xref: /openbmc/linux/kernel/bpf/arraymap.c (revision 9eda7c1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016,2017 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/err.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/filter.h>
11 #include <linux/perf_event.h>
12 #include <uapi/linux/btf.h>
13 
14 #include "map_in_map.h"
15 
16 #define ARRAY_CREATE_FLAG_MASK \
17 	(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK)
18 
19 static void bpf_array_free_percpu(struct bpf_array *array)
20 {
21 	int i;
22 
23 	for (i = 0; i < array->map.max_entries; i++) {
24 		free_percpu(array->pptrs[i]);
25 		cond_resched();
26 	}
27 }
28 
29 static int bpf_array_alloc_percpu(struct bpf_array *array)
30 {
31 	void __percpu *ptr;
32 	int i;
33 
34 	for (i = 0; i < array->map.max_entries; i++) {
35 		ptr = __alloc_percpu_gfp(array->elem_size, 8,
36 					 GFP_USER | __GFP_NOWARN);
37 		if (!ptr) {
38 			bpf_array_free_percpu(array);
39 			return -ENOMEM;
40 		}
41 		array->pptrs[i] = ptr;
42 		cond_resched();
43 	}
44 
45 	return 0;
46 }
47 
48 /* Called from syscall */
49 int array_map_alloc_check(union bpf_attr *attr)
50 {
51 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
52 	int numa_node = bpf_map_attr_numa_node(attr);
53 
54 	/* check sanity of attributes */
55 	if (attr->max_entries == 0 || attr->key_size != 4 ||
56 	    attr->value_size == 0 ||
57 	    attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
58 	    !bpf_map_flags_access_ok(attr->map_flags) ||
59 	    (percpu && numa_node != NUMA_NO_NODE))
60 		return -EINVAL;
61 
62 	if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
63 	    attr->map_flags & BPF_F_MMAPABLE)
64 		return -EINVAL;
65 
66 	if (attr->value_size > KMALLOC_MAX_SIZE)
67 		/* if value_size is bigger, the user space won't be able to
68 		 * access the elements.
69 		 */
70 		return -E2BIG;
71 
72 	return 0;
73 }
74 
75 static struct bpf_map *array_map_alloc(union bpf_attr *attr)
76 {
77 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
78 	int ret, numa_node = bpf_map_attr_numa_node(attr);
79 	u32 elem_size, index_mask, max_entries;
80 	bool bypass_spec_v1 = bpf_bypass_spec_v1();
81 	u64 cost, array_size, mask64;
82 	struct bpf_map_memory mem;
83 	struct bpf_array *array;
84 
85 	elem_size = round_up(attr->value_size, 8);
86 
87 	max_entries = attr->max_entries;
88 
89 	/* On 32 bit archs roundup_pow_of_two() with max_entries that has
90 	 * upper most bit set in u32 space is undefined behavior due to
91 	 * resulting 1U << 32, so do it manually here in u64 space.
92 	 */
93 	mask64 = fls_long(max_entries - 1);
94 	mask64 = 1ULL << mask64;
95 	mask64 -= 1;
96 
97 	index_mask = mask64;
98 	if (!bypass_spec_v1) {
99 		/* round up array size to nearest power of 2,
100 		 * since cpu will speculate within index_mask limits
101 		 */
102 		max_entries = index_mask + 1;
103 		/* Check for overflows. */
104 		if (max_entries < attr->max_entries)
105 			return ERR_PTR(-E2BIG);
106 	}
107 
108 	array_size = sizeof(*array);
109 	if (percpu) {
110 		array_size += (u64) max_entries * sizeof(void *);
111 	} else {
112 		/* rely on vmalloc() to return page-aligned memory and
113 		 * ensure array->value is exactly page-aligned
114 		 */
115 		if (attr->map_flags & BPF_F_MMAPABLE) {
116 			array_size = PAGE_ALIGN(array_size);
117 			array_size += PAGE_ALIGN((u64) max_entries * elem_size);
118 		} else {
119 			array_size += (u64) max_entries * elem_size;
120 		}
121 	}
122 
123 	/* make sure there is no u32 overflow later in round_up() */
124 	cost = array_size;
125 	if (percpu)
126 		cost += (u64)attr->max_entries * elem_size * num_possible_cpus();
127 
128 	ret = bpf_map_charge_init(&mem, cost);
129 	if (ret < 0)
130 		return ERR_PTR(ret);
131 
132 	/* allocate all map elements and zero-initialize them */
133 	if (attr->map_flags & BPF_F_MMAPABLE) {
134 		void *data;
135 
136 		/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
137 		data = bpf_map_area_mmapable_alloc(array_size, numa_node);
138 		if (!data) {
139 			bpf_map_charge_finish(&mem);
140 			return ERR_PTR(-ENOMEM);
141 		}
142 		array = data + PAGE_ALIGN(sizeof(struct bpf_array))
143 			- offsetof(struct bpf_array, value);
144 	} else {
145 		array = bpf_map_area_alloc(array_size, numa_node);
146 	}
147 	if (!array) {
148 		bpf_map_charge_finish(&mem);
149 		return ERR_PTR(-ENOMEM);
150 	}
151 	array->index_mask = index_mask;
152 	array->map.bypass_spec_v1 = bypass_spec_v1;
153 
154 	/* copy mandatory map attributes */
155 	bpf_map_init_from_attr(&array->map, attr);
156 	bpf_map_charge_move(&array->map.memory, &mem);
157 	array->elem_size = elem_size;
158 
159 	if (percpu && bpf_array_alloc_percpu(array)) {
160 		bpf_map_charge_finish(&array->map.memory);
161 		bpf_map_area_free(array);
162 		return ERR_PTR(-ENOMEM);
163 	}
164 
165 	return &array->map;
166 }
167 
168 /* Called from syscall or from eBPF program */
169 static void *array_map_lookup_elem(struct bpf_map *map, void *key)
170 {
171 	struct bpf_array *array = container_of(map, struct bpf_array, map);
172 	u32 index = *(u32 *)key;
173 
174 	if (unlikely(index >= array->map.max_entries))
175 		return NULL;
176 
177 	return array->value + array->elem_size * (index & array->index_mask);
178 }
179 
180 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
181 				       u32 off)
182 {
183 	struct bpf_array *array = container_of(map, struct bpf_array, map);
184 
185 	if (map->max_entries != 1)
186 		return -ENOTSUPP;
187 	if (off >= map->value_size)
188 		return -EINVAL;
189 
190 	*imm = (unsigned long)array->value;
191 	return 0;
192 }
193 
194 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
195 				       u32 *off)
196 {
197 	struct bpf_array *array = container_of(map, struct bpf_array, map);
198 	u64 base = (unsigned long)array->value;
199 	u64 range = array->elem_size;
200 
201 	if (map->max_entries != 1)
202 		return -ENOTSUPP;
203 	if (imm < base || imm >= base + range)
204 		return -ENOENT;
205 
206 	*off = imm - base;
207 	return 0;
208 }
209 
210 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
211 static u32 array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
212 {
213 	struct bpf_array *array = container_of(map, struct bpf_array, map);
214 	struct bpf_insn *insn = insn_buf;
215 	u32 elem_size = round_up(map->value_size, 8);
216 	const int ret = BPF_REG_0;
217 	const int map_ptr = BPF_REG_1;
218 	const int index = BPF_REG_2;
219 
220 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
221 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
222 	if (!map->bypass_spec_v1) {
223 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
224 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
225 	} else {
226 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
227 	}
228 
229 	if (is_power_of_2(elem_size)) {
230 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
231 	} else {
232 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
233 	}
234 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
235 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
236 	*insn++ = BPF_MOV64_IMM(ret, 0);
237 	return insn - insn_buf;
238 }
239 
240 /* Called from eBPF program */
241 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
242 {
243 	struct bpf_array *array = container_of(map, struct bpf_array, map);
244 	u32 index = *(u32 *)key;
245 
246 	if (unlikely(index >= array->map.max_entries))
247 		return NULL;
248 
249 	return this_cpu_ptr(array->pptrs[index & array->index_mask]);
250 }
251 
252 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
253 {
254 	struct bpf_array *array = container_of(map, struct bpf_array, map);
255 	u32 index = *(u32 *)key;
256 	void __percpu *pptr;
257 	int cpu, off = 0;
258 	u32 size;
259 
260 	if (unlikely(index >= array->map.max_entries))
261 		return -ENOENT;
262 
263 	/* per_cpu areas are zero-filled and bpf programs can only
264 	 * access 'value_size' of them, so copying rounded areas
265 	 * will not leak any kernel data
266 	 */
267 	size = round_up(map->value_size, 8);
268 	rcu_read_lock();
269 	pptr = array->pptrs[index & array->index_mask];
270 	for_each_possible_cpu(cpu) {
271 		bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
272 		off += size;
273 	}
274 	rcu_read_unlock();
275 	return 0;
276 }
277 
278 /* Called from syscall */
279 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
280 {
281 	struct bpf_array *array = container_of(map, struct bpf_array, map);
282 	u32 index = key ? *(u32 *)key : U32_MAX;
283 	u32 *next = (u32 *)next_key;
284 
285 	if (index >= array->map.max_entries) {
286 		*next = 0;
287 		return 0;
288 	}
289 
290 	if (index == array->map.max_entries - 1)
291 		return -ENOENT;
292 
293 	*next = index + 1;
294 	return 0;
295 }
296 
297 /* Called from syscall or from eBPF program */
298 static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
299 				 u64 map_flags)
300 {
301 	struct bpf_array *array = container_of(map, struct bpf_array, map);
302 	u32 index = *(u32 *)key;
303 	char *val;
304 
305 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
306 		/* unknown flags */
307 		return -EINVAL;
308 
309 	if (unlikely(index >= array->map.max_entries))
310 		/* all elements were pre-allocated, cannot insert a new one */
311 		return -E2BIG;
312 
313 	if (unlikely(map_flags & BPF_NOEXIST))
314 		/* all elements already exist */
315 		return -EEXIST;
316 
317 	if (unlikely((map_flags & BPF_F_LOCK) &&
318 		     !map_value_has_spin_lock(map)))
319 		return -EINVAL;
320 
321 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
322 		memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
323 		       value, map->value_size);
324 	} else {
325 		val = array->value +
326 			array->elem_size * (index & array->index_mask);
327 		if (map_flags & BPF_F_LOCK)
328 			copy_map_value_locked(map, val, value, false);
329 		else
330 			copy_map_value(map, val, value);
331 	}
332 	return 0;
333 }
334 
335 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
336 			    u64 map_flags)
337 {
338 	struct bpf_array *array = container_of(map, struct bpf_array, map);
339 	u32 index = *(u32 *)key;
340 	void __percpu *pptr;
341 	int cpu, off = 0;
342 	u32 size;
343 
344 	if (unlikely(map_flags > BPF_EXIST))
345 		/* unknown flags */
346 		return -EINVAL;
347 
348 	if (unlikely(index >= array->map.max_entries))
349 		/* all elements were pre-allocated, cannot insert a new one */
350 		return -E2BIG;
351 
352 	if (unlikely(map_flags == BPF_NOEXIST))
353 		/* all elements already exist */
354 		return -EEXIST;
355 
356 	/* the user space will provide round_up(value_size, 8) bytes that
357 	 * will be copied into per-cpu area. bpf programs can only access
358 	 * value_size of it. During lookup the same extra bytes will be
359 	 * returned or zeros which were zero-filled by percpu_alloc,
360 	 * so no kernel data leaks possible
361 	 */
362 	size = round_up(map->value_size, 8);
363 	rcu_read_lock();
364 	pptr = array->pptrs[index & array->index_mask];
365 	for_each_possible_cpu(cpu) {
366 		bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
367 		off += size;
368 	}
369 	rcu_read_unlock();
370 	return 0;
371 }
372 
373 /* Called from syscall or from eBPF program */
374 static int array_map_delete_elem(struct bpf_map *map, void *key)
375 {
376 	return -EINVAL;
377 }
378 
379 static void *array_map_vmalloc_addr(struct bpf_array *array)
380 {
381 	return (void *)round_down((unsigned long)array, PAGE_SIZE);
382 }
383 
384 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
385 static void array_map_free(struct bpf_map *map)
386 {
387 	struct bpf_array *array = container_of(map, struct bpf_array, map);
388 
389 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
390 		bpf_array_free_percpu(array);
391 
392 	if (array->map.map_flags & BPF_F_MMAPABLE)
393 		bpf_map_area_free(array_map_vmalloc_addr(array));
394 	else
395 		bpf_map_area_free(array);
396 }
397 
398 static void array_map_seq_show_elem(struct bpf_map *map, void *key,
399 				    struct seq_file *m)
400 {
401 	void *value;
402 
403 	rcu_read_lock();
404 
405 	value = array_map_lookup_elem(map, key);
406 	if (!value) {
407 		rcu_read_unlock();
408 		return;
409 	}
410 
411 	if (map->btf_key_type_id)
412 		seq_printf(m, "%u: ", *(u32 *)key);
413 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
414 	seq_puts(m, "\n");
415 
416 	rcu_read_unlock();
417 }
418 
419 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
420 					   struct seq_file *m)
421 {
422 	struct bpf_array *array = container_of(map, struct bpf_array, map);
423 	u32 index = *(u32 *)key;
424 	void __percpu *pptr;
425 	int cpu;
426 
427 	rcu_read_lock();
428 
429 	seq_printf(m, "%u: {\n", *(u32 *)key);
430 	pptr = array->pptrs[index & array->index_mask];
431 	for_each_possible_cpu(cpu) {
432 		seq_printf(m, "\tcpu%d: ", cpu);
433 		btf_type_seq_show(map->btf, map->btf_value_type_id,
434 				  per_cpu_ptr(pptr, cpu), m);
435 		seq_puts(m, "\n");
436 	}
437 	seq_puts(m, "}\n");
438 
439 	rcu_read_unlock();
440 }
441 
442 static int array_map_check_btf(const struct bpf_map *map,
443 			       const struct btf *btf,
444 			       const struct btf_type *key_type,
445 			       const struct btf_type *value_type)
446 {
447 	u32 int_data;
448 
449 	/* One exception for keyless BTF: .bss/.data/.rodata map */
450 	if (btf_type_is_void(key_type)) {
451 		if (map->map_type != BPF_MAP_TYPE_ARRAY ||
452 		    map->max_entries != 1)
453 			return -EINVAL;
454 
455 		if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
456 			return -EINVAL;
457 
458 		return 0;
459 	}
460 
461 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
462 		return -EINVAL;
463 
464 	int_data = *(u32 *)(key_type + 1);
465 	/* bpf array can only take a u32 key. This check makes sure
466 	 * that the btf matches the attr used during map_create.
467 	 */
468 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
469 		return -EINVAL;
470 
471 	return 0;
472 }
473 
474 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
475 {
476 	struct bpf_array *array = container_of(map, struct bpf_array, map);
477 	pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
478 
479 	if (!(map->map_flags & BPF_F_MMAPABLE))
480 		return -EINVAL;
481 
482 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
483 	    PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
484 		return -EINVAL;
485 
486 	return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
487 				   vma->vm_pgoff + pgoff);
488 }
489 
490 struct bpf_iter_seq_array_map_info {
491 	struct bpf_map *map;
492 	void *percpu_value_buf;
493 	u32 index;
494 };
495 
496 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
497 {
498 	struct bpf_iter_seq_array_map_info *info = seq->private;
499 	struct bpf_map *map = info->map;
500 	struct bpf_array *array;
501 	u32 index;
502 
503 	if (info->index >= map->max_entries)
504 		return NULL;
505 
506 	if (*pos == 0)
507 		++*pos;
508 	array = container_of(map, struct bpf_array, map);
509 	index = info->index & array->index_mask;
510 	if (info->percpu_value_buf)
511 	       return array->pptrs[index];
512 	return array->value + array->elem_size * index;
513 }
514 
515 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
516 {
517 	struct bpf_iter_seq_array_map_info *info = seq->private;
518 	struct bpf_map *map = info->map;
519 	struct bpf_array *array;
520 	u32 index;
521 
522 	++*pos;
523 	++info->index;
524 	if (info->index >= map->max_entries)
525 		return NULL;
526 
527 	array = container_of(map, struct bpf_array, map);
528 	index = info->index & array->index_mask;
529 	if (info->percpu_value_buf)
530 	       return array->pptrs[index];
531 	return array->value + array->elem_size * index;
532 }
533 
534 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
535 {
536 	struct bpf_iter_seq_array_map_info *info = seq->private;
537 	struct bpf_iter__bpf_map_elem ctx = {};
538 	struct bpf_map *map = info->map;
539 	struct bpf_iter_meta meta;
540 	struct bpf_prog *prog;
541 	int off = 0, cpu = 0;
542 	void __percpu **pptr;
543 	u32 size;
544 
545 	meta.seq = seq;
546 	prog = bpf_iter_get_info(&meta, v == NULL);
547 	if (!prog)
548 		return 0;
549 
550 	ctx.meta = &meta;
551 	ctx.map = info->map;
552 	if (v) {
553 		ctx.key = &info->index;
554 
555 		if (!info->percpu_value_buf) {
556 			ctx.value = v;
557 		} else {
558 			pptr = v;
559 			size = round_up(map->value_size, 8);
560 			for_each_possible_cpu(cpu) {
561 				bpf_long_memcpy(info->percpu_value_buf + off,
562 						per_cpu_ptr(pptr, cpu),
563 						size);
564 				off += size;
565 			}
566 			ctx.value = info->percpu_value_buf;
567 		}
568 	}
569 
570 	return bpf_iter_run_prog(prog, &ctx);
571 }
572 
573 static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
574 {
575 	return __bpf_array_map_seq_show(seq, v);
576 }
577 
578 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
579 {
580 	if (!v)
581 		(void)__bpf_array_map_seq_show(seq, NULL);
582 }
583 
584 static int bpf_iter_init_array_map(void *priv_data,
585 				   struct bpf_iter_aux_info *aux)
586 {
587 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
588 	struct bpf_map *map = aux->map;
589 	void *value_buf;
590 	u32 buf_size;
591 
592 	if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
593 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
594 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
595 		if (!value_buf)
596 			return -ENOMEM;
597 
598 		seq_info->percpu_value_buf = value_buf;
599 	}
600 
601 	seq_info->map = map;
602 	return 0;
603 }
604 
605 static void bpf_iter_fini_array_map(void *priv_data)
606 {
607 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
608 
609 	kfree(seq_info->percpu_value_buf);
610 }
611 
612 static const struct seq_operations bpf_array_map_seq_ops = {
613 	.start	= bpf_array_map_seq_start,
614 	.next	= bpf_array_map_seq_next,
615 	.stop	= bpf_array_map_seq_stop,
616 	.show	= bpf_array_map_seq_show,
617 };
618 
619 static const struct bpf_iter_seq_info iter_seq_info = {
620 	.seq_ops		= &bpf_array_map_seq_ops,
621 	.init_seq_private	= bpf_iter_init_array_map,
622 	.fini_seq_private	= bpf_iter_fini_array_map,
623 	.seq_priv_size		= sizeof(struct bpf_iter_seq_array_map_info),
624 };
625 
626 static int array_map_btf_id;
627 const struct bpf_map_ops array_map_ops = {
628 	.map_alloc_check = array_map_alloc_check,
629 	.map_alloc = array_map_alloc,
630 	.map_free = array_map_free,
631 	.map_get_next_key = array_map_get_next_key,
632 	.map_lookup_elem = array_map_lookup_elem,
633 	.map_update_elem = array_map_update_elem,
634 	.map_delete_elem = array_map_delete_elem,
635 	.map_gen_lookup = array_map_gen_lookup,
636 	.map_direct_value_addr = array_map_direct_value_addr,
637 	.map_direct_value_meta = array_map_direct_value_meta,
638 	.map_mmap = array_map_mmap,
639 	.map_seq_show_elem = array_map_seq_show_elem,
640 	.map_check_btf = array_map_check_btf,
641 	.map_lookup_batch = generic_map_lookup_batch,
642 	.map_update_batch = generic_map_update_batch,
643 	.map_btf_name = "bpf_array",
644 	.map_btf_id = &array_map_btf_id,
645 	.iter_seq_info = &iter_seq_info,
646 };
647 
648 static int percpu_array_map_btf_id;
649 const struct bpf_map_ops percpu_array_map_ops = {
650 	.map_alloc_check = array_map_alloc_check,
651 	.map_alloc = array_map_alloc,
652 	.map_free = array_map_free,
653 	.map_get_next_key = array_map_get_next_key,
654 	.map_lookup_elem = percpu_array_map_lookup_elem,
655 	.map_update_elem = array_map_update_elem,
656 	.map_delete_elem = array_map_delete_elem,
657 	.map_seq_show_elem = percpu_array_map_seq_show_elem,
658 	.map_check_btf = array_map_check_btf,
659 	.map_btf_name = "bpf_array",
660 	.map_btf_id = &percpu_array_map_btf_id,
661 	.iter_seq_info = &iter_seq_info,
662 };
663 
664 static int fd_array_map_alloc_check(union bpf_attr *attr)
665 {
666 	/* only file descriptors can be stored in this type of map */
667 	if (attr->value_size != sizeof(u32))
668 		return -EINVAL;
669 	/* Program read-only/write-only not supported for special maps yet. */
670 	if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
671 		return -EINVAL;
672 	return array_map_alloc_check(attr);
673 }
674 
675 static void fd_array_map_free(struct bpf_map *map)
676 {
677 	struct bpf_array *array = container_of(map, struct bpf_array, map);
678 	int i;
679 
680 	/* make sure it's empty */
681 	for (i = 0; i < array->map.max_entries; i++)
682 		BUG_ON(array->ptrs[i] != NULL);
683 
684 	bpf_map_area_free(array);
685 }
686 
687 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
688 {
689 	return ERR_PTR(-EOPNOTSUPP);
690 }
691 
692 /* only called from syscall */
693 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
694 {
695 	void **elem, *ptr;
696 	int ret =  0;
697 
698 	if (!map->ops->map_fd_sys_lookup_elem)
699 		return -ENOTSUPP;
700 
701 	rcu_read_lock();
702 	elem = array_map_lookup_elem(map, key);
703 	if (elem && (ptr = READ_ONCE(*elem)))
704 		*value = map->ops->map_fd_sys_lookup_elem(ptr);
705 	else
706 		ret = -ENOENT;
707 	rcu_read_unlock();
708 
709 	return ret;
710 }
711 
712 /* only called from syscall */
713 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
714 				 void *key, void *value, u64 map_flags)
715 {
716 	struct bpf_array *array = container_of(map, struct bpf_array, map);
717 	void *new_ptr, *old_ptr;
718 	u32 index = *(u32 *)key, ufd;
719 
720 	if (map_flags != BPF_ANY)
721 		return -EINVAL;
722 
723 	if (index >= array->map.max_entries)
724 		return -E2BIG;
725 
726 	ufd = *(u32 *)value;
727 	new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
728 	if (IS_ERR(new_ptr))
729 		return PTR_ERR(new_ptr);
730 
731 	if (map->ops->map_poke_run) {
732 		mutex_lock(&array->aux->poke_mutex);
733 		old_ptr = xchg(array->ptrs + index, new_ptr);
734 		map->ops->map_poke_run(map, index, old_ptr, new_ptr);
735 		mutex_unlock(&array->aux->poke_mutex);
736 	} else {
737 		old_ptr = xchg(array->ptrs + index, new_ptr);
738 	}
739 
740 	if (old_ptr)
741 		map->ops->map_fd_put_ptr(old_ptr);
742 	return 0;
743 }
744 
745 static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
746 {
747 	struct bpf_array *array = container_of(map, struct bpf_array, map);
748 	void *old_ptr;
749 	u32 index = *(u32 *)key;
750 
751 	if (index >= array->map.max_entries)
752 		return -E2BIG;
753 
754 	if (map->ops->map_poke_run) {
755 		mutex_lock(&array->aux->poke_mutex);
756 		old_ptr = xchg(array->ptrs + index, NULL);
757 		map->ops->map_poke_run(map, index, old_ptr, NULL);
758 		mutex_unlock(&array->aux->poke_mutex);
759 	} else {
760 		old_ptr = xchg(array->ptrs + index, NULL);
761 	}
762 
763 	if (old_ptr) {
764 		map->ops->map_fd_put_ptr(old_ptr);
765 		return 0;
766 	} else {
767 		return -ENOENT;
768 	}
769 }
770 
771 static void *prog_fd_array_get_ptr(struct bpf_map *map,
772 				   struct file *map_file, int fd)
773 {
774 	struct bpf_array *array = container_of(map, struct bpf_array, map);
775 	struct bpf_prog *prog = bpf_prog_get(fd);
776 
777 	if (IS_ERR(prog))
778 		return prog;
779 
780 	if (!bpf_prog_array_compatible(array, prog)) {
781 		bpf_prog_put(prog);
782 		return ERR_PTR(-EINVAL);
783 	}
784 
785 	return prog;
786 }
787 
788 static void prog_fd_array_put_ptr(void *ptr)
789 {
790 	bpf_prog_put(ptr);
791 }
792 
793 static u32 prog_fd_array_sys_lookup_elem(void *ptr)
794 {
795 	return ((struct bpf_prog *)ptr)->aux->id;
796 }
797 
798 /* decrement refcnt of all bpf_progs that are stored in this map */
799 static void bpf_fd_array_map_clear(struct bpf_map *map)
800 {
801 	struct bpf_array *array = container_of(map, struct bpf_array, map);
802 	int i;
803 
804 	for (i = 0; i < array->map.max_entries; i++)
805 		fd_array_map_delete_elem(map, &i);
806 }
807 
808 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
809 					 struct seq_file *m)
810 {
811 	void **elem, *ptr;
812 	u32 prog_id;
813 
814 	rcu_read_lock();
815 
816 	elem = array_map_lookup_elem(map, key);
817 	if (elem) {
818 		ptr = READ_ONCE(*elem);
819 		if (ptr) {
820 			seq_printf(m, "%u: ", *(u32 *)key);
821 			prog_id = prog_fd_array_sys_lookup_elem(ptr);
822 			btf_type_seq_show(map->btf, map->btf_value_type_id,
823 					  &prog_id, m);
824 			seq_puts(m, "\n");
825 		}
826 	}
827 
828 	rcu_read_unlock();
829 }
830 
831 struct prog_poke_elem {
832 	struct list_head list;
833 	struct bpf_prog_aux *aux;
834 };
835 
836 static int prog_array_map_poke_track(struct bpf_map *map,
837 				     struct bpf_prog_aux *prog_aux)
838 {
839 	struct prog_poke_elem *elem;
840 	struct bpf_array_aux *aux;
841 	int ret = 0;
842 
843 	aux = container_of(map, struct bpf_array, map)->aux;
844 	mutex_lock(&aux->poke_mutex);
845 	list_for_each_entry(elem, &aux->poke_progs, list) {
846 		if (elem->aux == prog_aux)
847 			goto out;
848 	}
849 
850 	elem = kmalloc(sizeof(*elem), GFP_KERNEL);
851 	if (!elem) {
852 		ret = -ENOMEM;
853 		goto out;
854 	}
855 
856 	INIT_LIST_HEAD(&elem->list);
857 	/* We must track the program's aux info at this point in time
858 	 * since the program pointer itself may not be stable yet, see
859 	 * also comment in prog_array_map_poke_run().
860 	 */
861 	elem->aux = prog_aux;
862 
863 	list_add_tail(&elem->list, &aux->poke_progs);
864 out:
865 	mutex_unlock(&aux->poke_mutex);
866 	return ret;
867 }
868 
869 static void prog_array_map_poke_untrack(struct bpf_map *map,
870 					struct bpf_prog_aux *prog_aux)
871 {
872 	struct prog_poke_elem *elem, *tmp;
873 	struct bpf_array_aux *aux;
874 
875 	aux = container_of(map, struct bpf_array, map)->aux;
876 	mutex_lock(&aux->poke_mutex);
877 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
878 		if (elem->aux == prog_aux) {
879 			list_del_init(&elem->list);
880 			kfree(elem);
881 			break;
882 		}
883 	}
884 	mutex_unlock(&aux->poke_mutex);
885 }
886 
887 static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
888 				    struct bpf_prog *old,
889 				    struct bpf_prog *new)
890 {
891 	struct prog_poke_elem *elem;
892 	struct bpf_array_aux *aux;
893 
894 	aux = container_of(map, struct bpf_array, map)->aux;
895 	WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
896 
897 	list_for_each_entry(elem, &aux->poke_progs, list) {
898 		struct bpf_jit_poke_descriptor *poke;
899 		int i, ret;
900 
901 		for (i = 0; i < elem->aux->size_poke_tab; i++) {
902 			poke = &elem->aux->poke_tab[i];
903 
904 			/* Few things to be aware of:
905 			 *
906 			 * 1) We can only ever access aux in this context, but
907 			 *    not aux->prog since it might not be stable yet and
908 			 *    there could be danger of use after free otherwise.
909 			 * 2) Initially when we start tracking aux, the program
910 			 *    is not JITed yet and also does not have a kallsyms
911 			 *    entry. We skip these as poke->ip_stable is not
912 			 *    active yet. The JIT will do the final fixup before
913 			 *    setting it stable. The various poke->ip_stable are
914 			 *    successively activated, so tail call updates can
915 			 *    arrive from here while JIT is still finishing its
916 			 *    final fixup for non-activated poke entries.
917 			 * 3) On program teardown, the program's kallsym entry gets
918 			 *    removed out of RCU callback, but we can only untrack
919 			 *    from sleepable context, therefore bpf_arch_text_poke()
920 			 *    might not see that this is in BPF text section and
921 			 *    bails out with -EINVAL. As these are unreachable since
922 			 *    RCU grace period already passed, we simply skip them.
923 			 * 4) Also programs reaching refcount of zero while patching
924 			 *    is in progress is okay since we're protected under
925 			 *    poke_mutex and untrack the programs before the JIT
926 			 *    buffer is freed. When we're still in the middle of
927 			 *    patching and suddenly kallsyms entry of the program
928 			 *    gets evicted, we just skip the rest which is fine due
929 			 *    to point 3).
930 			 * 5) Any other error happening below from bpf_arch_text_poke()
931 			 *    is a unexpected bug.
932 			 */
933 			if (!READ_ONCE(poke->ip_stable))
934 				continue;
935 			if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
936 				continue;
937 			if (poke->tail_call.map != map ||
938 			    poke->tail_call.key != key)
939 				continue;
940 
941 			ret = bpf_arch_text_poke(poke->ip, BPF_MOD_JUMP,
942 						 old ? (u8 *)old->bpf_func +
943 						 poke->adj_off : NULL,
944 						 new ? (u8 *)new->bpf_func +
945 						 poke->adj_off : NULL);
946 			BUG_ON(ret < 0 && ret != -EINVAL);
947 		}
948 	}
949 }
950 
951 static void prog_array_map_clear_deferred(struct work_struct *work)
952 {
953 	struct bpf_map *map = container_of(work, struct bpf_array_aux,
954 					   work)->map;
955 	bpf_fd_array_map_clear(map);
956 	bpf_map_put(map);
957 }
958 
959 static void prog_array_map_clear(struct bpf_map *map)
960 {
961 	struct bpf_array_aux *aux = container_of(map, struct bpf_array,
962 						 map)->aux;
963 	bpf_map_inc(map);
964 	schedule_work(&aux->work);
965 }
966 
967 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
968 {
969 	struct bpf_array_aux *aux;
970 	struct bpf_map *map;
971 
972 	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
973 	if (!aux)
974 		return ERR_PTR(-ENOMEM);
975 
976 	INIT_WORK(&aux->work, prog_array_map_clear_deferred);
977 	INIT_LIST_HEAD(&aux->poke_progs);
978 	mutex_init(&aux->poke_mutex);
979 
980 	map = array_map_alloc(attr);
981 	if (IS_ERR(map)) {
982 		kfree(aux);
983 		return map;
984 	}
985 
986 	container_of(map, struct bpf_array, map)->aux = aux;
987 	aux->map = map;
988 
989 	return map;
990 }
991 
992 static void prog_array_map_free(struct bpf_map *map)
993 {
994 	struct prog_poke_elem *elem, *tmp;
995 	struct bpf_array_aux *aux;
996 
997 	aux = container_of(map, struct bpf_array, map)->aux;
998 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
999 		list_del_init(&elem->list);
1000 		kfree(elem);
1001 	}
1002 	kfree(aux);
1003 	fd_array_map_free(map);
1004 }
1005 
1006 static int prog_array_map_btf_id;
1007 const struct bpf_map_ops prog_array_map_ops = {
1008 	.map_alloc_check = fd_array_map_alloc_check,
1009 	.map_alloc = prog_array_map_alloc,
1010 	.map_free = prog_array_map_free,
1011 	.map_poke_track = prog_array_map_poke_track,
1012 	.map_poke_untrack = prog_array_map_poke_untrack,
1013 	.map_poke_run = prog_array_map_poke_run,
1014 	.map_get_next_key = array_map_get_next_key,
1015 	.map_lookup_elem = fd_array_map_lookup_elem,
1016 	.map_delete_elem = fd_array_map_delete_elem,
1017 	.map_fd_get_ptr = prog_fd_array_get_ptr,
1018 	.map_fd_put_ptr = prog_fd_array_put_ptr,
1019 	.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
1020 	.map_release_uref = prog_array_map_clear,
1021 	.map_seq_show_elem = prog_array_map_seq_show_elem,
1022 	.map_btf_name = "bpf_array",
1023 	.map_btf_id = &prog_array_map_btf_id,
1024 };
1025 
1026 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
1027 						   struct file *map_file)
1028 {
1029 	struct bpf_event_entry *ee;
1030 
1031 	ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
1032 	if (ee) {
1033 		ee->event = perf_file->private_data;
1034 		ee->perf_file = perf_file;
1035 		ee->map_file = map_file;
1036 	}
1037 
1038 	return ee;
1039 }
1040 
1041 static void __bpf_event_entry_free(struct rcu_head *rcu)
1042 {
1043 	struct bpf_event_entry *ee;
1044 
1045 	ee = container_of(rcu, struct bpf_event_entry, rcu);
1046 	fput(ee->perf_file);
1047 	kfree(ee);
1048 }
1049 
1050 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
1051 {
1052 	call_rcu(&ee->rcu, __bpf_event_entry_free);
1053 }
1054 
1055 static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
1056 					 struct file *map_file, int fd)
1057 {
1058 	struct bpf_event_entry *ee;
1059 	struct perf_event *event;
1060 	struct file *perf_file;
1061 	u64 value;
1062 
1063 	perf_file = perf_event_get(fd);
1064 	if (IS_ERR(perf_file))
1065 		return perf_file;
1066 
1067 	ee = ERR_PTR(-EOPNOTSUPP);
1068 	event = perf_file->private_data;
1069 	if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
1070 		goto err_out;
1071 
1072 	ee = bpf_event_entry_gen(perf_file, map_file);
1073 	if (ee)
1074 		return ee;
1075 	ee = ERR_PTR(-ENOMEM);
1076 err_out:
1077 	fput(perf_file);
1078 	return ee;
1079 }
1080 
1081 static void perf_event_fd_array_put_ptr(void *ptr)
1082 {
1083 	bpf_event_entry_free_rcu(ptr);
1084 }
1085 
1086 static void perf_event_fd_array_release(struct bpf_map *map,
1087 					struct file *map_file)
1088 {
1089 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1090 	struct bpf_event_entry *ee;
1091 	int i;
1092 
1093 	rcu_read_lock();
1094 	for (i = 0; i < array->map.max_entries; i++) {
1095 		ee = READ_ONCE(array->ptrs[i]);
1096 		if (ee && ee->map_file == map_file)
1097 			fd_array_map_delete_elem(map, &i);
1098 	}
1099 	rcu_read_unlock();
1100 }
1101 
1102 static int perf_event_array_map_btf_id;
1103 const struct bpf_map_ops perf_event_array_map_ops = {
1104 	.map_alloc_check = fd_array_map_alloc_check,
1105 	.map_alloc = array_map_alloc,
1106 	.map_free = fd_array_map_free,
1107 	.map_get_next_key = array_map_get_next_key,
1108 	.map_lookup_elem = fd_array_map_lookup_elem,
1109 	.map_delete_elem = fd_array_map_delete_elem,
1110 	.map_fd_get_ptr = perf_event_fd_array_get_ptr,
1111 	.map_fd_put_ptr = perf_event_fd_array_put_ptr,
1112 	.map_release = perf_event_fd_array_release,
1113 	.map_check_btf = map_check_no_btf,
1114 	.map_btf_name = "bpf_array",
1115 	.map_btf_id = &perf_event_array_map_btf_id,
1116 };
1117 
1118 #ifdef CONFIG_CGROUPS
1119 static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
1120 				     struct file *map_file /* not used */,
1121 				     int fd)
1122 {
1123 	return cgroup_get_from_fd(fd);
1124 }
1125 
1126 static void cgroup_fd_array_put_ptr(void *ptr)
1127 {
1128 	/* cgroup_put free cgrp after a rcu grace period */
1129 	cgroup_put(ptr);
1130 }
1131 
1132 static void cgroup_fd_array_free(struct bpf_map *map)
1133 {
1134 	bpf_fd_array_map_clear(map);
1135 	fd_array_map_free(map);
1136 }
1137 
1138 static int cgroup_array_map_btf_id;
1139 const struct bpf_map_ops cgroup_array_map_ops = {
1140 	.map_alloc_check = fd_array_map_alloc_check,
1141 	.map_alloc = array_map_alloc,
1142 	.map_free = cgroup_fd_array_free,
1143 	.map_get_next_key = array_map_get_next_key,
1144 	.map_lookup_elem = fd_array_map_lookup_elem,
1145 	.map_delete_elem = fd_array_map_delete_elem,
1146 	.map_fd_get_ptr = cgroup_fd_array_get_ptr,
1147 	.map_fd_put_ptr = cgroup_fd_array_put_ptr,
1148 	.map_check_btf = map_check_no_btf,
1149 	.map_btf_name = "bpf_array",
1150 	.map_btf_id = &cgroup_array_map_btf_id,
1151 };
1152 #endif
1153 
1154 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
1155 {
1156 	struct bpf_map *map, *inner_map_meta;
1157 
1158 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1159 	if (IS_ERR(inner_map_meta))
1160 		return inner_map_meta;
1161 
1162 	map = array_map_alloc(attr);
1163 	if (IS_ERR(map)) {
1164 		bpf_map_meta_free(inner_map_meta);
1165 		return map;
1166 	}
1167 
1168 	map->inner_map_meta = inner_map_meta;
1169 
1170 	return map;
1171 }
1172 
1173 static void array_of_map_free(struct bpf_map *map)
1174 {
1175 	/* map->inner_map_meta is only accessed by syscall which
1176 	 * is protected by fdget/fdput.
1177 	 */
1178 	bpf_map_meta_free(map->inner_map_meta);
1179 	bpf_fd_array_map_clear(map);
1180 	fd_array_map_free(map);
1181 }
1182 
1183 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
1184 {
1185 	struct bpf_map **inner_map = array_map_lookup_elem(map, key);
1186 
1187 	if (!inner_map)
1188 		return NULL;
1189 
1190 	return READ_ONCE(*inner_map);
1191 }
1192 
1193 static u32 array_of_map_gen_lookup(struct bpf_map *map,
1194 				   struct bpf_insn *insn_buf)
1195 {
1196 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1197 	u32 elem_size = round_up(map->value_size, 8);
1198 	struct bpf_insn *insn = insn_buf;
1199 	const int ret = BPF_REG_0;
1200 	const int map_ptr = BPF_REG_1;
1201 	const int index = BPF_REG_2;
1202 
1203 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
1204 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
1205 	if (!map->bypass_spec_v1) {
1206 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
1207 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
1208 	} else {
1209 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
1210 	}
1211 	if (is_power_of_2(elem_size))
1212 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
1213 	else
1214 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
1215 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
1216 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1217 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
1218 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
1219 	*insn++ = BPF_MOV64_IMM(ret, 0);
1220 
1221 	return insn - insn_buf;
1222 }
1223 
1224 static int array_of_maps_map_btf_id;
1225 const struct bpf_map_ops array_of_maps_map_ops = {
1226 	.map_alloc_check = fd_array_map_alloc_check,
1227 	.map_alloc = array_of_map_alloc,
1228 	.map_free = array_of_map_free,
1229 	.map_get_next_key = array_map_get_next_key,
1230 	.map_lookup_elem = array_of_map_lookup_elem,
1231 	.map_delete_elem = fd_array_map_delete_elem,
1232 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1233 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1234 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1235 	.map_gen_lookup = array_of_map_gen_lookup,
1236 	.map_check_btf = map_check_no_btf,
1237 	.map_btf_name = "bpf_array",
1238 	.map_btf_id = &array_of_maps_map_btf_id,
1239 };
1240