xref: /openbmc/linux/kernel/auditsc.c (revision e8f6f3b4)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <uapi/linux/limits.h>
77 
78 #include "audit.h"
79 
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
84 
85 /* no execve audit message should be longer than this (userspace limits) */
86 #define MAX_EXECVE_AUDIT_LEN 7500
87 
88 /* max length to print of cmdline/proctitle value during audit */
89 #define MAX_PROCTITLE_AUDIT_LEN 128
90 
91 /* number of audit rules */
92 int audit_n_rules;
93 
94 /* determines whether we collect data for signals sent */
95 int audit_signals;
96 
97 struct audit_aux_data {
98 	struct audit_aux_data	*next;
99 	int			type;
100 };
101 
102 #define AUDIT_AUX_IPCPERM	0
103 
104 /* Number of target pids per aux struct. */
105 #define AUDIT_AUX_PIDS	16
106 
107 struct audit_aux_data_pids {
108 	struct audit_aux_data	d;
109 	pid_t			target_pid[AUDIT_AUX_PIDS];
110 	kuid_t			target_auid[AUDIT_AUX_PIDS];
111 	kuid_t			target_uid[AUDIT_AUX_PIDS];
112 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
113 	u32			target_sid[AUDIT_AUX_PIDS];
114 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115 	int			pid_count;
116 };
117 
118 struct audit_aux_data_bprm_fcaps {
119 	struct audit_aux_data	d;
120 	struct audit_cap_data	fcap;
121 	unsigned int		fcap_ver;
122 	struct audit_cap_data	old_pcap;
123 	struct audit_cap_data	new_pcap;
124 };
125 
126 struct audit_tree_refs {
127 	struct audit_tree_refs *next;
128 	struct audit_chunk *c[31];
129 };
130 
131 static int audit_match_perm(struct audit_context *ctx, int mask)
132 {
133 	unsigned n;
134 	if (unlikely(!ctx))
135 		return 0;
136 	n = ctx->major;
137 
138 	switch (audit_classify_syscall(ctx->arch, n)) {
139 	case 0:	/* native */
140 		if ((mask & AUDIT_PERM_WRITE) &&
141 		     audit_match_class(AUDIT_CLASS_WRITE, n))
142 			return 1;
143 		if ((mask & AUDIT_PERM_READ) &&
144 		     audit_match_class(AUDIT_CLASS_READ, n))
145 			return 1;
146 		if ((mask & AUDIT_PERM_ATTR) &&
147 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
148 			return 1;
149 		return 0;
150 	case 1: /* 32bit on biarch */
151 		if ((mask & AUDIT_PERM_WRITE) &&
152 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 			return 1;
154 		if ((mask & AUDIT_PERM_READ) &&
155 		     audit_match_class(AUDIT_CLASS_READ_32, n))
156 			return 1;
157 		if ((mask & AUDIT_PERM_ATTR) &&
158 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 			return 1;
160 		return 0;
161 	case 2: /* open */
162 		return mask & ACC_MODE(ctx->argv[1]);
163 	case 3: /* openat */
164 		return mask & ACC_MODE(ctx->argv[2]);
165 	case 4: /* socketcall */
166 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 	case 5: /* execve */
168 		return mask & AUDIT_PERM_EXEC;
169 	default:
170 		return 0;
171 	}
172 }
173 
174 static int audit_match_filetype(struct audit_context *ctx, int val)
175 {
176 	struct audit_names *n;
177 	umode_t mode = (umode_t)val;
178 
179 	if (unlikely(!ctx))
180 		return 0;
181 
182 	list_for_each_entry(n, &ctx->names_list, list) {
183 		if ((n->ino != -1) &&
184 		    ((n->mode & S_IFMT) == mode))
185 			return 1;
186 	}
187 
188 	return 0;
189 }
190 
191 /*
192  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193  * ->first_trees points to its beginning, ->trees - to the current end of data.
194  * ->tree_count is the number of free entries in array pointed to by ->trees.
195  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
197  * it's going to remain 1-element for almost any setup) until we free context itself.
198  * References in it _are_ dropped - at the same time we free/drop aux stuff.
199  */
200 
201 #ifdef CONFIG_AUDIT_TREE
202 static void audit_set_auditable(struct audit_context *ctx)
203 {
204 	if (!ctx->prio) {
205 		ctx->prio = 1;
206 		ctx->current_state = AUDIT_RECORD_CONTEXT;
207 	}
208 }
209 
210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211 {
212 	struct audit_tree_refs *p = ctx->trees;
213 	int left = ctx->tree_count;
214 	if (likely(left)) {
215 		p->c[--left] = chunk;
216 		ctx->tree_count = left;
217 		return 1;
218 	}
219 	if (!p)
220 		return 0;
221 	p = p->next;
222 	if (p) {
223 		p->c[30] = chunk;
224 		ctx->trees = p;
225 		ctx->tree_count = 30;
226 		return 1;
227 	}
228 	return 0;
229 }
230 
231 static int grow_tree_refs(struct audit_context *ctx)
232 {
233 	struct audit_tree_refs *p = ctx->trees;
234 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 	if (!ctx->trees) {
236 		ctx->trees = p;
237 		return 0;
238 	}
239 	if (p)
240 		p->next = ctx->trees;
241 	else
242 		ctx->first_trees = ctx->trees;
243 	ctx->tree_count = 31;
244 	return 1;
245 }
246 #endif
247 
248 static void unroll_tree_refs(struct audit_context *ctx,
249 		      struct audit_tree_refs *p, int count)
250 {
251 #ifdef CONFIG_AUDIT_TREE
252 	struct audit_tree_refs *q;
253 	int n;
254 	if (!p) {
255 		/* we started with empty chain */
256 		p = ctx->first_trees;
257 		count = 31;
258 		/* if the very first allocation has failed, nothing to do */
259 		if (!p)
260 			return;
261 	}
262 	n = count;
263 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 		while (n--) {
265 			audit_put_chunk(q->c[n]);
266 			q->c[n] = NULL;
267 		}
268 	}
269 	while (n-- > ctx->tree_count) {
270 		audit_put_chunk(q->c[n]);
271 		q->c[n] = NULL;
272 	}
273 	ctx->trees = p;
274 	ctx->tree_count = count;
275 #endif
276 }
277 
278 static void free_tree_refs(struct audit_context *ctx)
279 {
280 	struct audit_tree_refs *p, *q;
281 	for (p = ctx->first_trees; p; p = q) {
282 		q = p->next;
283 		kfree(p);
284 	}
285 }
286 
287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288 {
289 #ifdef CONFIG_AUDIT_TREE
290 	struct audit_tree_refs *p;
291 	int n;
292 	if (!tree)
293 		return 0;
294 	/* full ones */
295 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 		for (n = 0; n < 31; n++)
297 			if (audit_tree_match(p->c[n], tree))
298 				return 1;
299 	}
300 	/* partial */
301 	if (p) {
302 		for (n = ctx->tree_count; n < 31; n++)
303 			if (audit_tree_match(p->c[n], tree))
304 				return 1;
305 	}
306 #endif
307 	return 0;
308 }
309 
310 static int audit_compare_uid(kuid_t uid,
311 			     struct audit_names *name,
312 			     struct audit_field *f,
313 			     struct audit_context *ctx)
314 {
315 	struct audit_names *n;
316 	int rc;
317 
318 	if (name) {
319 		rc = audit_uid_comparator(uid, f->op, name->uid);
320 		if (rc)
321 			return rc;
322 	}
323 
324 	if (ctx) {
325 		list_for_each_entry(n, &ctx->names_list, list) {
326 			rc = audit_uid_comparator(uid, f->op, n->uid);
327 			if (rc)
328 				return rc;
329 		}
330 	}
331 	return 0;
332 }
333 
334 static int audit_compare_gid(kgid_t gid,
335 			     struct audit_names *name,
336 			     struct audit_field *f,
337 			     struct audit_context *ctx)
338 {
339 	struct audit_names *n;
340 	int rc;
341 
342 	if (name) {
343 		rc = audit_gid_comparator(gid, f->op, name->gid);
344 		if (rc)
345 			return rc;
346 	}
347 
348 	if (ctx) {
349 		list_for_each_entry(n, &ctx->names_list, list) {
350 			rc = audit_gid_comparator(gid, f->op, n->gid);
351 			if (rc)
352 				return rc;
353 		}
354 	}
355 	return 0;
356 }
357 
358 static int audit_field_compare(struct task_struct *tsk,
359 			       const struct cred *cred,
360 			       struct audit_field *f,
361 			       struct audit_context *ctx,
362 			       struct audit_names *name)
363 {
364 	switch (f->val) {
365 	/* process to file object comparisons */
366 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 		return audit_compare_uid(cred->uid, name, f, ctx);
368 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 		return audit_compare_gid(cred->gid, name, f, ctx);
370 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 		return audit_compare_uid(cred->euid, name, f, ctx);
372 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 		return audit_compare_gid(cred->egid, name, f, ctx);
374 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 		return audit_compare_uid(cred->suid, name, f, ctx);
378 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 		return audit_compare_gid(cred->sgid, name, f, ctx);
380 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 		return audit_compare_uid(cred->fsuid, name, f, ctx);
382 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 		return audit_compare_gid(cred->fsgid, name, f, ctx);
384 	/* uid comparisons */
385 	case AUDIT_COMPARE_UID_TO_AUID:
386 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 	case AUDIT_COMPARE_UID_TO_EUID:
388 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 	case AUDIT_COMPARE_UID_TO_SUID:
390 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 	case AUDIT_COMPARE_UID_TO_FSUID:
392 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 	/* auid comparisons */
394 	case AUDIT_COMPARE_AUID_TO_EUID:
395 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 	case AUDIT_COMPARE_AUID_TO_SUID:
397 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 	case AUDIT_COMPARE_AUID_TO_FSUID:
399 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 	/* euid comparisons */
401 	case AUDIT_COMPARE_EUID_TO_SUID:
402 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 	case AUDIT_COMPARE_EUID_TO_FSUID:
404 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 	/* suid comparisons */
406 	case AUDIT_COMPARE_SUID_TO_FSUID:
407 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 	/* gid comparisons */
409 	case AUDIT_COMPARE_GID_TO_EGID:
410 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 	case AUDIT_COMPARE_GID_TO_SGID:
412 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 	case AUDIT_COMPARE_GID_TO_FSGID:
414 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 	/* egid comparisons */
416 	case AUDIT_COMPARE_EGID_TO_SGID:
417 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 	case AUDIT_COMPARE_EGID_TO_FSGID:
419 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 	/* sgid comparison */
421 	case AUDIT_COMPARE_SGID_TO_FSGID:
422 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 	default:
424 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425 		return 0;
426 	}
427 	return 0;
428 }
429 
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432  * otherwise.
433  *
434  * If task_creation is true, this is an explicit indication that we are
435  * filtering a task rule at task creation time.  This and tsk == current are
436  * the only situations where tsk->cred may be accessed without an rcu read lock.
437  */
438 static int audit_filter_rules(struct task_struct *tsk,
439 			      struct audit_krule *rule,
440 			      struct audit_context *ctx,
441 			      struct audit_names *name,
442 			      enum audit_state *state,
443 			      bool task_creation)
444 {
445 	const struct cred *cred;
446 	int i, need_sid = 1;
447 	u32 sid;
448 
449 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450 
451 	for (i = 0; i < rule->field_count; i++) {
452 		struct audit_field *f = &rule->fields[i];
453 		struct audit_names *n;
454 		int result = 0;
455 		pid_t pid;
456 
457 		switch (f->type) {
458 		case AUDIT_PID:
459 			pid = task_pid_nr(tsk);
460 			result = audit_comparator(pid, f->op, f->val);
461 			break;
462 		case AUDIT_PPID:
463 			if (ctx) {
464 				if (!ctx->ppid)
465 					ctx->ppid = task_ppid_nr(tsk);
466 				result = audit_comparator(ctx->ppid, f->op, f->val);
467 			}
468 			break;
469 		case AUDIT_UID:
470 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 			break;
472 		case AUDIT_EUID:
473 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 			break;
475 		case AUDIT_SUID:
476 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 			break;
478 		case AUDIT_FSUID:
479 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 			break;
481 		case AUDIT_GID:
482 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 			if (f->op == Audit_equal) {
484 				if (!result)
485 					result = in_group_p(f->gid);
486 			} else if (f->op == Audit_not_equal) {
487 				if (result)
488 					result = !in_group_p(f->gid);
489 			}
490 			break;
491 		case AUDIT_EGID:
492 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 			if (f->op == Audit_equal) {
494 				if (!result)
495 					result = in_egroup_p(f->gid);
496 			} else if (f->op == Audit_not_equal) {
497 				if (result)
498 					result = !in_egroup_p(f->gid);
499 			}
500 			break;
501 		case AUDIT_SGID:
502 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 			break;
504 		case AUDIT_FSGID:
505 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 			break;
507 		case AUDIT_PERS:
508 			result = audit_comparator(tsk->personality, f->op, f->val);
509 			break;
510 		case AUDIT_ARCH:
511 			if (ctx)
512 				result = audit_comparator(ctx->arch, f->op, f->val);
513 			break;
514 
515 		case AUDIT_EXIT:
516 			if (ctx && ctx->return_valid)
517 				result = audit_comparator(ctx->return_code, f->op, f->val);
518 			break;
519 		case AUDIT_SUCCESS:
520 			if (ctx && ctx->return_valid) {
521 				if (f->val)
522 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523 				else
524 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
525 			}
526 			break;
527 		case AUDIT_DEVMAJOR:
528 			if (name) {
529 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 					++result;
532 			} else if (ctx) {
533 				list_for_each_entry(n, &ctx->names_list, list) {
534 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536 						++result;
537 						break;
538 					}
539 				}
540 			}
541 			break;
542 		case AUDIT_DEVMINOR:
543 			if (name) {
544 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
546 					++result;
547 			} else if (ctx) {
548 				list_for_each_entry(n, &ctx->names_list, list) {
549 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551 						++result;
552 						break;
553 					}
554 				}
555 			}
556 			break;
557 		case AUDIT_INODE:
558 			if (name)
559 				result = audit_comparator(name->ino, f->op, f->val);
560 			else if (ctx) {
561 				list_for_each_entry(n, &ctx->names_list, list) {
562 					if (audit_comparator(n->ino, f->op, f->val)) {
563 						++result;
564 						break;
565 					}
566 				}
567 			}
568 			break;
569 		case AUDIT_OBJ_UID:
570 			if (name) {
571 				result = audit_uid_comparator(name->uid, f->op, f->uid);
572 			} else if (ctx) {
573 				list_for_each_entry(n, &ctx->names_list, list) {
574 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575 						++result;
576 						break;
577 					}
578 				}
579 			}
580 			break;
581 		case AUDIT_OBJ_GID:
582 			if (name) {
583 				result = audit_gid_comparator(name->gid, f->op, f->gid);
584 			} else if (ctx) {
585 				list_for_each_entry(n, &ctx->names_list, list) {
586 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587 						++result;
588 						break;
589 					}
590 				}
591 			}
592 			break;
593 		case AUDIT_WATCH:
594 			if (name)
595 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
596 			break;
597 		case AUDIT_DIR:
598 			if (ctx)
599 				result = match_tree_refs(ctx, rule->tree);
600 			break;
601 		case AUDIT_LOGINUID:
602 			result = 0;
603 			if (ctx)
604 				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
605 			break;
606 		case AUDIT_LOGINUID_SET:
607 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
608 			break;
609 		case AUDIT_SUBJ_USER:
610 		case AUDIT_SUBJ_ROLE:
611 		case AUDIT_SUBJ_TYPE:
612 		case AUDIT_SUBJ_SEN:
613 		case AUDIT_SUBJ_CLR:
614 			/* NOTE: this may return negative values indicating
615 			   a temporary error.  We simply treat this as a
616 			   match for now to avoid losing information that
617 			   may be wanted.   An error message will also be
618 			   logged upon error */
619 			if (f->lsm_rule) {
620 				if (need_sid) {
621 					security_task_getsecid(tsk, &sid);
622 					need_sid = 0;
623 				}
624 				result = security_audit_rule_match(sid, f->type,
625 				                                  f->op,
626 				                                  f->lsm_rule,
627 				                                  ctx);
628 			}
629 			break;
630 		case AUDIT_OBJ_USER:
631 		case AUDIT_OBJ_ROLE:
632 		case AUDIT_OBJ_TYPE:
633 		case AUDIT_OBJ_LEV_LOW:
634 		case AUDIT_OBJ_LEV_HIGH:
635 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
636 			   also applies here */
637 			if (f->lsm_rule) {
638 				/* Find files that match */
639 				if (name) {
640 					result = security_audit_rule_match(
641 					           name->osid, f->type, f->op,
642 					           f->lsm_rule, ctx);
643 				} else if (ctx) {
644 					list_for_each_entry(n, &ctx->names_list, list) {
645 						if (security_audit_rule_match(n->osid, f->type,
646 									      f->op, f->lsm_rule,
647 									      ctx)) {
648 							++result;
649 							break;
650 						}
651 					}
652 				}
653 				/* Find ipc objects that match */
654 				if (!ctx || ctx->type != AUDIT_IPC)
655 					break;
656 				if (security_audit_rule_match(ctx->ipc.osid,
657 							      f->type, f->op,
658 							      f->lsm_rule, ctx))
659 					++result;
660 			}
661 			break;
662 		case AUDIT_ARG0:
663 		case AUDIT_ARG1:
664 		case AUDIT_ARG2:
665 		case AUDIT_ARG3:
666 			if (ctx)
667 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
668 			break;
669 		case AUDIT_FILTERKEY:
670 			/* ignore this field for filtering */
671 			result = 1;
672 			break;
673 		case AUDIT_PERM:
674 			result = audit_match_perm(ctx, f->val);
675 			break;
676 		case AUDIT_FILETYPE:
677 			result = audit_match_filetype(ctx, f->val);
678 			break;
679 		case AUDIT_FIELD_COMPARE:
680 			result = audit_field_compare(tsk, cred, f, ctx, name);
681 			break;
682 		}
683 		if (!result)
684 			return 0;
685 	}
686 
687 	if (ctx) {
688 		if (rule->prio <= ctx->prio)
689 			return 0;
690 		if (rule->filterkey) {
691 			kfree(ctx->filterkey);
692 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
693 		}
694 		ctx->prio = rule->prio;
695 	}
696 	switch (rule->action) {
697 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
698 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
699 	}
700 	return 1;
701 }
702 
703 /* At process creation time, we can determine if system-call auditing is
704  * completely disabled for this task.  Since we only have the task
705  * structure at this point, we can only check uid and gid.
706  */
707 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
708 {
709 	struct audit_entry *e;
710 	enum audit_state   state;
711 
712 	rcu_read_lock();
713 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
714 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
715 				       &state, true)) {
716 			if (state == AUDIT_RECORD_CONTEXT)
717 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
718 			rcu_read_unlock();
719 			return state;
720 		}
721 	}
722 	rcu_read_unlock();
723 	return AUDIT_BUILD_CONTEXT;
724 }
725 
726 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
727 {
728 	int word, bit;
729 
730 	if (val > 0xffffffff)
731 		return false;
732 
733 	word = AUDIT_WORD(val);
734 	if (word >= AUDIT_BITMASK_SIZE)
735 		return false;
736 
737 	bit = AUDIT_BIT(val);
738 
739 	return rule->mask[word] & bit;
740 }
741 
742 /* At syscall entry and exit time, this filter is called if the
743  * audit_state is not low enough that auditing cannot take place, but is
744  * also not high enough that we already know we have to write an audit
745  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
746  */
747 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
748 					     struct audit_context *ctx,
749 					     struct list_head *list)
750 {
751 	struct audit_entry *e;
752 	enum audit_state state;
753 
754 	if (audit_pid && tsk->tgid == audit_pid)
755 		return AUDIT_DISABLED;
756 
757 	rcu_read_lock();
758 	if (!list_empty(list)) {
759 		list_for_each_entry_rcu(e, list, list) {
760 			if (audit_in_mask(&e->rule, ctx->major) &&
761 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
762 					       &state, false)) {
763 				rcu_read_unlock();
764 				ctx->current_state = state;
765 				return state;
766 			}
767 		}
768 	}
769 	rcu_read_unlock();
770 	return AUDIT_BUILD_CONTEXT;
771 }
772 
773 /*
774  * Given an audit_name check the inode hash table to see if they match.
775  * Called holding the rcu read lock to protect the use of audit_inode_hash
776  */
777 static int audit_filter_inode_name(struct task_struct *tsk,
778 				   struct audit_names *n,
779 				   struct audit_context *ctx) {
780 	int h = audit_hash_ino((u32)n->ino);
781 	struct list_head *list = &audit_inode_hash[h];
782 	struct audit_entry *e;
783 	enum audit_state state;
784 
785 	if (list_empty(list))
786 		return 0;
787 
788 	list_for_each_entry_rcu(e, list, list) {
789 		if (audit_in_mask(&e->rule, ctx->major) &&
790 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
791 			ctx->current_state = state;
792 			return 1;
793 		}
794 	}
795 
796 	return 0;
797 }
798 
799 /* At syscall exit time, this filter is called if any audit_names have been
800  * collected during syscall processing.  We only check rules in sublists at hash
801  * buckets applicable to the inode numbers in audit_names.
802  * Regarding audit_state, same rules apply as for audit_filter_syscall().
803  */
804 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
805 {
806 	struct audit_names *n;
807 
808 	if (audit_pid && tsk->tgid == audit_pid)
809 		return;
810 
811 	rcu_read_lock();
812 
813 	list_for_each_entry(n, &ctx->names_list, list) {
814 		if (audit_filter_inode_name(tsk, n, ctx))
815 			break;
816 	}
817 	rcu_read_unlock();
818 }
819 
820 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
821 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
822 						      int return_valid,
823 						      long return_code)
824 {
825 	struct audit_context *context = tsk->audit_context;
826 
827 	if (!context)
828 		return NULL;
829 	context->return_valid = return_valid;
830 
831 	/*
832 	 * we need to fix up the return code in the audit logs if the actual
833 	 * return codes are later going to be fixed up by the arch specific
834 	 * signal handlers
835 	 *
836 	 * This is actually a test for:
837 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 	 *
840 	 * but is faster than a bunch of ||
841 	 */
842 	if (unlikely(return_code <= -ERESTARTSYS) &&
843 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
844 	    (return_code != -ENOIOCTLCMD))
845 		context->return_code = -EINTR;
846 	else
847 		context->return_code  = return_code;
848 
849 	if (context->in_syscall && !context->dummy) {
850 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 		audit_filter_inodes(tsk, context);
852 	}
853 
854 	tsk->audit_context = NULL;
855 	return context;
856 }
857 
858 static inline void audit_proctitle_free(struct audit_context *context)
859 {
860 	kfree(context->proctitle.value);
861 	context->proctitle.value = NULL;
862 	context->proctitle.len = 0;
863 }
864 
865 static inline void audit_free_names(struct audit_context *context)
866 {
867 	struct audit_names *n, *next;
868 
869 #if AUDIT_DEBUG == 2
870 	if (context->put_count + context->ino_count != context->name_count) {
871 		int i = 0;
872 
873 		pr_err("%s:%d(:%d): major=%d in_syscall=%d"
874 		       " name_count=%d put_count=%d ino_count=%d"
875 		       " [NOT freeing]\n", __FILE__, __LINE__,
876 		       context->serial, context->major, context->in_syscall,
877 		       context->name_count, context->put_count,
878 		       context->ino_count);
879 		list_for_each_entry(n, &context->names_list, list) {
880 			pr_err("names[%d] = %p = %s\n", i++, n->name,
881 			       n->name->name ?: "(null)");
882 		}
883 		dump_stack();
884 		return;
885 	}
886 #endif
887 #if AUDIT_DEBUG
888 	context->put_count  = 0;
889 	context->ino_count  = 0;
890 #endif
891 
892 	list_for_each_entry_safe(n, next, &context->names_list, list) {
893 		list_del(&n->list);
894 		if (n->name && n->name_put)
895 			final_putname(n->name);
896 		if (n->should_free)
897 			kfree(n);
898 	}
899 	context->name_count = 0;
900 	path_put(&context->pwd);
901 	context->pwd.dentry = NULL;
902 	context->pwd.mnt = NULL;
903 }
904 
905 static inline void audit_free_aux(struct audit_context *context)
906 {
907 	struct audit_aux_data *aux;
908 
909 	while ((aux = context->aux)) {
910 		context->aux = aux->next;
911 		kfree(aux);
912 	}
913 	while ((aux = context->aux_pids)) {
914 		context->aux_pids = aux->next;
915 		kfree(aux);
916 	}
917 }
918 
919 static inline struct audit_context *audit_alloc_context(enum audit_state state)
920 {
921 	struct audit_context *context;
922 
923 	context = kzalloc(sizeof(*context), GFP_KERNEL);
924 	if (!context)
925 		return NULL;
926 	context->state = state;
927 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
928 	INIT_LIST_HEAD(&context->killed_trees);
929 	INIT_LIST_HEAD(&context->names_list);
930 	return context;
931 }
932 
933 /**
934  * audit_alloc - allocate an audit context block for a task
935  * @tsk: task
936  *
937  * Filter on the task information and allocate a per-task audit context
938  * if necessary.  Doing so turns on system call auditing for the
939  * specified task.  This is called from copy_process, so no lock is
940  * needed.
941  */
942 int audit_alloc(struct task_struct *tsk)
943 {
944 	struct audit_context *context;
945 	enum audit_state     state;
946 	char *key = NULL;
947 
948 	if (likely(!audit_ever_enabled))
949 		return 0; /* Return if not auditing. */
950 
951 	state = audit_filter_task(tsk, &key);
952 	if (state == AUDIT_DISABLED) {
953 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
954 		return 0;
955 	}
956 
957 	if (!(context = audit_alloc_context(state))) {
958 		kfree(key);
959 		audit_log_lost("out of memory in audit_alloc");
960 		return -ENOMEM;
961 	}
962 	context->filterkey = key;
963 
964 	tsk->audit_context  = context;
965 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
966 	return 0;
967 }
968 
969 static inline void audit_free_context(struct audit_context *context)
970 {
971 	audit_free_names(context);
972 	unroll_tree_refs(context, NULL, 0);
973 	free_tree_refs(context);
974 	audit_free_aux(context);
975 	kfree(context->filterkey);
976 	kfree(context->sockaddr);
977 	audit_proctitle_free(context);
978 	kfree(context);
979 }
980 
981 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
982 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
983 				 u32 sid, char *comm)
984 {
985 	struct audit_buffer *ab;
986 	char *ctx = NULL;
987 	u32 len;
988 	int rc = 0;
989 
990 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
991 	if (!ab)
992 		return rc;
993 
994 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
995 			 from_kuid(&init_user_ns, auid),
996 			 from_kuid(&init_user_ns, uid), sessionid);
997 	if (sid) {
998 		if (security_secid_to_secctx(sid, &ctx, &len)) {
999 			audit_log_format(ab, " obj=(none)");
1000 			rc = 1;
1001 		} else {
1002 			audit_log_format(ab, " obj=%s", ctx);
1003 			security_release_secctx(ctx, len);
1004 		}
1005 	}
1006 	audit_log_format(ab, " ocomm=");
1007 	audit_log_untrustedstring(ab, comm);
1008 	audit_log_end(ab);
1009 
1010 	return rc;
1011 }
1012 
1013 /*
1014  * to_send and len_sent accounting are very loose estimates.  We aren't
1015  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1016  * within about 500 bytes (next page boundary)
1017  *
1018  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1019  * logging that a[%d]= was going to be 16 characters long we would be wasting
1020  * space in every audit message.  In one 7500 byte message we can log up to
1021  * about 1000 min size arguments.  That comes down to about 50% waste of space
1022  * if we didn't do the snprintf to find out how long arg_num_len was.
1023  */
1024 static int audit_log_single_execve_arg(struct audit_context *context,
1025 					struct audit_buffer **ab,
1026 					int arg_num,
1027 					size_t *len_sent,
1028 					const char __user *p,
1029 					char *buf)
1030 {
1031 	char arg_num_len_buf[12];
1032 	const char __user *tmp_p = p;
1033 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1034 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1035 	size_t len, len_left, to_send;
1036 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1037 	unsigned int i, has_cntl = 0, too_long = 0;
1038 	int ret;
1039 
1040 	/* strnlen_user includes the null we don't want to send */
1041 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1042 
1043 	/*
1044 	 * We just created this mm, if we can't find the strings
1045 	 * we just copied into it something is _very_ wrong. Similar
1046 	 * for strings that are too long, we should not have created
1047 	 * any.
1048 	 */
1049 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1050 		WARN_ON(1);
1051 		send_sig(SIGKILL, current, 0);
1052 		return -1;
1053 	}
1054 
1055 	/* walk the whole argument looking for non-ascii chars */
1056 	do {
1057 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1058 			to_send = MAX_EXECVE_AUDIT_LEN;
1059 		else
1060 			to_send = len_left;
1061 		ret = copy_from_user(buf, tmp_p, to_send);
1062 		/*
1063 		 * There is no reason for this copy to be short. We just
1064 		 * copied them here, and the mm hasn't been exposed to user-
1065 		 * space yet.
1066 		 */
1067 		if (ret) {
1068 			WARN_ON(1);
1069 			send_sig(SIGKILL, current, 0);
1070 			return -1;
1071 		}
1072 		buf[to_send] = '\0';
1073 		has_cntl = audit_string_contains_control(buf, to_send);
1074 		if (has_cntl) {
1075 			/*
1076 			 * hex messages get logged as 2 bytes, so we can only
1077 			 * send half as much in each message
1078 			 */
1079 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1080 			break;
1081 		}
1082 		len_left -= to_send;
1083 		tmp_p += to_send;
1084 	} while (len_left > 0);
1085 
1086 	len_left = len;
1087 
1088 	if (len > max_execve_audit_len)
1089 		too_long = 1;
1090 
1091 	/* rewalk the argument actually logging the message */
1092 	for (i = 0; len_left > 0; i++) {
1093 		int room_left;
1094 
1095 		if (len_left > max_execve_audit_len)
1096 			to_send = max_execve_audit_len;
1097 		else
1098 			to_send = len_left;
1099 
1100 		/* do we have space left to send this argument in this ab? */
1101 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1102 		if (has_cntl)
1103 			room_left -= (to_send * 2);
1104 		else
1105 			room_left -= to_send;
1106 		if (room_left < 0) {
1107 			*len_sent = 0;
1108 			audit_log_end(*ab);
1109 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1110 			if (!*ab)
1111 				return 0;
1112 		}
1113 
1114 		/*
1115 		 * first record needs to say how long the original string was
1116 		 * so we can be sure nothing was lost.
1117 		 */
1118 		if ((i == 0) && (too_long))
1119 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1120 					 has_cntl ? 2*len : len);
1121 
1122 		/*
1123 		 * normally arguments are small enough to fit and we already
1124 		 * filled buf above when we checked for control characters
1125 		 * so don't bother with another copy_from_user
1126 		 */
1127 		if (len >= max_execve_audit_len)
1128 			ret = copy_from_user(buf, p, to_send);
1129 		else
1130 			ret = 0;
1131 		if (ret) {
1132 			WARN_ON(1);
1133 			send_sig(SIGKILL, current, 0);
1134 			return -1;
1135 		}
1136 		buf[to_send] = '\0';
1137 
1138 		/* actually log it */
1139 		audit_log_format(*ab, " a%d", arg_num);
1140 		if (too_long)
1141 			audit_log_format(*ab, "[%d]", i);
1142 		audit_log_format(*ab, "=");
1143 		if (has_cntl)
1144 			audit_log_n_hex(*ab, buf, to_send);
1145 		else
1146 			audit_log_string(*ab, buf);
1147 
1148 		p += to_send;
1149 		len_left -= to_send;
1150 		*len_sent += arg_num_len;
1151 		if (has_cntl)
1152 			*len_sent += to_send * 2;
1153 		else
1154 			*len_sent += to_send;
1155 	}
1156 	/* include the null we didn't log */
1157 	return len + 1;
1158 }
1159 
1160 static void audit_log_execve_info(struct audit_context *context,
1161 				  struct audit_buffer **ab)
1162 {
1163 	int i, len;
1164 	size_t len_sent = 0;
1165 	const char __user *p;
1166 	char *buf;
1167 
1168 	p = (const char __user *)current->mm->arg_start;
1169 
1170 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1171 
1172 	/*
1173 	 * we need some kernel buffer to hold the userspace args.  Just
1174 	 * allocate one big one rather than allocating one of the right size
1175 	 * for every single argument inside audit_log_single_execve_arg()
1176 	 * should be <8k allocation so should be pretty safe.
1177 	 */
1178 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1179 	if (!buf) {
1180 		audit_panic("out of memory for argv string");
1181 		return;
1182 	}
1183 
1184 	for (i = 0; i < context->execve.argc; i++) {
1185 		len = audit_log_single_execve_arg(context, ab, i,
1186 						  &len_sent, p, buf);
1187 		if (len <= 0)
1188 			break;
1189 		p += len;
1190 	}
1191 	kfree(buf);
1192 }
1193 
1194 static void show_special(struct audit_context *context, int *call_panic)
1195 {
1196 	struct audit_buffer *ab;
1197 	int i;
1198 
1199 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1200 	if (!ab)
1201 		return;
1202 
1203 	switch (context->type) {
1204 	case AUDIT_SOCKETCALL: {
1205 		int nargs = context->socketcall.nargs;
1206 		audit_log_format(ab, "nargs=%d", nargs);
1207 		for (i = 0; i < nargs; i++)
1208 			audit_log_format(ab, " a%d=%lx", i,
1209 				context->socketcall.args[i]);
1210 		break; }
1211 	case AUDIT_IPC: {
1212 		u32 osid = context->ipc.osid;
1213 
1214 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1215 				 from_kuid(&init_user_ns, context->ipc.uid),
1216 				 from_kgid(&init_user_ns, context->ipc.gid),
1217 				 context->ipc.mode);
1218 		if (osid) {
1219 			char *ctx = NULL;
1220 			u32 len;
1221 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1222 				audit_log_format(ab, " osid=%u", osid);
1223 				*call_panic = 1;
1224 			} else {
1225 				audit_log_format(ab, " obj=%s", ctx);
1226 				security_release_secctx(ctx, len);
1227 			}
1228 		}
1229 		if (context->ipc.has_perm) {
1230 			audit_log_end(ab);
1231 			ab = audit_log_start(context, GFP_KERNEL,
1232 					     AUDIT_IPC_SET_PERM);
1233 			if (unlikely(!ab))
1234 				return;
1235 			audit_log_format(ab,
1236 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1237 				context->ipc.qbytes,
1238 				context->ipc.perm_uid,
1239 				context->ipc.perm_gid,
1240 				context->ipc.perm_mode);
1241 		}
1242 		break; }
1243 	case AUDIT_MQ_OPEN: {
1244 		audit_log_format(ab,
1245 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1246 			"mq_msgsize=%ld mq_curmsgs=%ld",
1247 			context->mq_open.oflag, context->mq_open.mode,
1248 			context->mq_open.attr.mq_flags,
1249 			context->mq_open.attr.mq_maxmsg,
1250 			context->mq_open.attr.mq_msgsize,
1251 			context->mq_open.attr.mq_curmsgs);
1252 		break; }
1253 	case AUDIT_MQ_SENDRECV: {
1254 		audit_log_format(ab,
1255 			"mqdes=%d msg_len=%zd msg_prio=%u "
1256 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1257 			context->mq_sendrecv.mqdes,
1258 			context->mq_sendrecv.msg_len,
1259 			context->mq_sendrecv.msg_prio,
1260 			context->mq_sendrecv.abs_timeout.tv_sec,
1261 			context->mq_sendrecv.abs_timeout.tv_nsec);
1262 		break; }
1263 	case AUDIT_MQ_NOTIFY: {
1264 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1265 				context->mq_notify.mqdes,
1266 				context->mq_notify.sigev_signo);
1267 		break; }
1268 	case AUDIT_MQ_GETSETATTR: {
1269 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1270 		audit_log_format(ab,
1271 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1272 			"mq_curmsgs=%ld ",
1273 			context->mq_getsetattr.mqdes,
1274 			attr->mq_flags, attr->mq_maxmsg,
1275 			attr->mq_msgsize, attr->mq_curmsgs);
1276 		break; }
1277 	case AUDIT_CAPSET: {
1278 		audit_log_format(ab, "pid=%d", context->capset.pid);
1279 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1280 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1281 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1282 		break; }
1283 	case AUDIT_MMAP: {
1284 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1285 				 context->mmap.flags);
1286 		break; }
1287 	case AUDIT_EXECVE: {
1288 		audit_log_execve_info(context, &ab);
1289 		break; }
1290 	}
1291 	audit_log_end(ab);
1292 }
1293 
1294 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1295 {
1296 	char *end = proctitle + len - 1;
1297 	while (end > proctitle && !isprint(*end))
1298 		end--;
1299 
1300 	/* catch the case where proctitle is only 1 non-print character */
1301 	len = end - proctitle + 1;
1302 	len -= isprint(proctitle[len-1]) == 0;
1303 	return len;
1304 }
1305 
1306 static void audit_log_proctitle(struct task_struct *tsk,
1307 			 struct audit_context *context)
1308 {
1309 	int res;
1310 	char *buf;
1311 	char *msg = "(null)";
1312 	int len = strlen(msg);
1313 	struct audit_buffer *ab;
1314 
1315 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1316 	if (!ab)
1317 		return;	/* audit_panic or being filtered */
1318 
1319 	audit_log_format(ab, "proctitle=");
1320 
1321 	/* Not  cached */
1322 	if (!context->proctitle.value) {
1323 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1324 		if (!buf)
1325 			goto out;
1326 		/* Historically called this from procfs naming */
1327 		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1328 		if (res == 0) {
1329 			kfree(buf);
1330 			goto out;
1331 		}
1332 		res = audit_proctitle_rtrim(buf, res);
1333 		if (res == 0) {
1334 			kfree(buf);
1335 			goto out;
1336 		}
1337 		context->proctitle.value = buf;
1338 		context->proctitle.len = res;
1339 	}
1340 	msg = context->proctitle.value;
1341 	len = context->proctitle.len;
1342 out:
1343 	audit_log_n_untrustedstring(ab, msg, len);
1344 	audit_log_end(ab);
1345 }
1346 
1347 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1348 {
1349 	int i, call_panic = 0;
1350 	struct audit_buffer *ab;
1351 	struct audit_aux_data *aux;
1352 	struct audit_names *n;
1353 
1354 	/* tsk == current */
1355 	context->personality = tsk->personality;
1356 
1357 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1358 	if (!ab)
1359 		return;		/* audit_panic has been called */
1360 	audit_log_format(ab, "arch=%x syscall=%d",
1361 			 context->arch, context->major);
1362 	if (context->personality != PER_LINUX)
1363 		audit_log_format(ab, " per=%lx", context->personality);
1364 	if (context->return_valid)
1365 		audit_log_format(ab, " success=%s exit=%ld",
1366 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1367 				 context->return_code);
1368 
1369 	audit_log_format(ab,
1370 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1371 			 context->argv[0],
1372 			 context->argv[1],
1373 			 context->argv[2],
1374 			 context->argv[3],
1375 			 context->name_count);
1376 
1377 	audit_log_task_info(ab, tsk);
1378 	audit_log_key(ab, context->filterkey);
1379 	audit_log_end(ab);
1380 
1381 	for (aux = context->aux; aux; aux = aux->next) {
1382 
1383 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1384 		if (!ab)
1385 			continue; /* audit_panic has been called */
1386 
1387 		switch (aux->type) {
1388 
1389 		case AUDIT_BPRM_FCAPS: {
1390 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1391 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1392 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1393 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1394 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1395 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1396 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1397 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1398 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1399 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1400 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1401 			break; }
1402 
1403 		}
1404 		audit_log_end(ab);
1405 	}
1406 
1407 	if (context->type)
1408 		show_special(context, &call_panic);
1409 
1410 	if (context->fds[0] >= 0) {
1411 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1412 		if (ab) {
1413 			audit_log_format(ab, "fd0=%d fd1=%d",
1414 					context->fds[0], context->fds[1]);
1415 			audit_log_end(ab);
1416 		}
1417 	}
1418 
1419 	if (context->sockaddr_len) {
1420 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1421 		if (ab) {
1422 			audit_log_format(ab, "saddr=");
1423 			audit_log_n_hex(ab, (void *)context->sockaddr,
1424 					context->sockaddr_len);
1425 			audit_log_end(ab);
1426 		}
1427 	}
1428 
1429 	for (aux = context->aux_pids; aux; aux = aux->next) {
1430 		struct audit_aux_data_pids *axs = (void *)aux;
1431 
1432 		for (i = 0; i < axs->pid_count; i++)
1433 			if (audit_log_pid_context(context, axs->target_pid[i],
1434 						  axs->target_auid[i],
1435 						  axs->target_uid[i],
1436 						  axs->target_sessionid[i],
1437 						  axs->target_sid[i],
1438 						  axs->target_comm[i]))
1439 				call_panic = 1;
1440 	}
1441 
1442 	if (context->target_pid &&
1443 	    audit_log_pid_context(context, context->target_pid,
1444 				  context->target_auid, context->target_uid,
1445 				  context->target_sessionid,
1446 				  context->target_sid, context->target_comm))
1447 			call_panic = 1;
1448 
1449 	if (context->pwd.dentry && context->pwd.mnt) {
1450 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1451 		if (ab) {
1452 			audit_log_d_path(ab, " cwd=", &context->pwd);
1453 			audit_log_end(ab);
1454 		}
1455 	}
1456 
1457 	i = 0;
1458 	list_for_each_entry(n, &context->names_list, list) {
1459 		if (n->hidden)
1460 			continue;
1461 		audit_log_name(context, n, NULL, i++, &call_panic);
1462 	}
1463 
1464 	audit_log_proctitle(tsk, context);
1465 
1466 	/* Send end of event record to help user space know we are finished */
1467 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1468 	if (ab)
1469 		audit_log_end(ab);
1470 	if (call_panic)
1471 		audit_panic("error converting sid to string");
1472 }
1473 
1474 /**
1475  * audit_free - free a per-task audit context
1476  * @tsk: task whose audit context block to free
1477  *
1478  * Called from copy_process and do_exit
1479  */
1480 void __audit_free(struct task_struct *tsk)
1481 {
1482 	struct audit_context *context;
1483 
1484 	context = audit_take_context(tsk, 0, 0);
1485 	if (!context)
1486 		return;
1487 
1488 	/* Check for system calls that do not go through the exit
1489 	 * function (e.g., exit_group), then free context block.
1490 	 * We use GFP_ATOMIC here because we might be doing this
1491 	 * in the context of the idle thread */
1492 	/* that can happen only if we are called from do_exit() */
1493 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1494 		audit_log_exit(context, tsk);
1495 	if (!list_empty(&context->killed_trees))
1496 		audit_kill_trees(&context->killed_trees);
1497 
1498 	audit_free_context(context);
1499 }
1500 
1501 /**
1502  * audit_syscall_entry - fill in an audit record at syscall entry
1503  * @major: major syscall type (function)
1504  * @a1: additional syscall register 1
1505  * @a2: additional syscall register 2
1506  * @a3: additional syscall register 3
1507  * @a4: additional syscall register 4
1508  *
1509  * Fill in audit context at syscall entry.  This only happens if the
1510  * audit context was created when the task was created and the state or
1511  * filters demand the audit context be built.  If the state from the
1512  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1513  * then the record will be written at syscall exit time (otherwise, it
1514  * will only be written if another part of the kernel requests that it
1515  * be written).
1516  */
1517 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1518 			   unsigned long a3, unsigned long a4)
1519 {
1520 	struct task_struct *tsk = current;
1521 	struct audit_context *context = tsk->audit_context;
1522 	enum audit_state     state;
1523 
1524 	if (!context)
1525 		return;
1526 
1527 	BUG_ON(context->in_syscall || context->name_count);
1528 
1529 	if (!audit_enabled)
1530 		return;
1531 
1532 	context->arch	    = syscall_get_arch();
1533 	context->major      = major;
1534 	context->argv[0]    = a1;
1535 	context->argv[1]    = a2;
1536 	context->argv[2]    = a3;
1537 	context->argv[3]    = a4;
1538 
1539 	state = context->state;
1540 	context->dummy = !audit_n_rules;
1541 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1542 		context->prio = 0;
1543 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1544 	}
1545 	if (state == AUDIT_DISABLED)
1546 		return;
1547 
1548 	context->serial     = 0;
1549 	context->ctime      = CURRENT_TIME;
1550 	context->in_syscall = 1;
1551 	context->current_state  = state;
1552 	context->ppid       = 0;
1553 }
1554 
1555 /**
1556  * audit_syscall_exit - deallocate audit context after a system call
1557  * @success: success value of the syscall
1558  * @return_code: return value of the syscall
1559  *
1560  * Tear down after system call.  If the audit context has been marked as
1561  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1562  * filtering, or because some other part of the kernel wrote an audit
1563  * message), then write out the syscall information.  In call cases,
1564  * free the names stored from getname().
1565  */
1566 void __audit_syscall_exit(int success, long return_code)
1567 {
1568 	struct task_struct *tsk = current;
1569 	struct audit_context *context;
1570 
1571 	if (success)
1572 		success = AUDITSC_SUCCESS;
1573 	else
1574 		success = AUDITSC_FAILURE;
1575 
1576 	context = audit_take_context(tsk, success, return_code);
1577 	if (!context)
1578 		return;
1579 
1580 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1581 		audit_log_exit(context, tsk);
1582 
1583 	context->in_syscall = 0;
1584 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1585 
1586 	if (!list_empty(&context->killed_trees))
1587 		audit_kill_trees(&context->killed_trees);
1588 
1589 	audit_free_names(context);
1590 	unroll_tree_refs(context, NULL, 0);
1591 	audit_free_aux(context);
1592 	context->aux = NULL;
1593 	context->aux_pids = NULL;
1594 	context->target_pid = 0;
1595 	context->target_sid = 0;
1596 	context->sockaddr_len = 0;
1597 	context->type = 0;
1598 	context->fds[0] = -1;
1599 	if (context->state != AUDIT_RECORD_CONTEXT) {
1600 		kfree(context->filterkey);
1601 		context->filterkey = NULL;
1602 	}
1603 	tsk->audit_context = context;
1604 }
1605 
1606 static inline void handle_one(const struct inode *inode)
1607 {
1608 #ifdef CONFIG_AUDIT_TREE
1609 	struct audit_context *context;
1610 	struct audit_tree_refs *p;
1611 	struct audit_chunk *chunk;
1612 	int count;
1613 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1614 		return;
1615 	context = current->audit_context;
1616 	p = context->trees;
1617 	count = context->tree_count;
1618 	rcu_read_lock();
1619 	chunk = audit_tree_lookup(inode);
1620 	rcu_read_unlock();
1621 	if (!chunk)
1622 		return;
1623 	if (likely(put_tree_ref(context, chunk)))
1624 		return;
1625 	if (unlikely(!grow_tree_refs(context))) {
1626 		pr_warn("out of memory, audit has lost a tree reference\n");
1627 		audit_set_auditable(context);
1628 		audit_put_chunk(chunk);
1629 		unroll_tree_refs(context, p, count);
1630 		return;
1631 	}
1632 	put_tree_ref(context, chunk);
1633 #endif
1634 }
1635 
1636 static void handle_path(const struct dentry *dentry)
1637 {
1638 #ifdef CONFIG_AUDIT_TREE
1639 	struct audit_context *context;
1640 	struct audit_tree_refs *p;
1641 	const struct dentry *d, *parent;
1642 	struct audit_chunk *drop;
1643 	unsigned long seq;
1644 	int count;
1645 
1646 	context = current->audit_context;
1647 	p = context->trees;
1648 	count = context->tree_count;
1649 retry:
1650 	drop = NULL;
1651 	d = dentry;
1652 	rcu_read_lock();
1653 	seq = read_seqbegin(&rename_lock);
1654 	for(;;) {
1655 		struct inode *inode = d->d_inode;
1656 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1657 			struct audit_chunk *chunk;
1658 			chunk = audit_tree_lookup(inode);
1659 			if (chunk) {
1660 				if (unlikely(!put_tree_ref(context, chunk))) {
1661 					drop = chunk;
1662 					break;
1663 				}
1664 			}
1665 		}
1666 		parent = d->d_parent;
1667 		if (parent == d)
1668 			break;
1669 		d = parent;
1670 	}
1671 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1672 		rcu_read_unlock();
1673 		if (!drop) {
1674 			/* just a race with rename */
1675 			unroll_tree_refs(context, p, count);
1676 			goto retry;
1677 		}
1678 		audit_put_chunk(drop);
1679 		if (grow_tree_refs(context)) {
1680 			/* OK, got more space */
1681 			unroll_tree_refs(context, p, count);
1682 			goto retry;
1683 		}
1684 		/* too bad */
1685 		pr_warn("out of memory, audit has lost a tree reference\n");
1686 		unroll_tree_refs(context, p, count);
1687 		audit_set_auditable(context);
1688 		return;
1689 	}
1690 	rcu_read_unlock();
1691 #endif
1692 }
1693 
1694 static struct audit_names *audit_alloc_name(struct audit_context *context,
1695 						unsigned char type)
1696 {
1697 	struct audit_names *aname;
1698 
1699 	if (context->name_count < AUDIT_NAMES) {
1700 		aname = &context->preallocated_names[context->name_count];
1701 		memset(aname, 0, sizeof(*aname));
1702 	} else {
1703 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1704 		if (!aname)
1705 			return NULL;
1706 		aname->should_free = true;
1707 	}
1708 
1709 	aname->ino = (unsigned long)-1;
1710 	aname->type = type;
1711 	list_add_tail(&aname->list, &context->names_list);
1712 
1713 	context->name_count++;
1714 #if AUDIT_DEBUG
1715 	context->ino_count++;
1716 #endif
1717 	return aname;
1718 }
1719 
1720 /**
1721  * audit_reusename - fill out filename with info from existing entry
1722  * @uptr: userland ptr to pathname
1723  *
1724  * Search the audit_names list for the current audit context. If there is an
1725  * existing entry with a matching "uptr" then return the filename
1726  * associated with that audit_name. If not, return NULL.
1727  */
1728 struct filename *
1729 __audit_reusename(const __user char *uptr)
1730 {
1731 	struct audit_context *context = current->audit_context;
1732 	struct audit_names *n;
1733 
1734 	list_for_each_entry(n, &context->names_list, list) {
1735 		if (!n->name)
1736 			continue;
1737 		if (n->name->uptr == uptr)
1738 			return n->name;
1739 	}
1740 	return NULL;
1741 }
1742 
1743 /**
1744  * audit_getname - add a name to the list
1745  * @name: name to add
1746  *
1747  * Add a name to the list of audit names for this context.
1748  * Called from fs/namei.c:getname().
1749  */
1750 void __audit_getname(struct filename *name)
1751 {
1752 	struct audit_context *context = current->audit_context;
1753 	struct audit_names *n;
1754 
1755 	if (!context->in_syscall) {
1756 #if AUDIT_DEBUG == 2
1757 		pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1758 		       __FILE__, __LINE__, context->serial, name);
1759 		dump_stack();
1760 #endif
1761 		return;
1762 	}
1763 
1764 #if AUDIT_DEBUG
1765 	/* The filename _must_ have a populated ->name */
1766 	BUG_ON(!name->name);
1767 #endif
1768 
1769 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1770 	if (!n)
1771 		return;
1772 
1773 	n->name = name;
1774 	n->name_len = AUDIT_NAME_FULL;
1775 	n->name_put = true;
1776 	name->aname = n;
1777 
1778 	if (!context->pwd.dentry)
1779 		get_fs_pwd(current->fs, &context->pwd);
1780 }
1781 
1782 /* audit_putname - intercept a putname request
1783  * @name: name to intercept and delay for putname
1784  *
1785  * If we have stored the name from getname in the audit context,
1786  * then we delay the putname until syscall exit.
1787  * Called from include/linux/fs.h:putname().
1788  */
1789 void audit_putname(struct filename *name)
1790 {
1791 	struct audit_context *context = current->audit_context;
1792 
1793 	BUG_ON(!context);
1794 	if (!name->aname || !context->in_syscall) {
1795 #if AUDIT_DEBUG == 2
1796 		pr_err("%s:%d(:%d): final_putname(%p)\n",
1797 		       __FILE__, __LINE__, context->serial, name);
1798 		if (context->name_count) {
1799 			struct audit_names *n;
1800 			int i = 0;
1801 
1802 			list_for_each_entry(n, &context->names_list, list)
1803 				pr_err("name[%d] = %p = %s\n", i++, n->name,
1804 				       n->name->name ?: "(null)");
1805 			}
1806 #endif
1807 		final_putname(name);
1808 	}
1809 #if AUDIT_DEBUG
1810 	else {
1811 		++context->put_count;
1812 		if (context->put_count > context->name_count) {
1813 			pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1814 			       " name_count=%d put_count=%d\n",
1815 			       __FILE__, __LINE__,
1816 			       context->serial, context->major,
1817 			       context->in_syscall, name->name,
1818 			       context->name_count, context->put_count);
1819 			dump_stack();
1820 		}
1821 	}
1822 #endif
1823 }
1824 
1825 /**
1826  * __audit_inode - store the inode and device from a lookup
1827  * @name: name being audited
1828  * @dentry: dentry being audited
1829  * @flags: attributes for this particular entry
1830  */
1831 void __audit_inode(struct filename *name, const struct dentry *dentry,
1832 		   unsigned int flags)
1833 {
1834 	struct audit_context *context = current->audit_context;
1835 	const struct inode *inode = dentry->d_inode;
1836 	struct audit_names *n;
1837 	bool parent = flags & AUDIT_INODE_PARENT;
1838 
1839 	if (!context->in_syscall)
1840 		return;
1841 
1842 	if (!name)
1843 		goto out_alloc;
1844 
1845 #if AUDIT_DEBUG
1846 	/* The struct filename _must_ have a populated ->name */
1847 	BUG_ON(!name->name);
1848 #endif
1849 	/*
1850 	 * If we have a pointer to an audit_names entry already, then we can
1851 	 * just use it directly if the type is correct.
1852 	 */
1853 	n = name->aname;
1854 	if (n) {
1855 		if (parent) {
1856 			if (n->type == AUDIT_TYPE_PARENT ||
1857 			    n->type == AUDIT_TYPE_UNKNOWN)
1858 				goto out;
1859 		} else {
1860 			if (n->type != AUDIT_TYPE_PARENT)
1861 				goto out;
1862 		}
1863 	}
1864 
1865 	list_for_each_entry_reverse(n, &context->names_list, list) {
1866 		if (!n->name || strcmp(n->name->name, name->name))
1867 			continue;
1868 
1869 		/* match the correct record type */
1870 		if (parent) {
1871 			if (n->type == AUDIT_TYPE_PARENT ||
1872 			    n->type == AUDIT_TYPE_UNKNOWN)
1873 				goto out;
1874 		} else {
1875 			if (n->type != AUDIT_TYPE_PARENT)
1876 				goto out;
1877 		}
1878 	}
1879 
1880 out_alloc:
1881 	/* unable to find an entry with both a matching name and type */
1882 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1883 	if (!n)
1884 		return;
1885 	/* unfortunately, while we may have a path name to record with the
1886 	 * inode, we can't always rely on the string lasting until the end of
1887 	 * the syscall so we need to create our own copy, it may fail due to
1888 	 * memory allocation issues, but we do our best */
1889 	if (name) {
1890 		/* we can't use getname_kernel() due to size limits */
1891 		size_t len = strlen(name->name) + 1;
1892 		struct filename *new = __getname();
1893 
1894 		if (unlikely(!new))
1895 			goto out;
1896 
1897 		if (len <= (PATH_MAX - sizeof(*new))) {
1898 			new->name = (char *)(new) + sizeof(*new);
1899 			new->separate = false;
1900 		} else if (len <= PATH_MAX) {
1901 			/* this looks odd, but is due to final_putname() */
1902 			struct filename *new2;
1903 
1904 			new2 = kmalloc(sizeof(*new2), GFP_KERNEL);
1905 			if (unlikely(!new2)) {
1906 				__putname(new);
1907 				goto out;
1908 			}
1909 			new2->name = (char *)new;
1910 			new2->separate = true;
1911 			new = new2;
1912 		} else {
1913 			/* we should never get here, but let's be safe */
1914 			__putname(new);
1915 			goto out;
1916 		}
1917 		strlcpy((char *)new->name, name->name, len);
1918 		new->uptr = NULL;
1919 		new->aname = n;
1920 		n->name = new;
1921 		n->name_put = true;
1922 	}
1923 out:
1924 	if (parent) {
1925 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1926 		n->type = AUDIT_TYPE_PARENT;
1927 		if (flags & AUDIT_INODE_HIDDEN)
1928 			n->hidden = true;
1929 	} else {
1930 		n->name_len = AUDIT_NAME_FULL;
1931 		n->type = AUDIT_TYPE_NORMAL;
1932 	}
1933 	handle_path(dentry);
1934 	audit_copy_inode(n, dentry, inode);
1935 }
1936 
1937 void __audit_file(const struct file *file)
1938 {
1939 	__audit_inode(NULL, file->f_path.dentry, 0);
1940 }
1941 
1942 /**
1943  * __audit_inode_child - collect inode info for created/removed objects
1944  * @parent: inode of dentry parent
1945  * @dentry: dentry being audited
1946  * @type:   AUDIT_TYPE_* value that we're looking for
1947  *
1948  * For syscalls that create or remove filesystem objects, audit_inode
1949  * can only collect information for the filesystem object's parent.
1950  * This call updates the audit context with the child's information.
1951  * Syscalls that create a new filesystem object must be hooked after
1952  * the object is created.  Syscalls that remove a filesystem object
1953  * must be hooked prior, in order to capture the target inode during
1954  * unsuccessful attempts.
1955  */
1956 void __audit_inode_child(const struct inode *parent,
1957 			 const struct dentry *dentry,
1958 			 const unsigned char type)
1959 {
1960 	struct audit_context *context = current->audit_context;
1961 	const struct inode *inode = dentry->d_inode;
1962 	const char *dname = dentry->d_name.name;
1963 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1964 
1965 	if (!context->in_syscall)
1966 		return;
1967 
1968 	if (inode)
1969 		handle_one(inode);
1970 
1971 	/* look for a parent entry first */
1972 	list_for_each_entry(n, &context->names_list, list) {
1973 		if (!n->name || n->type != AUDIT_TYPE_PARENT)
1974 			continue;
1975 
1976 		if (n->ino == parent->i_ino &&
1977 		    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1978 			found_parent = n;
1979 			break;
1980 		}
1981 	}
1982 
1983 	/* is there a matching child entry? */
1984 	list_for_each_entry(n, &context->names_list, list) {
1985 		/* can only match entries that have a name */
1986 		if (!n->name || n->type != type)
1987 			continue;
1988 
1989 		/* if we found a parent, make sure this one is a child of it */
1990 		if (found_parent && (n->name != found_parent->name))
1991 			continue;
1992 
1993 		if (!strcmp(dname, n->name->name) ||
1994 		    !audit_compare_dname_path(dname, n->name->name,
1995 						found_parent ?
1996 						found_parent->name_len :
1997 						AUDIT_NAME_FULL)) {
1998 			found_child = n;
1999 			break;
2000 		}
2001 	}
2002 
2003 	if (!found_parent) {
2004 		/* create a new, "anonymous" parent record */
2005 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2006 		if (!n)
2007 			return;
2008 		audit_copy_inode(n, NULL, parent);
2009 	}
2010 
2011 	if (!found_child) {
2012 		found_child = audit_alloc_name(context, type);
2013 		if (!found_child)
2014 			return;
2015 
2016 		/* Re-use the name belonging to the slot for a matching parent
2017 		 * directory. All names for this context are relinquished in
2018 		 * audit_free_names() */
2019 		if (found_parent) {
2020 			found_child->name = found_parent->name;
2021 			found_child->name_len = AUDIT_NAME_FULL;
2022 			/* don't call __putname() */
2023 			found_child->name_put = false;
2024 		}
2025 	}
2026 	if (inode)
2027 		audit_copy_inode(found_child, dentry, inode);
2028 	else
2029 		found_child->ino = (unsigned long)-1;
2030 }
2031 EXPORT_SYMBOL_GPL(__audit_inode_child);
2032 
2033 /**
2034  * auditsc_get_stamp - get local copies of audit_context values
2035  * @ctx: audit_context for the task
2036  * @t: timespec to store time recorded in the audit_context
2037  * @serial: serial value that is recorded in the audit_context
2038  *
2039  * Also sets the context as auditable.
2040  */
2041 int auditsc_get_stamp(struct audit_context *ctx,
2042 		       struct timespec *t, unsigned int *serial)
2043 {
2044 	if (!ctx->in_syscall)
2045 		return 0;
2046 	if (!ctx->serial)
2047 		ctx->serial = audit_serial();
2048 	t->tv_sec  = ctx->ctime.tv_sec;
2049 	t->tv_nsec = ctx->ctime.tv_nsec;
2050 	*serial    = ctx->serial;
2051 	if (!ctx->prio) {
2052 		ctx->prio = 1;
2053 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2054 	}
2055 	return 1;
2056 }
2057 
2058 /* global counter which is incremented every time something logs in */
2059 static atomic_t session_id = ATOMIC_INIT(0);
2060 
2061 static int audit_set_loginuid_perm(kuid_t loginuid)
2062 {
2063 	/* if we are unset, we don't need privs */
2064 	if (!audit_loginuid_set(current))
2065 		return 0;
2066 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2067 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2068 		return -EPERM;
2069 	/* it is set, you need permission */
2070 	if (!capable(CAP_AUDIT_CONTROL))
2071 		return -EPERM;
2072 	/* reject if this is not an unset and we don't allow that */
2073 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2074 		return -EPERM;
2075 	return 0;
2076 }
2077 
2078 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2079 				   unsigned int oldsessionid, unsigned int sessionid,
2080 				   int rc)
2081 {
2082 	struct audit_buffer *ab;
2083 	uid_t uid, oldloginuid, loginuid;
2084 
2085 	if (!audit_enabled)
2086 		return;
2087 
2088 	uid = from_kuid(&init_user_ns, task_uid(current));
2089 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2090 	loginuid = from_kuid(&init_user_ns, kloginuid),
2091 
2092 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2093 	if (!ab)
2094 		return;
2095 	audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2096 	audit_log_task_context(ab);
2097 	audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2098 			 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2099 	audit_log_end(ab);
2100 }
2101 
2102 /**
2103  * audit_set_loginuid - set current task's audit_context loginuid
2104  * @loginuid: loginuid value
2105  *
2106  * Returns 0.
2107  *
2108  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2109  */
2110 int audit_set_loginuid(kuid_t loginuid)
2111 {
2112 	struct task_struct *task = current;
2113 	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2114 	kuid_t oldloginuid;
2115 	int rc;
2116 
2117 	oldloginuid = audit_get_loginuid(current);
2118 	oldsessionid = audit_get_sessionid(current);
2119 
2120 	rc = audit_set_loginuid_perm(loginuid);
2121 	if (rc)
2122 		goto out;
2123 
2124 	/* are we setting or clearing? */
2125 	if (uid_valid(loginuid))
2126 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2127 
2128 	task->sessionid = sessionid;
2129 	task->loginuid = loginuid;
2130 out:
2131 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2132 	return rc;
2133 }
2134 
2135 /**
2136  * __audit_mq_open - record audit data for a POSIX MQ open
2137  * @oflag: open flag
2138  * @mode: mode bits
2139  * @attr: queue attributes
2140  *
2141  */
2142 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2143 {
2144 	struct audit_context *context = current->audit_context;
2145 
2146 	if (attr)
2147 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2148 	else
2149 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2150 
2151 	context->mq_open.oflag = oflag;
2152 	context->mq_open.mode = mode;
2153 
2154 	context->type = AUDIT_MQ_OPEN;
2155 }
2156 
2157 /**
2158  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2159  * @mqdes: MQ descriptor
2160  * @msg_len: Message length
2161  * @msg_prio: Message priority
2162  * @abs_timeout: Message timeout in absolute time
2163  *
2164  */
2165 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2166 			const struct timespec *abs_timeout)
2167 {
2168 	struct audit_context *context = current->audit_context;
2169 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2170 
2171 	if (abs_timeout)
2172 		memcpy(p, abs_timeout, sizeof(struct timespec));
2173 	else
2174 		memset(p, 0, sizeof(struct timespec));
2175 
2176 	context->mq_sendrecv.mqdes = mqdes;
2177 	context->mq_sendrecv.msg_len = msg_len;
2178 	context->mq_sendrecv.msg_prio = msg_prio;
2179 
2180 	context->type = AUDIT_MQ_SENDRECV;
2181 }
2182 
2183 /**
2184  * __audit_mq_notify - record audit data for a POSIX MQ notify
2185  * @mqdes: MQ descriptor
2186  * @notification: Notification event
2187  *
2188  */
2189 
2190 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2191 {
2192 	struct audit_context *context = current->audit_context;
2193 
2194 	if (notification)
2195 		context->mq_notify.sigev_signo = notification->sigev_signo;
2196 	else
2197 		context->mq_notify.sigev_signo = 0;
2198 
2199 	context->mq_notify.mqdes = mqdes;
2200 	context->type = AUDIT_MQ_NOTIFY;
2201 }
2202 
2203 /**
2204  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2205  * @mqdes: MQ descriptor
2206  * @mqstat: MQ flags
2207  *
2208  */
2209 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2210 {
2211 	struct audit_context *context = current->audit_context;
2212 	context->mq_getsetattr.mqdes = mqdes;
2213 	context->mq_getsetattr.mqstat = *mqstat;
2214 	context->type = AUDIT_MQ_GETSETATTR;
2215 }
2216 
2217 /**
2218  * audit_ipc_obj - record audit data for ipc object
2219  * @ipcp: ipc permissions
2220  *
2221  */
2222 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2223 {
2224 	struct audit_context *context = current->audit_context;
2225 	context->ipc.uid = ipcp->uid;
2226 	context->ipc.gid = ipcp->gid;
2227 	context->ipc.mode = ipcp->mode;
2228 	context->ipc.has_perm = 0;
2229 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2230 	context->type = AUDIT_IPC;
2231 }
2232 
2233 /**
2234  * audit_ipc_set_perm - record audit data for new ipc permissions
2235  * @qbytes: msgq bytes
2236  * @uid: msgq user id
2237  * @gid: msgq group id
2238  * @mode: msgq mode (permissions)
2239  *
2240  * Called only after audit_ipc_obj().
2241  */
2242 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2243 {
2244 	struct audit_context *context = current->audit_context;
2245 
2246 	context->ipc.qbytes = qbytes;
2247 	context->ipc.perm_uid = uid;
2248 	context->ipc.perm_gid = gid;
2249 	context->ipc.perm_mode = mode;
2250 	context->ipc.has_perm = 1;
2251 }
2252 
2253 void __audit_bprm(struct linux_binprm *bprm)
2254 {
2255 	struct audit_context *context = current->audit_context;
2256 
2257 	context->type = AUDIT_EXECVE;
2258 	context->execve.argc = bprm->argc;
2259 }
2260 
2261 
2262 /**
2263  * audit_socketcall - record audit data for sys_socketcall
2264  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2265  * @args: args array
2266  *
2267  */
2268 int __audit_socketcall(int nargs, unsigned long *args)
2269 {
2270 	struct audit_context *context = current->audit_context;
2271 
2272 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2273 		return -EINVAL;
2274 	context->type = AUDIT_SOCKETCALL;
2275 	context->socketcall.nargs = nargs;
2276 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2277 	return 0;
2278 }
2279 
2280 /**
2281  * __audit_fd_pair - record audit data for pipe and socketpair
2282  * @fd1: the first file descriptor
2283  * @fd2: the second file descriptor
2284  *
2285  */
2286 void __audit_fd_pair(int fd1, int fd2)
2287 {
2288 	struct audit_context *context = current->audit_context;
2289 	context->fds[0] = fd1;
2290 	context->fds[1] = fd2;
2291 }
2292 
2293 /**
2294  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2295  * @len: data length in user space
2296  * @a: data address in kernel space
2297  *
2298  * Returns 0 for success or NULL context or < 0 on error.
2299  */
2300 int __audit_sockaddr(int len, void *a)
2301 {
2302 	struct audit_context *context = current->audit_context;
2303 
2304 	if (!context->sockaddr) {
2305 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2306 		if (!p)
2307 			return -ENOMEM;
2308 		context->sockaddr = p;
2309 	}
2310 
2311 	context->sockaddr_len = len;
2312 	memcpy(context->sockaddr, a, len);
2313 	return 0;
2314 }
2315 
2316 void __audit_ptrace(struct task_struct *t)
2317 {
2318 	struct audit_context *context = current->audit_context;
2319 
2320 	context->target_pid = task_pid_nr(t);
2321 	context->target_auid = audit_get_loginuid(t);
2322 	context->target_uid = task_uid(t);
2323 	context->target_sessionid = audit_get_sessionid(t);
2324 	security_task_getsecid(t, &context->target_sid);
2325 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2326 }
2327 
2328 /**
2329  * audit_signal_info - record signal info for shutting down audit subsystem
2330  * @sig: signal value
2331  * @t: task being signaled
2332  *
2333  * If the audit subsystem is being terminated, record the task (pid)
2334  * and uid that is doing that.
2335  */
2336 int __audit_signal_info(int sig, struct task_struct *t)
2337 {
2338 	struct audit_aux_data_pids *axp;
2339 	struct task_struct *tsk = current;
2340 	struct audit_context *ctx = tsk->audit_context;
2341 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2342 
2343 	if (audit_pid && t->tgid == audit_pid) {
2344 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2345 			audit_sig_pid = task_pid_nr(tsk);
2346 			if (uid_valid(tsk->loginuid))
2347 				audit_sig_uid = tsk->loginuid;
2348 			else
2349 				audit_sig_uid = uid;
2350 			security_task_getsecid(tsk, &audit_sig_sid);
2351 		}
2352 		if (!audit_signals || audit_dummy_context())
2353 			return 0;
2354 	}
2355 
2356 	/* optimize the common case by putting first signal recipient directly
2357 	 * in audit_context */
2358 	if (!ctx->target_pid) {
2359 		ctx->target_pid = task_tgid_nr(t);
2360 		ctx->target_auid = audit_get_loginuid(t);
2361 		ctx->target_uid = t_uid;
2362 		ctx->target_sessionid = audit_get_sessionid(t);
2363 		security_task_getsecid(t, &ctx->target_sid);
2364 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2365 		return 0;
2366 	}
2367 
2368 	axp = (void *)ctx->aux_pids;
2369 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2370 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2371 		if (!axp)
2372 			return -ENOMEM;
2373 
2374 		axp->d.type = AUDIT_OBJ_PID;
2375 		axp->d.next = ctx->aux_pids;
2376 		ctx->aux_pids = (void *)axp;
2377 	}
2378 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2379 
2380 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2381 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2382 	axp->target_uid[axp->pid_count] = t_uid;
2383 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2384 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2385 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2386 	axp->pid_count++;
2387 
2388 	return 0;
2389 }
2390 
2391 /**
2392  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2393  * @bprm: pointer to the bprm being processed
2394  * @new: the proposed new credentials
2395  * @old: the old credentials
2396  *
2397  * Simply check if the proc already has the caps given by the file and if not
2398  * store the priv escalation info for later auditing at the end of the syscall
2399  *
2400  * -Eric
2401  */
2402 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2403 			   const struct cred *new, const struct cred *old)
2404 {
2405 	struct audit_aux_data_bprm_fcaps *ax;
2406 	struct audit_context *context = current->audit_context;
2407 	struct cpu_vfs_cap_data vcaps;
2408 	struct dentry *dentry;
2409 
2410 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2411 	if (!ax)
2412 		return -ENOMEM;
2413 
2414 	ax->d.type = AUDIT_BPRM_FCAPS;
2415 	ax->d.next = context->aux;
2416 	context->aux = (void *)ax;
2417 
2418 	dentry = dget(bprm->file->f_path.dentry);
2419 	get_vfs_caps_from_disk(dentry, &vcaps);
2420 	dput(dentry);
2421 
2422 	ax->fcap.permitted = vcaps.permitted;
2423 	ax->fcap.inheritable = vcaps.inheritable;
2424 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2425 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2426 
2427 	ax->old_pcap.permitted   = old->cap_permitted;
2428 	ax->old_pcap.inheritable = old->cap_inheritable;
2429 	ax->old_pcap.effective   = old->cap_effective;
2430 
2431 	ax->new_pcap.permitted   = new->cap_permitted;
2432 	ax->new_pcap.inheritable = new->cap_inheritable;
2433 	ax->new_pcap.effective   = new->cap_effective;
2434 	return 0;
2435 }
2436 
2437 /**
2438  * __audit_log_capset - store information about the arguments to the capset syscall
2439  * @new: the new credentials
2440  * @old: the old (current) credentials
2441  *
2442  * Record the arguments userspace sent to sys_capset for later printing by the
2443  * audit system if applicable
2444  */
2445 void __audit_log_capset(const struct cred *new, const struct cred *old)
2446 {
2447 	struct audit_context *context = current->audit_context;
2448 	context->capset.pid = task_pid_nr(current);
2449 	context->capset.cap.effective   = new->cap_effective;
2450 	context->capset.cap.inheritable = new->cap_effective;
2451 	context->capset.cap.permitted   = new->cap_permitted;
2452 	context->type = AUDIT_CAPSET;
2453 }
2454 
2455 void __audit_mmap_fd(int fd, int flags)
2456 {
2457 	struct audit_context *context = current->audit_context;
2458 	context->mmap.fd = fd;
2459 	context->mmap.flags = flags;
2460 	context->type = AUDIT_MMAP;
2461 }
2462 
2463 static void audit_log_task(struct audit_buffer *ab)
2464 {
2465 	kuid_t auid, uid;
2466 	kgid_t gid;
2467 	unsigned int sessionid;
2468 	struct mm_struct *mm = current->mm;
2469 	char comm[sizeof(current->comm)];
2470 
2471 	auid = audit_get_loginuid(current);
2472 	sessionid = audit_get_sessionid(current);
2473 	current_uid_gid(&uid, &gid);
2474 
2475 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2476 			 from_kuid(&init_user_ns, auid),
2477 			 from_kuid(&init_user_ns, uid),
2478 			 from_kgid(&init_user_ns, gid),
2479 			 sessionid);
2480 	audit_log_task_context(ab);
2481 	audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2482 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2483 	if (mm) {
2484 		down_read(&mm->mmap_sem);
2485 		if (mm->exe_file)
2486 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2487 		up_read(&mm->mmap_sem);
2488 	} else
2489 		audit_log_format(ab, " exe=(null)");
2490 }
2491 
2492 /**
2493  * audit_core_dumps - record information about processes that end abnormally
2494  * @signr: signal value
2495  *
2496  * If a process ends with a core dump, something fishy is going on and we
2497  * should record the event for investigation.
2498  */
2499 void audit_core_dumps(long signr)
2500 {
2501 	struct audit_buffer *ab;
2502 
2503 	if (!audit_enabled)
2504 		return;
2505 
2506 	if (signr == SIGQUIT)	/* don't care for those */
2507 		return;
2508 
2509 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2510 	if (unlikely(!ab))
2511 		return;
2512 	audit_log_task(ab);
2513 	audit_log_format(ab, " sig=%ld", signr);
2514 	audit_log_end(ab);
2515 }
2516 
2517 void __audit_seccomp(unsigned long syscall, long signr, int code)
2518 {
2519 	struct audit_buffer *ab;
2520 
2521 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2522 	if (unlikely(!ab))
2523 		return;
2524 	audit_log_task(ab);
2525 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2526 			 signr, syscall_get_arch(), syscall, is_compat_task(),
2527 			 KSTK_EIP(current), code);
2528 	audit_log_end(ab);
2529 }
2530 
2531 struct list_head *audit_killed_trees(void)
2532 {
2533 	struct audit_context *ctx = current->audit_context;
2534 	if (likely(!ctx || !ctx->in_syscall))
2535 		return NULL;
2536 	return &ctx->killed_trees;
2537 }
2538