1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/module.h> 52 #include <linux/slab.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 71 #include "audit.h" 72 73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 74 * for saving names from getname(). */ 75 #define AUDIT_NAMES 20 76 77 /* Indicates that audit should log the full pathname. */ 78 #define AUDIT_NAME_FULL -1 79 80 /* no execve audit message should be longer than this (userspace limits) */ 81 #define MAX_EXECVE_AUDIT_LEN 7500 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_cap_data { 90 kernel_cap_t permitted; 91 kernel_cap_t inheritable; 92 union { 93 unsigned int fE; /* effective bit of a file capability */ 94 kernel_cap_t effective; /* effective set of a process */ 95 }; 96 }; 97 98 /* When fs/namei.c:getname() is called, we store the pointer in name and 99 * we don't let putname() free it (instead we free all of the saved 100 * pointers at syscall exit time). 101 * 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 103 struct audit_names { 104 const char *name; 105 int name_len; /* number of name's characters to log */ 106 unsigned name_put; /* call __putname() for this name */ 107 unsigned long ino; 108 dev_t dev; 109 umode_t mode; 110 uid_t uid; 111 gid_t gid; 112 dev_t rdev; 113 u32 osid; 114 struct audit_cap_data fcap; 115 unsigned int fcap_ver; 116 }; 117 118 struct audit_aux_data { 119 struct audit_aux_data *next; 120 int type; 121 }; 122 123 #define AUDIT_AUX_IPCPERM 0 124 125 /* Number of target pids per aux struct. */ 126 #define AUDIT_AUX_PIDS 16 127 128 struct audit_aux_data_execve { 129 struct audit_aux_data d; 130 int argc; 131 int envc; 132 struct mm_struct *mm; 133 }; 134 135 struct audit_aux_data_pids { 136 struct audit_aux_data d; 137 pid_t target_pid[AUDIT_AUX_PIDS]; 138 uid_t target_auid[AUDIT_AUX_PIDS]; 139 uid_t target_uid[AUDIT_AUX_PIDS]; 140 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 141 u32 target_sid[AUDIT_AUX_PIDS]; 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 143 int pid_count; 144 }; 145 146 struct audit_aux_data_bprm_fcaps { 147 struct audit_aux_data d; 148 struct audit_cap_data fcap; 149 unsigned int fcap_ver; 150 struct audit_cap_data old_pcap; 151 struct audit_cap_data new_pcap; 152 }; 153 154 struct audit_aux_data_capset { 155 struct audit_aux_data d; 156 pid_t pid; 157 struct audit_cap_data cap; 158 }; 159 160 struct audit_tree_refs { 161 struct audit_tree_refs *next; 162 struct audit_chunk *c[31]; 163 }; 164 165 /* The per-task audit context. */ 166 struct audit_context { 167 int dummy; /* must be the first element */ 168 int in_syscall; /* 1 if task is in a syscall */ 169 enum audit_state state, current_state; 170 unsigned int serial; /* serial number for record */ 171 int major; /* syscall number */ 172 struct timespec ctime; /* time of syscall entry */ 173 unsigned long argv[4]; /* syscall arguments */ 174 long return_code;/* syscall return code */ 175 u64 prio; 176 int return_valid; /* return code is valid */ 177 int name_count; 178 struct audit_names names[AUDIT_NAMES]; 179 char * filterkey; /* key for rule that triggered record */ 180 struct path pwd; 181 struct audit_context *previous; /* For nested syscalls */ 182 struct audit_aux_data *aux; 183 struct audit_aux_data *aux_pids; 184 struct sockaddr_storage *sockaddr; 185 size_t sockaddr_len; 186 /* Save things to print about task_struct */ 187 pid_t pid, ppid; 188 uid_t uid, euid, suid, fsuid; 189 gid_t gid, egid, sgid, fsgid; 190 unsigned long personality; 191 int arch; 192 193 pid_t target_pid; 194 uid_t target_auid; 195 uid_t target_uid; 196 unsigned int target_sessionid; 197 u32 target_sid; 198 char target_comm[TASK_COMM_LEN]; 199 200 struct audit_tree_refs *trees, *first_trees; 201 struct list_head killed_trees; 202 int tree_count; 203 204 int type; 205 union { 206 struct { 207 int nargs; 208 long args[6]; 209 } socketcall; 210 struct { 211 uid_t uid; 212 gid_t gid; 213 mode_t mode; 214 u32 osid; 215 int has_perm; 216 uid_t perm_uid; 217 gid_t perm_gid; 218 mode_t perm_mode; 219 unsigned long qbytes; 220 } ipc; 221 struct { 222 mqd_t mqdes; 223 struct mq_attr mqstat; 224 } mq_getsetattr; 225 struct { 226 mqd_t mqdes; 227 int sigev_signo; 228 } mq_notify; 229 struct { 230 mqd_t mqdes; 231 size_t msg_len; 232 unsigned int msg_prio; 233 struct timespec abs_timeout; 234 } mq_sendrecv; 235 struct { 236 int oflag; 237 mode_t mode; 238 struct mq_attr attr; 239 } mq_open; 240 struct { 241 pid_t pid; 242 struct audit_cap_data cap; 243 } capset; 244 struct { 245 int fd; 246 int flags; 247 } mmap; 248 }; 249 int fds[2]; 250 251 #if AUDIT_DEBUG 252 int put_count; 253 int ino_count; 254 #endif 255 }; 256 257 static inline int open_arg(int flags, int mask) 258 { 259 int n = ACC_MODE(flags); 260 if (flags & (O_TRUNC | O_CREAT)) 261 n |= AUDIT_PERM_WRITE; 262 return n & mask; 263 } 264 265 static int audit_match_perm(struct audit_context *ctx, int mask) 266 { 267 unsigned n; 268 if (unlikely(!ctx)) 269 return 0; 270 n = ctx->major; 271 272 switch (audit_classify_syscall(ctx->arch, n)) { 273 case 0: /* native */ 274 if ((mask & AUDIT_PERM_WRITE) && 275 audit_match_class(AUDIT_CLASS_WRITE, n)) 276 return 1; 277 if ((mask & AUDIT_PERM_READ) && 278 audit_match_class(AUDIT_CLASS_READ, n)) 279 return 1; 280 if ((mask & AUDIT_PERM_ATTR) && 281 audit_match_class(AUDIT_CLASS_CHATTR, n)) 282 return 1; 283 return 0; 284 case 1: /* 32bit on biarch */ 285 if ((mask & AUDIT_PERM_WRITE) && 286 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 287 return 1; 288 if ((mask & AUDIT_PERM_READ) && 289 audit_match_class(AUDIT_CLASS_READ_32, n)) 290 return 1; 291 if ((mask & AUDIT_PERM_ATTR) && 292 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 293 return 1; 294 return 0; 295 case 2: /* open */ 296 return mask & ACC_MODE(ctx->argv[1]); 297 case 3: /* openat */ 298 return mask & ACC_MODE(ctx->argv[2]); 299 case 4: /* socketcall */ 300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 301 case 5: /* execve */ 302 return mask & AUDIT_PERM_EXEC; 303 default: 304 return 0; 305 } 306 } 307 308 static int audit_match_filetype(struct audit_context *ctx, int which) 309 { 310 unsigned index = which & ~S_IFMT; 311 mode_t mode = which & S_IFMT; 312 313 if (unlikely(!ctx)) 314 return 0; 315 316 if (index >= ctx->name_count) 317 return 0; 318 if (ctx->names[index].ino == -1) 319 return 0; 320 if ((ctx->names[index].mode ^ mode) & S_IFMT) 321 return 0; 322 return 1; 323 } 324 325 /* 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 327 * ->first_trees points to its beginning, ->trees - to the current end of data. 328 * ->tree_count is the number of free entries in array pointed to by ->trees. 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 331 * it's going to remain 1-element for almost any setup) until we free context itself. 332 * References in it _are_ dropped - at the same time we free/drop aux stuff. 333 */ 334 335 #ifdef CONFIG_AUDIT_TREE 336 static void audit_set_auditable(struct audit_context *ctx) 337 { 338 if (!ctx->prio) { 339 ctx->prio = 1; 340 ctx->current_state = AUDIT_RECORD_CONTEXT; 341 } 342 } 343 344 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 345 { 346 struct audit_tree_refs *p = ctx->trees; 347 int left = ctx->tree_count; 348 if (likely(left)) { 349 p->c[--left] = chunk; 350 ctx->tree_count = left; 351 return 1; 352 } 353 if (!p) 354 return 0; 355 p = p->next; 356 if (p) { 357 p->c[30] = chunk; 358 ctx->trees = p; 359 ctx->tree_count = 30; 360 return 1; 361 } 362 return 0; 363 } 364 365 static int grow_tree_refs(struct audit_context *ctx) 366 { 367 struct audit_tree_refs *p = ctx->trees; 368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 369 if (!ctx->trees) { 370 ctx->trees = p; 371 return 0; 372 } 373 if (p) 374 p->next = ctx->trees; 375 else 376 ctx->first_trees = ctx->trees; 377 ctx->tree_count = 31; 378 return 1; 379 } 380 #endif 381 382 static void unroll_tree_refs(struct audit_context *ctx, 383 struct audit_tree_refs *p, int count) 384 { 385 #ifdef CONFIG_AUDIT_TREE 386 struct audit_tree_refs *q; 387 int n; 388 if (!p) { 389 /* we started with empty chain */ 390 p = ctx->first_trees; 391 count = 31; 392 /* if the very first allocation has failed, nothing to do */ 393 if (!p) 394 return; 395 } 396 n = count; 397 for (q = p; q != ctx->trees; q = q->next, n = 31) { 398 while (n--) { 399 audit_put_chunk(q->c[n]); 400 q->c[n] = NULL; 401 } 402 } 403 while (n-- > ctx->tree_count) { 404 audit_put_chunk(q->c[n]); 405 q->c[n] = NULL; 406 } 407 ctx->trees = p; 408 ctx->tree_count = count; 409 #endif 410 } 411 412 static void free_tree_refs(struct audit_context *ctx) 413 { 414 struct audit_tree_refs *p, *q; 415 for (p = ctx->first_trees; p; p = q) { 416 q = p->next; 417 kfree(p); 418 } 419 } 420 421 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 422 { 423 #ifdef CONFIG_AUDIT_TREE 424 struct audit_tree_refs *p; 425 int n; 426 if (!tree) 427 return 0; 428 /* full ones */ 429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 430 for (n = 0; n < 31; n++) 431 if (audit_tree_match(p->c[n], tree)) 432 return 1; 433 } 434 /* partial */ 435 if (p) { 436 for (n = ctx->tree_count; n < 31; n++) 437 if (audit_tree_match(p->c[n], tree)) 438 return 1; 439 } 440 #endif 441 return 0; 442 } 443 444 /* Determine if any context name data matches a rule's watch data */ 445 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 446 * otherwise. 447 * 448 * If task_creation is true, this is an explicit indication that we are 449 * filtering a task rule at task creation time. This and tsk == current are 450 * the only situations where tsk->cred may be accessed without an rcu read lock. 451 */ 452 static int audit_filter_rules(struct task_struct *tsk, 453 struct audit_krule *rule, 454 struct audit_context *ctx, 455 struct audit_names *name, 456 enum audit_state *state, 457 bool task_creation) 458 { 459 const struct cred *cred; 460 int i, j, need_sid = 1; 461 u32 sid; 462 463 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 464 465 for (i = 0; i < rule->field_count; i++) { 466 struct audit_field *f = &rule->fields[i]; 467 int result = 0; 468 469 switch (f->type) { 470 case AUDIT_PID: 471 result = audit_comparator(tsk->pid, f->op, f->val); 472 break; 473 case AUDIT_PPID: 474 if (ctx) { 475 if (!ctx->ppid) 476 ctx->ppid = sys_getppid(); 477 result = audit_comparator(ctx->ppid, f->op, f->val); 478 } 479 break; 480 case AUDIT_UID: 481 result = audit_comparator(cred->uid, f->op, f->val); 482 break; 483 case AUDIT_EUID: 484 result = audit_comparator(cred->euid, f->op, f->val); 485 break; 486 case AUDIT_SUID: 487 result = audit_comparator(cred->suid, f->op, f->val); 488 break; 489 case AUDIT_FSUID: 490 result = audit_comparator(cred->fsuid, f->op, f->val); 491 break; 492 case AUDIT_GID: 493 result = audit_comparator(cred->gid, f->op, f->val); 494 break; 495 case AUDIT_EGID: 496 result = audit_comparator(cred->egid, f->op, f->val); 497 break; 498 case AUDIT_SGID: 499 result = audit_comparator(cred->sgid, f->op, f->val); 500 break; 501 case AUDIT_FSGID: 502 result = audit_comparator(cred->fsgid, f->op, f->val); 503 break; 504 case AUDIT_PERS: 505 result = audit_comparator(tsk->personality, f->op, f->val); 506 break; 507 case AUDIT_ARCH: 508 if (ctx) 509 result = audit_comparator(ctx->arch, f->op, f->val); 510 break; 511 512 case AUDIT_EXIT: 513 if (ctx && ctx->return_valid) 514 result = audit_comparator(ctx->return_code, f->op, f->val); 515 break; 516 case AUDIT_SUCCESS: 517 if (ctx && ctx->return_valid) { 518 if (f->val) 519 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 520 else 521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 522 } 523 break; 524 case AUDIT_DEVMAJOR: 525 if (name) 526 result = audit_comparator(MAJOR(name->dev), 527 f->op, f->val); 528 else if (ctx) { 529 for (j = 0; j < ctx->name_count; j++) { 530 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 531 ++result; 532 break; 533 } 534 } 535 } 536 break; 537 case AUDIT_DEVMINOR: 538 if (name) 539 result = audit_comparator(MINOR(name->dev), 540 f->op, f->val); 541 else if (ctx) { 542 for (j = 0; j < ctx->name_count; j++) { 543 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 544 ++result; 545 break; 546 } 547 } 548 } 549 break; 550 case AUDIT_INODE: 551 if (name) 552 result = (name->ino == f->val); 553 else if (ctx) { 554 for (j = 0; j < ctx->name_count; j++) { 555 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 556 ++result; 557 break; 558 } 559 } 560 } 561 break; 562 case AUDIT_WATCH: 563 if (name) 564 result = audit_watch_compare(rule->watch, name->ino, name->dev); 565 break; 566 case AUDIT_DIR: 567 if (ctx) 568 result = match_tree_refs(ctx, rule->tree); 569 break; 570 case AUDIT_LOGINUID: 571 result = 0; 572 if (ctx) 573 result = audit_comparator(tsk->loginuid, f->op, f->val); 574 break; 575 case AUDIT_SUBJ_USER: 576 case AUDIT_SUBJ_ROLE: 577 case AUDIT_SUBJ_TYPE: 578 case AUDIT_SUBJ_SEN: 579 case AUDIT_SUBJ_CLR: 580 /* NOTE: this may return negative values indicating 581 a temporary error. We simply treat this as a 582 match for now to avoid losing information that 583 may be wanted. An error message will also be 584 logged upon error */ 585 if (f->lsm_rule) { 586 if (need_sid) { 587 security_task_getsecid(tsk, &sid); 588 need_sid = 0; 589 } 590 result = security_audit_rule_match(sid, f->type, 591 f->op, 592 f->lsm_rule, 593 ctx); 594 } 595 break; 596 case AUDIT_OBJ_USER: 597 case AUDIT_OBJ_ROLE: 598 case AUDIT_OBJ_TYPE: 599 case AUDIT_OBJ_LEV_LOW: 600 case AUDIT_OBJ_LEV_HIGH: 601 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 602 also applies here */ 603 if (f->lsm_rule) { 604 /* Find files that match */ 605 if (name) { 606 result = security_audit_rule_match( 607 name->osid, f->type, f->op, 608 f->lsm_rule, ctx); 609 } else if (ctx) { 610 for (j = 0; j < ctx->name_count; j++) { 611 if (security_audit_rule_match( 612 ctx->names[j].osid, 613 f->type, f->op, 614 f->lsm_rule, ctx)) { 615 ++result; 616 break; 617 } 618 } 619 } 620 /* Find ipc objects that match */ 621 if (!ctx || ctx->type != AUDIT_IPC) 622 break; 623 if (security_audit_rule_match(ctx->ipc.osid, 624 f->type, f->op, 625 f->lsm_rule, ctx)) 626 ++result; 627 } 628 break; 629 case AUDIT_ARG0: 630 case AUDIT_ARG1: 631 case AUDIT_ARG2: 632 case AUDIT_ARG3: 633 if (ctx) 634 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 635 break; 636 case AUDIT_FILTERKEY: 637 /* ignore this field for filtering */ 638 result = 1; 639 break; 640 case AUDIT_PERM: 641 result = audit_match_perm(ctx, f->val); 642 break; 643 case AUDIT_FILETYPE: 644 result = audit_match_filetype(ctx, f->val); 645 break; 646 } 647 648 if (!result) 649 return 0; 650 } 651 652 if (ctx) { 653 if (rule->prio <= ctx->prio) 654 return 0; 655 if (rule->filterkey) { 656 kfree(ctx->filterkey); 657 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 658 } 659 ctx->prio = rule->prio; 660 } 661 switch (rule->action) { 662 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 663 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 664 } 665 return 1; 666 } 667 668 /* At process creation time, we can determine if system-call auditing is 669 * completely disabled for this task. Since we only have the task 670 * structure at this point, we can only check uid and gid. 671 */ 672 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 673 { 674 struct audit_entry *e; 675 enum audit_state state; 676 677 rcu_read_lock(); 678 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 679 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 680 &state, true)) { 681 if (state == AUDIT_RECORD_CONTEXT) 682 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 683 rcu_read_unlock(); 684 return state; 685 } 686 } 687 rcu_read_unlock(); 688 return AUDIT_BUILD_CONTEXT; 689 } 690 691 /* At syscall entry and exit time, this filter is called if the 692 * audit_state is not low enough that auditing cannot take place, but is 693 * also not high enough that we already know we have to write an audit 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 695 */ 696 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 697 struct audit_context *ctx, 698 struct list_head *list) 699 { 700 struct audit_entry *e; 701 enum audit_state state; 702 703 if (audit_pid && tsk->tgid == audit_pid) 704 return AUDIT_DISABLED; 705 706 rcu_read_lock(); 707 if (!list_empty(list)) { 708 int word = AUDIT_WORD(ctx->major); 709 int bit = AUDIT_BIT(ctx->major); 710 711 list_for_each_entry_rcu(e, list, list) { 712 if ((e->rule.mask[word] & bit) == bit && 713 audit_filter_rules(tsk, &e->rule, ctx, NULL, 714 &state, false)) { 715 rcu_read_unlock(); 716 ctx->current_state = state; 717 return state; 718 } 719 } 720 } 721 rcu_read_unlock(); 722 return AUDIT_BUILD_CONTEXT; 723 } 724 725 /* At syscall exit time, this filter is called if any audit_names[] have been 726 * collected during syscall processing. We only check rules in sublists at hash 727 * buckets applicable to the inode numbers in audit_names[]. 728 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 729 */ 730 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 731 { 732 int i; 733 struct audit_entry *e; 734 enum audit_state state; 735 736 if (audit_pid && tsk->tgid == audit_pid) 737 return; 738 739 rcu_read_lock(); 740 for (i = 0; i < ctx->name_count; i++) { 741 int word = AUDIT_WORD(ctx->major); 742 int bit = AUDIT_BIT(ctx->major); 743 struct audit_names *n = &ctx->names[i]; 744 int h = audit_hash_ino((u32)n->ino); 745 struct list_head *list = &audit_inode_hash[h]; 746 747 if (list_empty(list)) 748 continue; 749 750 list_for_each_entry_rcu(e, list, list) { 751 if ((e->rule.mask[word] & bit) == bit && 752 audit_filter_rules(tsk, &e->rule, ctx, n, 753 &state, false)) { 754 rcu_read_unlock(); 755 ctx->current_state = state; 756 return; 757 } 758 } 759 } 760 rcu_read_unlock(); 761 } 762 763 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 764 int return_valid, 765 long return_code) 766 { 767 struct audit_context *context = tsk->audit_context; 768 769 if (likely(!context)) 770 return NULL; 771 context->return_valid = return_valid; 772 773 /* 774 * we need to fix up the return code in the audit logs if the actual 775 * return codes are later going to be fixed up by the arch specific 776 * signal handlers 777 * 778 * This is actually a test for: 779 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 780 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 781 * 782 * but is faster than a bunch of || 783 */ 784 if (unlikely(return_code <= -ERESTARTSYS) && 785 (return_code >= -ERESTART_RESTARTBLOCK) && 786 (return_code != -ENOIOCTLCMD)) 787 context->return_code = -EINTR; 788 else 789 context->return_code = return_code; 790 791 if (context->in_syscall && !context->dummy) { 792 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 793 audit_filter_inodes(tsk, context); 794 } 795 796 tsk->audit_context = NULL; 797 return context; 798 } 799 800 static inline void audit_free_names(struct audit_context *context) 801 { 802 int i; 803 804 #if AUDIT_DEBUG == 2 805 if (context->put_count + context->ino_count != context->name_count) { 806 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 807 " name_count=%d put_count=%d" 808 " ino_count=%d [NOT freeing]\n", 809 __FILE__, __LINE__, 810 context->serial, context->major, context->in_syscall, 811 context->name_count, context->put_count, 812 context->ino_count); 813 for (i = 0; i < context->name_count; i++) { 814 printk(KERN_ERR "names[%d] = %p = %s\n", i, 815 context->names[i].name, 816 context->names[i].name ?: "(null)"); 817 } 818 dump_stack(); 819 return; 820 } 821 #endif 822 #if AUDIT_DEBUG 823 context->put_count = 0; 824 context->ino_count = 0; 825 #endif 826 827 for (i = 0; i < context->name_count; i++) { 828 if (context->names[i].name && context->names[i].name_put) 829 __putname(context->names[i].name); 830 } 831 context->name_count = 0; 832 path_put(&context->pwd); 833 context->pwd.dentry = NULL; 834 context->pwd.mnt = NULL; 835 } 836 837 static inline void audit_free_aux(struct audit_context *context) 838 { 839 struct audit_aux_data *aux; 840 841 while ((aux = context->aux)) { 842 context->aux = aux->next; 843 kfree(aux); 844 } 845 while ((aux = context->aux_pids)) { 846 context->aux_pids = aux->next; 847 kfree(aux); 848 } 849 } 850 851 static inline void audit_zero_context(struct audit_context *context, 852 enum audit_state state) 853 { 854 memset(context, 0, sizeof(*context)); 855 context->state = state; 856 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 857 } 858 859 static inline struct audit_context *audit_alloc_context(enum audit_state state) 860 { 861 struct audit_context *context; 862 863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 864 return NULL; 865 audit_zero_context(context, state); 866 INIT_LIST_HEAD(&context->killed_trees); 867 return context; 868 } 869 870 /** 871 * audit_alloc - allocate an audit context block for a task 872 * @tsk: task 873 * 874 * Filter on the task information and allocate a per-task audit context 875 * if necessary. Doing so turns on system call auditing for the 876 * specified task. This is called from copy_process, so no lock is 877 * needed. 878 */ 879 int audit_alloc(struct task_struct *tsk) 880 { 881 struct audit_context *context; 882 enum audit_state state; 883 char *key = NULL; 884 885 if (likely(!audit_ever_enabled)) 886 return 0; /* Return if not auditing. */ 887 888 state = audit_filter_task(tsk, &key); 889 if (likely(state == AUDIT_DISABLED)) 890 return 0; 891 892 if (!(context = audit_alloc_context(state))) { 893 kfree(key); 894 audit_log_lost("out of memory in audit_alloc"); 895 return -ENOMEM; 896 } 897 context->filterkey = key; 898 899 tsk->audit_context = context; 900 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 901 return 0; 902 } 903 904 static inline void audit_free_context(struct audit_context *context) 905 { 906 struct audit_context *previous; 907 int count = 0; 908 909 do { 910 previous = context->previous; 911 if (previous || (count && count < 10)) { 912 ++count; 913 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 914 " freeing multiple contexts (%d)\n", 915 context->serial, context->major, 916 context->name_count, count); 917 } 918 audit_free_names(context); 919 unroll_tree_refs(context, NULL, 0); 920 free_tree_refs(context); 921 audit_free_aux(context); 922 kfree(context->filterkey); 923 kfree(context->sockaddr); 924 kfree(context); 925 context = previous; 926 } while (context); 927 if (count >= 10) 928 printk(KERN_ERR "audit: freed %d contexts\n", count); 929 } 930 931 void audit_log_task_context(struct audit_buffer *ab) 932 { 933 char *ctx = NULL; 934 unsigned len; 935 int error; 936 u32 sid; 937 938 security_task_getsecid(current, &sid); 939 if (!sid) 940 return; 941 942 error = security_secid_to_secctx(sid, &ctx, &len); 943 if (error) { 944 if (error != -EINVAL) 945 goto error_path; 946 return; 947 } 948 949 audit_log_format(ab, " subj=%s", ctx); 950 security_release_secctx(ctx, len); 951 return; 952 953 error_path: 954 audit_panic("error in audit_log_task_context"); 955 return; 956 } 957 958 EXPORT_SYMBOL(audit_log_task_context); 959 960 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 961 { 962 char name[sizeof(tsk->comm)]; 963 struct mm_struct *mm = tsk->mm; 964 struct vm_area_struct *vma; 965 966 /* tsk == current */ 967 968 get_task_comm(name, tsk); 969 audit_log_format(ab, " comm="); 970 audit_log_untrustedstring(ab, name); 971 972 if (mm) { 973 down_read(&mm->mmap_sem); 974 vma = mm->mmap; 975 while (vma) { 976 if ((vma->vm_flags & VM_EXECUTABLE) && 977 vma->vm_file) { 978 audit_log_d_path(ab, "exe=", 979 &vma->vm_file->f_path); 980 break; 981 } 982 vma = vma->vm_next; 983 } 984 up_read(&mm->mmap_sem); 985 } 986 audit_log_task_context(ab); 987 } 988 989 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 990 uid_t auid, uid_t uid, unsigned int sessionid, 991 u32 sid, char *comm) 992 { 993 struct audit_buffer *ab; 994 char *ctx = NULL; 995 u32 len; 996 int rc = 0; 997 998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 999 if (!ab) 1000 return rc; 1001 1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 1003 uid, sessionid); 1004 if (security_secid_to_secctx(sid, &ctx, &len)) { 1005 audit_log_format(ab, " obj=(none)"); 1006 rc = 1; 1007 } else { 1008 audit_log_format(ab, " obj=%s", ctx); 1009 security_release_secctx(ctx, len); 1010 } 1011 audit_log_format(ab, " ocomm="); 1012 audit_log_untrustedstring(ab, comm); 1013 audit_log_end(ab); 1014 1015 return rc; 1016 } 1017 1018 /* 1019 * to_send and len_sent accounting are very loose estimates. We aren't 1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1021 * within about 500 bytes (next page boundary) 1022 * 1023 * why snprintf? an int is up to 12 digits long. if we just assumed when 1024 * logging that a[%d]= was going to be 16 characters long we would be wasting 1025 * space in every audit message. In one 7500 byte message we can log up to 1026 * about 1000 min size arguments. That comes down to about 50% waste of space 1027 * if we didn't do the snprintf to find out how long arg_num_len was. 1028 */ 1029 static int audit_log_single_execve_arg(struct audit_context *context, 1030 struct audit_buffer **ab, 1031 int arg_num, 1032 size_t *len_sent, 1033 const char __user *p, 1034 char *buf) 1035 { 1036 char arg_num_len_buf[12]; 1037 const char __user *tmp_p = p; 1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1040 size_t len, len_left, to_send; 1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1042 unsigned int i, has_cntl = 0, too_long = 0; 1043 int ret; 1044 1045 /* strnlen_user includes the null we don't want to send */ 1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1047 1048 /* 1049 * We just created this mm, if we can't find the strings 1050 * we just copied into it something is _very_ wrong. Similar 1051 * for strings that are too long, we should not have created 1052 * any. 1053 */ 1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1055 WARN_ON(1); 1056 send_sig(SIGKILL, current, 0); 1057 return -1; 1058 } 1059 1060 /* walk the whole argument looking for non-ascii chars */ 1061 do { 1062 if (len_left > MAX_EXECVE_AUDIT_LEN) 1063 to_send = MAX_EXECVE_AUDIT_LEN; 1064 else 1065 to_send = len_left; 1066 ret = copy_from_user(buf, tmp_p, to_send); 1067 /* 1068 * There is no reason for this copy to be short. We just 1069 * copied them here, and the mm hasn't been exposed to user- 1070 * space yet. 1071 */ 1072 if (ret) { 1073 WARN_ON(1); 1074 send_sig(SIGKILL, current, 0); 1075 return -1; 1076 } 1077 buf[to_send] = '\0'; 1078 has_cntl = audit_string_contains_control(buf, to_send); 1079 if (has_cntl) { 1080 /* 1081 * hex messages get logged as 2 bytes, so we can only 1082 * send half as much in each message 1083 */ 1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1085 break; 1086 } 1087 len_left -= to_send; 1088 tmp_p += to_send; 1089 } while (len_left > 0); 1090 1091 len_left = len; 1092 1093 if (len > max_execve_audit_len) 1094 too_long = 1; 1095 1096 /* rewalk the argument actually logging the message */ 1097 for (i = 0; len_left > 0; i++) { 1098 int room_left; 1099 1100 if (len_left > max_execve_audit_len) 1101 to_send = max_execve_audit_len; 1102 else 1103 to_send = len_left; 1104 1105 /* do we have space left to send this argument in this ab? */ 1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1107 if (has_cntl) 1108 room_left -= (to_send * 2); 1109 else 1110 room_left -= to_send; 1111 if (room_left < 0) { 1112 *len_sent = 0; 1113 audit_log_end(*ab); 1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1115 if (!*ab) 1116 return 0; 1117 } 1118 1119 /* 1120 * first record needs to say how long the original string was 1121 * so we can be sure nothing was lost. 1122 */ 1123 if ((i == 0) && (too_long)) 1124 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1125 has_cntl ? 2*len : len); 1126 1127 /* 1128 * normally arguments are small enough to fit and we already 1129 * filled buf above when we checked for control characters 1130 * so don't bother with another copy_from_user 1131 */ 1132 if (len >= max_execve_audit_len) 1133 ret = copy_from_user(buf, p, to_send); 1134 else 1135 ret = 0; 1136 if (ret) { 1137 WARN_ON(1); 1138 send_sig(SIGKILL, current, 0); 1139 return -1; 1140 } 1141 buf[to_send] = '\0'; 1142 1143 /* actually log it */ 1144 audit_log_format(*ab, " a%d", arg_num); 1145 if (too_long) 1146 audit_log_format(*ab, "[%d]", i); 1147 audit_log_format(*ab, "="); 1148 if (has_cntl) 1149 audit_log_n_hex(*ab, buf, to_send); 1150 else 1151 audit_log_string(*ab, buf); 1152 1153 p += to_send; 1154 len_left -= to_send; 1155 *len_sent += arg_num_len; 1156 if (has_cntl) 1157 *len_sent += to_send * 2; 1158 else 1159 *len_sent += to_send; 1160 } 1161 /* include the null we didn't log */ 1162 return len + 1; 1163 } 1164 1165 static void audit_log_execve_info(struct audit_context *context, 1166 struct audit_buffer **ab, 1167 struct audit_aux_data_execve *axi) 1168 { 1169 int i; 1170 size_t len, len_sent = 0; 1171 const char __user *p; 1172 char *buf; 1173 1174 if (axi->mm != current->mm) 1175 return; /* execve failed, no additional info */ 1176 1177 p = (const char __user *)axi->mm->arg_start; 1178 1179 audit_log_format(*ab, "argc=%d", axi->argc); 1180 1181 /* 1182 * we need some kernel buffer to hold the userspace args. Just 1183 * allocate one big one rather than allocating one of the right size 1184 * for every single argument inside audit_log_single_execve_arg() 1185 * should be <8k allocation so should be pretty safe. 1186 */ 1187 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1188 if (!buf) { 1189 audit_panic("out of memory for argv string\n"); 1190 return; 1191 } 1192 1193 for (i = 0; i < axi->argc; i++) { 1194 len = audit_log_single_execve_arg(context, ab, i, 1195 &len_sent, p, buf); 1196 if (len <= 0) 1197 break; 1198 p += len; 1199 } 1200 kfree(buf); 1201 } 1202 1203 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1204 { 1205 int i; 1206 1207 audit_log_format(ab, " %s=", prefix); 1208 CAP_FOR_EACH_U32(i) { 1209 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1210 } 1211 } 1212 1213 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1214 { 1215 kernel_cap_t *perm = &name->fcap.permitted; 1216 kernel_cap_t *inh = &name->fcap.inheritable; 1217 int log = 0; 1218 1219 if (!cap_isclear(*perm)) { 1220 audit_log_cap(ab, "cap_fp", perm); 1221 log = 1; 1222 } 1223 if (!cap_isclear(*inh)) { 1224 audit_log_cap(ab, "cap_fi", inh); 1225 log = 1; 1226 } 1227 1228 if (log) 1229 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1230 } 1231 1232 static void show_special(struct audit_context *context, int *call_panic) 1233 { 1234 struct audit_buffer *ab; 1235 int i; 1236 1237 ab = audit_log_start(context, GFP_KERNEL, context->type); 1238 if (!ab) 1239 return; 1240 1241 switch (context->type) { 1242 case AUDIT_SOCKETCALL: { 1243 int nargs = context->socketcall.nargs; 1244 audit_log_format(ab, "nargs=%d", nargs); 1245 for (i = 0; i < nargs; i++) 1246 audit_log_format(ab, " a%d=%lx", i, 1247 context->socketcall.args[i]); 1248 break; } 1249 case AUDIT_IPC: { 1250 u32 osid = context->ipc.osid; 1251 1252 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o", 1253 context->ipc.uid, context->ipc.gid, context->ipc.mode); 1254 if (osid) { 1255 char *ctx = NULL; 1256 u32 len; 1257 if (security_secid_to_secctx(osid, &ctx, &len)) { 1258 audit_log_format(ab, " osid=%u", osid); 1259 *call_panic = 1; 1260 } else { 1261 audit_log_format(ab, " obj=%s", ctx); 1262 security_release_secctx(ctx, len); 1263 } 1264 } 1265 if (context->ipc.has_perm) { 1266 audit_log_end(ab); 1267 ab = audit_log_start(context, GFP_KERNEL, 1268 AUDIT_IPC_SET_PERM); 1269 audit_log_format(ab, 1270 "qbytes=%lx ouid=%u ogid=%u mode=%#o", 1271 context->ipc.qbytes, 1272 context->ipc.perm_uid, 1273 context->ipc.perm_gid, 1274 context->ipc.perm_mode); 1275 if (!ab) 1276 return; 1277 } 1278 break; } 1279 case AUDIT_MQ_OPEN: { 1280 audit_log_format(ab, 1281 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 1282 "mq_msgsize=%ld mq_curmsgs=%ld", 1283 context->mq_open.oflag, context->mq_open.mode, 1284 context->mq_open.attr.mq_flags, 1285 context->mq_open.attr.mq_maxmsg, 1286 context->mq_open.attr.mq_msgsize, 1287 context->mq_open.attr.mq_curmsgs); 1288 break; } 1289 case AUDIT_MQ_SENDRECV: { 1290 audit_log_format(ab, 1291 "mqdes=%d msg_len=%zd msg_prio=%u " 1292 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1293 context->mq_sendrecv.mqdes, 1294 context->mq_sendrecv.msg_len, 1295 context->mq_sendrecv.msg_prio, 1296 context->mq_sendrecv.abs_timeout.tv_sec, 1297 context->mq_sendrecv.abs_timeout.tv_nsec); 1298 break; } 1299 case AUDIT_MQ_NOTIFY: { 1300 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1301 context->mq_notify.mqdes, 1302 context->mq_notify.sigev_signo); 1303 break; } 1304 case AUDIT_MQ_GETSETATTR: { 1305 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1306 audit_log_format(ab, 1307 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1308 "mq_curmsgs=%ld ", 1309 context->mq_getsetattr.mqdes, 1310 attr->mq_flags, attr->mq_maxmsg, 1311 attr->mq_msgsize, attr->mq_curmsgs); 1312 break; } 1313 case AUDIT_CAPSET: { 1314 audit_log_format(ab, "pid=%d", context->capset.pid); 1315 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1316 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1317 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1318 break; } 1319 case AUDIT_MMAP: { 1320 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1321 context->mmap.flags); 1322 break; } 1323 } 1324 audit_log_end(ab); 1325 } 1326 1327 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1328 { 1329 const struct cred *cred; 1330 int i, call_panic = 0; 1331 struct audit_buffer *ab; 1332 struct audit_aux_data *aux; 1333 const char *tty; 1334 1335 /* tsk == current */ 1336 context->pid = tsk->pid; 1337 if (!context->ppid) 1338 context->ppid = sys_getppid(); 1339 cred = current_cred(); 1340 context->uid = cred->uid; 1341 context->gid = cred->gid; 1342 context->euid = cred->euid; 1343 context->suid = cred->suid; 1344 context->fsuid = cred->fsuid; 1345 context->egid = cred->egid; 1346 context->sgid = cred->sgid; 1347 context->fsgid = cred->fsgid; 1348 context->personality = tsk->personality; 1349 1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1351 if (!ab) 1352 return; /* audit_panic has been called */ 1353 audit_log_format(ab, "arch=%x syscall=%d", 1354 context->arch, context->major); 1355 if (context->personality != PER_LINUX) 1356 audit_log_format(ab, " per=%lx", context->personality); 1357 if (context->return_valid) 1358 audit_log_format(ab, " success=%s exit=%ld", 1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1360 context->return_code); 1361 1362 spin_lock_irq(&tsk->sighand->siglock); 1363 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1364 tty = tsk->signal->tty->name; 1365 else 1366 tty = "(none)"; 1367 spin_unlock_irq(&tsk->sighand->siglock); 1368 1369 audit_log_format(ab, 1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1371 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1372 " euid=%u suid=%u fsuid=%u" 1373 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1374 context->argv[0], 1375 context->argv[1], 1376 context->argv[2], 1377 context->argv[3], 1378 context->name_count, 1379 context->ppid, 1380 context->pid, 1381 tsk->loginuid, 1382 context->uid, 1383 context->gid, 1384 context->euid, context->suid, context->fsuid, 1385 context->egid, context->sgid, context->fsgid, tty, 1386 tsk->sessionid); 1387 1388 1389 audit_log_task_info(ab, tsk); 1390 audit_log_key(ab, context->filterkey); 1391 audit_log_end(ab); 1392 1393 for (aux = context->aux; aux; aux = aux->next) { 1394 1395 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1396 if (!ab) 1397 continue; /* audit_panic has been called */ 1398 1399 switch (aux->type) { 1400 1401 case AUDIT_EXECVE: { 1402 struct audit_aux_data_execve *axi = (void *)aux; 1403 audit_log_execve_info(context, &ab, axi); 1404 break; } 1405 1406 case AUDIT_BPRM_FCAPS: { 1407 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1408 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1409 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1410 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1411 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1412 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1413 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1414 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1415 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1416 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1417 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1418 break; } 1419 1420 } 1421 audit_log_end(ab); 1422 } 1423 1424 if (context->type) 1425 show_special(context, &call_panic); 1426 1427 if (context->fds[0] >= 0) { 1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1429 if (ab) { 1430 audit_log_format(ab, "fd0=%d fd1=%d", 1431 context->fds[0], context->fds[1]); 1432 audit_log_end(ab); 1433 } 1434 } 1435 1436 if (context->sockaddr_len) { 1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1438 if (ab) { 1439 audit_log_format(ab, "saddr="); 1440 audit_log_n_hex(ab, (void *)context->sockaddr, 1441 context->sockaddr_len); 1442 audit_log_end(ab); 1443 } 1444 } 1445 1446 for (aux = context->aux_pids; aux; aux = aux->next) { 1447 struct audit_aux_data_pids *axs = (void *)aux; 1448 1449 for (i = 0; i < axs->pid_count; i++) 1450 if (audit_log_pid_context(context, axs->target_pid[i], 1451 axs->target_auid[i], 1452 axs->target_uid[i], 1453 axs->target_sessionid[i], 1454 axs->target_sid[i], 1455 axs->target_comm[i])) 1456 call_panic = 1; 1457 } 1458 1459 if (context->target_pid && 1460 audit_log_pid_context(context, context->target_pid, 1461 context->target_auid, context->target_uid, 1462 context->target_sessionid, 1463 context->target_sid, context->target_comm)) 1464 call_panic = 1; 1465 1466 if (context->pwd.dentry && context->pwd.mnt) { 1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1468 if (ab) { 1469 audit_log_d_path(ab, "cwd=", &context->pwd); 1470 audit_log_end(ab); 1471 } 1472 } 1473 for (i = 0; i < context->name_count; i++) { 1474 struct audit_names *n = &context->names[i]; 1475 1476 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1477 if (!ab) 1478 continue; /* audit_panic has been called */ 1479 1480 audit_log_format(ab, "item=%d", i); 1481 1482 if (n->name) { 1483 switch(n->name_len) { 1484 case AUDIT_NAME_FULL: 1485 /* log the full path */ 1486 audit_log_format(ab, " name="); 1487 audit_log_untrustedstring(ab, n->name); 1488 break; 1489 case 0: 1490 /* name was specified as a relative path and the 1491 * directory component is the cwd */ 1492 audit_log_d_path(ab, "name=", &context->pwd); 1493 break; 1494 default: 1495 /* log the name's directory component */ 1496 audit_log_format(ab, " name="); 1497 audit_log_n_untrustedstring(ab, n->name, 1498 n->name_len); 1499 } 1500 } else 1501 audit_log_format(ab, " name=(null)"); 1502 1503 if (n->ino != (unsigned long)-1) { 1504 audit_log_format(ab, " inode=%lu" 1505 " dev=%02x:%02x mode=%#o" 1506 " ouid=%u ogid=%u rdev=%02x:%02x", 1507 n->ino, 1508 MAJOR(n->dev), 1509 MINOR(n->dev), 1510 n->mode, 1511 n->uid, 1512 n->gid, 1513 MAJOR(n->rdev), 1514 MINOR(n->rdev)); 1515 } 1516 if (n->osid != 0) { 1517 char *ctx = NULL; 1518 u32 len; 1519 if (security_secid_to_secctx( 1520 n->osid, &ctx, &len)) { 1521 audit_log_format(ab, " osid=%u", n->osid); 1522 call_panic = 2; 1523 } else { 1524 audit_log_format(ab, " obj=%s", ctx); 1525 security_release_secctx(ctx, len); 1526 } 1527 } 1528 1529 audit_log_fcaps(ab, n); 1530 1531 audit_log_end(ab); 1532 } 1533 1534 /* Send end of event record to help user space know we are finished */ 1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1536 if (ab) 1537 audit_log_end(ab); 1538 if (call_panic) 1539 audit_panic("error converting sid to string"); 1540 } 1541 1542 /** 1543 * audit_free - free a per-task audit context 1544 * @tsk: task whose audit context block to free 1545 * 1546 * Called from copy_process and do_exit 1547 */ 1548 void audit_free(struct task_struct *tsk) 1549 { 1550 struct audit_context *context; 1551 1552 context = audit_get_context(tsk, 0, 0); 1553 if (likely(!context)) 1554 return; 1555 1556 /* Check for system calls that do not go through the exit 1557 * function (e.g., exit_group), then free context block. 1558 * We use GFP_ATOMIC here because we might be doing this 1559 * in the context of the idle thread */ 1560 /* that can happen only if we are called from do_exit() */ 1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1562 audit_log_exit(context, tsk); 1563 if (!list_empty(&context->killed_trees)) 1564 audit_kill_trees(&context->killed_trees); 1565 1566 audit_free_context(context); 1567 } 1568 1569 /** 1570 * audit_syscall_entry - fill in an audit record at syscall entry 1571 * @arch: architecture type 1572 * @major: major syscall type (function) 1573 * @a1: additional syscall register 1 1574 * @a2: additional syscall register 2 1575 * @a3: additional syscall register 3 1576 * @a4: additional syscall register 4 1577 * 1578 * Fill in audit context at syscall entry. This only happens if the 1579 * audit context was created when the task was created and the state or 1580 * filters demand the audit context be built. If the state from the 1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1582 * then the record will be written at syscall exit time (otherwise, it 1583 * will only be written if another part of the kernel requests that it 1584 * be written). 1585 */ 1586 void audit_syscall_entry(int arch, int major, 1587 unsigned long a1, unsigned long a2, 1588 unsigned long a3, unsigned long a4) 1589 { 1590 struct task_struct *tsk = current; 1591 struct audit_context *context = tsk->audit_context; 1592 enum audit_state state; 1593 1594 if (unlikely(!context)) 1595 return; 1596 1597 /* 1598 * This happens only on certain architectures that make system 1599 * calls in kernel_thread via the entry.S interface, instead of 1600 * with direct calls. (If you are porting to a new 1601 * architecture, hitting this condition can indicate that you 1602 * got the _exit/_leave calls backward in entry.S.) 1603 * 1604 * i386 no 1605 * x86_64 no 1606 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1607 * 1608 * This also happens with vm86 emulation in a non-nested manner 1609 * (entries without exits), so this case must be caught. 1610 */ 1611 if (context->in_syscall) { 1612 struct audit_context *newctx; 1613 1614 #if AUDIT_DEBUG 1615 printk(KERN_ERR 1616 "audit(:%d) pid=%d in syscall=%d;" 1617 " entering syscall=%d\n", 1618 context->serial, tsk->pid, context->major, major); 1619 #endif 1620 newctx = audit_alloc_context(context->state); 1621 if (newctx) { 1622 newctx->previous = context; 1623 context = newctx; 1624 tsk->audit_context = newctx; 1625 } else { 1626 /* If we can't alloc a new context, the best we 1627 * can do is to leak memory (any pending putname 1628 * will be lost). The only other alternative is 1629 * to abandon auditing. */ 1630 audit_zero_context(context, context->state); 1631 } 1632 } 1633 BUG_ON(context->in_syscall || context->name_count); 1634 1635 if (!audit_enabled) 1636 return; 1637 1638 context->arch = arch; 1639 context->major = major; 1640 context->argv[0] = a1; 1641 context->argv[1] = a2; 1642 context->argv[2] = a3; 1643 context->argv[3] = a4; 1644 1645 state = context->state; 1646 context->dummy = !audit_n_rules; 1647 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1648 context->prio = 0; 1649 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1650 } 1651 if (likely(state == AUDIT_DISABLED)) 1652 return; 1653 1654 context->serial = 0; 1655 context->ctime = CURRENT_TIME; 1656 context->in_syscall = 1; 1657 context->current_state = state; 1658 context->ppid = 0; 1659 } 1660 1661 void audit_finish_fork(struct task_struct *child) 1662 { 1663 struct audit_context *ctx = current->audit_context; 1664 struct audit_context *p = child->audit_context; 1665 if (!p || !ctx) 1666 return; 1667 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT) 1668 return; 1669 p->arch = ctx->arch; 1670 p->major = ctx->major; 1671 memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); 1672 p->ctime = ctx->ctime; 1673 p->dummy = ctx->dummy; 1674 p->in_syscall = ctx->in_syscall; 1675 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); 1676 p->ppid = current->pid; 1677 p->prio = ctx->prio; 1678 p->current_state = ctx->current_state; 1679 } 1680 1681 /** 1682 * audit_syscall_exit - deallocate audit context after a system call 1683 * @valid: success/failure flag 1684 * @return_code: syscall return value 1685 * 1686 * Tear down after system call. If the audit context has been marked as 1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1688 * filtering, or because some other part of the kernel write an audit 1689 * message), then write out the syscall information. In call cases, 1690 * free the names stored from getname(). 1691 */ 1692 void audit_syscall_exit(int valid, long return_code) 1693 { 1694 struct task_struct *tsk = current; 1695 struct audit_context *context; 1696 1697 context = audit_get_context(tsk, valid, return_code); 1698 1699 if (likely(!context)) 1700 return; 1701 1702 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1703 audit_log_exit(context, tsk); 1704 1705 context->in_syscall = 0; 1706 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1707 1708 if (!list_empty(&context->killed_trees)) 1709 audit_kill_trees(&context->killed_trees); 1710 1711 if (context->previous) { 1712 struct audit_context *new_context = context->previous; 1713 context->previous = NULL; 1714 audit_free_context(context); 1715 tsk->audit_context = new_context; 1716 } else { 1717 audit_free_names(context); 1718 unroll_tree_refs(context, NULL, 0); 1719 audit_free_aux(context); 1720 context->aux = NULL; 1721 context->aux_pids = NULL; 1722 context->target_pid = 0; 1723 context->target_sid = 0; 1724 context->sockaddr_len = 0; 1725 context->type = 0; 1726 context->fds[0] = -1; 1727 if (context->state != AUDIT_RECORD_CONTEXT) { 1728 kfree(context->filterkey); 1729 context->filterkey = NULL; 1730 } 1731 tsk->audit_context = context; 1732 } 1733 } 1734 1735 static inline void handle_one(const struct inode *inode) 1736 { 1737 #ifdef CONFIG_AUDIT_TREE 1738 struct audit_context *context; 1739 struct audit_tree_refs *p; 1740 struct audit_chunk *chunk; 1741 int count; 1742 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1743 return; 1744 context = current->audit_context; 1745 p = context->trees; 1746 count = context->tree_count; 1747 rcu_read_lock(); 1748 chunk = audit_tree_lookup(inode); 1749 rcu_read_unlock(); 1750 if (!chunk) 1751 return; 1752 if (likely(put_tree_ref(context, chunk))) 1753 return; 1754 if (unlikely(!grow_tree_refs(context))) { 1755 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1756 audit_set_auditable(context); 1757 audit_put_chunk(chunk); 1758 unroll_tree_refs(context, p, count); 1759 return; 1760 } 1761 put_tree_ref(context, chunk); 1762 #endif 1763 } 1764 1765 static void handle_path(const struct dentry *dentry) 1766 { 1767 #ifdef CONFIG_AUDIT_TREE 1768 struct audit_context *context; 1769 struct audit_tree_refs *p; 1770 const struct dentry *d, *parent; 1771 struct audit_chunk *drop; 1772 unsigned long seq; 1773 int count; 1774 1775 context = current->audit_context; 1776 p = context->trees; 1777 count = context->tree_count; 1778 retry: 1779 drop = NULL; 1780 d = dentry; 1781 rcu_read_lock(); 1782 seq = read_seqbegin(&rename_lock); 1783 for(;;) { 1784 struct inode *inode = d->d_inode; 1785 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1786 struct audit_chunk *chunk; 1787 chunk = audit_tree_lookup(inode); 1788 if (chunk) { 1789 if (unlikely(!put_tree_ref(context, chunk))) { 1790 drop = chunk; 1791 break; 1792 } 1793 } 1794 } 1795 parent = d->d_parent; 1796 if (parent == d) 1797 break; 1798 d = parent; 1799 } 1800 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1801 rcu_read_unlock(); 1802 if (!drop) { 1803 /* just a race with rename */ 1804 unroll_tree_refs(context, p, count); 1805 goto retry; 1806 } 1807 audit_put_chunk(drop); 1808 if (grow_tree_refs(context)) { 1809 /* OK, got more space */ 1810 unroll_tree_refs(context, p, count); 1811 goto retry; 1812 } 1813 /* too bad */ 1814 printk(KERN_WARNING 1815 "out of memory, audit has lost a tree reference\n"); 1816 unroll_tree_refs(context, p, count); 1817 audit_set_auditable(context); 1818 return; 1819 } 1820 rcu_read_unlock(); 1821 #endif 1822 } 1823 1824 /** 1825 * audit_getname - add a name to the list 1826 * @name: name to add 1827 * 1828 * Add a name to the list of audit names for this context. 1829 * Called from fs/namei.c:getname(). 1830 */ 1831 void __audit_getname(const char *name) 1832 { 1833 struct audit_context *context = current->audit_context; 1834 1835 if (IS_ERR(name) || !name) 1836 return; 1837 1838 if (!context->in_syscall) { 1839 #if AUDIT_DEBUG == 2 1840 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1841 __FILE__, __LINE__, context->serial, name); 1842 dump_stack(); 1843 #endif 1844 return; 1845 } 1846 BUG_ON(context->name_count >= AUDIT_NAMES); 1847 context->names[context->name_count].name = name; 1848 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1849 context->names[context->name_count].name_put = 1; 1850 context->names[context->name_count].ino = (unsigned long)-1; 1851 context->names[context->name_count].osid = 0; 1852 ++context->name_count; 1853 if (!context->pwd.dentry) 1854 get_fs_pwd(current->fs, &context->pwd); 1855 } 1856 1857 /* audit_putname - intercept a putname request 1858 * @name: name to intercept and delay for putname 1859 * 1860 * If we have stored the name from getname in the audit context, 1861 * then we delay the putname until syscall exit. 1862 * Called from include/linux/fs.h:putname(). 1863 */ 1864 void audit_putname(const char *name) 1865 { 1866 struct audit_context *context = current->audit_context; 1867 1868 BUG_ON(!context); 1869 if (!context->in_syscall) { 1870 #if AUDIT_DEBUG == 2 1871 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1872 __FILE__, __LINE__, context->serial, name); 1873 if (context->name_count) { 1874 int i; 1875 for (i = 0; i < context->name_count; i++) 1876 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1877 context->names[i].name, 1878 context->names[i].name ?: "(null)"); 1879 } 1880 #endif 1881 __putname(name); 1882 } 1883 #if AUDIT_DEBUG 1884 else { 1885 ++context->put_count; 1886 if (context->put_count > context->name_count) { 1887 printk(KERN_ERR "%s:%d(:%d): major=%d" 1888 " in_syscall=%d putname(%p) name_count=%d" 1889 " put_count=%d\n", 1890 __FILE__, __LINE__, 1891 context->serial, context->major, 1892 context->in_syscall, name, context->name_count, 1893 context->put_count); 1894 dump_stack(); 1895 } 1896 } 1897 #endif 1898 } 1899 1900 static int audit_inc_name_count(struct audit_context *context, 1901 const struct inode *inode) 1902 { 1903 if (context->name_count >= AUDIT_NAMES) { 1904 if (inode) 1905 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: " 1906 "dev=%02x:%02x, inode=%lu\n", 1907 MAJOR(inode->i_sb->s_dev), 1908 MINOR(inode->i_sb->s_dev), 1909 inode->i_ino); 1910 1911 else 1912 printk(KERN_DEBUG "name_count maxed, losing inode data\n"); 1913 return 1; 1914 } 1915 context->name_count++; 1916 #if AUDIT_DEBUG 1917 context->ino_count++; 1918 #endif 1919 return 0; 1920 } 1921 1922 1923 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 1924 { 1925 struct cpu_vfs_cap_data caps; 1926 int rc; 1927 1928 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t)); 1929 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t)); 1930 name->fcap.fE = 0; 1931 name->fcap_ver = 0; 1932 1933 if (!dentry) 1934 return 0; 1935 1936 rc = get_vfs_caps_from_disk(dentry, &caps); 1937 if (rc) 1938 return rc; 1939 1940 name->fcap.permitted = caps.permitted; 1941 name->fcap.inheritable = caps.inheritable; 1942 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1943 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 1944 1945 return 0; 1946 } 1947 1948 1949 /* Copy inode data into an audit_names. */ 1950 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1951 const struct inode *inode) 1952 { 1953 name->ino = inode->i_ino; 1954 name->dev = inode->i_sb->s_dev; 1955 name->mode = inode->i_mode; 1956 name->uid = inode->i_uid; 1957 name->gid = inode->i_gid; 1958 name->rdev = inode->i_rdev; 1959 security_inode_getsecid(inode, &name->osid); 1960 audit_copy_fcaps(name, dentry); 1961 } 1962 1963 /** 1964 * audit_inode - store the inode and device from a lookup 1965 * @name: name being audited 1966 * @dentry: dentry being audited 1967 * 1968 * Called from fs/namei.c:path_lookup(). 1969 */ 1970 void __audit_inode(const char *name, const struct dentry *dentry) 1971 { 1972 int idx; 1973 struct audit_context *context = current->audit_context; 1974 const struct inode *inode = dentry->d_inode; 1975 1976 if (!context->in_syscall) 1977 return; 1978 if (context->name_count 1979 && context->names[context->name_count-1].name 1980 && context->names[context->name_count-1].name == name) 1981 idx = context->name_count - 1; 1982 else if (context->name_count > 1 1983 && context->names[context->name_count-2].name 1984 && context->names[context->name_count-2].name == name) 1985 idx = context->name_count - 2; 1986 else { 1987 /* FIXME: how much do we care about inodes that have no 1988 * associated name? */ 1989 if (audit_inc_name_count(context, inode)) 1990 return; 1991 idx = context->name_count - 1; 1992 context->names[idx].name = NULL; 1993 } 1994 handle_path(dentry); 1995 audit_copy_inode(&context->names[idx], dentry, inode); 1996 } 1997 1998 /** 1999 * audit_inode_child - collect inode info for created/removed objects 2000 * @dentry: dentry being audited 2001 * @parent: inode of dentry parent 2002 * 2003 * For syscalls that create or remove filesystem objects, audit_inode 2004 * can only collect information for the filesystem object's parent. 2005 * This call updates the audit context with the child's information. 2006 * Syscalls that create a new filesystem object must be hooked after 2007 * the object is created. Syscalls that remove a filesystem object 2008 * must be hooked prior, in order to capture the target inode during 2009 * unsuccessful attempts. 2010 */ 2011 void __audit_inode_child(const struct dentry *dentry, 2012 const struct inode *parent) 2013 { 2014 int idx; 2015 struct audit_context *context = current->audit_context; 2016 const char *found_parent = NULL, *found_child = NULL; 2017 const struct inode *inode = dentry->d_inode; 2018 const char *dname = dentry->d_name.name; 2019 int dirlen = 0; 2020 2021 if (!context->in_syscall) 2022 return; 2023 2024 if (inode) 2025 handle_one(inode); 2026 2027 /* parent is more likely, look for it first */ 2028 for (idx = 0; idx < context->name_count; idx++) { 2029 struct audit_names *n = &context->names[idx]; 2030 2031 if (!n->name) 2032 continue; 2033 2034 if (n->ino == parent->i_ino && 2035 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2036 n->name_len = dirlen; /* update parent data in place */ 2037 found_parent = n->name; 2038 goto add_names; 2039 } 2040 } 2041 2042 /* no matching parent, look for matching child */ 2043 for (idx = 0; idx < context->name_count; idx++) { 2044 struct audit_names *n = &context->names[idx]; 2045 2046 if (!n->name) 2047 continue; 2048 2049 /* strcmp() is the more likely scenario */ 2050 if (!strcmp(dname, n->name) || 2051 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2052 if (inode) 2053 audit_copy_inode(n, NULL, inode); 2054 else 2055 n->ino = (unsigned long)-1; 2056 found_child = n->name; 2057 goto add_names; 2058 } 2059 } 2060 2061 add_names: 2062 if (!found_parent) { 2063 if (audit_inc_name_count(context, parent)) 2064 return; 2065 idx = context->name_count - 1; 2066 context->names[idx].name = NULL; 2067 audit_copy_inode(&context->names[idx], NULL, parent); 2068 } 2069 2070 if (!found_child) { 2071 if (audit_inc_name_count(context, inode)) 2072 return; 2073 idx = context->name_count - 1; 2074 2075 /* Re-use the name belonging to the slot for a matching parent 2076 * directory. All names for this context are relinquished in 2077 * audit_free_names() */ 2078 if (found_parent) { 2079 context->names[idx].name = found_parent; 2080 context->names[idx].name_len = AUDIT_NAME_FULL; 2081 /* don't call __putname() */ 2082 context->names[idx].name_put = 0; 2083 } else { 2084 context->names[idx].name = NULL; 2085 } 2086 2087 if (inode) 2088 audit_copy_inode(&context->names[idx], NULL, inode); 2089 else 2090 context->names[idx].ino = (unsigned long)-1; 2091 } 2092 } 2093 EXPORT_SYMBOL_GPL(__audit_inode_child); 2094 2095 /** 2096 * auditsc_get_stamp - get local copies of audit_context values 2097 * @ctx: audit_context for the task 2098 * @t: timespec to store time recorded in the audit_context 2099 * @serial: serial value that is recorded in the audit_context 2100 * 2101 * Also sets the context as auditable. 2102 */ 2103 int auditsc_get_stamp(struct audit_context *ctx, 2104 struct timespec *t, unsigned int *serial) 2105 { 2106 if (!ctx->in_syscall) 2107 return 0; 2108 if (!ctx->serial) 2109 ctx->serial = audit_serial(); 2110 t->tv_sec = ctx->ctime.tv_sec; 2111 t->tv_nsec = ctx->ctime.tv_nsec; 2112 *serial = ctx->serial; 2113 if (!ctx->prio) { 2114 ctx->prio = 1; 2115 ctx->current_state = AUDIT_RECORD_CONTEXT; 2116 } 2117 return 1; 2118 } 2119 2120 /* global counter which is incremented every time something logs in */ 2121 static atomic_t session_id = ATOMIC_INIT(0); 2122 2123 /** 2124 * audit_set_loginuid - set a task's audit_context loginuid 2125 * @task: task whose audit context is being modified 2126 * @loginuid: loginuid value 2127 * 2128 * Returns 0. 2129 * 2130 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2131 */ 2132 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 2133 { 2134 unsigned int sessionid = atomic_inc_return(&session_id); 2135 struct audit_context *context = task->audit_context; 2136 2137 if (context && context->in_syscall) { 2138 struct audit_buffer *ab; 2139 2140 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2141 if (ab) { 2142 audit_log_format(ab, "login pid=%d uid=%u " 2143 "old auid=%u new auid=%u" 2144 " old ses=%u new ses=%u", 2145 task->pid, task_uid(task), 2146 task->loginuid, loginuid, 2147 task->sessionid, sessionid); 2148 audit_log_end(ab); 2149 } 2150 } 2151 task->sessionid = sessionid; 2152 task->loginuid = loginuid; 2153 return 0; 2154 } 2155 2156 /** 2157 * __audit_mq_open - record audit data for a POSIX MQ open 2158 * @oflag: open flag 2159 * @mode: mode bits 2160 * @attr: queue attributes 2161 * 2162 */ 2163 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr) 2164 { 2165 struct audit_context *context = current->audit_context; 2166 2167 if (attr) 2168 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2169 else 2170 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2171 2172 context->mq_open.oflag = oflag; 2173 context->mq_open.mode = mode; 2174 2175 context->type = AUDIT_MQ_OPEN; 2176 } 2177 2178 /** 2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2180 * @mqdes: MQ descriptor 2181 * @msg_len: Message length 2182 * @msg_prio: Message priority 2183 * @abs_timeout: Message timeout in absolute time 2184 * 2185 */ 2186 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2187 const struct timespec *abs_timeout) 2188 { 2189 struct audit_context *context = current->audit_context; 2190 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2191 2192 if (abs_timeout) 2193 memcpy(p, abs_timeout, sizeof(struct timespec)); 2194 else 2195 memset(p, 0, sizeof(struct timespec)); 2196 2197 context->mq_sendrecv.mqdes = mqdes; 2198 context->mq_sendrecv.msg_len = msg_len; 2199 context->mq_sendrecv.msg_prio = msg_prio; 2200 2201 context->type = AUDIT_MQ_SENDRECV; 2202 } 2203 2204 /** 2205 * __audit_mq_notify - record audit data for a POSIX MQ notify 2206 * @mqdes: MQ descriptor 2207 * @notification: Notification event 2208 * 2209 */ 2210 2211 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2212 { 2213 struct audit_context *context = current->audit_context; 2214 2215 if (notification) 2216 context->mq_notify.sigev_signo = notification->sigev_signo; 2217 else 2218 context->mq_notify.sigev_signo = 0; 2219 2220 context->mq_notify.mqdes = mqdes; 2221 context->type = AUDIT_MQ_NOTIFY; 2222 } 2223 2224 /** 2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2226 * @mqdes: MQ descriptor 2227 * @mqstat: MQ flags 2228 * 2229 */ 2230 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2231 { 2232 struct audit_context *context = current->audit_context; 2233 context->mq_getsetattr.mqdes = mqdes; 2234 context->mq_getsetattr.mqstat = *mqstat; 2235 context->type = AUDIT_MQ_GETSETATTR; 2236 } 2237 2238 /** 2239 * audit_ipc_obj - record audit data for ipc object 2240 * @ipcp: ipc permissions 2241 * 2242 */ 2243 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2244 { 2245 struct audit_context *context = current->audit_context; 2246 context->ipc.uid = ipcp->uid; 2247 context->ipc.gid = ipcp->gid; 2248 context->ipc.mode = ipcp->mode; 2249 context->ipc.has_perm = 0; 2250 security_ipc_getsecid(ipcp, &context->ipc.osid); 2251 context->type = AUDIT_IPC; 2252 } 2253 2254 /** 2255 * audit_ipc_set_perm - record audit data for new ipc permissions 2256 * @qbytes: msgq bytes 2257 * @uid: msgq user id 2258 * @gid: msgq group id 2259 * @mode: msgq mode (permissions) 2260 * 2261 * Called only after audit_ipc_obj(). 2262 */ 2263 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2264 { 2265 struct audit_context *context = current->audit_context; 2266 2267 context->ipc.qbytes = qbytes; 2268 context->ipc.perm_uid = uid; 2269 context->ipc.perm_gid = gid; 2270 context->ipc.perm_mode = mode; 2271 context->ipc.has_perm = 1; 2272 } 2273 2274 int audit_bprm(struct linux_binprm *bprm) 2275 { 2276 struct audit_aux_data_execve *ax; 2277 struct audit_context *context = current->audit_context; 2278 2279 if (likely(!audit_enabled || !context || context->dummy)) 2280 return 0; 2281 2282 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2283 if (!ax) 2284 return -ENOMEM; 2285 2286 ax->argc = bprm->argc; 2287 ax->envc = bprm->envc; 2288 ax->mm = bprm->mm; 2289 ax->d.type = AUDIT_EXECVE; 2290 ax->d.next = context->aux; 2291 context->aux = (void *)ax; 2292 return 0; 2293 } 2294 2295 2296 /** 2297 * audit_socketcall - record audit data for sys_socketcall 2298 * @nargs: number of args 2299 * @args: args array 2300 * 2301 */ 2302 void audit_socketcall(int nargs, unsigned long *args) 2303 { 2304 struct audit_context *context = current->audit_context; 2305 2306 if (likely(!context || context->dummy)) 2307 return; 2308 2309 context->type = AUDIT_SOCKETCALL; 2310 context->socketcall.nargs = nargs; 2311 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2312 } 2313 2314 /** 2315 * __audit_fd_pair - record audit data for pipe and socketpair 2316 * @fd1: the first file descriptor 2317 * @fd2: the second file descriptor 2318 * 2319 */ 2320 void __audit_fd_pair(int fd1, int fd2) 2321 { 2322 struct audit_context *context = current->audit_context; 2323 context->fds[0] = fd1; 2324 context->fds[1] = fd2; 2325 } 2326 2327 /** 2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2329 * @len: data length in user space 2330 * @a: data address in kernel space 2331 * 2332 * Returns 0 for success or NULL context or < 0 on error. 2333 */ 2334 int audit_sockaddr(int len, void *a) 2335 { 2336 struct audit_context *context = current->audit_context; 2337 2338 if (likely(!context || context->dummy)) 2339 return 0; 2340 2341 if (!context->sockaddr) { 2342 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2343 if (!p) 2344 return -ENOMEM; 2345 context->sockaddr = p; 2346 } 2347 2348 context->sockaddr_len = len; 2349 memcpy(context->sockaddr, a, len); 2350 return 0; 2351 } 2352 2353 void __audit_ptrace(struct task_struct *t) 2354 { 2355 struct audit_context *context = current->audit_context; 2356 2357 context->target_pid = t->pid; 2358 context->target_auid = audit_get_loginuid(t); 2359 context->target_uid = task_uid(t); 2360 context->target_sessionid = audit_get_sessionid(t); 2361 security_task_getsecid(t, &context->target_sid); 2362 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2363 } 2364 2365 /** 2366 * audit_signal_info - record signal info for shutting down audit subsystem 2367 * @sig: signal value 2368 * @t: task being signaled 2369 * 2370 * If the audit subsystem is being terminated, record the task (pid) 2371 * and uid that is doing that. 2372 */ 2373 int __audit_signal_info(int sig, struct task_struct *t) 2374 { 2375 struct audit_aux_data_pids *axp; 2376 struct task_struct *tsk = current; 2377 struct audit_context *ctx = tsk->audit_context; 2378 uid_t uid = current_uid(), t_uid = task_uid(t); 2379 2380 if (audit_pid && t->tgid == audit_pid) { 2381 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2382 audit_sig_pid = tsk->pid; 2383 if (tsk->loginuid != -1) 2384 audit_sig_uid = tsk->loginuid; 2385 else 2386 audit_sig_uid = uid; 2387 security_task_getsecid(tsk, &audit_sig_sid); 2388 } 2389 if (!audit_signals || audit_dummy_context()) 2390 return 0; 2391 } 2392 2393 /* optimize the common case by putting first signal recipient directly 2394 * in audit_context */ 2395 if (!ctx->target_pid) { 2396 ctx->target_pid = t->tgid; 2397 ctx->target_auid = audit_get_loginuid(t); 2398 ctx->target_uid = t_uid; 2399 ctx->target_sessionid = audit_get_sessionid(t); 2400 security_task_getsecid(t, &ctx->target_sid); 2401 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2402 return 0; 2403 } 2404 2405 axp = (void *)ctx->aux_pids; 2406 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2407 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2408 if (!axp) 2409 return -ENOMEM; 2410 2411 axp->d.type = AUDIT_OBJ_PID; 2412 axp->d.next = ctx->aux_pids; 2413 ctx->aux_pids = (void *)axp; 2414 } 2415 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2416 2417 axp->target_pid[axp->pid_count] = t->tgid; 2418 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2419 axp->target_uid[axp->pid_count] = t_uid; 2420 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2421 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2422 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2423 axp->pid_count++; 2424 2425 return 0; 2426 } 2427 2428 /** 2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2430 * @bprm: pointer to the bprm being processed 2431 * @new: the proposed new credentials 2432 * @old: the old credentials 2433 * 2434 * Simply check if the proc already has the caps given by the file and if not 2435 * store the priv escalation info for later auditing at the end of the syscall 2436 * 2437 * -Eric 2438 */ 2439 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2440 const struct cred *new, const struct cred *old) 2441 { 2442 struct audit_aux_data_bprm_fcaps *ax; 2443 struct audit_context *context = current->audit_context; 2444 struct cpu_vfs_cap_data vcaps; 2445 struct dentry *dentry; 2446 2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2448 if (!ax) 2449 return -ENOMEM; 2450 2451 ax->d.type = AUDIT_BPRM_FCAPS; 2452 ax->d.next = context->aux; 2453 context->aux = (void *)ax; 2454 2455 dentry = dget(bprm->file->f_dentry); 2456 get_vfs_caps_from_disk(dentry, &vcaps); 2457 dput(dentry); 2458 2459 ax->fcap.permitted = vcaps.permitted; 2460 ax->fcap.inheritable = vcaps.inheritable; 2461 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2463 2464 ax->old_pcap.permitted = old->cap_permitted; 2465 ax->old_pcap.inheritable = old->cap_inheritable; 2466 ax->old_pcap.effective = old->cap_effective; 2467 2468 ax->new_pcap.permitted = new->cap_permitted; 2469 ax->new_pcap.inheritable = new->cap_inheritable; 2470 ax->new_pcap.effective = new->cap_effective; 2471 return 0; 2472 } 2473 2474 /** 2475 * __audit_log_capset - store information about the arguments to the capset syscall 2476 * @pid: target pid of the capset call 2477 * @new: the new credentials 2478 * @old: the old (current) credentials 2479 * 2480 * Record the aguments userspace sent to sys_capset for later printing by the 2481 * audit system if applicable 2482 */ 2483 void __audit_log_capset(pid_t pid, 2484 const struct cred *new, const struct cred *old) 2485 { 2486 struct audit_context *context = current->audit_context; 2487 context->capset.pid = pid; 2488 context->capset.cap.effective = new->cap_effective; 2489 context->capset.cap.inheritable = new->cap_effective; 2490 context->capset.cap.permitted = new->cap_permitted; 2491 context->type = AUDIT_CAPSET; 2492 } 2493 2494 void __audit_mmap_fd(int fd, int flags) 2495 { 2496 struct audit_context *context = current->audit_context; 2497 context->mmap.fd = fd; 2498 context->mmap.flags = flags; 2499 context->type = AUDIT_MMAP; 2500 } 2501 2502 /** 2503 * audit_core_dumps - record information about processes that end abnormally 2504 * @signr: signal value 2505 * 2506 * If a process ends with a core dump, something fishy is going on and we 2507 * should record the event for investigation. 2508 */ 2509 void audit_core_dumps(long signr) 2510 { 2511 struct audit_buffer *ab; 2512 u32 sid; 2513 uid_t auid = audit_get_loginuid(current), uid; 2514 gid_t gid; 2515 unsigned int sessionid = audit_get_sessionid(current); 2516 2517 if (!audit_enabled) 2518 return; 2519 2520 if (signr == SIGQUIT) /* don't care for those */ 2521 return; 2522 2523 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2524 current_uid_gid(&uid, &gid); 2525 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2526 auid, uid, gid, sessionid); 2527 security_task_getsecid(current, &sid); 2528 if (sid) { 2529 char *ctx = NULL; 2530 u32 len; 2531 2532 if (security_secid_to_secctx(sid, &ctx, &len)) 2533 audit_log_format(ab, " ssid=%u", sid); 2534 else { 2535 audit_log_format(ab, " subj=%s", ctx); 2536 security_release_secctx(ctx, len); 2537 } 2538 } 2539 audit_log_format(ab, " pid=%d comm=", current->pid); 2540 audit_log_untrustedstring(ab, current->comm); 2541 audit_log_format(ab, " sig=%ld", signr); 2542 audit_log_end(ab); 2543 } 2544 2545 struct list_head *audit_killed_trees(void) 2546 { 2547 struct audit_context *ctx = current->audit_context; 2548 if (likely(!ctx || !ctx->in_syscall)) 2549 return NULL; 2550 return &ctx->killed_trees; 2551 } 2552