xref: /openbmc/linux/kernel/bpf/arraymap.c (revision 4c1ca831)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016,2017 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/err.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/filter.h>
11 #include <linux/perf_event.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/rcupdate_trace.h>
14 
15 #include "map_in_map.h"
16 
17 #define ARRAY_CREATE_FLAG_MASK \
18 	(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \
19 	 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP)
20 
21 static void bpf_array_free_percpu(struct bpf_array *array)
22 {
23 	int i;
24 
25 	for (i = 0; i < array->map.max_entries; i++) {
26 		free_percpu(array->pptrs[i]);
27 		cond_resched();
28 	}
29 }
30 
31 static int bpf_array_alloc_percpu(struct bpf_array *array)
32 {
33 	void __percpu *ptr;
34 	int i;
35 
36 	for (i = 0; i < array->map.max_entries; i++) {
37 		ptr = __alloc_percpu_gfp(array->elem_size, 8,
38 					 GFP_USER | __GFP_NOWARN);
39 		if (!ptr) {
40 			bpf_array_free_percpu(array);
41 			return -ENOMEM;
42 		}
43 		array->pptrs[i] = ptr;
44 		cond_resched();
45 	}
46 
47 	return 0;
48 }
49 
50 /* Called from syscall */
51 int array_map_alloc_check(union bpf_attr *attr)
52 {
53 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
54 	int numa_node = bpf_map_attr_numa_node(attr);
55 
56 	/* check sanity of attributes */
57 	if (attr->max_entries == 0 || attr->key_size != 4 ||
58 	    attr->value_size == 0 ||
59 	    attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
60 	    !bpf_map_flags_access_ok(attr->map_flags) ||
61 	    (percpu && numa_node != NUMA_NO_NODE))
62 		return -EINVAL;
63 
64 	if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
65 	    attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP))
66 		return -EINVAL;
67 
68 	if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
69 	    attr->map_flags & BPF_F_PRESERVE_ELEMS)
70 		return -EINVAL;
71 
72 	if (attr->value_size > KMALLOC_MAX_SIZE)
73 		/* if value_size is bigger, the user space won't be able to
74 		 * access the elements.
75 		 */
76 		return -E2BIG;
77 
78 	return 0;
79 }
80 
81 static struct bpf_map *array_map_alloc(union bpf_attr *attr)
82 {
83 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
84 	int ret, numa_node = bpf_map_attr_numa_node(attr);
85 	u32 elem_size, index_mask, max_entries;
86 	bool bypass_spec_v1 = bpf_bypass_spec_v1();
87 	u64 cost, array_size, mask64;
88 	struct bpf_map_memory mem;
89 	struct bpf_array *array;
90 
91 	elem_size = round_up(attr->value_size, 8);
92 
93 	max_entries = attr->max_entries;
94 
95 	/* On 32 bit archs roundup_pow_of_two() with max_entries that has
96 	 * upper most bit set in u32 space is undefined behavior due to
97 	 * resulting 1U << 32, so do it manually here in u64 space.
98 	 */
99 	mask64 = fls_long(max_entries - 1);
100 	mask64 = 1ULL << mask64;
101 	mask64 -= 1;
102 
103 	index_mask = mask64;
104 	if (!bypass_spec_v1) {
105 		/* round up array size to nearest power of 2,
106 		 * since cpu will speculate within index_mask limits
107 		 */
108 		max_entries = index_mask + 1;
109 		/* Check for overflows. */
110 		if (max_entries < attr->max_entries)
111 			return ERR_PTR(-E2BIG);
112 	}
113 
114 	array_size = sizeof(*array);
115 	if (percpu) {
116 		array_size += (u64) max_entries * sizeof(void *);
117 	} else {
118 		/* rely on vmalloc() to return page-aligned memory and
119 		 * ensure array->value is exactly page-aligned
120 		 */
121 		if (attr->map_flags & BPF_F_MMAPABLE) {
122 			array_size = PAGE_ALIGN(array_size);
123 			array_size += PAGE_ALIGN((u64) max_entries * elem_size);
124 		} else {
125 			array_size += (u64) max_entries * elem_size;
126 		}
127 	}
128 
129 	/* make sure there is no u32 overflow later in round_up() */
130 	cost = array_size;
131 	if (percpu)
132 		cost += (u64)attr->max_entries * elem_size * num_possible_cpus();
133 
134 	ret = bpf_map_charge_init(&mem, cost);
135 	if (ret < 0)
136 		return ERR_PTR(ret);
137 
138 	/* allocate all map elements and zero-initialize them */
139 	if (attr->map_flags & BPF_F_MMAPABLE) {
140 		void *data;
141 
142 		/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
143 		data = bpf_map_area_mmapable_alloc(array_size, numa_node);
144 		if (!data) {
145 			bpf_map_charge_finish(&mem);
146 			return ERR_PTR(-ENOMEM);
147 		}
148 		array = data + PAGE_ALIGN(sizeof(struct bpf_array))
149 			- offsetof(struct bpf_array, value);
150 	} else {
151 		array = bpf_map_area_alloc(array_size, numa_node);
152 	}
153 	if (!array) {
154 		bpf_map_charge_finish(&mem);
155 		return ERR_PTR(-ENOMEM);
156 	}
157 	array->index_mask = index_mask;
158 	array->map.bypass_spec_v1 = bypass_spec_v1;
159 
160 	/* copy mandatory map attributes */
161 	bpf_map_init_from_attr(&array->map, attr);
162 	bpf_map_charge_move(&array->map.memory, &mem);
163 	array->elem_size = elem_size;
164 
165 	if (percpu && bpf_array_alloc_percpu(array)) {
166 		bpf_map_charge_finish(&array->map.memory);
167 		bpf_map_area_free(array);
168 		return ERR_PTR(-ENOMEM);
169 	}
170 
171 	return &array->map;
172 }
173 
174 /* Called from syscall or from eBPF program */
175 static void *array_map_lookup_elem(struct bpf_map *map, void *key)
176 {
177 	struct bpf_array *array = container_of(map, struct bpf_array, map);
178 	u32 index = *(u32 *)key;
179 
180 	if (unlikely(index >= array->map.max_entries))
181 		return NULL;
182 
183 	return array->value + array->elem_size * (index & array->index_mask);
184 }
185 
186 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
187 				       u32 off)
188 {
189 	struct bpf_array *array = container_of(map, struct bpf_array, map);
190 
191 	if (map->max_entries != 1)
192 		return -ENOTSUPP;
193 	if (off >= map->value_size)
194 		return -EINVAL;
195 
196 	*imm = (unsigned long)array->value;
197 	return 0;
198 }
199 
200 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
201 				       u32 *off)
202 {
203 	struct bpf_array *array = container_of(map, struct bpf_array, map);
204 	u64 base = (unsigned long)array->value;
205 	u64 range = array->elem_size;
206 
207 	if (map->max_entries != 1)
208 		return -ENOTSUPP;
209 	if (imm < base || imm >= base + range)
210 		return -ENOENT;
211 
212 	*off = imm - base;
213 	return 0;
214 }
215 
216 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
217 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
218 {
219 	struct bpf_array *array = container_of(map, struct bpf_array, map);
220 	struct bpf_insn *insn = insn_buf;
221 	u32 elem_size = round_up(map->value_size, 8);
222 	const int ret = BPF_REG_0;
223 	const int map_ptr = BPF_REG_1;
224 	const int index = BPF_REG_2;
225 
226 	if (map->map_flags & BPF_F_INNER_MAP)
227 		return -EOPNOTSUPP;
228 
229 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
230 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
231 	if (!map->bypass_spec_v1) {
232 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
233 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
234 	} else {
235 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
236 	}
237 
238 	if (is_power_of_2(elem_size)) {
239 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
240 	} else {
241 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
242 	}
243 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
244 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
245 	*insn++ = BPF_MOV64_IMM(ret, 0);
246 	return insn - insn_buf;
247 }
248 
249 /* Called from eBPF program */
250 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
251 {
252 	struct bpf_array *array = container_of(map, struct bpf_array, map);
253 	u32 index = *(u32 *)key;
254 
255 	if (unlikely(index >= array->map.max_entries))
256 		return NULL;
257 
258 	return this_cpu_ptr(array->pptrs[index & array->index_mask]);
259 }
260 
261 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
262 {
263 	struct bpf_array *array = container_of(map, struct bpf_array, map);
264 	u32 index = *(u32 *)key;
265 	void __percpu *pptr;
266 	int cpu, off = 0;
267 	u32 size;
268 
269 	if (unlikely(index >= array->map.max_entries))
270 		return -ENOENT;
271 
272 	/* per_cpu areas are zero-filled and bpf programs can only
273 	 * access 'value_size' of them, so copying rounded areas
274 	 * will not leak any kernel data
275 	 */
276 	size = round_up(map->value_size, 8);
277 	rcu_read_lock();
278 	pptr = array->pptrs[index & array->index_mask];
279 	for_each_possible_cpu(cpu) {
280 		bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
281 		off += size;
282 	}
283 	rcu_read_unlock();
284 	return 0;
285 }
286 
287 /* Called from syscall */
288 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
289 {
290 	struct bpf_array *array = container_of(map, struct bpf_array, map);
291 	u32 index = key ? *(u32 *)key : U32_MAX;
292 	u32 *next = (u32 *)next_key;
293 
294 	if (index >= array->map.max_entries) {
295 		*next = 0;
296 		return 0;
297 	}
298 
299 	if (index == array->map.max_entries - 1)
300 		return -ENOENT;
301 
302 	*next = index + 1;
303 	return 0;
304 }
305 
306 /* Called from syscall or from eBPF program */
307 static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
308 				 u64 map_flags)
309 {
310 	struct bpf_array *array = container_of(map, struct bpf_array, map);
311 	u32 index = *(u32 *)key;
312 	char *val;
313 
314 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
315 		/* unknown flags */
316 		return -EINVAL;
317 
318 	if (unlikely(index >= array->map.max_entries))
319 		/* all elements were pre-allocated, cannot insert a new one */
320 		return -E2BIG;
321 
322 	if (unlikely(map_flags & BPF_NOEXIST))
323 		/* all elements already exist */
324 		return -EEXIST;
325 
326 	if (unlikely((map_flags & BPF_F_LOCK) &&
327 		     !map_value_has_spin_lock(map)))
328 		return -EINVAL;
329 
330 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
331 		memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
332 		       value, map->value_size);
333 	} else {
334 		val = array->value +
335 			array->elem_size * (index & array->index_mask);
336 		if (map_flags & BPF_F_LOCK)
337 			copy_map_value_locked(map, val, value, false);
338 		else
339 			copy_map_value(map, val, value);
340 	}
341 	return 0;
342 }
343 
344 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
345 			    u64 map_flags)
346 {
347 	struct bpf_array *array = container_of(map, struct bpf_array, map);
348 	u32 index = *(u32 *)key;
349 	void __percpu *pptr;
350 	int cpu, off = 0;
351 	u32 size;
352 
353 	if (unlikely(map_flags > BPF_EXIST))
354 		/* unknown flags */
355 		return -EINVAL;
356 
357 	if (unlikely(index >= array->map.max_entries))
358 		/* all elements were pre-allocated, cannot insert a new one */
359 		return -E2BIG;
360 
361 	if (unlikely(map_flags == BPF_NOEXIST))
362 		/* all elements already exist */
363 		return -EEXIST;
364 
365 	/* the user space will provide round_up(value_size, 8) bytes that
366 	 * will be copied into per-cpu area. bpf programs can only access
367 	 * value_size of it. During lookup the same extra bytes will be
368 	 * returned or zeros which were zero-filled by percpu_alloc,
369 	 * so no kernel data leaks possible
370 	 */
371 	size = round_up(map->value_size, 8);
372 	rcu_read_lock();
373 	pptr = array->pptrs[index & array->index_mask];
374 	for_each_possible_cpu(cpu) {
375 		bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
376 		off += size;
377 	}
378 	rcu_read_unlock();
379 	return 0;
380 }
381 
382 /* Called from syscall or from eBPF program */
383 static int array_map_delete_elem(struct bpf_map *map, void *key)
384 {
385 	return -EINVAL;
386 }
387 
388 static void *array_map_vmalloc_addr(struct bpf_array *array)
389 {
390 	return (void *)round_down((unsigned long)array, PAGE_SIZE);
391 }
392 
393 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
394 static void array_map_free(struct bpf_map *map)
395 {
396 	struct bpf_array *array = container_of(map, struct bpf_array, map);
397 
398 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
399 		bpf_array_free_percpu(array);
400 
401 	if (array->map.map_flags & BPF_F_MMAPABLE)
402 		bpf_map_area_free(array_map_vmalloc_addr(array));
403 	else
404 		bpf_map_area_free(array);
405 }
406 
407 static void array_map_seq_show_elem(struct bpf_map *map, void *key,
408 				    struct seq_file *m)
409 {
410 	void *value;
411 
412 	rcu_read_lock();
413 
414 	value = array_map_lookup_elem(map, key);
415 	if (!value) {
416 		rcu_read_unlock();
417 		return;
418 	}
419 
420 	if (map->btf_key_type_id)
421 		seq_printf(m, "%u: ", *(u32 *)key);
422 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
423 	seq_puts(m, "\n");
424 
425 	rcu_read_unlock();
426 }
427 
428 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
429 					   struct seq_file *m)
430 {
431 	struct bpf_array *array = container_of(map, struct bpf_array, map);
432 	u32 index = *(u32 *)key;
433 	void __percpu *pptr;
434 	int cpu;
435 
436 	rcu_read_lock();
437 
438 	seq_printf(m, "%u: {\n", *(u32 *)key);
439 	pptr = array->pptrs[index & array->index_mask];
440 	for_each_possible_cpu(cpu) {
441 		seq_printf(m, "\tcpu%d: ", cpu);
442 		btf_type_seq_show(map->btf, map->btf_value_type_id,
443 				  per_cpu_ptr(pptr, cpu), m);
444 		seq_puts(m, "\n");
445 	}
446 	seq_puts(m, "}\n");
447 
448 	rcu_read_unlock();
449 }
450 
451 static int array_map_check_btf(const struct bpf_map *map,
452 			       const struct btf *btf,
453 			       const struct btf_type *key_type,
454 			       const struct btf_type *value_type)
455 {
456 	u32 int_data;
457 
458 	/* One exception for keyless BTF: .bss/.data/.rodata map */
459 	if (btf_type_is_void(key_type)) {
460 		if (map->map_type != BPF_MAP_TYPE_ARRAY ||
461 		    map->max_entries != 1)
462 			return -EINVAL;
463 
464 		if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
465 			return -EINVAL;
466 
467 		return 0;
468 	}
469 
470 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
471 		return -EINVAL;
472 
473 	int_data = *(u32 *)(key_type + 1);
474 	/* bpf array can only take a u32 key. This check makes sure
475 	 * that the btf matches the attr used during map_create.
476 	 */
477 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
478 		return -EINVAL;
479 
480 	return 0;
481 }
482 
483 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
484 {
485 	struct bpf_array *array = container_of(map, struct bpf_array, map);
486 	pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
487 
488 	if (!(map->map_flags & BPF_F_MMAPABLE))
489 		return -EINVAL;
490 
491 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
492 	    PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
493 		return -EINVAL;
494 
495 	return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
496 				   vma->vm_pgoff + pgoff);
497 }
498 
499 static bool array_map_meta_equal(const struct bpf_map *meta0,
500 				 const struct bpf_map *meta1)
501 {
502 	if (!bpf_map_meta_equal(meta0, meta1))
503 		return false;
504 	return meta0->map_flags & BPF_F_INNER_MAP ? true :
505 	       meta0->max_entries == meta1->max_entries;
506 }
507 
508 struct bpf_iter_seq_array_map_info {
509 	struct bpf_map *map;
510 	void *percpu_value_buf;
511 	u32 index;
512 };
513 
514 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
515 {
516 	struct bpf_iter_seq_array_map_info *info = seq->private;
517 	struct bpf_map *map = info->map;
518 	struct bpf_array *array;
519 	u32 index;
520 
521 	if (info->index >= map->max_entries)
522 		return NULL;
523 
524 	if (*pos == 0)
525 		++*pos;
526 	array = container_of(map, struct bpf_array, map);
527 	index = info->index & array->index_mask;
528 	if (info->percpu_value_buf)
529 	       return array->pptrs[index];
530 	return array->value + array->elem_size * index;
531 }
532 
533 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
534 {
535 	struct bpf_iter_seq_array_map_info *info = seq->private;
536 	struct bpf_map *map = info->map;
537 	struct bpf_array *array;
538 	u32 index;
539 
540 	++*pos;
541 	++info->index;
542 	if (info->index >= map->max_entries)
543 		return NULL;
544 
545 	array = container_of(map, struct bpf_array, map);
546 	index = info->index & array->index_mask;
547 	if (info->percpu_value_buf)
548 	       return array->pptrs[index];
549 	return array->value + array->elem_size * index;
550 }
551 
552 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
553 {
554 	struct bpf_iter_seq_array_map_info *info = seq->private;
555 	struct bpf_iter__bpf_map_elem ctx = {};
556 	struct bpf_map *map = info->map;
557 	struct bpf_iter_meta meta;
558 	struct bpf_prog *prog;
559 	int off = 0, cpu = 0;
560 	void __percpu **pptr;
561 	u32 size;
562 
563 	meta.seq = seq;
564 	prog = bpf_iter_get_info(&meta, v == NULL);
565 	if (!prog)
566 		return 0;
567 
568 	ctx.meta = &meta;
569 	ctx.map = info->map;
570 	if (v) {
571 		ctx.key = &info->index;
572 
573 		if (!info->percpu_value_buf) {
574 			ctx.value = v;
575 		} else {
576 			pptr = v;
577 			size = round_up(map->value_size, 8);
578 			for_each_possible_cpu(cpu) {
579 				bpf_long_memcpy(info->percpu_value_buf + off,
580 						per_cpu_ptr(pptr, cpu),
581 						size);
582 				off += size;
583 			}
584 			ctx.value = info->percpu_value_buf;
585 		}
586 	}
587 
588 	return bpf_iter_run_prog(prog, &ctx);
589 }
590 
591 static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
592 {
593 	return __bpf_array_map_seq_show(seq, v);
594 }
595 
596 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
597 {
598 	if (!v)
599 		(void)__bpf_array_map_seq_show(seq, NULL);
600 }
601 
602 static int bpf_iter_init_array_map(void *priv_data,
603 				   struct bpf_iter_aux_info *aux)
604 {
605 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
606 	struct bpf_map *map = aux->map;
607 	void *value_buf;
608 	u32 buf_size;
609 
610 	if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
611 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
612 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
613 		if (!value_buf)
614 			return -ENOMEM;
615 
616 		seq_info->percpu_value_buf = value_buf;
617 	}
618 
619 	seq_info->map = map;
620 	return 0;
621 }
622 
623 static void bpf_iter_fini_array_map(void *priv_data)
624 {
625 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
626 
627 	kfree(seq_info->percpu_value_buf);
628 }
629 
630 static const struct seq_operations bpf_array_map_seq_ops = {
631 	.start	= bpf_array_map_seq_start,
632 	.next	= bpf_array_map_seq_next,
633 	.stop	= bpf_array_map_seq_stop,
634 	.show	= bpf_array_map_seq_show,
635 };
636 
637 static const struct bpf_iter_seq_info iter_seq_info = {
638 	.seq_ops		= &bpf_array_map_seq_ops,
639 	.init_seq_private	= bpf_iter_init_array_map,
640 	.fini_seq_private	= bpf_iter_fini_array_map,
641 	.seq_priv_size		= sizeof(struct bpf_iter_seq_array_map_info),
642 };
643 
644 static int array_map_btf_id;
645 const struct bpf_map_ops array_map_ops = {
646 	.map_meta_equal = array_map_meta_equal,
647 	.map_alloc_check = array_map_alloc_check,
648 	.map_alloc = array_map_alloc,
649 	.map_free = array_map_free,
650 	.map_get_next_key = array_map_get_next_key,
651 	.map_lookup_elem = array_map_lookup_elem,
652 	.map_update_elem = array_map_update_elem,
653 	.map_delete_elem = array_map_delete_elem,
654 	.map_gen_lookup = array_map_gen_lookup,
655 	.map_direct_value_addr = array_map_direct_value_addr,
656 	.map_direct_value_meta = array_map_direct_value_meta,
657 	.map_mmap = array_map_mmap,
658 	.map_seq_show_elem = array_map_seq_show_elem,
659 	.map_check_btf = array_map_check_btf,
660 	.map_lookup_batch = generic_map_lookup_batch,
661 	.map_update_batch = generic_map_update_batch,
662 	.map_btf_name = "bpf_array",
663 	.map_btf_id = &array_map_btf_id,
664 	.iter_seq_info = &iter_seq_info,
665 };
666 
667 static int percpu_array_map_btf_id;
668 const struct bpf_map_ops percpu_array_map_ops = {
669 	.map_meta_equal = bpf_map_meta_equal,
670 	.map_alloc_check = array_map_alloc_check,
671 	.map_alloc = array_map_alloc,
672 	.map_free = array_map_free,
673 	.map_get_next_key = array_map_get_next_key,
674 	.map_lookup_elem = percpu_array_map_lookup_elem,
675 	.map_update_elem = array_map_update_elem,
676 	.map_delete_elem = array_map_delete_elem,
677 	.map_seq_show_elem = percpu_array_map_seq_show_elem,
678 	.map_check_btf = array_map_check_btf,
679 	.map_btf_name = "bpf_array",
680 	.map_btf_id = &percpu_array_map_btf_id,
681 	.iter_seq_info = &iter_seq_info,
682 };
683 
684 static int fd_array_map_alloc_check(union bpf_attr *attr)
685 {
686 	/* only file descriptors can be stored in this type of map */
687 	if (attr->value_size != sizeof(u32))
688 		return -EINVAL;
689 	/* Program read-only/write-only not supported for special maps yet. */
690 	if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
691 		return -EINVAL;
692 	return array_map_alloc_check(attr);
693 }
694 
695 static void fd_array_map_free(struct bpf_map *map)
696 {
697 	struct bpf_array *array = container_of(map, struct bpf_array, map);
698 	int i;
699 
700 	/* make sure it's empty */
701 	for (i = 0; i < array->map.max_entries; i++)
702 		BUG_ON(array->ptrs[i] != NULL);
703 
704 	bpf_map_area_free(array);
705 }
706 
707 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
708 {
709 	return ERR_PTR(-EOPNOTSUPP);
710 }
711 
712 /* only called from syscall */
713 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
714 {
715 	void **elem, *ptr;
716 	int ret =  0;
717 
718 	if (!map->ops->map_fd_sys_lookup_elem)
719 		return -ENOTSUPP;
720 
721 	rcu_read_lock();
722 	elem = array_map_lookup_elem(map, key);
723 	if (elem && (ptr = READ_ONCE(*elem)))
724 		*value = map->ops->map_fd_sys_lookup_elem(ptr);
725 	else
726 		ret = -ENOENT;
727 	rcu_read_unlock();
728 
729 	return ret;
730 }
731 
732 /* only called from syscall */
733 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
734 				 void *key, void *value, u64 map_flags)
735 {
736 	struct bpf_array *array = container_of(map, struct bpf_array, map);
737 	void *new_ptr, *old_ptr;
738 	u32 index = *(u32 *)key, ufd;
739 
740 	if (map_flags != BPF_ANY)
741 		return -EINVAL;
742 
743 	if (index >= array->map.max_entries)
744 		return -E2BIG;
745 
746 	ufd = *(u32 *)value;
747 	new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
748 	if (IS_ERR(new_ptr))
749 		return PTR_ERR(new_ptr);
750 
751 	if (map->ops->map_poke_run) {
752 		mutex_lock(&array->aux->poke_mutex);
753 		old_ptr = xchg(array->ptrs + index, new_ptr);
754 		map->ops->map_poke_run(map, index, old_ptr, new_ptr);
755 		mutex_unlock(&array->aux->poke_mutex);
756 	} else {
757 		old_ptr = xchg(array->ptrs + index, new_ptr);
758 	}
759 
760 	if (old_ptr)
761 		map->ops->map_fd_put_ptr(old_ptr);
762 	return 0;
763 }
764 
765 static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
766 {
767 	struct bpf_array *array = container_of(map, struct bpf_array, map);
768 	void *old_ptr;
769 	u32 index = *(u32 *)key;
770 
771 	if (index >= array->map.max_entries)
772 		return -E2BIG;
773 
774 	if (map->ops->map_poke_run) {
775 		mutex_lock(&array->aux->poke_mutex);
776 		old_ptr = xchg(array->ptrs + index, NULL);
777 		map->ops->map_poke_run(map, index, old_ptr, NULL);
778 		mutex_unlock(&array->aux->poke_mutex);
779 	} else {
780 		old_ptr = xchg(array->ptrs + index, NULL);
781 	}
782 
783 	if (old_ptr) {
784 		map->ops->map_fd_put_ptr(old_ptr);
785 		return 0;
786 	} else {
787 		return -ENOENT;
788 	}
789 }
790 
791 static void *prog_fd_array_get_ptr(struct bpf_map *map,
792 				   struct file *map_file, int fd)
793 {
794 	struct bpf_array *array = container_of(map, struct bpf_array, map);
795 	struct bpf_prog *prog = bpf_prog_get(fd);
796 
797 	if (IS_ERR(prog))
798 		return prog;
799 
800 	if (!bpf_prog_array_compatible(array, prog)) {
801 		bpf_prog_put(prog);
802 		return ERR_PTR(-EINVAL);
803 	}
804 
805 	return prog;
806 }
807 
808 static void prog_fd_array_put_ptr(void *ptr)
809 {
810 	bpf_prog_put(ptr);
811 }
812 
813 static u32 prog_fd_array_sys_lookup_elem(void *ptr)
814 {
815 	return ((struct bpf_prog *)ptr)->aux->id;
816 }
817 
818 /* decrement refcnt of all bpf_progs that are stored in this map */
819 static void bpf_fd_array_map_clear(struct bpf_map *map)
820 {
821 	struct bpf_array *array = container_of(map, struct bpf_array, map);
822 	int i;
823 
824 	for (i = 0; i < array->map.max_entries; i++)
825 		fd_array_map_delete_elem(map, &i);
826 }
827 
828 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
829 					 struct seq_file *m)
830 {
831 	void **elem, *ptr;
832 	u32 prog_id;
833 
834 	rcu_read_lock();
835 
836 	elem = array_map_lookup_elem(map, key);
837 	if (elem) {
838 		ptr = READ_ONCE(*elem);
839 		if (ptr) {
840 			seq_printf(m, "%u: ", *(u32 *)key);
841 			prog_id = prog_fd_array_sys_lookup_elem(ptr);
842 			btf_type_seq_show(map->btf, map->btf_value_type_id,
843 					  &prog_id, m);
844 			seq_puts(m, "\n");
845 		}
846 	}
847 
848 	rcu_read_unlock();
849 }
850 
851 struct prog_poke_elem {
852 	struct list_head list;
853 	struct bpf_prog_aux *aux;
854 };
855 
856 static int prog_array_map_poke_track(struct bpf_map *map,
857 				     struct bpf_prog_aux *prog_aux)
858 {
859 	struct prog_poke_elem *elem;
860 	struct bpf_array_aux *aux;
861 	int ret = 0;
862 
863 	aux = container_of(map, struct bpf_array, map)->aux;
864 	mutex_lock(&aux->poke_mutex);
865 	list_for_each_entry(elem, &aux->poke_progs, list) {
866 		if (elem->aux == prog_aux)
867 			goto out;
868 	}
869 
870 	elem = kmalloc(sizeof(*elem), GFP_KERNEL);
871 	if (!elem) {
872 		ret = -ENOMEM;
873 		goto out;
874 	}
875 
876 	INIT_LIST_HEAD(&elem->list);
877 	/* We must track the program's aux info at this point in time
878 	 * since the program pointer itself may not be stable yet, see
879 	 * also comment in prog_array_map_poke_run().
880 	 */
881 	elem->aux = prog_aux;
882 
883 	list_add_tail(&elem->list, &aux->poke_progs);
884 out:
885 	mutex_unlock(&aux->poke_mutex);
886 	return ret;
887 }
888 
889 static void prog_array_map_poke_untrack(struct bpf_map *map,
890 					struct bpf_prog_aux *prog_aux)
891 {
892 	struct prog_poke_elem *elem, *tmp;
893 	struct bpf_array_aux *aux;
894 
895 	aux = container_of(map, struct bpf_array, map)->aux;
896 	mutex_lock(&aux->poke_mutex);
897 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
898 		if (elem->aux == prog_aux) {
899 			list_del_init(&elem->list);
900 			kfree(elem);
901 			break;
902 		}
903 	}
904 	mutex_unlock(&aux->poke_mutex);
905 }
906 
907 static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
908 				    struct bpf_prog *old,
909 				    struct bpf_prog *new)
910 {
911 	u8 *old_addr, *new_addr, *old_bypass_addr;
912 	struct prog_poke_elem *elem;
913 	struct bpf_array_aux *aux;
914 
915 	aux = container_of(map, struct bpf_array, map)->aux;
916 	WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
917 
918 	list_for_each_entry(elem, &aux->poke_progs, list) {
919 		struct bpf_jit_poke_descriptor *poke;
920 		int i, ret;
921 
922 		for (i = 0; i < elem->aux->size_poke_tab; i++) {
923 			poke = &elem->aux->poke_tab[i];
924 
925 			/* Few things to be aware of:
926 			 *
927 			 * 1) We can only ever access aux in this context, but
928 			 *    not aux->prog since it might not be stable yet and
929 			 *    there could be danger of use after free otherwise.
930 			 * 2) Initially when we start tracking aux, the program
931 			 *    is not JITed yet and also does not have a kallsyms
932 			 *    entry. We skip these as poke->tailcall_target_stable
933 			 *    is not active yet. The JIT will do the final fixup
934 			 *    before setting it stable. The various
935 			 *    poke->tailcall_target_stable are successively
936 			 *    activated, so tail call updates can arrive from here
937 			 *    while JIT is still finishing its final fixup for
938 			 *    non-activated poke entries.
939 			 * 3) On program teardown, the program's kallsym entry gets
940 			 *    removed out of RCU callback, but we can only untrack
941 			 *    from sleepable context, therefore bpf_arch_text_poke()
942 			 *    might not see that this is in BPF text section and
943 			 *    bails out with -EINVAL. As these are unreachable since
944 			 *    RCU grace period already passed, we simply skip them.
945 			 * 4) Also programs reaching refcount of zero while patching
946 			 *    is in progress is okay since we're protected under
947 			 *    poke_mutex and untrack the programs before the JIT
948 			 *    buffer is freed. When we're still in the middle of
949 			 *    patching and suddenly kallsyms entry of the program
950 			 *    gets evicted, we just skip the rest which is fine due
951 			 *    to point 3).
952 			 * 5) Any other error happening below from bpf_arch_text_poke()
953 			 *    is a unexpected bug.
954 			 */
955 			if (!READ_ONCE(poke->tailcall_target_stable))
956 				continue;
957 			if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
958 				continue;
959 			if (poke->tail_call.map != map ||
960 			    poke->tail_call.key != key)
961 				continue;
962 
963 			old_bypass_addr = old ? NULL : poke->bypass_addr;
964 			old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
965 			new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
966 
967 			if (new) {
968 				ret = bpf_arch_text_poke(poke->tailcall_target,
969 							 BPF_MOD_JUMP,
970 							 old_addr, new_addr);
971 				BUG_ON(ret < 0 && ret != -EINVAL);
972 				if (!old) {
973 					ret = bpf_arch_text_poke(poke->tailcall_bypass,
974 								 BPF_MOD_JUMP,
975 								 poke->bypass_addr,
976 								 NULL);
977 					BUG_ON(ret < 0 && ret != -EINVAL);
978 				}
979 			} else {
980 				ret = bpf_arch_text_poke(poke->tailcall_bypass,
981 							 BPF_MOD_JUMP,
982 							 old_bypass_addr,
983 							 poke->bypass_addr);
984 				BUG_ON(ret < 0 && ret != -EINVAL);
985 				/* let other CPUs finish the execution of program
986 				 * so that it will not possible to expose them
987 				 * to invalid nop, stack unwind, nop state
988 				 */
989 				if (!ret)
990 					synchronize_rcu();
991 				ret = bpf_arch_text_poke(poke->tailcall_target,
992 							 BPF_MOD_JUMP,
993 							 old_addr, NULL);
994 				BUG_ON(ret < 0 && ret != -EINVAL);
995 			}
996 		}
997 	}
998 }
999 
1000 static void prog_array_map_clear_deferred(struct work_struct *work)
1001 {
1002 	struct bpf_map *map = container_of(work, struct bpf_array_aux,
1003 					   work)->map;
1004 	bpf_fd_array_map_clear(map);
1005 	bpf_map_put(map);
1006 }
1007 
1008 static void prog_array_map_clear(struct bpf_map *map)
1009 {
1010 	struct bpf_array_aux *aux = container_of(map, struct bpf_array,
1011 						 map)->aux;
1012 	bpf_map_inc(map);
1013 	schedule_work(&aux->work);
1014 }
1015 
1016 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
1017 {
1018 	struct bpf_array_aux *aux;
1019 	struct bpf_map *map;
1020 
1021 	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
1022 	if (!aux)
1023 		return ERR_PTR(-ENOMEM);
1024 
1025 	INIT_WORK(&aux->work, prog_array_map_clear_deferred);
1026 	INIT_LIST_HEAD(&aux->poke_progs);
1027 	mutex_init(&aux->poke_mutex);
1028 
1029 	map = array_map_alloc(attr);
1030 	if (IS_ERR(map)) {
1031 		kfree(aux);
1032 		return map;
1033 	}
1034 
1035 	container_of(map, struct bpf_array, map)->aux = aux;
1036 	aux->map = map;
1037 
1038 	return map;
1039 }
1040 
1041 static void prog_array_map_free(struct bpf_map *map)
1042 {
1043 	struct prog_poke_elem *elem, *tmp;
1044 	struct bpf_array_aux *aux;
1045 
1046 	aux = container_of(map, struct bpf_array, map)->aux;
1047 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
1048 		list_del_init(&elem->list);
1049 		kfree(elem);
1050 	}
1051 	kfree(aux);
1052 	fd_array_map_free(map);
1053 }
1054 
1055 /* prog_array->aux->{type,jited} is a runtime binding.
1056  * Doing static check alone in the verifier is not enough.
1057  * Thus, prog_array_map cannot be used as an inner_map
1058  * and map_meta_equal is not implemented.
1059  */
1060 static int prog_array_map_btf_id;
1061 const struct bpf_map_ops prog_array_map_ops = {
1062 	.map_alloc_check = fd_array_map_alloc_check,
1063 	.map_alloc = prog_array_map_alloc,
1064 	.map_free = prog_array_map_free,
1065 	.map_poke_track = prog_array_map_poke_track,
1066 	.map_poke_untrack = prog_array_map_poke_untrack,
1067 	.map_poke_run = prog_array_map_poke_run,
1068 	.map_get_next_key = array_map_get_next_key,
1069 	.map_lookup_elem = fd_array_map_lookup_elem,
1070 	.map_delete_elem = fd_array_map_delete_elem,
1071 	.map_fd_get_ptr = prog_fd_array_get_ptr,
1072 	.map_fd_put_ptr = prog_fd_array_put_ptr,
1073 	.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
1074 	.map_release_uref = prog_array_map_clear,
1075 	.map_seq_show_elem = prog_array_map_seq_show_elem,
1076 	.map_btf_name = "bpf_array",
1077 	.map_btf_id = &prog_array_map_btf_id,
1078 };
1079 
1080 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
1081 						   struct file *map_file)
1082 {
1083 	struct bpf_event_entry *ee;
1084 
1085 	ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
1086 	if (ee) {
1087 		ee->event = perf_file->private_data;
1088 		ee->perf_file = perf_file;
1089 		ee->map_file = map_file;
1090 	}
1091 
1092 	return ee;
1093 }
1094 
1095 static void __bpf_event_entry_free(struct rcu_head *rcu)
1096 {
1097 	struct bpf_event_entry *ee;
1098 
1099 	ee = container_of(rcu, struct bpf_event_entry, rcu);
1100 	fput(ee->perf_file);
1101 	kfree(ee);
1102 }
1103 
1104 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
1105 {
1106 	call_rcu(&ee->rcu, __bpf_event_entry_free);
1107 }
1108 
1109 static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
1110 					 struct file *map_file, int fd)
1111 {
1112 	struct bpf_event_entry *ee;
1113 	struct perf_event *event;
1114 	struct file *perf_file;
1115 	u64 value;
1116 
1117 	perf_file = perf_event_get(fd);
1118 	if (IS_ERR(perf_file))
1119 		return perf_file;
1120 
1121 	ee = ERR_PTR(-EOPNOTSUPP);
1122 	event = perf_file->private_data;
1123 	if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
1124 		goto err_out;
1125 
1126 	ee = bpf_event_entry_gen(perf_file, map_file);
1127 	if (ee)
1128 		return ee;
1129 	ee = ERR_PTR(-ENOMEM);
1130 err_out:
1131 	fput(perf_file);
1132 	return ee;
1133 }
1134 
1135 static void perf_event_fd_array_put_ptr(void *ptr)
1136 {
1137 	bpf_event_entry_free_rcu(ptr);
1138 }
1139 
1140 static void perf_event_fd_array_release(struct bpf_map *map,
1141 					struct file *map_file)
1142 {
1143 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1144 	struct bpf_event_entry *ee;
1145 	int i;
1146 
1147 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1148 		return;
1149 
1150 	rcu_read_lock();
1151 	for (i = 0; i < array->map.max_entries; i++) {
1152 		ee = READ_ONCE(array->ptrs[i]);
1153 		if (ee && ee->map_file == map_file)
1154 			fd_array_map_delete_elem(map, &i);
1155 	}
1156 	rcu_read_unlock();
1157 }
1158 
1159 static void perf_event_fd_array_map_free(struct bpf_map *map)
1160 {
1161 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1162 		bpf_fd_array_map_clear(map);
1163 	fd_array_map_free(map);
1164 }
1165 
1166 static int perf_event_array_map_btf_id;
1167 const struct bpf_map_ops perf_event_array_map_ops = {
1168 	.map_meta_equal = bpf_map_meta_equal,
1169 	.map_alloc_check = fd_array_map_alloc_check,
1170 	.map_alloc = array_map_alloc,
1171 	.map_free = perf_event_fd_array_map_free,
1172 	.map_get_next_key = array_map_get_next_key,
1173 	.map_lookup_elem = fd_array_map_lookup_elem,
1174 	.map_delete_elem = fd_array_map_delete_elem,
1175 	.map_fd_get_ptr = perf_event_fd_array_get_ptr,
1176 	.map_fd_put_ptr = perf_event_fd_array_put_ptr,
1177 	.map_release = perf_event_fd_array_release,
1178 	.map_check_btf = map_check_no_btf,
1179 	.map_btf_name = "bpf_array",
1180 	.map_btf_id = &perf_event_array_map_btf_id,
1181 };
1182 
1183 #ifdef CONFIG_CGROUPS
1184 static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
1185 				     struct file *map_file /* not used */,
1186 				     int fd)
1187 {
1188 	return cgroup_get_from_fd(fd);
1189 }
1190 
1191 static void cgroup_fd_array_put_ptr(void *ptr)
1192 {
1193 	/* cgroup_put free cgrp after a rcu grace period */
1194 	cgroup_put(ptr);
1195 }
1196 
1197 static void cgroup_fd_array_free(struct bpf_map *map)
1198 {
1199 	bpf_fd_array_map_clear(map);
1200 	fd_array_map_free(map);
1201 }
1202 
1203 static int cgroup_array_map_btf_id;
1204 const struct bpf_map_ops cgroup_array_map_ops = {
1205 	.map_meta_equal = bpf_map_meta_equal,
1206 	.map_alloc_check = fd_array_map_alloc_check,
1207 	.map_alloc = array_map_alloc,
1208 	.map_free = cgroup_fd_array_free,
1209 	.map_get_next_key = array_map_get_next_key,
1210 	.map_lookup_elem = fd_array_map_lookup_elem,
1211 	.map_delete_elem = fd_array_map_delete_elem,
1212 	.map_fd_get_ptr = cgroup_fd_array_get_ptr,
1213 	.map_fd_put_ptr = cgroup_fd_array_put_ptr,
1214 	.map_check_btf = map_check_no_btf,
1215 	.map_btf_name = "bpf_array",
1216 	.map_btf_id = &cgroup_array_map_btf_id,
1217 };
1218 #endif
1219 
1220 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
1221 {
1222 	struct bpf_map *map, *inner_map_meta;
1223 
1224 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1225 	if (IS_ERR(inner_map_meta))
1226 		return inner_map_meta;
1227 
1228 	map = array_map_alloc(attr);
1229 	if (IS_ERR(map)) {
1230 		bpf_map_meta_free(inner_map_meta);
1231 		return map;
1232 	}
1233 
1234 	map->inner_map_meta = inner_map_meta;
1235 
1236 	return map;
1237 }
1238 
1239 static void array_of_map_free(struct bpf_map *map)
1240 {
1241 	/* map->inner_map_meta is only accessed by syscall which
1242 	 * is protected by fdget/fdput.
1243 	 */
1244 	bpf_map_meta_free(map->inner_map_meta);
1245 	bpf_fd_array_map_clear(map);
1246 	fd_array_map_free(map);
1247 }
1248 
1249 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
1250 {
1251 	struct bpf_map **inner_map = array_map_lookup_elem(map, key);
1252 
1253 	if (!inner_map)
1254 		return NULL;
1255 
1256 	return READ_ONCE(*inner_map);
1257 }
1258 
1259 static int array_of_map_gen_lookup(struct bpf_map *map,
1260 				   struct bpf_insn *insn_buf)
1261 {
1262 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1263 	u32 elem_size = round_up(map->value_size, 8);
1264 	struct bpf_insn *insn = insn_buf;
1265 	const int ret = BPF_REG_0;
1266 	const int map_ptr = BPF_REG_1;
1267 	const int index = BPF_REG_2;
1268 
1269 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
1270 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
1271 	if (!map->bypass_spec_v1) {
1272 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
1273 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
1274 	} else {
1275 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
1276 	}
1277 	if (is_power_of_2(elem_size))
1278 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
1279 	else
1280 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
1281 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
1282 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1283 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
1284 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
1285 	*insn++ = BPF_MOV64_IMM(ret, 0);
1286 
1287 	return insn - insn_buf;
1288 }
1289 
1290 static int array_of_maps_map_btf_id;
1291 const struct bpf_map_ops array_of_maps_map_ops = {
1292 	.map_alloc_check = fd_array_map_alloc_check,
1293 	.map_alloc = array_of_map_alloc,
1294 	.map_free = array_of_map_free,
1295 	.map_get_next_key = array_map_get_next_key,
1296 	.map_lookup_elem = array_of_map_lookup_elem,
1297 	.map_delete_elem = fd_array_map_delete_elem,
1298 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1299 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1300 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1301 	.map_gen_lookup = array_of_map_gen_lookup,
1302 	.map_check_btf = map_check_no_btf,
1303 	.map_btf_name = "bpf_array",
1304 	.map_btf_id = &array_of_maps_map_btf_id,
1305 };
1306