1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 14 #include "map_in_map.h" 15 16 #define ARRAY_CREATE_FLAG_MASK \ 17 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK) 18 19 static void bpf_array_free_percpu(struct bpf_array *array) 20 { 21 int i; 22 23 for (i = 0; i < array->map.max_entries; i++) { 24 free_percpu(array->pptrs[i]); 25 cond_resched(); 26 } 27 } 28 29 static int bpf_array_alloc_percpu(struct bpf_array *array) 30 { 31 void __percpu *ptr; 32 int i; 33 34 for (i = 0; i < array->map.max_entries; i++) { 35 ptr = __alloc_percpu_gfp(array->elem_size, 8, 36 GFP_USER | __GFP_NOWARN); 37 if (!ptr) { 38 bpf_array_free_percpu(array); 39 return -ENOMEM; 40 } 41 array->pptrs[i] = ptr; 42 cond_resched(); 43 } 44 45 return 0; 46 } 47 48 /* Called from syscall */ 49 int array_map_alloc_check(union bpf_attr *attr) 50 { 51 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 52 int numa_node = bpf_map_attr_numa_node(attr); 53 54 /* check sanity of attributes */ 55 if (attr->max_entries == 0 || attr->key_size != 4 || 56 attr->value_size == 0 || 57 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 58 !bpf_map_flags_access_ok(attr->map_flags) || 59 (percpu && numa_node != NUMA_NO_NODE)) 60 return -EINVAL; 61 62 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 63 attr->map_flags & BPF_F_MMAPABLE) 64 return -EINVAL; 65 66 if (attr->value_size > KMALLOC_MAX_SIZE) 67 /* if value_size is bigger, the user space won't be able to 68 * access the elements. 69 */ 70 return -E2BIG; 71 72 return 0; 73 } 74 75 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 76 { 77 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 78 int ret, numa_node = bpf_map_attr_numa_node(attr); 79 u32 elem_size, index_mask, max_entries; 80 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 81 u64 cost, array_size, mask64; 82 struct bpf_map_memory mem; 83 struct bpf_array *array; 84 85 elem_size = round_up(attr->value_size, 8); 86 87 max_entries = attr->max_entries; 88 89 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 90 * upper most bit set in u32 space is undefined behavior due to 91 * resulting 1U << 32, so do it manually here in u64 space. 92 */ 93 mask64 = fls_long(max_entries - 1); 94 mask64 = 1ULL << mask64; 95 mask64 -= 1; 96 97 index_mask = mask64; 98 if (!bypass_spec_v1) { 99 /* round up array size to nearest power of 2, 100 * since cpu will speculate within index_mask limits 101 */ 102 max_entries = index_mask + 1; 103 /* Check for overflows. */ 104 if (max_entries < attr->max_entries) 105 return ERR_PTR(-E2BIG); 106 } 107 108 array_size = sizeof(*array); 109 if (percpu) { 110 array_size += (u64) max_entries * sizeof(void *); 111 } else { 112 /* rely on vmalloc() to return page-aligned memory and 113 * ensure array->value is exactly page-aligned 114 */ 115 if (attr->map_flags & BPF_F_MMAPABLE) { 116 array_size = PAGE_ALIGN(array_size); 117 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 118 } else { 119 array_size += (u64) max_entries * elem_size; 120 } 121 } 122 123 /* make sure there is no u32 overflow later in round_up() */ 124 cost = array_size; 125 if (percpu) 126 cost += (u64)attr->max_entries * elem_size * num_possible_cpus(); 127 128 ret = bpf_map_charge_init(&mem, cost); 129 if (ret < 0) 130 return ERR_PTR(ret); 131 132 /* allocate all map elements and zero-initialize them */ 133 if (attr->map_flags & BPF_F_MMAPABLE) { 134 void *data; 135 136 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 137 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 138 if (!data) { 139 bpf_map_charge_finish(&mem); 140 return ERR_PTR(-ENOMEM); 141 } 142 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 143 - offsetof(struct bpf_array, value); 144 } else { 145 array = bpf_map_area_alloc(array_size, numa_node); 146 } 147 if (!array) { 148 bpf_map_charge_finish(&mem); 149 return ERR_PTR(-ENOMEM); 150 } 151 array->index_mask = index_mask; 152 array->map.bypass_spec_v1 = bypass_spec_v1; 153 154 /* copy mandatory map attributes */ 155 bpf_map_init_from_attr(&array->map, attr); 156 bpf_map_charge_move(&array->map.memory, &mem); 157 array->elem_size = elem_size; 158 159 if (percpu && bpf_array_alloc_percpu(array)) { 160 bpf_map_charge_finish(&array->map.memory); 161 bpf_map_area_free(array); 162 return ERR_PTR(-ENOMEM); 163 } 164 165 return &array->map; 166 } 167 168 /* Called from syscall or from eBPF program */ 169 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 170 { 171 struct bpf_array *array = container_of(map, struct bpf_array, map); 172 u32 index = *(u32 *)key; 173 174 if (unlikely(index >= array->map.max_entries)) 175 return NULL; 176 177 return array->value + array->elem_size * (index & array->index_mask); 178 } 179 180 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 181 u32 off) 182 { 183 struct bpf_array *array = container_of(map, struct bpf_array, map); 184 185 if (map->max_entries != 1) 186 return -ENOTSUPP; 187 if (off >= map->value_size) 188 return -EINVAL; 189 190 *imm = (unsigned long)array->value; 191 return 0; 192 } 193 194 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 195 u32 *off) 196 { 197 struct bpf_array *array = container_of(map, struct bpf_array, map); 198 u64 base = (unsigned long)array->value; 199 u64 range = array->elem_size; 200 201 if (map->max_entries != 1) 202 return -ENOTSUPP; 203 if (imm < base || imm >= base + range) 204 return -ENOENT; 205 206 *off = imm - base; 207 return 0; 208 } 209 210 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 211 static u32 array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 212 { 213 struct bpf_array *array = container_of(map, struct bpf_array, map); 214 struct bpf_insn *insn = insn_buf; 215 u32 elem_size = round_up(map->value_size, 8); 216 const int ret = BPF_REG_0; 217 const int map_ptr = BPF_REG_1; 218 const int index = BPF_REG_2; 219 220 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 221 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 222 if (!map->bypass_spec_v1) { 223 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 224 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 225 } else { 226 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 227 } 228 229 if (is_power_of_2(elem_size)) { 230 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 231 } else { 232 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 233 } 234 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 235 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 236 *insn++ = BPF_MOV64_IMM(ret, 0); 237 return insn - insn_buf; 238 } 239 240 /* Called from eBPF program */ 241 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 242 { 243 struct bpf_array *array = container_of(map, struct bpf_array, map); 244 u32 index = *(u32 *)key; 245 246 if (unlikely(index >= array->map.max_entries)) 247 return NULL; 248 249 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 250 } 251 252 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 253 { 254 struct bpf_array *array = container_of(map, struct bpf_array, map); 255 u32 index = *(u32 *)key; 256 void __percpu *pptr; 257 int cpu, off = 0; 258 u32 size; 259 260 if (unlikely(index >= array->map.max_entries)) 261 return -ENOENT; 262 263 /* per_cpu areas are zero-filled and bpf programs can only 264 * access 'value_size' of them, so copying rounded areas 265 * will not leak any kernel data 266 */ 267 size = round_up(map->value_size, 8); 268 rcu_read_lock(); 269 pptr = array->pptrs[index & array->index_mask]; 270 for_each_possible_cpu(cpu) { 271 bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); 272 off += size; 273 } 274 rcu_read_unlock(); 275 return 0; 276 } 277 278 /* Called from syscall */ 279 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 280 { 281 struct bpf_array *array = container_of(map, struct bpf_array, map); 282 u32 index = key ? *(u32 *)key : U32_MAX; 283 u32 *next = (u32 *)next_key; 284 285 if (index >= array->map.max_entries) { 286 *next = 0; 287 return 0; 288 } 289 290 if (index == array->map.max_entries - 1) 291 return -ENOENT; 292 293 *next = index + 1; 294 return 0; 295 } 296 297 /* Called from syscall or from eBPF program */ 298 static int array_map_update_elem(struct bpf_map *map, void *key, void *value, 299 u64 map_flags) 300 { 301 struct bpf_array *array = container_of(map, struct bpf_array, map); 302 u32 index = *(u32 *)key; 303 char *val; 304 305 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 306 /* unknown flags */ 307 return -EINVAL; 308 309 if (unlikely(index >= array->map.max_entries)) 310 /* all elements were pre-allocated, cannot insert a new one */ 311 return -E2BIG; 312 313 if (unlikely(map_flags & BPF_NOEXIST)) 314 /* all elements already exist */ 315 return -EEXIST; 316 317 if (unlikely((map_flags & BPF_F_LOCK) && 318 !map_value_has_spin_lock(map))) 319 return -EINVAL; 320 321 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 322 memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), 323 value, map->value_size); 324 } else { 325 val = array->value + 326 array->elem_size * (index & array->index_mask); 327 if (map_flags & BPF_F_LOCK) 328 copy_map_value_locked(map, val, value, false); 329 else 330 copy_map_value(map, val, value); 331 } 332 return 0; 333 } 334 335 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 336 u64 map_flags) 337 { 338 struct bpf_array *array = container_of(map, struct bpf_array, map); 339 u32 index = *(u32 *)key; 340 void __percpu *pptr; 341 int cpu, off = 0; 342 u32 size; 343 344 if (unlikely(map_flags > BPF_EXIST)) 345 /* unknown flags */ 346 return -EINVAL; 347 348 if (unlikely(index >= array->map.max_entries)) 349 /* all elements were pre-allocated, cannot insert a new one */ 350 return -E2BIG; 351 352 if (unlikely(map_flags == BPF_NOEXIST)) 353 /* all elements already exist */ 354 return -EEXIST; 355 356 /* the user space will provide round_up(value_size, 8) bytes that 357 * will be copied into per-cpu area. bpf programs can only access 358 * value_size of it. During lookup the same extra bytes will be 359 * returned or zeros which were zero-filled by percpu_alloc, 360 * so no kernel data leaks possible 361 */ 362 size = round_up(map->value_size, 8); 363 rcu_read_lock(); 364 pptr = array->pptrs[index & array->index_mask]; 365 for_each_possible_cpu(cpu) { 366 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); 367 off += size; 368 } 369 rcu_read_unlock(); 370 return 0; 371 } 372 373 /* Called from syscall or from eBPF program */ 374 static int array_map_delete_elem(struct bpf_map *map, void *key) 375 { 376 return -EINVAL; 377 } 378 379 static void *array_map_vmalloc_addr(struct bpf_array *array) 380 { 381 return (void *)round_down((unsigned long)array, PAGE_SIZE); 382 } 383 384 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 385 static void array_map_free(struct bpf_map *map) 386 { 387 struct bpf_array *array = container_of(map, struct bpf_array, map); 388 389 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 390 bpf_array_free_percpu(array); 391 392 if (array->map.map_flags & BPF_F_MMAPABLE) 393 bpf_map_area_free(array_map_vmalloc_addr(array)); 394 else 395 bpf_map_area_free(array); 396 } 397 398 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 399 struct seq_file *m) 400 { 401 void *value; 402 403 rcu_read_lock(); 404 405 value = array_map_lookup_elem(map, key); 406 if (!value) { 407 rcu_read_unlock(); 408 return; 409 } 410 411 if (map->btf_key_type_id) 412 seq_printf(m, "%u: ", *(u32 *)key); 413 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 414 seq_puts(m, "\n"); 415 416 rcu_read_unlock(); 417 } 418 419 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 420 struct seq_file *m) 421 { 422 struct bpf_array *array = container_of(map, struct bpf_array, map); 423 u32 index = *(u32 *)key; 424 void __percpu *pptr; 425 int cpu; 426 427 rcu_read_lock(); 428 429 seq_printf(m, "%u: {\n", *(u32 *)key); 430 pptr = array->pptrs[index & array->index_mask]; 431 for_each_possible_cpu(cpu) { 432 seq_printf(m, "\tcpu%d: ", cpu); 433 btf_type_seq_show(map->btf, map->btf_value_type_id, 434 per_cpu_ptr(pptr, cpu), m); 435 seq_puts(m, "\n"); 436 } 437 seq_puts(m, "}\n"); 438 439 rcu_read_unlock(); 440 } 441 442 static int array_map_check_btf(const struct bpf_map *map, 443 const struct btf *btf, 444 const struct btf_type *key_type, 445 const struct btf_type *value_type) 446 { 447 u32 int_data; 448 449 /* One exception for keyless BTF: .bss/.data/.rodata map */ 450 if (btf_type_is_void(key_type)) { 451 if (map->map_type != BPF_MAP_TYPE_ARRAY || 452 map->max_entries != 1) 453 return -EINVAL; 454 455 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 456 return -EINVAL; 457 458 return 0; 459 } 460 461 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 462 return -EINVAL; 463 464 int_data = *(u32 *)(key_type + 1); 465 /* bpf array can only take a u32 key. This check makes sure 466 * that the btf matches the attr used during map_create. 467 */ 468 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 469 return -EINVAL; 470 471 return 0; 472 } 473 474 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 475 { 476 struct bpf_array *array = container_of(map, struct bpf_array, map); 477 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 478 479 if (!(map->map_flags & BPF_F_MMAPABLE)) 480 return -EINVAL; 481 482 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 483 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 484 return -EINVAL; 485 486 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 487 vma->vm_pgoff + pgoff); 488 } 489 490 struct bpf_iter_seq_array_map_info { 491 struct bpf_map *map; 492 void *percpu_value_buf; 493 u32 index; 494 }; 495 496 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 497 { 498 struct bpf_iter_seq_array_map_info *info = seq->private; 499 struct bpf_map *map = info->map; 500 struct bpf_array *array; 501 u32 index; 502 503 if (info->index >= map->max_entries) 504 return NULL; 505 506 if (*pos == 0) 507 ++*pos; 508 array = container_of(map, struct bpf_array, map); 509 index = info->index & array->index_mask; 510 if (info->percpu_value_buf) 511 return array->pptrs[index]; 512 return array->value + array->elem_size * index; 513 } 514 515 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 516 { 517 struct bpf_iter_seq_array_map_info *info = seq->private; 518 struct bpf_map *map = info->map; 519 struct bpf_array *array; 520 u32 index; 521 522 ++*pos; 523 ++info->index; 524 if (info->index >= map->max_entries) 525 return NULL; 526 527 array = container_of(map, struct bpf_array, map); 528 index = info->index & array->index_mask; 529 if (info->percpu_value_buf) 530 return array->pptrs[index]; 531 return array->value + array->elem_size * index; 532 } 533 534 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 535 { 536 struct bpf_iter_seq_array_map_info *info = seq->private; 537 struct bpf_iter__bpf_map_elem ctx = {}; 538 struct bpf_map *map = info->map; 539 struct bpf_iter_meta meta; 540 struct bpf_prog *prog; 541 int off = 0, cpu = 0; 542 void __percpu **pptr; 543 u32 size; 544 545 meta.seq = seq; 546 prog = bpf_iter_get_info(&meta, v == NULL); 547 if (!prog) 548 return 0; 549 550 ctx.meta = &meta; 551 ctx.map = info->map; 552 if (v) { 553 ctx.key = &info->index; 554 555 if (!info->percpu_value_buf) { 556 ctx.value = v; 557 } else { 558 pptr = v; 559 size = round_up(map->value_size, 8); 560 for_each_possible_cpu(cpu) { 561 bpf_long_memcpy(info->percpu_value_buf + off, 562 per_cpu_ptr(pptr, cpu), 563 size); 564 off += size; 565 } 566 ctx.value = info->percpu_value_buf; 567 } 568 } 569 570 return bpf_iter_run_prog(prog, &ctx); 571 } 572 573 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 574 { 575 return __bpf_array_map_seq_show(seq, v); 576 } 577 578 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 579 { 580 if (!v) 581 (void)__bpf_array_map_seq_show(seq, NULL); 582 } 583 584 static int bpf_iter_init_array_map(void *priv_data, 585 struct bpf_iter_aux_info *aux) 586 { 587 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 588 struct bpf_map *map = aux->map; 589 void *value_buf; 590 u32 buf_size; 591 592 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 593 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 594 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 595 if (!value_buf) 596 return -ENOMEM; 597 598 seq_info->percpu_value_buf = value_buf; 599 } 600 601 seq_info->map = map; 602 return 0; 603 } 604 605 static void bpf_iter_fini_array_map(void *priv_data) 606 { 607 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 608 609 kfree(seq_info->percpu_value_buf); 610 } 611 612 static const struct seq_operations bpf_array_map_seq_ops = { 613 .start = bpf_array_map_seq_start, 614 .next = bpf_array_map_seq_next, 615 .stop = bpf_array_map_seq_stop, 616 .show = bpf_array_map_seq_show, 617 }; 618 619 static const struct bpf_iter_seq_info iter_seq_info = { 620 .seq_ops = &bpf_array_map_seq_ops, 621 .init_seq_private = bpf_iter_init_array_map, 622 .fini_seq_private = bpf_iter_fini_array_map, 623 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 624 }; 625 626 static int array_map_btf_id; 627 const struct bpf_map_ops array_map_ops = { 628 .map_alloc_check = array_map_alloc_check, 629 .map_alloc = array_map_alloc, 630 .map_free = array_map_free, 631 .map_get_next_key = array_map_get_next_key, 632 .map_lookup_elem = array_map_lookup_elem, 633 .map_update_elem = array_map_update_elem, 634 .map_delete_elem = array_map_delete_elem, 635 .map_gen_lookup = array_map_gen_lookup, 636 .map_direct_value_addr = array_map_direct_value_addr, 637 .map_direct_value_meta = array_map_direct_value_meta, 638 .map_mmap = array_map_mmap, 639 .map_seq_show_elem = array_map_seq_show_elem, 640 .map_check_btf = array_map_check_btf, 641 .map_lookup_batch = generic_map_lookup_batch, 642 .map_update_batch = generic_map_update_batch, 643 .map_btf_name = "bpf_array", 644 .map_btf_id = &array_map_btf_id, 645 .iter_seq_info = &iter_seq_info, 646 }; 647 648 static int percpu_array_map_btf_id; 649 const struct bpf_map_ops percpu_array_map_ops = { 650 .map_alloc_check = array_map_alloc_check, 651 .map_alloc = array_map_alloc, 652 .map_free = array_map_free, 653 .map_get_next_key = array_map_get_next_key, 654 .map_lookup_elem = percpu_array_map_lookup_elem, 655 .map_update_elem = array_map_update_elem, 656 .map_delete_elem = array_map_delete_elem, 657 .map_seq_show_elem = percpu_array_map_seq_show_elem, 658 .map_check_btf = array_map_check_btf, 659 .map_btf_name = "bpf_array", 660 .map_btf_id = &percpu_array_map_btf_id, 661 .iter_seq_info = &iter_seq_info, 662 }; 663 664 static int fd_array_map_alloc_check(union bpf_attr *attr) 665 { 666 /* only file descriptors can be stored in this type of map */ 667 if (attr->value_size != sizeof(u32)) 668 return -EINVAL; 669 /* Program read-only/write-only not supported for special maps yet. */ 670 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 671 return -EINVAL; 672 return array_map_alloc_check(attr); 673 } 674 675 static void fd_array_map_free(struct bpf_map *map) 676 { 677 struct bpf_array *array = container_of(map, struct bpf_array, map); 678 int i; 679 680 /* make sure it's empty */ 681 for (i = 0; i < array->map.max_entries; i++) 682 BUG_ON(array->ptrs[i] != NULL); 683 684 bpf_map_area_free(array); 685 } 686 687 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 688 { 689 return ERR_PTR(-EOPNOTSUPP); 690 } 691 692 /* only called from syscall */ 693 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 694 { 695 void **elem, *ptr; 696 int ret = 0; 697 698 if (!map->ops->map_fd_sys_lookup_elem) 699 return -ENOTSUPP; 700 701 rcu_read_lock(); 702 elem = array_map_lookup_elem(map, key); 703 if (elem && (ptr = READ_ONCE(*elem))) 704 *value = map->ops->map_fd_sys_lookup_elem(ptr); 705 else 706 ret = -ENOENT; 707 rcu_read_unlock(); 708 709 return ret; 710 } 711 712 /* only called from syscall */ 713 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 714 void *key, void *value, u64 map_flags) 715 { 716 struct bpf_array *array = container_of(map, struct bpf_array, map); 717 void *new_ptr, *old_ptr; 718 u32 index = *(u32 *)key, ufd; 719 720 if (map_flags != BPF_ANY) 721 return -EINVAL; 722 723 if (index >= array->map.max_entries) 724 return -E2BIG; 725 726 ufd = *(u32 *)value; 727 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 728 if (IS_ERR(new_ptr)) 729 return PTR_ERR(new_ptr); 730 731 if (map->ops->map_poke_run) { 732 mutex_lock(&array->aux->poke_mutex); 733 old_ptr = xchg(array->ptrs + index, new_ptr); 734 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 735 mutex_unlock(&array->aux->poke_mutex); 736 } else { 737 old_ptr = xchg(array->ptrs + index, new_ptr); 738 } 739 740 if (old_ptr) 741 map->ops->map_fd_put_ptr(old_ptr); 742 return 0; 743 } 744 745 static int fd_array_map_delete_elem(struct bpf_map *map, void *key) 746 { 747 struct bpf_array *array = container_of(map, struct bpf_array, map); 748 void *old_ptr; 749 u32 index = *(u32 *)key; 750 751 if (index >= array->map.max_entries) 752 return -E2BIG; 753 754 if (map->ops->map_poke_run) { 755 mutex_lock(&array->aux->poke_mutex); 756 old_ptr = xchg(array->ptrs + index, NULL); 757 map->ops->map_poke_run(map, index, old_ptr, NULL); 758 mutex_unlock(&array->aux->poke_mutex); 759 } else { 760 old_ptr = xchg(array->ptrs + index, NULL); 761 } 762 763 if (old_ptr) { 764 map->ops->map_fd_put_ptr(old_ptr); 765 return 0; 766 } else { 767 return -ENOENT; 768 } 769 } 770 771 static void *prog_fd_array_get_ptr(struct bpf_map *map, 772 struct file *map_file, int fd) 773 { 774 struct bpf_array *array = container_of(map, struct bpf_array, map); 775 struct bpf_prog *prog = bpf_prog_get(fd); 776 777 if (IS_ERR(prog)) 778 return prog; 779 780 if (!bpf_prog_array_compatible(array, prog)) { 781 bpf_prog_put(prog); 782 return ERR_PTR(-EINVAL); 783 } 784 785 return prog; 786 } 787 788 static void prog_fd_array_put_ptr(void *ptr) 789 { 790 bpf_prog_put(ptr); 791 } 792 793 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 794 { 795 return ((struct bpf_prog *)ptr)->aux->id; 796 } 797 798 /* decrement refcnt of all bpf_progs that are stored in this map */ 799 static void bpf_fd_array_map_clear(struct bpf_map *map) 800 { 801 struct bpf_array *array = container_of(map, struct bpf_array, map); 802 int i; 803 804 for (i = 0; i < array->map.max_entries; i++) 805 fd_array_map_delete_elem(map, &i); 806 } 807 808 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 809 struct seq_file *m) 810 { 811 void **elem, *ptr; 812 u32 prog_id; 813 814 rcu_read_lock(); 815 816 elem = array_map_lookup_elem(map, key); 817 if (elem) { 818 ptr = READ_ONCE(*elem); 819 if (ptr) { 820 seq_printf(m, "%u: ", *(u32 *)key); 821 prog_id = prog_fd_array_sys_lookup_elem(ptr); 822 btf_type_seq_show(map->btf, map->btf_value_type_id, 823 &prog_id, m); 824 seq_puts(m, "\n"); 825 } 826 } 827 828 rcu_read_unlock(); 829 } 830 831 struct prog_poke_elem { 832 struct list_head list; 833 struct bpf_prog_aux *aux; 834 }; 835 836 static int prog_array_map_poke_track(struct bpf_map *map, 837 struct bpf_prog_aux *prog_aux) 838 { 839 struct prog_poke_elem *elem; 840 struct bpf_array_aux *aux; 841 int ret = 0; 842 843 aux = container_of(map, struct bpf_array, map)->aux; 844 mutex_lock(&aux->poke_mutex); 845 list_for_each_entry(elem, &aux->poke_progs, list) { 846 if (elem->aux == prog_aux) 847 goto out; 848 } 849 850 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 851 if (!elem) { 852 ret = -ENOMEM; 853 goto out; 854 } 855 856 INIT_LIST_HEAD(&elem->list); 857 /* We must track the program's aux info at this point in time 858 * since the program pointer itself may not be stable yet, see 859 * also comment in prog_array_map_poke_run(). 860 */ 861 elem->aux = prog_aux; 862 863 list_add_tail(&elem->list, &aux->poke_progs); 864 out: 865 mutex_unlock(&aux->poke_mutex); 866 return ret; 867 } 868 869 static void prog_array_map_poke_untrack(struct bpf_map *map, 870 struct bpf_prog_aux *prog_aux) 871 { 872 struct prog_poke_elem *elem, *tmp; 873 struct bpf_array_aux *aux; 874 875 aux = container_of(map, struct bpf_array, map)->aux; 876 mutex_lock(&aux->poke_mutex); 877 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 878 if (elem->aux == prog_aux) { 879 list_del_init(&elem->list); 880 kfree(elem); 881 break; 882 } 883 } 884 mutex_unlock(&aux->poke_mutex); 885 } 886 887 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 888 struct bpf_prog *old, 889 struct bpf_prog *new) 890 { 891 struct prog_poke_elem *elem; 892 struct bpf_array_aux *aux; 893 894 aux = container_of(map, struct bpf_array, map)->aux; 895 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 896 897 list_for_each_entry(elem, &aux->poke_progs, list) { 898 struct bpf_jit_poke_descriptor *poke; 899 int i, ret; 900 901 for (i = 0; i < elem->aux->size_poke_tab; i++) { 902 poke = &elem->aux->poke_tab[i]; 903 904 /* Few things to be aware of: 905 * 906 * 1) We can only ever access aux in this context, but 907 * not aux->prog since it might not be stable yet and 908 * there could be danger of use after free otherwise. 909 * 2) Initially when we start tracking aux, the program 910 * is not JITed yet and also does not have a kallsyms 911 * entry. We skip these as poke->ip_stable is not 912 * active yet. The JIT will do the final fixup before 913 * setting it stable. The various poke->ip_stable are 914 * successively activated, so tail call updates can 915 * arrive from here while JIT is still finishing its 916 * final fixup for non-activated poke entries. 917 * 3) On program teardown, the program's kallsym entry gets 918 * removed out of RCU callback, but we can only untrack 919 * from sleepable context, therefore bpf_arch_text_poke() 920 * might not see that this is in BPF text section and 921 * bails out with -EINVAL. As these are unreachable since 922 * RCU grace period already passed, we simply skip them. 923 * 4) Also programs reaching refcount of zero while patching 924 * is in progress is okay since we're protected under 925 * poke_mutex and untrack the programs before the JIT 926 * buffer is freed. When we're still in the middle of 927 * patching and suddenly kallsyms entry of the program 928 * gets evicted, we just skip the rest which is fine due 929 * to point 3). 930 * 5) Any other error happening below from bpf_arch_text_poke() 931 * is a unexpected bug. 932 */ 933 if (!READ_ONCE(poke->ip_stable)) 934 continue; 935 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 936 continue; 937 if (poke->tail_call.map != map || 938 poke->tail_call.key != key) 939 continue; 940 941 ret = bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP, 942 old ? (u8 *)old->bpf_func + 943 poke->adj_off : NULL, 944 new ? (u8 *)new->bpf_func + 945 poke->adj_off : NULL); 946 BUG_ON(ret < 0 && ret != -EINVAL); 947 } 948 } 949 } 950 951 static void prog_array_map_clear_deferred(struct work_struct *work) 952 { 953 struct bpf_map *map = container_of(work, struct bpf_array_aux, 954 work)->map; 955 bpf_fd_array_map_clear(map); 956 bpf_map_put(map); 957 } 958 959 static void prog_array_map_clear(struct bpf_map *map) 960 { 961 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 962 map)->aux; 963 bpf_map_inc(map); 964 schedule_work(&aux->work); 965 } 966 967 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 968 { 969 struct bpf_array_aux *aux; 970 struct bpf_map *map; 971 972 aux = kzalloc(sizeof(*aux), GFP_KERNEL); 973 if (!aux) 974 return ERR_PTR(-ENOMEM); 975 976 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 977 INIT_LIST_HEAD(&aux->poke_progs); 978 mutex_init(&aux->poke_mutex); 979 980 map = array_map_alloc(attr); 981 if (IS_ERR(map)) { 982 kfree(aux); 983 return map; 984 } 985 986 container_of(map, struct bpf_array, map)->aux = aux; 987 aux->map = map; 988 989 return map; 990 } 991 992 static void prog_array_map_free(struct bpf_map *map) 993 { 994 struct prog_poke_elem *elem, *tmp; 995 struct bpf_array_aux *aux; 996 997 aux = container_of(map, struct bpf_array, map)->aux; 998 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 999 list_del_init(&elem->list); 1000 kfree(elem); 1001 } 1002 kfree(aux); 1003 fd_array_map_free(map); 1004 } 1005 1006 static int prog_array_map_btf_id; 1007 const struct bpf_map_ops prog_array_map_ops = { 1008 .map_alloc_check = fd_array_map_alloc_check, 1009 .map_alloc = prog_array_map_alloc, 1010 .map_free = prog_array_map_free, 1011 .map_poke_track = prog_array_map_poke_track, 1012 .map_poke_untrack = prog_array_map_poke_untrack, 1013 .map_poke_run = prog_array_map_poke_run, 1014 .map_get_next_key = array_map_get_next_key, 1015 .map_lookup_elem = fd_array_map_lookup_elem, 1016 .map_delete_elem = fd_array_map_delete_elem, 1017 .map_fd_get_ptr = prog_fd_array_get_ptr, 1018 .map_fd_put_ptr = prog_fd_array_put_ptr, 1019 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1020 .map_release_uref = prog_array_map_clear, 1021 .map_seq_show_elem = prog_array_map_seq_show_elem, 1022 .map_btf_name = "bpf_array", 1023 .map_btf_id = &prog_array_map_btf_id, 1024 }; 1025 1026 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1027 struct file *map_file) 1028 { 1029 struct bpf_event_entry *ee; 1030 1031 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 1032 if (ee) { 1033 ee->event = perf_file->private_data; 1034 ee->perf_file = perf_file; 1035 ee->map_file = map_file; 1036 } 1037 1038 return ee; 1039 } 1040 1041 static void __bpf_event_entry_free(struct rcu_head *rcu) 1042 { 1043 struct bpf_event_entry *ee; 1044 1045 ee = container_of(rcu, struct bpf_event_entry, rcu); 1046 fput(ee->perf_file); 1047 kfree(ee); 1048 } 1049 1050 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1051 { 1052 call_rcu(&ee->rcu, __bpf_event_entry_free); 1053 } 1054 1055 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1056 struct file *map_file, int fd) 1057 { 1058 struct bpf_event_entry *ee; 1059 struct perf_event *event; 1060 struct file *perf_file; 1061 u64 value; 1062 1063 perf_file = perf_event_get(fd); 1064 if (IS_ERR(perf_file)) 1065 return perf_file; 1066 1067 ee = ERR_PTR(-EOPNOTSUPP); 1068 event = perf_file->private_data; 1069 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1070 goto err_out; 1071 1072 ee = bpf_event_entry_gen(perf_file, map_file); 1073 if (ee) 1074 return ee; 1075 ee = ERR_PTR(-ENOMEM); 1076 err_out: 1077 fput(perf_file); 1078 return ee; 1079 } 1080 1081 static void perf_event_fd_array_put_ptr(void *ptr) 1082 { 1083 bpf_event_entry_free_rcu(ptr); 1084 } 1085 1086 static void perf_event_fd_array_release(struct bpf_map *map, 1087 struct file *map_file) 1088 { 1089 struct bpf_array *array = container_of(map, struct bpf_array, map); 1090 struct bpf_event_entry *ee; 1091 int i; 1092 1093 rcu_read_lock(); 1094 for (i = 0; i < array->map.max_entries; i++) { 1095 ee = READ_ONCE(array->ptrs[i]); 1096 if (ee && ee->map_file == map_file) 1097 fd_array_map_delete_elem(map, &i); 1098 } 1099 rcu_read_unlock(); 1100 } 1101 1102 static int perf_event_array_map_btf_id; 1103 const struct bpf_map_ops perf_event_array_map_ops = { 1104 .map_alloc_check = fd_array_map_alloc_check, 1105 .map_alloc = array_map_alloc, 1106 .map_free = fd_array_map_free, 1107 .map_get_next_key = array_map_get_next_key, 1108 .map_lookup_elem = fd_array_map_lookup_elem, 1109 .map_delete_elem = fd_array_map_delete_elem, 1110 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1111 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1112 .map_release = perf_event_fd_array_release, 1113 .map_check_btf = map_check_no_btf, 1114 .map_btf_name = "bpf_array", 1115 .map_btf_id = &perf_event_array_map_btf_id, 1116 }; 1117 1118 #ifdef CONFIG_CGROUPS 1119 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1120 struct file *map_file /* not used */, 1121 int fd) 1122 { 1123 return cgroup_get_from_fd(fd); 1124 } 1125 1126 static void cgroup_fd_array_put_ptr(void *ptr) 1127 { 1128 /* cgroup_put free cgrp after a rcu grace period */ 1129 cgroup_put(ptr); 1130 } 1131 1132 static void cgroup_fd_array_free(struct bpf_map *map) 1133 { 1134 bpf_fd_array_map_clear(map); 1135 fd_array_map_free(map); 1136 } 1137 1138 static int cgroup_array_map_btf_id; 1139 const struct bpf_map_ops cgroup_array_map_ops = { 1140 .map_alloc_check = fd_array_map_alloc_check, 1141 .map_alloc = array_map_alloc, 1142 .map_free = cgroup_fd_array_free, 1143 .map_get_next_key = array_map_get_next_key, 1144 .map_lookup_elem = fd_array_map_lookup_elem, 1145 .map_delete_elem = fd_array_map_delete_elem, 1146 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1147 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1148 .map_check_btf = map_check_no_btf, 1149 .map_btf_name = "bpf_array", 1150 .map_btf_id = &cgroup_array_map_btf_id, 1151 }; 1152 #endif 1153 1154 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1155 { 1156 struct bpf_map *map, *inner_map_meta; 1157 1158 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1159 if (IS_ERR(inner_map_meta)) 1160 return inner_map_meta; 1161 1162 map = array_map_alloc(attr); 1163 if (IS_ERR(map)) { 1164 bpf_map_meta_free(inner_map_meta); 1165 return map; 1166 } 1167 1168 map->inner_map_meta = inner_map_meta; 1169 1170 return map; 1171 } 1172 1173 static void array_of_map_free(struct bpf_map *map) 1174 { 1175 /* map->inner_map_meta is only accessed by syscall which 1176 * is protected by fdget/fdput. 1177 */ 1178 bpf_map_meta_free(map->inner_map_meta); 1179 bpf_fd_array_map_clear(map); 1180 fd_array_map_free(map); 1181 } 1182 1183 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1184 { 1185 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1186 1187 if (!inner_map) 1188 return NULL; 1189 1190 return READ_ONCE(*inner_map); 1191 } 1192 1193 static u32 array_of_map_gen_lookup(struct bpf_map *map, 1194 struct bpf_insn *insn_buf) 1195 { 1196 struct bpf_array *array = container_of(map, struct bpf_array, map); 1197 u32 elem_size = round_up(map->value_size, 8); 1198 struct bpf_insn *insn = insn_buf; 1199 const int ret = BPF_REG_0; 1200 const int map_ptr = BPF_REG_1; 1201 const int index = BPF_REG_2; 1202 1203 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1204 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1205 if (!map->bypass_spec_v1) { 1206 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1207 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1208 } else { 1209 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1210 } 1211 if (is_power_of_2(elem_size)) 1212 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1213 else 1214 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1215 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1216 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1217 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1218 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1219 *insn++ = BPF_MOV64_IMM(ret, 0); 1220 1221 return insn - insn_buf; 1222 } 1223 1224 static int array_of_maps_map_btf_id; 1225 const struct bpf_map_ops array_of_maps_map_ops = { 1226 .map_alloc_check = fd_array_map_alloc_check, 1227 .map_alloc = array_of_map_alloc, 1228 .map_free = array_of_map_free, 1229 .map_get_next_key = array_map_get_next_key, 1230 .map_lookup_elem = array_of_map_lookup_elem, 1231 .map_delete_elem = fd_array_map_delete_elem, 1232 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1233 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1234 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1235 .map_gen_lookup = array_of_map_gen_lookup, 1236 .map_check_btf = map_check_no_btf, 1237 .map_btf_name = "bpf_array", 1238 .map_btf_id = &array_of_maps_map_btf_id, 1239 }; 1240