xref: /openbmc/linux/kernel/auditsc.c (revision fb574682)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 
79 #include "audit.h"
80 
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85 
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92 
93 /* number of audit rules */
94 int audit_n_rules;
95 
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS	16
108 
109 struct audit_aux_data_pids {
110 	struct audit_aux_data	d;
111 	pid_t			target_pid[AUDIT_AUX_PIDS];
112 	kuid_t			target_auid[AUDIT_AUX_PIDS];
113 	kuid_t			target_uid[AUDIT_AUX_PIDS];
114 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
115 	u32			target_sid[AUDIT_AUX_PIDS];
116 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 	int			pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121 	struct audit_aux_data	d;
122 	struct audit_cap_data	fcap;
123 	unsigned int		fcap_ver;
124 	struct audit_cap_data	old_pcap;
125 	struct audit_cap_data	new_pcap;
126 };
127 
128 struct audit_tree_refs {
129 	struct audit_tree_refs *next;
130 	struct audit_chunk *c[31];
131 };
132 
133 struct audit_nfcfgop_tab {
134 	enum audit_nfcfgop	op;
135 	const char		*s;
136 };
137 
138 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
139 	{ AUDIT_XT_OP_REGISTER,		"register"	},
140 	{ AUDIT_XT_OP_REPLACE,		"replace"	},
141 	{ AUDIT_XT_OP_UNREGISTER,	"unregister"	},
142 };
143 
144 static int audit_match_perm(struct audit_context *ctx, int mask)
145 {
146 	unsigned n;
147 	if (unlikely(!ctx))
148 		return 0;
149 	n = ctx->major;
150 
151 	switch (audit_classify_syscall(ctx->arch, n)) {
152 	case 0:	/* native */
153 		if ((mask & AUDIT_PERM_WRITE) &&
154 		     audit_match_class(AUDIT_CLASS_WRITE, n))
155 			return 1;
156 		if ((mask & AUDIT_PERM_READ) &&
157 		     audit_match_class(AUDIT_CLASS_READ, n))
158 			return 1;
159 		if ((mask & AUDIT_PERM_ATTR) &&
160 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
161 			return 1;
162 		return 0;
163 	case 1: /* 32bit on biarch */
164 		if ((mask & AUDIT_PERM_WRITE) &&
165 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
166 			return 1;
167 		if ((mask & AUDIT_PERM_READ) &&
168 		     audit_match_class(AUDIT_CLASS_READ_32, n))
169 			return 1;
170 		if ((mask & AUDIT_PERM_ATTR) &&
171 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
172 			return 1;
173 		return 0;
174 	case 2: /* open */
175 		return mask & ACC_MODE(ctx->argv[1]);
176 	case 3: /* openat */
177 		return mask & ACC_MODE(ctx->argv[2]);
178 	case 4: /* socketcall */
179 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
180 	case 5: /* execve */
181 		return mask & AUDIT_PERM_EXEC;
182 	default:
183 		return 0;
184 	}
185 }
186 
187 static int audit_match_filetype(struct audit_context *ctx, int val)
188 {
189 	struct audit_names *n;
190 	umode_t mode = (umode_t)val;
191 
192 	if (unlikely(!ctx))
193 		return 0;
194 
195 	list_for_each_entry(n, &ctx->names_list, list) {
196 		if ((n->ino != AUDIT_INO_UNSET) &&
197 		    ((n->mode & S_IFMT) == mode))
198 			return 1;
199 	}
200 
201 	return 0;
202 }
203 
204 /*
205  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
206  * ->first_trees points to its beginning, ->trees - to the current end of data.
207  * ->tree_count is the number of free entries in array pointed to by ->trees.
208  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
209  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
210  * it's going to remain 1-element for almost any setup) until we free context itself.
211  * References in it _are_ dropped - at the same time we free/drop aux stuff.
212  */
213 
214 static void audit_set_auditable(struct audit_context *ctx)
215 {
216 	if (!ctx->prio) {
217 		ctx->prio = 1;
218 		ctx->current_state = AUDIT_RECORD_CONTEXT;
219 	}
220 }
221 
222 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
223 {
224 	struct audit_tree_refs *p = ctx->trees;
225 	int left = ctx->tree_count;
226 	if (likely(left)) {
227 		p->c[--left] = chunk;
228 		ctx->tree_count = left;
229 		return 1;
230 	}
231 	if (!p)
232 		return 0;
233 	p = p->next;
234 	if (p) {
235 		p->c[30] = chunk;
236 		ctx->trees = p;
237 		ctx->tree_count = 30;
238 		return 1;
239 	}
240 	return 0;
241 }
242 
243 static int grow_tree_refs(struct audit_context *ctx)
244 {
245 	struct audit_tree_refs *p = ctx->trees;
246 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
247 	if (!ctx->trees) {
248 		ctx->trees = p;
249 		return 0;
250 	}
251 	if (p)
252 		p->next = ctx->trees;
253 	else
254 		ctx->first_trees = ctx->trees;
255 	ctx->tree_count = 31;
256 	return 1;
257 }
258 
259 static void unroll_tree_refs(struct audit_context *ctx,
260 		      struct audit_tree_refs *p, int count)
261 {
262 	struct audit_tree_refs *q;
263 	int n;
264 	if (!p) {
265 		/* we started with empty chain */
266 		p = ctx->first_trees;
267 		count = 31;
268 		/* if the very first allocation has failed, nothing to do */
269 		if (!p)
270 			return;
271 	}
272 	n = count;
273 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
274 		while (n--) {
275 			audit_put_chunk(q->c[n]);
276 			q->c[n] = NULL;
277 		}
278 	}
279 	while (n-- > ctx->tree_count) {
280 		audit_put_chunk(q->c[n]);
281 		q->c[n] = NULL;
282 	}
283 	ctx->trees = p;
284 	ctx->tree_count = count;
285 }
286 
287 static void free_tree_refs(struct audit_context *ctx)
288 {
289 	struct audit_tree_refs *p, *q;
290 	for (p = ctx->first_trees; p; p = q) {
291 		q = p->next;
292 		kfree(p);
293 	}
294 }
295 
296 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
297 {
298 	struct audit_tree_refs *p;
299 	int n;
300 	if (!tree)
301 		return 0;
302 	/* full ones */
303 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
304 		for (n = 0; n < 31; n++)
305 			if (audit_tree_match(p->c[n], tree))
306 				return 1;
307 	}
308 	/* partial */
309 	if (p) {
310 		for (n = ctx->tree_count; n < 31; n++)
311 			if (audit_tree_match(p->c[n], tree))
312 				return 1;
313 	}
314 	return 0;
315 }
316 
317 static int audit_compare_uid(kuid_t uid,
318 			     struct audit_names *name,
319 			     struct audit_field *f,
320 			     struct audit_context *ctx)
321 {
322 	struct audit_names *n;
323 	int rc;
324 
325 	if (name) {
326 		rc = audit_uid_comparator(uid, f->op, name->uid);
327 		if (rc)
328 			return rc;
329 	}
330 
331 	if (ctx) {
332 		list_for_each_entry(n, &ctx->names_list, list) {
333 			rc = audit_uid_comparator(uid, f->op, n->uid);
334 			if (rc)
335 				return rc;
336 		}
337 	}
338 	return 0;
339 }
340 
341 static int audit_compare_gid(kgid_t gid,
342 			     struct audit_names *name,
343 			     struct audit_field *f,
344 			     struct audit_context *ctx)
345 {
346 	struct audit_names *n;
347 	int rc;
348 
349 	if (name) {
350 		rc = audit_gid_comparator(gid, f->op, name->gid);
351 		if (rc)
352 			return rc;
353 	}
354 
355 	if (ctx) {
356 		list_for_each_entry(n, &ctx->names_list, list) {
357 			rc = audit_gid_comparator(gid, f->op, n->gid);
358 			if (rc)
359 				return rc;
360 		}
361 	}
362 	return 0;
363 }
364 
365 static int audit_field_compare(struct task_struct *tsk,
366 			       const struct cred *cred,
367 			       struct audit_field *f,
368 			       struct audit_context *ctx,
369 			       struct audit_names *name)
370 {
371 	switch (f->val) {
372 	/* process to file object comparisons */
373 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
374 		return audit_compare_uid(cred->uid, name, f, ctx);
375 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
376 		return audit_compare_gid(cred->gid, name, f, ctx);
377 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
378 		return audit_compare_uid(cred->euid, name, f, ctx);
379 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
380 		return audit_compare_gid(cred->egid, name, f, ctx);
381 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
382 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
383 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
384 		return audit_compare_uid(cred->suid, name, f, ctx);
385 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
386 		return audit_compare_gid(cred->sgid, name, f, ctx);
387 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
388 		return audit_compare_uid(cred->fsuid, name, f, ctx);
389 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
390 		return audit_compare_gid(cred->fsgid, name, f, ctx);
391 	/* uid comparisons */
392 	case AUDIT_COMPARE_UID_TO_AUID:
393 		return audit_uid_comparator(cred->uid, f->op,
394 					    audit_get_loginuid(tsk));
395 	case AUDIT_COMPARE_UID_TO_EUID:
396 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
397 	case AUDIT_COMPARE_UID_TO_SUID:
398 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
399 	case AUDIT_COMPARE_UID_TO_FSUID:
400 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
401 	/* auid comparisons */
402 	case AUDIT_COMPARE_AUID_TO_EUID:
403 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
404 					    cred->euid);
405 	case AUDIT_COMPARE_AUID_TO_SUID:
406 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
407 					    cred->suid);
408 	case AUDIT_COMPARE_AUID_TO_FSUID:
409 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
410 					    cred->fsuid);
411 	/* euid comparisons */
412 	case AUDIT_COMPARE_EUID_TO_SUID:
413 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
414 	case AUDIT_COMPARE_EUID_TO_FSUID:
415 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
416 	/* suid comparisons */
417 	case AUDIT_COMPARE_SUID_TO_FSUID:
418 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
419 	/* gid comparisons */
420 	case AUDIT_COMPARE_GID_TO_EGID:
421 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
422 	case AUDIT_COMPARE_GID_TO_SGID:
423 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
424 	case AUDIT_COMPARE_GID_TO_FSGID:
425 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
426 	/* egid comparisons */
427 	case AUDIT_COMPARE_EGID_TO_SGID:
428 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
429 	case AUDIT_COMPARE_EGID_TO_FSGID:
430 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
431 	/* sgid comparison */
432 	case AUDIT_COMPARE_SGID_TO_FSGID:
433 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
434 	default:
435 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
436 		return 0;
437 	}
438 	return 0;
439 }
440 
441 /* Determine if any context name data matches a rule's watch data */
442 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
443  * otherwise.
444  *
445  * If task_creation is true, this is an explicit indication that we are
446  * filtering a task rule at task creation time.  This and tsk == current are
447  * the only situations where tsk->cred may be accessed without an rcu read lock.
448  */
449 static int audit_filter_rules(struct task_struct *tsk,
450 			      struct audit_krule *rule,
451 			      struct audit_context *ctx,
452 			      struct audit_names *name,
453 			      enum audit_state *state,
454 			      bool task_creation)
455 {
456 	const struct cred *cred;
457 	int i, need_sid = 1;
458 	u32 sid;
459 	unsigned int sessionid;
460 
461 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
462 
463 	for (i = 0; i < rule->field_count; i++) {
464 		struct audit_field *f = &rule->fields[i];
465 		struct audit_names *n;
466 		int result = 0;
467 		pid_t pid;
468 
469 		switch (f->type) {
470 		case AUDIT_PID:
471 			pid = task_tgid_nr(tsk);
472 			result = audit_comparator(pid, f->op, f->val);
473 			break;
474 		case AUDIT_PPID:
475 			if (ctx) {
476 				if (!ctx->ppid)
477 					ctx->ppid = task_ppid_nr(tsk);
478 				result = audit_comparator(ctx->ppid, f->op, f->val);
479 			}
480 			break;
481 		case AUDIT_EXE:
482 			result = audit_exe_compare(tsk, rule->exe);
483 			if (f->op == Audit_not_equal)
484 				result = !result;
485 			break;
486 		case AUDIT_UID:
487 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
488 			break;
489 		case AUDIT_EUID:
490 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
491 			break;
492 		case AUDIT_SUID:
493 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
494 			break;
495 		case AUDIT_FSUID:
496 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
497 			break;
498 		case AUDIT_GID:
499 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
500 			if (f->op == Audit_equal) {
501 				if (!result)
502 					result = groups_search(cred->group_info, f->gid);
503 			} else if (f->op == Audit_not_equal) {
504 				if (result)
505 					result = !groups_search(cred->group_info, f->gid);
506 			}
507 			break;
508 		case AUDIT_EGID:
509 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
510 			if (f->op == Audit_equal) {
511 				if (!result)
512 					result = groups_search(cred->group_info, f->gid);
513 			} else if (f->op == Audit_not_equal) {
514 				if (result)
515 					result = !groups_search(cred->group_info, f->gid);
516 			}
517 			break;
518 		case AUDIT_SGID:
519 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
520 			break;
521 		case AUDIT_FSGID:
522 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
523 			break;
524 		case AUDIT_SESSIONID:
525 			sessionid = audit_get_sessionid(tsk);
526 			result = audit_comparator(sessionid, f->op, f->val);
527 			break;
528 		case AUDIT_PERS:
529 			result = audit_comparator(tsk->personality, f->op, f->val);
530 			break;
531 		case AUDIT_ARCH:
532 			if (ctx)
533 				result = audit_comparator(ctx->arch, f->op, f->val);
534 			break;
535 
536 		case AUDIT_EXIT:
537 			if (ctx && ctx->return_valid)
538 				result = audit_comparator(ctx->return_code, f->op, f->val);
539 			break;
540 		case AUDIT_SUCCESS:
541 			if (ctx && ctx->return_valid) {
542 				if (f->val)
543 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
544 				else
545 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
546 			}
547 			break;
548 		case AUDIT_DEVMAJOR:
549 			if (name) {
550 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
551 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
552 					++result;
553 			} else if (ctx) {
554 				list_for_each_entry(n, &ctx->names_list, list) {
555 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
556 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
557 						++result;
558 						break;
559 					}
560 				}
561 			}
562 			break;
563 		case AUDIT_DEVMINOR:
564 			if (name) {
565 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
566 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
567 					++result;
568 			} else if (ctx) {
569 				list_for_each_entry(n, &ctx->names_list, list) {
570 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
571 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
572 						++result;
573 						break;
574 					}
575 				}
576 			}
577 			break;
578 		case AUDIT_INODE:
579 			if (name)
580 				result = audit_comparator(name->ino, f->op, f->val);
581 			else if (ctx) {
582 				list_for_each_entry(n, &ctx->names_list, list) {
583 					if (audit_comparator(n->ino, f->op, f->val)) {
584 						++result;
585 						break;
586 					}
587 				}
588 			}
589 			break;
590 		case AUDIT_OBJ_UID:
591 			if (name) {
592 				result = audit_uid_comparator(name->uid, f->op, f->uid);
593 			} else if (ctx) {
594 				list_for_each_entry(n, &ctx->names_list, list) {
595 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
596 						++result;
597 						break;
598 					}
599 				}
600 			}
601 			break;
602 		case AUDIT_OBJ_GID:
603 			if (name) {
604 				result = audit_gid_comparator(name->gid, f->op, f->gid);
605 			} else if (ctx) {
606 				list_for_each_entry(n, &ctx->names_list, list) {
607 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
608 						++result;
609 						break;
610 					}
611 				}
612 			}
613 			break;
614 		case AUDIT_WATCH:
615 			if (name) {
616 				result = audit_watch_compare(rule->watch,
617 							     name->ino,
618 							     name->dev);
619 				if (f->op == Audit_not_equal)
620 					result = !result;
621 			}
622 			break;
623 		case AUDIT_DIR:
624 			if (ctx) {
625 				result = match_tree_refs(ctx, rule->tree);
626 				if (f->op == Audit_not_equal)
627 					result = !result;
628 			}
629 			break;
630 		case AUDIT_LOGINUID:
631 			result = audit_uid_comparator(audit_get_loginuid(tsk),
632 						      f->op, f->uid);
633 			break;
634 		case AUDIT_LOGINUID_SET:
635 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
636 			break;
637 		case AUDIT_SADDR_FAM:
638 			if (ctx->sockaddr)
639 				result = audit_comparator(ctx->sockaddr->ss_family,
640 							  f->op, f->val);
641 			break;
642 		case AUDIT_SUBJ_USER:
643 		case AUDIT_SUBJ_ROLE:
644 		case AUDIT_SUBJ_TYPE:
645 		case AUDIT_SUBJ_SEN:
646 		case AUDIT_SUBJ_CLR:
647 			/* NOTE: this may return negative values indicating
648 			   a temporary error.  We simply treat this as a
649 			   match for now to avoid losing information that
650 			   may be wanted.   An error message will also be
651 			   logged upon error */
652 			if (f->lsm_rule) {
653 				if (need_sid) {
654 					security_task_getsecid(tsk, &sid);
655 					need_sid = 0;
656 				}
657 				result = security_audit_rule_match(sid, f->type,
658 								   f->op,
659 								   f->lsm_rule);
660 			}
661 			break;
662 		case AUDIT_OBJ_USER:
663 		case AUDIT_OBJ_ROLE:
664 		case AUDIT_OBJ_TYPE:
665 		case AUDIT_OBJ_LEV_LOW:
666 		case AUDIT_OBJ_LEV_HIGH:
667 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
668 			   also applies here */
669 			if (f->lsm_rule) {
670 				/* Find files that match */
671 				if (name) {
672 					result = security_audit_rule_match(
673 								name->osid,
674 								f->type,
675 								f->op,
676 								f->lsm_rule);
677 				} else if (ctx) {
678 					list_for_each_entry(n, &ctx->names_list, list) {
679 						if (security_audit_rule_match(
680 								n->osid,
681 								f->type,
682 								f->op,
683 								f->lsm_rule)) {
684 							++result;
685 							break;
686 						}
687 					}
688 				}
689 				/* Find ipc objects that match */
690 				if (!ctx || ctx->type != AUDIT_IPC)
691 					break;
692 				if (security_audit_rule_match(ctx->ipc.osid,
693 							      f->type, f->op,
694 							      f->lsm_rule))
695 					++result;
696 			}
697 			break;
698 		case AUDIT_ARG0:
699 		case AUDIT_ARG1:
700 		case AUDIT_ARG2:
701 		case AUDIT_ARG3:
702 			if (ctx)
703 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
704 			break;
705 		case AUDIT_FILTERKEY:
706 			/* ignore this field for filtering */
707 			result = 1;
708 			break;
709 		case AUDIT_PERM:
710 			result = audit_match_perm(ctx, f->val);
711 			if (f->op == Audit_not_equal)
712 				result = !result;
713 			break;
714 		case AUDIT_FILETYPE:
715 			result = audit_match_filetype(ctx, f->val);
716 			if (f->op == Audit_not_equal)
717 				result = !result;
718 			break;
719 		case AUDIT_FIELD_COMPARE:
720 			result = audit_field_compare(tsk, cred, f, ctx, name);
721 			break;
722 		}
723 		if (!result)
724 			return 0;
725 	}
726 
727 	if (ctx) {
728 		if (rule->prio <= ctx->prio)
729 			return 0;
730 		if (rule->filterkey) {
731 			kfree(ctx->filterkey);
732 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
733 		}
734 		ctx->prio = rule->prio;
735 	}
736 	switch (rule->action) {
737 	case AUDIT_NEVER:
738 		*state = AUDIT_DISABLED;
739 		break;
740 	case AUDIT_ALWAYS:
741 		*state = AUDIT_RECORD_CONTEXT;
742 		break;
743 	}
744 	return 1;
745 }
746 
747 /* At process creation time, we can determine if system-call auditing is
748  * completely disabled for this task.  Since we only have the task
749  * structure at this point, we can only check uid and gid.
750  */
751 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
752 {
753 	struct audit_entry *e;
754 	enum audit_state   state;
755 
756 	rcu_read_lock();
757 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
758 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
759 				       &state, true)) {
760 			if (state == AUDIT_RECORD_CONTEXT)
761 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
762 			rcu_read_unlock();
763 			return state;
764 		}
765 	}
766 	rcu_read_unlock();
767 	return AUDIT_BUILD_CONTEXT;
768 }
769 
770 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
771 {
772 	int word, bit;
773 
774 	if (val > 0xffffffff)
775 		return false;
776 
777 	word = AUDIT_WORD(val);
778 	if (word >= AUDIT_BITMASK_SIZE)
779 		return false;
780 
781 	bit = AUDIT_BIT(val);
782 
783 	return rule->mask[word] & bit;
784 }
785 
786 /* At syscall entry and exit time, this filter is called if the
787  * audit_state is not low enough that auditing cannot take place, but is
788  * also not high enough that we already know we have to write an audit
789  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
790  */
791 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
792 					     struct audit_context *ctx,
793 					     struct list_head *list)
794 {
795 	struct audit_entry *e;
796 	enum audit_state state;
797 
798 	if (auditd_test_task(tsk))
799 		return AUDIT_DISABLED;
800 
801 	rcu_read_lock();
802 	list_for_each_entry_rcu(e, list, list) {
803 		if (audit_in_mask(&e->rule, ctx->major) &&
804 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
805 				       &state, false)) {
806 			rcu_read_unlock();
807 			ctx->current_state = state;
808 			return state;
809 		}
810 	}
811 	rcu_read_unlock();
812 	return AUDIT_BUILD_CONTEXT;
813 }
814 
815 /*
816  * Given an audit_name check the inode hash table to see if they match.
817  * Called holding the rcu read lock to protect the use of audit_inode_hash
818  */
819 static int audit_filter_inode_name(struct task_struct *tsk,
820 				   struct audit_names *n,
821 				   struct audit_context *ctx) {
822 	int h = audit_hash_ino((u32)n->ino);
823 	struct list_head *list = &audit_inode_hash[h];
824 	struct audit_entry *e;
825 	enum audit_state state;
826 
827 	list_for_each_entry_rcu(e, list, list) {
828 		if (audit_in_mask(&e->rule, ctx->major) &&
829 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
830 			ctx->current_state = state;
831 			return 1;
832 		}
833 	}
834 	return 0;
835 }
836 
837 /* At syscall exit time, this filter is called if any audit_names have been
838  * collected during syscall processing.  We only check rules in sublists at hash
839  * buckets applicable to the inode numbers in audit_names.
840  * Regarding audit_state, same rules apply as for audit_filter_syscall().
841  */
842 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
843 {
844 	struct audit_names *n;
845 
846 	if (auditd_test_task(tsk))
847 		return;
848 
849 	rcu_read_lock();
850 
851 	list_for_each_entry(n, &ctx->names_list, list) {
852 		if (audit_filter_inode_name(tsk, n, ctx))
853 			break;
854 	}
855 	rcu_read_unlock();
856 }
857 
858 static inline void audit_proctitle_free(struct audit_context *context)
859 {
860 	kfree(context->proctitle.value);
861 	context->proctitle.value = NULL;
862 	context->proctitle.len = 0;
863 }
864 
865 static inline void audit_free_module(struct audit_context *context)
866 {
867 	if (context->type == AUDIT_KERN_MODULE) {
868 		kfree(context->module.name);
869 		context->module.name = NULL;
870 	}
871 }
872 static inline void audit_free_names(struct audit_context *context)
873 {
874 	struct audit_names *n, *next;
875 
876 	list_for_each_entry_safe(n, next, &context->names_list, list) {
877 		list_del(&n->list);
878 		if (n->name)
879 			putname(n->name);
880 		if (n->should_free)
881 			kfree(n);
882 	}
883 	context->name_count = 0;
884 	path_put(&context->pwd);
885 	context->pwd.dentry = NULL;
886 	context->pwd.mnt = NULL;
887 }
888 
889 static inline void audit_free_aux(struct audit_context *context)
890 {
891 	struct audit_aux_data *aux;
892 
893 	while ((aux = context->aux)) {
894 		context->aux = aux->next;
895 		kfree(aux);
896 	}
897 	while ((aux = context->aux_pids)) {
898 		context->aux_pids = aux->next;
899 		kfree(aux);
900 	}
901 }
902 
903 static inline struct audit_context *audit_alloc_context(enum audit_state state)
904 {
905 	struct audit_context *context;
906 
907 	context = kzalloc(sizeof(*context), GFP_KERNEL);
908 	if (!context)
909 		return NULL;
910 	context->state = state;
911 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
912 	INIT_LIST_HEAD(&context->killed_trees);
913 	INIT_LIST_HEAD(&context->names_list);
914 	return context;
915 }
916 
917 /**
918  * audit_alloc - allocate an audit context block for a task
919  * @tsk: task
920  *
921  * Filter on the task information and allocate a per-task audit context
922  * if necessary.  Doing so turns on system call auditing for the
923  * specified task.  This is called from copy_process, so no lock is
924  * needed.
925  */
926 int audit_alloc(struct task_struct *tsk)
927 {
928 	struct audit_context *context;
929 	enum audit_state     state;
930 	char *key = NULL;
931 
932 	if (likely(!audit_ever_enabled))
933 		return 0; /* Return if not auditing. */
934 
935 	state = audit_filter_task(tsk, &key);
936 	if (state == AUDIT_DISABLED) {
937 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
938 		return 0;
939 	}
940 
941 	if (!(context = audit_alloc_context(state))) {
942 		kfree(key);
943 		audit_log_lost("out of memory in audit_alloc");
944 		return -ENOMEM;
945 	}
946 	context->filterkey = key;
947 
948 	audit_set_context(tsk, context);
949 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950 	return 0;
951 }
952 
953 static inline void audit_free_context(struct audit_context *context)
954 {
955 	audit_free_module(context);
956 	audit_free_names(context);
957 	unroll_tree_refs(context, NULL, 0);
958 	free_tree_refs(context);
959 	audit_free_aux(context);
960 	kfree(context->filterkey);
961 	kfree(context->sockaddr);
962 	audit_proctitle_free(context);
963 	kfree(context);
964 }
965 
966 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
967 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
968 				 u32 sid, char *comm)
969 {
970 	struct audit_buffer *ab;
971 	char *ctx = NULL;
972 	u32 len;
973 	int rc = 0;
974 
975 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
976 	if (!ab)
977 		return rc;
978 
979 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
980 			 from_kuid(&init_user_ns, auid),
981 			 from_kuid(&init_user_ns, uid), sessionid);
982 	if (sid) {
983 		if (security_secid_to_secctx(sid, &ctx, &len)) {
984 			audit_log_format(ab, " obj=(none)");
985 			rc = 1;
986 		} else {
987 			audit_log_format(ab, " obj=%s", ctx);
988 			security_release_secctx(ctx, len);
989 		}
990 	}
991 	audit_log_format(ab, " ocomm=");
992 	audit_log_untrustedstring(ab, comm);
993 	audit_log_end(ab);
994 
995 	return rc;
996 }
997 
998 static void audit_log_execve_info(struct audit_context *context,
999 				  struct audit_buffer **ab)
1000 {
1001 	long len_max;
1002 	long len_rem;
1003 	long len_full;
1004 	long len_buf;
1005 	long len_abuf = 0;
1006 	long len_tmp;
1007 	bool require_data;
1008 	bool encode;
1009 	unsigned int iter;
1010 	unsigned int arg;
1011 	char *buf_head;
1012 	char *buf;
1013 	const char __user *p = (const char __user *)current->mm->arg_start;
1014 
1015 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1016 	 *       data we put in the audit record for this argument (see the
1017 	 *       code below) ... at this point in time 96 is plenty */
1018 	char abuf[96];
1019 
1020 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1021 	 *       current value of 7500 is not as important as the fact that it
1022 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1023 	 *       room if we go over a little bit in the logging below */
1024 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1025 	len_max = MAX_EXECVE_AUDIT_LEN;
1026 
1027 	/* scratch buffer to hold the userspace args */
1028 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1029 	if (!buf_head) {
1030 		audit_panic("out of memory for argv string");
1031 		return;
1032 	}
1033 	buf = buf_head;
1034 
1035 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1036 
1037 	len_rem = len_max;
1038 	len_buf = 0;
1039 	len_full = 0;
1040 	require_data = true;
1041 	encode = false;
1042 	iter = 0;
1043 	arg = 0;
1044 	do {
1045 		/* NOTE: we don't ever want to trust this value for anything
1046 		 *       serious, but the audit record format insists we
1047 		 *       provide an argument length for really long arguments,
1048 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1049 		 *       to use strncpy_from_user() to obtain this value for
1050 		 *       recording in the log, although we don't use it
1051 		 *       anywhere here to avoid a double-fetch problem */
1052 		if (len_full == 0)
1053 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1054 
1055 		/* read more data from userspace */
1056 		if (require_data) {
1057 			/* can we make more room in the buffer? */
1058 			if (buf != buf_head) {
1059 				memmove(buf_head, buf, len_buf);
1060 				buf = buf_head;
1061 			}
1062 
1063 			/* fetch as much as we can of the argument */
1064 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1065 						    len_max - len_buf);
1066 			if (len_tmp == -EFAULT) {
1067 				/* unable to copy from userspace */
1068 				send_sig(SIGKILL, current, 0);
1069 				goto out;
1070 			} else if (len_tmp == (len_max - len_buf)) {
1071 				/* buffer is not large enough */
1072 				require_data = true;
1073 				/* NOTE: if we are going to span multiple
1074 				 *       buffers force the encoding so we stand
1075 				 *       a chance at a sane len_full value and
1076 				 *       consistent record encoding */
1077 				encode = true;
1078 				len_full = len_full * 2;
1079 				p += len_tmp;
1080 			} else {
1081 				require_data = false;
1082 				if (!encode)
1083 					encode = audit_string_contains_control(
1084 								buf, len_tmp);
1085 				/* try to use a trusted value for len_full */
1086 				if (len_full < len_max)
1087 					len_full = (encode ?
1088 						    len_tmp * 2 : len_tmp);
1089 				p += len_tmp + 1;
1090 			}
1091 			len_buf += len_tmp;
1092 			buf_head[len_buf] = '\0';
1093 
1094 			/* length of the buffer in the audit record? */
1095 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1096 		}
1097 
1098 		/* write as much as we can to the audit log */
1099 		if (len_buf >= 0) {
1100 			/* NOTE: some magic numbers here - basically if we
1101 			 *       can't fit a reasonable amount of data into the
1102 			 *       existing audit buffer, flush it and start with
1103 			 *       a new buffer */
1104 			if ((sizeof(abuf) + 8) > len_rem) {
1105 				len_rem = len_max;
1106 				audit_log_end(*ab);
1107 				*ab = audit_log_start(context,
1108 						      GFP_KERNEL, AUDIT_EXECVE);
1109 				if (!*ab)
1110 					goto out;
1111 			}
1112 
1113 			/* create the non-arg portion of the arg record */
1114 			len_tmp = 0;
1115 			if (require_data || (iter > 0) ||
1116 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1117 				if (iter == 0) {
1118 					len_tmp += snprintf(&abuf[len_tmp],
1119 							sizeof(abuf) - len_tmp,
1120 							" a%d_len=%lu",
1121 							arg, len_full);
1122 				}
1123 				len_tmp += snprintf(&abuf[len_tmp],
1124 						    sizeof(abuf) - len_tmp,
1125 						    " a%d[%d]=", arg, iter++);
1126 			} else
1127 				len_tmp += snprintf(&abuf[len_tmp],
1128 						    sizeof(abuf) - len_tmp,
1129 						    " a%d=", arg);
1130 			WARN_ON(len_tmp >= sizeof(abuf));
1131 			abuf[sizeof(abuf) - 1] = '\0';
1132 
1133 			/* log the arg in the audit record */
1134 			audit_log_format(*ab, "%s", abuf);
1135 			len_rem -= len_tmp;
1136 			len_tmp = len_buf;
1137 			if (encode) {
1138 				if (len_abuf > len_rem)
1139 					len_tmp = len_rem / 2; /* encoding */
1140 				audit_log_n_hex(*ab, buf, len_tmp);
1141 				len_rem -= len_tmp * 2;
1142 				len_abuf -= len_tmp * 2;
1143 			} else {
1144 				if (len_abuf > len_rem)
1145 					len_tmp = len_rem - 2; /* quotes */
1146 				audit_log_n_string(*ab, buf, len_tmp);
1147 				len_rem -= len_tmp + 2;
1148 				/* don't subtract the "2" because we still need
1149 				 * to add quotes to the remaining string */
1150 				len_abuf -= len_tmp;
1151 			}
1152 			len_buf -= len_tmp;
1153 			buf += len_tmp;
1154 		}
1155 
1156 		/* ready to move to the next argument? */
1157 		if ((len_buf == 0) && !require_data) {
1158 			arg++;
1159 			iter = 0;
1160 			len_full = 0;
1161 			require_data = true;
1162 			encode = false;
1163 		}
1164 	} while (arg < context->execve.argc);
1165 
1166 	/* NOTE: the caller handles the final audit_log_end() call */
1167 
1168 out:
1169 	kfree(buf_head);
1170 }
1171 
1172 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1173 			  kernel_cap_t *cap)
1174 {
1175 	int i;
1176 
1177 	if (cap_isclear(*cap)) {
1178 		audit_log_format(ab, " %s=0", prefix);
1179 		return;
1180 	}
1181 	audit_log_format(ab, " %s=", prefix);
1182 	CAP_FOR_EACH_U32(i)
1183 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1184 }
1185 
1186 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1187 {
1188 	if (name->fcap_ver == -1) {
1189 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1190 		return;
1191 	}
1192 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1193 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1194 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1195 			 name->fcap.fE, name->fcap_ver,
1196 			 from_kuid(&init_user_ns, name->fcap.rootid));
1197 }
1198 
1199 static void show_special(struct audit_context *context, int *call_panic)
1200 {
1201 	struct audit_buffer *ab;
1202 	int i;
1203 
1204 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1205 	if (!ab)
1206 		return;
1207 
1208 	switch (context->type) {
1209 	case AUDIT_SOCKETCALL: {
1210 		int nargs = context->socketcall.nargs;
1211 		audit_log_format(ab, "nargs=%d", nargs);
1212 		for (i = 0; i < nargs; i++)
1213 			audit_log_format(ab, " a%d=%lx", i,
1214 				context->socketcall.args[i]);
1215 		break; }
1216 	case AUDIT_IPC: {
1217 		u32 osid = context->ipc.osid;
1218 
1219 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1220 				 from_kuid(&init_user_ns, context->ipc.uid),
1221 				 from_kgid(&init_user_ns, context->ipc.gid),
1222 				 context->ipc.mode);
1223 		if (osid) {
1224 			char *ctx = NULL;
1225 			u32 len;
1226 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1227 				audit_log_format(ab, " osid=%u", osid);
1228 				*call_panic = 1;
1229 			} else {
1230 				audit_log_format(ab, " obj=%s", ctx);
1231 				security_release_secctx(ctx, len);
1232 			}
1233 		}
1234 		if (context->ipc.has_perm) {
1235 			audit_log_end(ab);
1236 			ab = audit_log_start(context, GFP_KERNEL,
1237 					     AUDIT_IPC_SET_PERM);
1238 			if (unlikely(!ab))
1239 				return;
1240 			audit_log_format(ab,
1241 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1242 				context->ipc.qbytes,
1243 				context->ipc.perm_uid,
1244 				context->ipc.perm_gid,
1245 				context->ipc.perm_mode);
1246 		}
1247 		break; }
1248 	case AUDIT_MQ_OPEN:
1249 		audit_log_format(ab,
1250 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1251 			"mq_msgsize=%ld mq_curmsgs=%ld",
1252 			context->mq_open.oflag, context->mq_open.mode,
1253 			context->mq_open.attr.mq_flags,
1254 			context->mq_open.attr.mq_maxmsg,
1255 			context->mq_open.attr.mq_msgsize,
1256 			context->mq_open.attr.mq_curmsgs);
1257 		break;
1258 	case AUDIT_MQ_SENDRECV:
1259 		audit_log_format(ab,
1260 			"mqdes=%d msg_len=%zd msg_prio=%u "
1261 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1262 			context->mq_sendrecv.mqdes,
1263 			context->mq_sendrecv.msg_len,
1264 			context->mq_sendrecv.msg_prio,
1265 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1266 			context->mq_sendrecv.abs_timeout.tv_nsec);
1267 		break;
1268 	case AUDIT_MQ_NOTIFY:
1269 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1270 				context->mq_notify.mqdes,
1271 				context->mq_notify.sigev_signo);
1272 		break;
1273 	case AUDIT_MQ_GETSETATTR: {
1274 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1275 		audit_log_format(ab,
1276 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1277 			"mq_curmsgs=%ld ",
1278 			context->mq_getsetattr.mqdes,
1279 			attr->mq_flags, attr->mq_maxmsg,
1280 			attr->mq_msgsize, attr->mq_curmsgs);
1281 		break; }
1282 	case AUDIT_CAPSET:
1283 		audit_log_format(ab, "pid=%d", context->capset.pid);
1284 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1285 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1286 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1287 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1288 		break;
1289 	case AUDIT_MMAP:
1290 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1291 				 context->mmap.flags);
1292 		break;
1293 	case AUDIT_EXECVE:
1294 		audit_log_execve_info(context, &ab);
1295 		break;
1296 	case AUDIT_KERN_MODULE:
1297 		audit_log_format(ab, "name=");
1298 		if (context->module.name) {
1299 			audit_log_untrustedstring(ab, context->module.name);
1300 		} else
1301 			audit_log_format(ab, "(null)");
1302 
1303 		break;
1304 	}
1305 	audit_log_end(ab);
1306 }
1307 
1308 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1309 {
1310 	char *end = proctitle + len - 1;
1311 	while (end > proctitle && !isprint(*end))
1312 		end--;
1313 
1314 	/* catch the case where proctitle is only 1 non-print character */
1315 	len = end - proctitle + 1;
1316 	len -= isprint(proctitle[len-1]) == 0;
1317 	return len;
1318 }
1319 
1320 /*
1321  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1322  * @context: audit_context for the task
1323  * @n: audit_names structure with reportable details
1324  * @path: optional path to report instead of audit_names->name
1325  * @record_num: record number to report when handling a list of names
1326  * @call_panic: optional pointer to int that will be updated if secid fails
1327  */
1328 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1329 		    const struct path *path, int record_num, int *call_panic)
1330 {
1331 	struct audit_buffer *ab;
1332 
1333 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1334 	if (!ab)
1335 		return;
1336 
1337 	audit_log_format(ab, "item=%d", record_num);
1338 
1339 	if (path)
1340 		audit_log_d_path(ab, " name=", path);
1341 	else if (n->name) {
1342 		switch (n->name_len) {
1343 		case AUDIT_NAME_FULL:
1344 			/* log the full path */
1345 			audit_log_format(ab, " name=");
1346 			audit_log_untrustedstring(ab, n->name->name);
1347 			break;
1348 		case 0:
1349 			/* name was specified as a relative path and the
1350 			 * directory component is the cwd
1351 			 */
1352 			audit_log_d_path(ab, " name=", &context->pwd);
1353 			break;
1354 		default:
1355 			/* log the name's directory component */
1356 			audit_log_format(ab, " name=");
1357 			audit_log_n_untrustedstring(ab, n->name->name,
1358 						    n->name_len);
1359 		}
1360 	} else
1361 		audit_log_format(ab, " name=(null)");
1362 
1363 	if (n->ino != AUDIT_INO_UNSET)
1364 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1365 				 n->ino,
1366 				 MAJOR(n->dev),
1367 				 MINOR(n->dev),
1368 				 n->mode,
1369 				 from_kuid(&init_user_ns, n->uid),
1370 				 from_kgid(&init_user_ns, n->gid),
1371 				 MAJOR(n->rdev),
1372 				 MINOR(n->rdev));
1373 	if (n->osid != 0) {
1374 		char *ctx = NULL;
1375 		u32 len;
1376 
1377 		if (security_secid_to_secctx(
1378 			n->osid, &ctx, &len)) {
1379 			audit_log_format(ab, " osid=%u", n->osid);
1380 			if (call_panic)
1381 				*call_panic = 2;
1382 		} else {
1383 			audit_log_format(ab, " obj=%s", ctx);
1384 			security_release_secctx(ctx, len);
1385 		}
1386 	}
1387 
1388 	/* log the audit_names record type */
1389 	switch (n->type) {
1390 	case AUDIT_TYPE_NORMAL:
1391 		audit_log_format(ab, " nametype=NORMAL");
1392 		break;
1393 	case AUDIT_TYPE_PARENT:
1394 		audit_log_format(ab, " nametype=PARENT");
1395 		break;
1396 	case AUDIT_TYPE_CHILD_DELETE:
1397 		audit_log_format(ab, " nametype=DELETE");
1398 		break;
1399 	case AUDIT_TYPE_CHILD_CREATE:
1400 		audit_log_format(ab, " nametype=CREATE");
1401 		break;
1402 	default:
1403 		audit_log_format(ab, " nametype=UNKNOWN");
1404 		break;
1405 	}
1406 
1407 	audit_log_fcaps(ab, n);
1408 	audit_log_end(ab);
1409 }
1410 
1411 static void audit_log_proctitle(void)
1412 {
1413 	int res;
1414 	char *buf;
1415 	char *msg = "(null)";
1416 	int len = strlen(msg);
1417 	struct audit_context *context = audit_context();
1418 	struct audit_buffer *ab;
1419 
1420 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1421 	if (!ab)
1422 		return;	/* audit_panic or being filtered */
1423 
1424 	audit_log_format(ab, "proctitle=");
1425 
1426 	/* Not  cached */
1427 	if (!context->proctitle.value) {
1428 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1429 		if (!buf)
1430 			goto out;
1431 		/* Historically called this from procfs naming */
1432 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1433 		if (res == 0) {
1434 			kfree(buf);
1435 			goto out;
1436 		}
1437 		res = audit_proctitle_rtrim(buf, res);
1438 		if (res == 0) {
1439 			kfree(buf);
1440 			goto out;
1441 		}
1442 		context->proctitle.value = buf;
1443 		context->proctitle.len = res;
1444 	}
1445 	msg = context->proctitle.value;
1446 	len = context->proctitle.len;
1447 out:
1448 	audit_log_n_untrustedstring(ab, msg, len);
1449 	audit_log_end(ab);
1450 }
1451 
1452 static void audit_log_exit(void)
1453 {
1454 	int i, call_panic = 0;
1455 	struct audit_context *context = audit_context();
1456 	struct audit_buffer *ab;
1457 	struct audit_aux_data *aux;
1458 	struct audit_names *n;
1459 
1460 	context->personality = current->personality;
1461 
1462 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1463 	if (!ab)
1464 		return;		/* audit_panic has been called */
1465 	audit_log_format(ab, "arch=%x syscall=%d",
1466 			 context->arch, context->major);
1467 	if (context->personality != PER_LINUX)
1468 		audit_log_format(ab, " per=%lx", context->personality);
1469 	if (context->return_valid)
1470 		audit_log_format(ab, " success=%s exit=%ld",
1471 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1472 				 context->return_code);
1473 
1474 	audit_log_format(ab,
1475 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1476 			 context->argv[0],
1477 			 context->argv[1],
1478 			 context->argv[2],
1479 			 context->argv[3],
1480 			 context->name_count);
1481 
1482 	audit_log_task_info(ab);
1483 	audit_log_key(ab, context->filterkey);
1484 	audit_log_end(ab);
1485 
1486 	for (aux = context->aux; aux; aux = aux->next) {
1487 
1488 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1489 		if (!ab)
1490 			continue; /* audit_panic has been called */
1491 
1492 		switch (aux->type) {
1493 
1494 		case AUDIT_BPRM_FCAPS: {
1495 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1496 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1497 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1498 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1499 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1500 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1501 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1502 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1503 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1504 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1505 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1506 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1507 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1508 			audit_log_format(ab, " frootid=%d",
1509 					 from_kuid(&init_user_ns,
1510 						   axs->fcap.rootid));
1511 			break; }
1512 
1513 		}
1514 		audit_log_end(ab);
1515 	}
1516 
1517 	if (context->type)
1518 		show_special(context, &call_panic);
1519 
1520 	if (context->fds[0] >= 0) {
1521 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1522 		if (ab) {
1523 			audit_log_format(ab, "fd0=%d fd1=%d",
1524 					context->fds[0], context->fds[1]);
1525 			audit_log_end(ab);
1526 		}
1527 	}
1528 
1529 	if (context->sockaddr_len) {
1530 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1531 		if (ab) {
1532 			audit_log_format(ab, "saddr=");
1533 			audit_log_n_hex(ab, (void *)context->sockaddr,
1534 					context->sockaddr_len);
1535 			audit_log_end(ab);
1536 		}
1537 	}
1538 
1539 	for (aux = context->aux_pids; aux; aux = aux->next) {
1540 		struct audit_aux_data_pids *axs = (void *)aux;
1541 
1542 		for (i = 0; i < axs->pid_count; i++)
1543 			if (audit_log_pid_context(context, axs->target_pid[i],
1544 						  axs->target_auid[i],
1545 						  axs->target_uid[i],
1546 						  axs->target_sessionid[i],
1547 						  axs->target_sid[i],
1548 						  axs->target_comm[i]))
1549 				call_panic = 1;
1550 	}
1551 
1552 	if (context->target_pid &&
1553 	    audit_log_pid_context(context, context->target_pid,
1554 				  context->target_auid, context->target_uid,
1555 				  context->target_sessionid,
1556 				  context->target_sid, context->target_comm))
1557 			call_panic = 1;
1558 
1559 	if (context->pwd.dentry && context->pwd.mnt) {
1560 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1561 		if (ab) {
1562 			audit_log_d_path(ab, "cwd=", &context->pwd);
1563 			audit_log_end(ab);
1564 		}
1565 	}
1566 
1567 	i = 0;
1568 	list_for_each_entry(n, &context->names_list, list) {
1569 		if (n->hidden)
1570 			continue;
1571 		audit_log_name(context, n, NULL, i++, &call_panic);
1572 	}
1573 
1574 	audit_log_proctitle();
1575 
1576 	/* Send end of event record to help user space know we are finished */
1577 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1578 	if (ab)
1579 		audit_log_end(ab);
1580 	if (call_panic)
1581 		audit_panic("error converting sid to string");
1582 }
1583 
1584 /**
1585  * __audit_free - free a per-task audit context
1586  * @tsk: task whose audit context block to free
1587  *
1588  * Called from copy_process and do_exit
1589  */
1590 void __audit_free(struct task_struct *tsk)
1591 {
1592 	struct audit_context *context = tsk->audit_context;
1593 
1594 	if (!context)
1595 		return;
1596 
1597 	if (!list_empty(&context->killed_trees))
1598 		audit_kill_trees(context);
1599 
1600 	/* We are called either by do_exit() or the fork() error handling code;
1601 	 * in the former case tsk == current and in the latter tsk is a
1602 	 * random task_struct that doesn't doesn't have any meaningful data we
1603 	 * need to log via audit_log_exit().
1604 	 */
1605 	if (tsk == current && !context->dummy && context->in_syscall) {
1606 		context->return_valid = 0;
1607 		context->return_code = 0;
1608 
1609 		audit_filter_syscall(tsk, context,
1610 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1611 		audit_filter_inodes(tsk, context);
1612 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1613 			audit_log_exit();
1614 	}
1615 
1616 	audit_set_context(tsk, NULL);
1617 	audit_free_context(context);
1618 }
1619 
1620 /**
1621  * __audit_syscall_entry - fill in an audit record at syscall entry
1622  * @major: major syscall type (function)
1623  * @a1: additional syscall register 1
1624  * @a2: additional syscall register 2
1625  * @a3: additional syscall register 3
1626  * @a4: additional syscall register 4
1627  *
1628  * Fill in audit context at syscall entry.  This only happens if the
1629  * audit context was created when the task was created and the state or
1630  * filters demand the audit context be built.  If the state from the
1631  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1632  * then the record will be written at syscall exit time (otherwise, it
1633  * will only be written if another part of the kernel requests that it
1634  * be written).
1635  */
1636 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1637 			   unsigned long a3, unsigned long a4)
1638 {
1639 	struct audit_context *context = audit_context();
1640 	enum audit_state     state;
1641 
1642 	if (!audit_enabled || !context)
1643 		return;
1644 
1645 	BUG_ON(context->in_syscall || context->name_count);
1646 
1647 	state = context->state;
1648 	if (state == AUDIT_DISABLED)
1649 		return;
1650 
1651 	context->dummy = !audit_n_rules;
1652 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1653 		context->prio = 0;
1654 		if (auditd_test_task(current))
1655 			return;
1656 	}
1657 
1658 	context->arch	    = syscall_get_arch(current);
1659 	context->major      = major;
1660 	context->argv[0]    = a1;
1661 	context->argv[1]    = a2;
1662 	context->argv[2]    = a3;
1663 	context->argv[3]    = a4;
1664 	context->serial     = 0;
1665 	context->in_syscall = 1;
1666 	context->current_state  = state;
1667 	context->ppid       = 0;
1668 	ktime_get_coarse_real_ts64(&context->ctime);
1669 }
1670 
1671 /**
1672  * __audit_syscall_exit - deallocate audit context after a system call
1673  * @success: success value of the syscall
1674  * @return_code: return value of the syscall
1675  *
1676  * Tear down after system call.  If the audit context has been marked as
1677  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1678  * filtering, or because some other part of the kernel wrote an audit
1679  * message), then write out the syscall information.  In call cases,
1680  * free the names stored from getname().
1681  */
1682 void __audit_syscall_exit(int success, long return_code)
1683 {
1684 	struct audit_context *context;
1685 
1686 	context = audit_context();
1687 	if (!context)
1688 		return;
1689 
1690 	if (!list_empty(&context->killed_trees))
1691 		audit_kill_trees(context);
1692 
1693 	if (!context->dummy && context->in_syscall) {
1694 		if (success)
1695 			context->return_valid = AUDITSC_SUCCESS;
1696 		else
1697 			context->return_valid = AUDITSC_FAILURE;
1698 
1699 		/*
1700 		 * we need to fix up the return code in the audit logs if the
1701 		 * actual return codes are later going to be fixed up by the
1702 		 * arch specific signal handlers
1703 		 *
1704 		 * This is actually a test for:
1705 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1706 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1707 		 *
1708 		 * but is faster than a bunch of ||
1709 		 */
1710 		if (unlikely(return_code <= -ERESTARTSYS) &&
1711 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1712 		    (return_code != -ENOIOCTLCMD))
1713 			context->return_code = -EINTR;
1714 		else
1715 			context->return_code  = return_code;
1716 
1717 		audit_filter_syscall(current, context,
1718 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1719 		audit_filter_inodes(current, context);
1720 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1721 			audit_log_exit();
1722 	}
1723 
1724 	context->in_syscall = 0;
1725 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1726 
1727 	audit_free_module(context);
1728 	audit_free_names(context);
1729 	unroll_tree_refs(context, NULL, 0);
1730 	audit_free_aux(context);
1731 	context->aux = NULL;
1732 	context->aux_pids = NULL;
1733 	context->target_pid = 0;
1734 	context->target_sid = 0;
1735 	context->sockaddr_len = 0;
1736 	context->type = 0;
1737 	context->fds[0] = -1;
1738 	if (context->state != AUDIT_RECORD_CONTEXT) {
1739 		kfree(context->filterkey);
1740 		context->filterkey = NULL;
1741 	}
1742 }
1743 
1744 static inline void handle_one(const struct inode *inode)
1745 {
1746 	struct audit_context *context;
1747 	struct audit_tree_refs *p;
1748 	struct audit_chunk *chunk;
1749 	int count;
1750 	if (likely(!inode->i_fsnotify_marks))
1751 		return;
1752 	context = audit_context();
1753 	p = context->trees;
1754 	count = context->tree_count;
1755 	rcu_read_lock();
1756 	chunk = audit_tree_lookup(inode);
1757 	rcu_read_unlock();
1758 	if (!chunk)
1759 		return;
1760 	if (likely(put_tree_ref(context, chunk)))
1761 		return;
1762 	if (unlikely(!grow_tree_refs(context))) {
1763 		pr_warn("out of memory, audit has lost a tree reference\n");
1764 		audit_set_auditable(context);
1765 		audit_put_chunk(chunk);
1766 		unroll_tree_refs(context, p, count);
1767 		return;
1768 	}
1769 	put_tree_ref(context, chunk);
1770 }
1771 
1772 static void handle_path(const struct dentry *dentry)
1773 {
1774 	struct audit_context *context;
1775 	struct audit_tree_refs *p;
1776 	const struct dentry *d, *parent;
1777 	struct audit_chunk *drop;
1778 	unsigned long seq;
1779 	int count;
1780 
1781 	context = audit_context();
1782 	p = context->trees;
1783 	count = context->tree_count;
1784 retry:
1785 	drop = NULL;
1786 	d = dentry;
1787 	rcu_read_lock();
1788 	seq = read_seqbegin(&rename_lock);
1789 	for(;;) {
1790 		struct inode *inode = d_backing_inode(d);
1791 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1792 			struct audit_chunk *chunk;
1793 			chunk = audit_tree_lookup(inode);
1794 			if (chunk) {
1795 				if (unlikely(!put_tree_ref(context, chunk))) {
1796 					drop = chunk;
1797 					break;
1798 				}
1799 			}
1800 		}
1801 		parent = d->d_parent;
1802 		if (parent == d)
1803 			break;
1804 		d = parent;
1805 	}
1806 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1807 		rcu_read_unlock();
1808 		if (!drop) {
1809 			/* just a race with rename */
1810 			unroll_tree_refs(context, p, count);
1811 			goto retry;
1812 		}
1813 		audit_put_chunk(drop);
1814 		if (grow_tree_refs(context)) {
1815 			/* OK, got more space */
1816 			unroll_tree_refs(context, p, count);
1817 			goto retry;
1818 		}
1819 		/* too bad */
1820 		pr_warn("out of memory, audit has lost a tree reference\n");
1821 		unroll_tree_refs(context, p, count);
1822 		audit_set_auditable(context);
1823 		return;
1824 	}
1825 	rcu_read_unlock();
1826 }
1827 
1828 static struct audit_names *audit_alloc_name(struct audit_context *context,
1829 						unsigned char type)
1830 {
1831 	struct audit_names *aname;
1832 
1833 	if (context->name_count < AUDIT_NAMES) {
1834 		aname = &context->preallocated_names[context->name_count];
1835 		memset(aname, 0, sizeof(*aname));
1836 	} else {
1837 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1838 		if (!aname)
1839 			return NULL;
1840 		aname->should_free = true;
1841 	}
1842 
1843 	aname->ino = AUDIT_INO_UNSET;
1844 	aname->type = type;
1845 	list_add_tail(&aname->list, &context->names_list);
1846 
1847 	context->name_count++;
1848 	return aname;
1849 }
1850 
1851 /**
1852  * __audit_reusename - fill out filename with info from existing entry
1853  * @uptr: userland ptr to pathname
1854  *
1855  * Search the audit_names list for the current audit context. If there is an
1856  * existing entry with a matching "uptr" then return the filename
1857  * associated with that audit_name. If not, return NULL.
1858  */
1859 struct filename *
1860 __audit_reusename(const __user char *uptr)
1861 {
1862 	struct audit_context *context = audit_context();
1863 	struct audit_names *n;
1864 
1865 	list_for_each_entry(n, &context->names_list, list) {
1866 		if (!n->name)
1867 			continue;
1868 		if (n->name->uptr == uptr) {
1869 			n->name->refcnt++;
1870 			return n->name;
1871 		}
1872 	}
1873 	return NULL;
1874 }
1875 
1876 /**
1877  * __audit_getname - add a name to the list
1878  * @name: name to add
1879  *
1880  * Add a name to the list of audit names for this context.
1881  * Called from fs/namei.c:getname().
1882  */
1883 void __audit_getname(struct filename *name)
1884 {
1885 	struct audit_context *context = audit_context();
1886 	struct audit_names *n;
1887 
1888 	if (!context->in_syscall)
1889 		return;
1890 
1891 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1892 	if (!n)
1893 		return;
1894 
1895 	n->name = name;
1896 	n->name_len = AUDIT_NAME_FULL;
1897 	name->aname = n;
1898 	name->refcnt++;
1899 
1900 	if (!context->pwd.dentry)
1901 		get_fs_pwd(current->fs, &context->pwd);
1902 }
1903 
1904 static inline int audit_copy_fcaps(struct audit_names *name,
1905 				   const struct dentry *dentry)
1906 {
1907 	struct cpu_vfs_cap_data caps;
1908 	int rc;
1909 
1910 	if (!dentry)
1911 		return 0;
1912 
1913 	rc = get_vfs_caps_from_disk(dentry, &caps);
1914 	if (rc)
1915 		return rc;
1916 
1917 	name->fcap.permitted = caps.permitted;
1918 	name->fcap.inheritable = caps.inheritable;
1919 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1920 	name->fcap.rootid = caps.rootid;
1921 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1922 				VFS_CAP_REVISION_SHIFT;
1923 
1924 	return 0;
1925 }
1926 
1927 /* Copy inode data into an audit_names. */
1928 static void audit_copy_inode(struct audit_names *name,
1929 			     const struct dentry *dentry,
1930 			     struct inode *inode, unsigned int flags)
1931 {
1932 	name->ino   = inode->i_ino;
1933 	name->dev   = inode->i_sb->s_dev;
1934 	name->mode  = inode->i_mode;
1935 	name->uid   = inode->i_uid;
1936 	name->gid   = inode->i_gid;
1937 	name->rdev  = inode->i_rdev;
1938 	security_inode_getsecid(inode, &name->osid);
1939 	if (flags & AUDIT_INODE_NOEVAL) {
1940 		name->fcap_ver = -1;
1941 		return;
1942 	}
1943 	audit_copy_fcaps(name, dentry);
1944 }
1945 
1946 /**
1947  * __audit_inode - store the inode and device from a lookup
1948  * @name: name being audited
1949  * @dentry: dentry being audited
1950  * @flags: attributes for this particular entry
1951  */
1952 void __audit_inode(struct filename *name, const struct dentry *dentry,
1953 		   unsigned int flags)
1954 {
1955 	struct audit_context *context = audit_context();
1956 	struct inode *inode = d_backing_inode(dentry);
1957 	struct audit_names *n;
1958 	bool parent = flags & AUDIT_INODE_PARENT;
1959 	struct audit_entry *e;
1960 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1961 	int i;
1962 
1963 	if (!context->in_syscall)
1964 		return;
1965 
1966 	rcu_read_lock();
1967 	list_for_each_entry_rcu(e, list, list) {
1968 		for (i = 0; i < e->rule.field_count; i++) {
1969 			struct audit_field *f = &e->rule.fields[i];
1970 
1971 			if (f->type == AUDIT_FSTYPE
1972 			    && audit_comparator(inode->i_sb->s_magic,
1973 						f->op, f->val)
1974 			    && e->rule.action == AUDIT_NEVER) {
1975 				rcu_read_unlock();
1976 				return;
1977 			}
1978 		}
1979 	}
1980 	rcu_read_unlock();
1981 
1982 	if (!name)
1983 		goto out_alloc;
1984 
1985 	/*
1986 	 * If we have a pointer to an audit_names entry already, then we can
1987 	 * just use it directly if the type is correct.
1988 	 */
1989 	n = name->aname;
1990 	if (n) {
1991 		if (parent) {
1992 			if (n->type == AUDIT_TYPE_PARENT ||
1993 			    n->type == AUDIT_TYPE_UNKNOWN)
1994 				goto out;
1995 		} else {
1996 			if (n->type != AUDIT_TYPE_PARENT)
1997 				goto out;
1998 		}
1999 	}
2000 
2001 	list_for_each_entry_reverse(n, &context->names_list, list) {
2002 		if (n->ino) {
2003 			/* valid inode number, use that for the comparison */
2004 			if (n->ino != inode->i_ino ||
2005 			    n->dev != inode->i_sb->s_dev)
2006 				continue;
2007 		} else if (n->name) {
2008 			/* inode number has not been set, check the name */
2009 			if (strcmp(n->name->name, name->name))
2010 				continue;
2011 		} else
2012 			/* no inode and no name (?!) ... this is odd ... */
2013 			continue;
2014 
2015 		/* match the correct record type */
2016 		if (parent) {
2017 			if (n->type == AUDIT_TYPE_PARENT ||
2018 			    n->type == AUDIT_TYPE_UNKNOWN)
2019 				goto out;
2020 		} else {
2021 			if (n->type != AUDIT_TYPE_PARENT)
2022 				goto out;
2023 		}
2024 	}
2025 
2026 out_alloc:
2027 	/* unable to find an entry with both a matching name and type */
2028 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2029 	if (!n)
2030 		return;
2031 	if (name) {
2032 		n->name = name;
2033 		name->refcnt++;
2034 	}
2035 
2036 out:
2037 	if (parent) {
2038 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2039 		n->type = AUDIT_TYPE_PARENT;
2040 		if (flags & AUDIT_INODE_HIDDEN)
2041 			n->hidden = true;
2042 	} else {
2043 		n->name_len = AUDIT_NAME_FULL;
2044 		n->type = AUDIT_TYPE_NORMAL;
2045 	}
2046 	handle_path(dentry);
2047 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2048 }
2049 
2050 void __audit_file(const struct file *file)
2051 {
2052 	__audit_inode(NULL, file->f_path.dentry, 0);
2053 }
2054 
2055 /**
2056  * __audit_inode_child - collect inode info for created/removed objects
2057  * @parent: inode of dentry parent
2058  * @dentry: dentry being audited
2059  * @type:   AUDIT_TYPE_* value that we're looking for
2060  *
2061  * For syscalls that create or remove filesystem objects, audit_inode
2062  * can only collect information for the filesystem object's parent.
2063  * This call updates the audit context with the child's information.
2064  * Syscalls that create a new filesystem object must be hooked after
2065  * the object is created.  Syscalls that remove a filesystem object
2066  * must be hooked prior, in order to capture the target inode during
2067  * unsuccessful attempts.
2068  */
2069 void __audit_inode_child(struct inode *parent,
2070 			 const struct dentry *dentry,
2071 			 const unsigned char type)
2072 {
2073 	struct audit_context *context = audit_context();
2074 	struct inode *inode = d_backing_inode(dentry);
2075 	const struct qstr *dname = &dentry->d_name;
2076 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2077 	struct audit_entry *e;
2078 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2079 	int i;
2080 
2081 	if (!context->in_syscall)
2082 		return;
2083 
2084 	rcu_read_lock();
2085 	list_for_each_entry_rcu(e, list, list) {
2086 		for (i = 0; i < e->rule.field_count; i++) {
2087 			struct audit_field *f = &e->rule.fields[i];
2088 
2089 			if (f->type == AUDIT_FSTYPE
2090 			    && audit_comparator(parent->i_sb->s_magic,
2091 						f->op, f->val)
2092 			    && e->rule.action == AUDIT_NEVER) {
2093 				rcu_read_unlock();
2094 				return;
2095 			}
2096 		}
2097 	}
2098 	rcu_read_unlock();
2099 
2100 	if (inode)
2101 		handle_one(inode);
2102 
2103 	/* look for a parent entry first */
2104 	list_for_each_entry(n, &context->names_list, list) {
2105 		if (!n->name ||
2106 		    (n->type != AUDIT_TYPE_PARENT &&
2107 		     n->type != AUDIT_TYPE_UNKNOWN))
2108 			continue;
2109 
2110 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2111 		    !audit_compare_dname_path(dname,
2112 					      n->name->name, n->name_len)) {
2113 			if (n->type == AUDIT_TYPE_UNKNOWN)
2114 				n->type = AUDIT_TYPE_PARENT;
2115 			found_parent = n;
2116 			break;
2117 		}
2118 	}
2119 
2120 	/* is there a matching child entry? */
2121 	list_for_each_entry(n, &context->names_list, list) {
2122 		/* can only match entries that have a name */
2123 		if (!n->name ||
2124 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2125 			continue;
2126 
2127 		if (!strcmp(dname->name, n->name->name) ||
2128 		    !audit_compare_dname_path(dname, n->name->name,
2129 						found_parent ?
2130 						found_parent->name_len :
2131 						AUDIT_NAME_FULL)) {
2132 			if (n->type == AUDIT_TYPE_UNKNOWN)
2133 				n->type = type;
2134 			found_child = n;
2135 			break;
2136 		}
2137 	}
2138 
2139 	if (!found_parent) {
2140 		/* create a new, "anonymous" parent record */
2141 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2142 		if (!n)
2143 			return;
2144 		audit_copy_inode(n, NULL, parent, 0);
2145 	}
2146 
2147 	if (!found_child) {
2148 		found_child = audit_alloc_name(context, type);
2149 		if (!found_child)
2150 			return;
2151 
2152 		/* Re-use the name belonging to the slot for a matching parent
2153 		 * directory. All names for this context are relinquished in
2154 		 * audit_free_names() */
2155 		if (found_parent) {
2156 			found_child->name = found_parent->name;
2157 			found_child->name_len = AUDIT_NAME_FULL;
2158 			found_child->name->refcnt++;
2159 		}
2160 	}
2161 
2162 	if (inode)
2163 		audit_copy_inode(found_child, dentry, inode, 0);
2164 	else
2165 		found_child->ino = AUDIT_INO_UNSET;
2166 }
2167 EXPORT_SYMBOL_GPL(__audit_inode_child);
2168 
2169 /**
2170  * auditsc_get_stamp - get local copies of audit_context values
2171  * @ctx: audit_context for the task
2172  * @t: timespec64 to store time recorded in the audit_context
2173  * @serial: serial value that is recorded in the audit_context
2174  *
2175  * Also sets the context as auditable.
2176  */
2177 int auditsc_get_stamp(struct audit_context *ctx,
2178 		       struct timespec64 *t, unsigned int *serial)
2179 {
2180 	if (!ctx->in_syscall)
2181 		return 0;
2182 	if (!ctx->serial)
2183 		ctx->serial = audit_serial();
2184 	t->tv_sec  = ctx->ctime.tv_sec;
2185 	t->tv_nsec = ctx->ctime.tv_nsec;
2186 	*serial    = ctx->serial;
2187 	if (!ctx->prio) {
2188 		ctx->prio = 1;
2189 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2190 	}
2191 	return 1;
2192 }
2193 
2194 /**
2195  * __audit_mq_open - record audit data for a POSIX MQ open
2196  * @oflag: open flag
2197  * @mode: mode bits
2198  * @attr: queue attributes
2199  *
2200  */
2201 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2202 {
2203 	struct audit_context *context = audit_context();
2204 
2205 	if (attr)
2206 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2207 	else
2208 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2209 
2210 	context->mq_open.oflag = oflag;
2211 	context->mq_open.mode = mode;
2212 
2213 	context->type = AUDIT_MQ_OPEN;
2214 }
2215 
2216 /**
2217  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2218  * @mqdes: MQ descriptor
2219  * @msg_len: Message length
2220  * @msg_prio: Message priority
2221  * @abs_timeout: Message timeout in absolute time
2222  *
2223  */
2224 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2225 			const struct timespec64 *abs_timeout)
2226 {
2227 	struct audit_context *context = audit_context();
2228 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2229 
2230 	if (abs_timeout)
2231 		memcpy(p, abs_timeout, sizeof(*p));
2232 	else
2233 		memset(p, 0, sizeof(*p));
2234 
2235 	context->mq_sendrecv.mqdes = mqdes;
2236 	context->mq_sendrecv.msg_len = msg_len;
2237 	context->mq_sendrecv.msg_prio = msg_prio;
2238 
2239 	context->type = AUDIT_MQ_SENDRECV;
2240 }
2241 
2242 /**
2243  * __audit_mq_notify - record audit data for a POSIX MQ notify
2244  * @mqdes: MQ descriptor
2245  * @notification: Notification event
2246  *
2247  */
2248 
2249 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2250 {
2251 	struct audit_context *context = audit_context();
2252 
2253 	if (notification)
2254 		context->mq_notify.sigev_signo = notification->sigev_signo;
2255 	else
2256 		context->mq_notify.sigev_signo = 0;
2257 
2258 	context->mq_notify.mqdes = mqdes;
2259 	context->type = AUDIT_MQ_NOTIFY;
2260 }
2261 
2262 /**
2263  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2264  * @mqdes: MQ descriptor
2265  * @mqstat: MQ flags
2266  *
2267  */
2268 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2269 {
2270 	struct audit_context *context = audit_context();
2271 	context->mq_getsetattr.mqdes = mqdes;
2272 	context->mq_getsetattr.mqstat = *mqstat;
2273 	context->type = AUDIT_MQ_GETSETATTR;
2274 }
2275 
2276 /**
2277  * __audit_ipc_obj - record audit data for ipc object
2278  * @ipcp: ipc permissions
2279  *
2280  */
2281 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2282 {
2283 	struct audit_context *context = audit_context();
2284 	context->ipc.uid = ipcp->uid;
2285 	context->ipc.gid = ipcp->gid;
2286 	context->ipc.mode = ipcp->mode;
2287 	context->ipc.has_perm = 0;
2288 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2289 	context->type = AUDIT_IPC;
2290 }
2291 
2292 /**
2293  * __audit_ipc_set_perm - record audit data for new ipc permissions
2294  * @qbytes: msgq bytes
2295  * @uid: msgq user id
2296  * @gid: msgq group id
2297  * @mode: msgq mode (permissions)
2298  *
2299  * Called only after audit_ipc_obj().
2300  */
2301 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2302 {
2303 	struct audit_context *context = audit_context();
2304 
2305 	context->ipc.qbytes = qbytes;
2306 	context->ipc.perm_uid = uid;
2307 	context->ipc.perm_gid = gid;
2308 	context->ipc.perm_mode = mode;
2309 	context->ipc.has_perm = 1;
2310 }
2311 
2312 void __audit_bprm(struct linux_binprm *bprm)
2313 {
2314 	struct audit_context *context = audit_context();
2315 
2316 	context->type = AUDIT_EXECVE;
2317 	context->execve.argc = bprm->argc;
2318 }
2319 
2320 
2321 /**
2322  * __audit_socketcall - record audit data for sys_socketcall
2323  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2324  * @args: args array
2325  *
2326  */
2327 int __audit_socketcall(int nargs, unsigned long *args)
2328 {
2329 	struct audit_context *context = audit_context();
2330 
2331 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2332 		return -EINVAL;
2333 	context->type = AUDIT_SOCKETCALL;
2334 	context->socketcall.nargs = nargs;
2335 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2336 	return 0;
2337 }
2338 
2339 /**
2340  * __audit_fd_pair - record audit data for pipe and socketpair
2341  * @fd1: the first file descriptor
2342  * @fd2: the second file descriptor
2343  *
2344  */
2345 void __audit_fd_pair(int fd1, int fd2)
2346 {
2347 	struct audit_context *context = audit_context();
2348 	context->fds[0] = fd1;
2349 	context->fds[1] = fd2;
2350 }
2351 
2352 /**
2353  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2354  * @len: data length in user space
2355  * @a: data address in kernel space
2356  *
2357  * Returns 0 for success or NULL context or < 0 on error.
2358  */
2359 int __audit_sockaddr(int len, void *a)
2360 {
2361 	struct audit_context *context = audit_context();
2362 
2363 	if (!context->sockaddr) {
2364 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2365 		if (!p)
2366 			return -ENOMEM;
2367 		context->sockaddr = p;
2368 	}
2369 
2370 	context->sockaddr_len = len;
2371 	memcpy(context->sockaddr, a, len);
2372 	return 0;
2373 }
2374 
2375 void __audit_ptrace(struct task_struct *t)
2376 {
2377 	struct audit_context *context = audit_context();
2378 
2379 	context->target_pid = task_tgid_nr(t);
2380 	context->target_auid = audit_get_loginuid(t);
2381 	context->target_uid = task_uid(t);
2382 	context->target_sessionid = audit_get_sessionid(t);
2383 	security_task_getsecid(t, &context->target_sid);
2384 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2385 }
2386 
2387 /**
2388  * audit_signal_info_syscall - record signal info for syscalls
2389  * @t: task being signaled
2390  *
2391  * If the audit subsystem is being terminated, record the task (pid)
2392  * and uid that is doing that.
2393  */
2394 int audit_signal_info_syscall(struct task_struct *t)
2395 {
2396 	struct audit_aux_data_pids *axp;
2397 	struct audit_context *ctx = audit_context();
2398 	kuid_t t_uid = task_uid(t);
2399 
2400 	if (!audit_signals || audit_dummy_context())
2401 		return 0;
2402 
2403 	/* optimize the common case by putting first signal recipient directly
2404 	 * in audit_context */
2405 	if (!ctx->target_pid) {
2406 		ctx->target_pid = task_tgid_nr(t);
2407 		ctx->target_auid = audit_get_loginuid(t);
2408 		ctx->target_uid = t_uid;
2409 		ctx->target_sessionid = audit_get_sessionid(t);
2410 		security_task_getsecid(t, &ctx->target_sid);
2411 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2412 		return 0;
2413 	}
2414 
2415 	axp = (void *)ctx->aux_pids;
2416 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2417 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2418 		if (!axp)
2419 			return -ENOMEM;
2420 
2421 		axp->d.type = AUDIT_OBJ_PID;
2422 		axp->d.next = ctx->aux_pids;
2423 		ctx->aux_pids = (void *)axp;
2424 	}
2425 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2426 
2427 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2428 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2429 	axp->target_uid[axp->pid_count] = t_uid;
2430 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2431 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2432 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2433 	axp->pid_count++;
2434 
2435 	return 0;
2436 }
2437 
2438 /**
2439  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2440  * @bprm: pointer to the bprm being processed
2441  * @new: the proposed new credentials
2442  * @old: the old credentials
2443  *
2444  * Simply check if the proc already has the caps given by the file and if not
2445  * store the priv escalation info for later auditing at the end of the syscall
2446  *
2447  * -Eric
2448  */
2449 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2450 			   const struct cred *new, const struct cred *old)
2451 {
2452 	struct audit_aux_data_bprm_fcaps *ax;
2453 	struct audit_context *context = audit_context();
2454 	struct cpu_vfs_cap_data vcaps;
2455 
2456 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2457 	if (!ax)
2458 		return -ENOMEM;
2459 
2460 	ax->d.type = AUDIT_BPRM_FCAPS;
2461 	ax->d.next = context->aux;
2462 	context->aux = (void *)ax;
2463 
2464 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2465 
2466 	ax->fcap.permitted = vcaps.permitted;
2467 	ax->fcap.inheritable = vcaps.inheritable;
2468 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2469 	ax->fcap.rootid = vcaps.rootid;
2470 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2471 
2472 	ax->old_pcap.permitted   = old->cap_permitted;
2473 	ax->old_pcap.inheritable = old->cap_inheritable;
2474 	ax->old_pcap.effective   = old->cap_effective;
2475 	ax->old_pcap.ambient     = old->cap_ambient;
2476 
2477 	ax->new_pcap.permitted   = new->cap_permitted;
2478 	ax->new_pcap.inheritable = new->cap_inheritable;
2479 	ax->new_pcap.effective   = new->cap_effective;
2480 	ax->new_pcap.ambient     = new->cap_ambient;
2481 	return 0;
2482 }
2483 
2484 /**
2485  * __audit_log_capset - store information about the arguments to the capset syscall
2486  * @new: the new credentials
2487  * @old: the old (current) credentials
2488  *
2489  * Record the arguments userspace sent to sys_capset for later printing by the
2490  * audit system if applicable
2491  */
2492 void __audit_log_capset(const struct cred *new, const struct cred *old)
2493 {
2494 	struct audit_context *context = audit_context();
2495 	context->capset.pid = task_tgid_nr(current);
2496 	context->capset.cap.effective   = new->cap_effective;
2497 	context->capset.cap.inheritable = new->cap_effective;
2498 	context->capset.cap.permitted   = new->cap_permitted;
2499 	context->capset.cap.ambient     = new->cap_ambient;
2500 	context->type = AUDIT_CAPSET;
2501 }
2502 
2503 void __audit_mmap_fd(int fd, int flags)
2504 {
2505 	struct audit_context *context = audit_context();
2506 	context->mmap.fd = fd;
2507 	context->mmap.flags = flags;
2508 	context->type = AUDIT_MMAP;
2509 }
2510 
2511 void __audit_log_kern_module(char *name)
2512 {
2513 	struct audit_context *context = audit_context();
2514 
2515 	context->module.name = kstrdup(name, GFP_KERNEL);
2516 	if (!context->module.name)
2517 		audit_log_lost("out of memory in __audit_log_kern_module");
2518 	context->type = AUDIT_KERN_MODULE;
2519 }
2520 
2521 void __audit_fanotify(unsigned int response)
2522 {
2523 	audit_log(audit_context(), GFP_KERNEL,
2524 		AUDIT_FANOTIFY,	"resp=%u", response);
2525 }
2526 
2527 void __audit_tk_injoffset(struct timespec64 offset)
2528 {
2529 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2530 		  "sec=%lli nsec=%li",
2531 		  (long long)offset.tv_sec, offset.tv_nsec);
2532 }
2533 
2534 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2535 			      const char *op, enum audit_ntp_type type)
2536 {
2537 	const struct audit_ntp_val *val = &ad->vals[type];
2538 
2539 	if (val->newval == val->oldval)
2540 		return;
2541 
2542 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2543 		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2544 }
2545 
2546 void __audit_ntp_log(const struct audit_ntp_data *ad)
2547 {
2548 	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2549 	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2550 	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2551 	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2552 	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2553 	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2554 }
2555 
2556 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2557 		       enum audit_nfcfgop op)
2558 {
2559 	struct audit_buffer *ab;
2560 	char comm[sizeof(current->comm)];
2561 
2562 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_NETFILTER_CFG);
2563 	if (!ab)
2564 		return;
2565 	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2566 			 name, af, nentries, audit_nfcfgs[op].s);
2567 
2568 	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2569 	audit_log_task_context(ab); /* subj= */
2570 	audit_log_format(ab, " comm=");
2571 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2572 	audit_log_end(ab);
2573 }
2574 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2575 
2576 static void audit_log_task(struct audit_buffer *ab)
2577 {
2578 	kuid_t auid, uid;
2579 	kgid_t gid;
2580 	unsigned int sessionid;
2581 	char comm[sizeof(current->comm)];
2582 
2583 	auid = audit_get_loginuid(current);
2584 	sessionid = audit_get_sessionid(current);
2585 	current_uid_gid(&uid, &gid);
2586 
2587 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2588 			 from_kuid(&init_user_ns, auid),
2589 			 from_kuid(&init_user_ns, uid),
2590 			 from_kgid(&init_user_ns, gid),
2591 			 sessionid);
2592 	audit_log_task_context(ab);
2593 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2594 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2595 	audit_log_d_path_exe(ab, current->mm);
2596 }
2597 
2598 /**
2599  * audit_core_dumps - record information about processes that end abnormally
2600  * @signr: signal value
2601  *
2602  * If a process ends with a core dump, something fishy is going on and we
2603  * should record the event for investigation.
2604  */
2605 void audit_core_dumps(long signr)
2606 {
2607 	struct audit_buffer *ab;
2608 
2609 	if (!audit_enabled)
2610 		return;
2611 
2612 	if (signr == SIGQUIT)	/* don't care for those */
2613 		return;
2614 
2615 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2616 	if (unlikely(!ab))
2617 		return;
2618 	audit_log_task(ab);
2619 	audit_log_format(ab, " sig=%ld res=1", signr);
2620 	audit_log_end(ab);
2621 }
2622 
2623 /**
2624  * audit_seccomp - record information about a seccomp action
2625  * @syscall: syscall number
2626  * @signr: signal value
2627  * @code: the seccomp action
2628  *
2629  * Record the information associated with a seccomp action. Event filtering for
2630  * seccomp actions that are not to be logged is done in seccomp_log().
2631  * Therefore, this function forces auditing independent of the audit_enabled
2632  * and dummy context state because seccomp actions should be logged even when
2633  * audit is not in use.
2634  */
2635 void audit_seccomp(unsigned long syscall, long signr, int code)
2636 {
2637 	struct audit_buffer *ab;
2638 
2639 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2640 	if (unlikely(!ab))
2641 		return;
2642 	audit_log_task(ab);
2643 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2644 			 signr, syscall_get_arch(current), syscall,
2645 			 in_compat_syscall(), KSTK_EIP(current), code);
2646 	audit_log_end(ab);
2647 }
2648 
2649 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2650 				  int res)
2651 {
2652 	struct audit_buffer *ab;
2653 
2654 	if (!audit_enabled)
2655 		return;
2656 
2657 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2658 			     AUDIT_CONFIG_CHANGE);
2659 	if (unlikely(!ab))
2660 		return;
2661 
2662 	audit_log_format(ab,
2663 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2664 			 names, old_names, res);
2665 	audit_log_end(ab);
2666 }
2667 
2668 struct list_head *audit_killed_trees(void)
2669 {
2670 	struct audit_context *ctx = audit_context();
2671 	if (likely(!ctx || !ctx->in_syscall))
2672 		return NULL;
2673 	return &ctx->killed_trees;
2674 }
2675