1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <asm/syscall.h> 71 #include <linux/capability.h> 72 #include <linux/fs_struct.h> 73 #include <linux/compat.h> 74 #include <linux/ctype.h> 75 76 #include "audit.h" 77 78 /* flags stating the success for a syscall */ 79 #define AUDITSC_INVALID 0 80 #define AUDITSC_SUCCESS 1 81 #define AUDITSC_FAILURE 2 82 83 /* no execve audit message should be longer than this (userspace limits) */ 84 #define MAX_EXECVE_AUDIT_LEN 7500 85 86 /* max length to print of cmdline/proctitle value during audit */ 87 #define MAX_PROCTITLE_AUDIT_LEN 128 88 89 /* number of audit rules */ 90 int audit_n_rules; 91 92 /* determines whether we collect data for signals sent */ 93 int audit_signals; 94 95 struct audit_aux_data { 96 struct audit_aux_data *next; 97 int type; 98 }; 99 100 #define AUDIT_AUX_IPCPERM 0 101 102 /* Number of target pids per aux struct. */ 103 #define AUDIT_AUX_PIDS 16 104 105 struct audit_aux_data_pids { 106 struct audit_aux_data d; 107 pid_t target_pid[AUDIT_AUX_PIDS]; 108 kuid_t target_auid[AUDIT_AUX_PIDS]; 109 kuid_t target_uid[AUDIT_AUX_PIDS]; 110 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 111 u32 target_sid[AUDIT_AUX_PIDS]; 112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 113 int pid_count; 114 }; 115 116 struct audit_aux_data_bprm_fcaps { 117 struct audit_aux_data d; 118 struct audit_cap_data fcap; 119 unsigned int fcap_ver; 120 struct audit_cap_data old_pcap; 121 struct audit_cap_data new_pcap; 122 }; 123 124 struct audit_tree_refs { 125 struct audit_tree_refs *next; 126 struct audit_chunk *c[31]; 127 }; 128 129 static int audit_match_perm(struct audit_context *ctx, int mask) 130 { 131 unsigned n; 132 if (unlikely(!ctx)) 133 return 0; 134 n = ctx->major; 135 136 switch (audit_classify_syscall(ctx->arch, n)) { 137 case 0: /* native */ 138 if ((mask & AUDIT_PERM_WRITE) && 139 audit_match_class(AUDIT_CLASS_WRITE, n)) 140 return 1; 141 if ((mask & AUDIT_PERM_READ) && 142 audit_match_class(AUDIT_CLASS_READ, n)) 143 return 1; 144 if ((mask & AUDIT_PERM_ATTR) && 145 audit_match_class(AUDIT_CLASS_CHATTR, n)) 146 return 1; 147 return 0; 148 case 1: /* 32bit on biarch */ 149 if ((mask & AUDIT_PERM_WRITE) && 150 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 151 return 1; 152 if ((mask & AUDIT_PERM_READ) && 153 audit_match_class(AUDIT_CLASS_READ_32, n)) 154 return 1; 155 if ((mask & AUDIT_PERM_ATTR) && 156 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 157 return 1; 158 return 0; 159 case 2: /* open */ 160 return mask & ACC_MODE(ctx->argv[1]); 161 case 3: /* openat */ 162 return mask & ACC_MODE(ctx->argv[2]); 163 case 4: /* socketcall */ 164 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 165 case 5: /* execve */ 166 return mask & AUDIT_PERM_EXEC; 167 default: 168 return 0; 169 } 170 } 171 172 static int audit_match_filetype(struct audit_context *ctx, int val) 173 { 174 struct audit_names *n; 175 umode_t mode = (umode_t)val; 176 177 if (unlikely(!ctx)) 178 return 0; 179 180 list_for_each_entry(n, &ctx->names_list, list) { 181 if ((n->ino != -1) && 182 ((n->mode & S_IFMT) == mode)) 183 return 1; 184 } 185 186 return 0; 187 } 188 189 /* 190 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 191 * ->first_trees points to its beginning, ->trees - to the current end of data. 192 * ->tree_count is the number of free entries in array pointed to by ->trees. 193 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 194 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 195 * it's going to remain 1-element for almost any setup) until we free context itself. 196 * References in it _are_ dropped - at the same time we free/drop aux stuff. 197 */ 198 199 #ifdef CONFIG_AUDIT_TREE 200 static void audit_set_auditable(struct audit_context *ctx) 201 { 202 if (!ctx->prio) { 203 ctx->prio = 1; 204 ctx->current_state = AUDIT_RECORD_CONTEXT; 205 } 206 } 207 208 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 209 { 210 struct audit_tree_refs *p = ctx->trees; 211 int left = ctx->tree_count; 212 if (likely(left)) { 213 p->c[--left] = chunk; 214 ctx->tree_count = left; 215 return 1; 216 } 217 if (!p) 218 return 0; 219 p = p->next; 220 if (p) { 221 p->c[30] = chunk; 222 ctx->trees = p; 223 ctx->tree_count = 30; 224 return 1; 225 } 226 return 0; 227 } 228 229 static int grow_tree_refs(struct audit_context *ctx) 230 { 231 struct audit_tree_refs *p = ctx->trees; 232 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 233 if (!ctx->trees) { 234 ctx->trees = p; 235 return 0; 236 } 237 if (p) 238 p->next = ctx->trees; 239 else 240 ctx->first_trees = ctx->trees; 241 ctx->tree_count = 31; 242 return 1; 243 } 244 #endif 245 246 static void unroll_tree_refs(struct audit_context *ctx, 247 struct audit_tree_refs *p, int count) 248 { 249 #ifdef CONFIG_AUDIT_TREE 250 struct audit_tree_refs *q; 251 int n; 252 if (!p) { 253 /* we started with empty chain */ 254 p = ctx->first_trees; 255 count = 31; 256 /* if the very first allocation has failed, nothing to do */ 257 if (!p) 258 return; 259 } 260 n = count; 261 for (q = p; q != ctx->trees; q = q->next, n = 31) { 262 while (n--) { 263 audit_put_chunk(q->c[n]); 264 q->c[n] = NULL; 265 } 266 } 267 while (n-- > ctx->tree_count) { 268 audit_put_chunk(q->c[n]); 269 q->c[n] = NULL; 270 } 271 ctx->trees = p; 272 ctx->tree_count = count; 273 #endif 274 } 275 276 static void free_tree_refs(struct audit_context *ctx) 277 { 278 struct audit_tree_refs *p, *q; 279 for (p = ctx->first_trees; p; p = q) { 280 q = p->next; 281 kfree(p); 282 } 283 } 284 285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 286 { 287 #ifdef CONFIG_AUDIT_TREE 288 struct audit_tree_refs *p; 289 int n; 290 if (!tree) 291 return 0; 292 /* full ones */ 293 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 294 for (n = 0; n < 31; n++) 295 if (audit_tree_match(p->c[n], tree)) 296 return 1; 297 } 298 /* partial */ 299 if (p) { 300 for (n = ctx->tree_count; n < 31; n++) 301 if (audit_tree_match(p->c[n], tree)) 302 return 1; 303 } 304 #endif 305 return 0; 306 } 307 308 static int audit_compare_uid(kuid_t uid, 309 struct audit_names *name, 310 struct audit_field *f, 311 struct audit_context *ctx) 312 { 313 struct audit_names *n; 314 int rc; 315 316 if (name) { 317 rc = audit_uid_comparator(uid, f->op, name->uid); 318 if (rc) 319 return rc; 320 } 321 322 if (ctx) { 323 list_for_each_entry(n, &ctx->names_list, list) { 324 rc = audit_uid_comparator(uid, f->op, n->uid); 325 if (rc) 326 return rc; 327 } 328 } 329 return 0; 330 } 331 332 static int audit_compare_gid(kgid_t gid, 333 struct audit_names *name, 334 struct audit_field *f, 335 struct audit_context *ctx) 336 { 337 struct audit_names *n; 338 int rc; 339 340 if (name) { 341 rc = audit_gid_comparator(gid, f->op, name->gid); 342 if (rc) 343 return rc; 344 } 345 346 if (ctx) { 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_gid_comparator(gid, f->op, n->gid); 349 if (rc) 350 return rc; 351 } 352 } 353 return 0; 354 } 355 356 static int audit_field_compare(struct task_struct *tsk, 357 const struct cred *cred, 358 struct audit_field *f, 359 struct audit_context *ctx, 360 struct audit_names *name) 361 { 362 switch (f->val) { 363 /* process to file object comparisons */ 364 case AUDIT_COMPARE_UID_TO_OBJ_UID: 365 return audit_compare_uid(cred->uid, name, f, ctx); 366 case AUDIT_COMPARE_GID_TO_OBJ_GID: 367 return audit_compare_gid(cred->gid, name, f, ctx); 368 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 369 return audit_compare_uid(cred->euid, name, f, ctx); 370 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 371 return audit_compare_gid(cred->egid, name, f, ctx); 372 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 373 return audit_compare_uid(tsk->loginuid, name, f, ctx); 374 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 375 return audit_compare_uid(cred->suid, name, f, ctx); 376 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 377 return audit_compare_gid(cred->sgid, name, f, ctx); 378 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 379 return audit_compare_uid(cred->fsuid, name, f, ctx); 380 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 381 return audit_compare_gid(cred->fsgid, name, f, ctx); 382 /* uid comparisons */ 383 case AUDIT_COMPARE_UID_TO_AUID: 384 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 385 case AUDIT_COMPARE_UID_TO_EUID: 386 return audit_uid_comparator(cred->uid, f->op, cred->euid); 387 case AUDIT_COMPARE_UID_TO_SUID: 388 return audit_uid_comparator(cred->uid, f->op, cred->suid); 389 case AUDIT_COMPARE_UID_TO_FSUID: 390 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 391 /* auid comparisons */ 392 case AUDIT_COMPARE_AUID_TO_EUID: 393 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 394 case AUDIT_COMPARE_AUID_TO_SUID: 395 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 396 case AUDIT_COMPARE_AUID_TO_FSUID: 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 398 /* euid comparisons */ 399 case AUDIT_COMPARE_EUID_TO_SUID: 400 return audit_uid_comparator(cred->euid, f->op, cred->suid); 401 case AUDIT_COMPARE_EUID_TO_FSUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 403 /* suid comparisons */ 404 case AUDIT_COMPARE_SUID_TO_FSUID: 405 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 406 /* gid comparisons */ 407 case AUDIT_COMPARE_GID_TO_EGID: 408 return audit_gid_comparator(cred->gid, f->op, cred->egid); 409 case AUDIT_COMPARE_GID_TO_SGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 411 case AUDIT_COMPARE_GID_TO_FSGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 413 /* egid comparisons */ 414 case AUDIT_COMPARE_EGID_TO_SGID: 415 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 416 case AUDIT_COMPARE_EGID_TO_FSGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 418 /* sgid comparison */ 419 case AUDIT_COMPARE_SGID_TO_FSGID: 420 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 421 default: 422 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 423 return 0; 424 } 425 return 0; 426 } 427 428 /* Determine if any context name data matches a rule's watch data */ 429 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 430 * otherwise. 431 * 432 * If task_creation is true, this is an explicit indication that we are 433 * filtering a task rule at task creation time. This and tsk == current are 434 * the only situations where tsk->cred may be accessed without an rcu read lock. 435 */ 436 static int audit_filter_rules(struct task_struct *tsk, 437 struct audit_krule *rule, 438 struct audit_context *ctx, 439 struct audit_names *name, 440 enum audit_state *state, 441 bool task_creation) 442 { 443 const struct cred *cred; 444 int i, need_sid = 1; 445 u32 sid; 446 447 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 448 449 for (i = 0; i < rule->field_count; i++) { 450 struct audit_field *f = &rule->fields[i]; 451 struct audit_names *n; 452 int result = 0; 453 pid_t pid; 454 455 switch (f->type) { 456 case AUDIT_PID: 457 pid = task_pid_nr(tsk); 458 result = audit_comparator(pid, f->op, f->val); 459 break; 460 case AUDIT_PPID: 461 if (ctx) { 462 if (!ctx->ppid) 463 ctx->ppid = task_ppid_nr(tsk); 464 result = audit_comparator(ctx->ppid, f->op, f->val); 465 } 466 break; 467 case AUDIT_UID: 468 result = audit_uid_comparator(cred->uid, f->op, f->uid); 469 break; 470 case AUDIT_EUID: 471 result = audit_uid_comparator(cred->euid, f->op, f->uid); 472 break; 473 case AUDIT_SUID: 474 result = audit_uid_comparator(cred->suid, f->op, f->uid); 475 break; 476 case AUDIT_FSUID: 477 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 478 break; 479 case AUDIT_GID: 480 result = audit_gid_comparator(cred->gid, f->op, f->gid); 481 if (f->op == Audit_equal) { 482 if (!result) 483 result = in_group_p(f->gid); 484 } else if (f->op == Audit_not_equal) { 485 if (result) 486 result = !in_group_p(f->gid); 487 } 488 break; 489 case AUDIT_EGID: 490 result = audit_gid_comparator(cred->egid, f->op, f->gid); 491 if (f->op == Audit_equal) { 492 if (!result) 493 result = in_egroup_p(f->gid); 494 } else if (f->op == Audit_not_equal) { 495 if (result) 496 result = !in_egroup_p(f->gid); 497 } 498 break; 499 case AUDIT_SGID: 500 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 501 break; 502 case AUDIT_FSGID: 503 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 504 break; 505 case AUDIT_PERS: 506 result = audit_comparator(tsk->personality, f->op, f->val); 507 break; 508 case AUDIT_ARCH: 509 if (ctx) 510 result = audit_comparator(ctx->arch, f->op, f->val); 511 break; 512 513 case AUDIT_EXIT: 514 if (ctx && ctx->return_valid) 515 result = audit_comparator(ctx->return_code, f->op, f->val); 516 break; 517 case AUDIT_SUCCESS: 518 if (ctx && ctx->return_valid) { 519 if (f->val) 520 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 521 else 522 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 523 } 524 break; 525 case AUDIT_DEVMAJOR: 526 if (name) { 527 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 528 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 529 ++result; 530 } else if (ctx) { 531 list_for_each_entry(n, &ctx->names_list, list) { 532 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 533 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 534 ++result; 535 break; 536 } 537 } 538 } 539 break; 540 case AUDIT_DEVMINOR: 541 if (name) { 542 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 543 audit_comparator(MINOR(name->rdev), f->op, f->val)) 544 ++result; 545 } else if (ctx) { 546 list_for_each_entry(n, &ctx->names_list, list) { 547 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 548 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 549 ++result; 550 break; 551 } 552 } 553 } 554 break; 555 case AUDIT_INODE: 556 if (name) 557 result = audit_comparator(name->ino, f->op, f->val); 558 else if (ctx) { 559 list_for_each_entry(n, &ctx->names_list, list) { 560 if (audit_comparator(n->ino, f->op, f->val)) { 561 ++result; 562 break; 563 } 564 } 565 } 566 break; 567 case AUDIT_OBJ_UID: 568 if (name) { 569 result = audit_uid_comparator(name->uid, f->op, f->uid); 570 } else if (ctx) { 571 list_for_each_entry(n, &ctx->names_list, list) { 572 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_OBJ_GID: 580 if (name) { 581 result = audit_gid_comparator(name->gid, f->op, f->gid); 582 } else if (ctx) { 583 list_for_each_entry(n, &ctx->names_list, list) { 584 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 585 ++result; 586 break; 587 } 588 } 589 } 590 break; 591 case AUDIT_WATCH: 592 if (name) 593 result = audit_watch_compare(rule->watch, name->ino, name->dev); 594 break; 595 case AUDIT_DIR: 596 if (ctx) 597 result = match_tree_refs(ctx, rule->tree); 598 break; 599 case AUDIT_LOGINUID: 600 result = 0; 601 if (ctx) 602 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 603 break; 604 case AUDIT_LOGINUID_SET: 605 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 606 break; 607 case AUDIT_SUBJ_USER: 608 case AUDIT_SUBJ_ROLE: 609 case AUDIT_SUBJ_TYPE: 610 case AUDIT_SUBJ_SEN: 611 case AUDIT_SUBJ_CLR: 612 /* NOTE: this may return negative values indicating 613 a temporary error. We simply treat this as a 614 match for now to avoid losing information that 615 may be wanted. An error message will also be 616 logged upon error */ 617 if (f->lsm_rule) { 618 if (need_sid) { 619 security_task_getsecid(tsk, &sid); 620 need_sid = 0; 621 } 622 result = security_audit_rule_match(sid, f->type, 623 f->op, 624 f->lsm_rule, 625 ctx); 626 } 627 break; 628 case AUDIT_OBJ_USER: 629 case AUDIT_OBJ_ROLE: 630 case AUDIT_OBJ_TYPE: 631 case AUDIT_OBJ_LEV_LOW: 632 case AUDIT_OBJ_LEV_HIGH: 633 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 634 also applies here */ 635 if (f->lsm_rule) { 636 /* Find files that match */ 637 if (name) { 638 result = security_audit_rule_match( 639 name->osid, f->type, f->op, 640 f->lsm_rule, ctx); 641 } else if (ctx) { 642 list_for_each_entry(n, &ctx->names_list, list) { 643 if (security_audit_rule_match(n->osid, f->type, 644 f->op, f->lsm_rule, 645 ctx)) { 646 ++result; 647 break; 648 } 649 } 650 } 651 /* Find ipc objects that match */ 652 if (!ctx || ctx->type != AUDIT_IPC) 653 break; 654 if (security_audit_rule_match(ctx->ipc.osid, 655 f->type, f->op, 656 f->lsm_rule, ctx)) 657 ++result; 658 } 659 break; 660 case AUDIT_ARG0: 661 case AUDIT_ARG1: 662 case AUDIT_ARG2: 663 case AUDIT_ARG3: 664 if (ctx) 665 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 666 break; 667 case AUDIT_FILTERKEY: 668 /* ignore this field for filtering */ 669 result = 1; 670 break; 671 case AUDIT_PERM: 672 result = audit_match_perm(ctx, f->val); 673 break; 674 case AUDIT_FILETYPE: 675 result = audit_match_filetype(ctx, f->val); 676 break; 677 case AUDIT_FIELD_COMPARE: 678 result = audit_field_compare(tsk, cred, f, ctx, name); 679 break; 680 } 681 if (!result) 682 return 0; 683 } 684 685 if (ctx) { 686 if (rule->prio <= ctx->prio) 687 return 0; 688 if (rule->filterkey) { 689 kfree(ctx->filterkey); 690 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 691 } 692 ctx->prio = rule->prio; 693 } 694 switch (rule->action) { 695 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 696 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 697 } 698 return 1; 699 } 700 701 /* At process creation time, we can determine if system-call auditing is 702 * completely disabled for this task. Since we only have the task 703 * structure at this point, we can only check uid and gid. 704 */ 705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 706 { 707 struct audit_entry *e; 708 enum audit_state state; 709 710 rcu_read_lock(); 711 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 712 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 713 &state, true)) { 714 if (state == AUDIT_RECORD_CONTEXT) 715 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 716 rcu_read_unlock(); 717 return state; 718 } 719 } 720 rcu_read_unlock(); 721 return AUDIT_BUILD_CONTEXT; 722 } 723 724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 725 { 726 int word, bit; 727 728 if (val > 0xffffffff) 729 return false; 730 731 word = AUDIT_WORD(val); 732 if (word >= AUDIT_BITMASK_SIZE) 733 return false; 734 735 bit = AUDIT_BIT(val); 736 737 return rule->mask[word] & bit; 738 } 739 740 /* At syscall entry and exit time, this filter is called if the 741 * audit_state is not low enough that auditing cannot take place, but is 742 * also not high enough that we already know we have to write an audit 743 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 744 */ 745 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 746 struct audit_context *ctx, 747 struct list_head *list) 748 { 749 struct audit_entry *e; 750 enum audit_state state; 751 752 if (audit_pid && tsk->tgid == audit_pid) 753 return AUDIT_DISABLED; 754 755 rcu_read_lock(); 756 if (!list_empty(list)) { 757 list_for_each_entry_rcu(e, list, list) { 758 if (audit_in_mask(&e->rule, ctx->major) && 759 audit_filter_rules(tsk, &e->rule, ctx, NULL, 760 &state, false)) { 761 rcu_read_unlock(); 762 ctx->current_state = state; 763 return state; 764 } 765 } 766 } 767 rcu_read_unlock(); 768 return AUDIT_BUILD_CONTEXT; 769 } 770 771 /* 772 * Given an audit_name check the inode hash table to see if they match. 773 * Called holding the rcu read lock to protect the use of audit_inode_hash 774 */ 775 static int audit_filter_inode_name(struct task_struct *tsk, 776 struct audit_names *n, 777 struct audit_context *ctx) { 778 int h = audit_hash_ino((u32)n->ino); 779 struct list_head *list = &audit_inode_hash[h]; 780 struct audit_entry *e; 781 enum audit_state state; 782 783 if (list_empty(list)) 784 return 0; 785 786 list_for_each_entry_rcu(e, list, list) { 787 if (audit_in_mask(&e->rule, ctx->major) && 788 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 789 ctx->current_state = state; 790 return 1; 791 } 792 } 793 794 return 0; 795 } 796 797 /* At syscall exit time, this filter is called if any audit_names have been 798 * collected during syscall processing. We only check rules in sublists at hash 799 * buckets applicable to the inode numbers in audit_names. 800 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 801 */ 802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 803 { 804 struct audit_names *n; 805 806 if (audit_pid && tsk->tgid == audit_pid) 807 return; 808 809 rcu_read_lock(); 810 811 list_for_each_entry(n, &ctx->names_list, list) { 812 if (audit_filter_inode_name(tsk, n, ctx)) 813 break; 814 } 815 rcu_read_unlock(); 816 } 817 818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 819 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 820 int return_valid, 821 long return_code) 822 { 823 struct audit_context *context = tsk->audit_context; 824 825 if (!context) 826 return NULL; 827 context->return_valid = return_valid; 828 829 /* 830 * we need to fix up the return code in the audit logs if the actual 831 * return codes are later going to be fixed up by the arch specific 832 * signal handlers 833 * 834 * This is actually a test for: 835 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 836 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 837 * 838 * but is faster than a bunch of || 839 */ 840 if (unlikely(return_code <= -ERESTARTSYS) && 841 (return_code >= -ERESTART_RESTARTBLOCK) && 842 (return_code != -ENOIOCTLCMD)) 843 context->return_code = -EINTR; 844 else 845 context->return_code = return_code; 846 847 if (context->in_syscall && !context->dummy) { 848 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 849 audit_filter_inodes(tsk, context); 850 } 851 852 tsk->audit_context = NULL; 853 return context; 854 } 855 856 static inline void audit_proctitle_free(struct audit_context *context) 857 { 858 kfree(context->proctitle.value); 859 context->proctitle.value = NULL; 860 context->proctitle.len = 0; 861 } 862 863 static inline void audit_free_names(struct audit_context *context) 864 { 865 struct audit_names *n, *next; 866 867 #if AUDIT_DEBUG == 2 868 if (context->put_count + context->ino_count != context->name_count) { 869 int i = 0; 870 871 pr_err("%s:%d(:%d): major=%d in_syscall=%d" 872 " name_count=%d put_count=%d ino_count=%d" 873 " [NOT freeing]\n", __FILE__, __LINE__, 874 context->serial, context->major, context->in_syscall, 875 context->name_count, context->put_count, 876 context->ino_count); 877 list_for_each_entry(n, &context->names_list, list) { 878 pr_err("names[%d] = %p = %s\n", i++, n->name, 879 n->name->name ?: "(null)"); 880 } 881 dump_stack(); 882 return; 883 } 884 #endif 885 #if AUDIT_DEBUG 886 context->put_count = 0; 887 context->ino_count = 0; 888 #endif 889 890 list_for_each_entry_safe(n, next, &context->names_list, list) { 891 list_del(&n->list); 892 if (n->name && n->name_put) 893 final_putname(n->name); 894 if (n->should_free) 895 kfree(n); 896 } 897 context->name_count = 0; 898 path_put(&context->pwd); 899 context->pwd.dentry = NULL; 900 context->pwd.mnt = NULL; 901 } 902 903 static inline void audit_free_aux(struct audit_context *context) 904 { 905 struct audit_aux_data *aux; 906 907 while ((aux = context->aux)) { 908 context->aux = aux->next; 909 kfree(aux); 910 } 911 while ((aux = context->aux_pids)) { 912 context->aux_pids = aux->next; 913 kfree(aux); 914 } 915 } 916 917 static inline struct audit_context *audit_alloc_context(enum audit_state state) 918 { 919 struct audit_context *context; 920 921 context = kzalloc(sizeof(*context), GFP_KERNEL); 922 if (!context) 923 return NULL; 924 context->state = state; 925 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 926 INIT_LIST_HEAD(&context->killed_trees); 927 INIT_LIST_HEAD(&context->names_list); 928 return context; 929 } 930 931 /** 932 * audit_alloc - allocate an audit context block for a task 933 * @tsk: task 934 * 935 * Filter on the task information and allocate a per-task audit context 936 * if necessary. Doing so turns on system call auditing for the 937 * specified task. This is called from copy_process, so no lock is 938 * needed. 939 */ 940 int audit_alloc(struct task_struct *tsk) 941 { 942 struct audit_context *context; 943 enum audit_state state; 944 char *key = NULL; 945 946 if (likely(!audit_ever_enabled)) 947 return 0; /* Return if not auditing. */ 948 949 state = audit_filter_task(tsk, &key); 950 if (state == AUDIT_DISABLED) { 951 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 952 return 0; 953 } 954 955 if (!(context = audit_alloc_context(state))) { 956 kfree(key); 957 audit_log_lost("out of memory in audit_alloc"); 958 return -ENOMEM; 959 } 960 context->filterkey = key; 961 962 tsk->audit_context = context; 963 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 964 return 0; 965 } 966 967 static inline void audit_free_context(struct audit_context *context) 968 { 969 audit_free_names(context); 970 unroll_tree_refs(context, NULL, 0); 971 free_tree_refs(context); 972 audit_free_aux(context); 973 kfree(context->filterkey); 974 kfree(context->sockaddr); 975 audit_proctitle_free(context); 976 kfree(context); 977 } 978 979 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 980 kuid_t auid, kuid_t uid, unsigned int sessionid, 981 u32 sid, char *comm) 982 { 983 struct audit_buffer *ab; 984 char *ctx = NULL; 985 u32 len; 986 int rc = 0; 987 988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 989 if (!ab) 990 return rc; 991 992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 993 from_kuid(&init_user_ns, auid), 994 from_kuid(&init_user_ns, uid), sessionid); 995 if (sid) { 996 if (security_secid_to_secctx(sid, &ctx, &len)) { 997 audit_log_format(ab, " obj=(none)"); 998 rc = 1; 999 } else { 1000 audit_log_format(ab, " obj=%s", ctx); 1001 security_release_secctx(ctx, len); 1002 } 1003 } 1004 audit_log_format(ab, " ocomm="); 1005 audit_log_untrustedstring(ab, comm); 1006 audit_log_end(ab); 1007 1008 return rc; 1009 } 1010 1011 /* 1012 * to_send and len_sent accounting are very loose estimates. We aren't 1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1014 * within about 500 bytes (next page boundary) 1015 * 1016 * why snprintf? an int is up to 12 digits long. if we just assumed when 1017 * logging that a[%d]= was going to be 16 characters long we would be wasting 1018 * space in every audit message. In one 7500 byte message we can log up to 1019 * about 1000 min size arguments. That comes down to about 50% waste of space 1020 * if we didn't do the snprintf to find out how long arg_num_len was. 1021 */ 1022 static int audit_log_single_execve_arg(struct audit_context *context, 1023 struct audit_buffer **ab, 1024 int arg_num, 1025 size_t *len_sent, 1026 const char __user *p, 1027 char *buf) 1028 { 1029 char arg_num_len_buf[12]; 1030 const char __user *tmp_p = p; 1031 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1032 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1033 size_t len, len_left, to_send; 1034 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1035 unsigned int i, has_cntl = 0, too_long = 0; 1036 int ret; 1037 1038 /* strnlen_user includes the null we don't want to send */ 1039 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1040 1041 /* 1042 * We just created this mm, if we can't find the strings 1043 * we just copied into it something is _very_ wrong. Similar 1044 * for strings that are too long, we should not have created 1045 * any. 1046 */ 1047 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1048 WARN_ON(1); 1049 send_sig(SIGKILL, current, 0); 1050 return -1; 1051 } 1052 1053 /* walk the whole argument looking for non-ascii chars */ 1054 do { 1055 if (len_left > MAX_EXECVE_AUDIT_LEN) 1056 to_send = MAX_EXECVE_AUDIT_LEN; 1057 else 1058 to_send = len_left; 1059 ret = copy_from_user(buf, tmp_p, to_send); 1060 /* 1061 * There is no reason for this copy to be short. We just 1062 * copied them here, and the mm hasn't been exposed to user- 1063 * space yet. 1064 */ 1065 if (ret) { 1066 WARN_ON(1); 1067 send_sig(SIGKILL, current, 0); 1068 return -1; 1069 } 1070 buf[to_send] = '\0'; 1071 has_cntl = audit_string_contains_control(buf, to_send); 1072 if (has_cntl) { 1073 /* 1074 * hex messages get logged as 2 bytes, so we can only 1075 * send half as much in each message 1076 */ 1077 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1078 break; 1079 } 1080 len_left -= to_send; 1081 tmp_p += to_send; 1082 } while (len_left > 0); 1083 1084 len_left = len; 1085 1086 if (len > max_execve_audit_len) 1087 too_long = 1; 1088 1089 /* rewalk the argument actually logging the message */ 1090 for (i = 0; len_left > 0; i++) { 1091 int room_left; 1092 1093 if (len_left > max_execve_audit_len) 1094 to_send = max_execve_audit_len; 1095 else 1096 to_send = len_left; 1097 1098 /* do we have space left to send this argument in this ab? */ 1099 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1100 if (has_cntl) 1101 room_left -= (to_send * 2); 1102 else 1103 room_left -= to_send; 1104 if (room_left < 0) { 1105 *len_sent = 0; 1106 audit_log_end(*ab); 1107 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1108 if (!*ab) 1109 return 0; 1110 } 1111 1112 /* 1113 * first record needs to say how long the original string was 1114 * so we can be sure nothing was lost. 1115 */ 1116 if ((i == 0) && (too_long)) 1117 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1118 has_cntl ? 2*len : len); 1119 1120 /* 1121 * normally arguments are small enough to fit and we already 1122 * filled buf above when we checked for control characters 1123 * so don't bother with another copy_from_user 1124 */ 1125 if (len >= max_execve_audit_len) 1126 ret = copy_from_user(buf, p, to_send); 1127 else 1128 ret = 0; 1129 if (ret) { 1130 WARN_ON(1); 1131 send_sig(SIGKILL, current, 0); 1132 return -1; 1133 } 1134 buf[to_send] = '\0'; 1135 1136 /* actually log it */ 1137 audit_log_format(*ab, " a%d", arg_num); 1138 if (too_long) 1139 audit_log_format(*ab, "[%d]", i); 1140 audit_log_format(*ab, "="); 1141 if (has_cntl) 1142 audit_log_n_hex(*ab, buf, to_send); 1143 else 1144 audit_log_string(*ab, buf); 1145 1146 p += to_send; 1147 len_left -= to_send; 1148 *len_sent += arg_num_len; 1149 if (has_cntl) 1150 *len_sent += to_send * 2; 1151 else 1152 *len_sent += to_send; 1153 } 1154 /* include the null we didn't log */ 1155 return len + 1; 1156 } 1157 1158 static void audit_log_execve_info(struct audit_context *context, 1159 struct audit_buffer **ab) 1160 { 1161 int i, len; 1162 size_t len_sent = 0; 1163 const char __user *p; 1164 char *buf; 1165 1166 p = (const char __user *)current->mm->arg_start; 1167 1168 audit_log_format(*ab, "argc=%d", context->execve.argc); 1169 1170 /* 1171 * we need some kernel buffer to hold the userspace args. Just 1172 * allocate one big one rather than allocating one of the right size 1173 * for every single argument inside audit_log_single_execve_arg() 1174 * should be <8k allocation so should be pretty safe. 1175 */ 1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1177 if (!buf) { 1178 audit_panic("out of memory for argv string"); 1179 return; 1180 } 1181 1182 for (i = 0; i < context->execve.argc; i++) { 1183 len = audit_log_single_execve_arg(context, ab, i, 1184 &len_sent, p, buf); 1185 if (len <= 0) 1186 break; 1187 p += len; 1188 } 1189 kfree(buf); 1190 } 1191 1192 static void show_special(struct audit_context *context, int *call_panic) 1193 { 1194 struct audit_buffer *ab; 1195 int i; 1196 1197 ab = audit_log_start(context, GFP_KERNEL, context->type); 1198 if (!ab) 1199 return; 1200 1201 switch (context->type) { 1202 case AUDIT_SOCKETCALL: { 1203 int nargs = context->socketcall.nargs; 1204 audit_log_format(ab, "nargs=%d", nargs); 1205 for (i = 0; i < nargs; i++) 1206 audit_log_format(ab, " a%d=%lx", i, 1207 context->socketcall.args[i]); 1208 break; } 1209 case AUDIT_IPC: { 1210 u32 osid = context->ipc.osid; 1211 1212 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1213 from_kuid(&init_user_ns, context->ipc.uid), 1214 from_kgid(&init_user_ns, context->ipc.gid), 1215 context->ipc.mode); 1216 if (osid) { 1217 char *ctx = NULL; 1218 u32 len; 1219 if (security_secid_to_secctx(osid, &ctx, &len)) { 1220 audit_log_format(ab, " osid=%u", osid); 1221 *call_panic = 1; 1222 } else { 1223 audit_log_format(ab, " obj=%s", ctx); 1224 security_release_secctx(ctx, len); 1225 } 1226 } 1227 if (context->ipc.has_perm) { 1228 audit_log_end(ab); 1229 ab = audit_log_start(context, GFP_KERNEL, 1230 AUDIT_IPC_SET_PERM); 1231 if (unlikely(!ab)) 1232 return; 1233 audit_log_format(ab, 1234 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1235 context->ipc.qbytes, 1236 context->ipc.perm_uid, 1237 context->ipc.perm_gid, 1238 context->ipc.perm_mode); 1239 } 1240 break; } 1241 case AUDIT_MQ_OPEN: { 1242 audit_log_format(ab, 1243 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1244 "mq_msgsize=%ld mq_curmsgs=%ld", 1245 context->mq_open.oflag, context->mq_open.mode, 1246 context->mq_open.attr.mq_flags, 1247 context->mq_open.attr.mq_maxmsg, 1248 context->mq_open.attr.mq_msgsize, 1249 context->mq_open.attr.mq_curmsgs); 1250 break; } 1251 case AUDIT_MQ_SENDRECV: { 1252 audit_log_format(ab, 1253 "mqdes=%d msg_len=%zd msg_prio=%u " 1254 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1255 context->mq_sendrecv.mqdes, 1256 context->mq_sendrecv.msg_len, 1257 context->mq_sendrecv.msg_prio, 1258 context->mq_sendrecv.abs_timeout.tv_sec, 1259 context->mq_sendrecv.abs_timeout.tv_nsec); 1260 break; } 1261 case AUDIT_MQ_NOTIFY: { 1262 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1263 context->mq_notify.mqdes, 1264 context->mq_notify.sigev_signo); 1265 break; } 1266 case AUDIT_MQ_GETSETATTR: { 1267 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1268 audit_log_format(ab, 1269 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1270 "mq_curmsgs=%ld ", 1271 context->mq_getsetattr.mqdes, 1272 attr->mq_flags, attr->mq_maxmsg, 1273 attr->mq_msgsize, attr->mq_curmsgs); 1274 break; } 1275 case AUDIT_CAPSET: { 1276 audit_log_format(ab, "pid=%d", context->capset.pid); 1277 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1278 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1279 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1280 break; } 1281 case AUDIT_MMAP: { 1282 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1283 context->mmap.flags); 1284 break; } 1285 case AUDIT_EXECVE: { 1286 audit_log_execve_info(context, &ab); 1287 break; } 1288 } 1289 audit_log_end(ab); 1290 } 1291 1292 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1293 { 1294 char *end = proctitle + len - 1; 1295 while (end > proctitle && !isprint(*end)) 1296 end--; 1297 1298 /* catch the case where proctitle is only 1 non-print character */ 1299 len = end - proctitle + 1; 1300 len -= isprint(proctitle[len-1]) == 0; 1301 return len; 1302 } 1303 1304 static void audit_log_proctitle(struct task_struct *tsk, 1305 struct audit_context *context) 1306 { 1307 int res; 1308 char *buf; 1309 char *msg = "(null)"; 1310 int len = strlen(msg); 1311 struct audit_buffer *ab; 1312 1313 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1314 if (!ab) 1315 return; /* audit_panic or being filtered */ 1316 1317 audit_log_format(ab, "proctitle="); 1318 1319 /* Not cached */ 1320 if (!context->proctitle.value) { 1321 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1322 if (!buf) 1323 goto out; 1324 /* Historically called this from procfs naming */ 1325 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1326 if (res == 0) { 1327 kfree(buf); 1328 goto out; 1329 } 1330 res = audit_proctitle_rtrim(buf, res); 1331 if (res == 0) { 1332 kfree(buf); 1333 goto out; 1334 } 1335 context->proctitle.value = buf; 1336 context->proctitle.len = res; 1337 } 1338 msg = context->proctitle.value; 1339 len = context->proctitle.len; 1340 out: 1341 audit_log_n_untrustedstring(ab, msg, len); 1342 audit_log_end(ab); 1343 } 1344 1345 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1346 { 1347 int i, call_panic = 0; 1348 struct audit_buffer *ab; 1349 struct audit_aux_data *aux; 1350 struct audit_names *n; 1351 1352 /* tsk == current */ 1353 context->personality = tsk->personality; 1354 1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1356 if (!ab) 1357 return; /* audit_panic has been called */ 1358 audit_log_format(ab, "arch=%x syscall=%d", 1359 context->arch, context->major); 1360 if (context->personality != PER_LINUX) 1361 audit_log_format(ab, " per=%lx", context->personality); 1362 if (context->return_valid) 1363 audit_log_format(ab, " success=%s exit=%ld", 1364 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1365 context->return_code); 1366 1367 audit_log_format(ab, 1368 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1369 context->argv[0], 1370 context->argv[1], 1371 context->argv[2], 1372 context->argv[3], 1373 context->name_count); 1374 1375 audit_log_task_info(ab, tsk); 1376 audit_log_key(ab, context->filterkey); 1377 audit_log_end(ab); 1378 1379 for (aux = context->aux; aux; aux = aux->next) { 1380 1381 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1382 if (!ab) 1383 continue; /* audit_panic has been called */ 1384 1385 switch (aux->type) { 1386 1387 case AUDIT_BPRM_FCAPS: { 1388 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1389 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1390 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1391 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1392 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1393 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1394 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1395 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1396 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1397 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1398 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1399 break; } 1400 1401 } 1402 audit_log_end(ab); 1403 } 1404 1405 if (context->type) 1406 show_special(context, &call_panic); 1407 1408 if (context->fds[0] >= 0) { 1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1410 if (ab) { 1411 audit_log_format(ab, "fd0=%d fd1=%d", 1412 context->fds[0], context->fds[1]); 1413 audit_log_end(ab); 1414 } 1415 } 1416 1417 if (context->sockaddr_len) { 1418 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1419 if (ab) { 1420 audit_log_format(ab, "saddr="); 1421 audit_log_n_hex(ab, (void *)context->sockaddr, 1422 context->sockaddr_len); 1423 audit_log_end(ab); 1424 } 1425 } 1426 1427 for (aux = context->aux_pids; aux; aux = aux->next) { 1428 struct audit_aux_data_pids *axs = (void *)aux; 1429 1430 for (i = 0; i < axs->pid_count; i++) 1431 if (audit_log_pid_context(context, axs->target_pid[i], 1432 axs->target_auid[i], 1433 axs->target_uid[i], 1434 axs->target_sessionid[i], 1435 axs->target_sid[i], 1436 axs->target_comm[i])) 1437 call_panic = 1; 1438 } 1439 1440 if (context->target_pid && 1441 audit_log_pid_context(context, context->target_pid, 1442 context->target_auid, context->target_uid, 1443 context->target_sessionid, 1444 context->target_sid, context->target_comm)) 1445 call_panic = 1; 1446 1447 if (context->pwd.dentry && context->pwd.mnt) { 1448 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1449 if (ab) { 1450 audit_log_d_path(ab, " cwd=", &context->pwd); 1451 audit_log_end(ab); 1452 } 1453 } 1454 1455 i = 0; 1456 list_for_each_entry(n, &context->names_list, list) { 1457 if (n->hidden) 1458 continue; 1459 audit_log_name(context, n, NULL, i++, &call_panic); 1460 } 1461 1462 audit_log_proctitle(tsk, context); 1463 1464 /* Send end of event record to help user space know we are finished */ 1465 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1466 if (ab) 1467 audit_log_end(ab); 1468 if (call_panic) 1469 audit_panic("error converting sid to string"); 1470 } 1471 1472 /** 1473 * audit_free - free a per-task audit context 1474 * @tsk: task whose audit context block to free 1475 * 1476 * Called from copy_process and do_exit 1477 */ 1478 void __audit_free(struct task_struct *tsk) 1479 { 1480 struct audit_context *context; 1481 1482 context = audit_take_context(tsk, 0, 0); 1483 if (!context) 1484 return; 1485 1486 /* Check for system calls that do not go through the exit 1487 * function (e.g., exit_group), then free context block. 1488 * We use GFP_ATOMIC here because we might be doing this 1489 * in the context of the idle thread */ 1490 /* that can happen only if we are called from do_exit() */ 1491 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1492 audit_log_exit(context, tsk); 1493 if (!list_empty(&context->killed_trees)) 1494 audit_kill_trees(&context->killed_trees); 1495 1496 audit_free_context(context); 1497 } 1498 1499 /** 1500 * audit_syscall_entry - fill in an audit record at syscall entry 1501 * @major: major syscall type (function) 1502 * @a1: additional syscall register 1 1503 * @a2: additional syscall register 2 1504 * @a3: additional syscall register 3 1505 * @a4: additional syscall register 4 1506 * 1507 * Fill in audit context at syscall entry. This only happens if the 1508 * audit context was created when the task was created and the state or 1509 * filters demand the audit context be built. If the state from the 1510 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1511 * then the record will be written at syscall exit time (otherwise, it 1512 * will only be written if another part of the kernel requests that it 1513 * be written). 1514 */ 1515 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1516 unsigned long a3, unsigned long a4) 1517 { 1518 struct task_struct *tsk = current; 1519 struct audit_context *context = tsk->audit_context; 1520 enum audit_state state; 1521 1522 if (!context) 1523 return; 1524 1525 BUG_ON(context->in_syscall || context->name_count); 1526 1527 if (!audit_enabled) 1528 return; 1529 1530 context->arch = syscall_get_arch(); 1531 context->major = major; 1532 context->argv[0] = a1; 1533 context->argv[1] = a2; 1534 context->argv[2] = a3; 1535 context->argv[3] = a4; 1536 1537 state = context->state; 1538 context->dummy = !audit_n_rules; 1539 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1540 context->prio = 0; 1541 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1542 } 1543 if (state == AUDIT_DISABLED) 1544 return; 1545 1546 context->serial = 0; 1547 context->ctime = CURRENT_TIME; 1548 context->in_syscall = 1; 1549 context->current_state = state; 1550 context->ppid = 0; 1551 } 1552 1553 /** 1554 * audit_syscall_exit - deallocate audit context after a system call 1555 * @success: success value of the syscall 1556 * @return_code: return value of the syscall 1557 * 1558 * Tear down after system call. If the audit context has been marked as 1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1560 * filtering, or because some other part of the kernel wrote an audit 1561 * message), then write out the syscall information. In call cases, 1562 * free the names stored from getname(). 1563 */ 1564 void __audit_syscall_exit(int success, long return_code) 1565 { 1566 struct task_struct *tsk = current; 1567 struct audit_context *context; 1568 1569 if (success) 1570 success = AUDITSC_SUCCESS; 1571 else 1572 success = AUDITSC_FAILURE; 1573 1574 context = audit_take_context(tsk, success, return_code); 1575 if (!context) 1576 return; 1577 1578 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1579 audit_log_exit(context, tsk); 1580 1581 context->in_syscall = 0; 1582 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1583 1584 if (!list_empty(&context->killed_trees)) 1585 audit_kill_trees(&context->killed_trees); 1586 1587 audit_free_names(context); 1588 unroll_tree_refs(context, NULL, 0); 1589 audit_free_aux(context); 1590 context->aux = NULL; 1591 context->aux_pids = NULL; 1592 context->target_pid = 0; 1593 context->target_sid = 0; 1594 context->sockaddr_len = 0; 1595 context->type = 0; 1596 context->fds[0] = -1; 1597 if (context->state != AUDIT_RECORD_CONTEXT) { 1598 kfree(context->filterkey); 1599 context->filterkey = NULL; 1600 } 1601 tsk->audit_context = context; 1602 } 1603 1604 static inline void handle_one(const struct inode *inode) 1605 { 1606 #ifdef CONFIG_AUDIT_TREE 1607 struct audit_context *context; 1608 struct audit_tree_refs *p; 1609 struct audit_chunk *chunk; 1610 int count; 1611 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1612 return; 1613 context = current->audit_context; 1614 p = context->trees; 1615 count = context->tree_count; 1616 rcu_read_lock(); 1617 chunk = audit_tree_lookup(inode); 1618 rcu_read_unlock(); 1619 if (!chunk) 1620 return; 1621 if (likely(put_tree_ref(context, chunk))) 1622 return; 1623 if (unlikely(!grow_tree_refs(context))) { 1624 pr_warn("out of memory, audit has lost a tree reference\n"); 1625 audit_set_auditable(context); 1626 audit_put_chunk(chunk); 1627 unroll_tree_refs(context, p, count); 1628 return; 1629 } 1630 put_tree_ref(context, chunk); 1631 #endif 1632 } 1633 1634 static void handle_path(const struct dentry *dentry) 1635 { 1636 #ifdef CONFIG_AUDIT_TREE 1637 struct audit_context *context; 1638 struct audit_tree_refs *p; 1639 const struct dentry *d, *parent; 1640 struct audit_chunk *drop; 1641 unsigned long seq; 1642 int count; 1643 1644 context = current->audit_context; 1645 p = context->trees; 1646 count = context->tree_count; 1647 retry: 1648 drop = NULL; 1649 d = dentry; 1650 rcu_read_lock(); 1651 seq = read_seqbegin(&rename_lock); 1652 for(;;) { 1653 struct inode *inode = d->d_inode; 1654 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1655 struct audit_chunk *chunk; 1656 chunk = audit_tree_lookup(inode); 1657 if (chunk) { 1658 if (unlikely(!put_tree_ref(context, chunk))) { 1659 drop = chunk; 1660 break; 1661 } 1662 } 1663 } 1664 parent = d->d_parent; 1665 if (parent == d) 1666 break; 1667 d = parent; 1668 } 1669 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1670 rcu_read_unlock(); 1671 if (!drop) { 1672 /* just a race with rename */ 1673 unroll_tree_refs(context, p, count); 1674 goto retry; 1675 } 1676 audit_put_chunk(drop); 1677 if (grow_tree_refs(context)) { 1678 /* OK, got more space */ 1679 unroll_tree_refs(context, p, count); 1680 goto retry; 1681 } 1682 /* too bad */ 1683 pr_warn("out of memory, audit has lost a tree reference\n"); 1684 unroll_tree_refs(context, p, count); 1685 audit_set_auditable(context); 1686 return; 1687 } 1688 rcu_read_unlock(); 1689 #endif 1690 } 1691 1692 static struct audit_names *audit_alloc_name(struct audit_context *context, 1693 unsigned char type) 1694 { 1695 struct audit_names *aname; 1696 1697 if (context->name_count < AUDIT_NAMES) { 1698 aname = &context->preallocated_names[context->name_count]; 1699 memset(aname, 0, sizeof(*aname)); 1700 } else { 1701 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1702 if (!aname) 1703 return NULL; 1704 aname->should_free = true; 1705 } 1706 1707 aname->ino = (unsigned long)-1; 1708 aname->type = type; 1709 list_add_tail(&aname->list, &context->names_list); 1710 1711 context->name_count++; 1712 #if AUDIT_DEBUG 1713 context->ino_count++; 1714 #endif 1715 return aname; 1716 } 1717 1718 /** 1719 * audit_reusename - fill out filename with info from existing entry 1720 * @uptr: userland ptr to pathname 1721 * 1722 * Search the audit_names list for the current audit context. If there is an 1723 * existing entry with a matching "uptr" then return the filename 1724 * associated with that audit_name. If not, return NULL. 1725 */ 1726 struct filename * 1727 __audit_reusename(const __user char *uptr) 1728 { 1729 struct audit_context *context = current->audit_context; 1730 struct audit_names *n; 1731 1732 list_for_each_entry(n, &context->names_list, list) { 1733 if (!n->name) 1734 continue; 1735 if (n->name->uptr == uptr) 1736 return n->name; 1737 } 1738 return NULL; 1739 } 1740 1741 /** 1742 * audit_getname - add a name to the list 1743 * @name: name to add 1744 * 1745 * Add a name to the list of audit names for this context. 1746 * Called from fs/namei.c:getname(). 1747 */ 1748 void __audit_getname(struct filename *name) 1749 { 1750 struct audit_context *context = current->audit_context; 1751 struct audit_names *n; 1752 1753 if (!context->in_syscall) { 1754 #if AUDIT_DEBUG == 2 1755 pr_err("%s:%d(:%d): ignoring getname(%p)\n", 1756 __FILE__, __LINE__, context->serial, name); 1757 dump_stack(); 1758 #endif 1759 return; 1760 } 1761 1762 #if AUDIT_DEBUG 1763 /* The filename _must_ have a populated ->name */ 1764 BUG_ON(!name->name); 1765 #endif 1766 1767 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1768 if (!n) 1769 return; 1770 1771 n->name = name; 1772 n->name_len = AUDIT_NAME_FULL; 1773 n->name_put = true; 1774 name->aname = n; 1775 1776 if (!context->pwd.dentry) 1777 get_fs_pwd(current->fs, &context->pwd); 1778 } 1779 1780 /* audit_putname - intercept a putname request 1781 * @name: name to intercept and delay for putname 1782 * 1783 * If we have stored the name from getname in the audit context, 1784 * then we delay the putname until syscall exit. 1785 * Called from include/linux/fs.h:putname(). 1786 */ 1787 void audit_putname(struct filename *name) 1788 { 1789 struct audit_context *context = current->audit_context; 1790 1791 BUG_ON(!context); 1792 if (!name->aname || !context->in_syscall) { 1793 #if AUDIT_DEBUG == 2 1794 pr_err("%s:%d(:%d): final_putname(%p)\n", 1795 __FILE__, __LINE__, context->serial, name); 1796 if (context->name_count) { 1797 struct audit_names *n; 1798 int i = 0; 1799 1800 list_for_each_entry(n, &context->names_list, list) 1801 pr_err("name[%d] = %p = %s\n", i++, n->name, 1802 n->name->name ?: "(null)"); 1803 } 1804 #endif 1805 final_putname(name); 1806 } 1807 #if AUDIT_DEBUG 1808 else { 1809 ++context->put_count; 1810 if (context->put_count > context->name_count) { 1811 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)" 1812 " name_count=%d put_count=%d\n", 1813 __FILE__, __LINE__, 1814 context->serial, context->major, 1815 context->in_syscall, name->name, 1816 context->name_count, context->put_count); 1817 dump_stack(); 1818 } 1819 } 1820 #endif 1821 } 1822 1823 /** 1824 * __audit_inode - store the inode and device from a lookup 1825 * @name: name being audited 1826 * @dentry: dentry being audited 1827 * @flags: attributes for this particular entry 1828 */ 1829 void __audit_inode(struct filename *name, const struct dentry *dentry, 1830 unsigned int flags) 1831 { 1832 struct audit_context *context = current->audit_context; 1833 const struct inode *inode = dentry->d_inode; 1834 struct audit_names *n; 1835 bool parent = flags & AUDIT_INODE_PARENT; 1836 1837 if (!context->in_syscall) 1838 return; 1839 1840 if (!name) 1841 goto out_alloc; 1842 1843 #if AUDIT_DEBUG 1844 /* The struct filename _must_ have a populated ->name */ 1845 BUG_ON(!name->name); 1846 #endif 1847 /* 1848 * If we have a pointer to an audit_names entry already, then we can 1849 * just use it directly if the type is correct. 1850 */ 1851 n = name->aname; 1852 if (n) { 1853 if (parent) { 1854 if (n->type == AUDIT_TYPE_PARENT || 1855 n->type == AUDIT_TYPE_UNKNOWN) 1856 goto out; 1857 } else { 1858 if (n->type != AUDIT_TYPE_PARENT) 1859 goto out; 1860 } 1861 } 1862 1863 list_for_each_entry_reverse(n, &context->names_list, list) { 1864 /* does the name pointer match? */ 1865 if (!n->name || n->name->name != name->name) 1866 continue; 1867 1868 /* match the correct record type */ 1869 if (parent) { 1870 if (n->type == AUDIT_TYPE_PARENT || 1871 n->type == AUDIT_TYPE_UNKNOWN) 1872 goto out; 1873 } else { 1874 if (n->type != AUDIT_TYPE_PARENT) 1875 goto out; 1876 } 1877 } 1878 1879 out_alloc: 1880 /* unable to find the name from a previous getname(). Allocate a new 1881 * anonymous entry. 1882 */ 1883 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL); 1884 if (!n) 1885 return; 1886 out: 1887 if (parent) { 1888 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1889 n->type = AUDIT_TYPE_PARENT; 1890 if (flags & AUDIT_INODE_HIDDEN) 1891 n->hidden = true; 1892 } else { 1893 n->name_len = AUDIT_NAME_FULL; 1894 n->type = AUDIT_TYPE_NORMAL; 1895 } 1896 handle_path(dentry); 1897 audit_copy_inode(n, dentry, inode); 1898 } 1899 1900 void __audit_file(const struct file *file) 1901 { 1902 __audit_inode(NULL, file->f_path.dentry, 0); 1903 } 1904 1905 /** 1906 * __audit_inode_child - collect inode info for created/removed objects 1907 * @parent: inode of dentry parent 1908 * @dentry: dentry being audited 1909 * @type: AUDIT_TYPE_* value that we're looking for 1910 * 1911 * For syscalls that create or remove filesystem objects, audit_inode 1912 * can only collect information for the filesystem object's parent. 1913 * This call updates the audit context with the child's information. 1914 * Syscalls that create a new filesystem object must be hooked after 1915 * the object is created. Syscalls that remove a filesystem object 1916 * must be hooked prior, in order to capture the target inode during 1917 * unsuccessful attempts. 1918 */ 1919 void __audit_inode_child(const struct inode *parent, 1920 const struct dentry *dentry, 1921 const unsigned char type) 1922 { 1923 struct audit_context *context = current->audit_context; 1924 const struct inode *inode = dentry->d_inode; 1925 const char *dname = dentry->d_name.name; 1926 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1927 1928 if (!context->in_syscall) 1929 return; 1930 1931 if (inode) 1932 handle_one(inode); 1933 1934 /* look for a parent entry first */ 1935 list_for_each_entry(n, &context->names_list, list) { 1936 if (!n->name || n->type != AUDIT_TYPE_PARENT) 1937 continue; 1938 1939 if (n->ino == parent->i_ino && 1940 !audit_compare_dname_path(dname, n->name->name, n->name_len)) { 1941 found_parent = n; 1942 break; 1943 } 1944 } 1945 1946 /* is there a matching child entry? */ 1947 list_for_each_entry(n, &context->names_list, list) { 1948 /* can only match entries that have a name */ 1949 if (!n->name || n->type != type) 1950 continue; 1951 1952 /* if we found a parent, make sure this one is a child of it */ 1953 if (found_parent && (n->name != found_parent->name)) 1954 continue; 1955 1956 if (!strcmp(dname, n->name->name) || 1957 !audit_compare_dname_path(dname, n->name->name, 1958 found_parent ? 1959 found_parent->name_len : 1960 AUDIT_NAME_FULL)) { 1961 found_child = n; 1962 break; 1963 } 1964 } 1965 1966 if (!found_parent) { 1967 /* create a new, "anonymous" parent record */ 1968 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1969 if (!n) 1970 return; 1971 audit_copy_inode(n, NULL, parent); 1972 } 1973 1974 if (!found_child) { 1975 found_child = audit_alloc_name(context, type); 1976 if (!found_child) 1977 return; 1978 1979 /* Re-use the name belonging to the slot for a matching parent 1980 * directory. All names for this context are relinquished in 1981 * audit_free_names() */ 1982 if (found_parent) { 1983 found_child->name = found_parent->name; 1984 found_child->name_len = AUDIT_NAME_FULL; 1985 /* don't call __putname() */ 1986 found_child->name_put = false; 1987 } 1988 } 1989 if (inode) 1990 audit_copy_inode(found_child, dentry, inode); 1991 else 1992 found_child->ino = (unsigned long)-1; 1993 } 1994 EXPORT_SYMBOL_GPL(__audit_inode_child); 1995 1996 /** 1997 * auditsc_get_stamp - get local copies of audit_context values 1998 * @ctx: audit_context for the task 1999 * @t: timespec to store time recorded in the audit_context 2000 * @serial: serial value that is recorded in the audit_context 2001 * 2002 * Also sets the context as auditable. 2003 */ 2004 int auditsc_get_stamp(struct audit_context *ctx, 2005 struct timespec *t, unsigned int *serial) 2006 { 2007 if (!ctx->in_syscall) 2008 return 0; 2009 if (!ctx->serial) 2010 ctx->serial = audit_serial(); 2011 t->tv_sec = ctx->ctime.tv_sec; 2012 t->tv_nsec = ctx->ctime.tv_nsec; 2013 *serial = ctx->serial; 2014 if (!ctx->prio) { 2015 ctx->prio = 1; 2016 ctx->current_state = AUDIT_RECORD_CONTEXT; 2017 } 2018 return 1; 2019 } 2020 2021 /* global counter which is incremented every time something logs in */ 2022 static atomic_t session_id = ATOMIC_INIT(0); 2023 2024 static int audit_set_loginuid_perm(kuid_t loginuid) 2025 { 2026 /* if we are unset, we don't need privs */ 2027 if (!audit_loginuid_set(current)) 2028 return 0; 2029 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2030 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2031 return -EPERM; 2032 /* it is set, you need permission */ 2033 if (!capable(CAP_AUDIT_CONTROL)) 2034 return -EPERM; 2035 /* reject if this is not an unset and we don't allow that */ 2036 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 2037 return -EPERM; 2038 return 0; 2039 } 2040 2041 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2042 unsigned int oldsessionid, unsigned int sessionid, 2043 int rc) 2044 { 2045 struct audit_buffer *ab; 2046 uid_t uid, oldloginuid, loginuid; 2047 2048 if (!audit_enabled) 2049 return; 2050 2051 uid = from_kuid(&init_user_ns, task_uid(current)); 2052 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2053 loginuid = from_kuid(&init_user_ns, kloginuid), 2054 2055 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2056 if (!ab) 2057 return; 2058 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 2059 audit_log_task_context(ab); 2060 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d", 2061 oldloginuid, loginuid, oldsessionid, sessionid, !rc); 2062 audit_log_end(ab); 2063 } 2064 2065 /** 2066 * audit_set_loginuid - set current task's audit_context loginuid 2067 * @loginuid: loginuid value 2068 * 2069 * Returns 0. 2070 * 2071 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2072 */ 2073 int audit_set_loginuid(kuid_t loginuid) 2074 { 2075 struct task_struct *task = current; 2076 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2077 kuid_t oldloginuid; 2078 int rc; 2079 2080 oldloginuid = audit_get_loginuid(current); 2081 oldsessionid = audit_get_sessionid(current); 2082 2083 rc = audit_set_loginuid_perm(loginuid); 2084 if (rc) 2085 goto out; 2086 2087 /* are we setting or clearing? */ 2088 if (uid_valid(loginuid)) 2089 sessionid = (unsigned int)atomic_inc_return(&session_id); 2090 2091 task->sessionid = sessionid; 2092 task->loginuid = loginuid; 2093 out: 2094 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2095 return rc; 2096 } 2097 2098 /** 2099 * __audit_mq_open - record audit data for a POSIX MQ open 2100 * @oflag: open flag 2101 * @mode: mode bits 2102 * @attr: queue attributes 2103 * 2104 */ 2105 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2106 { 2107 struct audit_context *context = current->audit_context; 2108 2109 if (attr) 2110 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2111 else 2112 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2113 2114 context->mq_open.oflag = oflag; 2115 context->mq_open.mode = mode; 2116 2117 context->type = AUDIT_MQ_OPEN; 2118 } 2119 2120 /** 2121 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2122 * @mqdes: MQ descriptor 2123 * @msg_len: Message length 2124 * @msg_prio: Message priority 2125 * @abs_timeout: Message timeout in absolute time 2126 * 2127 */ 2128 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2129 const struct timespec *abs_timeout) 2130 { 2131 struct audit_context *context = current->audit_context; 2132 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2133 2134 if (abs_timeout) 2135 memcpy(p, abs_timeout, sizeof(struct timespec)); 2136 else 2137 memset(p, 0, sizeof(struct timespec)); 2138 2139 context->mq_sendrecv.mqdes = mqdes; 2140 context->mq_sendrecv.msg_len = msg_len; 2141 context->mq_sendrecv.msg_prio = msg_prio; 2142 2143 context->type = AUDIT_MQ_SENDRECV; 2144 } 2145 2146 /** 2147 * __audit_mq_notify - record audit data for a POSIX MQ notify 2148 * @mqdes: MQ descriptor 2149 * @notification: Notification event 2150 * 2151 */ 2152 2153 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2154 { 2155 struct audit_context *context = current->audit_context; 2156 2157 if (notification) 2158 context->mq_notify.sigev_signo = notification->sigev_signo; 2159 else 2160 context->mq_notify.sigev_signo = 0; 2161 2162 context->mq_notify.mqdes = mqdes; 2163 context->type = AUDIT_MQ_NOTIFY; 2164 } 2165 2166 /** 2167 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2168 * @mqdes: MQ descriptor 2169 * @mqstat: MQ flags 2170 * 2171 */ 2172 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2173 { 2174 struct audit_context *context = current->audit_context; 2175 context->mq_getsetattr.mqdes = mqdes; 2176 context->mq_getsetattr.mqstat = *mqstat; 2177 context->type = AUDIT_MQ_GETSETATTR; 2178 } 2179 2180 /** 2181 * audit_ipc_obj - record audit data for ipc object 2182 * @ipcp: ipc permissions 2183 * 2184 */ 2185 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2186 { 2187 struct audit_context *context = current->audit_context; 2188 context->ipc.uid = ipcp->uid; 2189 context->ipc.gid = ipcp->gid; 2190 context->ipc.mode = ipcp->mode; 2191 context->ipc.has_perm = 0; 2192 security_ipc_getsecid(ipcp, &context->ipc.osid); 2193 context->type = AUDIT_IPC; 2194 } 2195 2196 /** 2197 * audit_ipc_set_perm - record audit data for new ipc permissions 2198 * @qbytes: msgq bytes 2199 * @uid: msgq user id 2200 * @gid: msgq group id 2201 * @mode: msgq mode (permissions) 2202 * 2203 * Called only after audit_ipc_obj(). 2204 */ 2205 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2206 { 2207 struct audit_context *context = current->audit_context; 2208 2209 context->ipc.qbytes = qbytes; 2210 context->ipc.perm_uid = uid; 2211 context->ipc.perm_gid = gid; 2212 context->ipc.perm_mode = mode; 2213 context->ipc.has_perm = 1; 2214 } 2215 2216 void __audit_bprm(struct linux_binprm *bprm) 2217 { 2218 struct audit_context *context = current->audit_context; 2219 2220 context->type = AUDIT_EXECVE; 2221 context->execve.argc = bprm->argc; 2222 } 2223 2224 2225 /** 2226 * audit_socketcall - record audit data for sys_socketcall 2227 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2228 * @args: args array 2229 * 2230 */ 2231 int __audit_socketcall(int nargs, unsigned long *args) 2232 { 2233 struct audit_context *context = current->audit_context; 2234 2235 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2236 return -EINVAL; 2237 context->type = AUDIT_SOCKETCALL; 2238 context->socketcall.nargs = nargs; 2239 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2240 return 0; 2241 } 2242 2243 /** 2244 * __audit_fd_pair - record audit data for pipe and socketpair 2245 * @fd1: the first file descriptor 2246 * @fd2: the second file descriptor 2247 * 2248 */ 2249 void __audit_fd_pair(int fd1, int fd2) 2250 { 2251 struct audit_context *context = current->audit_context; 2252 context->fds[0] = fd1; 2253 context->fds[1] = fd2; 2254 } 2255 2256 /** 2257 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2258 * @len: data length in user space 2259 * @a: data address in kernel space 2260 * 2261 * Returns 0 for success or NULL context or < 0 on error. 2262 */ 2263 int __audit_sockaddr(int len, void *a) 2264 { 2265 struct audit_context *context = current->audit_context; 2266 2267 if (!context->sockaddr) { 2268 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2269 if (!p) 2270 return -ENOMEM; 2271 context->sockaddr = p; 2272 } 2273 2274 context->sockaddr_len = len; 2275 memcpy(context->sockaddr, a, len); 2276 return 0; 2277 } 2278 2279 void __audit_ptrace(struct task_struct *t) 2280 { 2281 struct audit_context *context = current->audit_context; 2282 2283 context->target_pid = task_pid_nr(t); 2284 context->target_auid = audit_get_loginuid(t); 2285 context->target_uid = task_uid(t); 2286 context->target_sessionid = audit_get_sessionid(t); 2287 security_task_getsecid(t, &context->target_sid); 2288 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2289 } 2290 2291 /** 2292 * audit_signal_info - record signal info for shutting down audit subsystem 2293 * @sig: signal value 2294 * @t: task being signaled 2295 * 2296 * If the audit subsystem is being terminated, record the task (pid) 2297 * and uid that is doing that. 2298 */ 2299 int __audit_signal_info(int sig, struct task_struct *t) 2300 { 2301 struct audit_aux_data_pids *axp; 2302 struct task_struct *tsk = current; 2303 struct audit_context *ctx = tsk->audit_context; 2304 kuid_t uid = current_uid(), t_uid = task_uid(t); 2305 2306 if (audit_pid && t->tgid == audit_pid) { 2307 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2308 audit_sig_pid = task_pid_nr(tsk); 2309 if (uid_valid(tsk->loginuid)) 2310 audit_sig_uid = tsk->loginuid; 2311 else 2312 audit_sig_uid = uid; 2313 security_task_getsecid(tsk, &audit_sig_sid); 2314 } 2315 if (!audit_signals || audit_dummy_context()) 2316 return 0; 2317 } 2318 2319 /* optimize the common case by putting first signal recipient directly 2320 * in audit_context */ 2321 if (!ctx->target_pid) { 2322 ctx->target_pid = task_tgid_nr(t); 2323 ctx->target_auid = audit_get_loginuid(t); 2324 ctx->target_uid = t_uid; 2325 ctx->target_sessionid = audit_get_sessionid(t); 2326 security_task_getsecid(t, &ctx->target_sid); 2327 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2328 return 0; 2329 } 2330 2331 axp = (void *)ctx->aux_pids; 2332 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2333 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2334 if (!axp) 2335 return -ENOMEM; 2336 2337 axp->d.type = AUDIT_OBJ_PID; 2338 axp->d.next = ctx->aux_pids; 2339 ctx->aux_pids = (void *)axp; 2340 } 2341 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2342 2343 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2344 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2345 axp->target_uid[axp->pid_count] = t_uid; 2346 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2347 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2348 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2349 axp->pid_count++; 2350 2351 return 0; 2352 } 2353 2354 /** 2355 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2356 * @bprm: pointer to the bprm being processed 2357 * @new: the proposed new credentials 2358 * @old: the old credentials 2359 * 2360 * Simply check if the proc already has the caps given by the file and if not 2361 * store the priv escalation info for later auditing at the end of the syscall 2362 * 2363 * -Eric 2364 */ 2365 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2366 const struct cred *new, const struct cred *old) 2367 { 2368 struct audit_aux_data_bprm_fcaps *ax; 2369 struct audit_context *context = current->audit_context; 2370 struct cpu_vfs_cap_data vcaps; 2371 struct dentry *dentry; 2372 2373 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2374 if (!ax) 2375 return -ENOMEM; 2376 2377 ax->d.type = AUDIT_BPRM_FCAPS; 2378 ax->d.next = context->aux; 2379 context->aux = (void *)ax; 2380 2381 dentry = dget(bprm->file->f_path.dentry); 2382 get_vfs_caps_from_disk(dentry, &vcaps); 2383 dput(dentry); 2384 2385 ax->fcap.permitted = vcaps.permitted; 2386 ax->fcap.inheritable = vcaps.inheritable; 2387 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2388 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2389 2390 ax->old_pcap.permitted = old->cap_permitted; 2391 ax->old_pcap.inheritable = old->cap_inheritable; 2392 ax->old_pcap.effective = old->cap_effective; 2393 2394 ax->new_pcap.permitted = new->cap_permitted; 2395 ax->new_pcap.inheritable = new->cap_inheritable; 2396 ax->new_pcap.effective = new->cap_effective; 2397 return 0; 2398 } 2399 2400 /** 2401 * __audit_log_capset - store information about the arguments to the capset syscall 2402 * @new: the new credentials 2403 * @old: the old (current) credentials 2404 * 2405 * Record the arguments userspace sent to sys_capset for later printing by the 2406 * audit system if applicable 2407 */ 2408 void __audit_log_capset(const struct cred *new, const struct cred *old) 2409 { 2410 struct audit_context *context = current->audit_context; 2411 context->capset.pid = task_pid_nr(current); 2412 context->capset.cap.effective = new->cap_effective; 2413 context->capset.cap.inheritable = new->cap_effective; 2414 context->capset.cap.permitted = new->cap_permitted; 2415 context->type = AUDIT_CAPSET; 2416 } 2417 2418 void __audit_mmap_fd(int fd, int flags) 2419 { 2420 struct audit_context *context = current->audit_context; 2421 context->mmap.fd = fd; 2422 context->mmap.flags = flags; 2423 context->type = AUDIT_MMAP; 2424 } 2425 2426 static void audit_log_task(struct audit_buffer *ab) 2427 { 2428 kuid_t auid, uid; 2429 kgid_t gid; 2430 unsigned int sessionid; 2431 struct mm_struct *mm = current->mm; 2432 char comm[sizeof(current->comm)]; 2433 2434 auid = audit_get_loginuid(current); 2435 sessionid = audit_get_sessionid(current); 2436 current_uid_gid(&uid, &gid); 2437 2438 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2439 from_kuid(&init_user_ns, auid), 2440 from_kuid(&init_user_ns, uid), 2441 from_kgid(&init_user_ns, gid), 2442 sessionid); 2443 audit_log_task_context(ab); 2444 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2445 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2446 if (mm) { 2447 down_read(&mm->mmap_sem); 2448 if (mm->exe_file) 2449 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 2450 up_read(&mm->mmap_sem); 2451 } else 2452 audit_log_format(ab, " exe=(null)"); 2453 } 2454 2455 /** 2456 * audit_core_dumps - record information about processes that end abnormally 2457 * @signr: signal value 2458 * 2459 * If a process ends with a core dump, something fishy is going on and we 2460 * should record the event for investigation. 2461 */ 2462 void audit_core_dumps(long signr) 2463 { 2464 struct audit_buffer *ab; 2465 2466 if (!audit_enabled) 2467 return; 2468 2469 if (signr == SIGQUIT) /* don't care for those */ 2470 return; 2471 2472 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2473 if (unlikely(!ab)) 2474 return; 2475 audit_log_task(ab); 2476 audit_log_format(ab, " sig=%ld", signr); 2477 audit_log_end(ab); 2478 } 2479 2480 void __audit_seccomp(unsigned long syscall, long signr, int code) 2481 { 2482 struct audit_buffer *ab; 2483 2484 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2485 if (unlikely(!ab)) 2486 return; 2487 audit_log_task(ab); 2488 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2489 signr, syscall_get_arch(), syscall, is_compat_task(), 2490 KSTK_EIP(current), code); 2491 audit_log_end(ab); 2492 } 2493 2494 struct list_head *audit_killed_trees(void) 2495 { 2496 struct audit_context *ctx = current->audit_context; 2497 if (likely(!ctx || !ctx->in_syscall)) 2498 return NULL; 2499 return &ctx->killed_trees; 2500 } 2501