1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 3 * Copyright (c) 2016,2017 Facebook 4 */ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/err.h> 8 #include <linux/slab.h> 9 #include <linux/mm.h> 10 #include <linux/filter.h> 11 #include <linux/perf_event.h> 12 #include <uapi/linux/btf.h> 13 #include <linux/rcupdate_trace.h> 14 15 #include "map_in_map.h" 16 17 #define ARRAY_CREATE_FLAG_MASK \ 18 (BPF_F_NUMA_NODE | BPF_F_MMAPABLE | BPF_F_ACCESS_MASK | \ 19 BPF_F_PRESERVE_ELEMS | BPF_F_INNER_MAP) 20 21 static void bpf_array_free_percpu(struct bpf_array *array) 22 { 23 int i; 24 25 for (i = 0; i < array->map.max_entries; i++) { 26 free_percpu(array->pptrs[i]); 27 cond_resched(); 28 } 29 } 30 31 static int bpf_array_alloc_percpu(struct bpf_array *array) 32 { 33 void __percpu *ptr; 34 int i; 35 36 for (i = 0; i < array->map.max_entries; i++) { 37 ptr = bpf_map_alloc_percpu(&array->map, array->elem_size, 8, 38 GFP_USER | __GFP_NOWARN); 39 if (!ptr) { 40 bpf_array_free_percpu(array); 41 return -ENOMEM; 42 } 43 array->pptrs[i] = ptr; 44 cond_resched(); 45 } 46 47 return 0; 48 } 49 50 /* Called from syscall */ 51 int array_map_alloc_check(union bpf_attr *attr) 52 { 53 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 54 int numa_node = bpf_map_attr_numa_node(attr); 55 56 /* check sanity of attributes */ 57 if (attr->max_entries == 0 || attr->key_size != 4 || 58 attr->value_size == 0 || 59 attr->map_flags & ~ARRAY_CREATE_FLAG_MASK || 60 !bpf_map_flags_access_ok(attr->map_flags) || 61 (percpu && numa_node != NUMA_NO_NODE)) 62 return -EINVAL; 63 64 if (attr->map_type != BPF_MAP_TYPE_ARRAY && 65 attr->map_flags & (BPF_F_MMAPABLE | BPF_F_INNER_MAP)) 66 return -EINVAL; 67 68 if (attr->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY && 69 attr->map_flags & BPF_F_PRESERVE_ELEMS) 70 return -EINVAL; 71 72 if (attr->value_size > KMALLOC_MAX_SIZE) 73 /* if value_size is bigger, the user space won't be able to 74 * access the elements. 75 */ 76 return -E2BIG; 77 78 return 0; 79 } 80 81 static struct bpf_map *array_map_alloc(union bpf_attr *attr) 82 { 83 bool percpu = attr->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 84 int numa_node = bpf_map_attr_numa_node(attr); 85 u32 elem_size, index_mask, max_entries; 86 bool bypass_spec_v1 = bpf_bypass_spec_v1(); 87 u64 array_size, mask64; 88 struct bpf_array *array; 89 90 elem_size = round_up(attr->value_size, 8); 91 92 max_entries = attr->max_entries; 93 94 /* On 32 bit archs roundup_pow_of_two() with max_entries that has 95 * upper most bit set in u32 space is undefined behavior due to 96 * resulting 1U << 32, so do it manually here in u64 space. 97 */ 98 mask64 = fls_long(max_entries - 1); 99 mask64 = 1ULL << mask64; 100 mask64 -= 1; 101 102 index_mask = mask64; 103 if (!bypass_spec_v1) { 104 /* round up array size to nearest power of 2, 105 * since cpu will speculate within index_mask limits 106 */ 107 max_entries = index_mask + 1; 108 /* Check for overflows. */ 109 if (max_entries < attr->max_entries) 110 return ERR_PTR(-E2BIG); 111 } 112 113 array_size = sizeof(*array); 114 if (percpu) { 115 array_size += (u64) max_entries * sizeof(void *); 116 } else { 117 /* rely on vmalloc() to return page-aligned memory and 118 * ensure array->value is exactly page-aligned 119 */ 120 if (attr->map_flags & BPF_F_MMAPABLE) { 121 array_size = PAGE_ALIGN(array_size); 122 array_size += PAGE_ALIGN((u64) max_entries * elem_size); 123 } else { 124 array_size += (u64) max_entries * elem_size; 125 } 126 } 127 128 /* allocate all map elements and zero-initialize them */ 129 if (attr->map_flags & BPF_F_MMAPABLE) { 130 void *data; 131 132 /* kmalloc'ed memory can't be mmap'ed, use explicit vmalloc */ 133 data = bpf_map_area_mmapable_alloc(array_size, numa_node); 134 if (!data) 135 return ERR_PTR(-ENOMEM); 136 array = data + PAGE_ALIGN(sizeof(struct bpf_array)) 137 - offsetof(struct bpf_array, value); 138 } else { 139 array = bpf_map_area_alloc(array_size, numa_node); 140 } 141 if (!array) 142 return ERR_PTR(-ENOMEM); 143 array->index_mask = index_mask; 144 array->map.bypass_spec_v1 = bypass_spec_v1; 145 146 /* copy mandatory map attributes */ 147 bpf_map_init_from_attr(&array->map, attr); 148 array->elem_size = elem_size; 149 150 if (percpu && bpf_array_alloc_percpu(array)) { 151 bpf_map_area_free(array); 152 return ERR_PTR(-ENOMEM); 153 } 154 155 return &array->map; 156 } 157 158 /* Called from syscall or from eBPF program */ 159 static void *array_map_lookup_elem(struct bpf_map *map, void *key) 160 { 161 struct bpf_array *array = container_of(map, struct bpf_array, map); 162 u32 index = *(u32 *)key; 163 164 if (unlikely(index >= array->map.max_entries)) 165 return NULL; 166 167 return array->value + array->elem_size * (index & array->index_mask); 168 } 169 170 static int array_map_direct_value_addr(const struct bpf_map *map, u64 *imm, 171 u32 off) 172 { 173 struct bpf_array *array = container_of(map, struct bpf_array, map); 174 175 if (map->max_entries != 1) 176 return -ENOTSUPP; 177 if (off >= map->value_size) 178 return -EINVAL; 179 180 *imm = (unsigned long)array->value; 181 return 0; 182 } 183 184 static int array_map_direct_value_meta(const struct bpf_map *map, u64 imm, 185 u32 *off) 186 { 187 struct bpf_array *array = container_of(map, struct bpf_array, map); 188 u64 base = (unsigned long)array->value; 189 u64 range = array->elem_size; 190 191 if (map->max_entries != 1) 192 return -ENOTSUPP; 193 if (imm < base || imm >= base + range) 194 return -ENOENT; 195 196 *off = imm - base; 197 return 0; 198 } 199 200 /* emit BPF instructions equivalent to C code of array_map_lookup_elem() */ 201 static int array_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf) 202 { 203 struct bpf_array *array = container_of(map, struct bpf_array, map); 204 struct bpf_insn *insn = insn_buf; 205 u32 elem_size = round_up(map->value_size, 8); 206 const int ret = BPF_REG_0; 207 const int map_ptr = BPF_REG_1; 208 const int index = BPF_REG_2; 209 210 if (map->map_flags & BPF_F_INNER_MAP) 211 return -EOPNOTSUPP; 212 213 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 214 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 215 if (!map->bypass_spec_v1) { 216 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 4); 217 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 218 } else { 219 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 3); 220 } 221 222 if (is_power_of_2(elem_size)) { 223 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 224 } else { 225 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 226 } 227 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 228 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 229 *insn++ = BPF_MOV64_IMM(ret, 0); 230 return insn - insn_buf; 231 } 232 233 /* Called from eBPF program */ 234 static void *percpu_array_map_lookup_elem(struct bpf_map *map, void *key) 235 { 236 struct bpf_array *array = container_of(map, struct bpf_array, map); 237 u32 index = *(u32 *)key; 238 239 if (unlikely(index >= array->map.max_entries)) 240 return NULL; 241 242 return this_cpu_ptr(array->pptrs[index & array->index_mask]); 243 } 244 245 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value) 246 { 247 struct bpf_array *array = container_of(map, struct bpf_array, map); 248 u32 index = *(u32 *)key; 249 void __percpu *pptr; 250 int cpu, off = 0; 251 u32 size; 252 253 if (unlikely(index >= array->map.max_entries)) 254 return -ENOENT; 255 256 /* per_cpu areas are zero-filled and bpf programs can only 257 * access 'value_size' of them, so copying rounded areas 258 * will not leak any kernel data 259 */ 260 size = round_up(map->value_size, 8); 261 rcu_read_lock(); 262 pptr = array->pptrs[index & array->index_mask]; 263 for_each_possible_cpu(cpu) { 264 bpf_long_memcpy(value + off, per_cpu_ptr(pptr, cpu), size); 265 off += size; 266 } 267 rcu_read_unlock(); 268 return 0; 269 } 270 271 /* Called from syscall */ 272 static int array_map_get_next_key(struct bpf_map *map, void *key, void *next_key) 273 { 274 struct bpf_array *array = container_of(map, struct bpf_array, map); 275 u32 index = key ? *(u32 *)key : U32_MAX; 276 u32 *next = (u32 *)next_key; 277 278 if (index >= array->map.max_entries) { 279 *next = 0; 280 return 0; 281 } 282 283 if (index == array->map.max_entries - 1) 284 return -ENOENT; 285 286 *next = index + 1; 287 return 0; 288 } 289 290 static void check_and_free_timer_in_array(struct bpf_array *arr, void *val) 291 { 292 if (unlikely(map_value_has_timer(&arr->map))) 293 bpf_timer_cancel_and_free(val + arr->map.timer_off); 294 } 295 296 /* Called from syscall or from eBPF program */ 297 static int array_map_update_elem(struct bpf_map *map, void *key, void *value, 298 u64 map_flags) 299 { 300 struct bpf_array *array = container_of(map, struct bpf_array, map); 301 u32 index = *(u32 *)key; 302 char *val; 303 304 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST)) 305 /* unknown flags */ 306 return -EINVAL; 307 308 if (unlikely(index >= array->map.max_entries)) 309 /* all elements were pre-allocated, cannot insert a new one */ 310 return -E2BIG; 311 312 if (unlikely(map_flags & BPF_NOEXIST)) 313 /* all elements already exist */ 314 return -EEXIST; 315 316 if (unlikely((map_flags & BPF_F_LOCK) && 317 !map_value_has_spin_lock(map))) 318 return -EINVAL; 319 320 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 321 memcpy(this_cpu_ptr(array->pptrs[index & array->index_mask]), 322 value, map->value_size); 323 } else { 324 val = array->value + 325 array->elem_size * (index & array->index_mask); 326 if (map_flags & BPF_F_LOCK) 327 copy_map_value_locked(map, val, value, false); 328 else 329 copy_map_value(map, val, value); 330 check_and_free_timer_in_array(array, val); 331 } 332 return 0; 333 } 334 335 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value, 336 u64 map_flags) 337 { 338 struct bpf_array *array = container_of(map, struct bpf_array, map); 339 u32 index = *(u32 *)key; 340 void __percpu *pptr; 341 int cpu, off = 0; 342 u32 size; 343 344 if (unlikely(map_flags > BPF_EXIST)) 345 /* unknown flags */ 346 return -EINVAL; 347 348 if (unlikely(index >= array->map.max_entries)) 349 /* all elements were pre-allocated, cannot insert a new one */ 350 return -E2BIG; 351 352 if (unlikely(map_flags == BPF_NOEXIST)) 353 /* all elements already exist */ 354 return -EEXIST; 355 356 /* the user space will provide round_up(value_size, 8) bytes that 357 * will be copied into per-cpu area. bpf programs can only access 358 * value_size of it. During lookup the same extra bytes will be 359 * returned or zeros which were zero-filled by percpu_alloc, 360 * so no kernel data leaks possible 361 */ 362 size = round_up(map->value_size, 8); 363 rcu_read_lock(); 364 pptr = array->pptrs[index & array->index_mask]; 365 for_each_possible_cpu(cpu) { 366 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value + off, size); 367 off += size; 368 } 369 rcu_read_unlock(); 370 return 0; 371 } 372 373 /* Called from syscall or from eBPF program */ 374 static int array_map_delete_elem(struct bpf_map *map, void *key) 375 { 376 return -EINVAL; 377 } 378 379 static void *array_map_vmalloc_addr(struct bpf_array *array) 380 { 381 return (void *)round_down((unsigned long)array, PAGE_SIZE); 382 } 383 384 static void array_map_free_timers(struct bpf_map *map) 385 { 386 struct bpf_array *array = container_of(map, struct bpf_array, map); 387 int i; 388 389 if (likely(!map_value_has_timer(map))) 390 return; 391 392 for (i = 0; i < array->map.max_entries; i++) 393 bpf_timer_cancel_and_free(array->value + array->elem_size * i + 394 map->timer_off); 395 } 396 397 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */ 398 static void array_map_free(struct bpf_map *map) 399 { 400 struct bpf_array *array = container_of(map, struct bpf_array, map); 401 402 if (array->map.map_type == BPF_MAP_TYPE_PERCPU_ARRAY) 403 bpf_array_free_percpu(array); 404 405 if (array->map.map_flags & BPF_F_MMAPABLE) 406 bpf_map_area_free(array_map_vmalloc_addr(array)); 407 else 408 bpf_map_area_free(array); 409 } 410 411 static void array_map_seq_show_elem(struct bpf_map *map, void *key, 412 struct seq_file *m) 413 { 414 void *value; 415 416 rcu_read_lock(); 417 418 value = array_map_lookup_elem(map, key); 419 if (!value) { 420 rcu_read_unlock(); 421 return; 422 } 423 424 if (map->btf_key_type_id) 425 seq_printf(m, "%u: ", *(u32 *)key); 426 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m); 427 seq_puts(m, "\n"); 428 429 rcu_read_unlock(); 430 } 431 432 static void percpu_array_map_seq_show_elem(struct bpf_map *map, void *key, 433 struct seq_file *m) 434 { 435 struct bpf_array *array = container_of(map, struct bpf_array, map); 436 u32 index = *(u32 *)key; 437 void __percpu *pptr; 438 int cpu; 439 440 rcu_read_lock(); 441 442 seq_printf(m, "%u: {\n", *(u32 *)key); 443 pptr = array->pptrs[index & array->index_mask]; 444 for_each_possible_cpu(cpu) { 445 seq_printf(m, "\tcpu%d: ", cpu); 446 btf_type_seq_show(map->btf, map->btf_value_type_id, 447 per_cpu_ptr(pptr, cpu), m); 448 seq_puts(m, "\n"); 449 } 450 seq_puts(m, "}\n"); 451 452 rcu_read_unlock(); 453 } 454 455 static int array_map_check_btf(const struct bpf_map *map, 456 const struct btf *btf, 457 const struct btf_type *key_type, 458 const struct btf_type *value_type) 459 { 460 u32 int_data; 461 462 /* One exception for keyless BTF: .bss/.data/.rodata map */ 463 if (btf_type_is_void(key_type)) { 464 if (map->map_type != BPF_MAP_TYPE_ARRAY || 465 map->max_entries != 1) 466 return -EINVAL; 467 468 if (BTF_INFO_KIND(value_type->info) != BTF_KIND_DATASEC) 469 return -EINVAL; 470 471 return 0; 472 } 473 474 if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT) 475 return -EINVAL; 476 477 int_data = *(u32 *)(key_type + 1); 478 /* bpf array can only take a u32 key. This check makes sure 479 * that the btf matches the attr used during map_create. 480 */ 481 if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data)) 482 return -EINVAL; 483 484 return 0; 485 } 486 487 static int array_map_mmap(struct bpf_map *map, struct vm_area_struct *vma) 488 { 489 struct bpf_array *array = container_of(map, struct bpf_array, map); 490 pgoff_t pgoff = PAGE_ALIGN(sizeof(*array)) >> PAGE_SHIFT; 491 492 if (!(map->map_flags & BPF_F_MMAPABLE)) 493 return -EINVAL; 494 495 if (vma->vm_pgoff * PAGE_SIZE + (vma->vm_end - vma->vm_start) > 496 PAGE_ALIGN((u64)array->map.max_entries * array->elem_size)) 497 return -EINVAL; 498 499 return remap_vmalloc_range(vma, array_map_vmalloc_addr(array), 500 vma->vm_pgoff + pgoff); 501 } 502 503 static bool array_map_meta_equal(const struct bpf_map *meta0, 504 const struct bpf_map *meta1) 505 { 506 if (!bpf_map_meta_equal(meta0, meta1)) 507 return false; 508 return meta0->map_flags & BPF_F_INNER_MAP ? true : 509 meta0->max_entries == meta1->max_entries; 510 } 511 512 struct bpf_iter_seq_array_map_info { 513 struct bpf_map *map; 514 void *percpu_value_buf; 515 u32 index; 516 }; 517 518 static void *bpf_array_map_seq_start(struct seq_file *seq, loff_t *pos) 519 { 520 struct bpf_iter_seq_array_map_info *info = seq->private; 521 struct bpf_map *map = info->map; 522 struct bpf_array *array; 523 u32 index; 524 525 if (info->index >= map->max_entries) 526 return NULL; 527 528 if (*pos == 0) 529 ++*pos; 530 array = container_of(map, struct bpf_array, map); 531 index = info->index & array->index_mask; 532 if (info->percpu_value_buf) 533 return array->pptrs[index]; 534 return array->value + array->elem_size * index; 535 } 536 537 static void *bpf_array_map_seq_next(struct seq_file *seq, void *v, loff_t *pos) 538 { 539 struct bpf_iter_seq_array_map_info *info = seq->private; 540 struct bpf_map *map = info->map; 541 struct bpf_array *array; 542 u32 index; 543 544 ++*pos; 545 ++info->index; 546 if (info->index >= map->max_entries) 547 return NULL; 548 549 array = container_of(map, struct bpf_array, map); 550 index = info->index & array->index_mask; 551 if (info->percpu_value_buf) 552 return array->pptrs[index]; 553 return array->value + array->elem_size * index; 554 } 555 556 static int __bpf_array_map_seq_show(struct seq_file *seq, void *v) 557 { 558 struct bpf_iter_seq_array_map_info *info = seq->private; 559 struct bpf_iter__bpf_map_elem ctx = {}; 560 struct bpf_map *map = info->map; 561 struct bpf_iter_meta meta; 562 struct bpf_prog *prog; 563 int off = 0, cpu = 0; 564 void __percpu **pptr; 565 u32 size; 566 567 meta.seq = seq; 568 prog = bpf_iter_get_info(&meta, v == NULL); 569 if (!prog) 570 return 0; 571 572 ctx.meta = &meta; 573 ctx.map = info->map; 574 if (v) { 575 ctx.key = &info->index; 576 577 if (!info->percpu_value_buf) { 578 ctx.value = v; 579 } else { 580 pptr = v; 581 size = round_up(map->value_size, 8); 582 for_each_possible_cpu(cpu) { 583 bpf_long_memcpy(info->percpu_value_buf + off, 584 per_cpu_ptr(pptr, cpu), 585 size); 586 off += size; 587 } 588 ctx.value = info->percpu_value_buf; 589 } 590 } 591 592 return bpf_iter_run_prog(prog, &ctx); 593 } 594 595 static int bpf_array_map_seq_show(struct seq_file *seq, void *v) 596 { 597 return __bpf_array_map_seq_show(seq, v); 598 } 599 600 static void bpf_array_map_seq_stop(struct seq_file *seq, void *v) 601 { 602 if (!v) 603 (void)__bpf_array_map_seq_show(seq, NULL); 604 } 605 606 static int bpf_iter_init_array_map(void *priv_data, 607 struct bpf_iter_aux_info *aux) 608 { 609 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 610 struct bpf_map *map = aux->map; 611 void *value_buf; 612 u32 buf_size; 613 614 if (map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY) { 615 buf_size = round_up(map->value_size, 8) * num_possible_cpus(); 616 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN); 617 if (!value_buf) 618 return -ENOMEM; 619 620 seq_info->percpu_value_buf = value_buf; 621 } 622 623 seq_info->map = map; 624 return 0; 625 } 626 627 static void bpf_iter_fini_array_map(void *priv_data) 628 { 629 struct bpf_iter_seq_array_map_info *seq_info = priv_data; 630 631 kfree(seq_info->percpu_value_buf); 632 } 633 634 static const struct seq_operations bpf_array_map_seq_ops = { 635 .start = bpf_array_map_seq_start, 636 .next = bpf_array_map_seq_next, 637 .stop = bpf_array_map_seq_stop, 638 .show = bpf_array_map_seq_show, 639 }; 640 641 static const struct bpf_iter_seq_info iter_seq_info = { 642 .seq_ops = &bpf_array_map_seq_ops, 643 .init_seq_private = bpf_iter_init_array_map, 644 .fini_seq_private = bpf_iter_fini_array_map, 645 .seq_priv_size = sizeof(struct bpf_iter_seq_array_map_info), 646 }; 647 648 static int bpf_for_each_array_elem(struct bpf_map *map, void *callback_fn, 649 void *callback_ctx, u64 flags) 650 { 651 u32 i, key, num_elems = 0; 652 struct bpf_array *array; 653 bool is_percpu; 654 u64 ret = 0; 655 void *val; 656 657 if (flags != 0) 658 return -EINVAL; 659 660 is_percpu = map->map_type == BPF_MAP_TYPE_PERCPU_ARRAY; 661 array = container_of(map, struct bpf_array, map); 662 if (is_percpu) 663 migrate_disable(); 664 for (i = 0; i < map->max_entries; i++) { 665 if (is_percpu) 666 val = this_cpu_ptr(array->pptrs[i]); 667 else 668 val = array->value + array->elem_size * i; 669 num_elems++; 670 key = i; 671 ret = BPF_CAST_CALL(callback_fn)((u64)(long)map, 672 (u64)(long)&key, (u64)(long)val, 673 (u64)(long)callback_ctx, 0); 674 /* return value: 0 - continue, 1 - stop and return */ 675 if (ret) 676 break; 677 } 678 679 if (is_percpu) 680 migrate_enable(); 681 return num_elems; 682 } 683 684 static int array_map_btf_id; 685 const struct bpf_map_ops array_map_ops = { 686 .map_meta_equal = array_map_meta_equal, 687 .map_alloc_check = array_map_alloc_check, 688 .map_alloc = array_map_alloc, 689 .map_free = array_map_free, 690 .map_get_next_key = array_map_get_next_key, 691 .map_release_uref = array_map_free_timers, 692 .map_lookup_elem = array_map_lookup_elem, 693 .map_update_elem = array_map_update_elem, 694 .map_delete_elem = array_map_delete_elem, 695 .map_gen_lookup = array_map_gen_lookup, 696 .map_direct_value_addr = array_map_direct_value_addr, 697 .map_direct_value_meta = array_map_direct_value_meta, 698 .map_mmap = array_map_mmap, 699 .map_seq_show_elem = array_map_seq_show_elem, 700 .map_check_btf = array_map_check_btf, 701 .map_lookup_batch = generic_map_lookup_batch, 702 .map_update_batch = generic_map_update_batch, 703 .map_set_for_each_callback_args = map_set_for_each_callback_args, 704 .map_for_each_callback = bpf_for_each_array_elem, 705 .map_btf_name = "bpf_array", 706 .map_btf_id = &array_map_btf_id, 707 .iter_seq_info = &iter_seq_info, 708 }; 709 710 static int percpu_array_map_btf_id; 711 const struct bpf_map_ops percpu_array_map_ops = { 712 .map_meta_equal = bpf_map_meta_equal, 713 .map_alloc_check = array_map_alloc_check, 714 .map_alloc = array_map_alloc, 715 .map_free = array_map_free, 716 .map_get_next_key = array_map_get_next_key, 717 .map_lookup_elem = percpu_array_map_lookup_elem, 718 .map_update_elem = array_map_update_elem, 719 .map_delete_elem = array_map_delete_elem, 720 .map_seq_show_elem = percpu_array_map_seq_show_elem, 721 .map_check_btf = array_map_check_btf, 722 .map_lookup_batch = generic_map_lookup_batch, 723 .map_update_batch = generic_map_update_batch, 724 .map_set_for_each_callback_args = map_set_for_each_callback_args, 725 .map_for_each_callback = bpf_for_each_array_elem, 726 .map_btf_name = "bpf_array", 727 .map_btf_id = &percpu_array_map_btf_id, 728 .iter_seq_info = &iter_seq_info, 729 }; 730 731 static int fd_array_map_alloc_check(union bpf_attr *attr) 732 { 733 /* only file descriptors can be stored in this type of map */ 734 if (attr->value_size != sizeof(u32)) 735 return -EINVAL; 736 /* Program read-only/write-only not supported for special maps yet. */ 737 if (attr->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) 738 return -EINVAL; 739 return array_map_alloc_check(attr); 740 } 741 742 static void fd_array_map_free(struct bpf_map *map) 743 { 744 struct bpf_array *array = container_of(map, struct bpf_array, map); 745 int i; 746 747 /* make sure it's empty */ 748 for (i = 0; i < array->map.max_entries; i++) 749 BUG_ON(array->ptrs[i] != NULL); 750 751 bpf_map_area_free(array); 752 } 753 754 static void *fd_array_map_lookup_elem(struct bpf_map *map, void *key) 755 { 756 return ERR_PTR(-EOPNOTSUPP); 757 } 758 759 /* only called from syscall */ 760 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value) 761 { 762 void **elem, *ptr; 763 int ret = 0; 764 765 if (!map->ops->map_fd_sys_lookup_elem) 766 return -ENOTSUPP; 767 768 rcu_read_lock(); 769 elem = array_map_lookup_elem(map, key); 770 if (elem && (ptr = READ_ONCE(*elem))) 771 *value = map->ops->map_fd_sys_lookup_elem(ptr); 772 else 773 ret = -ENOENT; 774 rcu_read_unlock(); 775 776 return ret; 777 } 778 779 /* only called from syscall */ 780 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file, 781 void *key, void *value, u64 map_flags) 782 { 783 struct bpf_array *array = container_of(map, struct bpf_array, map); 784 void *new_ptr, *old_ptr; 785 u32 index = *(u32 *)key, ufd; 786 787 if (map_flags != BPF_ANY) 788 return -EINVAL; 789 790 if (index >= array->map.max_entries) 791 return -E2BIG; 792 793 ufd = *(u32 *)value; 794 new_ptr = map->ops->map_fd_get_ptr(map, map_file, ufd); 795 if (IS_ERR(new_ptr)) 796 return PTR_ERR(new_ptr); 797 798 if (map->ops->map_poke_run) { 799 mutex_lock(&array->aux->poke_mutex); 800 old_ptr = xchg(array->ptrs + index, new_ptr); 801 map->ops->map_poke_run(map, index, old_ptr, new_ptr); 802 mutex_unlock(&array->aux->poke_mutex); 803 } else { 804 old_ptr = xchg(array->ptrs + index, new_ptr); 805 } 806 807 if (old_ptr) 808 map->ops->map_fd_put_ptr(old_ptr); 809 return 0; 810 } 811 812 static int fd_array_map_delete_elem(struct bpf_map *map, void *key) 813 { 814 struct bpf_array *array = container_of(map, struct bpf_array, map); 815 void *old_ptr; 816 u32 index = *(u32 *)key; 817 818 if (index >= array->map.max_entries) 819 return -E2BIG; 820 821 if (map->ops->map_poke_run) { 822 mutex_lock(&array->aux->poke_mutex); 823 old_ptr = xchg(array->ptrs + index, NULL); 824 map->ops->map_poke_run(map, index, old_ptr, NULL); 825 mutex_unlock(&array->aux->poke_mutex); 826 } else { 827 old_ptr = xchg(array->ptrs + index, NULL); 828 } 829 830 if (old_ptr) { 831 map->ops->map_fd_put_ptr(old_ptr); 832 return 0; 833 } else { 834 return -ENOENT; 835 } 836 } 837 838 static void *prog_fd_array_get_ptr(struct bpf_map *map, 839 struct file *map_file, int fd) 840 { 841 struct bpf_array *array = container_of(map, struct bpf_array, map); 842 struct bpf_prog *prog = bpf_prog_get(fd); 843 844 if (IS_ERR(prog)) 845 return prog; 846 847 if (!bpf_prog_array_compatible(array, prog)) { 848 bpf_prog_put(prog); 849 return ERR_PTR(-EINVAL); 850 } 851 852 return prog; 853 } 854 855 static void prog_fd_array_put_ptr(void *ptr) 856 { 857 bpf_prog_put(ptr); 858 } 859 860 static u32 prog_fd_array_sys_lookup_elem(void *ptr) 861 { 862 return ((struct bpf_prog *)ptr)->aux->id; 863 } 864 865 /* decrement refcnt of all bpf_progs that are stored in this map */ 866 static void bpf_fd_array_map_clear(struct bpf_map *map) 867 { 868 struct bpf_array *array = container_of(map, struct bpf_array, map); 869 int i; 870 871 for (i = 0; i < array->map.max_entries; i++) 872 fd_array_map_delete_elem(map, &i); 873 } 874 875 static void prog_array_map_seq_show_elem(struct bpf_map *map, void *key, 876 struct seq_file *m) 877 { 878 void **elem, *ptr; 879 u32 prog_id; 880 881 rcu_read_lock(); 882 883 elem = array_map_lookup_elem(map, key); 884 if (elem) { 885 ptr = READ_ONCE(*elem); 886 if (ptr) { 887 seq_printf(m, "%u: ", *(u32 *)key); 888 prog_id = prog_fd_array_sys_lookup_elem(ptr); 889 btf_type_seq_show(map->btf, map->btf_value_type_id, 890 &prog_id, m); 891 seq_puts(m, "\n"); 892 } 893 } 894 895 rcu_read_unlock(); 896 } 897 898 struct prog_poke_elem { 899 struct list_head list; 900 struct bpf_prog_aux *aux; 901 }; 902 903 static int prog_array_map_poke_track(struct bpf_map *map, 904 struct bpf_prog_aux *prog_aux) 905 { 906 struct prog_poke_elem *elem; 907 struct bpf_array_aux *aux; 908 int ret = 0; 909 910 aux = container_of(map, struct bpf_array, map)->aux; 911 mutex_lock(&aux->poke_mutex); 912 list_for_each_entry(elem, &aux->poke_progs, list) { 913 if (elem->aux == prog_aux) 914 goto out; 915 } 916 917 elem = kmalloc(sizeof(*elem), GFP_KERNEL); 918 if (!elem) { 919 ret = -ENOMEM; 920 goto out; 921 } 922 923 INIT_LIST_HEAD(&elem->list); 924 /* We must track the program's aux info at this point in time 925 * since the program pointer itself may not be stable yet, see 926 * also comment in prog_array_map_poke_run(). 927 */ 928 elem->aux = prog_aux; 929 930 list_add_tail(&elem->list, &aux->poke_progs); 931 out: 932 mutex_unlock(&aux->poke_mutex); 933 return ret; 934 } 935 936 static void prog_array_map_poke_untrack(struct bpf_map *map, 937 struct bpf_prog_aux *prog_aux) 938 { 939 struct prog_poke_elem *elem, *tmp; 940 struct bpf_array_aux *aux; 941 942 aux = container_of(map, struct bpf_array, map)->aux; 943 mutex_lock(&aux->poke_mutex); 944 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 945 if (elem->aux == prog_aux) { 946 list_del_init(&elem->list); 947 kfree(elem); 948 break; 949 } 950 } 951 mutex_unlock(&aux->poke_mutex); 952 } 953 954 static void prog_array_map_poke_run(struct bpf_map *map, u32 key, 955 struct bpf_prog *old, 956 struct bpf_prog *new) 957 { 958 u8 *old_addr, *new_addr, *old_bypass_addr; 959 struct prog_poke_elem *elem; 960 struct bpf_array_aux *aux; 961 962 aux = container_of(map, struct bpf_array, map)->aux; 963 WARN_ON_ONCE(!mutex_is_locked(&aux->poke_mutex)); 964 965 list_for_each_entry(elem, &aux->poke_progs, list) { 966 struct bpf_jit_poke_descriptor *poke; 967 int i, ret; 968 969 for (i = 0; i < elem->aux->size_poke_tab; i++) { 970 poke = &elem->aux->poke_tab[i]; 971 972 /* Few things to be aware of: 973 * 974 * 1) We can only ever access aux in this context, but 975 * not aux->prog since it might not be stable yet and 976 * there could be danger of use after free otherwise. 977 * 2) Initially when we start tracking aux, the program 978 * is not JITed yet and also does not have a kallsyms 979 * entry. We skip these as poke->tailcall_target_stable 980 * is not active yet. The JIT will do the final fixup 981 * before setting it stable. The various 982 * poke->tailcall_target_stable are successively 983 * activated, so tail call updates can arrive from here 984 * while JIT is still finishing its final fixup for 985 * non-activated poke entries. 986 * 3) On program teardown, the program's kallsym entry gets 987 * removed out of RCU callback, but we can only untrack 988 * from sleepable context, therefore bpf_arch_text_poke() 989 * might not see that this is in BPF text section and 990 * bails out with -EINVAL. As these are unreachable since 991 * RCU grace period already passed, we simply skip them. 992 * 4) Also programs reaching refcount of zero while patching 993 * is in progress is okay since we're protected under 994 * poke_mutex and untrack the programs before the JIT 995 * buffer is freed. When we're still in the middle of 996 * patching and suddenly kallsyms entry of the program 997 * gets evicted, we just skip the rest which is fine due 998 * to point 3). 999 * 5) Any other error happening below from bpf_arch_text_poke() 1000 * is a unexpected bug. 1001 */ 1002 if (!READ_ONCE(poke->tailcall_target_stable)) 1003 continue; 1004 if (poke->reason != BPF_POKE_REASON_TAIL_CALL) 1005 continue; 1006 if (poke->tail_call.map != map || 1007 poke->tail_call.key != key) 1008 continue; 1009 1010 old_bypass_addr = old ? NULL : poke->bypass_addr; 1011 old_addr = old ? (u8 *)old->bpf_func + poke->adj_off : NULL; 1012 new_addr = new ? (u8 *)new->bpf_func + poke->adj_off : NULL; 1013 1014 if (new) { 1015 ret = bpf_arch_text_poke(poke->tailcall_target, 1016 BPF_MOD_JUMP, 1017 old_addr, new_addr); 1018 BUG_ON(ret < 0 && ret != -EINVAL); 1019 if (!old) { 1020 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1021 BPF_MOD_JUMP, 1022 poke->bypass_addr, 1023 NULL); 1024 BUG_ON(ret < 0 && ret != -EINVAL); 1025 } 1026 } else { 1027 ret = bpf_arch_text_poke(poke->tailcall_bypass, 1028 BPF_MOD_JUMP, 1029 old_bypass_addr, 1030 poke->bypass_addr); 1031 BUG_ON(ret < 0 && ret != -EINVAL); 1032 /* let other CPUs finish the execution of program 1033 * so that it will not possible to expose them 1034 * to invalid nop, stack unwind, nop state 1035 */ 1036 if (!ret) 1037 synchronize_rcu(); 1038 ret = bpf_arch_text_poke(poke->tailcall_target, 1039 BPF_MOD_JUMP, 1040 old_addr, NULL); 1041 BUG_ON(ret < 0 && ret != -EINVAL); 1042 } 1043 } 1044 } 1045 } 1046 1047 static void prog_array_map_clear_deferred(struct work_struct *work) 1048 { 1049 struct bpf_map *map = container_of(work, struct bpf_array_aux, 1050 work)->map; 1051 bpf_fd_array_map_clear(map); 1052 bpf_map_put(map); 1053 } 1054 1055 static void prog_array_map_clear(struct bpf_map *map) 1056 { 1057 struct bpf_array_aux *aux = container_of(map, struct bpf_array, 1058 map)->aux; 1059 bpf_map_inc(map); 1060 schedule_work(&aux->work); 1061 } 1062 1063 static struct bpf_map *prog_array_map_alloc(union bpf_attr *attr) 1064 { 1065 struct bpf_array_aux *aux; 1066 struct bpf_map *map; 1067 1068 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT); 1069 if (!aux) 1070 return ERR_PTR(-ENOMEM); 1071 1072 INIT_WORK(&aux->work, prog_array_map_clear_deferred); 1073 INIT_LIST_HEAD(&aux->poke_progs); 1074 mutex_init(&aux->poke_mutex); 1075 1076 map = array_map_alloc(attr); 1077 if (IS_ERR(map)) { 1078 kfree(aux); 1079 return map; 1080 } 1081 1082 container_of(map, struct bpf_array, map)->aux = aux; 1083 aux->map = map; 1084 1085 return map; 1086 } 1087 1088 static void prog_array_map_free(struct bpf_map *map) 1089 { 1090 struct prog_poke_elem *elem, *tmp; 1091 struct bpf_array_aux *aux; 1092 1093 aux = container_of(map, struct bpf_array, map)->aux; 1094 list_for_each_entry_safe(elem, tmp, &aux->poke_progs, list) { 1095 list_del_init(&elem->list); 1096 kfree(elem); 1097 } 1098 kfree(aux); 1099 fd_array_map_free(map); 1100 } 1101 1102 /* prog_array->aux->{type,jited} is a runtime binding. 1103 * Doing static check alone in the verifier is not enough. 1104 * Thus, prog_array_map cannot be used as an inner_map 1105 * and map_meta_equal is not implemented. 1106 */ 1107 static int prog_array_map_btf_id; 1108 const struct bpf_map_ops prog_array_map_ops = { 1109 .map_alloc_check = fd_array_map_alloc_check, 1110 .map_alloc = prog_array_map_alloc, 1111 .map_free = prog_array_map_free, 1112 .map_poke_track = prog_array_map_poke_track, 1113 .map_poke_untrack = prog_array_map_poke_untrack, 1114 .map_poke_run = prog_array_map_poke_run, 1115 .map_get_next_key = array_map_get_next_key, 1116 .map_lookup_elem = fd_array_map_lookup_elem, 1117 .map_delete_elem = fd_array_map_delete_elem, 1118 .map_fd_get_ptr = prog_fd_array_get_ptr, 1119 .map_fd_put_ptr = prog_fd_array_put_ptr, 1120 .map_fd_sys_lookup_elem = prog_fd_array_sys_lookup_elem, 1121 .map_release_uref = prog_array_map_clear, 1122 .map_seq_show_elem = prog_array_map_seq_show_elem, 1123 .map_btf_name = "bpf_array", 1124 .map_btf_id = &prog_array_map_btf_id, 1125 }; 1126 1127 static struct bpf_event_entry *bpf_event_entry_gen(struct file *perf_file, 1128 struct file *map_file) 1129 { 1130 struct bpf_event_entry *ee; 1131 1132 ee = kzalloc(sizeof(*ee), GFP_ATOMIC); 1133 if (ee) { 1134 ee->event = perf_file->private_data; 1135 ee->perf_file = perf_file; 1136 ee->map_file = map_file; 1137 } 1138 1139 return ee; 1140 } 1141 1142 static void __bpf_event_entry_free(struct rcu_head *rcu) 1143 { 1144 struct bpf_event_entry *ee; 1145 1146 ee = container_of(rcu, struct bpf_event_entry, rcu); 1147 fput(ee->perf_file); 1148 kfree(ee); 1149 } 1150 1151 static void bpf_event_entry_free_rcu(struct bpf_event_entry *ee) 1152 { 1153 call_rcu(&ee->rcu, __bpf_event_entry_free); 1154 } 1155 1156 static void *perf_event_fd_array_get_ptr(struct bpf_map *map, 1157 struct file *map_file, int fd) 1158 { 1159 struct bpf_event_entry *ee; 1160 struct perf_event *event; 1161 struct file *perf_file; 1162 u64 value; 1163 1164 perf_file = perf_event_get(fd); 1165 if (IS_ERR(perf_file)) 1166 return perf_file; 1167 1168 ee = ERR_PTR(-EOPNOTSUPP); 1169 event = perf_file->private_data; 1170 if (perf_event_read_local(event, &value, NULL, NULL) == -EOPNOTSUPP) 1171 goto err_out; 1172 1173 ee = bpf_event_entry_gen(perf_file, map_file); 1174 if (ee) 1175 return ee; 1176 ee = ERR_PTR(-ENOMEM); 1177 err_out: 1178 fput(perf_file); 1179 return ee; 1180 } 1181 1182 static void perf_event_fd_array_put_ptr(void *ptr) 1183 { 1184 bpf_event_entry_free_rcu(ptr); 1185 } 1186 1187 static void perf_event_fd_array_release(struct bpf_map *map, 1188 struct file *map_file) 1189 { 1190 struct bpf_array *array = container_of(map, struct bpf_array, map); 1191 struct bpf_event_entry *ee; 1192 int i; 1193 1194 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1195 return; 1196 1197 rcu_read_lock(); 1198 for (i = 0; i < array->map.max_entries; i++) { 1199 ee = READ_ONCE(array->ptrs[i]); 1200 if (ee && ee->map_file == map_file) 1201 fd_array_map_delete_elem(map, &i); 1202 } 1203 rcu_read_unlock(); 1204 } 1205 1206 static void perf_event_fd_array_map_free(struct bpf_map *map) 1207 { 1208 if (map->map_flags & BPF_F_PRESERVE_ELEMS) 1209 bpf_fd_array_map_clear(map); 1210 fd_array_map_free(map); 1211 } 1212 1213 static int perf_event_array_map_btf_id; 1214 const struct bpf_map_ops perf_event_array_map_ops = { 1215 .map_meta_equal = bpf_map_meta_equal, 1216 .map_alloc_check = fd_array_map_alloc_check, 1217 .map_alloc = array_map_alloc, 1218 .map_free = perf_event_fd_array_map_free, 1219 .map_get_next_key = array_map_get_next_key, 1220 .map_lookup_elem = fd_array_map_lookup_elem, 1221 .map_delete_elem = fd_array_map_delete_elem, 1222 .map_fd_get_ptr = perf_event_fd_array_get_ptr, 1223 .map_fd_put_ptr = perf_event_fd_array_put_ptr, 1224 .map_release = perf_event_fd_array_release, 1225 .map_check_btf = map_check_no_btf, 1226 .map_btf_name = "bpf_array", 1227 .map_btf_id = &perf_event_array_map_btf_id, 1228 }; 1229 1230 #ifdef CONFIG_CGROUPS 1231 static void *cgroup_fd_array_get_ptr(struct bpf_map *map, 1232 struct file *map_file /* not used */, 1233 int fd) 1234 { 1235 return cgroup_get_from_fd(fd); 1236 } 1237 1238 static void cgroup_fd_array_put_ptr(void *ptr) 1239 { 1240 /* cgroup_put free cgrp after a rcu grace period */ 1241 cgroup_put(ptr); 1242 } 1243 1244 static void cgroup_fd_array_free(struct bpf_map *map) 1245 { 1246 bpf_fd_array_map_clear(map); 1247 fd_array_map_free(map); 1248 } 1249 1250 static int cgroup_array_map_btf_id; 1251 const struct bpf_map_ops cgroup_array_map_ops = { 1252 .map_meta_equal = bpf_map_meta_equal, 1253 .map_alloc_check = fd_array_map_alloc_check, 1254 .map_alloc = array_map_alloc, 1255 .map_free = cgroup_fd_array_free, 1256 .map_get_next_key = array_map_get_next_key, 1257 .map_lookup_elem = fd_array_map_lookup_elem, 1258 .map_delete_elem = fd_array_map_delete_elem, 1259 .map_fd_get_ptr = cgroup_fd_array_get_ptr, 1260 .map_fd_put_ptr = cgroup_fd_array_put_ptr, 1261 .map_check_btf = map_check_no_btf, 1262 .map_btf_name = "bpf_array", 1263 .map_btf_id = &cgroup_array_map_btf_id, 1264 }; 1265 #endif 1266 1267 static struct bpf_map *array_of_map_alloc(union bpf_attr *attr) 1268 { 1269 struct bpf_map *map, *inner_map_meta; 1270 1271 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd); 1272 if (IS_ERR(inner_map_meta)) 1273 return inner_map_meta; 1274 1275 map = array_map_alloc(attr); 1276 if (IS_ERR(map)) { 1277 bpf_map_meta_free(inner_map_meta); 1278 return map; 1279 } 1280 1281 map->inner_map_meta = inner_map_meta; 1282 1283 return map; 1284 } 1285 1286 static void array_of_map_free(struct bpf_map *map) 1287 { 1288 /* map->inner_map_meta is only accessed by syscall which 1289 * is protected by fdget/fdput. 1290 */ 1291 bpf_map_meta_free(map->inner_map_meta); 1292 bpf_fd_array_map_clear(map); 1293 fd_array_map_free(map); 1294 } 1295 1296 static void *array_of_map_lookup_elem(struct bpf_map *map, void *key) 1297 { 1298 struct bpf_map **inner_map = array_map_lookup_elem(map, key); 1299 1300 if (!inner_map) 1301 return NULL; 1302 1303 return READ_ONCE(*inner_map); 1304 } 1305 1306 static int array_of_map_gen_lookup(struct bpf_map *map, 1307 struct bpf_insn *insn_buf) 1308 { 1309 struct bpf_array *array = container_of(map, struct bpf_array, map); 1310 u32 elem_size = round_up(map->value_size, 8); 1311 struct bpf_insn *insn = insn_buf; 1312 const int ret = BPF_REG_0; 1313 const int map_ptr = BPF_REG_1; 1314 const int index = BPF_REG_2; 1315 1316 *insn++ = BPF_ALU64_IMM(BPF_ADD, map_ptr, offsetof(struct bpf_array, value)); 1317 *insn++ = BPF_LDX_MEM(BPF_W, ret, index, 0); 1318 if (!map->bypass_spec_v1) { 1319 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 6); 1320 *insn++ = BPF_ALU32_IMM(BPF_AND, ret, array->index_mask); 1321 } else { 1322 *insn++ = BPF_JMP_IMM(BPF_JGE, ret, map->max_entries, 5); 1323 } 1324 if (is_power_of_2(elem_size)) 1325 *insn++ = BPF_ALU64_IMM(BPF_LSH, ret, ilog2(elem_size)); 1326 else 1327 *insn++ = BPF_ALU64_IMM(BPF_MUL, ret, elem_size); 1328 *insn++ = BPF_ALU64_REG(BPF_ADD, ret, map_ptr); 1329 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0); 1330 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1); 1331 *insn++ = BPF_JMP_IMM(BPF_JA, 0, 0, 1); 1332 *insn++ = BPF_MOV64_IMM(ret, 0); 1333 1334 return insn - insn_buf; 1335 } 1336 1337 static int array_of_maps_map_btf_id; 1338 const struct bpf_map_ops array_of_maps_map_ops = { 1339 .map_alloc_check = fd_array_map_alloc_check, 1340 .map_alloc = array_of_map_alloc, 1341 .map_free = array_of_map_free, 1342 .map_get_next_key = array_map_get_next_key, 1343 .map_lookup_elem = array_of_map_lookup_elem, 1344 .map_delete_elem = fd_array_map_delete_elem, 1345 .map_fd_get_ptr = bpf_map_fd_get_ptr, 1346 .map_fd_put_ptr = bpf_map_fd_put_ptr, 1347 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem, 1348 .map_gen_lookup = array_of_map_gen_lookup, 1349 .map_check_btf = map_check_no_btf, 1350 .map_btf_name = "bpf_array", 1351 .map_btf_id = &array_of_maps_map_btf_id, 1352 }; 1353