xref: /openbmc/linux/kernel/bpf/arraymap.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016,2017 Facebook
4  */
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/err.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/filter.h>
11 #include <linux/perf_event.h>
12 #include <uapi/linux/btf.h>
13 #include <linux/rcupdate_trace.h>
14 
15 #include "map_in_map.h"
16 
17 #define ARRAY_CREATE_FLAG_MASK \
18 	(BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \
19 	 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP)
20 
21 static void bpf_array_free_percpu(struct bpf_array *array)
22 {
23 	int i;
24 
25 	for (i = 0; i < array->map.max_entries; i++) {
26 		free_percpu(array->pptrs[i]);
27 		cond_resched();
28 	}
29 }
30 
31 static int bpf_array_alloc_percpu(struct bpf_array *array)
32 {
33 	void __percpu *ptr;
34 	int i;
35 
36 	for (i = 0; i < array->map.max_entries; i++) {
37 		ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8,
38 					   GFP_USER | __GFP_NOWARN);
39 		if (!ptr) {
40 			bpf_array_free_percpu(array);
41 			return -ENOMEM;
42 		}
43 		array->pptrs[i] = ptr;
44 		cond_resched();
45 	}
46 
47 	return 0;
48 }
49 
50 /* Called from syscall */
51 int array_map_alloc_check(union bpf_attr *attr)
52 {
53 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
54 	int numa_node = bpf_map_attr_numa_node(attr);
55 
56 	/* check sanity of attributes */
57 	if (attr->max_entries == 0 || attr->key_size != 4 ||
58 	    attr->value_size == 0 ||
59 	    attr->map_flags & ~ARRAY_CREATE_FLAG_MASK ||
60 	    !bpf_map_flags_access_ok(attr->map_flags) ||
61 	    (percpu && numa_node != NUMA_NO_NODE))
62 		return -EINVAL;
63 
64 	if (attr->map_type != BPF_MAP_TYPE_ARRAY &&
65 	    attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP))
66 		return -EINVAL;
67 
68 	if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY &&
69 	    attr->map_flags & BPF_F_PRESERVE_ELEMS)
70 		return -EINVAL;
71 
72 	if (attr->value_size > KMALLOC_MAX_SIZE)
73 		/* if value_size is bigger, the user space won't be able to
74 		 * access the elements.
75 		 */
76 		return -E2BIG;
77 
78 	return 0;
79 }
80 
81 static struct bpf_map *array_map_alloc(union bpf_attr *attr)
82 {
83 	bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
84 	int numa_node = bpf_map_attr_numa_node(attr);
85 	u32 elem_size, index_mask, max_entries;
86 	bool bypass_spec_v1 = bpf_bypass_spec_v1();
87 	u64 array_size, mask64;
88 	struct bpf_array *array;
89 
90 	elem_size = round_up(attr->value_size, 8);
91 
92 	max_entries = attr->max_entries;
93 
94 	/* On 32 bit archs roundup_pow_of_two() with max_entries that has
95 	 * upper most bit set in u32 space is undefined behavior due to
96 	 * resulting 1U << 32, so do it manually here in u64 space.
97 	 */
98 	mask64 = fls_long(max_entries - 1);
99 	mask64 = 1ULL << mask64;
100 	mask64 -= 1;
101 
102 	index_mask = mask64;
103 	if (!bypass_spec_v1) {
104 		/* round up array size to nearest power of 2,
105 		 * since cpu will speculate within index_mask limits
106 		 */
107 		max_entries = index_mask + 1;
108 		/* Check for overflows. */
109 		if (max_entries < attr->max_entries)
110 			return ERR_PTR(-E2BIG);
111 	}
112 
113 	array_size = sizeof(*array);
114 	if (percpu) {
115 		array_size += (u64) max_entries * sizeof(void *);
116 	} else {
117 		/* rely on vmalloc() to return page-aligned memory and
118 		 * ensure array->value is exactly page-aligned
119 		 */
120 		if (attr->map_flags & BPF_F_MMAPABLE) {
121 			array_size = PAGE_ALIGN(array_size);
122 			array_size += PAGE_ALIGN((u64) max_entries * elem_size);
123 		} else {
124 			array_size += (u64) max_entries * elem_size;
125 		}
126 	}
127 
128 	/* allocate all map elements and zero-initialize them */
129 	if (attr->map_flags & BPF_F_MMAPABLE) {
130 		void *data;
131 
132 		/* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */
133 		data = bpf_map_area_mmapable_alloc(array_size, numa_node);
134 		if (!data)
135 			return ERR_PTR(-ENOMEM);
136 		array = data + PAGE_ALIGN(sizeof(struct bpf_array))
137 			- offsetof(struct bpf_array, value);
138 	} else {
139 		array = bpf_map_area_alloc(array_size, numa_node);
140 	}
141 	if (!array)
142 		return ERR_PTR(-ENOMEM);
143 	array->index_mask = index_mask;
144 	array->map.bypass_spec_v1 = bypass_spec_v1;
145 
146 	/* copy mandatory map attributes */
147 	bpf_map_init_from_attr(&array->map, attr);
148 	array->elem_size = elem_size;
149 
150 	if (percpu && bpf_array_alloc_percpu(array)) {
151 		bpf_map_area_free(array);
152 		return ERR_PTR(-ENOMEM);
153 	}
154 
155 	return &array->map;
156 }
157 
158 /* Called from syscall or from eBPF program */
159 static void *array_map_lookup_elem(struct bpf_map *map, void *key)
160 {
161 	struct bpf_array *array = container_of(map, struct bpf_array, map);
162 	u32 index = *(u32 *)key;
163 
164 	if (unlikely(index >= array->map.max_entries))
165 		return NULL;
166 
167 	return array->value + array->elem_size * (index & array->index_mask);
168 }
169 
170 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm,
171 				       u32 off)
172 {
173 	struct bpf_array *array = container_of(map, struct bpf_array, map);
174 
175 	if (map->max_entries != 1)
176 		return -ENOTSUPP;
177 	if (off >= map->value_size)
178 		return -EINVAL;
179 
180 	*imm = (unsigned long)array->value;
181 	return 0;
182 }
183 
184 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm,
185 				       u32 *off)
186 {
187 	struct bpf_array *array = container_of(map, struct bpf_array, map);
188 	u64 base = (unsigned long)array->value;
189 	u64 range = array->elem_size;
190 
191 	if (map->max_entries != 1)
192 		return -ENOTSUPP;
193 	if (imm < base || imm >= base + range)
194 		return -ENOENT;
195 
196 	*off = imm - base;
197 	return 0;
198 }
199 
200 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */
201 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
202 {
203 	struct bpf_array *array = container_of(map, struct bpf_array, map);
204 	struct bpf_insn *insn = insn_buf;
205 	u32 elem_size = round_up(map->value_size, 8);
206 	const int ret = BPF_REG_0;
207 	const int map_ptr = BPF_REG_1;
208 	const int index = BPF_REG_2;
209 
210 	if (map->map_flags & BPF_F_INNER_MAP)
211 		return -EOPNOTSUPP;
212 
213 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
214 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
215 	if (!map->bypass_spec_v1) {
216 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4);
217 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
218 	} else {
219 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3);
220 	}
221 
222 	if (is_power_of_2(elem_size)) {
223 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
224 	} else {
225 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
226 	}
227 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
228 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
229 	*insn++ = BPF_MOV64_IMM(ret, 0);
230 	return insn - insn_buf;
231 }
232 
233 /* Called from eBPF program */
234 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key)
235 {
236 	struct bpf_array *array = container_of(map, struct bpf_array, map);
237 	u32 index = *(u32 *)key;
238 
239 	if (unlikely(index >= array->map.max_entries))
240 		return NULL;
241 
242 	return this_cpu_ptr(array->pptrs[index & array->index_mask]);
243 }
244 
245 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value)
246 {
247 	struct bpf_array *array = container_of(map, struct bpf_array, map);
248 	u32 index = *(u32 *)key;
249 	void __percpu *pptr;
250 	int cpu, off = 0;
251 	u32 size;
252 
253 	if (unlikely(index >= array->map.max_entries))
254 		return -ENOENT;
255 
256 	/* per_cpu areas are zero-filled and bpf programs can only
257 	 * access 'value_size' of them, so copying rounded areas
258 	 * will not leak any kernel data
259 	 */
260 	size = round_up(map->value_size, 8);
261 	rcu_read_lock();
262 	pptr = array->pptrs[index & array->index_mask];
263 	for_each_possible_cpu(cpu) {
264 		bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size);
265 		off += size;
266 	}
267 	rcu_read_unlock();
268 	return 0;
269 }
270 
271 /* Called from syscall */
272 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
273 {
274 	struct bpf_array *array = container_of(map, struct bpf_array, map);
275 	u32 index = key ? *(u32 *)key : U32_MAX;
276 	u32 *next = (u32 *)next_key;
277 
278 	if (index >= array->map.max_entries) {
279 		*next = 0;
280 		return 0;
281 	}
282 
283 	if (index == array->map.max_entries - 1)
284 		return -ENOENT;
285 
286 	*next = index + 1;
287 	return 0;
288 }
289 
290 static void check_and_free_timer_in_array(struct bpf_array *arr, void *val)
291 {
292 	if (unlikely(map_value_has_timer(&arr->map)))
293 		bpf_timer_cancel_and_free(val + arr->map.timer_off);
294 }
295 
296 /* Called from syscall or from eBPF program */
297 static int array_map_update_elem(struct bpf_map *map, void *key, void *value,
298 				 u64 map_flags)
299 {
300 	struct bpf_array *array = container_of(map, struct bpf_array, map);
301 	u32 index = *(u32 *)key;
302 	char *val;
303 
304 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
305 		/* unknown flags */
306 		return -EINVAL;
307 
308 	if (unlikely(index >= array->map.max_entries))
309 		/* all elements were pre-allocated, cannot insert a new one */
310 		return -E2BIG;
311 
312 	if (unlikely(map_flags & BPF_NOEXIST))
313 		/* all elements already exist */
314 		return -EEXIST;
315 
316 	if (unlikely((map_flags & BPF_F_LOCK) &&
317 		     !map_value_has_spin_lock(map)))
318 		return -EINVAL;
319 
320 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
321 		memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]),
322 		       value, map->value_size);
323 	} else {
324 		val = array->value +
325 			array->elem_size * (index & array->index_mask);
326 		if (map_flags & BPF_F_LOCK)
327 			copy_map_value_locked(map, val, value, false);
328 		else
329 			copy_map_value(map, val, value);
330 		check_and_free_timer_in_array(array, val);
331 	}
332 	return 0;
333 }
334 
335 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
336 			    u64 map_flags)
337 {
338 	struct bpf_array *array = container_of(map, struct bpf_array, map);
339 	u32 index = *(u32 *)key;
340 	void __percpu *pptr;
341 	int cpu, off = 0;
342 	u32 size;
343 
344 	if (unlikely(map_flags > BPF_EXIST))
345 		/* unknown flags */
346 		return -EINVAL;
347 
348 	if (unlikely(index >= array->map.max_entries))
349 		/* all elements were pre-allocated, cannot insert a new one */
350 		return -E2BIG;
351 
352 	if (unlikely(map_flags == BPF_NOEXIST))
353 		/* all elements already exist */
354 		return -EEXIST;
355 
356 	/* the user space will provide round_up(value_size, 8) bytes that
357 	 * will be copied into per-cpu area. bpf programs can only access
358 	 * value_size of it. During lookup the same extra bytes will be
359 	 * returned or zeros which were zero-filled by percpu_alloc,
360 	 * so no kernel data leaks possible
361 	 */
362 	size = round_up(map->value_size, 8);
363 	rcu_read_lock();
364 	pptr = array->pptrs[index & array->index_mask];
365 	for_each_possible_cpu(cpu) {
366 		bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size);
367 		off += size;
368 	}
369 	rcu_read_unlock();
370 	return 0;
371 }
372 
373 /* Called from syscall or from eBPF program */
374 static int array_map_delete_elem(struct bpf_map *map, void *key)
375 {
376 	return -EINVAL;
377 }
378 
379 static void *array_map_vmalloc_addr(struct bpf_array *array)
380 {
381 	return (void *)round_down((unsigned long)array, PAGE_SIZE);
382 }
383 
384 static void array_map_free_timers(struct bpf_map *map)
385 {
386 	struct bpf_array *array = container_of(map, struct bpf_array, map);
387 	int i;
388 
389 	if (likely(!map_value_has_timer(map)))
390 		return;
391 
392 	for (i = 0; i < array->map.max_entries; i++)
393 		bpf_timer_cancel_and_free(array->value + array->elem_size * i +
394 					  map->timer_off);
395 }
396 
397 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
398 static void array_map_free(struct bpf_map *map)
399 {
400 	struct bpf_array *array = container_of(map, struct bpf_array, map);
401 
402 	if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY)
403 		bpf_array_free_percpu(array);
404 
405 	if (array->map.map_flags & BPF_F_MMAPABLE)
406 		bpf_map_area_free(array_map_vmalloc_addr(array));
407 	else
408 		bpf_map_area_free(array);
409 }
410 
411 static void array_map_seq_show_elem(struct bpf_map *map, void *key,
412 				    struct seq_file *m)
413 {
414 	void *value;
415 
416 	rcu_read_lock();
417 
418 	value = array_map_lookup_elem(map, key);
419 	if (!value) {
420 		rcu_read_unlock();
421 		return;
422 	}
423 
424 	if (map->btf_key_type_id)
425 		seq_printf(m, "%u: ", *(u32 *)key);
426 	btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
427 	seq_puts(m, "\n");
428 
429 	rcu_read_unlock();
430 }
431 
432 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key,
433 					   struct seq_file *m)
434 {
435 	struct bpf_array *array = container_of(map, struct bpf_array, map);
436 	u32 index = *(u32 *)key;
437 	void __percpu *pptr;
438 	int cpu;
439 
440 	rcu_read_lock();
441 
442 	seq_printf(m, "%u: {\n", *(u32 *)key);
443 	pptr = array->pptrs[index & array->index_mask];
444 	for_each_possible_cpu(cpu) {
445 		seq_printf(m, "\tcpu%d: ", cpu);
446 		btf_type_seq_show(map->btf, map->btf_value_type_id,
447 				  per_cpu_ptr(pptr, cpu), m);
448 		seq_puts(m, "\n");
449 	}
450 	seq_puts(m, "}\n");
451 
452 	rcu_read_unlock();
453 }
454 
455 static int array_map_check_btf(const struct bpf_map *map,
456 			       const struct btf *btf,
457 			       const struct btf_type *key_type,
458 			       const struct btf_type *value_type)
459 {
460 	u32 int_data;
461 
462 	/* One exception for keyless BTF: .bss/.data/.rodata map */
463 	if (btf_type_is_void(key_type)) {
464 		if (map->map_type != BPF_MAP_TYPE_ARRAY ||
465 		    map->max_entries != 1)
466 			return -EINVAL;
467 
468 		if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC)
469 			return -EINVAL;
470 
471 		return 0;
472 	}
473 
474 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
475 		return -EINVAL;
476 
477 	int_data = *(u32 *)(key_type + 1);
478 	/* bpf array can only take a u32 key. This check makes sure
479 	 * that the btf matches the attr used during map_create.
480 	 */
481 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
482 		return -EINVAL;
483 
484 	return 0;
485 }
486 
487 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma)
488 {
489 	struct bpf_array *array = container_of(map, struct bpf_array, map);
490 	pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT;
491 
492 	if (!(map->map_flags & BPF_F_MMAPABLE))
493 		return -EINVAL;
494 
495 	if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) >
496 	    PAGE_ALIGN((u64)array->map.max_entries * array->elem_size))
497 		return -EINVAL;
498 
499 	return remap_vmalloc_range(vma, array_map_vmalloc_addr(array),
500 				   vma->vm_pgoff + pgoff);
501 }
502 
503 static bool array_map_meta_equal(const struct bpf_map *meta0,
504 				 const struct bpf_map *meta1)
505 {
506 	if (!bpf_map_meta_equal(meta0, meta1))
507 		return false;
508 	return meta0->map_flags & BPF_F_INNER_MAP ? true :
509 	       meta0->max_entries == meta1->max_entries;
510 }
511 
512 struct bpf_iter_seq_array_map_info {
513 	struct bpf_map *map;
514 	void *percpu_value_buf;
515 	u32 index;
516 };
517 
518 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos)
519 {
520 	struct bpf_iter_seq_array_map_info *info = seq->private;
521 	struct bpf_map *map = info->map;
522 	struct bpf_array *array;
523 	u32 index;
524 
525 	if (info->index >= map->max_entries)
526 		return NULL;
527 
528 	if (*pos == 0)
529 		++*pos;
530 	array = container_of(map, struct bpf_array, map);
531 	index = info->index & array->index_mask;
532 	if (info->percpu_value_buf)
533 	       return array->pptrs[index];
534 	return array->value + array->elem_size * index;
535 }
536 
537 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
538 {
539 	struct bpf_iter_seq_array_map_info *info = seq->private;
540 	struct bpf_map *map = info->map;
541 	struct bpf_array *array;
542 	u32 index;
543 
544 	++*pos;
545 	++info->index;
546 	if (info->index >= map->max_entries)
547 		return NULL;
548 
549 	array = container_of(map, struct bpf_array, map);
550 	index = info->index & array->index_mask;
551 	if (info->percpu_value_buf)
552 	       return array->pptrs[index];
553 	return array->value + array->elem_size * index;
554 }
555 
556 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v)
557 {
558 	struct bpf_iter_seq_array_map_info *info = seq->private;
559 	struct bpf_iter__bpf_map_elem ctx = {};
560 	struct bpf_map *map = info->map;
561 	struct bpf_iter_meta meta;
562 	struct bpf_prog *prog;
563 	int off = 0, cpu = 0;
564 	void __percpu **pptr;
565 	u32 size;
566 
567 	meta.seq = seq;
568 	prog = bpf_iter_get_info(&meta, v == NULL);
569 	if (!prog)
570 		return 0;
571 
572 	ctx.meta = &meta;
573 	ctx.map = info->map;
574 	if (v) {
575 		ctx.key = &info->index;
576 
577 		if (!info->percpu_value_buf) {
578 			ctx.value = v;
579 		} else {
580 			pptr = v;
581 			size = round_up(map->value_size, 8);
582 			for_each_possible_cpu(cpu) {
583 				bpf_long_memcpy(info->percpu_value_buf + off,
584 						per_cpu_ptr(pptr, cpu),
585 						size);
586 				off += size;
587 			}
588 			ctx.value = info->percpu_value_buf;
589 		}
590 	}
591 
592 	return bpf_iter_run_prog(prog, &ctx);
593 }
594 
595 static int bpf_array_map_seq_show(struct seq_file *seq, void *v)
596 {
597 	return __bpf_array_map_seq_show(seq, v);
598 }
599 
600 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v)
601 {
602 	if (!v)
603 		(void)__bpf_array_map_seq_show(seq, NULL);
604 }
605 
606 static int bpf_iter_init_array_map(void *priv_data,
607 				   struct bpf_iter_aux_info *aux)
608 {
609 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
610 	struct bpf_map *map = aux->map;
611 	void *value_buf;
612 	u32 buf_size;
613 
614 	if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) {
615 		buf_size = round_up(map->value_size, 8) * num_possible_cpus();
616 		value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
617 		if (!value_buf)
618 			return -ENOMEM;
619 
620 		seq_info->percpu_value_buf = value_buf;
621 	}
622 
623 	seq_info->map = map;
624 	return 0;
625 }
626 
627 static void bpf_iter_fini_array_map(void *priv_data)
628 {
629 	struct bpf_iter_seq_array_map_info *seq_info = priv_data;
630 
631 	kfree(seq_info->percpu_value_buf);
632 }
633 
634 static const struct seq_operations bpf_array_map_seq_ops = {
635 	.start	= bpf_array_map_seq_start,
636 	.next	= bpf_array_map_seq_next,
637 	.stop	= bpf_array_map_seq_stop,
638 	.show	= bpf_array_map_seq_show,
639 };
640 
641 static const struct bpf_iter_seq_info iter_seq_info = {
642 	.seq_ops		= &bpf_array_map_seq_ops,
643 	.init_seq_private	= bpf_iter_init_array_map,
644 	.fini_seq_private	= bpf_iter_fini_array_map,
645 	.seq_priv_size		= sizeof(struct bpf_iter_seq_array_map_info),
646 };
647 
648 static int bpf_for_each_array_elem(struct bpf_map *map, bpf_callback_t callback_fn,
649 				   void *callback_ctx, u64 flags)
650 {
651 	u32 i, key, num_elems = 0;
652 	struct bpf_array *array;
653 	bool is_percpu;
654 	u64 ret = 0;
655 	void *val;
656 
657 	if (flags != 0)
658 		return -EINVAL;
659 
660 	is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY;
661 	array = container_of(map, struct bpf_array, map);
662 	if (is_percpu)
663 		migrate_disable();
664 	for (i = 0; i < map->max_entries; i++) {
665 		if (is_percpu)
666 			val = this_cpu_ptr(array->pptrs[i]);
667 		else
668 			val = array->value + array->elem_size * i;
669 		num_elems++;
670 		key = i;
671 		ret = callback_fn((u64)(long)map, (u64)(long)&key,
672 				  (u64)(long)val, (u64)(long)callback_ctx, 0);
673 		/* return value: 0 - continue, 1 - stop and return */
674 		if (ret)
675 			break;
676 	}
677 
678 	if (is_percpu)
679 		migrate_enable();
680 	return num_elems;
681 }
682 
683 static int array_map_btf_id;
684 const struct bpf_map_ops array_map_ops = {
685 	.map_meta_equal = array_map_meta_equal,
686 	.map_alloc_check = array_map_alloc_check,
687 	.map_alloc = array_map_alloc,
688 	.map_free = array_map_free,
689 	.map_get_next_key = array_map_get_next_key,
690 	.map_release_uref = array_map_free_timers,
691 	.map_lookup_elem = array_map_lookup_elem,
692 	.map_update_elem = array_map_update_elem,
693 	.map_delete_elem = array_map_delete_elem,
694 	.map_gen_lookup = array_map_gen_lookup,
695 	.map_direct_value_addr = array_map_direct_value_addr,
696 	.map_direct_value_meta = array_map_direct_value_meta,
697 	.map_mmap = array_map_mmap,
698 	.map_seq_show_elem = array_map_seq_show_elem,
699 	.map_check_btf = array_map_check_btf,
700 	.map_lookup_batch = generic_map_lookup_batch,
701 	.map_update_batch = generic_map_update_batch,
702 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
703 	.map_for_each_callback = bpf_for_each_array_elem,
704 	.map_btf_name = "bpf_array",
705 	.map_btf_id = &array_map_btf_id,
706 	.iter_seq_info = &iter_seq_info,
707 };
708 
709 static int percpu_array_map_btf_id;
710 const struct bpf_map_ops percpu_array_map_ops = {
711 	.map_meta_equal = bpf_map_meta_equal,
712 	.map_alloc_check = array_map_alloc_check,
713 	.map_alloc = array_map_alloc,
714 	.map_free = array_map_free,
715 	.map_get_next_key = array_map_get_next_key,
716 	.map_lookup_elem = percpu_array_map_lookup_elem,
717 	.map_update_elem = array_map_update_elem,
718 	.map_delete_elem = array_map_delete_elem,
719 	.map_seq_show_elem = percpu_array_map_seq_show_elem,
720 	.map_check_btf = array_map_check_btf,
721 	.map_lookup_batch = generic_map_lookup_batch,
722 	.map_update_batch = generic_map_update_batch,
723 	.map_set_for_each_callback_args = map_set_for_each_callback_args,
724 	.map_for_each_callback = bpf_for_each_array_elem,
725 	.map_btf_name = "bpf_array",
726 	.map_btf_id = &percpu_array_map_btf_id,
727 	.iter_seq_info = &iter_seq_info,
728 };
729 
730 static int fd_array_map_alloc_check(union bpf_attr *attr)
731 {
732 	/* only file descriptors can be stored in this type of map */
733 	if (attr->value_size != sizeof(u32))
734 		return -EINVAL;
735 	/* Program read-only/write-only not supported for special maps yet. */
736 	if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG))
737 		return -EINVAL;
738 	return array_map_alloc_check(attr);
739 }
740 
741 static void fd_array_map_free(struct bpf_map *map)
742 {
743 	struct bpf_array *array = container_of(map, struct bpf_array, map);
744 	int i;
745 
746 	/* make sure it's empty */
747 	for (i = 0; i < array->map.max_entries; i++)
748 		BUG_ON(array->ptrs[i] != NULL);
749 
750 	bpf_map_area_free(array);
751 }
752 
753 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key)
754 {
755 	return ERR_PTR(-EOPNOTSUPP);
756 }
757 
758 /* only called from syscall */
759 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
760 {
761 	void **elem, *ptr;
762 	int ret =  0;
763 
764 	if (!map->ops->map_fd_sys_lookup_elem)
765 		return -ENOTSUPP;
766 
767 	rcu_read_lock();
768 	elem = array_map_lookup_elem(map, key);
769 	if (elem && (ptr = READ_ONCE(*elem)))
770 		*value = map->ops->map_fd_sys_lookup_elem(ptr);
771 	else
772 		ret = -ENOENT;
773 	rcu_read_unlock();
774 
775 	return ret;
776 }
777 
778 /* only called from syscall */
779 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
780 				 void *key, void *value, u64 map_flags)
781 {
782 	struct bpf_array *array = container_of(map, struct bpf_array, map);
783 	void *new_ptr, *old_ptr;
784 	u32 index = *(u32 *)key, ufd;
785 
786 	if (map_flags != BPF_ANY)
787 		return -EINVAL;
788 
789 	if (index >= array->map.max_entries)
790 		return -E2BIG;
791 
792 	ufd = *(u32 *)value;
793 	new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
794 	if (IS_ERR(new_ptr))
795 		return PTR_ERR(new_ptr);
796 
797 	if (map->ops->map_poke_run) {
798 		mutex_lock(&array->aux->poke_mutex);
799 		old_ptr = xchg(array->ptrs + index, new_ptr);
800 		map->ops->map_poke_run(map, index, old_ptr, new_ptr);
801 		mutex_unlock(&array->aux->poke_mutex);
802 	} else {
803 		old_ptr = xchg(array->ptrs + index, new_ptr);
804 	}
805 
806 	if (old_ptr)
807 		map->ops->map_fd_put_ptr(old_ptr);
808 	return 0;
809 }
810 
811 static int fd_array_map_delete_elem(struct bpf_map *map, void *key)
812 {
813 	struct bpf_array *array = container_of(map, struct bpf_array, map);
814 	void *old_ptr;
815 	u32 index = *(u32 *)key;
816 
817 	if (index >= array->map.max_entries)
818 		return -E2BIG;
819 
820 	if (map->ops->map_poke_run) {
821 		mutex_lock(&array->aux->poke_mutex);
822 		old_ptr = xchg(array->ptrs + index, NULL);
823 		map->ops->map_poke_run(map, index, old_ptr, NULL);
824 		mutex_unlock(&array->aux->poke_mutex);
825 	} else {
826 		old_ptr = xchg(array->ptrs + index, NULL);
827 	}
828 
829 	if (old_ptr) {
830 		map->ops->map_fd_put_ptr(old_ptr);
831 		return 0;
832 	} else {
833 		return -ENOENT;
834 	}
835 }
836 
837 static void *prog_fd_array_get_ptr(struct bpf_map *map,
838 				   struct file *map_file, int fd)
839 {
840 	struct bpf_prog *prog = bpf_prog_get(fd);
841 
842 	if (IS_ERR(prog))
843 		return prog;
844 
845 	if (!bpf_prog_map_compatible(map, prog)) {
846 		bpf_prog_put(prog);
847 		return ERR_PTR(-EINVAL);
848 	}
849 
850 	return prog;
851 }
852 
853 static void prog_fd_array_put_ptr(void *ptr)
854 {
855 	bpf_prog_put(ptr);
856 }
857 
858 static u32 prog_fd_array_sys_lookup_elem(void *ptr)
859 {
860 	return ((struct bpf_prog *)ptr)->aux->id;
861 }
862 
863 /* decrement refcnt of all bpf_progs that are stored in this map */
864 static void bpf_fd_array_map_clear(struct bpf_map *map)
865 {
866 	struct bpf_array *array = container_of(map, struct bpf_array, map);
867 	int i;
868 
869 	for (i = 0; i < array->map.max_entries; i++)
870 		fd_array_map_delete_elem(map, &i);
871 }
872 
873 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key,
874 					 struct seq_file *m)
875 {
876 	void **elem, *ptr;
877 	u32 prog_id;
878 
879 	rcu_read_lock();
880 
881 	elem = array_map_lookup_elem(map, key);
882 	if (elem) {
883 		ptr = READ_ONCE(*elem);
884 		if (ptr) {
885 			seq_printf(m, "%u: ", *(u32 *)key);
886 			prog_id = prog_fd_array_sys_lookup_elem(ptr);
887 			btf_type_seq_show(map->btf, map->btf_value_type_id,
888 					  &prog_id, m);
889 			seq_puts(m, "\n");
890 		}
891 	}
892 
893 	rcu_read_unlock();
894 }
895 
896 struct prog_poke_elem {
897 	struct list_head list;
898 	struct bpf_prog_aux *aux;
899 };
900 
901 static int prog_array_map_poke_track(struct bpf_map *map,
902 				     struct bpf_prog_aux *prog_aux)
903 {
904 	struct prog_poke_elem *elem;
905 	struct bpf_array_aux *aux;
906 	int ret = 0;
907 
908 	aux = container_of(map, struct bpf_array, map)->aux;
909 	mutex_lock(&aux->poke_mutex);
910 	list_for_each_entry(elem, &aux->poke_progs, list) {
911 		if (elem->aux == prog_aux)
912 			goto out;
913 	}
914 
915 	elem = kmalloc(sizeof(*elem), GFP_KERNEL);
916 	if (!elem) {
917 		ret = -ENOMEM;
918 		goto out;
919 	}
920 
921 	INIT_LIST_HEAD(&elem->list);
922 	/* We must track the program's aux info at this point in time
923 	 * since the program pointer itself may not be stable yet, see
924 	 * also comment in prog_array_map_poke_run().
925 	 */
926 	elem->aux = prog_aux;
927 
928 	list_add_tail(&elem->list, &aux->poke_progs);
929 out:
930 	mutex_unlock(&aux->poke_mutex);
931 	return ret;
932 }
933 
934 static void prog_array_map_poke_untrack(struct bpf_map *map,
935 					struct bpf_prog_aux *prog_aux)
936 {
937 	struct prog_poke_elem *elem, *tmp;
938 	struct bpf_array_aux *aux;
939 
940 	aux = container_of(map, struct bpf_array, map)->aux;
941 	mutex_lock(&aux->poke_mutex);
942 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
943 		if (elem->aux == prog_aux) {
944 			list_del_init(&elem->list);
945 			kfree(elem);
946 			break;
947 		}
948 	}
949 	mutex_unlock(&aux->poke_mutex);
950 }
951 
952 static void prog_array_map_poke_run(struct bpf_map *map, u32 key,
953 				    struct bpf_prog *old,
954 				    struct bpf_prog *new)
955 {
956 	u8 *old_addr, *new_addr, *old_bypass_addr;
957 	struct prog_poke_elem *elem;
958 	struct bpf_array_aux *aux;
959 
960 	aux = container_of(map, struct bpf_array, map)->aux;
961 	WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex));
962 
963 	list_for_each_entry(elem, &aux->poke_progs, list) {
964 		struct bpf_jit_poke_descriptor *poke;
965 		int i, ret;
966 
967 		for (i = 0; i < elem->aux->size_poke_tab; i++) {
968 			poke = &elem->aux->poke_tab[i];
969 
970 			/* Few things to be aware of:
971 			 *
972 			 * 1) We can only ever access aux in this context, but
973 			 *    not aux->prog since it might not be stable yet and
974 			 *    there could be danger of use after free otherwise.
975 			 * 2) Initially when we start tracking aux, the program
976 			 *    is not JITed yet and also does not have a kallsyms
977 			 *    entry. We skip these as poke->tailcall_target_stable
978 			 *    is not active yet. The JIT will do the final fixup
979 			 *    before setting it stable. The various
980 			 *    poke->tailcall_target_stable are successively
981 			 *    activated, so tail call updates can arrive from here
982 			 *    while JIT is still finishing its final fixup for
983 			 *    non-activated poke entries.
984 			 * 3) On program teardown, the program's kallsym entry gets
985 			 *    removed out of RCU callback, but we can only untrack
986 			 *    from sleepable context, therefore bpf_arch_text_poke()
987 			 *    might not see that this is in BPF text section and
988 			 *    bails out with -EINVAL. As these are unreachable since
989 			 *    RCU grace period already passed, we simply skip them.
990 			 * 4) Also programs reaching refcount of zero while patching
991 			 *    is in progress is okay since we're protected under
992 			 *    poke_mutex and untrack the programs before the JIT
993 			 *    buffer is freed. When we're still in the middle of
994 			 *    patching and suddenly kallsyms entry of the program
995 			 *    gets evicted, we just skip the rest which is fine due
996 			 *    to point 3).
997 			 * 5) Any other error happening below from bpf_arch_text_poke()
998 			 *    is a unexpected bug.
999 			 */
1000 			if (!READ_ONCE(poke->tailcall_target_stable))
1001 				continue;
1002 			if (poke->reason != BPF_POKE_REASON_TAIL_CALL)
1003 				continue;
1004 			if (poke->tail_call.map != map ||
1005 			    poke->tail_call.key != key)
1006 				continue;
1007 
1008 			old_bypass_addr = old ? NULL : poke->bypass_addr;
1009 			old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL;
1010 			new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL;
1011 
1012 			if (new) {
1013 				ret = bpf_arch_text_poke(poke->tailcall_target,
1014 							 BPF_MOD_JUMP,
1015 							 old_addr, new_addr);
1016 				BUG_ON(ret < 0 && ret != -EINVAL);
1017 				if (!old) {
1018 					ret = bpf_arch_text_poke(poke->tailcall_bypass,
1019 								 BPF_MOD_JUMP,
1020 								 poke->bypass_addr,
1021 								 NULL);
1022 					BUG_ON(ret < 0 && ret != -EINVAL);
1023 				}
1024 			} else {
1025 				ret = bpf_arch_text_poke(poke->tailcall_bypass,
1026 							 BPF_MOD_JUMP,
1027 							 old_bypass_addr,
1028 							 poke->bypass_addr);
1029 				BUG_ON(ret < 0 && ret != -EINVAL);
1030 				/* let other CPUs finish the execution of program
1031 				 * so that it will not possible to expose them
1032 				 * to invalid nop, stack unwind, nop state
1033 				 */
1034 				if (!ret)
1035 					synchronize_rcu();
1036 				ret = bpf_arch_text_poke(poke->tailcall_target,
1037 							 BPF_MOD_JUMP,
1038 							 old_addr, NULL);
1039 				BUG_ON(ret < 0 && ret != -EINVAL);
1040 			}
1041 		}
1042 	}
1043 }
1044 
1045 static void prog_array_map_clear_deferred(struct work_struct *work)
1046 {
1047 	struct bpf_map *map = container_of(work, struct bpf_array_aux,
1048 					   work)->map;
1049 	bpf_fd_array_map_clear(map);
1050 	bpf_map_put(map);
1051 }
1052 
1053 static void prog_array_map_clear(struct bpf_map *map)
1054 {
1055 	struct bpf_array_aux *aux = container_of(map, struct bpf_array,
1056 						 map)->aux;
1057 	bpf_map_inc(map);
1058 	schedule_work(&aux->work);
1059 }
1060 
1061 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr)
1062 {
1063 	struct bpf_array_aux *aux;
1064 	struct bpf_map *map;
1065 
1066 	aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT);
1067 	if (!aux)
1068 		return ERR_PTR(-ENOMEM);
1069 
1070 	INIT_WORK(&aux->work, prog_array_map_clear_deferred);
1071 	INIT_LIST_HEAD(&aux->poke_progs);
1072 	mutex_init(&aux->poke_mutex);
1073 
1074 	map = array_map_alloc(attr);
1075 	if (IS_ERR(map)) {
1076 		kfree(aux);
1077 		return map;
1078 	}
1079 
1080 	container_of(map, struct bpf_array, map)->aux = aux;
1081 	aux->map = map;
1082 
1083 	return map;
1084 }
1085 
1086 static void prog_array_map_free(struct bpf_map *map)
1087 {
1088 	struct prog_poke_elem *elem, *tmp;
1089 	struct bpf_array_aux *aux;
1090 
1091 	aux = container_of(map, struct bpf_array, map)->aux;
1092 	list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) {
1093 		list_del_init(&elem->list);
1094 		kfree(elem);
1095 	}
1096 	kfree(aux);
1097 	fd_array_map_free(map);
1098 }
1099 
1100 /* prog_array->aux->{type,jited} is a runtime binding.
1101  * Doing static check alone in the verifier is not enough.
1102  * Thus, prog_array_map cannot be used as an inner_map
1103  * and map_meta_equal is not implemented.
1104  */
1105 static int prog_array_map_btf_id;
1106 const struct bpf_map_ops prog_array_map_ops = {
1107 	.map_alloc_check = fd_array_map_alloc_check,
1108 	.map_alloc = prog_array_map_alloc,
1109 	.map_free = prog_array_map_free,
1110 	.map_poke_track = prog_array_map_poke_track,
1111 	.map_poke_untrack = prog_array_map_poke_untrack,
1112 	.map_poke_run = prog_array_map_poke_run,
1113 	.map_get_next_key = array_map_get_next_key,
1114 	.map_lookup_elem = fd_array_map_lookup_elem,
1115 	.map_delete_elem = fd_array_map_delete_elem,
1116 	.map_fd_get_ptr = prog_fd_array_get_ptr,
1117 	.map_fd_put_ptr = prog_fd_array_put_ptr,
1118 	.map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem,
1119 	.map_release_uref = prog_array_map_clear,
1120 	.map_seq_show_elem = prog_array_map_seq_show_elem,
1121 	.map_btf_name = "bpf_array",
1122 	.map_btf_id = &prog_array_map_btf_id,
1123 };
1124 
1125 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file,
1126 						   struct file *map_file)
1127 {
1128 	struct bpf_event_entry *ee;
1129 
1130 	ee = kzalloc(sizeof(*ee), GFP_ATOMIC);
1131 	if (ee) {
1132 		ee->event = perf_file->private_data;
1133 		ee->perf_file = perf_file;
1134 		ee->map_file = map_file;
1135 	}
1136 
1137 	return ee;
1138 }
1139 
1140 static void __bpf_event_entry_free(struct rcu_head *rcu)
1141 {
1142 	struct bpf_event_entry *ee;
1143 
1144 	ee = container_of(rcu, struct bpf_event_entry, rcu);
1145 	fput(ee->perf_file);
1146 	kfree(ee);
1147 }
1148 
1149 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee)
1150 {
1151 	call_rcu(&ee->rcu, __bpf_event_entry_free);
1152 }
1153 
1154 static void *perf_event_fd_array_get_ptr(struct bpf_map *map,
1155 					 struct file *map_file, int fd)
1156 {
1157 	struct bpf_event_entry *ee;
1158 	struct perf_event *event;
1159 	struct file *perf_file;
1160 	u64 value;
1161 
1162 	perf_file = perf_event_get(fd);
1163 	if (IS_ERR(perf_file))
1164 		return perf_file;
1165 
1166 	ee = ERR_PTR(-EOPNOTSUPP);
1167 	event = perf_file->private_data;
1168 	if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP)
1169 		goto err_out;
1170 
1171 	ee = bpf_event_entry_gen(perf_file, map_file);
1172 	if (ee)
1173 		return ee;
1174 	ee = ERR_PTR(-ENOMEM);
1175 err_out:
1176 	fput(perf_file);
1177 	return ee;
1178 }
1179 
1180 static void perf_event_fd_array_put_ptr(void *ptr)
1181 {
1182 	bpf_event_entry_free_rcu(ptr);
1183 }
1184 
1185 static void perf_event_fd_array_release(struct bpf_map *map,
1186 					struct file *map_file)
1187 {
1188 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1189 	struct bpf_event_entry *ee;
1190 	int i;
1191 
1192 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1193 		return;
1194 
1195 	rcu_read_lock();
1196 	for (i = 0; i < array->map.max_entries; i++) {
1197 		ee = READ_ONCE(array->ptrs[i]);
1198 		if (ee && ee->map_file == map_file)
1199 			fd_array_map_delete_elem(map, &i);
1200 	}
1201 	rcu_read_unlock();
1202 }
1203 
1204 static void perf_event_fd_array_map_free(struct bpf_map *map)
1205 {
1206 	if (map->map_flags & BPF_F_PRESERVE_ELEMS)
1207 		bpf_fd_array_map_clear(map);
1208 	fd_array_map_free(map);
1209 }
1210 
1211 static int perf_event_array_map_btf_id;
1212 const struct bpf_map_ops perf_event_array_map_ops = {
1213 	.map_meta_equal = bpf_map_meta_equal,
1214 	.map_alloc_check = fd_array_map_alloc_check,
1215 	.map_alloc = array_map_alloc,
1216 	.map_free = perf_event_fd_array_map_free,
1217 	.map_get_next_key = array_map_get_next_key,
1218 	.map_lookup_elem = fd_array_map_lookup_elem,
1219 	.map_delete_elem = fd_array_map_delete_elem,
1220 	.map_fd_get_ptr = perf_event_fd_array_get_ptr,
1221 	.map_fd_put_ptr = perf_event_fd_array_put_ptr,
1222 	.map_release = perf_event_fd_array_release,
1223 	.map_check_btf = map_check_no_btf,
1224 	.map_btf_name = "bpf_array",
1225 	.map_btf_id = &perf_event_array_map_btf_id,
1226 };
1227 
1228 #ifdef CONFIG_CGROUPS
1229 static void *cgroup_fd_array_get_ptr(struct bpf_map *map,
1230 				     struct file *map_file /* not used */,
1231 				     int fd)
1232 {
1233 	return cgroup_get_from_fd(fd);
1234 }
1235 
1236 static void cgroup_fd_array_put_ptr(void *ptr)
1237 {
1238 	/* cgroup_put free cgrp after a rcu grace period */
1239 	cgroup_put(ptr);
1240 }
1241 
1242 static void cgroup_fd_array_free(struct bpf_map *map)
1243 {
1244 	bpf_fd_array_map_clear(map);
1245 	fd_array_map_free(map);
1246 }
1247 
1248 static int cgroup_array_map_btf_id;
1249 const struct bpf_map_ops cgroup_array_map_ops = {
1250 	.map_meta_equal = bpf_map_meta_equal,
1251 	.map_alloc_check = fd_array_map_alloc_check,
1252 	.map_alloc = array_map_alloc,
1253 	.map_free = cgroup_fd_array_free,
1254 	.map_get_next_key = array_map_get_next_key,
1255 	.map_lookup_elem = fd_array_map_lookup_elem,
1256 	.map_delete_elem = fd_array_map_delete_elem,
1257 	.map_fd_get_ptr = cgroup_fd_array_get_ptr,
1258 	.map_fd_put_ptr = cgroup_fd_array_put_ptr,
1259 	.map_check_btf = map_check_no_btf,
1260 	.map_btf_name = "bpf_array",
1261 	.map_btf_id = &cgroup_array_map_btf_id,
1262 };
1263 #endif
1264 
1265 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr)
1266 {
1267 	struct bpf_map *map, *inner_map_meta;
1268 
1269 	inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
1270 	if (IS_ERR(inner_map_meta))
1271 		return inner_map_meta;
1272 
1273 	map = array_map_alloc(attr);
1274 	if (IS_ERR(map)) {
1275 		bpf_map_meta_free(inner_map_meta);
1276 		return map;
1277 	}
1278 
1279 	map->inner_map_meta = inner_map_meta;
1280 
1281 	return map;
1282 }
1283 
1284 static void array_of_map_free(struct bpf_map *map)
1285 {
1286 	/* map->inner_map_meta is only accessed by syscall which
1287 	 * is protected by fdget/fdput.
1288 	 */
1289 	bpf_map_meta_free(map->inner_map_meta);
1290 	bpf_fd_array_map_clear(map);
1291 	fd_array_map_free(map);
1292 }
1293 
1294 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key)
1295 {
1296 	struct bpf_map **inner_map = array_map_lookup_elem(map, key);
1297 
1298 	if (!inner_map)
1299 		return NULL;
1300 
1301 	return READ_ONCE(*inner_map);
1302 }
1303 
1304 static int array_of_map_gen_lookup(struct bpf_map *map,
1305 				   struct bpf_insn *insn_buf)
1306 {
1307 	struct bpf_array *array = container_of(map, struct bpf_array, map);
1308 	u32 elem_size = round_up(map->value_size, 8);
1309 	struct bpf_insn *insn = insn_buf;
1310 	const int ret = BPF_REG_0;
1311 	const int map_ptr = BPF_REG_1;
1312 	const int index = BPF_REG_2;
1313 
1314 	*insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value));
1315 	*insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0);
1316 	if (!map->bypass_spec_v1) {
1317 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6);
1318 		*insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask);
1319 	} else {
1320 		*insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5);
1321 	}
1322 	if (is_power_of_2(elem_size))
1323 		*insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size));
1324 	else
1325 		*insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size);
1326 	*insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr);
1327 	*insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
1328 	*insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
1329 	*insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1);
1330 	*insn++ = BPF_MOV64_IMM(ret, 0);
1331 
1332 	return insn - insn_buf;
1333 }
1334 
1335 static int array_of_maps_map_btf_id;
1336 const struct bpf_map_ops array_of_maps_map_ops = {
1337 	.map_alloc_check = fd_array_map_alloc_check,
1338 	.map_alloc = array_of_map_alloc,
1339 	.map_free = array_of_map_free,
1340 	.map_get_next_key = array_map_get_next_key,
1341 	.map_lookup_elem = array_of_map_lookup_elem,
1342 	.map_delete_elem = fd_array_map_delete_elem,
1343 	.map_fd_get_ptr = bpf_map_fd_get_ptr,
1344 	.map_fd_put_ptr = bpf_map_fd_put_ptr,
1345 	.map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
1346 	.map_gen_lookup = array_of_map_gen_lookup,
1347 	.map_check_btf = map_check_no_btf,
1348 	.map_btf_name = "bpf_array",
1349 	.map_btf_id = &array_of_maps_map_btf_id,
1350 };
1351