xref: /openbmc/linux/kernel/auditsc.c (revision e4c0d0e2)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 
71 #include "audit.h"
72 
73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
74  * for saving names from getname(). */
75 #define AUDIT_NAMES    20
76 
77 /* Indicates that audit should log the full pathname. */
78 #define AUDIT_NAME_FULL -1
79 
80 /* no execve audit message should be longer than this (userspace limits) */
81 #define MAX_EXECVE_AUDIT_LEN 7500
82 
83 /* number of audit rules */
84 int audit_n_rules;
85 
86 /* determines whether we collect data for signals sent */
87 int audit_signals;
88 
89 struct audit_cap_data {
90 	kernel_cap_t		permitted;
91 	kernel_cap_t		inheritable;
92 	union {
93 		unsigned int	fE;		/* effective bit of a file capability */
94 		kernel_cap_t	effective;	/* effective set of a process */
95 	};
96 };
97 
98 /* When fs/namei.c:getname() is called, we store the pointer in name and
99  * we don't let putname() free it (instead we free all of the saved
100  * pointers at syscall exit time).
101  *
102  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103 struct audit_names {
104 	const char	*name;
105 	int		name_len;	/* number of name's characters to log */
106 	unsigned	name_put;	/* call __putname() for this name */
107 	unsigned long	ino;
108 	dev_t		dev;
109 	umode_t		mode;
110 	uid_t		uid;
111 	gid_t		gid;
112 	dev_t		rdev;
113 	u32		osid;
114 	struct audit_cap_data fcap;
115 	unsigned int	fcap_ver;
116 };
117 
118 struct audit_aux_data {
119 	struct audit_aux_data	*next;
120 	int			type;
121 };
122 
123 #define AUDIT_AUX_IPCPERM	0
124 
125 /* Number of target pids per aux struct. */
126 #define AUDIT_AUX_PIDS	16
127 
128 struct audit_aux_data_execve {
129 	struct audit_aux_data	d;
130 	int argc;
131 	int envc;
132 	struct mm_struct *mm;
133 };
134 
135 struct audit_aux_data_pids {
136 	struct audit_aux_data	d;
137 	pid_t			target_pid[AUDIT_AUX_PIDS];
138 	uid_t			target_auid[AUDIT_AUX_PIDS];
139 	uid_t			target_uid[AUDIT_AUX_PIDS];
140 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
141 	u32			target_sid[AUDIT_AUX_PIDS];
142 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 	int			pid_count;
144 };
145 
146 struct audit_aux_data_bprm_fcaps {
147 	struct audit_aux_data	d;
148 	struct audit_cap_data	fcap;
149 	unsigned int		fcap_ver;
150 	struct audit_cap_data	old_pcap;
151 	struct audit_cap_data	new_pcap;
152 };
153 
154 struct audit_aux_data_capset {
155 	struct audit_aux_data	d;
156 	pid_t			pid;
157 	struct audit_cap_data	cap;
158 };
159 
160 struct audit_tree_refs {
161 	struct audit_tree_refs *next;
162 	struct audit_chunk *c[31];
163 };
164 
165 /* The per-task audit context. */
166 struct audit_context {
167 	int		    dummy;	/* must be the first element */
168 	int		    in_syscall;	/* 1 if task is in a syscall */
169 	enum audit_state    state, current_state;
170 	unsigned int	    serial;     /* serial number for record */
171 	int		    major;      /* syscall number */
172 	struct timespec	    ctime;      /* time of syscall entry */
173 	unsigned long	    argv[4];    /* syscall arguments */
174 	long		    return_code;/* syscall return code */
175 	u64		    prio;
176 	int		    return_valid; /* return code is valid */
177 	int		    name_count;
178 	struct audit_names  names[AUDIT_NAMES];
179 	char *		    filterkey;	/* key for rule that triggered record */
180 	struct path	    pwd;
181 	struct audit_context *previous; /* For nested syscalls */
182 	struct audit_aux_data *aux;
183 	struct audit_aux_data *aux_pids;
184 	struct sockaddr_storage *sockaddr;
185 	size_t sockaddr_len;
186 				/* Save things to print about task_struct */
187 	pid_t		    pid, ppid;
188 	uid_t		    uid, euid, suid, fsuid;
189 	gid_t		    gid, egid, sgid, fsgid;
190 	unsigned long	    personality;
191 	int		    arch;
192 
193 	pid_t		    target_pid;
194 	uid_t		    target_auid;
195 	uid_t		    target_uid;
196 	unsigned int	    target_sessionid;
197 	u32		    target_sid;
198 	char		    target_comm[TASK_COMM_LEN];
199 
200 	struct audit_tree_refs *trees, *first_trees;
201 	struct list_head killed_trees;
202 	int tree_count;
203 
204 	int type;
205 	union {
206 		struct {
207 			int nargs;
208 			long args[6];
209 		} socketcall;
210 		struct {
211 			uid_t			uid;
212 			gid_t			gid;
213 			mode_t			mode;
214 			u32			osid;
215 			int			has_perm;
216 			uid_t			perm_uid;
217 			gid_t			perm_gid;
218 			mode_t			perm_mode;
219 			unsigned long		qbytes;
220 		} ipc;
221 		struct {
222 			mqd_t			mqdes;
223 			struct mq_attr 		mqstat;
224 		} mq_getsetattr;
225 		struct {
226 			mqd_t			mqdes;
227 			int			sigev_signo;
228 		} mq_notify;
229 		struct {
230 			mqd_t			mqdes;
231 			size_t			msg_len;
232 			unsigned int		msg_prio;
233 			struct timespec		abs_timeout;
234 		} mq_sendrecv;
235 		struct {
236 			int			oflag;
237 			mode_t			mode;
238 			struct mq_attr		attr;
239 		} mq_open;
240 		struct {
241 			pid_t			pid;
242 			struct audit_cap_data	cap;
243 		} capset;
244 		struct {
245 			int			fd;
246 			int			flags;
247 		} mmap;
248 	};
249 	int fds[2];
250 
251 #if AUDIT_DEBUG
252 	int		    put_count;
253 	int		    ino_count;
254 #endif
255 };
256 
257 static inline int open_arg(int flags, int mask)
258 {
259 	int n = ACC_MODE(flags);
260 	if (flags & (O_TRUNC | O_CREAT))
261 		n |= AUDIT_PERM_WRITE;
262 	return n & mask;
263 }
264 
265 static int audit_match_perm(struct audit_context *ctx, int mask)
266 {
267 	unsigned n;
268 	if (unlikely(!ctx))
269 		return 0;
270 	n = ctx->major;
271 
272 	switch (audit_classify_syscall(ctx->arch, n)) {
273 	case 0:	/* native */
274 		if ((mask & AUDIT_PERM_WRITE) &&
275 		     audit_match_class(AUDIT_CLASS_WRITE, n))
276 			return 1;
277 		if ((mask & AUDIT_PERM_READ) &&
278 		     audit_match_class(AUDIT_CLASS_READ, n))
279 			return 1;
280 		if ((mask & AUDIT_PERM_ATTR) &&
281 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
282 			return 1;
283 		return 0;
284 	case 1: /* 32bit on biarch */
285 		if ((mask & AUDIT_PERM_WRITE) &&
286 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 			return 1;
288 		if ((mask & AUDIT_PERM_READ) &&
289 		     audit_match_class(AUDIT_CLASS_READ_32, n))
290 			return 1;
291 		if ((mask & AUDIT_PERM_ATTR) &&
292 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 			return 1;
294 		return 0;
295 	case 2: /* open */
296 		return mask & ACC_MODE(ctx->argv[1]);
297 	case 3: /* openat */
298 		return mask & ACC_MODE(ctx->argv[2]);
299 	case 4: /* socketcall */
300 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 	case 5: /* execve */
302 		return mask & AUDIT_PERM_EXEC;
303 	default:
304 		return 0;
305 	}
306 }
307 
308 static int audit_match_filetype(struct audit_context *ctx, int which)
309 {
310 	unsigned index = which & ~S_IFMT;
311 	mode_t mode = which & S_IFMT;
312 
313 	if (unlikely(!ctx))
314 		return 0;
315 
316 	if (index >= ctx->name_count)
317 		return 0;
318 	if (ctx->names[index].ino == -1)
319 		return 0;
320 	if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 		return 0;
322 	return 1;
323 }
324 
325 /*
326  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327  * ->first_trees points to its beginning, ->trees - to the current end of data.
328  * ->tree_count is the number of free entries in array pointed to by ->trees.
329  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
331  * it's going to remain 1-element for almost any setup) until we free context itself.
332  * References in it _are_ dropped - at the same time we free/drop aux stuff.
333  */
334 
335 #ifdef CONFIG_AUDIT_TREE
336 static void audit_set_auditable(struct audit_context *ctx)
337 {
338 	if (!ctx->prio) {
339 		ctx->prio = 1;
340 		ctx->current_state = AUDIT_RECORD_CONTEXT;
341 	}
342 }
343 
344 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345 {
346 	struct audit_tree_refs *p = ctx->trees;
347 	int left = ctx->tree_count;
348 	if (likely(left)) {
349 		p->c[--left] = chunk;
350 		ctx->tree_count = left;
351 		return 1;
352 	}
353 	if (!p)
354 		return 0;
355 	p = p->next;
356 	if (p) {
357 		p->c[30] = chunk;
358 		ctx->trees = p;
359 		ctx->tree_count = 30;
360 		return 1;
361 	}
362 	return 0;
363 }
364 
365 static int grow_tree_refs(struct audit_context *ctx)
366 {
367 	struct audit_tree_refs *p = ctx->trees;
368 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 	if (!ctx->trees) {
370 		ctx->trees = p;
371 		return 0;
372 	}
373 	if (p)
374 		p->next = ctx->trees;
375 	else
376 		ctx->first_trees = ctx->trees;
377 	ctx->tree_count = 31;
378 	return 1;
379 }
380 #endif
381 
382 static void unroll_tree_refs(struct audit_context *ctx,
383 		      struct audit_tree_refs *p, int count)
384 {
385 #ifdef CONFIG_AUDIT_TREE
386 	struct audit_tree_refs *q;
387 	int n;
388 	if (!p) {
389 		/* we started with empty chain */
390 		p = ctx->first_trees;
391 		count = 31;
392 		/* if the very first allocation has failed, nothing to do */
393 		if (!p)
394 			return;
395 	}
396 	n = count;
397 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 		while (n--) {
399 			audit_put_chunk(q->c[n]);
400 			q->c[n] = NULL;
401 		}
402 	}
403 	while (n-- > ctx->tree_count) {
404 		audit_put_chunk(q->c[n]);
405 		q->c[n] = NULL;
406 	}
407 	ctx->trees = p;
408 	ctx->tree_count = count;
409 #endif
410 }
411 
412 static void free_tree_refs(struct audit_context *ctx)
413 {
414 	struct audit_tree_refs *p, *q;
415 	for (p = ctx->first_trees; p; p = q) {
416 		q = p->next;
417 		kfree(p);
418 	}
419 }
420 
421 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422 {
423 #ifdef CONFIG_AUDIT_TREE
424 	struct audit_tree_refs *p;
425 	int n;
426 	if (!tree)
427 		return 0;
428 	/* full ones */
429 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 		for (n = 0; n < 31; n++)
431 			if (audit_tree_match(p->c[n], tree))
432 				return 1;
433 	}
434 	/* partial */
435 	if (p) {
436 		for (n = ctx->tree_count; n < 31; n++)
437 			if (audit_tree_match(p->c[n], tree))
438 				return 1;
439 	}
440 #endif
441 	return 0;
442 }
443 
444 /* Determine if any context name data matches a rule's watch data */
445 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
446  * otherwise.
447  *
448  * If task_creation is true, this is an explicit indication that we are
449  * filtering a task rule at task creation time.  This and tsk == current are
450  * the only situations where tsk->cred may be accessed without an rcu read lock.
451  */
452 static int audit_filter_rules(struct task_struct *tsk,
453 			      struct audit_krule *rule,
454 			      struct audit_context *ctx,
455 			      struct audit_names *name,
456 			      enum audit_state *state,
457 			      bool task_creation)
458 {
459 	const struct cred *cred;
460 	int i, j, need_sid = 1;
461 	u32 sid;
462 
463 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464 
465 	for (i = 0; i < rule->field_count; i++) {
466 		struct audit_field *f = &rule->fields[i];
467 		int result = 0;
468 
469 		switch (f->type) {
470 		case AUDIT_PID:
471 			result = audit_comparator(tsk->pid, f->op, f->val);
472 			break;
473 		case AUDIT_PPID:
474 			if (ctx) {
475 				if (!ctx->ppid)
476 					ctx->ppid = sys_getppid();
477 				result = audit_comparator(ctx->ppid, f->op, f->val);
478 			}
479 			break;
480 		case AUDIT_UID:
481 			result = audit_comparator(cred->uid, f->op, f->val);
482 			break;
483 		case AUDIT_EUID:
484 			result = audit_comparator(cred->euid, f->op, f->val);
485 			break;
486 		case AUDIT_SUID:
487 			result = audit_comparator(cred->suid, f->op, f->val);
488 			break;
489 		case AUDIT_FSUID:
490 			result = audit_comparator(cred->fsuid, f->op, f->val);
491 			break;
492 		case AUDIT_GID:
493 			result = audit_comparator(cred->gid, f->op, f->val);
494 			break;
495 		case AUDIT_EGID:
496 			result = audit_comparator(cred->egid, f->op, f->val);
497 			break;
498 		case AUDIT_SGID:
499 			result = audit_comparator(cred->sgid, f->op, f->val);
500 			break;
501 		case AUDIT_FSGID:
502 			result = audit_comparator(cred->fsgid, f->op, f->val);
503 			break;
504 		case AUDIT_PERS:
505 			result = audit_comparator(tsk->personality, f->op, f->val);
506 			break;
507 		case AUDIT_ARCH:
508 			if (ctx)
509 				result = audit_comparator(ctx->arch, f->op, f->val);
510 			break;
511 
512 		case AUDIT_EXIT:
513 			if (ctx && ctx->return_valid)
514 				result = audit_comparator(ctx->return_code, f->op, f->val);
515 			break;
516 		case AUDIT_SUCCESS:
517 			if (ctx && ctx->return_valid) {
518 				if (f->val)
519 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520 				else
521 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
522 			}
523 			break;
524 		case AUDIT_DEVMAJOR:
525 			if (name)
526 				result = audit_comparator(MAJOR(name->dev),
527 							  f->op, f->val);
528 			else if (ctx) {
529 				for (j = 0; j < ctx->name_count; j++) {
530 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
531 						++result;
532 						break;
533 					}
534 				}
535 			}
536 			break;
537 		case AUDIT_DEVMINOR:
538 			if (name)
539 				result = audit_comparator(MINOR(name->dev),
540 							  f->op, f->val);
541 			else if (ctx) {
542 				for (j = 0; j < ctx->name_count; j++) {
543 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
544 						++result;
545 						break;
546 					}
547 				}
548 			}
549 			break;
550 		case AUDIT_INODE:
551 			if (name)
552 				result = (name->ino == f->val);
553 			else if (ctx) {
554 				for (j = 0; j < ctx->name_count; j++) {
555 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
556 						++result;
557 						break;
558 					}
559 				}
560 			}
561 			break;
562 		case AUDIT_WATCH:
563 			if (name)
564 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
565 			break;
566 		case AUDIT_DIR:
567 			if (ctx)
568 				result = match_tree_refs(ctx, rule->tree);
569 			break;
570 		case AUDIT_LOGINUID:
571 			result = 0;
572 			if (ctx)
573 				result = audit_comparator(tsk->loginuid, f->op, f->val);
574 			break;
575 		case AUDIT_SUBJ_USER:
576 		case AUDIT_SUBJ_ROLE:
577 		case AUDIT_SUBJ_TYPE:
578 		case AUDIT_SUBJ_SEN:
579 		case AUDIT_SUBJ_CLR:
580 			/* NOTE: this may return negative values indicating
581 			   a temporary error.  We simply treat this as a
582 			   match for now to avoid losing information that
583 			   may be wanted.   An error message will also be
584 			   logged upon error */
585 			if (f->lsm_rule) {
586 				if (need_sid) {
587 					security_task_getsecid(tsk, &sid);
588 					need_sid = 0;
589 				}
590 				result = security_audit_rule_match(sid, f->type,
591 				                                  f->op,
592 				                                  f->lsm_rule,
593 				                                  ctx);
594 			}
595 			break;
596 		case AUDIT_OBJ_USER:
597 		case AUDIT_OBJ_ROLE:
598 		case AUDIT_OBJ_TYPE:
599 		case AUDIT_OBJ_LEV_LOW:
600 		case AUDIT_OBJ_LEV_HIGH:
601 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602 			   also applies here */
603 			if (f->lsm_rule) {
604 				/* Find files that match */
605 				if (name) {
606 					result = security_audit_rule_match(
607 					           name->osid, f->type, f->op,
608 					           f->lsm_rule, ctx);
609 				} else if (ctx) {
610 					for (j = 0; j < ctx->name_count; j++) {
611 						if (security_audit_rule_match(
612 						      ctx->names[j].osid,
613 						      f->type, f->op,
614 						      f->lsm_rule, ctx)) {
615 							++result;
616 							break;
617 						}
618 					}
619 				}
620 				/* Find ipc objects that match */
621 				if (!ctx || ctx->type != AUDIT_IPC)
622 					break;
623 				if (security_audit_rule_match(ctx->ipc.osid,
624 							      f->type, f->op,
625 							      f->lsm_rule, ctx))
626 					++result;
627 			}
628 			break;
629 		case AUDIT_ARG0:
630 		case AUDIT_ARG1:
631 		case AUDIT_ARG2:
632 		case AUDIT_ARG3:
633 			if (ctx)
634 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
635 			break;
636 		case AUDIT_FILTERKEY:
637 			/* ignore this field for filtering */
638 			result = 1;
639 			break;
640 		case AUDIT_PERM:
641 			result = audit_match_perm(ctx, f->val);
642 			break;
643 		case AUDIT_FILETYPE:
644 			result = audit_match_filetype(ctx, f->val);
645 			break;
646 		}
647 
648 		if (!result)
649 			return 0;
650 	}
651 
652 	if (ctx) {
653 		if (rule->prio <= ctx->prio)
654 			return 0;
655 		if (rule->filterkey) {
656 			kfree(ctx->filterkey);
657 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658 		}
659 		ctx->prio = rule->prio;
660 	}
661 	switch (rule->action) {
662 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
663 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
664 	}
665 	return 1;
666 }
667 
668 /* At process creation time, we can determine if system-call auditing is
669  * completely disabled for this task.  Since we only have the task
670  * structure at this point, we can only check uid and gid.
671  */
672 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
673 {
674 	struct audit_entry *e;
675 	enum audit_state   state;
676 
677 	rcu_read_lock();
678 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
679 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680 				       &state, true)) {
681 			if (state == AUDIT_RECORD_CONTEXT)
682 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
683 			rcu_read_unlock();
684 			return state;
685 		}
686 	}
687 	rcu_read_unlock();
688 	return AUDIT_BUILD_CONTEXT;
689 }
690 
691 /* At syscall entry and exit time, this filter is called if the
692  * audit_state is not low enough that auditing cannot take place, but is
693  * also not high enough that we already know we have to write an audit
694  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
695  */
696 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697 					     struct audit_context *ctx,
698 					     struct list_head *list)
699 {
700 	struct audit_entry *e;
701 	enum audit_state state;
702 
703 	if (audit_pid && tsk->tgid == audit_pid)
704 		return AUDIT_DISABLED;
705 
706 	rcu_read_lock();
707 	if (!list_empty(list)) {
708 		int word = AUDIT_WORD(ctx->major);
709 		int bit  = AUDIT_BIT(ctx->major);
710 
711 		list_for_each_entry_rcu(e, list, list) {
712 			if ((e->rule.mask[word] & bit) == bit &&
713 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
714 					       &state, false)) {
715 				rcu_read_unlock();
716 				ctx->current_state = state;
717 				return state;
718 			}
719 		}
720 	}
721 	rcu_read_unlock();
722 	return AUDIT_BUILD_CONTEXT;
723 }
724 
725 /* At syscall exit time, this filter is called if any audit_names[] have been
726  * collected during syscall processing.  We only check rules in sublists at hash
727  * buckets applicable to the inode numbers in audit_names[].
728  * Regarding audit_state, same rules apply as for audit_filter_syscall().
729  */
730 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
731 {
732 	int i;
733 	struct audit_entry *e;
734 	enum audit_state state;
735 
736 	if (audit_pid && tsk->tgid == audit_pid)
737 		return;
738 
739 	rcu_read_lock();
740 	for (i = 0; i < ctx->name_count; i++) {
741 		int word = AUDIT_WORD(ctx->major);
742 		int bit  = AUDIT_BIT(ctx->major);
743 		struct audit_names *n = &ctx->names[i];
744 		int h = audit_hash_ino((u32)n->ino);
745 		struct list_head *list = &audit_inode_hash[h];
746 
747 		if (list_empty(list))
748 			continue;
749 
750 		list_for_each_entry_rcu(e, list, list) {
751 			if ((e->rule.mask[word] & bit) == bit &&
752 			    audit_filter_rules(tsk, &e->rule, ctx, n,
753 				    	       &state, false)) {
754 				rcu_read_unlock();
755 				ctx->current_state = state;
756 				return;
757 			}
758 		}
759 	}
760 	rcu_read_unlock();
761 }
762 
763 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764 						      int return_valid,
765 						      long return_code)
766 {
767 	struct audit_context *context = tsk->audit_context;
768 
769 	if (likely(!context))
770 		return NULL;
771 	context->return_valid = return_valid;
772 
773 	/*
774 	 * we need to fix up the return code in the audit logs if the actual
775 	 * return codes are later going to be fixed up by the arch specific
776 	 * signal handlers
777 	 *
778 	 * This is actually a test for:
779 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781 	 *
782 	 * but is faster than a bunch of ||
783 	 */
784 	if (unlikely(return_code <= -ERESTARTSYS) &&
785 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
786 	    (return_code != -ENOIOCTLCMD))
787 		context->return_code = -EINTR;
788 	else
789 		context->return_code  = return_code;
790 
791 	if (context->in_syscall && !context->dummy) {
792 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793 		audit_filter_inodes(tsk, context);
794 	}
795 
796 	tsk->audit_context = NULL;
797 	return context;
798 }
799 
800 static inline void audit_free_names(struct audit_context *context)
801 {
802 	int i;
803 
804 #if AUDIT_DEBUG == 2
805 	if (context->put_count + context->ino_count != context->name_count) {
806 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
807 		       " name_count=%d put_count=%d"
808 		       " ino_count=%d [NOT freeing]\n",
809 		       __FILE__, __LINE__,
810 		       context->serial, context->major, context->in_syscall,
811 		       context->name_count, context->put_count,
812 		       context->ino_count);
813 		for (i = 0; i < context->name_count; i++) {
814 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
815 			       context->names[i].name,
816 			       context->names[i].name ?: "(null)");
817 		}
818 		dump_stack();
819 		return;
820 	}
821 #endif
822 #if AUDIT_DEBUG
823 	context->put_count  = 0;
824 	context->ino_count  = 0;
825 #endif
826 
827 	for (i = 0; i < context->name_count; i++) {
828 		if (context->names[i].name && context->names[i].name_put)
829 			__putname(context->names[i].name);
830 	}
831 	context->name_count = 0;
832 	path_put(&context->pwd);
833 	context->pwd.dentry = NULL;
834 	context->pwd.mnt = NULL;
835 }
836 
837 static inline void audit_free_aux(struct audit_context *context)
838 {
839 	struct audit_aux_data *aux;
840 
841 	while ((aux = context->aux)) {
842 		context->aux = aux->next;
843 		kfree(aux);
844 	}
845 	while ((aux = context->aux_pids)) {
846 		context->aux_pids = aux->next;
847 		kfree(aux);
848 	}
849 }
850 
851 static inline void audit_zero_context(struct audit_context *context,
852 				      enum audit_state state)
853 {
854 	memset(context, 0, sizeof(*context));
855 	context->state      = state;
856 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
857 }
858 
859 static inline struct audit_context *audit_alloc_context(enum audit_state state)
860 {
861 	struct audit_context *context;
862 
863 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 		return NULL;
865 	audit_zero_context(context, state);
866 	INIT_LIST_HEAD(&context->killed_trees);
867 	return context;
868 }
869 
870 /**
871  * audit_alloc - allocate an audit context block for a task
872  * @tsk: task
873  *
874  * Filter on the task information and allocate a per-task audit context
875  * if necessary.  Doing so turns on system call auditing for the
876  * specified task.  This is called from copy_process, so no lock is
877  * needed.
878  */
879 int audit_alloc(struct task_struct *tsk)
880 {
881 	struct audit_context *context;
882 	enum audit_state     state;
883 	char *key = NULL;
884 
885 	if (likely(!audit_ever_enabled))
886 		return 0; /* Return if not auditing. */
887 
888 	state = audit_filter_task(tsk, &key);
889 	if (likely(state == AUDIT_DISABLED))
890 		return 0;
891 
892 	if (!(context = audit_alloc_context(state))) {
893 		kfree(key);
894 		audit_log_lost("out of memory in audit_alloc");
895 		return -ENOMEM;
896 	}
897 	context->filterkey = key;
898 
899 	tsk->audit_context  = context;
900 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901 	return 0;
902 }
903 
904 static inline void audit_free_context(struct audit_context *context)
905 {
906 	struct audit_context *previous;
907 	int		     count = 0;
908 
909 	do {
910 		previous = context->previous;
911 		if (previous || (count &&  count < 10)) {
912 			++count;
913 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914 			       " freeing multiple contexts (%d)\n",
915 			       context->serial, context->major,
916 			       context->name_count, count);
917 		}
918 		audit_free_names(context);
919 		unroll_tree_refs(context, NULL, 0);
920 		free_tree_refs(context);
921 		audit_free_aux(context);
922 		kfree(context->filterkey);
923 		kfree(context->sockaddr);
924 		kfree(context);
925 		context  = previous;
926 	} while (context);
927 	if (count >= 10)
928 		printk(KERN_ERR "audit: freed %d contexts\n", count);
929 }
930 
931 void audit_log_task_context(struct audit_buffer *ab)
932 {
933 	char *ctx = NULL;
934 	unsigned len;
935 	int error;
936 	u32 sid;
937 
938 	security_task_getsecid(current, &sid);
939 	if (!sid)
940 		return;
941 
942 	error = security_secid_to_secctx(sid, &ctx, &len);
943 	if (error) {
944 		if (error != -EINVAL)
945 			goto error_path;
946 		return;
947 	}
948 
949 	audit_log_format(ab, " subj=%s", ctx);
950 	security_release_secctx(ctx, len);
951 	return;
952 
953 error_path:
954 	audit_panic("error in audit_log_task_context");
955 	return;
956 }
957 
958 EXPORT_SYMBOL(audit_log_task_context);
959 
960 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961 {
962 	char name[sizeof(tsk->comm)];
963 	struct mm_struct *mm = tsk->mm;
964 	struct vm_area_struct *vma;
965 
966 	/* tsk == current */
967 
968 	get_task_comm(name, tsk);
969 	audit_log_format(ab, " comm=");
970 	audit_log_untrustedstring(ab, name);
971 
972 	if (mm) {
973 		down_read(&mm->mmap_sem);
974 		vma = mm->mmap;
975 		while (vma) {
976 			if ((vma->vm_flags & VM_EXECUTABLE) &&
977 			    vma->vm_file) {
978 				audit_log_d_path(ab, "exe=",
979 						 &vma->vm_file->f_path);
980 				break;
981 			}
982 			vma = vma->vm_next;
983 		}
984 		up_read(&mm->mmap_sem);
985 	}
986 	audit_log_task_context(ab);
987 }
988 
989 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 				 uid_t auid, uid_t uid, unsigned int sessionid,
991 				 u32 sid, char *comm)
992 {
993 	struct audit_buffer *ab;
994 	char *ctx = NULL;
995 	u32 len;
996 	int rc = 0;
997 
998 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 	if (!ab)
1000 		return rc;
1001 
1002 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 			 uid, sessionid);
1004 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 		audit_log_format(ab, " obj=(none)");
1006 		rc = 1;
1007 	} else {
1008 		audit_log_format(ab, " obj=%s", ctx);
1009 		security_release_secctx(ctx, len);
1010 	}
1011 	audit_log_format(ab, " ocomm=");
1012 	audit_log_untrustedstring(ab, comm);
1013 	audit_log_end(ab);
1014 
1015 	return rc;
1016 }
1017 
1018 /*
1019  * to_send and len_sent accounting are very loose estimates.  We aren't
1020  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021  * within about 500 bytes (next page boundary)
1022  *
1023  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024  * logging that a[%d]= was going to be 16 characters long we would be wasting
1025  * space in every audit message.  In one 7500 byte message we can log up to
1026  * about 1000 min size arguments.  That comes down to about 50% waste of space
1027  * if we didn't do the snprintf to find out how long arg_num_len was.
1028  */
1029 static int audit_log_single_execve_arg(struct audit_context *context,
1030 					struct audit_buffer **ab,
1031 					int arg_num,
1032 					size_t *len_sent,
1033 					const char __user *p,
1034 					char *buf)
1035 {
1036 	char arg_num_len_buf[12];
1037 	const char __user *tmp_p = p;
1038 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040 	size_t len, len_left, to_send;
1041 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 	unsigned int i, has_cntl = 0, too_long = 0;
1043 	int ret;
1044 
1045 	/* strnlen_user includes the null we don't want to send */
1046 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047 
1048 	/*
1049 	 * We just created this mm, if we can't find the strings
1050 	 * we just copied into it something is _very_ wrong. Similar
1051 	 * for strings that are too long, we should not have created
1052 	 * any.
1053 	 */
1054 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055 		WARN_ON(1);
1056 		send_sig(SIGKILL, current, 0);
1057 		return -1;
1058 	}
1059 
1060 	/* walk the whole argument looking for non-ascii chars */
1061 	do {
1062 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 			to_send = MAX_EXECVE_AUDIT_LEN;
1064 		else
1065 			to_send = len_left;
1066 		ret = copy_from_user(buf, tmp_p, to_send);
1067 		/*
1068 		 * There is no reason for this copy to be short. We just
1069 		 * copied them here, and the mm hasn't been exposed to user-
1070 		 * space yet.
1071 		 */
1072 		if (ret) {
1073 			WARN_ON(1);
1074 			send_sig(SIGKILL, current, 0);
1075 			return -1;
1076 		}
1077 		buf[to_send] = '\0';
1078 		has_cntl = audit_string_contains_control(buf, to_send);
1079 		if (has_cntl) {
1080 			/*
1081 			 * hex messages get logged as 2 bytes, so we can only
1082 			 * send half as much in each message
1083 			 */
1084 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085 			break;
1086 		}
1087 		len_left -= to_send;
1088 		tmp_p += to_send;
1089 	} while (len_left > 0);
1090 
1091 	len_left = len;
1092 
1093 	if (len > max_execve_audit_len)
1094 		too_long = 1;
1095 
1096 	/* rewalk the argument actually logging the message */
1097 	for (i = 0; len_left > 0; i++) {
1098 		int room_left;
1099 
1100 		if (len_left > max_execve_audit_len)
1101 			to_send = max_execve_audit_len;
1102 		else
1103 			to_send = len_left;
1104 
1105 		/* do we have space left to send this argument in this ab? */
1106 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 		if (has_cntl)
1108 			room_left -= (to_send * 2);
1109 		else
1110 			room_left -= to_send;
1111 		if (room_left < 0) {
1112 			*len_sent = 0;
1113 			audit_log_end(*ab);
1114 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 			if (!*ab)
1116 				return 0;
1117 		}
1118 
1119 		/*
1120 		 * first record needs to say how long the original string was
1121 		 * so we can be sure nothing was lost.
1122 		 */
1123 		if ((i == 0) && (too_long))
1124 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125 					 has_cntl ? 2*len : len);
1126 
1127 		/*
1128 		 * normally arguments are small enough to fit and we already
1129 		 * filled buf above when we checked for control characters
1130 		 * so don't bother with another copy_from_user
1131 		 */
1132 		if (len >= max_execve_audit_len)
1133 			ret = copy_from_user(buf, p, to_send);
1134 		else
1135 			ret = 0;
1136 		if (ret) {
1137 			WARN_ON(1);
1138 			send_sig(SIGKILL, current, 0);
1139 			return -1;
1140 		}
1141 		buf[to_send] = '\0';
1142 
1143 		/* actually log it */
1144 		audit_log_format(*ab, " a%d", arg_num);
1145 		if (too_long)
1146 			audit_log_format(*ab, "[%d]", i);
1147 		audit_log_format(*ab, "=");
1148 		if (has_cntl)
1149 			audit_log_n_hex(*ab, buf, to_send);
1150 		else
1151 			audit_log_string(*ab, buf);
1152 
1153 		p += to_send;
1154 		len_left -= to_send;
1155 		*len_sent += arg_num_len;
1156 		if (has_cntl)
1157 			*len_sent += to_send * 2;
1158 		else
1159 			*len_sent += to_send;
1160 	}
1161 	/* include the null we didn't log */
1162 	return len + 1;
1163 }
1164 
1165 static void audit_log_execve_info(struct audit_context *context,
1166 				  struct audit_buffer **ab,
1167 				  struct audit_aux_data_execve *axi)
1168 {
1169 	int i;
1170 	size_t len, len_sent = 0;
1171 	const char __user *p;
1172 	char *buf;
1173 
1174 	if (axi->mm != current->mm)
1175 		return; /* execve failed, no additional info */
1176 
1177 	p = (const char __user *)axi->mm->arg_start;
1178 
1179 	audit_log_format(*ab, "argc=%d", axi->argc);
1180 
1181 	/*
1182 	 * we need some kernel buffer to hold the userspace args.  Just
1183 	 * allocate one big one rather than allocating one of the right size
1184 	 * for every single argument inside audit_log_single_execve_arg()
1185 	 * should be <8k allocation so should be pretty safe.
1186 	 */
1187 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188 	if (!buf) {
1189 		audit_panic("out of memory for argv string\n");
1190 		return;
1191 	}
1192 
1193 	for (i = 0; i < axi->argc; i++) {
1194 		len = audit_log_single_execve_arg(context, ab, i,
1195 						  &len_sent, p, buf);
1196 		if (len <= 0)
1197 			break;
1198 		p += len;
1199 	}
1200 	kfree(buf);
1201 }
1202 
1203 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204 {
1205 	int i;
1206 
1207 	audit_log_format(ab, " %s=", prefix);
1208 	CAP_FOR_EACH_U32(i) {
1209 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210 	}
1211 }
1212 
1213 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214 {
1215 	kernel_cap_t *perm = &name->fcap.permitted;
1216 	kernel_cap_t *inh = &name->fcap.inheritable;
1217 	int log = 0;
1218 
1219 	if (!cap_isclear(*perm)) {
1220 		audit_log_cap(ab, "cap_fp", perm);
1221 		log = 1;
1222 	}
1223 	if (!cap_isclear(*inh)) {
1224 		audit_log_cap(ab, "cap_fi", inh);
1225 		log = 1;
1226 	}
1227 
1228 	if (log)
1229 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230 }
1231 
1232 static void show_special(struct audit_context *context, int *call_panic)
1233 {
1234 	struct audit_buffer *ab;
1235 	int i;
1236 
1237 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1238 	if (!ab)
1239 		return;
1240 
1241 	switch (context->type) {
1242 	case AUDIT_SOCKETCALL: {
1243 		int nargs = context->socketcall.nargs;
1244 		audit_log_format(ab, "nargs=%d", nargs);
1245 		for (i = 0; i < nargs; i++)
1246 			audit_log_format(ab, " a%d=%lx", i,
1247 				context->socketcall.args[i]);
1248 		break; }
1249 	case AUDIT_IPC: {
1250 		u32 osid = context->ipc.osid;
1251 
1252 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253 			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254 		if (osid) {
1255 			char *ctx = NULL;
1256 			u32 len;
1257 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1258 				audit_log_format(ab, " osid=%u", osid);
1259 				*call_panic = 1;
1260 			} else {
1261 				audit_log_format(ab, " obj=%s", ctx);
1262 				security_release_secctx(ctx, len);
1263 			}
1264 		}
1265 		if (context->ipc.has_perm) {
1266 			audit_log_end(ab);
1267 			ab = audit_log_start(context, GFP_KERNEL,
1268 					     AUDIT_IPC_SET_PERM);
1269 			audit_log_format(ab,
1270 				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271 				context->ipc.qbytes,
1272 				context->ipc.perm_uid,
1273 				context->ipc.perm_gid,
1274 				context->ipc.perm_mode);
1275 			if (!ab)
1276 				return;
1277 		}
1278 		break; }
1279 	case AUDIT_MQ_OPEN: {
1280 		audit_log_format(ab,
1281 			"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282 			"mq_msgsize=%ld mq_curmsgs=%ld",
1283 			context->mq_open.oflag, context->mq_open.mode,
1284 			context->mq_open.attr.mq_flags,
1285 			context->mq_open.attr.mq_maxmsg,
1286 			context->mq_open.attr.mq_msgsize,
1287 			context->mq_open.attr.mq_curmsgs);
1288 		break; }
1289 	case AUDIT_MQ_SENDRECV: {
1290 		audit_log_format(ab,
1291 			"mqdes=%d msg_len=%zd msg_prio=%u "
1292 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293 			context->mq_sendrecv.mqdes,
1294 			context->mq_sendrecv.msg_len,
1295 			context->mq_sendrecv.msg_prio,
1296 			context->mq_sendrecv.abs_timeout.tv_sec,
1297 			context->mq_sendrecv.abs_timeout.tv_nsec);
1298 		break; }
1299 	case AUDIT_MQ_NOTIFY: {
1300 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301 				context->mq_notify.mqdes,
1302 				context->mq_notify.sigev_signo);
1303 		break; }
1304 	case AUDIT_MQ_GETSETATTR: {
1305 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306 		audit_log_format(ab,
1307 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308 			"mq_curmsgs=%ld ",
1309 			context->mq_getsetattr.mqdes,
1310 			attr->mq_flags, attr->mq_maxmsg,
1311 			attr->mq_msgsize, attr->mq_curmsgs);
1312 		break; }
1313 	case AUDIT_CAPSET: {
1314 		audit_log_format(ab, "pid=%d", context->capset.pid);
1315 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318 		break; }
1319 	case AUDIT_MMAP: {
1320 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321 				 context->mmap.flags);
1322 		break; }
1323 	}
1324 	audit_log_end(ab);
1325 }
1326 
1327 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328 {
1329 	const struct cred *cred;
1330 	int i, call_panic = 0;
1331 	struct audit_buffer *ab;
1332 	struct audit_aux_data *aux;
1333 	const char *tty;
1334 
1335 	/* tsk == current */
1336 	context->pid = tsk->pid;
1337 	if (!context->ppid)
1338 		context->ppid = sys_getppid();
1339 	cred = current_cred();
1340 	context->uid   = cred->uid;
1341 	context->gid   = cred->gid;
1342 	context->euid  = cred->euid;
1343 	context->suid  = cred->suid;
1344 	context->fsuid = cred->fsuid;
1345 	context->egid  = cred->egid;
1346 	context->sgid  = cred->sgid;
1347 	context->fsgid = cred->fsgid;
1348 	context->personality = tsk->personality;
1349 
1350 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351 	if (!ab)
1352 		return;		/* audit_panic has been called */
1353 	audit_log_format(ab, "arch=%x syscall=%d",
1354 			 context->arch, context->major);
1355 	if (context->personality != PER_LINUX)
1356 		audit_log_format(ab, " per=%lx", context->personality);
1357 	if (context->return_valid)
1358 		audit_log_format(ab, " success=%s exit=%ld",
1359 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 				 context->return_code);
1361 
1362 	spin_lock_irq(&tsk->sighand->siglock);
1363 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364 		tty = tsk->signal->tty->name;
1365 	else
1366 		tty = "(none)";
1367 	spin_unlock_irq(&tsk->sighand->siglock);
1368 
1369 	audit_log_format(ab,
1370 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372 		  " euid=%u suid=%u fsuid=%u"
1373 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374 		  context->argv[0],
1375 		  context->argv[1],
1376 		  context->argv[2],
1377 		  context->argv[3],
1378 		  context->name_count,
1379 		  context->ppid,
1380 		  context->pid,
1381 		  tsk->loginuid,
1382 		  context->uid,
1383 		  context->gid,
1384 		  context->euid, context->suid, context->fsuid,
1385 		  context->egid, context->sgid, context->fsgid, tty,
1386 		  tsk->sessionid);
1387 
1388 
1389 	audit_log_task_info(ab, tsk);
1390 	audit_log_key(ab, context->filterkey);
1391 	audit_log_end(ab);
1392 
1393 	for (aux = context->aux; aux; aux = aux->next) {
1394 
1395 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396 		if (!ab)
1397 			continue; /* audit_panic has been called */
1398 
1399 		switch (aux->type) {
1400 
1401 		case AUDIT_EXECVE: {
1402 			struct audit_aux_data_execve *axi = (void *)aux;
1403 			audit_log_execve_info(context, &ab, axi);
1404 			break; }
1405 
1406 		case AUDIT_BPRM_FCAPS: {
1407 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418 			break; }
1419 
1420 		}
1421 		audit_log_end(ab);
1422 	}
1423 
1424 	if (context->type)
1425 		show_special(context, &call_panic);
1426 
1427 	if (context->fds[0] >= 0) {
1428 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429 		if (ab) {
1430 			audit_log_format(ab, "fd0=%d fd1=%d",
1431 					context->fds[0], context->fds[1]);
1432 			audit_log_end(ab);
1433 		}
1434 	}
1435 
1436 	if (context->sockaddr_len) {
1437 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438 		if (ab) {
1439 			audit_log_format(ab, "saddr=");
1440 			audit_log_n_hex(ab, (void *)context->sockaddr,
1441 					context->sockaddr_len);
1442 			audit_log_end(ab);
1443 		}
1444 	}
1445 
1446 	for (aux = context->aux_pids; aux; aux = aux->next) {
1447 		struct audit_aux_data_pids *axs = (void *)aux;
1448 
1449 		for (i = 0; i < axs->pid_count; i++)
1450 			if (audit_log_pid_context(context, axs->target_pid[i],
1451 						  axs->target_auid[i],
1452 						  axs->target_uid[i],
1453 						  axs->target_sessionid[i],
1454 						  axs->target_sid[i],
1455 						  axs->target_comm[i]))
1456 				call_panic = 1;
1457 	}
1458 
1459 	if (context->target_pid &&
1460 	    audit_log_pid_context(context, context->target_pid,
1461 				  context->target_auid, context->target_uid,
1462 				  context->target_sessionid,
1463 				  context->target_sid, context->target_comm))
1464 			call_panic = 1;
1465 
1466 	if (context->pwd.dentry && context->pwd.mnt) {
1467 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468 		if (ab) {
1469 			audit_log_d_path(ab, "cwd=", &context->pwd);
1470 			audit_log_end(ab);
1471 		}
1472 	}
1473 	for (i = 0; i < context->name_count; i++) {
1474 		struct audit_names *n = &context->names[i];
1475 
1476 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477 		if (!ab)
1478 			continue; /* audit_panic has been called */
1479 
1480 		audit_log_format(ab, "item=%d", i);
1481 
1482 		if (n->name) {
1483 			switch(n->name_len) {
1484 			case AUDIT_NAME_FULL:
1485 				/* log the full path */
1486 				audit_log_format(ab, " name=");
1487 				audit_log_untrustedstring(ab, n->name);
1488 				break;
1489 			case 0:
1490 				/* name was specified as a relative path and the
1491 				 * directory component is the cwd */
1492 				audit_log_d_path(ab, "name=", &context->pwd);
1493 				break;
1494 			default:
1495 				/* log the name's directory component */
1496 				audit_log_format(ab, " name=");
1497 				audit_log_n_untrustedstring(ab, n->name,
1498 							    n->name_len);
1499 			}
1500 		} else
1501 			audit_log_format(ab, " name=(null)");
1502 
1503 		if (n->ino != (unsigned long)-1) {
1504 			audit_log_format(ab, " inode=%lu"
1505 					 " dev=%02x:%02x mode=%#o"
1506 					 " ouid=%u ogid=%u rdev=%02x:%02x",
1507 					 n->ino,
1508 					 MAJOR(n->dev),
1509 					 MINOR(n->dev),
1510 					 n->mode,
1511 					 n->uid,
1512 					 n->gid,
1513 					 MAJOR(n->rdev),
1514 					 MINOR(n->rdev));
1515 		}
1516 		if (n->osid != 0) {
1517 			char *ctx = NULL;
1518 			u32 len;
1519 			if (security_secid_to_secctx(
1520 				n->osid, &ctx, &len)) {
1521 				audit_log_format(ab, " osid=%u", n->osid);
1522 				call_panic = 2;
1523 			} else {
1524 				audit_log_format(ab, " obj=%s", ctx);
1525 				security_release_secctx(ctx, len);
1526 			}
1527 		}
1528 
1529 		audit_log_fcaps(ab, n);
1530 
1531 		audit_log_end(ab);
1532 	}
1533 
1534 	/* Send end of event record to help user space know we are finished */
1535 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536 	if (ab)
1537 		audit_log_end(ab);
1538 	if (call_panic)
1539 		audit_panic("error converting sid to string");
1540 }
1541 
1542 /**
1543  * audit_free - free a per-task audit context
1544  * @tsk: task whose audit context block to free
1545  *
1546  * Called from copy_process and do_exit
1547  */
1548 void audit_free(struct task_struct *tsk)
1549 {
1550 	struct audit_context *context;
1551 
1552 	context = audit_get_context(tsk, 0, 0);
1553 	if (likely(!context))
1554 		return;
1555 
1556 	/* Check for system calls that do not go through the exit
1557 	 * function (e.g., exit_group), then free context block.
1558 	 * We use GFP_ATOMIC here because we might be doing this
1559 	 * in the context of the idle thread */
1560 	/* that can happen only if we are called from do_exit() */
1561 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562 		audit_log_exit(context, tsk);
1563 	if (!list_empty(&context->killed_trees))
1564 		audit_kill_trees(&context->killed_trees);
1565 
1566 	audit_free_context(context);
1567 }
1568 
1569 /**
1570  * audit_syscall_entry - fill in an audit record at syscall entry
1571  * @arch: architecture type
1572  * @major: major syscall type (function)
1573  * @a1: additional syscall register 1
1574  * @a2: additional syscall register 2
1575  * @a3: additional syscall register 3
1576  * @a4: additional syscall register 4
1577  *
1578  * Fill in audit context at syscall entry.  This only happens if the
1579  * audit context was created when the task was created and the state or
1580  * filters demand the audit context be built.  If the state from the
1581  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582  * then the record will be written at syscall exit time (otherwise, it
1583  * will only be written if another part of the kernel requests that it
1584  * be written).
1585  */
1586 void audit_syscall_entry(int arch, int major,
1587 			 unsigned long a1, unsigned long a2,
1588 			 unsigned long a3, unsigned long a4)
1589 {
1590 	struct task_struct *tsk = current;
1591 	struct audit_context *context = tsk->audit_context;
1592 	enum audit_state     state;
1593 
1594 	if (unlikely(!context))
1595 		return;
1596 
1597 	/*
1598 	 * This happens only on certain architectures that make system
1599 	 * calls in kernel_thread via the entry.S interface, instead of
1600 	 * with direct calls.  (If you are porting to a new
1601 	 * architecture, hitting this condition can indicate that you
1602 	 * got the _exit/_leave calls backward in entry.S.)
1603 	 *
1604 	 * i386     no
1605 	 * x86_64   no
1606 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1607 	 *
1608 	 * This also happens with vm86 emulation in a non-nested manner
1609 	 * (entries without exits), so this case must be caught.
1610 	 */
1611 	if (context->in_syscall) {
1612 		struct audit_context *newctx;
1613 
1614 #if AUDIT_DEBUG
1615 		printk(KERN_ERR
1616 		       "audit(:%d) pid=%d in syscall=%d;"
1617 		       " entering syscall=%d\n",
1618 		       context->serial, tsk->pid, context->major, major);
1619 #endif
1620 		newctx = audit_alloc_context(context->state);
1621 		if (newctx) {
1622 			newctx->previous   = context;
1623 			context		   = newctx;
1624 			tsk->audit_context = newctx;
1625 		} else	{
1626 			/* If we can't alloc a new context, the best we
1627 			 * can do is to leak memory (any pending putname
1628 			 * will be lost).  The only other alternative is
1629 			 * to abandon auditing. */
1630 			audit_zero_context(context, context->state);
1631 		}
1632 	}
1633 	BUG_ON(context->in_syscall || context->name_count);
1634 
1635 	if (!audit_enabled)
1636 		return;
1637 
1638 	context->arch	    = arch;
1639 	context->major      = major;
1640 	context->argv[0]    = a1;
1641 	context->argv[1]    = a2;
1642 	context->argv[2]    = a3;
1643 	context->argv[3]    = a4;
1644 
1645 	state = context->state;
1646 	context->dummy = !audit_n_rules;
1647 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648 		context->prio = 0;
1649 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650 	}
1651 	if (likely(state == AUDIT_DISABLED))
1652 		return;
1653 
1654 	context->serial     = 0;
1655 	context->ctime      = CURRENT_TIME;
1656 	context->in_syscall = 1;
1657 	context->current_state  = state;
1658 	context->ppid       = 0;
1659 }
1660 
1661 void audit_finish_fork(struct task_struct *child)
1662 {
1663 	struct audit_context *ctx = current->audit_context;
1664 	struct audit_context *p = child->audit_context;
1665 	if (!p || !ctx)
1666 		return;
1667 	if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668 		return;
1669 	p->arch = ctx->arch;
1670 	p->major = ctx->major;
1671 	memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672 	p->ctime = ctx->ctime;
1673 	p->dummy = ctx->dummy;
1674 	p->in_syscall = ctx->in_syscall;
1675 	p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676 	p->ppid = current->pid;
1677 	p->prio = ctx->prio;
1678 	p->current_state = ctx->current_state;
1679 }
1680 
1681 /**
1682  * audit_syscall_exit - deallocate audit context after a system call
1683  * @valid: success/failure flag
1684  * @return_code: syscall return value
1685  *
1686  * Tear down after system call.  If the audit context has been marked as
1687  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688  * filtering, or because some other part of the kernel write an audit
1689  * message), then write out the syscall information.  In call cases,
1690  * free the names stored from getname().
1691  */
1692 void audit_syscall_exit(int valid, long return_code)
1693 {
1694 	struct task_struct *tsk = current;
1695 	struct audit_context *context;
1696 
1697 	context = audit_get_context(tsk, valid, return_code);
1698 
1699 	if (likely(!context))
1700 		return;
1701 
1702 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703 		audit_log_exit(context, tsk);
1704 
1705 	context->in_syscall = 0;
1706 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707 
1708 	if (!list_empty(&context->killed_trees))
1709 		audit_kill_trees(&context->killed_trees);
1710 
1711 	if (context->previous) {
1712 		struct audit_context *new_context = context->previous;
1713 		context->previous  = NULL;
1714 		audit_free_context(context);
1715 		tsk->audit_context = new_context;
1716 	} else {
1717 		audit_free_names(context);
1718 		unroll_tree_refs(context, NULL, 0);
1719 		audit_free_aux(context);
1720 		context->aux = NULL;
1721 		context->aux_pids = NULL;
1722 		context->target_pid = 0;
1723 		context->target_sid = 0;
1724 		context->sockaddr_len = 0;
1725 		context->type = 0;
1726 		context->fds[0] = -1;
1727 		if (context->state != AUDIT_RECORD_CONTEXT) {
1728 			kfree(context->filterkey);
1729 			context->filterkey = NULL;
1730 		}
1731 		tsk->audit_context = context;
1732 	}
1733 }
1734 
1735 static inline void handle_one(const struct inode *inode)
1736 {
1737 #ifdef CONFIG_AUDIT_TREE
1738 	struct audit_context *context;
1739 	struct audit_tree_refs *p;
1740 	struct audit_chunk *chunk;
1741 	int count;
1742 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743 		return;
1744 	context = current->audit_context;
1745 	p = context->trees;
1746 	count = context->tree_count;
1747 	rcu_read_lock();
1748 	chunk = audit_tree_lookup(inode);
1749 	rcu_read_unlock();
1750 	if (!chunk)
1751 		return;
1752 	if (likely(put_tree_ref(context, chunk)))
1753 		return;
1754 	if (unlikely(!grow_tree_refs(context))) {
1755 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756 		audit_set_auditable(context);
1757 		audit_put_chunk(chunk);
1758 		unroll_tree_refs(context, p, count);
1759 		return;
1760 	}
1761 	put_tree_ref(context, chunk);
1762 #endif
1763 }
1764 
1765 static void handle_path(const struct dentry *dentry)
1766 {
1767 #ifdef CONFIG_AUDIT_TREE
1768 	struct audit_context *context;
1769 	struct audit_tree_refs *p;
1770 	const struct dentry *d, *parent;
1771 	struct audit_chunk *drop;
1772 	unsigned long seq;
1773 	int count;
1774 
1775 	context = current->audit_context;
1776 	p = context->trees;
1777 	count = context->tree_count;
1778 retry:
1779 	drop = NULL;
1780 	d = dentry;
1781 	rcu_read_lock();
1782 	seq = read_seqbegin(&rename_lock);
1783 	for(;;) {
1784 		struct inode *inode = d->d_inode;
1785 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786 			struct audit_chunk *chunk;
1787 			chunk = audit_tree_lookup(inode);
1788 			if (chunk) {
1789 				if (unlikely(!put_tree_ref(context, chunk))) {
1790 					drop = chunk;
1791 					break;
1792 				}
1793 			}
1794 		}
1795 		parent = d->d_parent;
1796 		if (parent == d)
1797 			break;
1798 		d = parent;
1799 	}
1800 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1801 		rcu_read_unlock();
1802 		if (!drop) {
1803 			/* just a race with rename */
1804 			unroll_tree_refs(context, p, count);
1805 			goto retry;
1806 		}
1807 		audit_put_chunk(drop);
1808 		if (grow_tree_refs(context)) {
1809 			/* OK, got more space */
1810 			unroll_tree_refs(context, p, count);
1811 			goto retry;
1812 		}
1813 		/* too bad */
1814 		printk(KERN_WARNING
1815 			"out of memory, audit has lost a tree reference\n");
1816 		unroll_tree_refs(context, p, count);
1817 		audit_set_auditable(context);
1818 		return;
1819 	}
1820 	rcu_read_unlock();
1821 #endif
1822 }
1823 
1824 /**
1825  * audit_getname - add a name to the list
1826  * @name: name to add
1827  *
1828  * Add a name to the list of audit names for this context.
1829  * Called from fs/namei.c:getname().
1830  */
1831 void __audit_getname(const char *name)
1832 {
1833 	struct audit_context *context = current->audit_context;
1834 
1835 	if (IS_ERR(name) || !name)
1836 		return;
1837 
1838 	if (!context->in_syscall) {
1839 #if AUDIT_DEBUG == 2
1840 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841 		       __FILE__, __LINE__, context->serial, name);
1842 		dump_stack();
1843 #endif
1844 		return;
1845 	}
1846 	BUG_ON(context->name_count >= AUDIT_NAMES);
1847 	context->names[context->name_count].name = name;
1848 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849 	context->names[context->name_count].name_put = 1;
1850 	context->names[context->name_count].ino  = (unsigned long)-1;
1851 	context->names[context->name_count].osid = 0;
1852 	++context->name_count;
1853 	if (!context->pwd.dentry)
1854 		get_fs_pwd(current->fs, &context->pwd);
1855 }
1856 
1857 /* audit_putname - intercept a putname request
1858  * @name: name to intercept and delay for putname
1859  *
1860  * If we have stored the name from getname in the audit context,
1861  * then we delay the putname until syscall exit.
1862  * Called from include/linux/fs.h:putname().
1863  */
1864 void audit_putname(const char *name)
1865 {
1866 	struct audit_context *context = current->audit_context;
1867 
1868 	BUG_ON(!context);
1869 	if (!context->in_syscall) {
1870 #if AUDIT_DEBUG == 2
1871 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872 		       __FILE__, __LINE__, context->serial, name);
1873 		if (context->name_count) {
1874 			int i;
1875 			for (i = 0; i < context->name_count; i++)
1876 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877 				       context->names[i].name,
1878 				       context->names[i].name ?: "(null)");
1879 		}
1880 #endif
1881 		__putname(name);
1882 	}
1883 #if AUDIT_DEBUG
1884 	else {
1885 		++context->put_count;
1886 		if (context->put_count > context->name_count) {
1887 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1888 			       " in_syscall=%d putname(%p) name_count=%d"
1889 			       " put_count=%d\n",
1890 			       __FILE__, __LINE__,
1891 			       context->serial, context->major,
1892 			       context->in_syscall, name, context->name_count,
1893 			       context->put_count);
1894 			dump_stack();
1895 		}
1896 	}
1897 #endif
1898 }
1899 
1900 static int audit_inc_name_count(struct audit_context *context,
1901 				const struct inode *inode)
1902 {
1903 	if (context->name_count >= AUDIT_NAMES) {
1904 		if (inode)
1905 			printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906 			       "dev=%02x:%02x, inode=%lu\n",
1907 			       MAJOR(inode->i_sb->s_dev),
1908 			       MINOR(inode->i_sb->s_dev),
1909 			       inode->i_ino);
1910 
1911 		else
1912 			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913 		return 1;
1914 	}
1915 	context->name_count++;
1916 #if AUDIT_DEBUG
1917 	context->ino_count++;
1918 #endif
1919 	return 0;
1920 }
1921 
1922 
1923 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924 {
1925 	struct cpu_vfs_cap_data caps;
1926 	int rc;
1927 
1928 	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929 	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930 	name->fcap.fE = 0;
1931 	name->fcap_ver = 0;
1932 
1933 	if (!dentry)
1934 		return 0;
1935 
1936 	rc = get_vfs_caps_from_disk(dentry, &caps);
1937 	if (rc)
1938 		return rc;
1939 
1940 	name->fcap.permitted = caps.permitted;
1941 	name->fcap.inheritable = caps.inheritable;
1942 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944 
1945 	return 0;
1946 }
1947 
1948 
1949 /* Copy inode data into an audit_names. */
1950 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951 			     const struct inode *inode)
1952 {
1953 	name->ino   = inode->i_ino;
1954 	name->dev   = inode->i_sb->s_dev;
1955 	name->mode  = inode->i_mode;
1956 	name->uid   = inode->i_uid;
1957 	name->gid   = inode->i_gid;
1958 	name->rdev  = inode->i_rdev;
1959 	security_inode_getsecid(inode, &name->osid);
1960 	audit_copy_fcaps(name, dentry);
1961 }
1962 
1963 /**
1964  * audit_inode - store the inode and device from a lookup
1965  * @name: name being audited
1966  * @dentry: dentry being audited
1967  *
1968  * Called from fs/namei.c:path_lookup().
1969  */
1970 void __audit_inode(const char *name, const struct dentry *dentry)
1971 {
1972 	int idx;
1973 	struct audit_context *context = current->audit_context;
1974 	const struct inode *inode = dentry->d_inode;
1975 
1976 	if (!context->in_syscall)
1977 		return;
1978 	if (context->name_count
1979 	    && context->names[context->name_count-1].name
1980 	    && context->names[context->name_count-1].name == name)
1981 		idx = context->name_count - 1;
1982 	else if (context->name_count > 1
1983 		 && context->names[context->name_count-2].name
1984 		 && context->names[context->name_count-2].name == name)
1985 		idx = context->name_count - 2;
1986 	else {
1987 		/* FIXME: how much do we care about inodes that have no
1988 		 * associated name? */
1989 		if (audit_inc_name_count(context, inode))
1990 			return;
1991 		idx = context->name_count - 1;
1992 		context->names[idx].name = NULL;
1993 	}
1994 	handle_path(dentry);
1995 	audit_copy_inode(&context->names[idx], dentry, inode);
1996 }
1997 
1998 /**
1999  * audit_inode_child - collect inode info for created/removed objects
2000  * @dentry: dentry being audited
2001  * @parent: inode of dentry parent
2002  *
2003  * For syscalls that create or remove filesystem objects, audit_inode
2004  * can only collect information for the filesystem object's parent.
2005  * This call updates the audit context with the child's information.
2006  * Syscalls that create a new filesystem object must be hooked after
2007  * the object is created.  Syscalls that remove a filesystem object
2008  * must be hooked prior, in order to capture the target inode during
2009  * unsuccessful attempts.
2010  */
2011 void __audit_inode_child(const struct dentry *dentry,
2012 			 const struct inode *parent)
2013 {
2014 	int idx;
2015 	struct audit_context *context = current->audit_context;
2016 	const char *found_parent = NULL, *found_child = NULL;
2017 	const struct inode *inode = dentry->d_inode;
2018 	const char *dname = dentry->d_name.name;
2019 	int dirlen = 0;
2020 
2021 	if (!context->in_syscall)
2022 		return;
2023 
2024 	if (inode)
2025 		handle_one(inode);
2026 
2027 	/* parent is more likely, look for it first */
2028 	for (idx = 0; idx < context->name_count; idx++) {
2029 		struct audit_names *n = &context->names[idx];
2030 
2031 		if (!n->name)
2032 			continue;
2033 
2034 		if (n->ino == parent->i_ino &&
2035 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036 			n->name_len = dirlen; /* update parent data in place */
2037 			found_parent = n->name;
2038 			goto add_names;
2039 		}
2040 	}
2041 
2042 	/* no matching parent, look for matching child */
2043 	for (idx = 0; idx < context->name_count; idx++) {
2044 		struct audit_names *n = &context->names[idx];
2045 
2046 		if (!n->name)
2047 			continue;
2048 
2049 		/* strcmp() is the more likely scenario */
2050 		if (!strcmp(dname, n->name) ||
2051 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052 			if (inode)
2053 				audit_copy_inode(n, NULL, inode);
2054 			else
2055 				n->ino = (unsigned long)-1;
2056 			found_child = n->name;
2057 			goto add_names;
2058 		}
2059 	}
2060 
2061 add_names:
2062 	if (!found_parent) {
2063 		if (audit_inc_name_count(context, parent))
2064 			return;
2065 		idx = context->name_count - 1;
2066 		context->names[idx].name = NULL;
2067 		audit_copy_inode(&context->names[idx], NULL, parent);
2068 	}
2069 
2070 	if (!found_child) {
2071 		if (audit_inc_name_count(context, inode))
2072 			return;
2073 		idx = context->name_count - 1;
2074 
2075 		/* Re-use the name belonging to the slot for a matching parent
2076 		 * directory. All names for this context are relinquished in
2077 		 * audit_free_names() */
2078 		if (found_parent) {
2079 			context->names[idx].name = found_parent;
2080 			context->names[idx].name_len = AUDIT_NAME_FULL;
2081 			/* don't call __putname() */
2082 			context->names[idx].name_put = 0;
2083 		} else {
2084 			context->names[idx].name = NULL;
2085 		}
2086 
2087 		if (inode)
2088 			audit_copy_inode(&context->names[idx], NULL, inode);
2089 		else
2090 			context->names[idx].ino = (unsigned long)-1;
2091 	}
2092 }
2093 EXPORT_SYMBOL_GPL(__audit_inode_child);
2094 
2095 /**
2096  * auditsc_get_stamp - get local copies of audit_context values
2097  * @ctx: audit_context for the task
2098  * @t: timespec to store time recorded in the audit_context
2099  * @serial: serial value that is recorded in the audit_context
2100  *
2101  * Also sets the context as auditable.
2102  */
2103 int auditsc_get_stamp(struct audit_context *ctx,
2104 		       struct timespec *t, unsigned int *serial)
2105 {
2106 	if (!ctx->in_syscall)
2107 		return 0;
2108 	if (!ctx->serial)
2109 		ctx->serial = audit_serial();
2110 	t->tv_sec  = ctx->ctime.tv_sec;
2111 	t->tv_nsec = ctx->ctime.tv_nsec;
2112 	*serial    = ctx->serial;
2113 	if (!ctx->prio) {
2114 		ctx->prio = 1;
2115 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2116 	}
2117 	return 1;
2118 }
2119 
2120 /* global counter which is incremented every time something logs in */
2121 static atomic_t session_id = ATOMIC_INIT(0);
2122 
2123 /**
2124  * audit_set_loginuid - set a task's audit_context loginuid
2125  * @task: task whose audit context is being modified
2126  * @loginuid: loginuid value
2127  *
2128  * Returns 0.
2129  *
2130  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131  */
2132 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133 {
2134 	unsigned int sessionid = atomic_inc_return(&session_id);
2135 	struct audit_context *context = task->audit_context;
2136 
2137 	if (context && context->in_syscall) {
2138 		struct audit_buffer *ab;
2139 
2140 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141 		if (ab) {
2142 			audit_log_format(ab, "login pid=%d uid=%u "
2143 				"old auid=%u new auid=%u"
2144 				" old ses=%u new ses=%u",
2145 				task->pid, task_uid(task),
2146 				task->loginuid, loginuid,
2147 				task->sessionid, sessionid);
2148 			audit_log_end(ab);
2149 		}
2150 	}
2151 	task->sessionid = sessionid;
2152 	task->loginuid = loginuid;
2153 	return 0;
2154 }
2155 
2156 /**
2157  * __audit_mq_open - record audit data for a POSIX MQ open
2158  * @oflag: open flag
2159  * @mode: mode bits
2160  * @attr: queue attributes
2161  *
2162  */
2163 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164 {
2165 	struct audit_context *context = current->audit_context;
2166 
2167 	if (attr)
2168 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169 	else
2170 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171 
2172 	context->mq_open.oflag = oflag;
2173 	context->mq_open.mode = mode;
2174 
2175 	context->type = AUDIT_MQ_OPEN;
2176 }
2177 
2178 /**
2179  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180  * @mqdes: MQ descriptor
2181  * @msg_len: Message length
2182  * @msg_prio: Message priority
2183  * @abs_timeout: Message timeout in absolute time
2184  *
2185  */
2186 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187 			const struct timespec *abs_timeout)
2188 {
2189 	struct audit_context *context = current->audit_context;
2190 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191 
2192 	if (abs_timeout)
2193 		memcpy(p, abs_timeout, sizeof(struct timespec));
2194 	else
2195 		memset(p, 0, sizeof(struct timespec));
2196 
2197 	context->mq_sendrecv.mqdes = mqdes;
2198 	context->mq_sendrecv.msg_len = msg_len;
2199 	context->mq_sendrecv.msg_prio = msg_prio;
2200 
2201 	context->type = AUDIT_MQ_SENDRECV;
2202 }
2203 
2204 /**
2205  * __audit_mq_notify - record audit data for a POSIX MQ notify
2206  * @mqdes: MQ descriptor
2207  * @notification: Notification event
2208  *
2209  */
2210 
2211 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212 {
2213 	struct audit_context *context = current->audit_context;
2214 
2215 	if (notification)
2216 		context->mq_notify.sigev_signo = notification->sigev_signo;
2217 	else
2218 		context->mq_notify.sigev_signo = 0;
2219 
2220 	context->mq_notify.mqdes = mqdes;
2221 	context->type = AUDIT_MQ_NOTIFY;
2222 }
2223 
2224 /**
2225  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226  * @mqdes: MQ descriptor
2227  * @mqstat: MQ flags
2228  *
2229  */
2230 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231 {
2232 	struct audit_context *context = current->audit_context;
2233 	context->mq_getsetattr.mqdes = mqdes;
2234 	context->mq_getsetattr.mqstat = *mqstat;
2235 	context->type = AUDIT_MQ_GETSETATTR;
2236 }
2237 
2238 /**
2239  * audit_ipc_obj - record audit data for ipc object
2240  * @ipcp: ipc permissions
2241  *
2242  */
2243 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244 {
2245 	struct audit_context *context = current->audit_context;
2246 	context->ipc.uid = ipcp->uid;
2247 	context->ipc.gid = ipcp->gid;
2248 	context->ipc.mode = ipcp->mode;
2249 	context->ipc.has_perm = 0;
2250 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2251 	context->type = AUDIT_IPC;
2252 }
2253 
2254 /**
2255  * audit_ipc_set_perm - record audit data for new ipc permissions
2256  * @qbytes: msgq bytes
2257  * @uid: msgq user id
2258  * @gid: msgq group id
2259  * @mode: msgq mode (permissions)
2260  *
2261  * Called only after audit_ipc_obj().
2262  */
2263 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264 {
2265 	struct audit_context *context = current->audit_context;
2266 
2267 	context->ipc.qbytes = qbytes;
2268 	context->ipc.perm_uid = uid;
2269 	context->ipc.perm_gid = gid;
2270 	context->ipc.perm_mode = mode;
2271 	context->ipc.has_perm = 1;
2272 }
2273 
2274 int audit_bprm(struct linux_binprm *bprm)
2275 {
2276 	struct audit_aux_data_execve *ax;
2277 	struct audit_context *context = current->audit_context;
2278 
2279 	if (likely(!audit_enabled || !context || context->dummy))
2280 		return 0;
2281 
2282 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283 	if (!ax)
2284 		return -ENOMEM;
2285 
2286 	ax->argc = bprm->argc;
2287 	ax->envc = bprm->envc;
2288 	ax->mm = bprm->mm;
2289 	ax->d.type = AUDIT_EXECVE;
2290 	ax->d.next = context->aux;
2291 	context->aux = (void *)ax;
2292 	return 0;
2293 }
2294 
2295 
2296 /**
2297  * audit_socketcall - record audit data for sys_socketcall
2298  * @nargs: number of args
2299  * @args: args array
2300  *
2301  */
2302 void audit_socketcall(int nargs, unsigned long *args)
2303 {
2304 	struct audit_context *context = current->audit_context;
2305 
2306 	if (likely(!context || context->dummy))
2307 		return;
2308 
2309 	context->type = AUDIT_SOCKETCALL;
2310 	context->socketcall.nargs = nargs;
2311 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312 }
2313 
2314 /**
2315  * __audit_fd_pair - record audit data for pipe and socketpair
2316  * @fd1: the first file descriptor
2317  * @fd2: the second file descriptor
2318  *
2319  */
2320 void __audit_fd_pair(int fd1, int fd2)
2321 {
2322 	struct audit_context *context = current->audit_context;
2323 	context->fds[0] = fd1;
2324 	context->fds[1] = fd2;
2325 }
2326 
2327 /**
2328  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329  * @len: data length in user space
2330  * @a: data address in kernel space
2331  *
2332  * Returns 0 for success or NULL context or < 0 on error.
2333  */
2334 int audit_sockaddr(int len, void *a)
2335 {
2336 	struct audit_context *context = current->audit_context;
2337 
2338 	if (likely(!context || context->dummy))
2339 		return 0;
2340 
2341 	if (!context->sockaddr) {
2342 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343 		if (!p)
2344 			return -ENOMEM;
2345 		context->sockaddr = p;
2346 	}
2347 
2348 	context->sockaddr_len = len;
2349 	memcpy(context->sockaddr, a, len);
2350 	return 0;
2351 }
2352 
2353 void __audit_ptrace(struct task_struct *t)
2354 {
2355 	struct audit_context *context = current->audit_context;
2356 
2357 	context->target_pid = t->pid;
2358 	context->target_auid = audit_get_loginuid(t);
2359 	context->target_uid = task_uid(t);
2360 	context->target_sessionid = audit_get_sessionid(t);
2361 	security_task_getsecid(t, &context->target_sid);
2362 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363 }
2364 
2365 /**
2366  * audit_signal_info - record signal info for shutting down audit subsystem
2367  * @sig: signal value
2368  * @t: task being signaled
2369  *
2370  * If the audit subsystem is being terminated, record the task (pid)
2371  * and uid that is doing that.
2372  */
2373 int __audit_signal_info(int sig, struct task_struct *t)
2374 {
2375 	struct audit_aux_data_pids *axp;
2376 	struct task_struct *tsk = current;
2377 	struct audit_context *ctx = tsk->audit_context;
2378 	uid_t uid = current_uid(), t_uid = task_uid(t);
2379 
2380 	if (audit_pid && t->tgid == audit_pid) {
2381 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382 			audit_sig_pid = tsk->pid;
2383 			if (tsk->loginuid != -1)
2384 				audit_sig_uid = tsk->loginuid;
2385 			else
2386 				audit_sig_uid = uid;
2387 			security_task_getsecid(tsk, &audit_sig_sid);
2388 		}
2389 		if (!audit_signals || audit_dummy_context())
2390 			return 0;
2391 	}
2392 
2393 	/* optimize the common case by putting first signal recipient directly
2394 	 * in audit_context */
2395 	if (!ctx->target_pid) {
2396 		ctx->target_pid = t->tgid;
2397 		ctx->target_auid = audit_get_loginuid(t);
2398 		ctx->target_uid = t_uid;
2399 		ctx->target_sessionid = audit_get_sessionid(t);
2400 		security_task_getsecid(t, &ctx->target_sid);
2401 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402 		return 0;
2403 	}
2404 
2405 	axp = (void *)ctx->aux_pids;
2406 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408 		if (!axp)
2409 			return -ENOMEM;
2410 
2411 		axp->d.type = AUDIT_OBJ_PID;
2412 		axp->d.next = ctx->aux_pids;
2413 		ctx->aux_pids = (void *)axp;
2414 	}
2415 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416 
2417 	axp->target_pid[axp->pid_count] = t->tgid;
2418 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419 	axp->target_uid[axp->pid_count] = t_uid;
2420 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423 	axp->pid_count++;
2424 
2425 	return 0;
2426 }
2427 
2428 /**
2429  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430  * @bprm: pointer to the bprm being processed
2431  * @new: the proposed new credentials
2432  * @old: the old credentials
2433  *
2434  * Simply check if the proc already has the caps given by the file and if not
2435  * store the priv escalation info for later auditing at the end of the syscall
2436  *
2437  * -Eric
2438  */
2439 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440 			   const struct cred *new, const struct cred *old)
2441 {
2442 	struct audit_aux_data_bprm_fcaps *ax;
2443 	struct audit_context *context = current->audit_context;
2444 	struct cpu_vfs_cap_data vcaps;
2445 	struct dentry *dentry;
2446 
2447 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448 	if (!ax)
2449 		return -ENOMEM;
2450 
2451 	ax->d.type = AUDIT_BPRM_FCAPS;
2452 	ax->d.next = context->aux;
2453 	context->aux = (void *)ax;
2454 
2455 	dentry = dget(bprm->file->f_dentry);
2456 	get_vfs_caps_from_disk(dentry, &vcaps);
2457 	dput(dentry);
2458 
2459 	ax->fcap.permitted = vcaps.permitted;
2460 	ax->fcap.inheritable = vcaps.inheritable;
2461 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463 
2464 	ax->old_pcap.permitted   = old->cap_permitted;
2465 	ax->old_pcap.inheritable = old->cap_inheritable;
2466 	ax->old_pcap.effective   = old->cap_effective;
2467 
2468 	ax->new_pcap.permitted   = new->cap_permitted;
2469 	ax->new_pcap.inheritable = new->cap_inheritable;
2470 	ax->new_pcap.effective   = new->cap_effective;
2471 	return 0;
2472 }
2473 
2474 /**
2475  * __audit_log_capset - store information about the arguments to the capset syscall
2476  * @pid: target pid of the capset call
2477  * @new: the new credentials
2478  * @old: the old (current) credentials
2479  *
2480  * Record the aguments userspace sent to sys_capset for later printing by the
2481  * audit system if applicable
2482  */
2483 void __audit_log_capset(pid_t pid,
2484 		       const struct cred *new, const struct cred *old)
2485 {
2486 	struct audit_context *context = current->audit_context;
2487 	context->capset.pid = pid;
2488 	context->capset.cap.effective   = new->cap_effective;
2489 	context->capset.cap.inheritable = new->cap_effective;
2490 	context->capset.cap.permitted   = new->cap_permitted;
2491 	context->type = AUDIT_CAPSET;
2492 }
2493 
2494 void __audit_mmap_fd(int fd, int flags)
2495 {
2496 	struct audit_context *context = current->audit_context;
2497 	context->mmap.fd = fd;
2498 	context->mmap.flags = flags;
2499 	context->type = AUDIT_MMAP;
2500 }
2501 
2502 /**
2503  * audit_core_dumps - record information about processes that end abnormally
2504  * @signr: signal value
2505  *
2506  * If a process ends with a core dump, something fishy is going on and we
2507  * should record the event for investigation.
2508  */
2509 void audit_core_dumps(long signr)
2510 {
2511 	struct audit_buffer *ab;
2512 	u32 sid;
2513 	uid_t auid = audit_get_loginuid(current), uid;
2514 	gid_t gid;
2515 	unsigned int sessionid = audit_get_sessionid(current);
2516 
2517 	if (!audit_enabled)
2518 		return;
2519 
2520 	if (signr == SIGQUIT)	/* don't care for those */
2521 		return;
2522 
2523 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524 	current_uid_gid(&uid, &gid);
2525 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526 			 auid, uid, gid, sessionid);
2527 	security_task_getsecid(current, &sid);
2528 	if (sid) {
2529 		char *ctx = NULL;
2530 		u32 len;
2531 
2532 		if (security_secid_to_secctx(sid, &ctx, &len))
2533 			audit_log_format(ab, " ssid=%u", sid);
2534 		else {
2535 			audit_log_format(ab, " subj=%s", ctx);
2536 			security_release_secctx(ctx, len);
2537 		}
2538 	}
2539 	audit_log_format(ab, " pid=%d comm=", current->pid);
2540 	audit_log_untrustedstring(ab, current->comm);
2541 	audit_log_format(ab, " sig=%ld", signr);
2542 	audit_log_end(ab);
2543 }
2544 
2545 struct list_head *audit_killed_trees(void)
2546 {
2547 	struct audit_context *ctx = current->audit_context;
2548 	if (likely(!ctx || !ctx->in_syscall))
2549 		return NULL;
2550 	return &ctx->killed_trees;
2551 }
2552