1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 #include <linux/btf_ids.h> 15 16 #include "map_in_map.h" 17 18 #define ARRAY_CREATE_FLAG_MASK \ 19 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 20 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 21 22 static void bpf_array_free_percpu(struct bpf_array *array) 23 { 24 int i; 25 26 for (i = 0; i < array->map.max_entries; i++) { 27 free_percpu(array->pptrs[i]); 28 cond_resched(); 29 } 30 } 31 32 static int bpf_array_alloc_percpu(struct bpf_array *array) 33 { 34 void __percpu *ptr; 35 int i; 36 37 for (i = 0; i < array->map.max_entries; i++) { 38 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 39 GFP_USER | __GFP_NOWARN); 40 if (!ptr) { 41 bpf_array_free_percpu(array); 42 return -ENOMEM; 43 } 44 array->pptrs[i] = ptr; 45 cond_resched(); 46 } 47 48 return 0; 49 } 50 51 /* Called from syscall */ 52 int array_map_alloc_check(union bpf_attr *attr) 53 { 54 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 55 int numa_node = bpf_map_attr_numa_node(attr); 56 57 /* check sanity of attributes */ 58 if (attr->max_entries == 0 || attr->key_size != 4 || 59 attr->value_size == 0 || 60 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 61 !bpf_map_flags_access_ok(attr->map_flags) || 62 (percpu && numa_node != NUMA_NO_NODE)) 63 return -EINVAL; 64 65 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 66 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 67 return -EINVAL; 68 69 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 70 attr->map_flags & BPF_F_PRESERVE_ELEMS) 71 return -EINVAL; 72 73 /* avoid overflow on round_up(map->value_size) */ 74 if (attr->value_size > INT_MAX) 75 return -E2BIG; 76 77 return 0; 78 } 79 80 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 81 { 82 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 83 int numa_node = bpf_map_attr_numa_node(attr); 84 u32 elem_size, index_mask, max_entries; 85 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 86 u64 array_size, mask64; 87 struct bpf_array *array; 88 89 elem_size = round_up(attr->value_size, 8); 90 91 max_entries = attr->max_entries; 92 93 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 94 * upper most bit set in u32 space is undefined behavior due to 95 * resulting 1U << 32, so do it manually here in u64 space. 96 */ 97 mask64 = fls_long(max_entries - 1); 98 mask64 = 1ULL << mask64; 99 mask64 -= 1; 100 101 index_mask = mask64; 102 if (!bypass_spec_v1) { 103 /* round up array size to nearest power of 2, 104 * since cpu will speculate within index_mask limits 105 */ 106 max_entries = index_mask + 1; 107 /* Check for overflows. */ 108 if (max_entries < attr->max_entries) 109 return ERR_PTR(-E2BIG); 110 } 111 112 array_size = sizeof(*array); 113 if (percpu) { 114 array_size += (u64) max_entries * sizeof(void *); 115 } else { 116 /* rely on vmalloc() to return page-aligned memory and 117 * ensure array->value is exactly page-aligned 118 */ 119 if (attr->map_flags & BPF_F_MMAPABLE) { 120 array_size = PAGE_ALIGN(array_size); 121 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 122 } else { 123 array_size += (u64) max_entries * elem_size; 124 } 125 } 126 127 /* allocate all map elements and zero-initialize them */ 128 if (attr->map_flags & BPF_F_MMAPABLE) { 129 void *data; 130 131 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 132 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 133 if (!data) 134 return ERR_PTR(-ENOMEM); 135 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 136 - offsetof(struct bpf_array, value); 137 } else { 138 array = bpf_map_area_alloc(array_size, numa_node); 139 } 140 if (!array) 141 return ERR_PTR(-ENOMEM); 142 array->index_mask = index_mask; 143 array->map.bypass_spec_v1 = bypass_spec_v1; 144 145 /* copy mandatory map attributes */ 146 bpf_map_init_from_attr(&array->map, attr); 147 array->elem_size = elem_size; 148 149 if (percpu && bpf_array_alloc_percpu(array)) { 150 bpf_map_area_free(array); 151 return ERR_PTR(-ENOMEM); 152 } 153 154 return &array->map; 155 } 156 157 static void *array_map_elem_ptr(struct bpf_array* array, u32 index) 158 { 159 return array->value + (u64)array->elem_size * index; 160 } 161 162 /* Called from syscall or from eBPF program */ 163 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 164 { 165 struct bpf_array *array = container_of(map, struct bpf_array, map); 166 u32 index = *(u32 *)key; 167 168 if (unlikely(index >= array->map.max_entries)) 169 return NULL; 170 171 return array->value + (u64)array->elem_size * (index & array->index_mask); 172 } 173 174 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 175 u32 off) 176 { 177 struct bpf_array *array = container_of(map, struct bpf_array, map); 178 179 if (map->max_entries != 1) 180 return -ENOTSUPP; 181 if (off >= map->value_size) 182 return -EINVAL; 183 184 *imm = (unsigned long)array->value; 185 return 0; 186 } 187 188 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 189 u32 *off) 190 { 191 struct bpf_array *array = container_of(map, struct bpf_array, map); 192 u64 base = (unsigned long)array->value; 193 u64 range = array->elem_size; 194 195 if (map->max_entries != 1) 196 return -ENOTSUPP; 197 if (imm < base || imm >= base + range) 198 return -ENOENT; 199 200 *off = imm - base; 201 return 0; 202 } 203 204 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 205 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 206 { 207 struct bpf_array *array = container_of(map, struct bpf_array, map); 208 struct bpf_insn *insn = insn_buf; 209 u32 elem_size = array->elem_size; 210 const int ret = BPF_REG_0; 211 const int map_ptr = BPF_REG_1; 212 const int index = BPF_REG_2; 213 214 if (map->map_flags & BPF_F_INNER_MAP) 215 return -EOPNOTSUPP; 216 217 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 218 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 219 if (!map->bypass_spec_v1) { 220 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 221 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 222 } else { 223 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 224 } 225 226 if (is_power_of_2(elem_size)) { 227 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 228 } else { 229 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 230 } 231 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 232 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 233 *insn++ = BPF_MOV64_IMM(ret, 0); 234 return insn - insn_buf; 235 } 236 237 /* Called from eBPF program */ 238 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 239 { 240 struct bpf_array *array = container_of(map, struct bpf_array, map); 241 u32 index = *(u32 *)key; 242 243 if (unlikely(index >= array->map.max_entries)) 244 return NULL; 245 246 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 247 } 248 249 static void *percpu_array_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu) 250 { 251 struct bpf_array *array = container_of(map, struct bpf_array, map); 252 u32 index = *(u32 *)key; 253 254 if (cpu >= nr_cpu_ids) 255 return NULL; 256 257 if (unlikely(index >= array->map.max_entries)) 258 return NULL; 259 260 return per_cpu_ptr(array->pptrs[index & array->index_mask], cpu); 261 } 262 263 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 264 { 265 struct bpf_array *array = container_of(map, struct bpf_array, map); 266 u32 index = *(u32 *)key; 267 void __percpu *pptr; 268 int cpu, off = 0; 269 u32 size; 270 271 if (unlikely(index >= array->map.max_entries)) 272 return -ENOENT; 273 274 /* per_cpu areas are zero-filled and bpf programs can only 275 * access 'value_size' of them, so copying rounded areas 276 * will not leak any kernel data 277 */ 278 size = array->elem_size; 279 rcu_read_lock(); 280 pptr = array->pptrs[index & array->index_mask]; 281 for_each_possible_cpu(cpu) { 282 bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); 283 off += size; 284 } 285 rcu_read_unlock(); 286 return 0; 287 } 288 289 /* Called from syscall */ 290 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 291 { 292 struct bpf_array *array = container_of(map, struct bpf_array, map); 293 u32 index = key ? *(u32 *)key : U32_MAX; 294 u32 *next = (u32 *)next_key; 295 296 if (index >= array->map.max_entries) { 297 *next = 0; 298 return 0; 299 } 300 301 if (index == array->map.max_entries - 1) 302 return -ENOENT; 303 304 *next = index + 1; 305 return 0; 306 } 307 308 static void check_and_free_fields(struct bpf_array *arr, void *val) 309 { 310 if (map_value_has_timer(&arr->map)) 311 bpf_timer_cancel_and_free(val + arr->map.timer_off); 312 if (map_value_has_kptrs(&arr->map)) 313 bpf_map_free_kptrs(&arr->map, val); 314 } 315 316 /* Called from syscall or from eBPF program */ 317 static int array_map_update_elem(struct bpf_map *map, void *key, void *value, 318 u64 map_flags) 319 { 320 struct bpf_array *array = container_of(map, struct bpf_array, map); 321 u32 index = *(u32 *)key; 322 char *val; 323 324 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 325 /* unknown flags */ 326 return -EINVAL; 327 328 if (unlikely(index >= array->map.max_entries)) 329 /* all elements were pre-allocated, cannot insert a new one */ 330 return -E2BIG; 331 332 if (unlikely(map_flags & BPF_NOEXIST)) 333 /* all elements already exist */ 334 return -EEXIST; 335 336 if (unlikely((map_flags & BPF_F_LOCK) && 337 !map_value_has_spin_lock(map))) 338 return -EINVAL; 339 340 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 341 memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), 342 value, map->value_size); 343 } else { 344 val = array->value + 345 (u64)array->elem_size * (index & array->index_mask); 346 if (map_flags & BPF_F_LOCK) 347 copy_map_value_locked(map, val, value, false); 348 else 349 copy_map_value(map, val, value); 350 check_and_free_fields(array, val); 351 } 352 return 0; 353 } 354 355 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 356 u64 map_flags) 357 { 358 struct bpf_array *array = container_of(map, struct bpf_array, map); 359 u32 index = *(u32 *)key; 360 void __percpu *pptr; 361 int cpu, off = 0; 362 u32 size; 363 364 if (unlikely(map_flags > BPF_EXIST)) 365 /* unknown flags */ 366 return -EINVAL; 367 368 if (unlikely(index >= array->map.max_entries)) 369 /* all elements were pre-allocated, cannot insert a new one */ 370 return -E2BIG; 371 372 if (unlikely(map_flags == BPF_NOEXIST)) 373 /* all elements already exist */ 374 return -EEXIST; 375 376 /* the user space will provide round_up(value_size, 8) bytes that 377 * will be copied into per-cpu area. bpf programs can only access 378 * value_size of it. During lookup the same extra bytes will be 379 * returned or zeros which were zero-filled by percpu_alloc, 380 * so no kernel data leaks possible 381 */ 382 size = array->elem_size; 383 rcu_read_lock(); 384 pptr = array->pptrs[index & array->index_mask]; 385 for_each_possible_cpu(cpu) { 386 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); 387 off += size; 388 } 389 rcu_read_unlock(); 390 return 0; 391 } 392 393 /* Called from syscall or from eBPF program */ 394 static int array_map_delete_elem(struct bpf_map *map, void *key) 395 { 396 return -EINVAL; 397 } 398 399 static void *array_map_vmalloc_addr(struct bpf_array *array) 400 { 401 return (void *)round_down((unsigned long)array, PAGE_SIZE); 402 } 403 404 static void array_map_free_timers(struct bpf_map *map) 405 { 406 struct bpf_array *array = container_of(map, struct bpf_array, map); 407 int i; 408 409 /* We don't reset or free kptr on uref dropping to zero. */ 410 if (!map_value_has_timer(map)) 411 return; 412 413 for (i = 0; i < array->map.max_entries; i++) 414 bpf_timer_cancel_and_free(array_map_elem_ptr(array, i) + map->timer_off); 415 } 416 417 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 418 static void array_map_free(struct bpf_map *map) 419 { 420 struct bpf_array *array = container_of(map, struct bpf_array, map); 421 int i; 422 423 if (map_value_has_kptrs(map)) { 424 for (i = 0; i < array->map.max_entries; i++) 425 bpf_map_free_kptrs(map, array_map_elem_ptr(array, i)); 426 bpf_map_free_kptr_off_tab(map); 427 } 428 429 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 430 bpf_array_free_percpu(array); 431 432 if (array->map.map_flags & BPF_F_MMAPABLE) 433 bpf_map_area_free(array_map_vmalloc_addr(array)); 434 else 435 bpf_map_area_free(array); 436 } 437 438 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 439 struct seq_file *m) 440 { 441 void *value; 442 443 rcu_read_lock(); 444 445 value = array_map_lookup_elem(map, key); 446 if (!value) { 447 rcu_read_unlock(); 448 return; 449 } 450 451 if (map->btf_key_type_id) 452 seq_printf(m, "%u: ", *(u32 *)key); 453 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 454 seq_puts(m, "\n"); 455 456 rcu_read_unlock(); 457 } 458 459 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 460 struct seq_file *m) 461 { 462 struct bpf_array *array = container_of(map, struct bpf_array, map); 463 u32 index = *(u32 *)key; 464 void __percpu *pptr; 465 int cpu; 466 467 rcu_read_lock(); 468 469 seq_printf(m, "%u: {\n", *(u32 *)key); 470 pptr = array->pptrs[index & array->index_mask]; 471 for_each_possible_cpu(cpu) { 472 seq_printf(m, "\tcpu%d: ", cpu); 473 btf_type_seq_show(map->btf, map->btf_value_type_id, 474 per_cpu_ptr(pptr, cpu), m); 475 seq_puts(m, "\n"); 476 } 477 seq_puts(m, "}\n"); 478 479 rcu_read_unlock(); 480 } 481 482 static int array_map_check_btf(const struct bpf_map *map, 483 const struct btf *btf, 484 const struct btf_type *key_type, 485 const struct btf_type *value_type) 486 { 487 u32 int_data; 488 489 /* One exception for keyless BTF: .bss/.data/.rodata map */ 490 if (btf_type_is_void(key_type)) { 491 if (map->map_type != BPF_MAP_TYPE_ARRAY || 492 map->max_entries != 1) 493 return -EINVAL; 494 495 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 496 return -EINVAL; 497 498 return 0; 499 } 500 501 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 502 return -EINVAL; 503 504 int_data = *(u32 *)(key_type + 1); 505 /* bpf array can only take a u32 key. This check makes sure 506 * that the btf matches the attr used during map_create. 507 */ 508 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 509 return -EINVAL; 510 511 return 0; 512 } 513 514 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 515 { 516 struct bpf_array *array = container_of(map, struct bpf_array, map); 517 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 518 519 if (!(map->map_flags & BPF_F_MMAPABLE)) 520 return -EINVAL; 521 522 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 523 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 524 return -EINVAL; 525 526 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 527 vma->vm_pgoff + pgoff); 528 } 529 530 static bool array_map_meta_equal(const struct bpf_map *meta0, 531 const struct bpf_map *meta1) 532 { 533 if (!bpf_map_meta_equal(meta0, meta1)) 534 return false; 535 return meta0->map_flags & BPF_F_INNER_MAP ? true : 536 meta0->max_entries == meta1->max_entries; 537 } 538 539 struct bpf_iter_seq_array_map_info { 540 struct bpf_map *map; 541 void *percpu_value_buf; 542 u32 index; 543 }; 544 545 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 546 { 547 struct bpf_iter_seq_array_map_info *info = seq->private; 548 struct bpf_map *map = info->map; 549 struct bpf_array *array; 550 u32 index; 551 552 if (info->index >= map->max_entries) 553 return NULL; 554 555 if (*pos == 0) 556 ++*pos; 557 array = container_of(map, struct bpf_array, map); 558 index = info->index & array->index_mask; 559 if (info->percpu_value_buf) 560 return array->pptrs[index]; 561 return array_map_elem_ptr(array, index); 562 } 563 564 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 565 { 566 struct bpf_iter_seq_array_map_info *info = seq->private; 567 struct bpf_map *map = info->map; 568 struct bpf_array *array; 569 u32 index; 570 571 ++*pos; 572 ++info->index; 573 if (info->index >= map->max_entries) 574 return NULL; 575 576 array = container_of(map, struct bpf_array, map); 577 index = info->index & array->index_mask; 578 if (info->percpu_value_buf) 579 return array->pptrs[index]; 580 return array_map_elem_ptr(array, index); 581 } 582 583 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 584 { 585 struct bpf_iter_seq_array_map_info *info = seq->private; 586 struct bpf_iter__bpf_map_elem ctx = {}; 587 struct bpf_map *map = info->map; 588 struct bpf_array *array = container_of(map, struct bpf_array, map); 589 struct bpf_iter_meta meta; 590 struct bpf_prog *prog; 591 int off = 0, cpu = 0; 592 void __percpu **pptr; 593 u32 size; 594 595 meta.seq = seq; 596 prog = bpf_iter_get_info(&meta, v == NULL); 597 if (!prog) 598 return 0; 599 600 ctx.meta = &meta; 601 ctx.map = info->map; 602 if (v) { 603 ctx.key = &info->index; 604 605 if (!info->percpu_value_buf) { 606 ctx.value = v; 607 } else { 608 pptr = v; 609 size = array->elem_size; 610 for_each_possible_cpu(cpu) { 611 bpf_long_memcpy(info->percpu_value_buf + off, 612 per_cpu_ptr(pptr, cpu), 613 size); 614 off += size; 615 } 616 ctx.value = info->percpu_value_buf; 617 } 618 } 619 620 return bpf_iter_run_prog(prog, &ctx); 621 } 622 623 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 624 { 625 return __bpf_array_map_seq_show(seq, v); 626 } 627 628 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 629 { 630 if (!v) 631 (void)__bpf_array_map_seq_show(seq, NULL); 632 } 633 634 static int bpf_iter_init_array_map(void *priv_data, 635 struct bpf_iter_aux_info *aux) 636 { 637 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 638 struct bpf_map *map = aux->map; 639 struct bpf_array *array = container_of(map, struct bpf_array, map); 640 void *value_buf; 641 u32 buf_size; 642 643 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 644 buf_size = array->elem_size * num_possible_cpus(); 645 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 646 if (!value_buf) 647 return -ENOMEM; 648 649 seq_info->percpu_value_buf = value_buf; 650 } 651 652 seq_info->map = map; 653 return 0; 654 } 655 656 static void bpf_iter_fini_array_map(void *priv_data) 657 { 658 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 659 660 kfree(seq_info->percpu_value_buf); 661 } 662 663 static const struct seq_operations bpf_array_map_seq_ops = { 664 .start = bpf_array_map_seq_start, 665 .next = bpf_array_map_seq_next, 666 .stop = bpf_array_map_seq_stop, 667 .show = bpf_array_map_seq_show, 668 }; 669 670 static const struct bpf_iter_seq_info iter_seq_info = { 671 .seq_ops = &bpf_array_map_seq_ops, 672 .init_seq_private = bpf_iter_init_array_map, 673 .fini_seq_private = bpf_iter_fini_array_map, 674 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 675 }; 676 677 static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn, 678 void *callback_ctx, u64 flags) 679 { 680 u32 i, key, num_elems = 0; 681 struct bpf_array *array; 682 bool is_percpu; 683 u64 ret = 0; 684 void *val; 685 686 if (flags != 0) 687 return -EINVAL; 688 689 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 690 array = container_of(map, struct bpf_array, map); 691 if (is_percpu) 692 migrate_disable(); 693 for (i = 0; i < map->max_entries; i++) { 694 if (is_percpu) 695 val = this_cpu_ptr(array->pptrs[i]); 696 else 697 val = array_map_elem_ptr(array, i); 698 num_elems++; 699 key = i; 700 ret = callback_fn((u64)(long)map, (u64)(long)&key, 701 (u64)(long)val, (u64)(long)callback_ctx, 0); 702 /* return value: 0 - continue, 1 - stop and return */ 703 if (ret) 704 break; 705 } 706 707 if (is_percpu) 708 migrate_enable(); 709 return num_elems; 710 } 711 712 BTF_ID_LIST_SINGLE(array_map_btf_ids, struct, bpf_array) 713 const struct bpf_map_ops array_map_ops = { 714 .map_meta_equal = array_map_meta_equal, 715 .map_alloc_check = array_map_alloc_check, 716 .map_alloc = array_map_alloc, 717 .map_free = array_map_free, 718 .map_get_next_key = array_map_get_next_key, 719 .map_release_uref = array_map_free_timers, 720 .map_lookup_elem = array_map_lookup_elem, 721 .map_update_elem = array_map_update_elem, 722 .map_delete_elem = array_map_delete_elem, 723 .map_gen_lookup = array_map_gen_lookup, 724 .map_direct_value_addr = array_map_direct_value_addr, 725 .map_direct_value_meta = array_map_direct_value_meta, 726 .map_mmap = array_map_mmap, 727 .map_seq_show_elem = array_map_seq_show_elem, 728 .map_check_btf = array_map_check_btf, 729 .map_lookup_batch = generic_map_lookup_batch, 730 .map_update_batch = generic_map_update_batch, 731 .map_set_for_each_callback_args = map_set_for_each_callback_args, 732 .map_for_each_callback = bpf_for_each_array_elem, 733 .map_btf_id = &array_map_btf_ids[0], 734 .iter_seq_info = &iter_seq_info, 735 }; 736 737 const struct bpf_map_ops percpu_array_map_ops = { 738 .map_meta_equal = bpf_map_meta_equal, 739 .map_alloc_check = array_map_alloc_check, 740 .map_alloc = array_map_alloc, 741 .map_free = array_map_free, 742 .map_get_next_key = array_map_get_next_key, 743 .map_lookup_elem = percpu_array_map_lookup_elem, 744 .map_update_elem = array_map_update_elem, 745 .map_delete_elem = array_map_delete_elem, 746 .map_lookup_percpu_elem = percpu_array_map_lookup_percpu_elem, 747 .map_seq_show_elem = percpu_array_map_seq_show_elem, 748 .map_check_btf = array_map_check_btf, 749 .map_lookup_batch = generic_map_lookup_batch, 750 .map_update_batch = generic_map_update_batch, 751 .map_set_for_each_callback_args = map_set_for_each_callback_args, 752 .map_for_each_callback = bpf_for_each_array_elem, 753 .map_btf_id = &array_map_btf_ids[0], 754 .iter_seq_info = &iter_seq_info, 755 }; 756 757 static int fd_array_map_alloc_check(union bpf_attr *attr) 758 { 759 /* only file descriptors can be stored in this type of map */ 760 if (attr->value_size != sizeof(u32)) 761 return -EINVAL; 762 /* Program read-only/write-only not supported for special maps yet. */ 763 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 764 return -EINVAL; 765 return array_map_alloc_check(attr); 766 } 767 768 static void fd_array_map_free(struct bpf_map *map) 769 { 770 struct bpf_array *array = container_of(map, struct bpf_array, map); 771 int i; 772 773 /* make sure it's empty */ 774 for (i = 0; i < array->map.max_entries; i++) 775 BUG_ON(array->ptrs[i] != NULL); 776 777 bpf_map_area_free(array); 778 } 779 780 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 781 { 782 return ERR_PTR(-EOPNOTSUPP); 783 } 784 785 /* only called from syscall */ 786 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 787 { 788 void **elem, *ptr; 789 int ret = 0; 790 791 if (!map->ops->map_fd_sys_lookup_elem) 792 return -ENOTSUPP; 793 794 rcu_read_lock(); 795 elem = array_map_lookup_elem(map, key); 796 if (elem && (ptr = READ_ONCE(*elem))) 797 *value = map->ops->map_fd_sys_lookup_elem(ptr); 798 else 799 ret = -ENOENT; 800 rcu_read_unlock(); 801 802 return ret; 803 } 804 805 /* only called from syscall */ 806 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 807 void *key, void *value, u64 map_flags) 808 { 809 struct bpf_array *array = container_of(map, struct bpf_array, map); 810 void *new_ptr, *old_ptr; 811 u32 index = *(u32 *)key, ufd; 812 813 if (map_flags != BPF_ANY) 814 return -EINVAL; 815 816 if (index >= array->map.max_entries) 817 return -E2BIG; 818 819 ufd = *(u32 *)value; 820 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 821 if (IS_ERR(new_ptr)) 822 return PTR_ERR(new_ptr); 823 824 if (map->ops->map_poke_run) { 825 mutex_lock(&array->aux->poke_mutex); 826 old_ptr = xchg(array->ptrs + index, new_ptr); 827 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 828 mutex_unlock(&array->aux->poke_mutex); 829 } else { 830 old_ptr = xchg(array->ptrs + index, new_ptr); 831 } 832 833 if (old_ptr) 834 map->ops->map_fd_put_ptr(old_ptr); 835 return 0; 836 } 837 838 static int fd_array_map_delete_elem(struct bpf_map *map, void *key) 839 { 840 struct bpf_array *array = container_of(map, struct bpf_array, map); 841 void *old_ptr; 842 u32 index = *(u32 *)key; 843 844 if (index >= array->map.max_entries) 845 return -E2BIG; 846 847 if (map->ops->map_poke_run) { 848 mutex_lock(&array->aux->poke_mutex); 849 old_ptr = xchg(array->ptrs + index, NULL); 850 map->ops->map_poke_run(map, index, old_ptr, NULL); 851 mutex_unlock(&array->aux->poke_mutex); 852 } else { 853 old_ptr = xchg(array->ptrs + index, NULL); 854 } 855 856 if (old_ptr) { 857 map->ops->map_fd_put_ptr(old_ptr); 858 return 0; 859 } else { 860 return -ENOENT; 861 } 862 } 863 864 static void *prog_fd_array_get_ptr(struct bpf_map *map, 865 struct file *map_file, int fd) 866 { 867 struct bpf_prog *prog = bpf_prog_get(fd); 868 869 if (IS_ERR(prog)) 870 return prog; 871 872 if (!bpf_prog_map_compatible(map, prog)) { 873 bpf_prog_put(prog); 874 return ERR_PTR(-EINVAL); 875 } 876 877 return prog; 878 } 879 880 static void prog_fd_array_put_ptr(void *ptr) 881 { 882 bpf_prog_put(ptr); 883 } 884 885 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 886 { 887 return ((struct bpf_prog *)ptr)->aux->id; 888 } 889 890 /* decrement refcnt of all bpf_progs that are stored in this map */ 891 static void bpf_fd_array_map_clear(struct bpf_map *map) 892 { 893 struct bpf_array *array = container_of(map, struct bpf_array, map); 894 int i; 895 896 for (i = 0; i < array->map.max_entries; i++) 897 fd_array_map_delete_elem(map, &i); 898 } 899 900 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 901 struct seq_file *m) 902 { 903 void **elem, *ptr; 904 u32 prog_id; 905 906 rcu_read_lock(); 907 908 elem = array_map_lookup_elem(map, key); 909 if (elem) { 910 ptr = READ_ONCE(*elem); 911 if (ptr) { 912 seq_printf(m, "%u: ", *(u32 *)key); 913 prog_id = prog_fd_array_sys_lookup_elem(ptr); 914 btf_type_seq_show(map->btf, map->btf_value_type_id, 915 &prog_id, m); 916 seq_puts(m, "\n"); 917 } 918 } 919 920 rcu_read_unlock(); 921 } 922 923 struct prog_poke_elem { 924 struct list_head list; 925 struct bpf_prog_aux *aux; 926 }; 927 928 static int prog_array_map_poke_track(struct bpf_map *map, 929 struct bpf_prog_aux *prog_aux) 930 { 931 struct prog_poke_elem *elem; 932 struct bpf_array_aux *aux; 933 int ret = 0; 934 935 aux = container_of(map, struct bpf_array, map)->aux; 936 mutex_lock(&aux->poke_mutex); 937 list_for_each_entry(elem, &aux->poke_progs, list) { 938 if (elem->aux == prog_aux) 939 goto out; 940 } 941 942 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 943 if (!elem) { 944 ret = -ENOMEM; 945 goto out; 946 } 947 948 INIT_LIST_HEAD(&elem->list); 949 /* We must track the program's aux info at this point in time 950 * since the program pointer itself may not be stable yet, see 951 * also comment in prog_array_map_poke_run(). 952 */ 953 elem->aux = prog_aux; 954 955 list_add_tail(&elem->list, &aux->poke_progs); 956 out: 957 mutex_unlock(&aux->poke_mutex); 958 return ret; 959 } 960 961 static void prog_array_map_poke_untrack(struct bpf_map *map, 962 struct bpf_prog_aux *prog_aux) 963 { 964 struct prog_poke_elem *elem, *tmp; 965 struct bpf_array_aux *aux; 966 967 aux = container_of(map, struct bpf_array, map)->aux; 968 mutex_lock(&aux->poke_mutex); 969 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 970 if (elem->aux == prog_aux) { 971 list_del_init(&elem->list); 972 kfree(elem); 973 break; 974 } 975 } 976 mutex_unlock(&aux->poke_mutex); 977 } 978 979 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 980 struct bpf_prog *old, 981 struct bpf_prog *new) 982 { 983 u8 *old_addr, *new_addr, *old_bypass_addr; 984 struct prog_poke_elem *elem; 985 struct bpf_array_aux *aux; 986 987 aux = container_of(map, struct bpf_array, map)->aux; 988 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 989 990 list_for_each_entry(elem, &aux->poke_progs, list) { 991 struct bpf_jit_poke_descriptor *poke; 992 int i, ret; 993 994 for (i = 0; i < elem->aux->size_poke_tab; i++) { 995 poke = &elem->aux->poke_tab[i]; 996 997 /* Few things to be aware of: 998 * 999 * 1) We can only ever access aux in this context, but 1000 * not aux->prog since it might not be stable yet and 1001 * there could be danger of use after free otherwise. 1002 * 2) Initially when we start tracking aux, the program 1003 * is not JITed yet and also does not have a kallsyms 1004 * entry. We skip these as poke->tailcall_target_stable 1005 * is not active yet. The JIT will do the final fixup 1006 * before setting it stable. The various 1007 * poke->tailcall_target_stable are successively 1008 * activated, so tail call updates can arrive from here 1009 * while JIT is still finishing its final fixup for 1010 * non-activated poke entries. 1011 * 3) On program teardown, the program's kallsym entry gets 1012 * removed out of RCU callback, but we can only untrack 1013 * from sleepable context, therefore bpf_arch_text_poke() 1014 * might not see that this is in BPF text section and 1015 * bails out with -EINVAL. As these are unreachable since 1016 * RCU grace period already passed, we simply skip them. 1017 * 4) Also programs reaching refcount of zero while patching 1018 * is in progress is okay since we're protected under 1019 * poke_mutex and untrack the programs before the JIT 1020 * buffer is freed. When we're still in the middle of 1021 * patching and suddenly kallsyms entry of the program 1022 * gets evicted, we just skip the rest which is fine due 1023 * to point 3). 1024 * 5) Any other error happening below from bpf_arch_text_poke() 1025 * is a unexpected bug. 1026 */ 1027 if (!READ_ONCE(poke->tailcall_target_stable)) 1028 continue; 1029 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1030 continue; 1031 if (poke->tail_call.map != map || 1032 poke->tail_call.key != key) 1033 continue; 1034 1035 old_bypass_addr = old ? NULL : poke->bypass_addr; 1036 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 1037 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 1038 1039 if (new) { 1040 ret = bpf_arch_text_poke(poke->tailcall_target, 1041 BPF_MOD_JUMP, 1042 old_addr, new_addr); 1043 BUG_ON(ret < 0 && ret != -EINVAL); 1044 if (!old) { 1045 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1046 BPF_MOD_JUMP, 1047 poke->bypass_addr, 1048 NULL); 1049 BUG_ON(ret < 0 && ret != -EINVAL); 1050 } 1051 } else { 1052 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1053 BPF_MOD_JUMP, 1054 old_bypass_addr, 1055 poke->bypass_addr); 1056 BUG_ON(ret < 0 && ret != -EINVAL); 1057 /* let other CPUs finish the execution of program 1058 * so that it will not possible to expose them 1059 * to invalid nop, stack unwind, nop state 1060 */ 1061 if (!ret) 1062 synchronize_rcu(); 1063 ret = bpf_arch_text_poke(poke->tailcall_target, 1064 BPF_MOD_JUMP, 1065 old_addr, NULL); 1066 BUG_ON(ret < 0 && ret != -EINVAL); 1067 } 1068 } 1069 } 1070 } 1071 1072 static void prog_array_map_clear_deferred(struct work_struct *work) 1073 { 1074 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1075 work)->map; 1076 bpf_fd_array_map_clear(map); 1077 bpf_map_put(map); 1078 } 1079 1080 static void prog_array_map_clear(struct bpf_map *map) 1081 { 1082 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1083 map)->aux; 1084 bpf_map_inc(map); 1085 schedule_work(&aux->work); 1086 } 1087 1088 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1089 { 1090 struct bpf_array_aux *aux; 1091 struct bpf_map *map; 1092 1093 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1094 if (!aux) 1095 return ERR_PTR(-ENOMEM); 1096 1097 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1098 INIT_LIST_HEAD(&aux->poke_progs); 1099 mutex_init(&aux->poke_mutex); 1100 1101 map = array_map_alloc(attr); 1102 if (IS_ERR(map)) { 1103 kfree(aux); 1104 return map; 1105 } 1106 1107 container_of(map, struct bpf_array, map)->aux = aux; 1108 aux->map = map; 1109 1110 return map; 1111 } 1112 1113 static void prog_array_map_free(struct bpf_map *map) 1114 { 1115 struct prog_poke_elem *elem, *tmp; 1116 struct bpf_array_aux *aux; 1117 1118 aux = container_of(map, struct bpf_array, map)->aux; 1119 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1120 list_del_init(&elem->list); 1121 kfree(elem); 1122 } 1123 kfree(aux); 1124 fd_array_map_free(map); 1125 } 1126 1127 /* prog_array->aux->{type,jited} is a runtime binding. 1128 * Doing static check alone in the verifier is not enough. 1129 * Thus, prog_array_map cannot be used as an inner_map 1130 * and map_meta_equal is not implemented. 1131 */ 1132 const struct bpf_map_ops prog_array_map_ops = { 1133 .map_alloc_check = fd_array_map_alloc_check, 1134 .map_alloc = prog_array_map_alloc, 1135 .map_free = prog_array_map_free, 1136 .map_poke_track = prog_array_map_poke_track, 1137 .map_poke_untrack = prog_array_map_poke_untrack, 1138 .map_poke_run = prog_array_map_poke_run, 1139 .map_get_next_key = array_map_get_next_key, 1140 .map_lookup_elem = fd_array_map_lookup_elem, 1141 .map_delete_elem = fd_array_map_delete_elem, 1142 .map_fd_get_ptr = prog_fd_array_get_ptr, 1143 .map_fd_put_ptr = prog_fd_array_put_ptr, 1144 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1145 .map_release_uref = prog_array_map_clear, 1146 .map_seq_show_elem = prog_array_map_seq_show_elem, 1147 .map_btf_id = &array_map_btf_ids[0], 1148 }; 1149 1150 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1151 struct file *map_file) 1152 { 1153 struct bpf_event_entry *ee; 1154 1155 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 1156 if (ee) { 1157 ee->event = perf_file->private_data; 1158 ee->perf_file = perf_file; 1159 ee->map_file = map_file; 1160 } 1161 1162 return ee; 1163 } 1164 1165 static void __bpf_event_entry_free(struct rcu_head *rcu) 1166 { 1167 struct bpf_event_entry *ee; 1168 1169 ee = container_of(rcu, struct bpf_event_entry, rcu); 1170 fput(ee->perf_file); 1171 kfree(ee); 1172 } 1173 1174 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1175 { 1176 call_rcu(&ee->rcu, __bpf_event_entry_free); 1177 } 1178 1179 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1180 struct file *map_file, int fd) 1181 { 1182 struct bpf_event_entry *ee; 1183 struct perf_event *event; 1184 struct file *perf_file; 1185 u64 value; 1186 1187 perf_file = perf_event_get(fd); 1188 if (IS_ERR(perf_file)) 1189 return perf_file; 1190 1191 ee = ERR_PTR(-EOPNOTSUPP); 1192 event = perf_file->private_data; 1193 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1194 goto err_out; 1195 1196 ee = bpf_event_entry_gen(perf_file, map_file); 1197 if (ee) 1198 return ee; 1199 ee = ERR_PTR(-ENOMEM); 1200 err_out: 1201 fput(perf_file); 1202 return ee; 1203 } 1204 1205 static void perf_event_fd_array_put_ptr(void *ptr) 1206 { 1207 bpf_event_entry_free_rcu(ptr); 1208 } 1209 1210 static void perf_event_fd_array_release(struct bpf_map *map, 1211 struct file *map_file) 1212 { 1213 struct bpf_array *array = container_of(map, struct bpf_array, map); 1214 struct bpf_event_entry *ee; 1215 int i; 1216 1217 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1218 return; 1219 1220 rcu_read_lock(); 1221 for (i = 0; i < array->map.max_entries; i++) { 1222 ee = READ_ONCE(array->ptrs[i]); 1223 if (ee && ee->map_file == map_file) 1224 fd_array_map_delete_elem(map, &i); 1225 } 1226 rcu_read_unlock(); 1227 } 1228 1229 static void perf_event_fd_array_map_free(struct bpf_map *map) 1230 { 1231 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1232 bpf_fd_array_map_clear(map); 1233 fd_array_map_free(map); 1234 } 1235 1236 const struct bpf_map_ops perf_event_array_map_ops = { 1237 .map_meta_equal = bpf_map_meta_equal, 1238 .map_alloc_check = fd_array_map_alloc_check, 1239 .map_alloc = array_map_alloc, 1240 .map_free = perf_event_fd_array_map_free, 1241 .map_get_next_key = array_map_get_next_key, 1242 .map_lookup_elem = fd_array_map_lookup_elem, 1243 .map_delete_elem = fd_array_map_delete_elem, 1244 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1245 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1246 .map_release = perf_event_fd_array_release, 1247 .map_check_btf = map_check_no_btf, 1248 .map_btf_id = &array_map_btf_ids[0], 1249 }; 1250 1251 #ifdef CONFIG_CGROUPS 1252 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1253 struct file *map_file /* not used */, 1254 int fd) 1255 { 1256 return cgroup_get_from_fd(fd); 1257 } 1258 1259 static void cgroup_fd_array_put_ptr(void *ptr) 1260 { 1261 /* cgroup_put free cgrp after a rcu grace period */ 1262 cgroup_put(ptr); 1263 } 1264 1265 static void cgroup_fd_array_free(struct bpf_map *map) 1266 { 1267 bpf_fd_array_map_clear(map); 1268 fd_array_map_free(map); 1269 } 1270 1271 const struct bpf_map_ops cgroup_array_map_ops = { 1272 .map_meta_equal = bpf_map_meta_equal, 1273 .map_alloc_check = fd_array_map_alloc_check, 1274 .map_alloc = array_map_alloc, 1275 .map_free = cgroup_fd_array_free, 1276 .map_get_next_key = array_map_get_next_key, 1277 .map_lookup_elem = fd_array_map_lookup_elem, 1278 .map_delete_elem = fd_array_map_delete_elem, 1279 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1280 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1281 .map_check_btf = map_check_no_btf, 1282 .map_btf_id = &array_map_btf_ids[0], 1283 }; 1284 #endif 1285 1286 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1287 { 1288 struct bpf_map *map, *inner_map_meta; 1289 1290 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1291 if (IS_ERR(inner_map_meta)) 1292 return inner_map_meta; 1293 1294 map = array_map_alloc(attr); 1295 if (IS_ERR(map)) { 1296 bpf_map_meta_free(inner_map_meta); 1297 return map; 1298 } 1299 1300 map->inner_map_meta = inner_map_meta; 1301 1302 return map; 1303 } 1304 1305 static void array_of_map_free(struct bpf_map *map) 1306 { 1307 /* map->inner_map_meta is only accessed by syscall which 1308 * is protected by fdget/fdput. 1309 */ 1310 bpf_map_meta_free(map->inner_map_meta); 1311 bpf_fd_array_map_clear(map); 1312 fd_array_map_free(map); 1313 } 1314 1315 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1316 { 1317 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1318 1319 if (!inner_map) 1320 return NULL; 1321 1322 return READ_ONCE(*inner_map); 1323 } 1324 1325 static int array_of_map_gen_lookup(struct bpf_map *map, 1326 struct bpf_insn *insn_buf) 1327 { 1328 struct bpf_array *array = container_of(map, struct bpf_array, map); 1329 u32 elem_size = array->elem_size; 1330 struct bpf_insn *insn = insn_buf; 1331 const int ret = BPF_REG_0; 1332 const int map_ptr = BPF_REG_1; 1333 const int index = BPF_REG_2; 1334 1335 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1336 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1337 if (!map->bypass_spec_v1) { 1338 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1339 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1340 } else { 1341 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1342 } 1343 if (is_power_of_2(elem_size)) 1344 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1345 else 1346 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1347 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1348 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1349 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1350 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1351 *insn++ = BPF_MOV64_IMM(ret, 0); 1352 1353 return insn - insn_buf; 1354 } 1355 1356 const struct bpf_map_ops array_of_maps_map_ops = { 1357 .map_alloc_check = fd_array_map_alloc_check, 1358 .map_alloc = array_of_map_alloc, 1359 .map_free = array_of_map_free, 1360 .map_get_next_key = array_map_get_next_key, 1361 .map_lookup_elem = array_of_map_lookup_elem, 1362 .map_delete_elem = fd_array_map_delete_elem, 1363 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1364 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1365 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1366 .map_gen_lookup = array_of_map_gen_lookup, 1367 .map_lookup_batch = generic_map_lookup_batch, 1368 .map_update_batch = generic_map_update_batch, 1369 .map_check_btf = map_check_no_btf, 1370 .map_btf_id = &array_map_btf_ids[0], 1371 }; 1372