1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 68 #include "audit.h" 69 70 /* flags stating the success for a syscall */ 71 #define AUDITSC_INVALID 0 72 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_FAILURE 2 74 75 /* no execve audit message should be longer than this (userspace limits), 76 * see the note near the top of audit_log_execve_info() about this value */ 77 #define MAX_EXECVE_AUDIT_LEN 7500 78 79 /* max length to print of cmdline/proctitle value during audit */ 80 #define MAX_PROCTITLE_AUDIT_LEN 128 81 82 /* number of audit rules */ 83 int audit_n_rules; 84 85 /* determines whether we collect data for signals sent */ 86 int audit_signals; 87 88 struct audit_aux_data { 89 struct audit_aux_data *next; 90 int type; 91 }; 92 93 /* Number of target pids per aux struct. */ 94 #define AUDIT_AUX_PIDS 16 95 96 struct audit_aux_data_pids { 97 struct audit_aux_data d; 98 pid_t target_pid[AUDIT_AUX_PIDS]; 99 kuid_t target_auid[AUDIT_AUX_PIDS]; 100 kuid_t target_uid[AUDIT_AUX_PIDS]; 101 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 102 u32 target_sid[AUDIT_AUX_PIDS]; 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 104 int pid_count; 105 }; 106 107 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data d; 109 struct audit_cap_data fcap; 110 unsigned int fcap_ver; 111 struct audit_cap_data old_pcap; 112 struct audit_cap_data new_pcap; 113 }; 114 115 struct audit_tree_refs { 116 struct audit_tree_refs *next; 117 struct audit_chunk *c[31]; 118 }; 119 120 struct audit_nfcfgop_tab { 121 enum audit_nfcfgop op; 122 const char *s; 123 }; 124 125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 126 { AUDIT_XT_OP_REGISTER, "xt_register" }, 127 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 145 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 146 }; 147 148 static int audit_match_perm(struct audit_context *ctx, int mask) 149 { 150 unsigned n; 151 152 if (unlikely(!ctx)) 153 return 0; 154 n = ctx->major; 155 156 switch (audit_classify_syscall(ctx->arch, n)) { 157 case AUDITSC_NATIVE: 158 if ((mask & AUDIT_PERM_WRITE) && 159 audit_match_class(AUDIT_CLASS_WRITE, n)) 160 return 1; 161 if ((mask & AUDIT_PERM_READ) && 162 audit_match_class(AUDIT_CLASS_READ, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_ATTR) && 165 audit_match_class(AUDIT_CLASS_CHATTR, n)) 166 return 1; 167 return 0; 168 case AUDITSC_COMPAT: /* 32bit on biarch */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 177 return 1; 178 return 0; 179 case AUDITSC_OPEN: 180 return mask & ACC_MODE(ctx->argv[1]); 181 case AUDITSC_OPENAT: 182 return mask & ACC_MODE(ctx->argv[2]); 183 case AUDITSC_SOCKETCALL: 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 185 case AUDITSC_EXECVE: 186 return mask & AUDIT_PERM_EXEC; 187 case AUDITSC_OPENAT2: 188 return mask & ACC_MODE((u32)ctx->openat2.flags); 189 default: 190 return 0; 191 } 192 } 193 194 static int audit_match_filetype(struct audit_context *ctx, int val) 195 { 196 struct audit_names *n; 197 umode_t mode = (umode_t)val; 198 199 if (unlikely(!ctx)) 200 return 0; 201 202 list_for_each_entry(n, &ctx->names_list, list) { 203 if ((n->ino != AUDIT_INO_UNSET) && 204 ((n->mode & S_IFMT) == mode)) 205 return 1; 206 } 207 208 return 0; 209 } 210 211 /* 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 213 * ->first_trees points to its beginning, ->trees - to the current end of data. 214 * ->tree_count is the number of free entries in array pointed to by ->trees. 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 217 * it's going to remain 1-element for almost any setup) until we free context itself. 218 * References in it _are_ dropped - at the same time we free/drop aux stuff. 219 */ 220 221 static void audit_set_auditable(struct audit_context *ctx) 222 { 223 if (!ctx->prio) { 224 ctx->prio = 1; 225 ctx->current_state = AUDIT_STATE_RECORD; 226 } 227 } 228 229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 230 { 231 struct audit_tree_refs *p = ctx->trees; 232 int left = ctx->tree_count; 233 234 if (likely(left)) { 235 p->c[--left] = chunk; 236 ctx->tree_count = left; 237 return 1; 238 } 239 if (!p) 240 return 0; 241 p = p->next; 242 if (p) { 243 p->c[30] = chunk; 244 ctx->trees = p; 245 ctx->tree_count = 30; 246 return 1; 247 } 248 return 0; 249 } 250 251 static int grow_tree_refs(struct audit_context *ctx) 252 { 253 struct audit_tree_refs *p = ctx->trees; 254 255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 256 if (!ctx->trees) { 257 ctx->trees = p; 258 return 0; 259 } 260 if (p) 261 p->next = ctx->trees; 262 else 263 ctx->first_trees = ctx->trees; 264 ctx->tree_count = 31; 265 return 1; 266 } 267 268 static void unroll_tree_refs(struct audit_context *ctx, 269 struct audit_tree_refs *p, int count) 270 { 271 struct audit_tree_refs *q; 272 int n; 273 274 if (!p) { 275 /* we started with empty chain */ 276 p = ctx->first_trees; 277 count = 31; 278 /* if the very first allocation has failed, nothing to do */ 279 if (!p) 280 return; 281 } 282 n = count; 283 for (q = p; q != ctx->trees; q = q->next, n = 31) { 284 while (n--) { 285 audit_put_chunk(q->c[n]); 286 q->c[n] = NULL; 287 } 288 } 289 while (n-- > ctx->tree_count) { 290 audit_put_chunk(q->c[n]); 291 q->c[n] = NULL; 292 } 293 ctx->trees = p; 294 ctx->tree_count = count; 295 } 296 297 static void free_tree_refs(struct audit_context *ctx) 298 { 299 struct audit_tree_refs *p, *q; 300 301 for (p = ctx->first_trees; p; p = q) { 302 q = p->next; 303 kfree(p); 304 } 305 } 306 307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 308 { 309 struct audit_tree_refs *p; 310 int n; 311 312 if (!tree) 313 return 0; 314 /* full ones */ 315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 316 for (n = 0; n < 31; n++) 317 if (audit_tree_match(p->c[n], tree)) 318 return 1; 319 } 320 /* partial */ 321 if (p) { 322 for (n = ctx->tree_count; n < 31; n++) 323 if (audit_tree_match(p->c[n], tree)) 324 return 1; 325 } 326 return 0; 327 } 328 329 static int audit_compare_uid(kuid_t uid, 330 struct audit_names *name, 331 struct audit_field *f, 332 struct audit_context *ctx) 333 { 334 struct audit_names *n; 335 int rc; 336 337 if (name) { 338 rc = audit_uid_comparator(uid, f->op, name->uid); 339 if (rc) 340 return rc; 341 } 342 343 if (ctx) { 344 list_for_each_entry(n, &ctx->names_list, list) { 345 rc = audit_uid_comparator(uid, f->op, n->uid); 346 if (rc) 347 return rc; 348 } 349 } 350 return 0; 351 } 352 353 static int audit_compare_gid(kgid_t gid, 354 struct audit_names *name, 355 struct audit_field *f, 356 struct audit_context *ctx) 357 { 358 struct audit_names *n; 359 int rc; 360 361 if (name) { 362 rc = audit_gid_comparator(gid, f->op, name->gid); 363 if (rc) 364 return rc; 365 } 366 367 if (ctx) { 368 list_for_each_entry(n, &ctx->names_list, list) { 369 rc = audit_gid_comparator(gid, f->op, n->gid); 370 if (rc) 371 return rc; 372 } 373 } 374 return 0; 375 } 376 377 static int audit_field_compare(struct task_struct *tsk, 378 const struct cred *cred, 379 struct audit_field *f, 380 struct audit_context *ctx, 381 struct audit_names *name) 382 { 383 switch (f->val) { 384 /* process to file object comparisons */ 385 case AUDIT_COMPARE_UID_TO_OBJ_UID: 386 return audit_compare_uid(cred->uid, name, f, ctx); 387 case AUDIT_COMPARE_GID_TO_OBJ_GID: 388 return audit_compare_gid(cred->gid, name, f, ctx); 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 390 return audit_compare_uid(cred->euid, name, f, ctx); 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 392 return audit_compare_gid(cred->egid, name, f, ctx); 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 396 return audit_compare_uid(cred->suid, name, f, ctx); 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 398 return audit_compare_gid(cred->sgid, name, f, ctx); 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->fsuid, name, f, ctx); 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->fsgid, name, f, ctx); 403 /* uid comparisons */ 404 case AUDIT_COMPARE_UID_TO_AUID: 405 return audit_uid_comparator(cred->uid, f->op, 406 audit_get_loginuid(tsk)); 407 case AUDIT_COMPARE_UID_TO_EUID: 408 return audit_uid_comparator(cred->uid, f->op, cred->euid); 409 case AUDIT_COMPARE_UID_TO_SUID: 410 return audit_uid_comparator(cred->uid, f->op, cred->suid); 411 case AUDIT_COMPARE_UID_TO_FSUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 413 /* auid comparisons */ 414 case AUDIT_COMPARE_AUID_TO_EUID: 415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 416 cred->euid); 417 case AUDIT_COMPARE_AUID_TO_SUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->suid); 420 case AUDIT_COMPARE_AUID_TO_FSUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->fsuid); 423 /* euid comparisons */ 424 case AUDIT_COMPARE_EUID_TO_SUID: 425 return audit_uid_comparator(cred->euid, f->op, cred->suid); 426 case AUDIT_COMPARE_EUID_TO_FSUID: 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 428 /* suid comparisons */ 429 case AUDIT_COMPARE_SUID_TO_FSUID: 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 431 /* gid comparisons */ 432 case AUDIT_COMPARE_GID_TO_EGID: 433 return audit_gid_comparator(cred->gid, f->op, cred->egid); 434 case AUDIT_COMPARE_GID_TO_SGID: 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 436 case AUDIT_COMPARE_GID_TO_FSGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 438 /* egid comparisons */ 439 case AUDIT_COMPARE_EGID_TO_SGID: 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 441 case AUDIT_COMPARE_EGID_TO_FSGID: 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 443 /* sgid comparison */ 444 case AUDIT_COMPARE_SGID_TO_FSGID: 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 446 default: 447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 448 return 0; 449 } 450 return 0; 451 } 452 453 /* Determine if any context name data matches a rule's watch data */ 454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 455 * otherwise. 456 * 457 * If task_creation is true, this is an explicit indication that we are 458 * filtering a task rule at task creation time. This and tsk == current are 459 * the only situations where tsk->cred may be accessed without an rcu read lock. 460 */ 461 static int audit_filter_rules(struct task_struct *tsk, 462 struct audit_krule *rule, 463 struct audit_context *ctx, 464 struct audit_names *name, 465 enum audit_state *state, 466 bool task_creation) 467 { 468 const struct cred *cred; 469 int i, need_sid = 1; 470 u32 sid; 471 unsigned int sessionid; 472 473 if (ctx && rule->prio <= ctx->prio) 474 return 0; 475 476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 477 478 for (i = 0; i < rule->field_count; i++) { 479 struct audit_field *f = &rule->fields[i]; 480 struct audit_names *n; 481 int result = 0; 482 pid_t pid; 483 484 switch (f->type) { 485 case AUDIT_PID: 486 pid = task_tgid_nr(tsk); 487 result = audit_comparator(pid, f->op, f->val); 488 break; 489 case AUDIT_PPID: 490 if (ctx) { 491 if (!ctx->ppid) 492 ctx->ppid = task_ppid_nr(tsk); 493 result = audit_comparator(ctx->ppid, f->op, f->val); 494 } 495 break; 496 case AUDIT_EXE: 497 result = audit_exe_compare(tsk, rule->exe); 498 if (f->op == Audit_not_equal) 499 result = !result; 500 break; 501 case AUDIT_UID: 502 result = audit_uid_comparator(cred->uid, f->op, f->uid); 503 break; 504 case AUDIT_EUID: 505 result = audit_uid_comparator(cred->euid, f->op, f->uid); 506 break; 507 case AUDIT_SUID: 508 result = audit_uid_comparator(cred->suid, f->op, f->uid); 509 break; 510 case AUDIT_FSUID: 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 512 break; 513 case AUDIT_GID: 514 result = audit_gid_comparator(cred->gid, f->op, f->gid); 515 if (f->op == Audit_equal) { 516 if (!result) 517 result = groups_search(cred->group_info, f->gid); 518 } else if (f->op == Audit_not_equal) { 519 if (result) 520 result = !groups_search(cred->group_info, f->gid); 521 } 522 break; 523 case AUDIT_EGID: 524 result = audit_gid_comparator(cred->egid, f->op, f->gid); 525 if (f->op == Audit_equal) { 526 if (!result) 527 result = groups_search(cred->group_info, f->gid); 528 } else if (f->op == Audit_not_equal) { 529 if (result) 530 result = !groups_search(cred->group_info, f->gid); 531 } 532 break; 533 case AUDIT_SGID: 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 535 break; 536 case AUDIT_FSGID: 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 538 break; 539 case AUDIT_SESSIONID: 540 sessionid = audit_get_sessionid(tsk); 541 result = audit_comparator(sessionid, f->op, f->val); 542 break; 543 case AUDIT_PERS: 544 result = audit_comparator(tsk->personality, f->op, f->val); 545 break; 546 case AUDIT_ARCH: 547 if (ctx) 548 result = audit_comparator(ctx->arch, f->op, f->val); 549 break; 550 551 case AUDIT_EXIT: 552 if (ctx && ctx->return_valid != AUDITSC_INVALID) 553 result = audit_comparator(ctx->return_code, f->op, f->val); 554 break; 555 case AUDIT_SUCCESS: 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 557 if (f->val) 558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 559 else 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 561 } 562 break; 563 case AUDIT_DEVMAJOR: 564 if (name) { 565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 566 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 567 ++result; 568 } else if (ctx) { 569 list_for_each_entry(n, &ctx->names_list, list) { 570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 572 ++result; 573 break; 574 } 575 } 576 } 577 break; 578 case AUDIT_DEVMINOR: 579 if (name) { 580 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 581 audit_comparator(MINOR(name->rdev), f->op, f->val)) 582 ++result; 583 } else if (ctx) { 584 list_for_each_entry(n, &ctx->names_list, list) { 585 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 586 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_INODE: 594 if (name) 595 result = audit_comparator(name->ino, f->op, f->val); 596 else if (ctx) { 597 list_for_each_entry(n, &ctx->names_list, list) { 598 if (audit_comparator(n->ino, f->op, f->val)) { 599 ++result; 600 break; 601 } 602 } 603 } 604 break; 605 case AUDIT_OBJ_UID: 606 if (name) { 607 result = audit_uid_comparator(name->uid, f->op, f->uid); 608 } else if (ctx) { 609 list_for_each_entry(n, &ctx->names_list, list) { 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 611 ++result; 612 break; 613 } 614 } 615 } 616 break; 617 case AUDIT_OBJ_GID: 618 if (name) { 619 result = audit_gid_comparator(name->gid, f->op, f->gid); 620 } else if (ctx) { 621 list_for_each_entry(n, &ctx->names_list, list) { 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 623 ++result; 624 break; 625 } 626 } 627 } 628 break; 629 case AUDIT_WATCH: 630 if (name) { 631 result = audit_watch_compare(rule->watch, 632 name->ino, 633 name->dev); 634 if (f->op == Audit_not_equal) 635 result = !result; 636 } 637 break; 638 case AUDIT_DIR: 639 if (ctx) { 640 result = match_tree_refs(ctx, rule->tree); 641 if (f->op == Audit_not_equal) 642 result = !result; 643 } 644 break; 645 case AUDIT_LOGINUID: 646 result = audit_uid_comparator(audit_get_loginuid(tsk), 647 f->op, f->uid); 648 break; 649 case AUDIT_LOGINUID_SET: 650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 651 break; 652 case AUDIT_SADDR_FAM: 653 if (ctx && ctx->sockaddr) 654 result = audit_comparator(ctx->sockaddr->ss_family, 655 f->op, f->val); 656 break; 657 case AUDIT_SUBJ_USER: 658 case AUDIT_SUBJ_ROLE: 659 case AUDIT_SUBJ_TYPE: 660 case AUDIT_SUBJ_SEN: 661 case AUDIT_SUBJ_CLR: 662 /* NOTE: this may return negative values indicating 663 a temporary error. We simply treat this as a 664 match for now to avoid losing information that 665 may be wanted. An error message will also be 666 logged upon error */ 667 if (f->lsm_rule) { 668 if (need_sid) { 669 /* @tsk should always be equal to 670 * @current with the exception of 671 * fork()/copy_process() in which case 672 * the new @tsk creds are still a dup 673 * of @current's creds so we can still 674 * use security_current_getsecid_subj() 675 * here even though it always refs 676 * @current's creds 677 */ 678 security_current_getsecid_subj(&sid); 679 need_sid = 0; 680 } 681 result = security_audit_rule_match(sid, f->type, 682 f->op, 683 f->lsm_rule); 684 } 685 break; 686 case AUDIT_OBJ_USER: 687 case AUDIT_OBJ_ROLE: 688 case AUDIT_OBJ_TYPE: 689 case AUDIT_OBJ_LEV_LOW: 690 case AUDIT_OBJ_LEV_HIGH: 691 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 692 also applies here */ 693 if (f->lsm_rule) { 694 /* Find files that match */ 695 if (name) { 696 result = security_audit_rule_match( 697 name->osid, 698 f->type, 699 f->op, 700 f->lsm_rule); 701 } else if (ctx) { 702 list_for_each_entry(n, &ctx->names_list, list) { 703 if (security_audit_rule_match( 704 n->osid, 705 f->type, 706 f->op, 707 f->lsm_rule)) { 708 ++result; 709 break; 710 } 711 } 712 } 713 /* Find ipc objects that match */ 714 if (!ctx || ctx->type != AUDIT_IPC) 715 break; 716 if (security_audit_rule_match(ctx->ipc.osid, 717 f->type, f->op, 718 f->lsm_rule)) 719 ++result; 720 } 721 break; 722 case AUDIT_ARG0: 723 case AUDIT_ARG1: 724 case AUDIT_ARG2: 725 case AUDIT_ARG3: 726 if (ctx) 727 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 728 break; 729 case AUDIT_FILTERKEY: 730 /* ignore this field for filtering */ 731 result = 1; 732 break; 733 case AUDIT_PERM: 734 result = audit_match_perm(ctx, f->val); 735 if (f->op == Audit_not_equal) 736 result = !result; 737 break; 738 case AUDIT_FILETYPE: 739 result = audit_match_filetype(ctx, f->val); 740 if (f->op == Audit_not_equal) 741 result = !result; 742 break; 743 case AUDIT_FIELD_COMPARE: 744 result = audit_field_compare(tsk, cred, f, ctx, name); 745 break; 746 } 747 if (!result) 748 return 0; 749 } 750 751 if (ctx) { 752 if (rule->filterkey) { 753 kfree(ctx->filterkey); 754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 755 } 756 ctx->prio = rule->prio; 757 } 758 switch (rule->action) { 759 case AUDIT_NEVER: 760 *state = AUDIT_STATE_DISABLED; 761 break; 762 case AUDIT_ALWAYS: 763 *state = AUDIT_STATE_RECORD; 764 break; 765 } 766 return 1; 767 } 768 769 /* At process creation time, we can determine if system-call auditing is 770 * completely disabled for this task. Since we only have the task 771 * structure at this point, we can only check uid and gid. 772 */ 773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 774 { 775 struct audit_entry *e; 776 enum audit_state state; 777 778 rcu_read_lock(); 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 781 &state, true)) { 782 if (state == AUDIT_STATE_RECORD) 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 784 rcu_read_unlock(); 785 return state; 786 } 787 } 788 rcu_read_unlock(); 789 return AUDIT_STATE_BUILD; 790 } 791 792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 793 { 794 int word, bit; 795 796 if (val > 0xffffffff) 797 return false; 798 799 word = AUDIT_WORD(val); 800 if (word >= AUDIT_BITMASK_SIZE) 801 return false; 802 803 bit = AUDIT_BIT(val); 804 805 return rule->mask[word] & bit; 806 } 807 808 /** 809 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 810 * @tsk: associated task 811 * @ctx: audit context 812 * @list: audit filter list 813 * @name: audit_name (can be NULL) 814 * @op: current syscall/uring_op 815 * 816 * Run the udit filters specified in @list against @tsk using @ctx, 817 * @name, and @op, as necessary; the caller is responsible for ensuring 818 * that the call is made while the RCU read lock is held. The @name 819 * parameter can be NULL, but all others must be specified. 820 * Returns 1/true if the filter finds a match, 0/false if none are found. 821 */ 822 static int __audit_filter_op(struct task_struct *tsk, 823 struct audit_context *ctx, 824 struct list_head *list, 825 struct audit_names *name, 826 unsigned long op) 827 { 828 struct audit_entry *e; 829 enum audit_state state; 830 831 list_for_each_entry_rcu(e, list, list) { 832 if (audit_in_mask(&e->rule, op) && 833 audit_filter_rules(tsk, &e->rule, ctx, name, 834 &state, false)) { 835 ctx->current_state = state; 836 return 1; 837 } 838 } 839 return 0; 840 } 841 842 /** 843 * audit_filter_uring - apply filters to an io_uring operation 844 * @tsk: associated task 845 * @ctx: audit context 846 */ 847 static void audit_filter_uring(struct task_struct *tsk, 848 struct audit_context *ctx) 849 { 850 if (auditd_test_task(tsk)) 851 return; 852 853 rcu_read_lock(); 854 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 855 NULL, ctx->uring_op); 856 rcu_read_unlock(); 857 } 858 859 /* At syscall exit time, this filter is called if the audit_state is 860 * not low enough that auditing cannot take place, but is also not 861 * high enough that we already know we have to write an audit record 862 * (i.e., the state is AUDIT_STATE_BUILD). 863 */ 864 static void audit_filter_syscall(struct task_struct *tsk, 865 struct audit_context *ctx) 866 { 867 if (auditd_test_task(tsk)) 868 return; 869 870 rcu_read_lock(); 871 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 872 NULL, ctx->major); 873 rcu_read_unlock(); 874 } 875 876 /* 877 * Given an audit_name check the inode hash table to see if they match. 878 * Called holding the rcu read lock to protect the use of audit_inode_hash 879 */ 880 static int audit_filter_inode_name(struct task_struct *tsk, 881 struct audit_names *n, 882 struct audit_context *ctx) { 883 int h = audit_hash_ino((u32)n->ino); 884 struct list_head *list = &audit_inode_hash[h]; 885 886 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 887 } 888 889 /* At syscall exit time, this filter is called if any audit_names have been 890 * collected during syscall processing. We only check rules in sublists at hash 891 * buckets applicable to the inode numbers in audit_names. 892 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 893 */ 894 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 895 { 896 struct audit_names *n; 897 898 if (auditd_test_task(tsk)) 899 return; 900 901 rcu_read_lock(); 902 903 list_for_each_entry(n, &ctx->names_list, list) { 904 if (audit_filter_inode_name(tsk, n, ctx)) 905 break; 906 } 907 rcu_read_unlock(); 908 } 909 910 static inline void audit_proctitle_free(struct audit_context *context) 911 { 912 kfree(context->proctitle.value); 913 context->proctitle.value = NULL; 914 context->proctitle.len = 0; 915 } 916 917 static inline void audit_free_module(struct audit_context *context) 918 { 919 if (context->type == AUDIT_KERN_MODULE) { 920 kfree(context->module.name); 921 context->module.name = NULL; 922 } 923 } 924 static inline void audit_free_names(struct audit_context *context) 925 { 926 struct audit_names *n, *next; 927 928 list_for_each_entry_safe(n, next, &context->names_list, list) { 929 list_del(&n->list); 930 if (n->name) 931 putname(n->name); 932 if (n->should_free) 933 kfree(n); 934 } 935 context->name_count = 0; 936 path_put(&context->pwd); 937 context->pwd.dentry = NULL; 938 context->pwd.mnt = NULL; 939 } 940 941 static inline void audit_free_aux(struct audit_context *context) 942 { 943 struct audit_aux_data *aux; 944 945 while ((aux = context->aux)) { 946 context->aux = aux->next; 947 kfree(aux); 948 } 949 context->aux = NULL; 950 while ((aux = context->aux_pids)) { 951 context->aux_pids = aux->next; 952 kfree(aux); 953 } 954 context->aux_pids = NULL; 955 } 956 957 /** 958 * audit_reset_context - reset a audit_context structure 959 * @ctx: the audit_context to reset 960 * 961 * All fields in the audit_context will be reset to an initial state, all 962 * references held by fields will be dropped, and private memory will be 963 * released. When this function returns the audit_context will be suitable 964 * for reuse, so long as the passed context is not NULL or a dummy context. 965 */ 966 static void audit_reset_context(struct audit_context *ctx) 967 { 968 if (!ctx) 969 return; 970 971 /* if ctx is non-null, reset the "ctx->context" regardless */ 972 ctx->context = AUDIT_CTX_UNUSED; 973 if (ctx->dummy) 974 return; 975 976 /* 977 * NOTE: It shouldn't matter in what order we release the fields, so 978 * release them in the order in which they appear in the struct; 979 * this gives us some hope of quickly making sure we are 980 * resetting the audit_context properly. 981 * 982 * Other things worth mentioning: 983 * - we don't reset "dummy" 984 * - we don't reset "state", we do reset "current_state" 985 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 986 * - much of this is likely overkill, but play it safe for now 987 * - we really need to work on improving the audit_context struct 988 */ 989 990 ctx->current_state = ctx->state; 991 ctx->serial = 0; 992 ctx->major = 0; 993 ctx->uring_op = 0; 994 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 995 memset(ctx->argv, 0, sizeof(ctx->argv)); 996 ctx->return_code = 0; 997 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 998 ctx->return_valid = AUDITSC_INVALID; 999 audit_free_names(ctx); 1000 if (ctx->state != AUDIT_STATE_RECORD) { 1001 kfree(ctx->filterkey); 1002 ctx->filterkey = NULL; 1003 } 1004 audit_free_aux(ctx); 1005 kfree(ctx->sockaddr); 1006 ctx->sockaddr = NULL; 1007 ctx->sockaddr_len = 0; 1008 ctx->ppid = 0; 1009 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1010 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1011 ctx->personality = 0; 1012 ctx->arch = 0; 1013 ctx->target_pid = 0; 1014 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1015 ctx->target_sessionid = 0; 1016 ctx->target_sid = 0; 1017 ctx->target_comm[0] = '\0'; 1018 unroll_tree_refs(ctx, NULL, 0); 1019 WARN_ON(!list_empty(&ctx->killed_trees)); 1020 audit_free_module(ctx); 1021 ctx->fds[0] = -1; 1022 ctx->type = 0; /* reset last for audit_free_*() */ 1023 } 1024 1025 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1026 { 1027 struct audit_context *context; 1028 1029 context = kzalloc(sizeof(*context), GFP_KERNEL); 1030 if (!context) 1031 return NULL; 1032 context->context = AUDIT_CTX_UNUSED; 1033 context->state = state; 1034 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1035 INIT_LIST_HEAD(&context->killed_trees); 1036 INIT_LIST_HEAD(&context->names_list); 1037 context->fds[0] = -1; 1038 context->return_valid = AUDITSC_INVALID; 1039 return context; 1040 } 1041 1042 /** 1043 * audit_alloc - allocate an audit context block for a task 1044 * @tsk: task 1045 * 1046 * Filter on the task information and allocate a per-task audit context 1047 * if necessary. Doing so turns on system call auditing for the 1048 * specified task. This is called from copy_process, so no lock is 1049 * needed. 1050 */ 1051 int audit_alloc(struct task_struct *tsk) 1052 { 1053 struct audit_context *context; 1054 enum audit_state state; 1055 char *key = NULL; 1056 1057 if (likely(!audit_ever_enabled)) 1058 return 0; 1059 1060 state = audit_filter_task(tsk, &key); 1061 if (state == AUDIT_STATE_DISABLED) { 1062 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1063 return 0; 1064 } 1065 1066 if (!(context = audit_alloc_context(state))) { 1067 kfree(key); 1068 audit_log_lost("out of memory in audit_alloc"); 1069 return -ENOMEM; 1070 } 1071 context->filterkey = key; 1072 1073 audit_set_context(tsk, context); 1074 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1075 return 0; 1076 } 1077 1078 static inline void audit_free_context(struct audit_context *context) 1079 { 1080 /* resetting is extra work, but it is likely just noise */ 1081 audit_reset_context(context); 1082 audit_proctitle_free(context); 1083 free_tree_refs(context); 1084 kfree(context->filterkey); 1085 kfree(context); 1086 } 1087 1088 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1089 kuid_t auid, kuid_t uid, unsigned int sessionid, 1090 u32 sid, char *comm) 1091 { 1092 struct audit_buffer *ab; 1093 char *ctx = NULL; 1094 u32 len; 1095 int rc = 0; 1096 1097 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1098 if (!ab) 1099 return rc; 1100 1101 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1102 from_kuid(&init_user_ns, auid), 1103 from_kuid(&init_user_ns, uid), sessionid); 1104 if (sid) { 1105 if (security_secid_to_secctx(sid, &ctx, &len)) { 1106 audit_log_format(ab, " obj=(none)"); 1107 rc = 1; 1108 } else { 1109 audit_log_format(ab, " obj=%s", ctx); 1110 security_release_secctx(ctx, len); 1111 } 1112 } 1113 audit_log_format(ab, " ocomm="); 1114 audit_log_untrustedstring(ab, comm); 1115 audit_log_end(ab); 1116 1117 return rc; 1118 } 1119 1120 static void audit_log_execve_info(struct audit_context *context, 1121 struct audit_buffer **ab) 1122 { 1123 long len_max; 1124 long len_rem; 1125 long len_full; 1126 long len_buf; 1127 long len_abuf = 0; 1128 long len_tmp; 1129 bool require_data; 1130 bool encode; 1131 unsigned int iter; 1132 unsigned int arg; 1133 char *buf_head; 1134 char *buf; 1135 const char __user *p = (const char __user *)current->mm->arg_start; 1136 1137 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1138 * data we put in the audit record for this argument (see the 1139 * code below) ... at this point in time 96 is plenty */ 1140 char abuf[96]; 1141 1142 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1143 * current value of 7500 is not as important as the fact that it 1144 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1145 * room if we go over a little bit in the logging below */ 1146 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1147 len_max = MAX_EXECVE_AUDIT_LEN; 1148 1149 /* scratch buffer to hold the userspace args */ 1150 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1151 if (!buf_head) { 1152 audit_panic("out of memory for argv string"); 1153 return; 1154 } 1155 buf = buf_head; 1156 1157 audit_log_format(*ab, "argc=%d", context->execve.argc); 1158 1159 len_rem = len_max; 1160 len_buf = 0; 1161 len_full = 0; 1162 require_data = true; 1163 encode = false; 1164 iter = 0; 1165 arg = 0; 1166 do { 1167 /* NOTE: we don't ever want to trust this value for anything 1168 * serious, but the audit record format insists we 1169 * provide an argument length for really long arguments, 1170 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1171 * to use strncpy_from_user() to obtain this value for 1172 * recording in the log, although we don't use it 1173 * anywhere here to avoid a double-fetch problem */ 1174 if (len_full == 0) 1175 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1176 1177 /* read more data from userspace */ 1178 if (require_data) { 1179 /* can we make more room in the buffer? */ 1180 if (buf != buf_head) { 1181 memmove(buf_head, buf, len_buf); 1182 buf = buf_head; 1183 } 1184 1185 /* fetch as much as we can of the argument */ 1186 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1187 len_max - len_buf); 1188 if (len_tmp == -EFAULT) { 1189 /* unable to copy from userspace */ 1190 send_sig(SIGKILL, current, 0); 1191 goto out; 1192 } else if (len_tmp == (len_max - len_buf)) { 1193 /* buffer is not large enough */ 1194 require_data = true; 1195 /* NOTE: if we are going to span multiple 1196 * buffers force the encoding so we stand 1197 * a chance at a sane len_full value and 1198 * consistent record encoding */ 1199 encode = true; 1200 len_full = len_full * 2; 1201 p += len_tmp; 1202 } else { 1203 require_data = false; 1204 if (!encode) 1205 encode = audit_string_contains_control( 1206 buf, len_tmp); 1207 /* try to use a trusted value for len_full */ 1208 if (len_full < len_max) 1209 len_full = (encode ? 1210 len_tmp * 2 : len_tmp); 1211 p += len_tmp + 1; 1212 } 1213 len_buf += len_tmp; 1214 buf_head[len_buf] = '\0'; 1215 1216 /* length of the buffer in the audit record? */ 1217 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1218 } 1219 1220 /* write as much as we can to the audit log */ 1221 if (len_buf >= 0) { 1222 /* NOTE: some magic numbers here - basically if we 1223 * can't fit a reasonable amount of data into the 1224 * existing audit buffer, flush it and start with 1225 * a new buffer */ 1226 if ((sizeof(abuf) + 8) > len_rem) { 1227 len_rem = len_max; 1228 audit_log_end(*ab); 1229 *ab = audit_log_start(context, 1230 GFP_KERNEL, AUDIT_EXECVE); 1231 if (!*ab) 1232 goto out; 1233 } 1234 1235 /* create the non-arg portion of the arg record */ 1236 len_tmp = 0; 1237 if (require_data || (iter > 0) || 1238 ((len_abuf + sizeof(abuf)) > len_rem)) { 1239 if (iter == 0) { 1240 len_tmp += snprintf(&abuf[len_tmp], 1241 sizeof(abuf) - len_tmp, 1242 " a%d_len=%lu", 1243 arg, len_full); 1244 } 1245 len_tmp += snprintf(&abuf[len_tmp], 1246 sizeof(abuf) - len_tmp, 1247 " a%d[%d]=", arg, iter++); 1248 } else 1249 len_tmp += snprintf(&abuf[len_tmp], 1250 sizeof(abuf) - len_tmp, 1251 " a%d=", arg); 1252 WARN_ON(len_tmp >= sizeof(abuf)); 1253 abuf[sizeof(abuf) - 1] = '\0'; 1254 1255 /* log the arg in the audit record */ 1256 audit_log_format(*ab, "%s", abuf); 1257 len_rem -= len_tmp; 1258 len_tmp = len_buf; 1259 if (encode) { 1260 if (len_abuf > len_rem) 1261 len_tmp = len_rem / 2; /* encoding */ 1262 audit_log_n_hex(*ab, buf, len_tmp); 1263 len_rem -= len_tmp * 2; 1264 len_abuf -= len_tmp * 2; 1265 } else { 1266 if (len_abuf > len_rem) 1267 len_tmp = len_rem - 2; /* quotes */ 1268 audit_log_n_string(*ab, buf, len_tmp); 1269 len_rem -= len_tmp + 2; 1270 /* don't subtract the "2" because we still need 1271 * to add quotes to the remaining string */ 1272 len_abuf -= len_tmp; 1273 } 1274 len_buf -= len_tmp; 1275 buf += len_tmp; 1276 } 1277 1278 /* ready to move to the next argument? */ 1279 if ((len_buf == 0) && !require_data) { 1280 arg++; 1281 iter = 0; 1282 len_full = 0; 1283 require_data = true; 1284 encode = false; 1285 } 1286 } while (arg < context->execve.argc); 1287 1288 /* NOTE: the caller handles the final audit_log_end() call */ 1289 1290 out: 1291 kfree(buf_head); 1292 } 1293 1294 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1295 kernel_cap_t *cap) 1296 { 1297 int i; 1298 1299 if (cap_isclear(*cap)) { 1300 audit_log_format(ab, " %s=0", prefix); 1301 return; 1302 } 1303 audit_log_format(ab, " %s=", prefix); 1304 CAP_FOR_EACH_U32(i) 1305 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1306 } 1307 1308 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1309 { 1310 if (name->fcap_ver == -1) { 1311 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1312 return; 1313 } 1314 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1315 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1316 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1317 name->fcap.fE, name->fcap_ver, 1318 from_kuid(&init_user_ns, name->fcap.rootid)); 1319 } 1320 1321 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1322 { 1323 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1324 const struct timespec64 *tk = &context->time.tk_injoffset; 1325 static const char * const ntp_name[] = { 1326 "offset", 1327 "freq", 1328 "status", 1329 "tai", 1330 "tick", 1331 "adjust", 1332 }; 1333 int type; 1334 1335 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1336 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1337 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1338 if (!*ab) { 1339 *ab = audit_log_start(context, 1340 GFP_KERNEL, 1341 AUDIT_TIME_ADJNTPVAL); 1342 if (!*ab) 1343 return; 1344 } 1345 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1346 ntp_name[type], 1347 ntp->vals[type].oldval, 1348 ntp->vals[type].newval); 1349 audit_log_end(*ab); 1350 *ab = NULL; 1351 } 1352 } 1353 } 1354 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1355 if (!*ab) { 1356 *ab = audit_log_start(context, GFP_KERNEL, 1357 AUDIT_TIME_INJOFFSET); 1358 if (!*ab) 1359 return; 1360 } 1361 audit_log_format(*ab, "sec=%lli nsec=%li", 1362 (long long)tk->tv_sec, tk->tv_nsec); 1363 audit_log_end(*ab); 1364 *ab = NULL; 1365 } 1366 } 1367 1368 static void show_special(struct audit_context *context, int *call_panic) 1369 { 1370 struct audit_buffer *ab; 1371 int i; 1372 1373 ab = audit_log_start(context, GFP_KERNEL, context->type); 1374 if (!ab) 1375 return; 1376 1377 switch (context->type) { 1378 case AUDIT_SOCKETCALL: { 1379 int nargs = context->socketcall.nargs; 1380 1381 audit_log_format(ab, "nargs=%d", nargs); 1382 for (i = 0; i < nargs; i++) 1383 audit_log_format(ab, " a%d=%lx", i, 1384 context->socketcall.args[i]); 1385 break; } 1386 case AUDIT_IPC: { 1387 u32 osid = context->ipc.osid; 1388 1389 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1390 from_kuid(&init_user_ns, context->ipc.uid), 1391 from_kgid(&init_user_ns, context->ipc.gid), 1392 context->ipc.mode); 1393 if (osid) { 1394 char *ctx = NULL; 1395 u32 len; 1396 1397 if (security_secid_to_secctx(osid, &ctx, &len)) { 1398 audit_log_format(ab, " osid=%u", osid); 1399 *call_panic = 1; 1400 } else { 1401 audit_log_format(ab, " obj=%s", ctx); 1402 security_release_secctx(ctx, len); 1403 } 1404 } 1405 if (context->ipc.has_perm) { 1406 audit_log_end(ab); 1407 ab = audit_log_start(context, GFP_KERNEL, 1408 AUDIT_IPC_SET_PERM); 1409 if (unlikely(!ab)) 1410 return; 1411 audit_log_format(ab, 1412 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1413 context->ipc.qbytes, 1414 context->ipc.perm_uid, 1415 context->ipc.perm_gid, 1416 context->ipc.perm_mode); 1417 } 1418 break; } 1419 case AUDIT_MQ_OPEN: 1420 audit_log_format(ab, 1421 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1422 "mq_msgsize=%ld mq_curmsgs=%ld", 1423 context->mq_open.oflag, context->mq_open.mode, 1424 context->mq_open.attr.mq_flags, 1425 context->mq_open.attr.mq_maxmsg, 1426 context->mq_open.attr.mq_msgsize, 1427 context->mq_open.attr.mq_curmsgs); 1428 break; 1429 case AUDIT_MQ_SENDRECV: 1430 audit_log_format(ab, 1431 "mqdes=%d msg_len=%zd msg_prio=%u " 1432 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1433 context->mq_sendrecv.mqdes, 1434 context->mq_sendrecv.msg_len, 1435 context->mq_sendrecv.msg_prio, 1436 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1437 context->mq_sendrecv.abs_timeout.tv_nsec); 1438 break; 1439 case AUDIT_MQ_NOTIFY: 1440 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1441 context->mq_notify.mqdes, 1442 context->mq_notify.sigev_signo); 1443 break; 1444 case AUDIT_MQ_GETSETATTR: { 1445 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1446 1447 audit_log_format(ab, 1448 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1449 "mq_curmsgs=%ld ", 1450 context->mq_getsetattr.mqdes, 1451 attr->mq_flags, attr->mq_maxmsg, 1452 attr->mq_msgsize, attr->mq_curmsgs); 1453 break; } 1454 case AUDIT_CAPSET: 1455 audit_log_format(ab, "pid=%d", context->capset.pid); 1456 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1457 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1458 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1459 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1460 break; 1461 case AUDIT_MMAP: 1462 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1463 context->mmap.flags); 1464 break; 1465 case AUDIT_OPENAT2: 1466 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1467 context->openat2.flags, 1468 context->openat2.mode, 1469 context->openat2.resolve); 1470 break; 1471 case AUDIT_EXECVE: 1472 audit_log_execve_info(context, &ab); 1473 break; 1474 case AUDIT_KERN_MODULE: 1475 audit_log_format(ab, "name="); 1476 if (context->module.name) { 1477 audit_log_untrustedstring(ab, context->module.name); 1478 } else 1479 audit_log_format(ab, "(null)"); 1480 1481 break; 1482 case AUDIT_TIME_ADJNTPVAL: 1483 case AUDIT_TIME_INJOFFSET: 1484 /* this call deviates from the rest, eating the buffer */ 1485 audit_log_time(context, &ab); 1486 break; 1487 } 1488 audit_log_end(ab); 1489 } 1490 1491 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1492 { 1493 char *end = proctitle + len - 1; 1494 1495 while (end > proctitle && !isprint(*end)) 1496 end--; 1497 1498 /* catch the case where proctitle is only 1 non-print character */ 1499 len = end - proctitle + 1; 1500 len -= isprint(proctitle[len-1]) == 0; 1501 return len; 1502 } 1503 1504 /* 1505 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1506 * @context: audit_context for the task 1507 * @n: audit_names structure with reportable details 1508 * @path: optional path to report instead of audit_names->name 1509 * @record_num: record number to report when handling a list of names 1510 * @call_panic: optional pointer to int that will be updated if secid fails 1511 */ 1512 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1513 const struct path *path, int record_num, int *call_panic) 1514 { 1515 struct audit_buffer *ab; 1516 1517 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1518 if (!ab) 1519 return; 1520 1521 audit_log_format(ab, "item=%d", record_num); 1522 1523 if (path) 1524 audit_log_d_path(ab, " name=", path); 1525 else if (n->name) { 1526 switch (n->name_len) { 1527 case AUDIT_NAME_FULL: 1528 /* log the full path */ 1529 audit_log_format(ab, " name="); 1530 audit_log_untrustedstring(ab, n->name->name); 1531 break; 1532 case 0: 1533 /* name was specified as a relative path and the 1534 * directory component is the cwd 1535 */ 1536 if (context->pwd.dentry && context->pwd.mnt) 1537 audit_log_d_path(ab, " name=", &context->pwd); 1538 else 1539 audit_log_format(ab, " name=(null)"); 1540 break; 1541 default: 1542 /* log the name's directory component */ 1543 audit_log_format(ab, " name="); 1544 audit_log_n_untrustedstring(ab, n->name->name, 1545 n->name_len); 1546 } 1547 } else 1548 audit_log_format(ab, " name=(null)"); 1549 1550 if (n->ino != AUDIT_INO_UNSET) 1551 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1552 n->ino, 1553 MAJOR(n->dev), 1554 MINOR(n->dev), 1555 n->mode, 1556 from_kuid(&init_user_ns, n->uid), 1557 from_kgid(&init_user_ns, n->gid), 1558 MAJOR(n->rdev), 1559 MINOR(n->rdev)); 1560 if (n->osid != 0) { 1561 char *ctx = NULL; 1562 u32 len; 1563 1564 if (security_secid_to_secctx( 1565 n->osid, &ctx, &len)) { 1566 audit_log_format(ab, " osid=%u", n->osid); 1567 if (call_panic) 1568 *call_panic = 2; 1569 } else { 1570 audit_log_format(ab, " obj=%s", ctx); 1571 security_release_secctx(ctx, len); 1572 } 1573 } 1574 1575 /* log the audit_names record type */ 1576 switch (n->type) { 1577 case AUDIT_TYPE_NORMAL: 1578 audit_log_format(ab, " nametype=NORMAL"); 1579 break; 1580 case AUDIT_TYPE_PARENT: 1581 audit_log_format(ab, " nametype=PARENT"); 1582 break; 1583 case AUDIT_TYPE_CHILD_DELETE: 1584 audit_log_format(ab, " nametype=DELETE"); 1585 break; 1586 case AUDIT_TYPE_CHILD_CREATE: 1587 audit_log_format(ab, " nametype=CREATE"); 1588 break; 1589 default: 1590 audit_log_format(ab, " nametype=UNKNOWN"); 1591 break; 1592 } 1593 1594 audit_log_fcaps(ab, n); 1595 audit_log_end(ab); 1596 } 1597 1598 static void audit_log_proctitle(void) 1599 { 1600 int res; 1601 char *buf; 1602 char *msg = "(null)"; 1603 int len = strlen(msg); 1604 struct audit_context *context = audit_context(); 1605 struct audit_buffer *ab; 1606 1607 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1608 if (!ab) 1609 return; /* audit_panic or being filtered */ 1610 1611 audit_log_format(ab, "proctitle="); 1612 1613 /* Not cached */ 1614 if (!context->proctitle.value) { 1615 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1616 if (!buf) 1617 goto out; 1618 /* Historically called this from procfs naming */ 1619 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1620 if (res == 0) { 1621 kfree(buf); 1622 goto out; 1623 } 1624 res = audit_proctitle_rtrim(buf, res); 1625 if (res == 0) { 1626 kfree(buf); 1627 goto out; 1628 } 1629 context->proctitle.value = buf; 1630 context->proctitle.len = res; 1631 } 1632 msg = context->proctitle.value; 1633 len = context->proctitle.len; 1634 out: 1635 audit_log_n_untrustedstring(ab, msg, len); 1636 audit_log_end(ab); 1637 } 1638 1639 /** 1640 * audit_log_uring - generate a AUDIT_URINGOP record 1641 * @ctx: the audit context 1642 */ 1643 static void audit_log_uring(struct audit_context *ctx) 1644 { 1645 struct audit_buffer *ab; 1646 const struct cred *cred; 1647 1648 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1649 if (!ab) 1650 return; 1651 cred = current_cred(); 1652 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1653 if (ctx->return_valid != AUDITSC_INVALID) 1654 audit_log_format(ab, " success=%s exit=%ld", 1655 (ctx->return_valid == AUDITSC_SUCCESS ? 1656 "yes" : "no"), 1657 ctx->return_code); 1658 audit_log_format(ab, 1659 " items=%d" 1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1661 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1662 ctx->name_count, 1663 task_ppid_nr(current), task_tgid_nr(current), 1664 from_kuid(&init_user_ns, cred->uid), 1665 from_kgid(&init_user_ns, cred->gid), 1666 from_kuid(&init_user_ns, cred->euid), 1667 from_kuid(&init_user_ns, cred->suid), 1668 from_kuid(&init_user_ns, cred->fsuid), 1669 from_kgid(&init_user_ns, cred->egid), 1670 from_kgid(&init_user_ns, cred->sgid), 1671 from_kgid(&init_user_ns, cred->fsgid)); 1672 audit_log_task_context(ab); 1673 audit_log_key(ab, ctx->filterkey); 1674 audit_log_end(ab); 1675 } 1676 1677 static void audit_log_exit(void) 1678 { 1679 int i, call_panic = 0; 1680 struct audit_context *context = audit_context(); 1681 struct audit_buffer *ab; 1682 struct audit_aux_data *aux; 1683 struct audit_names *n; 1684 1685 context->personality = current->personality; 1686 1687 switch (context->context) { 1688 case AUDIT_CTX_SYSCALL: 1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1690 if (!ab) 1691 return; 1692 audit_log_format(ab, "arch=%x syscall=%d", 1693 context->arch, context->major); 1694 if (context->personality != PER_LINUX) 1695 audit_log_format(ab, " per=%lx", context->personality); 1696 if (context->return_valid != AUDITSC_INVALID) 1697 audit_log_format(ab, " success=%s exit=%ld", 1698 (context->return_valid == AUDITSC_SUCCESS ? 1699 "yes" : "no"), 1700 context->return_code); 1701 audit_log_format(ab, 1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1703 context->argv[0], 1704 context->argv[1], 1705 context->argv[2], 1706 context->argv[3], 1707 context->name_count); 1708 audit_log_task_info(ab); 1709 audit_log_key(ab, context->filterkey); 1710 audit_log_end(ab); 1711 break; 1712 case AUDIT_CTX_URING: 1713 audit_log_uring(context); 1714 break; 1715 default: 1716 BUG(); 1717 break; 1718 } 1719 1720 for (aux = context->aux; aux; aux = aux->next) { 1721 1722 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1723 if (!ab) 1724 continue; /* audit_panic has been called */ 1725 1726 switch (aux->type) { 1727 1728 case AUDIT_BPRM_FCAPS: { 1729 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1730 1731 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1732 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1733 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1734 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1735 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1736 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1737 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1738 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1739 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1740 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1741 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1742 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1743 audit_log_format(ab, " frootid=%d", 1744 from_kuid(&init_user_ns, 1745 axs->fcap.rootid)); 1746 break; } 1747 1748 } 1749 audit_log_end(ab); 1750 } 1751 1752 if (context->type) 1753 show_special(context, &call_panic); 1754 1755 if (context->fds[0] >= 0) { 1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1757 if (ab) { 1758 audit_log_format(ab, "fd0=%d fd1=%d", 1759 context->fds[0], context->fds[1]); 1760 audit_log_end(ab); 1761 } 1762 } 1763 1764 if (context->sockaddr_len) { 1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1766 if (ab) { 1767 audit_log_format(ab, "saddr="); 1768 audit_log_n_hex(ab, (void *)context->sockaddr, 1769 context->sockaddr_len); 1770 audit_log_end(ab); 1771 } 1772 } 1773 1774 for (aux = context->aux_pids; aux; aux = aux->next) { 1775 struct audit_aux_data_pids *axs = (void *)aux; 1776 1777 for (i = 0; i < axs->pid_count; i++) 1778 if (audit_log_pid_context(context, axs->target_pid[i], 1779 axs->target_auid[i], 1780 axs->target_uid[i], 1781 axs->target_sessionid[i], 1782 axs->target_sid[i], 1783 axs->target_comm[i])) 1784 call_panic = 1; 1785 } 1786 1787 if (context->target_pid && 1788 audit_log_pid_context(context, context->target_pid, 1789 context->target_auid, context->target_uid, 1790 context->target_sessionid, 1791 context->target_sid, context->target_comm)) 1792 call_panic = 1; 1793 1794 if (context->pwd.dentry && context->pwd.mnt) { 1795 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1796 if (ab) { 1797 audit_log_d_path(ab, "cwd=", &context->pwd); 1798 audit_log_end(ab); 1799 } 1800 } 1801 1802 i = 0; 1803 list_for_each_entry(n, &context->names_list, list) { 1804 if (n->hidden) 1805 continue; 1806 audit_log_name(context, n, NULL, i++, &call_panic); 1807 } 1808 1809 if (context->context == AUDIT_CTX_SYSCALL) 1810 audit_log_proctitle(); 1811 1812 /* Send end of event record to help user space know we are finished */ 1813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1814 if (ab) 1815 audit_log_end(ab); 1816 if (call_panic) 1817 audit_panic("error in audit_log_exit()"); 1818 } 1819 1820 /** 1821 * __audit_free - free a per-task audit context 1822 * @tsk: task whose audit context block to free 1823 * 1824 * Called from copy_process, do_exit, and the io_uring code 1825 */ 1826 void __audit_free(struct task_struct *tsk) 1827 { 1828 struct audit_context *context = tsk->audit_context; 1829 1830 if (!context) 1831 return; 1832 1833 /* this may generate CONFIG_CHANGE records */ 1834 if (!list_empty(&context->killed_trees)) 1835 audit_kill_trees(context); 1836 1837 /* We are called either by do_exit() or the fork() error handling code; 1838 * in the former case tsk == current and in the latter tsk is a 1839 * random task_struct that doesn't have any meaningful data we 1840 * need to log via audit_log_exit(). 1841 */ 1842 if (tsk == current && !context->dummy) { 1843 context->return_valid = AUDITSC_INVALID; 1844 context->return_code = 0; 1845 if (context->context == AUDIT_CTX_SYSCALL) { 1846 audit_filter_syscall(tsk, context); 1847 audit_filter_inodes(tsk, context); 1848 if (context->current_state == AUDIT_STATE_RECORD) 1849 audit_log_exit(); 1850 } else if (context->context == AUDIT_CTX_URING) { 1851 /* TODO: verify this case is real and valid */ 1852 audit_filter_uring(tsk, context); 1853 audit_filter_inodes(tsk, context); 1854 if (context->current_state == AUDIT_STATE_RECORD) 1855 audit_log_uring(context); 1856 } 1857 } 1858 1859 audit_set_context(tsk, NULL); 1860 audit_free_context(context); 1861 } 1862 1863 /** 1864 * audit_return_fixup - fixup the return codes in the audit_context 1865 * @ctx: the audit_context 1866 * @success: true/false value to indicate if the operation succeeded or not 1867 * @code: operation return code 1868 * 1869 * We need to fixup the return code in the audit logs if the actual return 1870 * codes are later going to be fixed by the arch specific signal handlers. 1871 */ 1872 static void audit_return_fixup(struct audit_context *ctx, 1873 int success, long code) 1874 { 1875 /* 1876 * This is actually a test for: 1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1879 * 1880 * but is faster than a bunch of || 1881 */ 1882 if (unlikely(code <= -ERESTARTSYS) && 1883 (code >= -ERESTART_RESTARTBLOCK) && 1884 (code != -ENOIOCTLCMD)) 1885 ctx->return_code = -EINTR; 1886 else 1887 ctx->return_code = code; 1888 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1889 } 1890 1891 /** 1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1893 * @op: the io_uring opcode 1894 * 1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1896 * operations. This function should only ever be called from 1897 * audit_uring_entry() as we rely on the audit context checking present in that 1898 * function. 1899 */ 1900 void __audit_uring_entry(u8 op) 1901 { 1902 struct audit_context *ctx = audit_context(); 1903 1904 if (ctx->state == AUDIT_STATE_DISABLED) 1905 return; 1906 1907 /* 1908 * NOTE: It's possible that we can be called from the process' context 1909 * before it returns to userspace, and before audit_syscall_exit() 1910 * is called. In this case there is not much to do, just record 1911 * the io_uring details and return. 1912 */ 1913 ctx->uring_op = op; 1914 if (ctx->context == AUDIT_CTX_SYSCALL) 1915 return; 1916 1917 ctx->dummy = !audit_n_rules; 1918 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1919 ctx->prio = 0; 1920 1921 ctx->context = AUDIT_CTX_URING; 1922 ctx->current_state = ctx->state; 1923 ktime_get_coarse_real_ts64(&ctx->ctime); 1924 } 1925 1926 /** 1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1928 * @success: true/false value to indicate if the operation succeeded or not 1929 * @code: operation return code 1930 * 1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1932 * operations. This function should only ever be called from 1933 * audit_uring_exit() as we rely on the audit context checking present in that 1934 * function. 1935 */ 1936 void __audit_uring_exit(int success, long code) 1937 { 1938 struct audit_context *ctx = audit_context(); 1939 1940 if (ctx->dummy) { 1941 if (ctx->context != AUDIT_CTX_URING) 1942 return; 1943 goto out; 1944 } 1945 1946 audit_return_fixup(ctx, success, code); 1947 if (ctx->context == AUDIT_CTX_SYSCALL) { 1948 /* 1949 * NOTE: See the note in __audit_uring_entry() about the case 1950 * where we may be called from process context before we 1951 * return to userspace via audit_syscall_exit(). In this 1952 * case we simply emit a URINGOP record and bail, the 1953 * normal syscall exit handling will take care of 1954 * everything else. 1955 * It is also worth mentioning that when we are called, 1956 * the current process creds may differ from the creds 1957 * used during the normal syscall processing; keep that 1958 * in mind if/when we move the record generation code. 1959 */ 1960 1961 /* 1962 * We need to filter on the syscall info here to decide if we 1963 * should emit a URINGOP record. I know it seems odd but this 1964 * solves the problem where users have a filter to block *all* 1965 * syscall records in the "exit" filter; we want to preserve 1966 * the behavior here. 1967 */ 1968 audit_filter_syscall(current, ctx); 1969 if (ctx->current_state != AUDIT_STATE_RECORD) 1970 audit_filter_uring(current, ctx); 1971 audit_filter_inodes(current, ctx); 1972 if (ctx->current_state != AUDIT_STATE_RECORD) 1973 return; 1974 1975 audit_log_uring(ctx); 1976 return; 1977 } 1978 1979 /* this may generate CONFIG_CHANGE records */ 1980 if (!list_empty(&ctx->killed_trees)) 1981 audit_kill_trees(ctx); 1982 1983 /* run through both filters to ensure we set the filterkey properly */ 1984 audit_filter_uring(current, ctx); 1985 audit_filter_inodes(current, ctx); 1986 if (ctx->current_state != AUDIT_STATE_RECORD) 1987 goto out; 1988 audit_log_exit(); 1989 1990 out: 1991 audit_reset_context(ctx); 1992 } 1993 1994 /** 1995 * __audit_syscall_entry - fill in an audit record at syscall entry 1996 * @major: major syscall type (function) 1997 * @a1: additional syscall register 1 1998 * @a2: additional syscall register 2 1999 * @a3: additional syscall register 3 2000 * @a4: additional syscall register 4 2001 * 2002 * Fill in audit context at syscall entry. This only happens if the 2003 * audit context was created when the task was created and the state or 2004 * filters demand the audit context be built. If the state from the 2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2006 * then the record will be written at syscall exit time (otherwise, it 2007 * will only be written if another part of the kernel requests that it 2008 * be written). 2009 */ 2010 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2011 unsigned long a3, unsigned long a4) 2012 { 2013 struct audit_context *context = audit_context(); 2014 enum audit_state state; 2015 2016 if (!audit_enabled || !context) 2017 return; 2018 2019 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2020 WARN_ON(context->name_count); 2021 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2022 audit_panic("unrecoverable error in audit_syscall_entry()"); 2023 return; 2024 } 2025 2026 state = context->state; 2027 if (state == AUDIT_STATE_DISABLED) 2028 return; 2029 2030 context->dummy = !audit_n_rules; 2031 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2032 context->prio = 0; 2033 if (auditd_test_task(current)) 2034 return; 2035 } 2036 2037 context->arch = syscall_get_arch(current); 2038 context->major = major; 2039 context->argv[0] = a1; 2040 context->argv[1] = a2; 2041 context->argv[2] = a3; 2042 context->argv[3] = a4; 2043 context->context = AUDIT_CTX_SYSCALL; 2044 context->current_state = state; 2045 ktime_get_coarse_real_ts64(&context->ctime); 2046 } 2047 2048 /** 2049 * __audit_syscall_exit - deallocate audit context after a system call 2050 * @success: success value of the syscall 2051 * @return_code: return value of the syscall 2052 * 2053 * Tear down after system call. If the audit context has been marked as 2054 * auditable (either because of the AUDIT_STATE_RECORD state from 2055 * filtering, or because some other part of the kernel wrote an audit 2056 * message), then write out the syscall information. In call cases, 2057 * free the names stored from getname(). 2058 */ 2059 void __audit_syscall_exit(int success, long return_code) 2060 { 2061 struct audit_context *context = audit_context(); 2062 2063 if (!context || context->dummy || 2064 context->context != AUDIT_CTX_SYSCALL) 2065 goto out; 2066 2067 /* this may generate CONFIG_CHANGE records */ 2068 if (!list_empty(&context->killed_trees)) 2069 audit_kill_trees(context); 2070 2071 audit_return_fixup(context, success, return_code); 2072 /* run through both filters to ensure we set the filterkey properly */ 2073 audit_filter_syscall(current, context); 2074 audit_filter_inodes(current, context); 2075 if (context->current_state != AUDIT_STATE_RECORD) 2076 goto out; 2077 2078 audit_log_exit(); 2079 2080 out: 2081 audit_reset_context(context); 2082 } 2083 2084 static inline void handle_one(const struct inode *inode) 2085 { 2086 struct audit_context *context; 2087 struct audit_tree_refs *p; 2088 struct audit_chunk *chunk; 2089 int count; 2090 2091 if (likely(!inode->i_fsnotify_marks)) 2092 return; 2093 context = audit_context(); 2094 p = context->trees; 2095 count = context->tree_count; 2096 rcu_read_lock(); 2097 chunk = audit_tree_lookup(inode); 2098 rcu_read_unlock(); 2099 if (!chunk) 2100 return; 2101 if (likely(put_tree_ref(context, chunk))) 2102 return; 2103 if (unlikely(!grow_tree_refs(context))) { 2104 pr_warn("out of memory, audit has lost a tree reference\n"); 2105 audit_set_auditable(context); 2106 audit_put_chunk(chunk); 2107 unroll_tree_refs(context, p, count); 2108 return; 2109 } 2110 put_tree_ref(context, chunk); 2111 } 2112 2113 static void handle_path(const struct dentry *dentry) 2114 { 2115 struct audit_context *context; 2116 struct audit_tree_refs *p; 2117 const struct dentry *d, *parent; 2118 struct audit_chunk *drop; 2119 unsigned long seq; 2120 int count; 2121 2122 context = audit_context(); 2123 p = context->trees; 2124 count = context->tree_count; 2125 retry: 2126 drop = NULL; 2127 d = dentry; 2128 rcu_read_lock(); 2129 seq = read_seqbegin(&rename_lock); 2130 for(;;) { 2131 struct inode *inode = d_backing_inode(d); 2132 2133 if (inode && unlikely(inode->i_fsnotify_marks)) { 2134 struct audit_chunk *chunk; 2135 2136 chunk = audit_tree_lookup(inode); 2137 if (chunk) { 2138 if (unlikely(!put_tree_ref(context, chunk))) { 2139 drop = chunk; 2140 break; 2141 } 2142 } 2143 } 2144 parent = d->d_parent; 2145 if (parent == d) 2146 break; 2147 d = parent; 2148 } 2149 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2150 rcu_read_unlock(); 2151 if (!drop) { 2152 /* just a race with rename */ 2153 unroll_tree_refs(context, p, count); 2154 goto retry; 2155 } 2156 audit_put_chunk(drop); 2157 if (grow_tree_refs(context)) { 2158 /* OK, got more space */ 2159 unroll_tree_refs(context, p, count); 2160 goto retry; 2161 } 2162 /* too bad */ 2163 pr_warn("out of memory, audit has lost a tree reference\n"); 2164 unroll_tree_refs(context, p, count); 2165 audit_set_auditable(context); 2166 return; 2167 } 2168 rcu_read_unlock(); 2169 } 2170 2171 static struct audit_names *audit_alloc_name(struct audit_context *context, 2172 unsigned char type) 2173 { 2174 struct audit_names *aname; 2175 2176 if (context->name_count < AUDIT_NAMES) { 2177 aname = &context->preallocated_names[context->name_count]; 2178 memset(aname, 0, sizeof(*aname)); 2179 } else { 2180 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2181 if (!aname) 2182 return NULL; 2183 aname->should_free = true; 2184 } 2185 2186 aname->ino = AUDIT_INO_UNSET; 2187 aname->type = type; 2188 list_add_tail(&aname->list, &context->names_list); 2189 2190 context->name_count++; 2191 if (!context->pwd.dentry) 2192 get_fs_pwd(current->fs, &context->pwd); 2193 return aname; 2194 } 2195 2196 /** 2197 * __audit_reusename - fill out filename with info from existing entry 2198 * @uptr: userland ptr to pathname 2199 * 2200 * Search the audit_names list for the current audit context. If there is an 2201 * existing entry with a matching "uptr" then return the filename 2202 * associated with that audit_name. If not, return NULL. 2203 */ 2204 struct filename * 2205 __audit_reusename(const __user char *uptr) 2206 { 2207 struct audit_context *context = audit_context(); 2208 struct audit_names *n; 2209 2210 list_for_each_entry(n, &context->names_list, list) { 2211 if (!n->name) 2212 continue; 2213 if (n->name->uptr == uptr) { 2214 n->name->refcnt++; 2215 return n->name; 2216 } 2217 } 2218 return NULL; 2219 } 2220 2221 /** 2222 * __audit_getname - add a name to the list 2223 * @name: name to add 2224 * 2225 * Add a name to the list of audit names for this context. 2226 * Called from fs/namei.c:getname(). 2227 */ 2228 void __audit_getname(struct filename *name) 2229 { 2230 struct audit_context *context = audit_context(); 2231 struct audit_names *n; 2232 2233 if (context->context == AUDIT_CTX_UNUSED) 2234 return; 2235 2236 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2237 if (!n) 2238 return; 2239 2240 n->name = name; 2241 n->name_len = AUDIT_NAME_FULL; 2242 name->aname = n; 2243 name->refcnt++; 2244 } 2245 2246 static inline int audit_copy_fcaps(struct audit_names *name, 2247 const struct dentry *dentry) 2248 { 2249 struct cpu_vfs_cap_data caps; 2250 int rc; 2251 2252 if (!dentry) 2253 return 0; 2254 2255 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 2256 if (rc) 2257 return rc; 2258 2259 name->fcap.permitted = caps.permitted; 2260 name->fcap.inheritable = caps.inheritable; 2261 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2262 name->fcap.rootid = caps.rootid; 2263 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2264 VFS_CAP_REVISION_SHIFT; 2265 2266 return 0; 2267 } 2268 2269 /* Copy inode data into an audit_names. */ 2270 static void audit_copy_inode(struct audit_names *name, 2271 const struct dentry *dentry, 2272 struct inode *inode, unsigned int flags) 2273 { 2274 name->ino = inode->i_ino; 2275 name->dev = inode->i_sb->s_dev; 2276 name->mode = inode->i_mode; 2277 name->uid = inode->i_uid; 2278 name->gid = inode->i_gid; 2279 name->rdev = inode->i_rdev; 2280 security_inode_getsecid(inode, &name->osid); 2281 if (flags & AUDIT_INODE_NOEVAL) { 2282 name->fcap_ver = -1; 2283 return; 2284 } 2285 audit_copy_fcaps(name, dentry); 2286 } 2287 2288 /** 2289 * __audit_inode - store the inode and device from a lookup 2290 * @name: name being audited 2291 * @dentry: dentry being audited 2292 * @flags: attributes for this particular entry 2293 */ 2294 void __audit_inode(struct filename *name, const struct dentry *dentry, 2295 unsigned int flags) 2296 { 2297 struct audit_context *context = audit_context(); 2298 struct inode *inode = d_backing_inode(dentry); 2299 struct audit_names *n; 2300 bool parent = flags & AUDIT_INODE_PARENT; 2301 struct audit_entry *e; 2302 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2303 int i; 2304 2305 if (context->context == AUDIT_CTX_UNUSED) 2306 return; 2307 2308 rcu_read_lock(); 2309 list_for_each_entry_rcu(e, list, list) { 2310 for (i = 0; i < e->rule.field_count; i++) { 2311 struct audit_field *f = &e->rule.fields[i]; 2312 2313 if (f->type == AUDIT_FSTYPE 2314 && audit_comparator(inode->i_sb->s_magic, 2315 f->op, f->val) 2316 && e->rule.action == AUDIT_NEVER) { 2317 rcu_read_unlock(); 2318 return; 2319 } 2320 } 2321 } 2322 rcu_read_unlock(); 2323 2324 if (!name) 2325 goto out_alloc; 2326 2327 /* 2328 * If we have a pointer to an audit_names entry already, then we can 2329 * just use it directly if the type is correct. 2330 */ 2331 n = name->aname; 2332 if (n) { 2333 if (parent) { 2334 if (n->type == AUDIT_TYPE_PARENT || 2335 n->type == AUDIT_TYPE_UNKNOWN) 2336 goto out; 2337 } else { 2338 if (n->type != AUDIT_TYPE_PARENT) 2339 goto out; 2340 } 2341 } 2342 2343 list_for_each_entry_reverse(n, &context->names_list, list) { 2344 if (n->ino) { 2345 /* valid inode number, use that for the comparison */ 2346 if (n->ino != inode->i_ino || 2347 n->dev != inode->i_sb->s_dev) 2348 continue; 2349 } else if (n->name) { 2350 /* inode number has not been set, check the name */ 2351 if (strcmp(n->name->name, name->name)) 2352 continue; 2353 } else 2354 /* no inode and no name (?!) ... this is odd ... */ 2355 continue; 2356 2357 /* match the correct record type */ 2358 if (parent) { 2359 if (n->type == AUDIT_TYPE_PARENT || 2360 n->type == AUDIT_TYPE_UNKNOWN) 2361 goto out; 2362 } else { 2363 if (n->type != AUDIT_TYPE_PARENT) 2364 goto out; 2365 } 2366 } 2367 2368 out_alloc: 2369 /* unable to find an entry with both a matching name and type */ 2370 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2371 if (!n) 2372 return; 2373 if (name) { 2374 n->name = name; 2375 name->refcnt++; 2376 } 2377 2378 out: 2379 if (parent) { 2380 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2381 n->type = AUDIT_TYPE_PARENT; 2382 if (flags & AUDIT_INODE_HIDDEN) 2383 n->hidden = true; 2384 } else { 2385 n->name_len = AUDIT_NAME_FULL; 2386 n->type = AUDIT_TYPE_NORMAL; 2387 } 2388 handle_path(dentry); 2389 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2390 } 2391 2392 void __audit_file(const struct file *file) 2393 { 2394 __audit_inode(NULL, file->f_path.dentry, 0); 2395 } 2396 2397 /** 2398 * __audit_inode_child - collect inode info for created/removed objects 2399 * @parent: inode of dentry parent 2400 * @dentry: dentry being audited 2401 * @type: AUDIT_TYPE_* value that we're looking for 2402 * 2403 * For syscalls that create or remove filesystem objects, audit_inode 2404 * can only collect information for the filesystem object's parent. 2405 * This call updates the audit context with the child's information. 2406 * Syscalls that create a new filesystem object must be hooked after 2407 * the object is created. Syscalls that remove a filesystem object 2408 * must be hooked prior, in order to capture the target inode during 2409 * unsuccessful attempts. 2410 */ 2411 void __audit_inode_child(struct inode *parent, 2412 const struct dentry *dentry, 2413 const unsigned char type) 2414 { 2415 struct audit_context *context = audit_context(); 2416 struct inode *inode = d_backing_inode(dentry); 2417 const struct qstr *dname = &dentry->d_name; 2418 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2419 struct audit_entry *e; 2420 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2421 int i; 2422 2423 if (context->context == AUDIT_CTX_UNUSED) 2424 return; 2425 2426 rcu_read_lock(); 2427 list_for_each_entry_rcu(e, list, list) { 2428 for (i = 0; i < e->rule.field_count; i++) { 2429 struct audit_field *f = &e->rule.fields[i]; 2430 2431 if (f->type == AUDIT_FSTYPE 2432 && audit_comparator(parent->i_sb->s_magic, 2433 f->op, f->val) 2434 && e->rule.action == AUDIT_NEVER) { 2435 rcu_read_unlock(); 2436 return; 2437 } 2438 } 2439 } 2440 rcu_read_unlock(); 2441 2442 if (inode) 2443 handle_one(inode); 2444 2445 /* look for a parent entry first */ 2446 list_for_each_entry(n, &context->names_list, list) { 2447 if (!n->name || 2448 (n->type != AUDIT_TYPE_PARENT && 2449 n->type != AUDIT_TYPE_UNKNOWN)) 2450 continue; 2451 2452 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2453 !audit_compare_dname_path(dname, 2454 n->name->name, n->name_len)) { 2455 if (n->type == AUDIT_TYPE_UNKNOWN) 2456 n->type = AUDIT_TYPE_PARENT; 2457 found_parent = n; 2458 break; 2459 } 2460 } 2461 2462 /* is there a matching child entry? */ 2463 list_for_each_entry(n, &context->names_list, list) { 2464 /* can only match entries that have a name */ 2465 if (!n->name || 2466 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2467 continue; 2468 2469 if (!strcmp(dname->name, n->name->name) || 2470 !audit_compare_dname_path(dname, n->name->name, 2471 found_parent ? 2472 found_parent->name_len : 2473 AUDIT_NAME_FULL)) { 2474 if (n->type == AUDIT_TYPE_UNKNOWN) 2475 n->type = type; 2476 found_child = n; 2477 break; 2478 } 2479 } 2480 2481 if (!found_parent) { 2482 /* create a new, "anonymous" parent record */ 2483 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2484 if (!n) 2485 return; 2486 audit_copy_inode(n, NULL, parent, 0); 2487 } 2488 2489 if (!found_child) { 2490 found_child = audit_alloc_name(context, type); 2491 if (!found_child) 2492 return; 2493 2494 /* Re-use the name belonging to the slot for a matching parent 2495 * directory. All names for this context are relinquished in 2496 * audit_free_names() */ 2497 if (found_parent) { 2498 found_child->name = found_parent->name; 2499 found_child->name_len = AUDIT_NAME_FULL; 2500 found_child->name->refcnt++; 2501 } 2502 } 2503 2504 if (inode) 2505 audit_copy_inode(found_child, dentry, inode, 0); 2506 else 2507 found_child->ino = AUDIT_INO_UNSET; 2508 } 2509 EXPORT_SYMBOL_GPL(__audit_inode_child); 2510 2511 /** 2512 * auditsc_get_stamp - get local copies of audit_context values 2513 * @ctx: audit_context for the task 2514 * @t: timespec64 to store time recorded in the audit_context 2515 * @serial: serial value that is recorded in the audit_context 2516 * 2517 * Also sets the context as auditable. 2518 */ 2519 int auditsc_get_stamp(struct audit_context *ctx, 2520 struct timespec64 *t, unsigned int *serial) 2521 { 2522 if (ctx->context == AUDIT_CTX_UNUSED) 2523 return 0; 2524 if (!ctx->serial) 2525 ctx->serial = audit_serial(); 2526 t->tv_sec = ctx->ctime.tv_sec; 2527 t->tv_nsec = ctx->ctime.tv_nsec; 2528 *serial = ctx->serial; 2529 if (!ctx->prio) { 2530 ctx->prio = 1; 2531 ctx->current_state = AUDIT_STATE_RECORD; 2532 } 2533 return 1; 2534 } 2535 2536 /** 2537 * __audit_mq_open - record audit data for a POSIX MQ open 2538 * @oflag: open flag 2539 * @mode: mode bits 2540 * @attr: queue attributes 2541 * 2542 */ 2543 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2544 { 2545 struct audit_context *context = audit_context(); 2546 2547 if (attr) 2548 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2549 else 2550 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2551 2552 context->mq_open.oflag = oflag; 2553 context->mq_open.mode = mode; 2554 2555 context->type = AUDIT_MQ_OPEN; 2556 } 2557 2558 /** 2559 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2560 * @mqdes: MQ descriptor 2561 * @msg_len: Message length 2562 * @msg_prio: Message priority 2563 * @abs_timeout: Message timeout in absolute time 2564 * 2565 */ 2566 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2567 const struct timespec64 *abs_timeout) 2568 { 2569 struct audit_context *context = audit_context(); 2570 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2571 2572 if (abs_timeout) 2573 memcpy(p, abs_timeout, sizeof(*p)); 2574 else 2575 memset(p, 0, sizeof(*p)); 2576 2577 context->mq_sendrecv.mqdes = mqdes; 2578 context->mq_sendrecv.msg_len = msg_len; 2579 context->mq_sendrecv.msg_prio = msg_prio; 2580 2581 context->type = AUDIT_MQ_SENDRECV; 2582 } 2583 2584 /** 2585 * __audit_mq_notify - record audit data for a POSIX MQ notify 2586 * @mqdes: MQ descriptor 2587 * @notification: Notification event 2588 * 2589 */ 2590 2591 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2592 { 2593 struct audit_context *context = audit_context(); 2594 2595 if (notification) 2596 context->mq_notify.sigev_signo = notification->sigev_signo; 2597 else 2598 context->mq_notify.sigev_signo = 0; 2599 2600 context->mq_notify.mqdes = mqdes; 2601 context->type = AUDIT_MQ_NOTIFY; 2602 } 2603 2604 /** 2605 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2606 * @mqdes: MQ descriptor 2607 * @mqstat: MQ flags 2608 * 2609 */ 2610 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2611 { 2612 struct audit_context *context = audit_context(); 2613 2614 context->mq_getsetattr.mqdes = mqdes; 2615 context->mq_getsetattr.mqstat = *mqstat; 2616 context->type = AUDIT_MQ_GETSETATTR; 2617 } 2618 2619 /** 2620 * __audit_ipc_obj - record audit data for ipc object 2621 * @ipcp: ipc permissions 2622 * 2623 */ 2624 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2625 { 2626 struct audit_context *context = audit_context(); 2627 2628 context->ipc.uid = ipcp->uid; 2629 context->ipc.gid = ipcp->gid; 2630 context->ipc.mode = ipcp->mode; 2631 context->ipc.has_perm = 0; 2632 security_ipc_getsecid(ipcp, &context->ipc.osid); 2633 context->type = AUDIT_IPC; 2634 } 2635 2636 /** 2637 * __audit_ipc_set_perm - record audit data for new ipc permissions 2638 * @qbytes: msgq bytes 2639 * @uid: msgq user id 2640 * @gid: msgq group id 2641 * @mode: msgq mode (permissions) 2642 * 2643 * Called only after audit_ipc_obj(). 2644 */ 2645 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2646 { 2647 struct audit_context *context = audit_context(); 2648 2649 context->ipc.qbytes = qbytes; 2650 context->ipc.perm_uid = uid; 2651 context->ipc.perm_gid = gid; 2652 context->ipc.perm_mode = mode; 2653 context->ipc.has_perm = 1; 2654 } 2655 2656 void __audit_bprm(struct linux_binprm *bprm) 2657 { 2658 struct audit_context *context = audit_context(); 2659 2660 context->type = AUDIT_EXECVE; 2661 context->execve.argc = bprm->argc; 2662 } 2663 2664 2665 /** 2666 * __audit_socketcall - record audit data for sys_socketcall 2667 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2668 * @args: args array 2669 * 2670 */ 2671 int __audit_socketcall(int nargs, unsigned long *args) 2672 { 2673 struct audit_context *context = audit_context(); 2674 2675 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2676 return -EINVAL; 2677 context->type = AUDIT_SOCKETCALL; 2678 context->socketcall.nargs = nargs; 2679 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2680 return 0; 2681 } 2682 2683 /** 2684 * __audit_fd_pair - record audit data for pipe and socketpair 2685 * @fd1: the first file descriptor 2686 * @fd2: the second file descriptor 2687 * 2688 */ 2689 void __audit_fd_pair(int fd1, int fd2) 2690 { 2691 struct audit_context *context = audit_context(); 2692 2693 context->fds[0] = fd1; 2694 context->fds[1] = fd2; 2695 } 2696 2697 /** 2698 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2699 * @len: data length in user space 2700 * @a: data address in kernel space 2701 * 2702 * Returns 0 for success or NULL context or < 0 on error. 2703 */ 2704 int __audit_sockaddr(int len, void *a) 2705 { 2706 struct audit_context *context = audit_context(); 2707 2708 if (!context->sockaddr) { 2709 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2710 2711 if (!p) 2712 return -ENOMEM; 2713 context->sockaddr = p; 2714 } 2715 2716 context->sockaddr_len = len; 2717 memcpy(context->sockaddr, a, len); 2718 return 0; 2719 } 2720 2721 void __audit_ptrace(struct task_struct *t) 2722 { 2723 struct audit_context *context = audit_context(); 2724 2725 context->target_pid = task_tgid_nr(t); 2726 context->target_auid = audit_get_loginuid(t); 2727 context->target_uid = task_uid(t); 2728 context->target_sessionid = audit_get_sessionid(t); 2729 security_task_getsecid_obj(t, &context->target_sid); 2730 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2731 } 2732 2733 /** 2734 * audit_signal_info_syscall - record signal info for syscalls 2735 * @t: task being signaled 2736 * 2737 * If the audit subsystem is being terminated, record the task (pid) 2738 * and uid that is doing that. 2739 */ 2740 int audit_signal_info_syscall(struct task_struct *t) 2741 { 2742 struct audit_aux_data_pids *axp; 2743 struct audit_context *ctx = audit_context(); 2744 kuid_t t_uid = task_uid(t); 2745 2746 if (!audit_signals || audit_dummy_context()) 2747 return 0; 2748 2749 /* optimize the common case by putting first signal recipient directly 2750 * in audit_context */ 2751 if (!ctx->target_pid) { 2752 ctx->target_pid = task_tgid_nr(t); 2753 ctx->target_auid = audit_get_loginuid(t); 2754 ctx->target_uid = t_uid; 2755 ctx->target_sessionid = audit_get_sessionid(t); 2756 security_task_getsecid_obj(t, &ctx->target_sid); 2757 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2758 return 0; 2759 } 2760 2761 axp = (void *)ctx->aux_pids; 2762 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2763 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2764 if (!axp) 2765 return -ENOMEM; 2766 2767 axp->d.type = AUDIT_OBJ_PID; 2768 axp->d.next = ctx->aux_pids; 2769 ctx->aux_pids = (void *)axp; 2770 } 2771 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2772 2773 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2774 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2775 axp->target_uid[axp->pid_count] = t_uid; 2776 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2777 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2778 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2779 axp->pid_count++; 2780 2781 return 0; 2782 } 2783 2784 /** 2785 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2786 * @bprm: pointer to the bprm being processed 2787 * @new: the proposed new credentials 2788 * @old: the old credentials 2789 * 2790 * Simply check if the proc already has the caps given by the file and if not 2791 * store the priv escalation info for later auditing at the end of the syscall 2792 * 2793 * -Eric 2794 */ 2795 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2796 const struct cred *new, const struct cred *old) 2797 { 2798 struct audit_aux_data_bprm_fcaps *ax; 2799 struct audit_context *context = audit_context(); 2800 struct cpu_vfs_cap_data vcaps; 2801 2802 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2803 if (!ax) 2804 return -ENOMEM; 2805 2806 ax->d.type = AUDIT_BPRM_FCAPS; 2807 ax->d.next = context->aux; 2808 context->aux = (void *)ax; 2809 2810 get_vfs_caps_from_disk(&init_user_ns, 2811 bprm->file->f_path.dentry, &vcaps); 2812 2813 ax->fcap.permitted = vcaps.permitted; 2814 ax->fcap.inheritable = vcaps.inheritable; 2815 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2816 ax->fcap.rootid = vcaps.rootid; 2817 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2818 2819 ax->old_pcap.permitted = old->cap_permitted; 2820 ax->old_pcap.inheritable = old->cap_inheritable; 2821 ax->old_pcap.effective = old->cap_effective; 2822 ax->old_pcap.ambient = old->cap_ambient; 2823 2824 ax->new_pcap.permitted = new->cap_permitted; 2825 ax->new_pcap.inheritable = new->cap_inheritable; 2826 ax->new_pcap.effective = new->cap_effective; 2827 ax->new_pcap.ambient = new->cap_ambient; 2828 return 0; 2829 } 2830 2831 /** 2832 * __audit_log_capset - store information about the arguments to the capset syscall 2833 * @new: the new credentials 2834 * @old: the old (current) credentials 2835 * 2836 * Record the arguments userspace sent to sys_capset for later printing by the 2837 * audit system if applicable 2838 */ 2839 void __audit_log_capset(const struct cred *new, const struct cred *old) 2840 { 2841 struct audit_context *context = audit_context(); 2842 2843 context->capset.pid = task_tgid_nr(current); 2844 context->capset.cap.effective = new->cap_effective; 2845 context->capset.cap.inheritable = new->cap_effective; 2846 context->capset.cap.permitted = new->cap_permitted; 2847 context->capset.cap.ambient = new->cap_ambient; 2848 context->type = AUDIT_CAPSET; 2849 } 2850 2851 void __audit_mmap_fd(int fd, int flags) 2852 { 2853 struct audit_context *context = audit_context(); 2854 2855 context->mmap.fd = fd; 2856 context->mmap.flags = flags; 2857 context->type = AUDIT_MMAP; 2858 } 2859 2860 void __audit_openat2_how(struct open_how *how) 2861 { 2862 struct audit_context *context = audit_context(); 2863 2864 context->openat2.flags = how->flags; 2865 context->openat2.mode = how->mode; 2866 context->openat2.resolve = how->resolve; 2867 context->type = AUDIT_OPENAT2; 2868 } 2869 2870 void __audit_log_kern_module(char *name) 2871 { 2872 struct audit_context *context = audit_context(); 2873 2874 context->module.name = kstrdup(name, GFP_KERNEL); 2875 if (!context->module.name) 2876 audit_log_lost("out of memory in __audit_log_kern_module"); 2877 context->type = AUDIT_KERN_MODULE; 2878 } 2879 2880 void __audit_fanotify(unsigned int response) 2881 { 2882 audit_log(audit_context(), GFP_KERNEL, 2883 AUDIT_FANOTIFY, "resp=%u", response); 2884 } 2885 2886 void __audit_tk_injoffset(struct timespec64 offset) 2887 { 2888 struct audit_context *context = audit_context(); 2889 2890 /* only set type if not already set by NTP */ 2891 if (!context->type) 2892 context->type = AUDIT_TIME_INJOFFSET; 2893 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2894 } 2895 2896 void __audit_ntp_log(const struct audit_ntp_data *ad) 2897 { 2898 struct audit_context *context = audit_context(); 2899 int type; 2900 2901 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2902 if (ad->vals[type].newval != ad->vals[type].oldval) { 2903 /* unconditionally set type, overwriting TK */ 2904 context->type = AUDIT_TIME_ADJNTPVAL; 2905 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2906 break; 2907 } 2908 } 2909 2910 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2911 enum audit_nfcfgop op, gfp_t gfp) 2912 { 2913 struct audit_buffer *ab; 2914 char comm[sizeof(current->comm)]; 2915 2916 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2917 if (!ab) 2918 return; 2919 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2920 name, af, nentries, audit_nfcfgs[op].s); 2921 2922 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2923 audit_log_task_context(ab); /* subj= */ 2924 audit_log_format(ab, " comm="); 2925 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2926 audit_log_end(ab); 2927 } 2928 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2929 2930 static void audit_log_task(struct audit_buffer *ab) 2931 { 2932 kuid_t auid, uid; 2933 kgid_t gid; 2934 unsigned int sessionid; 2935 char comm[sizeof(current->comm)]; 2936 2937 auid = audit_get_loginuid(current); 2938 sessionid = audit_get_sessionid(current); 2939 current_uid_gid(&uid, &gid); 2940 2941 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2942 from_kuid(&init_user_ns, auid), 2943 from_kuid(&init_user_ns, uid), 2944 from_kgid(&init_user_ns, gid), 2945 sessionid); 2946 audit_log_task_context(ab); 2947 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2948 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2949 audit_log_d_path_exe(ab, current->mm); 2950 } 2951 2952 /** 2953 * audit_core_dumps - record information about processes that end abnormally 2954 * @signr: signal value 2955 * 2956 * If a process ends with a core dump, something fishy is going on and we 2957 * should record the event for investigation. 2958 */ 2959 void audit_core_dumps(long signr) 2960 { 2961 struct audit_buffer *ab; 2962 2963 if (!audit_enabled) 2964 return; 2965 2966 if (signr == SIGQUIT) /* don't care for those */ 2967 return; 2968 2969 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2970 if (unlikely(!ab)) 2971 return; 2972 audit_log_task(ab); 2973 audit_log_format(ab, " sig=%ld res=1", signr); 2974 audit_log_end(ab); 2975 } 2976 2977 /** 2978 * audit_seccomp - record information about a seccomp action 2979 * @syscall: syscall number 2980 * @signr: signal value 2981 * @code: the seccomp action 2982 * 2983 * Record the information associated with a seccomp action. Event filtering for 2984 * seccomp actions that are not to be logged is done in seccomp_log(). 2985 * Therefore, this function forces auditing independent of the audit_enabled 2986 * and dummy context state because seccomp actions should be logged even when 2987 * audit is not in use. 2988 */ 2989 void audit_seccomp(unsigned long syscall, long signr, int code) 2990 { 2991 struct audit_buffer *ab; 2992 2993 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2994 if (unlikely(!ab)) 2995 return; 2996 audit_log_task(ab); 2997 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2998 signr, syscall_get_arch(current), syscall, 2999 in_compat_syscall(), KSTK_EIP(current), code); 3000 audit_log_end(ab); 3001 } 3002 3003 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3004 int res) 3005 { 3006 struct audit_buffer *ab; 3007 3008 if (!audit_enabled) 3009 return; 3010 3011 ab = audit_log_start(audit_context(), GFP_KERNEL, 3012 AUDIT_CONFIG_CHANGE); 3013 if (unlikely(!ab)) 3014 return; 3015 3016 audit_log_format(ab, 3017 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3018 names, old_names, res); 3019 audit_log_end(ab); 3020 } 3021 3022 struct list_head *audit_killed_trees(void) 3023 { 3024 struct audit_context *ctx = audit_context(); 3025 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3026 return NULL; 3027 return &ctx->killed_trees; 3028 } 3029