 765 766 /* Few things to be aware of: 767 * 768 * 1) We can only ever access aux in this context, but 769 * not aux->prog since it might not be stable yet and 770 * there could be danger of use after free otherwise. 771 * 2) Initially when we start tracking aux, the program 772 * is not JITed yet and also does not have a kallsyms 773 * entry. We skip these as poke->ip_stable is not 774 * active yet. The JIT will do the final fixup before 775 * setting it stable. The various poke->ip_stable are 776 * successively activated, so tail call updates can 777 * arrive from here while JIT is still finishing its 778 * final fixup for non-activated poke entries. 779 * 3) On program teardown, the program's kallsym entry gets 780 * removed out of RCU callback, but we can only untrack 781 * from sleepable context, therefore bpf_arch_text_poke() 782 * might not see that this is in BPF text section and 783 * bails out with -EINVAL. As these are unreachable since 784 * RCU grace period already passed, we simply skip them. 785 * 4) Also programs reaching refcount of zero while patching 786 * is in progress is okay since we're protected under 787 * poke_mutex and untrack the programs before the JIT 788 * buffer is freed. When we're still in the middle of 789 * patching and suddenly kallsyms entry of the program 790 * gets evicted, we just skip the rest which is fine due 791 * to point 3). 792 * 5) Any other error happening below from bpf_arch_text_poke() 793 * is a unexpected bug. 794 */ 795 if (!READ_ONCE(poke->ip_stable)) 796 continue; 797 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 798 continue; 799 if (poke->tail_call.map != map || 800 poke->tail_call.key != key) 801 continue; 802 803 ret = bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, 804 old ? (u8 *)old->bpf_func + 805 poke->adj_off : NULL, 806 new ? (u8 *)new->bpf_func + 807 poke->adj_off : NULL); 808 BUG_ON(ret < 0 && ret != -EINVAL); 809 } 810 } 811 } 812 813 static void prog_array_map_clear_deferred(struct work_struct *work) 814 { 815 struct bpf_map *map = container_of(work, struct bpf_array_aux, 816 work)->map; 817 bpf_fd_array_map_clear(map); 818 bpf_map_put(map); 819 } 820 821 static void prog_array_map_clear(struct bpf_map *map) 822 { 823 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 824 map)->aux; 825 bpf_map_inc(map); 826 schedule_work(&aux->work); 827 } 828 829 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 830 { 831 struct bpf_array_aux *aux; 832 struct bpf_map *map; 833 834 aux = kzalloc(sizeof(*aux), GFP_KERNEL); 835 if (!aux) 836 return ERR_PTR(-ENOMEM); 837 838 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 839 INIT_LIST_HEAD(&aux->poke_progs); 840 mutex_init(&aux->poke_mutex); 841 842 map = array_map_alloc(attr); 843 if (IS_ERR(map)) { 844 kfree(aux); 845 return map; 846 } 847 848 container_of(map, struct bpf_array, map)->aux = aux; 849 aux->map = map; 850 851 return map; 852 } 853 854 static void prog_array_map_free(struct bpf_map *map) 855 { 856 struct prog_poke_elem *elem, *tmp; 857 struct bpf_array_aux *aux; 858 859 aux = container_of(map, struct bpf_array, map)->aux; 860 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 861 list_del_init(&elem->list); 862 kfree(elem); 863 } 864 kfree(aux); 865 fd_array_map_free(map); 866 } 867 868 static int prog_array_map_btf_id; 869 const struct bpf_map_ops prog_array_map_ops = { 870 .map_alloc_check = fd_array_map_alloc_check, 871 .map_alloc = prog_array_map_alloc, 872 .map_free = prog_array_map_free, 873 .map_poke_track = prog_array_map_poke_track, 874 .map_poke_untrack = prog_array_map_poke_untrack, 875 .map_poke_run = prog_array_map_poke_run, 876 .map_get_next_key = array_map_get_next_key, 877 .map_lookup_elem = fd_array_map_lookup_elem, 878 .map_delete_elem = fd_array_map_delete_elem, 879 .map_fd_get_ptr = prog_fd_array_get_ptr, 880 .map_fd_put_ptr = prog_fd_array_put_ptr, 881 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 882 .map_release_uref = prog_array_map_clear, 883 .map_seq_show_elem = prog_array_map_seq_show_elem, 884 .map_btf_name = "bpf_array", 885 .map_btf_id = &prog_array_map_btf_id, 886 }; 887 888 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 889 struct file *map_file) 890 { 891 struct bpf_event_entry *ee; 892 893 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 894 if (ee) { 895 ee->event = perf_file->private_data; 896 ee->perf_file = perf_file; 897 ee->map_file = map_file; 898 } 899 900 return ee; 901 } 902 903 static void __bpf_event_entry_free(struct rcu_head *rcu) 904 { 905 struct bpf_event_entry *ee; 906 907 ee = container_of(rcu, struct bpf_event_entry, rcu); 908 fput(ee->perf_file); 909 kfree(ee); 910 } 911 912 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 913 { 914 call_rcu(&ee->rcu, __bpf_event_entry_free); 915 } 916 917 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 918 struct file *map_file, int fd) 919 { 920 struct bpf_event_entry *ee; 921 struct perf_event *event; 922 struct file *perf_file; 923 u64 value; 924 925 perf_file = perf_event_get(fd); 926 if (IS_ERR(perf_file)) 927 return perf_file; 928 929 ee = ERR_PTR(-EOPNOTSUPP); 930 event = perf_file->private_data; 931 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 932 goto err_out; 933 934 ee = bpf_event_entry_gen(perf_file, map_file); 935 if (ee) 936 return ee; 937 ee = ERR_PTR(-ENOMEM); 938 err_out: 939 fput(perf_file); 940 return ee; 941 } 942 943 static void perf_event_fd_array_put_ptr(void *ptr) 944 { 945 bpf_event_entry_free_rcu(ptr); 946 } 947 948 static void perf_event_fd_array_release(struct bpf_map *map, 949 struct file *map_file) 950 { 951 struct bpf_array *array = container_of(map, struct bpf_array, map); 952 struct bpf_event_entry *ee; 953 int i; 954 955 rcu_read_lock(); 956 for (i = 0; i < array->map.max_entries; i++) { 957 ee = READ_ONCE(array->ptrs[i]); 958 if (ee && ee->map_file == map_file) 959 fd_array_map_delete_elem(map, &i); 960 } 961 rcu_read_unlock(); 962 } 963 964 static int perf_event_array_map_btf_id; 965 const struct bpf_map_ops perf_event_array_map_ops = { 966 .map_alloc_check = fd_array_map_alloc_check, 967 .map_alloc = array_map_alloc, 968 .map_free = fd_array_map_free, 969 .map_get_next_key = array_map_get_next_key, 970 .map_lookup_elem = fd_array_map_lookup_elem, 971 .map_delete_elem = fd_array_map_delete_elem, 972 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 973 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 974 .map_release = perf_event_fd_array_release, 975 .map_check_btf = map_check_no_btf, 976 .map_btf_name = "bpf_array", 977 .map_btf_id = &perf_event_array_map_btf_id, 978 }; 979 980 #ifdef CONFIG_CGROUPS 981 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 982 struct file *map_file /* not used */, 983 int fd) 984 { 985 return cgroup_get_from_fd(fd); 986 } 987 988 static void cgroup_fd_array_put_ptr(void *ptr) 989 { 990 /* cgroup_put free cgrp after a rcu grace period */ 991 cgroup_put(ptr); 992 } 993 994 static void cgroup_fd_array_free(struct bpf_map *map) 995 { 996 bpf_fd_array_map_clear(map); 997 fd_array_map_free(map); 998 } 999 1000 static int cgroup_array_map_btf_id; 1001 const struct bpf_map_ops cgroup_array_map_ops = { 1002 .map_alloc_check = fd_array_map_alloc_check, 1003 .map_alloc = array_map_alloc, 1004 .map_free = cgroup_fd_array_free, 1005 .map_get_next_key = array_map_get_next_key, 1006 .map_lookup_elem = fd_array_map_lookup_elem, 1007 .map_delete_elem = fd_array_map_delete_elem, 1008 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1009 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1010 .map_check_btf = map_check_no_btf, 1011 .map_btf_name = "bpf_array", 1012 .map_btf_id = &cgroup_array_map_btf_id, 1013 }; 1014 #endif 1015 1016 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1017 { 1018 struct bpf_map *map, *inner_map_meta; 1019 1020 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1021 if (IS_ERR(inner_map_meta)) 1022 return inner_map_meta; 1023 1024 map = array_map_alloc(attr); 1025 if (IS_ERR(map)) { 1026 bpf_map_meta_free(inner_map_meta); 1027 return map; 1028 } 1029 1030 map->inner_map_meta = inner_map_meta; 1031 1032 return map; 1033 } 1034 1035 static void array_of_map_free(struct bpf_map *map) 1036 { 1037 /* map->inner_map_meta is only accessed by syscall which 1038 * is protected by fdget/fdput. 1039 */ 1040 bpf_map_meta_free(map->inner_map_meta); 1041 bpf_fd_array_map_clear(map); 1042 fd_array_map_free(map); 1043 } 1044 1045 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1046 { 1047 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1048 1049 if (!inner_map) 1050 return NULL; 1051 1052 return READ_ONCE(*inner_map); 1053 } 1054 1055 static u32 array_of_map_gen_lookup(struct bpf_map *map, 1056 struct bpf_insn *insn_buf) 1057 { 1058 struct bpf_array *array = container_of(map, struct bpf_array, map); 1059 u32 elem_size = round_up(map->value_size, 8); 1060 struct bpf_insn *insn = insn_buf; 1061 const int ret = BPF_REG_0; 1062 const int map_ptr = BPF_REG_1; 1063 const int index = BPF_REG_2; 1064 1065 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1066 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1067 if (!map->bypass_spec_v1) { 1068 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1069 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1070 } else { 1071 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1072 } 1073 if (is_power_of_2(elem_size)) 1074 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1075 else 1076 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1077 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1078 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1079 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1080 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1081 *insn++ = BPF_MOV64_IMM(ret, 0); 1082 1083 return insn - insn_buf; 1084 } 1085 1086 static int array_of_maps_map_btf_id; 1087 const struct bpf_map_ops array_of_maps_map_ops = { 1088 .map_alloc_check = fd_array_map_alloc_check, 1089 .map_alloc = array_of_map_alloc, 1090 .map_free = array_of_map_free, 1091 .map_get_next_key = array_map_get_next_key, 1092 .map_lookup_elem = array_of_map_lookup_elem, 1093 .map_delete_elem = fd_array_map_delete_elem, 1094 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1095 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1096 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1097 .map_gen_lookup = array_of_map_gen_lookup, 1098 .map_check_btf = map_check_no_btf, 1099 .map_btf_name = "bpf_array", 1100 .map_btf_id = &array_of_maps_map_btf_id, 1101 }; 1102