1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <linux/fsnotify_backend.h> 77 #include <uapi/linux/limits.h> 78 79 #include "audit.h" 80 81 /* flags stating the success for a syscall */ 82 #define AUDITSC_INVALID 0 83 #define AUDITSC_SUCCESS 1 84 #define AUDITSC_FAILURE 2 85 86 /* no execve audit message should be longer than this (userspace limits), 87 * see the note near the top of audit_log_execve_info() about this value */ 88 #define MAX_EXECVE_AUDIT_LEN 7500 89 90 /* max length to print of cmdline/proctitle value during audit */ 91 #define MAX_PROCTITLE_AUDIT_LEN 128 92 93 /* number of audit rules */ 94 int audit_n_rules; 95 96 /* determines whether we collect data for signals sent */ 97 int audit_signals; 98 99 struct audit_aux_data { 100 struct audit_aux_data *next; 101 int type; 102 }; 103 104 #define AUDIT_AUX_IPCPERM 0 105 106 /* Number of target pids per aux struct. */ 107 #define AUDIT_AUX_PIDS 16 108 109 struct audit_aux_data_pids { 110 struct audit_aux_data d; 111 pid_t target_pid[AUDIT_AUX_PIDS]; 112 kuid_t target_auid[AUDIT_AUX_PIDS]; 113 kuid_t target_uid[AUDIT_AUX_PIDS]; 114 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 115 u32 target_sid[AUDIT_AUX_PIDS]; 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 117 int pid_count; 118 }; 119 120 struct audit_aux_data_bprm_fcaps { 121 struct audit_aux_data d; 122 struct audit_cap_data fcap; 123 unsigned int fcap_ver; 124 struct audit_cap_data old_pcap; 125 struct audit_cap_data new_pcap; 126 }; 127 128 struct audit_tree_refs { 129 struct audit_tree_refs *next; 130 struct audit_chunk *c[31]; 131 }; 132 133 static int audit_match_perm(struct audit_context *ctx, int mask) 134 { 135 unsigned n; 136 if (unlikely(!ctx)) 137 return 0; 138 n = ctx->major; 139 140 switch (audit_classify_syscall(ctx->arch, n)) { 141 case 0: /* native */ 142 if ((mask & AUDIT_PERM_WRITE) && 143 audit_match_class(AUDIT_CLASS_WRITE, n)) 144 return 1; 145 if ((mask & AUDIT_PERM_READ) && 146 audit_match_class(AUDIT_CLASS_READ, n)) 147 return 1; 148 if ((mask & AUDIT_PERM_ATTR) && 149 audit_match_class(AUDIT_CLASS_CHATTR, n)) 150 return 1; 151 return 0; 152 case 1: /* 32bit on biarch */ 153 if ((mask & AUDIT_PERM_WRITE) && 154 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 155 return 1; 156 if ((mask & AUDIT_PERM_READ) && 157 audit_match_class(AUDIT_CLASS_READ_32, n)) 158 return 1; 159 if ((mask & AUDIT_PERM_ATTR) && 160 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 161 return 1; 162 return 0; 163 case 2: /* open */ 164 return mask & ACC_MODE(ctx->argv[1]); 165 case 3: /* openat */ 166 return mask & ACC_MODE(ctx->argv[2]); 167 case 4: /* socketcall */ 168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 169 case 5: /* execve */ 170 return mask & AUDIT_PERM_EXEC; 171 default: 172 return 0; 173 } 174 } 175 176 static int audit_match_filetype(struct audit_context *ctx, int val) 177 { 178 struct audit_names *n; 179 umode_t mode = (umode_t)val; 180 181 if (unlikely(!ctx)) 182 return 0; 183 184 list_for_each_entry(n, &ctx->names_list, list) { 185 if ((n->ino != AUDIT_INO_UNSET) && 186 ((n->mode & S_IFMT) == mode)) 187 return 1; 188 } 189 190 return 0; 191 } 192 193 /* 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 195 * ->first_trees points to its beginning, ->trees - to the current end of data. 196 * ->tree_count is the number of free entries in array pointed to by ->trees. 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 199 * it's going to remain 1-element for almost any setup) until we free context itself. 200 * References in it _are_ dropped - at the same time we free/drop aux stuff. 201 */ 202 203 #ifdef CONFIG_AUDIT_TREE 204 static void audit_set_auditable(struct audit_context *ctx) 205 { 206 if (!ctx->prio) { 207 ctx->prio = 1; 208 ctx->current_state = AUDIT_RECORD_CONTEXT; 209 } 210 } 211 212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 213 { 214 struct audit_tree_refs *p = ctx->trees; 215 int left = ctx->tree_count; 216 if (likely(left)) { 217 p->c[--left] = chunk; 218 ctx->tree_count = left; 219 return 1; 220 } 221 if (!p) 222 return 0; 223 p = p->next; 224 if (p) { 225 p->c[30] = chunk; 226 ctx->trees = p; 227 ctx->tree_count = 30; 228 return 1; 229 } 230 return 0; 231 } 232 233 static int grow_tree_refs(struct audit_context *ctx) 234 { 235 struct audit_tree_refs *p = ctx->trees; 236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 237 if (!ctx->trees) { 238 ctx->trees = p; 239 return 0; 240 } 241 if (p) 242 p->next = ctx->trees; 243 else 244 ctx->first_trees = ctx->trees; 245 ctx->tree_count = 31; 246 return 1; 247 } 248 #endif 249 250 static void unroll_tree_refs(struct audit_context *ctx, 251 struct audit_tree_refs *p, int count) 252 { 253 #ifdef CONFIG_AUDIT_TREE 254 struct audit_tree_refs *q; 255 int n; 256 if (!p) { 257 /* we started with empty chain */ 258 p = ctx->first_trees; 259 count = 31; 260 /* if the very first allocation has failed, nothing to do */ 261 if (!p) 262 return; 263 } 264 n = count; 265 for (q = p; q != ctx->trees; q = q->next, n = 31) { 266 while (n--) { 267 audit_put_chunk(q->c[n]); 268 q->c[n] = NULL; 269 } 270 } 271 while (n-- > ctx->tree_count) { 272 audit_put_chunk(q->c[n]); 273 q->c[n] = NULL; 274 } 275 ctx->trees = p; 276 ctx->tree_count = count; 277 #endif 278 } 279 280 static void free_tree_refs(struct audit_context *ctx) 281 { 282 struct audit_tree_refs *p, *q; 283 for (p = ctx->first_trees; p; p = q) { 284 q = p->next; 285 kfree(p); 286 } 287 } 288 289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 290 { 291 #ifdef CONFIG_AUDIT_TREE 292 struct audit_tree_refs *p; 293 int n; 294 if (!tree) 295 return 0; 296 /* full ones */ 297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 298 for (n = 0; n < 31; n++) 299 if (audit_tree_match(p->c[n], tree)) 300 return 1; 301 } 302 /* partial */ 303 if (p) { 304 for (n = ctx->tree_count; n < 31; n++) 305 if (audit_tree_match(p->c[n], tree)) 306 return 1; 307 } 308 #endif 309 return 0; 310 } 311 312 static int audit_compare_uid(kuid_t uid, 313 struct audit_names *name, 314 struct audit_field *f, 315 struct audit_context *ctx) 316 { 317 struct audit_names *n; 318 int rc; 319 320 if (name) { 321 rc = audit_uid_comparator(uid, f->op, name->uid); 322 if (rc) 323 return rc; 324 } 325 326 if (ctx) { 327 list_for_each_entry(n, &ctx->names_list, list) { 328 rc = audit_uid_comparator(uid, f->op, n->uid); 329 if (rc) 330 return rc; 331 } 332 } 333 return 0; 334 } 335 336 static int audit_compare_gid(kgid_t gid, 337 struct audit_names *name, 338 struct audit_field *f, 339 struct audit_context *ctx) 340 { 341 struct audit_names *n; 342 int rc; 343 344 if (name) { 345 rc = audit_gid_comparator(gid, f->op, name->gid); 346 if (rc) 347 return rc; 348 } 349 350 if (ctx) { 351 list_for_each_entry(n, &ctx->names_list, list) { 352 rc = audit_gid_comparator(gid, f->op, n->gid); 353 if (rc) 354 return rc; 355 } 356 } 357 return 0; 358 } 359 360 static int audit_field_compare(struct task_struct *tsk, 361 const struct cred *cred, 362 struct audit_field *f, 363 struct audit_context *ctx, 364 struct audit_names *name) 365 { 366 switch (f->val) { 367 /* process to file object comparisons */ 368 case AUDIT_COMPARE_UID_TO_OBJ_UID: 369 return audit_compare_uid(cred->uid, name, f, ctx); 370 case AUDIT_COMPARE_GID_TO_OBJ_GID: 371 return audit_compare_gid(cred->gid, name, f, ctx); 372 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 373 return audit_compare_uid(cred->euid, name, f, ctx); 374 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 375 return audit_compare_gid(cred->egid, name, f, ctx); 376 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 377 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 378 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 379 return audit_compare_uid(cred->suid, name, f, ctx); 380 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 381 return audit_compare_gid(cred->sgid, name, f, ctx); 382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 383 return audit_compare_uid(cred->fsuid, name, f, ctx); 384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 385 return audit_compare_gid(cred->fsgid, name, f, ctx); 386 /* uid comparisons */ 387 case AUDIT_COMPARE_UID_TO_AUID: 388 return audit_uid_comparator(cred->uid, f->op, 389 audit_get_loginuid(tsk)); 390 case AUDIT_COMPARE_UID_TO_EUID: 391 return audit_uid_comparator(cred->uid, f->op, cred->euid); 392 case AUDIT_COMPARE_UID_TO_SUID: 393 return audit_uid_comparator(cred->uid, f->op, cred->suid); 394 case AUDIT_COMPARE_UID_TO_FSUID: 395 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 396 /* auid comparisons */ 397 case AUDIT_COMPARE_AUID_TO_EUID: 398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 399 cred->euid); 400 case AUDIT_COMPARE_AUID_TO_SUID: 401 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 402 cred->suid); 403 case AUDIT_COMPARE_AUID_TO_FSUID: 404 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 405 cred->fsuid); 406 /* euid comparisons */ 407 case AUDIT_COMPARE_EUID_TO_SUID: 408 return audit_uid_comparator(cred->euid, f->op, cred->suid); 409 case AUDIT_COMPARE_EUID_TO_FSUID: 410 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 411 /* suid comparisons */ 412 case AUDIT_COMPARE_SUID_TO_FSUID: 413 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 414 /* gid comparisons */ 415 case AUDIT_COMPARE_GID_TO_EGID: 416 return audit_gid_comparator(cred->gid, f->op, cred->egid); 417 case AUDIT_COMPARE_GID_TO_SGID: 418 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 419 case AUDIT_COMPARE_GID_TO_FSGID: 420 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 421 /* egid comparisons */ 422 case AUDIT_COMPARE_EGID_TO_SGID: 423 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 424 case AUDIT_COMPARE_EGID_TO_FSGID: 425 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 426 /* sgid comparison */ 427 case AUDIT_COMPARE_SGID_TO_FSGID: 428 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 429 default: 430 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 431 return 0; 432 } 433 return 0; 434 } 435 436 /* Determine if any context name data matches a rule's watch data */ 437 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 438 * otherwise. 439 * 440 * If task_creation is true, this is an explicit indication that we are 441 * filtering a task rule at task creation time. This and tsk == current are 442 * the only situations where tsk->cred may be accessed without an rcu read lock. 443 */ 444 static int audit_filter_rules(struct task_struct *tsk, 445 struct audit_krule *rule, 446 struct audit_context *ctx, 447 struct audit_names *name, 448 enum audit_state *state, 449 bool task_creation) 450 { 451 const struct cred *cred; 452 int i, need_sid = 1; 453 u32 sid; 454 unsigned int sessionid; 455 456 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 457 458 for (i = 0; i < rule->field_count; i++) { 459 struct audit_field *f = &rule->fields[i]; 460 struct audit_names *n; 461 int result = 0; 462 pid_t pid; 463 464 switch (f->type) { 465 case AUDIT_PID: 466 pid = task_tgid_nr(tsk); 467 result = audit_comparator(pid, f->op, f->val); 468 break; 469 case AUDIT_PPID: 470 if (ctx) { 471 if (!ctx->ppid) 472 ctx->ppid = task_ppid_nr(tsk); 473 result = audit_comparator(ctx->ppid, f->op, f->val); 474 } 475 break; 476 case AUDIT_EXE: 477 result = audit_exe_compare(tsk, rule->exe); 478 if (f->op == Audit_not_equal) 479 result = !result; 480 break; 481 case AUDIT_UID: 482 result = audit_uid_comparator(cred->uid, f->op, f->uid); 483 break; 484 case AUDIT_EUID: 485 result = audit_uid_comparator(cred->euid, f->op, f->uid); 486 break; 487 case AUDIT_SUID: 488 result = audit_uid_comparator(cred->suid, f->op, f->uid); 489 break; 490 case AUDIT_FSUID: 491 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 492 break; 493 case AUDIT_GID: 494 result = audit_gid_comparator(cred->gid, f->op, f->gid); 495 if (f->op == Audit_equal) { 496 if (!result) 497 result = in_group_p(f->gid); 498 } else if (f->op == Audit_not_equal) { 499 if (result) 500 result = !in_group_p(f->gid); 501 } 502 break; 503 case AUDIT_EGID: 504 result = audit_gid_comparator(cred->egid, f->op, f->gid); 505 if (f->op == Audit_equal) { 506 if (!result) 507 result = in_egroup_p(f->gid); 508 } else if (f->op == Audit_not_equal) { 509 if (result) 510 result = !in_egroup_p(f->gid); 511 } 512 break; 513 case AUDIT_SGID: 514 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 515 break; 516 case AUDIT_FSGID: 517 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 518 break; 519 case AUDIT_SESSIONID: 520 sessionid = audit_get_sessionid(tsk); 521 result = audit_comparator(sessionid, f->op, f->val); 522 break; 523 case AUDIT_PERS: 524 result = audit_comparator(tsk->personality, f->op, f->val); 525 break; 526 case AUDIT_ARCH: 527 if (ctx) 528 result = audit_comparator(ctx->arch, f->op, f->val); 529 break; 530 531 case AUDIT_EXIT: 532 if (ctx && ctx->return_valid) 533 result = audit_comparator(ctx->return_code, f->op, f->val); 534 break; 535 case AUDIT_SUCCESS: 536 if (ctx && ctx->return_valid) { 537 if (f->val) 538 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 539 else 540 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 541 } 542 break; 543 case AUDIT_DEVMAJOR: 544 if (name) { 545 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 546 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 547 ++result; 548 } else if (ctx) { 549 list_for_each_entry(n, &ctx->names_list, list) { 550 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 551 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 552 ++result; 553 break; 554 } 555 } 556 } 557 break; 558 case AUDIT_DEVMINOR: 559 if (name) { 560 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 561 audit_comparator(MINOR(name->rdev), f->op, f->val)) 562 ++result; 563 } else if (ctx) { 564 list_for_each_entry(n, &ctx->names_list, list) { 565 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 566 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 567 ++result; 568 break; 569 } 570 } 571 } 572 break; 573 case AUDIT_INODE: 574 if (name) 575 result = audit_comparator(name->ino, f->op, f->val); 576 else if (ctx) { 577 list_for_each_entry(n, &ctx->names_list, list) { 578 if (audit_comparator(n->ino, f->op, f->val)) { 579 ++result; 580 break; 581 } 582 } 583 } 584 break; 585 case AUDIT_OBJ_UID: 586 if (name) { 587 result = audit_uid_comparator(name->uid, f->op, f->uid); 588 } else if (ctx) { 589 list_for_each_entry(n, &ctx->names_list, list) { 590 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 591 ++result; 592 break; 593 } 594 } 595 } 596 break; 597 case AUDIT_OBJ_GID: 598 if (name) { 599 result = audit_gid_comparator(name->gid, f->op, f->gid); 600 } else if (ctx) { 601 list_for_each_entry(n, &ctx->names_list, list) { 602 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 603 ++result; 604 break; 605 } 606 } 607 } 608 break; 609 case AUDIT_WATCH: 610 if (name) 611 result = audit_watch_compare(rule->watch, name->ino, name->dev); 612 break; 613 case AUDIT_DIR: 614 if (ctx) 615 result = match_tree_refs(ctx, rule->tree); 616 break; 617 case AUDIT_LOGINUID: 618 result = audit_uid_comparator(audit_get_loginuid(tsk), 619 f->op, f->uid); 620 break; 621 case AUDIT_LOGINUID_SET: 622 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 623 break; 624 case AUDIT_SUBJ_USER: 625 case AUDIT_SUBJ_ROLE: 626 case AUDIT_SUBJ_TYPE: 627 case AUDIT_SUBJ_SEN: 628 case AUDIT_SUBJ_CLR: 629 /* NOTE: this may return negative values indicating 630 a temporary error. We simply treat this as a 631 match for now to avoid losing information that 632 may be wanted. An error message will also be 633 logged upon error */ 634 if (f->lsm_rule) { 635 if (need_sid) { 636 security_task_getsecid(tsk, &sid); 637 need_sid = 0; 638 } 639 result = security_audit_rule_match(sid, f->type, 640 f->op, 641 f->lsm_rule, 642 ctx); 643 } 644 break; 645 case AUDIT_OBJ_USER: 646 case AUDIT_OBJ_ROLE: 647 case AUDIT_OBJ_TYPE: 648 case AUDIT_OBJ_LEV_LOW: 649 case AUDIT_OBJ_LEV_HIGH: 650 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 651 also applies here */ 652 if (f->lsm_rule) { 653 /* Find files that match */ 654 if (name) { 655 result = security_audit_rule_match( 656 name->osid, f->type, f->op, 657 f->lsm_rule, ctx); 658 } else if (ctx) { 659 list_for_each_entry(n, &ctx->names_list, list) { 660 if (security_audit_rule_match(n->osid, f->type, 661 f->op, f->lsm_rule, 662 ctx)) { 663 ++result; 664 break; 665 } 666 } 667 } 668 /* Find ipc objects that match */ 669 if (!ctx || ctx->type != AUDIT_IPC) 670 break; 671 if (security_audit_rule_match(ctx->ipc.osid, 672 f->type, f->op, 673 f->lsm_rule, ctx)) 674 ++result; 675 } 676 break; 677 case AUDIT_ARG0: 678 case AUDIT_ARG1: 679 case AUDIT_ARG2: 680 case AUDIT_ARG3: 681 if (ctx) 682 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 683 break; 684 case AUDIT_FILTERKEY: 685 /* ignore this field for filtering */ 686 result = 1; 687 break; 688 case AUDIT_PERM: 689 result = audit_match_perm(ctx, f->val); 690 break; 691 case AUDIT_FILETYPE: 692 result = audit_match_filetype(ctx, f->val); 693 break; 694 case AUDIT_FIELD_COMPARE: 695 result = audit_field_compare(tsk, cred, f, ctx, name); 696 break; 697 } 698 if (!result) 699 return 0; 700 } 701 702 if (ctx) { 703 if (rule->prio <= ctx->prio) 704 return 0; 705 if (rule->filterkey) { 706 kfree(ctx->filterkey); 707 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 708 } 709 ctx->prio = rule->prio; 710 } 711 switch (rule->action) { 712 case AUDIT_NEVER: 713 *state = AUDIT_DISABLED; 714 break; 715 case AUDIT_ALWAYS: 716 *state = AUDIT_RECORD_CONTEXT; 717 break; 718 } 719 return 1; 720 } 721 722 /* At process creation time, we can determine if system-call auditing is 723 * completely disabled for this task. Since we only have the task 724 * structure at this point, we can only check uid and gid. 725 */ 726 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 727 { 728 struct audit_entry *e; 729 enum audit_state state; 730 731 rcu_read_lock(); 732 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 733 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 734 &state, true)) { 735 if (state == AUDIT_RECORD_CONTEXT) 736 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 737 rcu_read_unlock(); 738 return state; 739 } 740 } 741 rcu_read_unlock(); 742 return AUDIT_BUILD_CONTEXT; 743 } 744 745 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 746 { 747 int word, bit; 748 749 if (val > 0xffffffff) 750 return false; 751 752 word = AUDIT_WORD(val); 753 if (word >= AUDIT_BITMASK_SIZE) 754 return false; 755 756 bit = AUDIT_BIT(val); 757 758 return rule->mask[word] & bit; 759 } 760 761 /* At syscall entry and exit time, this filter is called if the 762 * audit_state is not low enough that auditing cannot take place, but is 763 * also not high enough that we already know we have to write an audit 764 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 765 */ 766 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 767 struct audit_context *ctx, 768 struct list_head *list) 769 { 770 struct audit_entry *e; 771 enum audit_state state; 772 773 if (auditd_test_task(tsk)) 774 return AUDIT_DISABLED; 775 776 rcu_read_lock(); 777 if (!list_empty(list)) { 778 list_for_each_entry_rcu(e, list, list) { 779 if (audit_in_mask(&e->rule, ctx->major) && 780 audit_filter_rules(tsk, &e->rule, ctx, NULL, 781 &state, false)) { 782 rcu_read_unlock(); 783 ctx->current_state = state; 784 return state; 785 } 786 } 787 } 788 rcu_read_unlock(); 789 return AUDIT_BUILD_CONTEXT; 790 } 791 792 /* 793 * Given an audit_name check the inode hash table to see if they match. 794 * Called holding the rcu read lock to protect the use of audit_inode_hash 795 */ 796 static int audit_filter_inode_name(struct task_struct *tsk, 797 struct audit_names *n, 798 struct audit_context *ctx) { 799 int h = audit_hash_ino((u32)n->ino); 800 struct list_head *list = &audit_inode_hash[h]; 801 struct audit_entry *e; 802 enum audit_state state; 803 804 if (list_empty(list)) 805 return 0; 806 807 list_for_each_entry_rcu(e, list, list) { 808 if (audit_in_mask(&e->rule, ctx->major) && 809 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 810 ctx->current_state = state; 811 return 1; 812 } 813 } 814 815 return 0; 816 } 817 818 /* At syscall exit time, this filter is called if any audit_names have been 819 * collected during syscall processing. We only check rules in sublists at hash 820 * buckets applicable to the inode numbers in audit_names. 821 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 822 */ 823 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 824 { 825 struct audit_names *n; 826 827 if (auditd_test_task(tsk)) 828 return; 829 830 rcu_read_lock(); 831 832 list_for_each_entry(n, &ctx->names_list, list) { 833 if (audit_filter_inode_name(tsk, n, ctx)) 834 break; 835 } 836 rcu_read_unlock(); 837 } 838 839 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 840 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 841 int return_valid, 842 long return_code) 843 { 844 struct audit_context *context = tsk->audit_context; 845 846 if (!context) 847 return NULL; 848 context->return_valid = return_valid; 849 850 /* 851 * we need to fix up the return code in the audit logs if the actual 852 * return codes are later going to be fixed up by the arch specific 853 * signal handlers 854 * 855 * This is actually a test for: 856 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 857 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 858 * 859 * but is faster than a bunch of || 860 */ 861 if (unlikely(return_code <= -ERESTARTSYS) && 862 (return_code >= -ERESTART_RESTARTBLOCK) && 863 (return_code != -ENOIOCTLCMD)) 864 context->return_code = -EINTR; 865 else 866 context->return_code = return_code; 867 868 if (context->in_syscall && !context->dummy) { 869 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 870 audit_filter_inodes(tsk, context); 871 } 872 873 audit_set_context(tsk, NULL); 874 return context; 875 } 876 877 static inline void audit_proctitle_free(struct audit_context *context) 878 { 879 kfree(context->proctitle.value); 880 context->proctitle.value = NULL; 881 context->proctitle.len = 0; 882 } 883 884 static inline void audit_free_names(struct audit_context *context) 885 { 886 struct audit_names *n, *next; 887 888 list_for_each_entry_safe(n, next, &context->names_list, list) { 889 list_del(&n->list); 890 if (n->name) 891 putname(n->name); 892 if (n->should_free) 893 kfree(n); 894 } 895 context->name_count = 0; 896 path_put(&context->pwd); 897 context->pwd.dentry = NULL; 898 context->pwd.mnt = NULL; 899 } 900 901 static inline void audit_free_aux(struct audit_context *context) 902 { 903 struct audit_aux_data *aux; 904 905 while ((aux = context->aux)) { 906 context->aux = aux->next; 907 kfree(aux); 908 } 909 while ((aux = context->aux_pids)) { 910 context->aux_pids = aux->next; 911 kfree(aux); 912 } 913 } 914 915 static inline struct audit_context *audit_alloc_context(enum audit_state state) 916 { 917 struct audit_context *context; 918 919 context = kzalloc(sizeof(*context), GFP_KERNEL); 920 if (!context) 921 return NULL; 922 context->state = state; 923 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 924 INIT_LIST_HEAD(&context->killed_trees); 925 INIT_LIST_HEAD(&context->names_list); 926 return context; 927 } 928 929 /** 930 * audit_alloc - allocate an audit context block for a task 931 * @tsk: task 932 * 933 * Filter on the task information and allocate a per-task audit context 934 * if necessary. Doing so turns on system call auditing for the 935 * specified task. This is called from copy_process, so no lock is 936 * needed. 937 */ 938 int audit_alloc(struct task_struct *tsk) 939 { 940 struct audit_context *context; 941 enum audit_state state; 942 char *key = NULL; 943 944 if (likely(!audit_ever_enabled)) 945 return 0; /* Return if not auditing. */ 946 947 state = audit_filter_task(tsk, &key); 948 if (state == AUDIT_DISABLED) { 949 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 950 return 0; 951 } 952 953 if (!(context = audit_alloc_context(state))) { 954 kfree(key); 955 audit_log_lost("out of memory in audit_alloc"); 956 return -ENOMEM; 957 } 958 context->filterkey = key; 959 960 audit_set_context(tsk, context); 961 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 962 return 0; 963 } 964 965 static inline void audit_free_context(struct audit_context *context) 966 { 967 audit_free_names(context); 968 unroll_tree_refs(context, NULL, 0); 969 free_tree_refs(context); 970 audit_free_aux(context); 971 kfree(context->filterkey); 972 kfree(context->sockaddr); 973 audit_proctitle_free(context); 974 kfree(context); 975 } 976 977 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 978 kuid_t auid, kuid_t uid, unsigned int sessionid, 979 u32 sid, char *comm) 980 { 981 struct audit_buffer *ab; 982 char *ctx = NULL; 983 u32 len; 984 int rc = 0; 985 986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 987 if (!ab) 988 return rc; 989 990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 991 from_kuid(&init_user_ns, auid), 992 from_kuid(&init_user_ns, uid), sessionid); 993 if (sid) { 994 if (security_secid_to_secctx(sid, &ctx, &len)) { 995 audit_log_format(ab, " obj=(none)"); 996 rc = 1; 997 } else { 998 audit_log_format(ab, " obj=%s", ctx); 999 security_release_secctx(ctx, len); 1000 } 1001 } 1002 audit_log_format(ab, " ocomm="); 1003 audit_log_untrustedstring(ab, comm); 1004 audit_log_end(ab); 1005 1006 return rc; 1007 } 1008 1009 static void audit_log_execve_info(struct audit_context *context, 1010 struct audit_buffer **ab) 1011 { 1012 long len_max; 1013 long len_rem; 1014 long len_full; 1015 long len_buf; 1016 long len_abuf = 0; 1017 long len_tmp; 1018 bool require_data; 1019 bool encode; 1020 unsigned int iter; 1021 unsigned int arg; 1022 char *buf_head; 1023 char *buf; 1024 const char __user *p = (const char __user *)current->mm->arg_start; 1025 1026 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1027 * data we put in the audit record for this argument (see the 1028 * code below) ... at this point in time 96 is plenty */ 1029 char abuf[96]; 1030 1031 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1032 * current value of 7500 is not as important as the fact that it 1033 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1034 * room if we go over a little bit in the logging below */ 1035 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1036 len_max = MAX_EXECVE_AUDIT_LEN; 1037 1038 /* scratch buffer to hold the userspace args */ 1039 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1040 if (!buf_head) { 1041 audit_panic("out of memory for argv string"); 1042 return; 1043 } 1044 buf = buf_head; 1045 1046 audit_log_format(*ab, "argc=%d", context->execve.argc); 1047 1048 len_rem = len_max; 1049 len_buf = 0; 1050 len_full = 0; 1051 require_data = true; 1052 encode = false; 1053 iter = 0; 1054 arg = 0; 1055 do { 1056 /* NOTE: we don't ever want to trust this value for anything 1057 * serious, but the audit record format insists we 1058 * provide an argument length for really long arguments, 1059 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1060 * to use strncpy_from_user() to obtain this value for 1061 * recording in the log, although we don't use it 1062 * anywhere here to avoid a double-fetch problem */ 1063 if (len_full == 0) 1064 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1065 1066 /* read more data from userspace */ 1067 if (require_data) { 1068 /* can we make more room in the buffer? */ 1069 if (buf != buf_head) { 1070 memmove(buf_head, buf, len_buf); 1071 buf = buf_head; 1072 } 1073 1074 /* fetch as much as we can of the argument */ 1075 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1076 len_max - len_buf); 1077 if (len_tmp == -EFAULT) { 1078 /* unable to copy from userspace */ 1079 send_sig(SIGKILL, current, 0); 1080 goto out; 1081 } else if (len_tmp == (len_max - len_buf)) { 1082 /* buffer is not large enough */ 1083 require_data = true; 1084 /* NOTE: if we are going to span multiple 1085 * buffers force the encoding so we stand 1086 * a chance at a sane len_full value and 1087 * consistent record encoding */ 1088 encode = true; 1089 len_full = len_full * 2; 1090 p += len_tmp; 1091 } else { 1092 require_data = false; 1093 if (!encode) 1094 encode = audit_string_contains_control( 1095 buf, len_tmp); 1096 /* try to use a trusted value for len_full */ 1097 if (len_full < len_max) 1098 len_full = (encode ? 1099 len_tmp * 2 : len_tmp); 1100 p += len_tmp + 1; 1101 } 1102 len_buf += len_tmp; 1103 buf_head[len_buf] = '\0'; 1104 1105 /* length of the buffer in the audit record? */ 1106 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1107 } 1108 1109 /* write as much as we can to the audit log */ 1110 if (len_buf > 0) { 1111 /* NOTE: some magic numbers here - basically if we 1112 * can't fit a reasonable amount of data into the 1113 * existing audit buffer, flush it and start with 1114 * a new buffer */ 1115 if ((sizeof(abuf) + 8) > len_rem) { 1116 len_rem = len_max; 1117 audit_log_end(*ab); 1118 *ab = audit_log_start(context, 1119 GFP_KERNEL, AUDIT_EXECVE); 1120 if (!*ab) 1121 goto out; 1122 } 1123 1124 /* create the non-arg portion of the arg record */ 1125 len_tmp = 0; 1126 if (require_data || (iter > 0) || 1127 ((len_abuf + sizeof(abuf)) > len_rem)) { 1128 if (iter == 0) { 1129 len_tmp += snprintf(&abuf[len_tmp], 1130 sizeof(abuf) - len_tmp, 1131 " a%d_len=%lu", 1132 arg, len_full); 1133 } 1134 len_tmp += snprintf(&abuf[len_tmp], 1135 sizeof(abuf) - len_tmp, 1136 " a%d[%d]=", arg, iter++); 1137 } else 1138 len_tmp += snprintf(&abuf[len_tmp], 1139 sizeof(abuf) - len_tmp, 1140 " a%d=", arg); 1141 WARN_ON(len_tmp >= sizeof(abuf)); 1142 abuf[sizeof(abuf) - 1] = '\0'; 1143 1144 /* log the arg in the audit record */ 1145 audit_log_format(*ab, "%s", abuf); 1146 len_rem -= len_tmp; 1147 len_tmp = len_buf; 1148 if (encode) { 1149 if (len_abuf > len_rem) 1150 len_tmp = len_rem / 2; /* encoding */ 1151 audit_log_n_hex(*ab, buf, len_tmp); 1152 len_rem -= len_tmp * 2; 1153 len_abuf -= len_tmp * 2; 1154 } else { 1155 if (len_abuf > len_rem) 1156 len_tmp = len_rem - 2; /* quotes */ 1157 audit_log_n_string(*ab, buf, len_tmp); 1158 len_rem -= len_tmp + 2; 1159 /* don't subtract the "2" because we still need 1160 * to add quotes to the remaining string */ 1161 len_abuf -= len_tmp; 1162 } 1163 len_buf -= len_tmp; 1164 buf += len_tmp; 1165 } 1166 1167 /* ready to move to the next argument? */ 1168 if ((len_buf == 0) && !require_data) { 1169 arg++; 1170 iter = 0; 1171 len_full = 0; 1172 require_data = true; 1173 encode = false; 1174 } 1175 } while (arg < context->execve.argc); 1176 1177 /* NOTE: the caller handles the final audit_log_end() call */ 1178 1179 out: 1180 kfree(buf_head); 1181 } 1182 1183 static void show_special(struct audit_context *context, int *call_panic) 1184 { 1185 struct audit_buffer *ab; 1186 int i; 1187 1188 ab = audit_log_start(context, GFP_KERNEL, context->type); 1189 if (!ab) 1190 return; 1191 1192 switch (context->type) { 1193 case AUDIT_SOCKETCALL: { 1194 int nargs = context->socketcall.nargs; 1195 audit_log_format(ab, "nargs=%d", nargs); 1196 for (i = 0; i < nargs; i++) 1197 audit_log_format(ab, " a%d=%lx", i, 1198 context->socketcall.args[i]); 1199 break; } 1200 case AUDIT_IPC: { 1201 u32 osid = context->ipc.osid; 1202 1203 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1204 from_kuid(&init_user_ns, context->ipc.uid), 1205 from_kgid(&init_user_ns, context->ipc.gid), 1206 context->ipc.mode); 1207 if (osid) { 1208 char *ctx = NULL; 1209 u32 len; 1210 if (security_secid_to_secctx(osid, &ctx, &len)) { 1211 audit_log_format(ab, " osid=%u", osid); 1212 *call_panic = 1; 1213 } else { 1214 audit_log_format(ab, " obj=%s", ctx); 1215 security_release_secctx(ctx, len); 1216 } 1217 } 1218 if (context->ipc.has_perm) { 1219 audit_log_end(ab); 1220 ab = audit_log_start(context, GFP_KERNEL, 1221 AUDIT_IPC_SET_PERM); 1222 if (unlikely(!ab)) 1223 return; 1224 audit_log_format(ab, 1225 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1226 context->ipc.qbytes, 1227 context->ipc.perm_uid, 1228 context->ipc.perm_gid, 1229 context->ipc.perm_mode); 1230 } 1231 break; } 1232 case AUDIT_MQ_OPEN: 1233 audit_log_format(ab, 1234 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1235 "mq_msgsize=%ld mq_curmsgs=%ld", 1236 context->mq_open.oflag, context->mq_open.mode, 1237 context->mq_open.attr.mq_flags, 1238 context->mq_open.attr.mq_maxmsg, 1239 context->mq_open.attr.mq_msgsize, 1240 context->mq_open.attr.mq_curmsgs); 1241 break; 1242 case AUDIT_MQ_SENDRECV: 1243 audit_log_format(ab, 1244 "mqdes=%d msg_len=%zd msg_prio=%u " 1245 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1246 context->mq_sendrecv.mqdes, 1247 context->mq_sendrecv.msg_len, 1248 context->mq_sendrecv.msg_prio, 1249 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1250 context->mq_sendrecv.abs_timeout.tv_nsec); 1251 break; 1252 case AUDIT_MQ_NOTIFY: 1253 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1254 context->mq_notify.mqdes, 1255 context->mq_notify.sigev_signo); 1256 break; 1257 case AUDIT_MQ_GETSETATTR: { 1258 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1259 audit_log_format(ab, 1260 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1261 "mq_curmsgs=%ld ", 1262 context->mq_getsetattr.mqdes, 1263 attr->mq_flags, attr->mq_maxmsg, 1264 attr->mq_msgsize, attr->mq_curmsgs); 1265 break; } 1266 case AUDIT_CAPSET: 1267 audit_log_format(ab, "pid=%d", context->capset.pid); 1268 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1269 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1270 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1271 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1272 break; 1273 case AUDIT_MMAP: 1274 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1275 context->mmap.flags); 1276 break; 1277 case AUDIT_EXECVE: 1278 audit_log_execve_info(context, &ab); 1279 break; 1280 case AUDIT_KERN_MODULE: 1281 audit_log_format(ab, "name="); 1282 if (context->module.name) { 1283 audit_log_untrustedstring(ab, context->module.name); 1284 kfree(context->module.name); 1285 } else 1286 audit_log_format(ab, "(null)"); 1287 1288 break; 1289 } 1290 audit_log_end(ab); 1291 } 1292 1293 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1294 { 1295 char *end = proctitle + len - 1; 1296 while (end > proctitle && !isprint(*end)) 1297 end--; 1298 1299 /* catch the case where proctitle is only 1 non-print character */ 1300 len = end - proctitle + 1; 1301 len -= isprint(proctitle[len-1]) == 0; 1302 return len; 1303 } 1304 1305 static void audit_log_proctitle(struct task_struct *tsk, 1306 struct audit_context *context) 1307 { 1308 int res; 1309 char *buf; 1310 char *msg = "(null)"; 1311 int len = strlen(msg); 1312 struct audit_buffer *ab; 1313 1314 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1315 if (!ab) 1316 return; /* audit_panic or being filtered */ 1317 1318 audit_log_format(ab, "proctitle="); 1319 1320 /* Not cached */ 1321 if (!context->proctitle.value) { 1322 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1323 if (!buf) 1324 goto out; 1325 /* Historically called this from procfs naming */ 1326 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1327 if (res == 0) { 1328 kfree(buf); 1329 goto out; 1330 } 1331 res = audit_proctitle_rtrim(buf, res); 1332 if (res == 0) { 1333 kfree(buf); 1334 goto out; 1335 } 1336 context->proctitle.value = buf; 1337 context->proctitle.len = res; 1338 } 1339 msg = context->proctitle.value; 1340 len = context->proctitle.len; 1341 out: 1342 audit_log_n_untrustedstring(ab, msg, len); 1343 audit_log_end(ab); 1344 } 1345 1346 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1347 { 1348 int i, call_panic = 0; 1349 struct audit_buffer *ab; 1350 struct audit_aux_data *aux; 1351 struct audit_names *n; 1352 1353 /* tsk == current */ 1354 context->personality = tsk->personality; 1355 1356 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1357 if (!ab) 1358 return; /* audit_panic has been called */ 1359 audit_log_format(ab, "arch=%x syscall=%d", 1360 context->arch, context->major); 1361 if (context->personality != PER_LINUX) 1362 audit_log_format(ab, " per=%lx", context->personality); 1363 if (context->return_valid) 1364 audit_log_format(ab, " success=%s exit=%ld", 1365 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1366 context->return_code); 1367 1368 audit_log_format(ab, 1369 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1370 context->argv[0], 1371 context->argv[1], 1372 context->argv[2], 1373 context->argv[3], 1374 context->name_count); 1375 1376 audit_log_task_info(ab, tsk); 1377 audit_log_key(ab, context->filterkey); 1378 audit_log_end(ab); 1379 1380 for (aux = context->aux; aux; aux = aux->next) { 1381 1382 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1383 if (!ab) 1384 continue; /* audit_panic has been called */ 1385 1386 switch (aux->type) { 1387 1388 case AUDIT_BPRM_FCAPS: { 1389 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1390 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1391 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1392 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1393 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1394 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1395 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1396 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1397 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1398 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1399 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1400 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1401 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1402 break; } 1403 1404 } 1405 audit_log_end(ab); 1406 } 1407 1408 if (context->type) 1409 show_special(context, &call_panic); 1410 1411 if (context->fds[0] >= 0) { 1412 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1413 if (ab) { 1414 audit_log_format(ab, "fd0=%d fd1=%d", 1415 context->fds[0], context->fds[1]); 1416 audit_log_end(ab); 1417 } 1418 } 1419 1420 if (context->sockaddr_len) { 1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1422 if (ab) { 1423 audit_log_format(ab, "saddr="); 1424 audit_log_n_hex(ab, (void *)context->sockaddr, 1425 context->sockaddr_len); 1426 audit_log_end(ab); 1427 } 1428 } 1429 1430 for (aux = context->aux_pids; aux; aux = aux->next) { 1431 struct audit_aux_data_pids *axs = (void *)aux; 1432 1433 for (i = 0; i < axs->pid_count; i++) 1434 if (audit_log_pid_context(context, axs->target_pid[i], 1435 axs->target_auid[i], 1436 axs->target_uid[i], 1437 axs->target_sessionid[i], 1438 axs->target_sid[i], 1439 axs->target_comm[i])) 1440 call_panic = 1; 1441 } 1442 1443 if (context->target_pid && 1444 audit_log_pid_context(context, context->target_pid, 1445 context->target_auid, context->target_uid, 1446 context->target_sessionid, 1447 context->target_sid, context->target_comm)) 1448 call_panic = 1; 1449 1450 if (context->pwd.dentry && context->pwd.mnt) { 1451 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1452 if (ab) { 1453 audit_log_d_path(ab, "cwd=", &context->pwd); 1454 audit_log_end(ab); 1455 } 1456 } 1457 1458 i = 0; 1459 list_for_each_entry(n, &context->names_list, list) { 1460 if (n->hidden) 1461 continue; 1462 audit_log_name(context, n, NULL, i++, &call_panic); 1463 } 1464 1465 audit_log_proctitle(tsk, context); 1466 1467 /* Send end of event record to help user space know we are finished */ 1468 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1469 if (ab) 1470 audit_log_end(ab); 1471 if (call_panic) 1472 audit_panic("error converting sid to string"); 1473 } 1474 1475 /** 1476 * __audit_free - free a per-task audit context 1477 * @tsk: task whose audit context block to free 1478 * 1479 * Called from copy_process and do_exit 1480 */ 1481 void __audit_free(struct task_struct *tsk) 1482 { 1483 struct audit_context *context; 1484 1485 context = audit_take_context(tsk, 0, 0); 1486 if (!context) 1487 return; 1488 1489 /* Check for system calls that do not go through the exit 1490 * function (e.g., exit_group), then free context block. 1491 * We use GFP_ATOMIC here because we might be doing this 1492 * in the context of the idle thread */ 1493 /* that can happen only if we are called from do_exit() */ 1494 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1495 audit_log_exit(context, tsk); 1496 if (!list_empty(&context->killed_trees)) 1497 audit_kill_trees(&context->killed_trees); 1498 1499 audit_free_context(context); 1500 } 1501 1502 /** 1503 * __audit_syscall_entry - fill in an audit record at syscall entry 1504 * @major: major syscall type (function) 1505 * @a1: additional syscall register 1 1506 * @a2: additional syscall register 2 1507 * @a3: additional syscall register 3 1508 * @a4: additional syscall register 4 1509 * 1510 * Fill in audit context at syscall entry. This only happens if the 1511 * audit context was created when the task was created and the state or 1512 * filters demand the audit context be built. If the state from the 1513 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1514 * then the record will be written at syscall exit time (otherwise, it 1515 * will only be written if another part of the kernel requests that it 1516 * be written). 1517 */ 1518 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1519 unsigned long a3, unsigned long a4) 1520 { 1521 struct audit_context *context = audit_context(); 1522 enum audit_state state; 1523 1524 if (!audit_enabled || !context) 1525 return; 1526 1527 BUG_ON(context->in_syscall || context->name_count); 1528 1529 state = context->state; 1530 if (state == AUDIT_DISABLED) 1531 return; 1532 1533 context->dummy = !audit_n_rules; 1534 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1535 context->prio = 0; 1536 if (auditd_test_task(current)) 1537 return; 1538 } 1539 1540 context->arch = syscall_get_arch(); 1541 context->major = major; 1542 context->argv[0] = a1; 1543 context->argv[1] = a2; 1544 context->argv[2] = a3; 1545 context->argv[3] = a4; 1546 context->serial = 0; 1547 context->ctime = current_kernel_time64(); 1548 context->in_syscall = 1; 1549 context->current_state = state; 1550 context->ppid = 0; 1551 } 1552 1553 /** 1554 * __audit_syscall_exit - deallocate audit context after a system call 1555 * @success: success value of the syscall 1556 * @return_code: return value of the syscall 1557 * 1558 * Tear down after system call. If the audit context has been marked as 1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1560 * filtering, or because some other part of the kernel wrote an audit 1561 * message), then write out the syscall information. In call cases, 1562 * free the names stored from getname(). 1563 */ 1564 void __audit_syscall_exit(int success, long return_code) 1565 { 1566 struct audit_context *context; 1567 1568 if (success) 1569 success = AUDITSC_SUCCESS; 1570 else 1571 success = AUDITSC_FAILURE; 1572 1573 context = audit_take_context(current, success, return_code); 1574 if (!context) 1575 return; 1576 1577 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1578 audit_log_exit(context, current); 1579 1580 context->in_syscall = 0; 1581 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1582 1583 if (!list_empty(&context->killed_trees)) 1584 audit_kill_trees(&context->killed_trees); 1585 1586 audit_free_names(context); 1587 unroll_tree_refs(context, NULL, 0); 1588 audit_free_aux(context); 1589 context->aux = NULL; 1590 context->aux_pids = NULL; 1591 context->target_pid = 0; 1592 context->target_sid = 0; 1593 context->sockaddr_len = 0; 1594 context->type = 0; 1595 context->fds[0] = -1; 1596 if (context->state != AUDIT_RECORD_CONTEXT) { 1597 kfree(context->filterkey); 1598 context->filterkey = NULL; 1599 } 1600 audit_set_context(current, context); 1601 } 1602 1603 static inline void handle_one(const struct inode *inode) 1604 { 1605 #ifdef CONFIG_AUDIT_TREE 1606 struct audit_context *context; 1607 struct audit_tree_refs *p; 1608 struct audit_chunk *chunk; 1609 int count; 1610 if (likely(!inode->i_fsnotify_marks)) 1611 return; 1612 context = audit_context(); 1613 p = context->trees; 1614 count = context->tree_count; 1615 rcu_read_lock(); 1616 chunk = audit_tree_lookup(inode); 1617 rcu_read_unlock(); 1618 if (!chunk) 1619 return; 1620 if (likely(put_tree_ref(context, chunk))) 1621 return; 1622 if (unlikely(!grow_tree_refs(context))) { 1623 pr_warn("out of memory, audit has lost a tree reference\n"); 1624 audit_set_auditable(context); 1625 audit_put_chunk(chunk); 1626 unroll_tree_refs(context, p, count); 1627 return; 1628 } 1629 put_tree_ref(context, chunk); 1630 #endif 1631 } 1632 1633 static void handle_path(const struct dentry *dentry) 1634 { 1635 #ifdef CONFIG_AUDIT_TREE 1636 struct audit_context *context; 1637 struct audit_tree_refs *p; 1638 const struct dentry *d, *parent; 1639 struct audit_chunk *drop; 1640 unsigned long seq; 1641 int count; 1642 1643 context = audit_context(); 1644 p = context->trees; 1645 count = context->tree_count; 1646 retry: 1647 drop = NULL; 1648 d = dentry; 1649 rcu_read_lock(); 1650 seq = read_seqbegin(&rename_lock); 1651 for(;;) { 1652 struct inode *inode = d_backing_inode(d); 1653 if (inode && unlikely(inode->i_fsnotify_marks)) { 1654 struct audit_chunk *chunk; 1655 chunk = audit_tree_lookup(inode); 1656 if (chunk) { 1657 if (unlikely(!put_tree_ref(context, chunk))) { 1658 drop = chunk; 1659 break; 1660 } 1661 } 1662 } 1663 parent = d->d_parent; 1664 if (parent == d) 1665 break; 1666 d = parent; 1667 } 1668 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1669 rcu_read_unlock(); 1670 if (!drop) { 1671 /* just a race with rename */ 1672 unroll_tree_refs(context, p, count); 1673 goto retry; 1674 } 1675 audit_put_chunk(drop); 1676 if (grow_tree_refs(context)) { 1677 /* OK, got more space */ 1678 unroll_tree_refs(context, p, count); 1679 goto retry; 1680 } 1681 /* too bad */ 1682 pr_warn("out of memory, audit has lost a tree reference\n"); 1683 unroll_tree_refs(context, p, count); 1684 audit_set_auditable(context); 1685 return; 1686 } 1687 rcu_read_unlock(); 1688 #endif 1689 } 1690 1691 static struct audit_names *audit_alloc_name(struct audit_context *context, 1692 unsigned char type) 1693 { 1694 struct audit_names *aname; 1695 1696 if (context->name_count < AUDIT_NAMES) { 1697 aname = &context->preallocated_names[context->name_count]; 1698 memset(aname, 0, sizeof(*aname)); 1699 } else { 1700 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1701 if (!aname) 1702 return NULL; 1703 aname->should_free = true; 1704 } 1705 1706 aname->ino = AUDIT_INO_UNSET; 1707 aname->type = type; 1708 list_add_tail(&aname->list, &context->names_list); 1709 1710 context->name_count++; 1711 return aname; 1712 } 1713 1714 /** 1715 * __audit_reusename - fill out filename with info from existing entry 1716 * @uptr: userland ptr to pathname 1717 * 1718 * Search the audit_names list for the current audit context. If there is an 1719 * existing entry with a matching "uptr" then return the filename 1720 * associated with that audit_name. If not, return NULL. 1721 */ 1722 struct filename * 1723 __audit_reusename(const __user char *uptr) 1724 { 1725 struct audit_context *context = audit_context(); 1726 struct audit_names *n; 1727 1728 list_for_each_entry(n, &context->names_list, list) { 1729 if (!n->name) 1730 continue; 1731 if (n->name->uptr == uptr) { 1732 n->name->refcnt++; 1733 return n->name; 1734 } 1735 } 1736 return NULL; 1737 } 1738 1739 /** 1740 * __audit_getname - add a name to the list 1741 * @name: name to add 1742 * 1743 * Add a name to the list of audit names for this context. 1744 * Called from fs/namei.c:getname(). 1745 */ 1746 void __audit_getname(struct filename *name) 1747 { 1748 struct audit_context *context = audit_context(); 1749 struct audit_names *n; 1750 1751 if (!context->in_syscall) 1752 return; 1753 1754 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1755 if (!n) 1756 return; 1757 1758 n->name = name; 1759 n->name_len = AUDIT_NAME_FULL; 1760 name->aname = n; 1761 name->refcnt++; 1762 1763 if (!context->pwd.dentry) 1764 get_fs_pwd(current->fs, &context->pwd); 1765 } 1766 1767 /** 1768 * __audit_inode - store the inode and device from a lookup 1769 * @name: name being audited 1770 * @dentry: dentry being audited 1771 * @flags: attributes for this particular entry 1772 */ 1773 void __audit_inode(struct filename *name, const struct dentry *dentry, 1774 unsigned int flags) 1775 { 1776 struct audit_context *context = audit_context(); 1777 struct inode *inode = d_backing_inode(dentry); 1778 struct audit_names *n; 1779 bool parent = flags & AUDIT_INODE_PARENT; 1780 1781 if (!context->in_syscall) 1782 return; 1783 1784 if (!name) 1785 goto out_alloc; 1786 1787 /* 1788 * If we have a pointer to an audit_names entry already, then we can 1789 * just use it directly if the type is correct. 1790 */ 1791 n = name->aname; 1792 if (n) { 1793 if (parent) { 1794 if (n->type == AUDIT_TYPE_PARENT || 1795 n->type == AUDIT_TYPE_UNKNOWN) 1796 goto out; 1797 } else { 1798 if (n->type != AUDIT_TYPE_PARENT) 1799 goto out; 1800 } 1801 } 1802 1803 list_for_each_entry_reverse(n, &context->names_list, list) { 1804 if (n->ino) { 1805 /* valid inode number, use that for the comparison */ 1806 if (n->ino != inode->i_ino || 1807 n->dev != inode->i_sb->s_dev) 1808 continue; 1809 } else if (n->name) { 1810 /* inode number has not been set, check the name */ 1811 if (strcmp(n->name->name, name->name)) 1812 continue; 1813 } else 1814 /* no inode and no name (?!) ... this is odd ... */ 1815 continue; 1816 1817 /* match the correct record type */ 1818 if (parent) { 1819 if (n->type == AUDIT_TYPE_PARENT || 1820 n->type == AUDIT_TYPE_UNKNOWN) 1821 goto out; 1822 } else { 1823 if (n->type != AUDIT_TYPE_PARENT) 1824 goto out; 1825 } 1826 } 1827 1828 out_alloc: 1829 /* unable to find an entry with both a matching name and type */ 1830 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1831 if (!n) 1832 return; 1833 if (name) { 1834 n->name = name; 1835 name->refcnt++; 1836 } 1837 1838 out: 1839 if (parent) { 1840 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1841 n->type = AUDIT_TYPE_PARENT; 1842 if (flags & AUDIT_INODE_HIDDEN) 1843 n->hidden = true; 1844 } else { 1845 n->name_len = AUDIT_NAME_FULL; 1846 n->type = AUDIT_TYPE_NORMAL; 1847 } 1848 handle_path(dentry); 1849 audit_copy_inode(n, dentry, inode); 1850 } 1851 1852 void __audit_file(const struct file *file) 1853 { 1854 __audit_inode(NULL, file->f_path.dentry, 0); 1855 } 1856 1857 /** 1858 * __audit_inode_child - collect inode info for created/removed objects 1859 * @parent: inode of dentry parent 1860 * @dentry: dentry being audited 1861 * @type: AUDIT_TYPE_* value that we're looking for 1862 * 1863 * For syscalls that create or remove filesystem objects, audit_inode 1864 * can only collect information for the filesystem object's parent. 1865 * This call updates the audit context with the child's information. 1866 * Syscalls that create a new filesystem object must be hooked after 1867 * the object is created. Syscalls that remove a filesystem object 1868 * must be hooked prior, in order to capture the target inode during 1869 * unsuccessful attempts. 1870 */ 1871 void __audit_inode_child(struct inode *parent, 1872 const struct dentry *dentry, 1873 const unsigned char type) 1874 { 1875 struct audit_context *context = audit_context(); 1876 struct inode *inode = d_backing_inode(dentry); 1877 const char *dname = dentry->d_name.name; 1878 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1879 struct audit_entry *e; 1880 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 1881 int i; 1882 1883 if (!context->in_syscall) 1884 return; 1885 1886 rcu_read_lock(); 1887 if (!list_empty(list)) { 1888 list_for_each_entry_rcu(e, list, list) { 1889 for (i = 0; i < e->rule.field_count; i++) { 1890 struct audit_field *f = &e->rule.fields[i]; 1891 1892 if (f->type == AUDIT_FSTYPE) { 1893 if (audit_comparator(parent->i_sb->s_magic, 1894 f->op, f->val)) { 1895 if (e->rule.action == AUDIT_NEVER) { 1896 rcu_read_unlock(); 1897 return; 1898 } 1899 } 1900 } 1901 } 1902 } 1903 } 1904 rcu_read_unlock(); 1905 1906 if (inode) 1907 handle_one(inode); 1908 1909 /* look for a parent entry first */ 1910 list_for_each_entry(n, &context->names_list, list) { 1911 if (!n->name || 1912 (n->type != AUDIT_TYPE_PARENT && 1913 n->type != AUDIT_TYPE_UNKNOWN)) 1914 continue; 1915 1916 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1917 !audit_compare_dname_path(dname, 1918 n->name->name, n->name_len)) { 1919 if (n->type == AUDIT_TYPE_UNKNOWN) 1920 n->type = AUDIT_TYPE_PARENT; 1921 found_parent = n; 1922 break; 1923 } 1924 } 1925 1926 /* is there a matching child entry? */ 1927 list_for_each_entry(n, &context->names_list, list) { 1928 /* can only match entries that have a name */ 1929 if (!n->name || 1930 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1931 continue; 1932 1933 if (!strcmp(dname, n->name->name) || 1934 !audit_compare_dname_path(dname, n->name->name, 1935 found_parent ? 1936 found_parent->name_len : 1937 AUDIT_NAME_FULL)) { 1938 if (n->type == AUDIT_TYPE_UNKNOWN) 1939 n->type = type; 1940 found_child = n; 1941 break; 1942 } 1943 } 1944 1945 if (!found_parent) { 1946 /* create a new, "anonymous" parent record */ 1947 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1948 if (!n) 1949 return; 1950 audit_copy_inode(n, NULL, parent); 1951 } 1952 1953 if (!found_child) { 1954 found_child = audit_alloc_name(context, type); 1955 if (!found_child) 1956 return; 1957 1958 /* Re-use the name belonging to the slot for a matching parent 1959 * directory. All names for this context are relinquished in 1960 * audit_free_names() */ 1961 if (found_parent) { 1962 found_child->name = found_parent->name; 1963 found_child->name_len = AUDIT_NAME_FULL; 1964 found_child->name->refcnt++; 1965 } 1966 } 1967 1968 if (inode) 1969 audit_copy_inode(found_child, dentry, inode); 1970 else 1971 found_child->ino = AUDIT_INO_UNSET; 1972 } 1973 EXPORT_SYMBOL_GPL(__audit_inode_child); 1974 1975 /** 1976 * auditsc_get_stamp - get local copies of audit_context values 1977 * @ctx: audit_context for the task 1978 * @t: timespec64 to store time recorded in the audit_context 1979 * @serial: serial value that is recorded in the audit_context 1980 * 1981 * Also sets the context as auditable. 1982 */ 1983 int auditsc_get_stamp(struct audit_context *ctx, 1984 struct timespec64 *t, unsigned int *serial) 1985 { 1986 if (!ctx->in_syscall) 1987 return 0; 1988 if (!ctx->serial) 1989 ctx->serial = audit_serial(); 1990 t->tv_sec = ctx->ctime.tv_sec; 1991 t->tv_nsec = ctx->ctime.tv_nsec; 1992 *serial = ctx->serial; 1993 if (!ctx->prio) { 1994 ctx->prio = 1; 1995 ctx->current_state = AUDIT_RECORD_CONTEXT; 1996 } 1997 return 1; 1998 } 1999 2000 /* global counter which is incremented every time something logs in */ 2001 static atomic_t session_id = ATOMIC_INIT(0); 2002 2003 static int audit_set_loginuid_perm(kuid_t loginuid) 2004 { 2005 /* if we are unset, we don't need privs */ 2006 if (!audit_loginuid_set(current)) 2007 return 0; 2008 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2009 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2010 return -EPERM; 2011 /* it is set, you need permission */ 2012 if (!capable(CAP_AUDIT_CONTROL)) 2013 return -EPERM; 2014 /* reject if this is not an unset and we don't allow that */ 2015 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 2016 return -EPERM; 2017 return 0; 2018 } 2019 2020 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2021 unsigned int oldsessionid, unsigned int sessionid, 2022 int rc) 2023 { 2024 struct audit_buffer *ab; 2025 uid_t uid, oldloginuid, loginuid; 2026 struct tty_struct *tty; 2027 2028 if (!audit_enabled) 2029 return; 2030 2031 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2032 if (!ab) 2033 return; 2034 2035 uid = from_kuid(&init_user_ns, task_uid(current)); 2036 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2037 loginuid = from_kuid(&init_user_ns, kloginuid), 2038 tty = audit_get_tty(current); 2039 2040 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2041 audit_log_task_context(ab); 2042 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2043 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2044 oldsessionid, sessionid, !rc); 2045 audit_put_tty(tty); 2046 audit_log_end(ab); 2047 } 2048 2049 /** 2050 * audit_set_loginuid - set current task's audit_context loginuid 2051 * @loginuid: loginuid value 2052 * 2053 * Returns 0. 2054 * 2055 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2056 */ 2057 int audit_set_loginuid(kuid_t loginuid) 2058 { 2059 struct task_struct *task = current; 2060 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2061 kuid_t oldloginuid; 2062 int rc; 2063 2064 oldloginuid = audit_get_loginuid(current); 2065 oldsessionid = audit_get_sessionid(current); 2066 2067 rc = audit_set_loginuid_perm(loginuid); 2068 if (rc) 2069 goto out; 2070 2071 /* are we setting or clearing? */ 2072 if (uid_valid(loginuid)) { 2073 sessionid = (unsigned int)atomic_inc_return(&session_id); 2074 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2075 sessionid = (unsigned int)atomic_inc_return(&session_id); 2076 } 2077 2078 task->sessionid = sessionid; 2079 task->loginuid = loginuid; 2080 out: 2081 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2082 return rc; 2083 } 2084 2085 /** 2086 * __audit_mq_open - record audit data for a POSIX MQ open 2087 * @oflag: open flag 2088 * @mode: mode bits 2089 * @attr: queue attributes 2090 * 2091 */ 2092 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2093 { 2094 struct audit_context *context = audit_context(); 2095 2096 if (attr) 2097 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2098 else 2099 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2100 2101 context->mq_open.oflag = oflag; 2102 context->mq_open.mode = mode; 2103 2104 context->type = AUDIT_MQ_OPEN; 2105 } 2106 2107 /** 2108 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2109 * @mqdes: MQ descriptor 2110 * @msg_len: Message length 2111 * @msg_prio: Message priority 2112 * @abs_timeout: Message timeout in absolute time 2113 * 2114 */ 2115 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2116 const struct timespec64 *abs_timeout) 2117 { 2118 struct audit_context *context = audit_context(); 2119 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2120 2121 if (abs_timeout) 2122 memcpy(p, abs_timeout, sizeof(*p)); 2123 else 2124 memset(p, 0, sizeof(*p)); 2125 2126 context->mq_sendrecv.mqdes = mqdes; 2127 context->mq_sendrecv.msg_len = msg_len; 2128 context->mq_sendrecv.msg_prio = msg_prio; 2129 2130 context->type = AUDIT_MQ_SENDRECV; 2131 } 2132 2133 /** 2134 * __audit_mq_notify - record audit data for a POSIX MQ notify 2135 * @mqdes: MQ descriptor 2136 * @notification: Notification event 2137 * 2138 */ 2139 2140 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2141 { 2142 struct audit_context *context = audit_context(); 2143 2144 if (notification) 2145 context->mq_notify.sigev_signo = notification->sigev_signo; 2146 else 2147 context->mq_notify.sigev_signo = 0; 2148 2149 context->mq_notify.mqdes = mqdes; 2150 context->type = AUDIT_MQ_NOTIFY; 2151 } 2152 2153 /** 2154 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2155 * @mqdes: MQ descriptor 2156 * @mqstat: MQ flags 2157 * 2158 */ 2159 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2160 { 2161 struct audit_context *context = audit_context(); 2162 context->mq_getsetattr.mqdes = mqdes; 2163 context->mq_getsetattr.mqstat = *mqstat; 2164 context->type = AUDIT_MQ_GETSETATTR; 2165 } 2166 2167 /** 2168 * __audit_ipc_obj - record audit data for ipc object 2169 * @ipcp: ipc permissions 2170 * 2171 */ 2172 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2173 { 2174 struct audit_context *context = audit_context(); 2175 context->ipc.uid = ipcp->uid; 2176 context->ipc.gid = ipcp->gid; 2177 context->ipc.mode = ipcp->mode; 2178 context->ipc.has_perm = 0; 2179 security_ipc_getsecid(ipcp, &context->ipc.osid); 2180 context->type = AUDIT_IPC; 2181 } 2182 2183 /** 2184 * __audit_ipc_set_perm - record audit data for new ipc permissions 2185 * @qbytes: msgq bytes 2186 * @uid: msgq user id 2187 * @gid: msgq group id 2188 * @mode: msgq mode (permissions) 2189 * 2190 * Called only after audit_ipc_obj(). 2191 */ 2192 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2193 { 2194 struct audit_context *context = audit_context(); 2195 2196 context->ipc.qbytes = qbytes; 2197 context->ipc.perm_uid = uid; 2198 context->ipc.perm_gid = gid; 2199 context->ipc.perm_mode = mode; 2200 context->ipc.has_perm = 1; 2201 } 2202 2203 void __audit_bprm(struct linux_binprm *bprm) 2204 { 2205 struct audit_context *context = audit_context(); 2206 2207 context->type = AUDIT_EXECVE; 2208 context->execve.argc = bprm->argc; 2209 } 2210 2211 2212 /** 2213 * __audit_socketcall - record audit data for sys_socketcall 2214 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2215 * @args: args array 2216 * 2217 */ 2218 int __audit_socketcall(int nargs, unsigned long *args) 2219 { 2220 struct audit_context *context = audit_context(); 2221 2222 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2223 return -EINVAL; 2224 context->type = AUDIT_SOCKETCALL; 2225 context->socketcall.nargs = nargs; 2226 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2227 return 0; 2228 } 2229 2230 /** 2231 * __audit_fd_pair - record audit data for pipe and socketpair 2232 * @fd1: the first file descriptor 2233 * @fd2: the second file descriptor 2234 * 2235 */ 2236 void __audit_fd_pair(int fd1, int fd2) 2237 { 2238 struct audit_context *context = audit_context(); 2239 context->fds[0] = fd1; 2240 context->fds[1] = fd2; 2241 } 2242 2243 /** 2244 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2245 * @len: data length in user space 2246 * @a: data address in kernel space 2247 * 2248 * Returns 0 for success or NULL context or < 0 on error. 2249 */ 2250 int __audit_sockaddr(int len, void *a) 2251 { 2252 struct audit_context *context = audit_context(); 2253 2254 if (!context->sockaddr) { 2255 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2256 if (!p) 2257 return -ENOMEM; 2258 context->sockaddr = p; 2259 } 2260 2261 context->sockaddr_len = len; 2262 memcpy(context->sockaddr, a, len); 2263 return 0; 2264 } 2265 2266 void __audit_ptrace(struct task_struct *t) 2267 { 2268 struct audit_context *context = audit_context(); 2269 2270 context->target_pid = task_tgid_nr(t); 2271 context->target_auid = audit_get_loginuid(t); 2272 context->target_uid = task_uid(t); 2273 context->target_sessionid = audit_get_sessionid(t); 2274 security_task_getsecid(t, &context->target_sid); 2275 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2276 } 2277 2278 /** 2279 * audit_signal_info - record signal info for shutting down audit subsystem 2280 * @sig: signal value 2281 * @t: task being signaled 2282 * 2283 * If the audit subsystem is being terminated, record the task (pid) 2284 * and uid that is doing that. 2285 */ 2286 int audit_signal_info(int sig, struct task_struct *t) 2287 { 2288 struct audit_aux_data_pids *axp; 2289 struct audit_context *ctx = audit_context(); 2290 kuid_t uid = current_uid(), auid, t_uid = task_uid(t); 2291 2292 if (auditd_test_task(t) && 2293 (sig == SIGTERM || sig == SIGHUP || 2294 sig == SIGUSR1 || sig == SIGUSR2)) { 2295 audit_sig_pid = task_tgid_nr(current); 2296 auid = audit_get_loginuid(current); 2297 if (uid_valid(auid)) 2298 audit_sig_uid = auid; 2299 else 2300 audit_sig_uid = uid; 2301 security_task_getsecid(current, &audit_sig_sid); 2302 } 2303 2304 if (!audit_signals || audit_dummy_context()) 2305 return 0; 2306 2307 /* optimize the common case by putting first signal recipient directly 2308 * in audit_context */ 2309 if (!ctx->target_pid) { 2310 ctx->target_pid = task_tgid_nr(t); 2311 ctx->target_auid = audit_get_loginuid(t); 2312 ctx->target_uid = t_uid; 2313 ctx->target_sessionid = audit_get_sessionid(t); 2314 security_task_getsecid(t, &ctx->target_sid); 2315 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2316 return 0; 2317 } 2318 2319 axp = (void *)ctx->aux_pids; 2320 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2321 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2322 if (!axp) 2323 return -ENOMEM; 2324 2325 axp->d.type = AUDIT_OBJ_PID; 2326 axp->d.next = ctx->aux_pids; 2327 ctx->aux_pids = (void *)axp; 2328 } 2329 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2330 2331 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2332 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2333 axp->target_uid[axp->pid_count] = t_uid; 2334 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2335 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2336 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2337 axp->pid_count++; 2338 2339 return 0; 2340 } 2341 2342 /** 2343 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2344 * @bprm: pointer to the bprm being processed 2345 * @new: the proposed new credentials 2346 * @old: the old credentials 2347 * 2348 * Simply check if the proc already has the caps given by the file and if not 2349 * store the priv escalation info for later auditing at the end of the syscall 2350 * 2351 * -Eric 2352 */ 2353 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2354 const struct cred *new, const struct cred *old) 2355 { 2356 struct audit_aux_data_bprm_fcaps *ax; 2357 struct audit_context *context = audit_context(); 2358 struct cpu_vfs_cap_data vcaps; 2359 2360 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2361 if (!ax) 2362 return -ENOMEM; 2363 2364 ax->d.type = AUDIT_BPRM_FCAPS; 2365 ax->d.next = context->aux; 2366 context->aux = (void *)ax; 2367 2368 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2369 2370 ax->fcap.permitted = vcaps.permitted; 2371 ax->fcap.inheritable = vcaps.inheritable; 2372 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2373 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2374 2375 ax->old_pcap.permitted = old->cap_permitted; 2376 ax->old_pcap.inheritable = old->cap_inheritable; 2377 ax->old_pcap.effective = old->cap_effective; 2378 ax->old_pcap.ambient = old->cap_ambient; 2379 2380 ax->new_pcap.permitted = new->cap_permitted; 2381 ax->new_pcap.inheritable = new->cap_inheritable; 2382 ax->new_pcap.effective = new->cap_effective; 2383 ax->new_pcap.ambient = new->cap_ambient; 2384 return 0; 2385 } 2386 2387 /** 2388 * __audit_log_capset - store information about the arguments to the capset syscall 2389 * @new: the new credentials 2390 * @old: the old (current) credentials 2391 * 2392 * Record the arguments userspace sent to sys_capset for later printing by the 2393 * audit system if applicable 2394 */ 2395 void __audit_log_capset(const struct cred *new, const struct cred *old) 2396 { 2397 struct audit_context *context = audit_context(); 2398 context->capset.pid = task_tgid_nr(current); 2399 context->capset.cap.effective = new->cap_effective; 2400 context->capset.cap.inheritable = new->cap_effective; 2401 context->capset.cap.permitted = new->cap_permitted; 2402 context->capset.cap.ambient = new->cap_ambient; 2403 context->type = AUDIT_CAPSET; 2404 } 2405 2406 void __audit_mmap_fd(int fd, int flags) 2407 { 2408 struct audit_context *context = audit_context(); 2409 context->mmap.fd = fd; 2410 context->mmap.flags = flags; 2411 context->type = AUDIT_MMAP; 2412 } 2413 2414 void __audit_log_kern_module(char *name) 2415 { 2416 struct audit_context *context = audit_context(); 2417 2418 context->module.name = kstrdup(name, GFP_KERNEL); 2419 if (!context->module.name) 2420 audit_log_lost("out of memory in __audit_log_kern_module"); 2421 context->type = AUDIT_KERN_MODULE; 2422 } 2423 2424 void __audit_fanotify(unsigned int response) 2425 { 2426 audit_log(audit_context(), GFP_KERNEL, 2427 AUDIT_FANOTIFY, "resp=%u", response); 2428 } 2429 2430 static void audit_log_task(struct audit_buffer *ab) 2431 { 2432 kuid_t auid, uid; 2433 kgid_t gid; 2434 unsigned int sessionid; 2435 char comm[sizeof(current->comm)]; 2436 2437 auid = audit_get_loginuid(current); 2438 sessionid = audit_get_sessionid(current); 2439 current_uid_gid(&uid, &gid); 2440 2441 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2442 from_kuid(&init_user_ns, auid), 2443 from_kuid(&init_user_ns, uid), 2444 from_kgid(&init_user_ns, gid), 2445 sessionid); 2446 audit_log_task_context(ab); 2447 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2448 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2449 audit_log_d_path_exe(ab, current->mm); 2450 } 2451 2452 /** 2453 * audit_core_dumps - record information about processes that end abnormally 2454 * @signr: signal value 2455 * 2456 * If a process ends with a core dump, something fishy is going on and we 2457 * should record the event for investigation. 2458 */ 2459 void audit_core_dumps(long signr) 2460 { 2461 struct audit_buffer *ab; 2462 2463 if (!audit_enabled) 2464 return; 2465 2466 if (signr == SIGQUIT) /* don't care for those */ 2467 return; 2468 2469 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2470 if (unlikely(!ab)) 2471 return; 2472 audit_log_task(ab); 2473 audit_log_format(ab, " sig=%ld res=1", signr); 2474 audit_log_end(ab); 2475 } 2476 2477 /** 2478 * audit_seccomp - record information about a seccomp action 2479 * @syscall: syscall number 2480 * @signr: signal value 2481 * @code: the seccomp action 2482 * 2483 * Record the information associated with a seccomp action. Event filtering for 2484 * seccomp actions that are not to be logged is done in seccomp_log(). 2485 * Therefore, this function forces auditing independent of the audit_enabled 2486 * and dummy context state because seccomp actions should be logged even when 2487 * audit is not in use. 2488 */ 2489 void audit_seccomp(unsigned long syscall, long signr, int code) 2490 { 2491 struct audit_buffer *ab; 2492 2493 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2494 if (unlikely(!ab)) 2495 return; 2496 audit_log_task(ab); 2497 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2498 signr, syscall_get_arch(), syscall, 2499 in_compat_syscall(), KSTK_EIP(current), code); 2500 audit_log_end(ab); 2501 } 2502 2503 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2504 int res) 2505 { 2506 struct audit_buffer *ab; 2507 2508 if (!audit_enabled) 2509 return; 2510 2511 ab = audit_log_start(audit_context(), GFP_KERNEL, 2512 AUDIT_CONFIG_CHANGE); 2513 if (unlikely(!ab)) 2514 return; 2515 2516 audit_log_format(ab, "op=seccomp-logging"); 2517 audit_log_format(ab, " actions=%s", names); 2518 audit_log_format(ab, " old-actions=%s", old_names); 2519 audit_log_format(ab, " res=%d", res); 2520 audit_log_end(ab); 2521 } 2522 2523 struct list_head *audit_killed_trees(void) 2524 { 2525 struct audit_context *ctx = audit_context(); 2526 if (likely(!ctx || !ctx->in_syscall)) 2527 return NULL; 2528 return &ctx->killed_trees; 2529 } 2530