1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <linux/fsnotify_backend.h> 77 #include <uapi/linux/limits.h> 78 #include <uapi/linux/netfilter/nf_tables.h> 79 80 #include "audit.h" 81 82 /* flags stating the success for a syscall */ 83 #define AUDITSC_INVALID 0 84 #define AUDITSC_SUCCESS 1 85 #define AUDITSC_FAILURE 2 86 87 /* no execve audit message should be longer than this (userspace limits), 88 * see the note near the top of audit_log_execve_info() about this value */ 89 #define MAX_EXECVE_AUDIT_LEN 7500 90 91 /* max length to print of cmdline/proctitle value during audit */ 92 #define MAX_PROCTITLE_AUDIT_LEN 128 93 94 /* number of audit rules */ 95 int audit_n_rules; 96 97 /* determines whether we collect data for signals sent */ 98 int audit_signals; 99 100 struct audit_aux_data { 101 struct audit_aux_data *next; 102 int type; 103 }; 104 105 /* Number of target pids per aux struct. */ 106 #define AUDIT_AUX_PIDS 16 107 108 struct audit_aux_data_pids { 109 struct audit_aux_data d; 110 pid_t target_pid[AUDIT_AUX_PIDS]; 111 kuid_t target_auid[AUDIT_AUX_PIDS]; 112 kuid_t target_uid[AUDIT_AUX_PIDS]; 113 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 114 u32 target_sid[AUDIT_AUX_PIDS]; 115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 116 int pid_count; 117 }; 118 119 struct audit_aux_data_bprm_fcaps { 120 struct audit_aux_data d; 121 struct audit_cap_data fcap; 122 unsigned int fcap_ver; 123 struct audit_cap_data old_pcap; 124 struct audit_cap_data new_pcap; 125 }; 126 127 struct audit_tree_refs { 128 struct audit_tree_refs *next; 129 struct audit_chunk *c[31]; 130 }; 131 132 struct audit_nfcfgop_tab { 133 enum audit_nfcfgop op; 134 const char *s; 135 }; 136 137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 138 { AUDIT_XT_OP_REGISTER, "xt_register" }, 139 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 157 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 158 }; 159 160 static int audit_match_perm(struct audit_context *ctx, int mask) 161 { 162 unsigned n; 163 164 if (unlikely(!ctx)) 165 return 0; 166 n = ctx->major; 167 168 switch (audit_classify_syscall(ctx->arch, n)) { 169 case 0: /* native */ 170 if ((mask & AUDIT_PERM_WRITE) && 171 audit_match_class(AUDIT_CLASS_WRITE, n)) 172 return 1; 173 if ((mask & AUDIT_PERM_READ) && 174 audit_match_class(AUDIT_CLASS_READ, n)) 175 return 1; 176 if ((mask & AUDIT_PERM_ATTR) && 177 audit_match_class(AUDIT_CLASS_CHATTR, n)) 178 return 1; 179 return 0; 180 case 1: /* 32bit on biarch */ 181 if ((mask & AUDIT_PERM_WRITE) && 182 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 183 return 1; 184 if ((mask & AUDIT_PERM_READ) && 185 audit_match_class(AUDIT_CLASS_READ_32, n)) 186 return 1; 187 if ((mask & AUDIT_PERM_ATTR) && 188 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 189 return 1; 190 return 0; 191 case 2: /* open */ 192 return mask & ACC_MODE(ctx->argv[1]); 193 case 3: /* openat */ 194 return mask & ACC_MODE(ctx->argv[2]); 195 case 4: /* socketcall */ 196 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 197 case 5: /* execve */ 198 return mask & AUDIT_PERM_EXEC; 199 default: 200 return 0; 201 } 202 } 203 204 static int audit_match_filetype(struct audit_context *ctx, int val) 205 { 206 struct audit_names *n; 207 umode_t mode = (umode_t)val; 208 209 if (unlikely(!ctx)) 210 return 0; 211 212 list_for_each_entry(n, &ctx->names_list, list) { 213 if ((n->ino != AUDIT_INO_UNSET) && 214 ((n->mode & S_IFMT) == mode)) 215 return 1; 216 } 217 218 return 0; 219 } 220 221 /* 222 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 223 * ->first_trees points to its beginning, ->trees - to the current end of data. 224 * ->tree_count is the number of free entries in array pointed to by ->trees. 225 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 226 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 227 * it's going to remain 1-element for almost any setup) until we free context itself. 228 * References in it _are_ dropped - at the same time we free/drop aux stuff. 229 */ 230 231 static void audit_set_auditable(struct audit_context *ctx) 232 { 233 if (!ctx->prio) { 234 ctx->prio = 1; 235 ctx->current_state = AUDIT_STATE_RECORD; 236 } 237 } 238 239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 240 { 241 struct audit_tree_refs *p = ctx->trees; 242 int left = ctx->tree_count; 243 244 if (likely(left)) { 245 p->c[--left] = chunk; 246 ctx->tree_count = left; 247 return 1; 248 } 249 if (!p) 250 return 0; 251 p = p->next; 252 if (p) { 253 p->c[30] = chunk; 254 ctx->trees = p; 255 ctx->tree_count = 30; 256 return 1; 257 } 258 return 0; 259 } 260 261 static int grow_tree_refs(struct audit_context *ctx) 262 { 263 struct audit_tree_refs *p = ctx->trees; 264 265 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 266 if (!ctx->trees) { 267 ctx->trees = p; 268 return 0; 269 } 270 if (p) 271 p->next = ctx->trees; 272 else 273 ctx->first_trees = ctx->trees; 274 ctx->tree_count = 31; 275 return 1; 276 } 277 278 static void unroll_tree_refs(struct audit_context *ctx, 279 struct audit_tree_refs *p, int count) 280 { 281 struct audit_tree_refs *q; 282 int n; 283 284 if (!p) { 285 /* we started with empty chain */ 286 p = ctx->first_trees; 287 count = 31; 288 /* if the very first allocation has failed, nothing to do */ 289 if (!p) 290 return; 291 } 292 n = count; 293 for (q = p; q != ctx->trees; q = q->next, n = 31) { 294 while (n--) { 295 audit_put_chunk(q->c[n]); 296 q->c[n] = NULL; 297 } 298 } 299 while (n-- > ctx->tree_count) { 300 audit_put_chunk(q->c[n]); 301 q->c[n] = NULL; 302 } 303 ctx->trees = p; 304 ctx->tree_count = count; 305 } 306 307 static void free_tree_refs(struct audit_context *ctx) 308 { 309 struct audit_tree_refs *p, *q; 310 311 for (p = ctx->first_trees; p; p = q) { 312 q = p->next; 313 kfree(p); 314 } 315 } 316 317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 318 { 319 struct audit_tree_refs *p; 320 int n; 321 322 if (!tree) 323 return 0; 324 /* full ones */ 325 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 326 for (n = 0; n < 31; n++) 327 if (audit_tree_match(p->c[n], tree)) 328 return 1; 329 } 330 /* partial */ 331 if (p) { 332 for (n = ctx->tree_count; n < 31; n++) 333 if (audit_tree_match(p->c[n], tree)) 334 return 1; 335 } 336 return 0; 337 } 338 339 static int audit_compare_uid(kuid_t uid, 340 struct audit_names *name, 341 struct audit_field *f, 342 struct audit_context *ctx) 343 { 344 struct audit_names *n; 345 int rc; 346 347 if (name) { 348 rc = audit_uid_comparator(uid, f->op, name->uid); 349 if (rc) 350 return rc; 351 } 352 353 if (ctx) { 354 list_for_each_entry(n, &ctx->names_list, list) { 355 rc = audit_uid_comparator(uid, f->op, n->uid); 356 if (rc) 357 return rc; 358 } 359 } 360 return 0; 361 } 362 363 static int audit_compare_gid(kgid_t gid, 364 struct audit_names *name, 365 struct audit_field *f, 366 struct audit_context *ctx) 367 { 368 struct audit_names *n; 369 int rc; 370 371 if (name) { 372 rc = audit_gid_comparator(gid, f->op, name->gid); 373 if (rc) 374 return rc; 375 } 376 377 if (ctx) { 378 list_for_each_entry(n, &ctx->names_list, list) { 379 rc = audit_gid_comparator(gid, f->op, n->gid); 380 if (rc) 381 return rc; 382 } 383 } 384 return 0; 385 } 386 387 static int audit_field_compare(struct task_struct *tsk, 388 const struct cred *cred, 389 struct audit_field *f, 390 struct audit_context *ctx, 391 struct audit_names *name) 392 { 393 switch (f->val) { 394 /* process to file object comparisons */ 395 case AUDIT_COMPARE_UID_TO_OBJ_UID: 396 return audit_compare_uid(cred->uid, name, f, ctx); 397 case AUDIT_COMPARE_GID_TO_OBJ_GID: 398 return audit_compare_gid(cred->gid, name, f, ctx); 399 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->euid, name, f, ctx); 401 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->egid, name, f, ctx); 403 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 404 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 405 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 406 return audit_compare_uid(cred->suid, name, f, ctx); 407 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 408 return audit_compare_gid(cred->sgid, name, f, ctx); 409 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 410 return audit_compare_uid(cred->fsuid, name, f, ctx); 411 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 412 return audit_compare_gid(cred->fsgid, name, f, ctx); 413 /* uid comparisons */ 414 case AUDIT_COMPARE_UID_TO_AUID: 415 return audit_uid_comparator(cred->uid, f->op, 416 audit_get_loginuid(tsk)); 417 case AUDIT_COMPARE_UID_TO_EUID: 418 return audit_uid_comparator(cred->uid, f->op, cred->euid); 419 case AUDIT_COMPARE_UID_TO_SUID: 420 return audit_uid_comparator(cred->uid, f->op, cred->suid); 421 case AUDIT_COMPARE_UID_TO_FSUID: 422 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 423 /* auid comparisons */ 424 case AUDIT_COMPARE_AUID_TO_EUID: 425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 426 cred->euid); 427 case AUDIT_COMPARE_AUID_TO_SUID: 428 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 429 cred->suid); 430 case AUDIT_COMPARE_AUID_TO_FSUID: 431 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 432 cred->fsuid); 433 /* euid comparisons */ 434 case AUDIT_COMPARE_EUID_TO_SUID: 435 return audit_uid_comparator(cred->euid, f->op, cred->suid); 436 case AUDIT_COMPARE_EUID_TO_FSUID: 437 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 438 /* suid comparisons */ 439 case AUDIT_COMPARE_SUID_TO_FSUID: 440 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 441 /* gid comparisons */ 442 case AUDIT_COMPARE_GID_TO_EGID: 443 return audit_gid_comparator(cred->gid, f->op, cred->egid); 444 case AUDIT_COMPARE_GID_TO_SGID: 445 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 446 case AUDIT_COMPARE_GID_TO_FSGID: 447 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 448 /* egid comparisons */ 449 case AUDIT_COMPARE_EGID_TO_SGID: 450 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 451 case AUDIT_COMPARE_EGID_TO_FSGID: 452 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 453 /* sgid comparison */ 454 case AUDIT_COMPARE_SGID_TO_FSGID: 455 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 456 default: 457 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 458 return 0; 459 } 460 return 0; 461 } 462 463 /* Determine if any context name data matches a rule's watch data */ 464 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 465 * otherwise. 466 * 467 * If task_creation is true, this is an explicit indication that we are 468 * filtering a task rule at task creation time. This and tsk == current are 469 * the only situations where tsk->cred may be accessed without an rcu read lock. 470 */ 471 static int audit_filter_rules(struct task_struct *tsk, 472 struct audit_krule *rule, 473 struct audit_context *ctx, 474 struct audit_names *name, 475 enum audit_state *state, 476 bool task_creation) 477 { 478 const struct cred *cred; 479 int i, need_sid = 1; 480 u32 sid; 481 unsigned int sessionid; 482 483 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 484 485 for (i = 0; i < rule->field_count; i++) { 486 struct audit_field *f = &rule->fields[i]; 487 struct audit_names *n; 488 int result = 0; 489 pid_t pid; 490 491 switch (f->type) { 492 case AUDIT_PID: 493 pid = task_tgid_nr(tsk); 494 result = audit_comparator(pid, f->op, f->val); 495 break; 496 case AUDIT_PPID: 497 if (ctx) { 498 if (!ctx->ppid) 499 ctx->ppid = task_ppid_nr(tsk); 500 result = audit_comparator(ctx->ppid, f->op, f->val); 501 } 502 break; 503 case AUDIT_EXE: 504 result = audit_exe_compare(tsk, rule->exe); 505 if (f->op == Audit_not_equal) 506 result = !result; 507 break; 508 case AUDIT_UID: 509 result = audit_uid_comparator(cred->uid, f->op, f->uid); 510 break; 511 case AUDIT_EUID: 512 result = audit_uid_comparator(cred->euid, f->op, f->uid); 513 break; 514 case AUDIT_SUID: 515 result = audit_uid_comparator(cred->suid, f->op, f->uid); 516 break; 517 case AUDIT_FSUID: 518 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 519 break; 520 case AUDIT_GID: 521 result = audit_gid_comparator(cred->gid, f->op, f->gid); 522 if (f->op == Audit_equal) { 523 if (!result) 524 result = groups_search(cred->group_info, f->gid); 525 } else if (f->op == Audit_not_equal) { 526 if (result) 527 result = !groups_search(cred->group_info, f->gid); 528 } 529 break; 530 case AUDIT_EGID: 531 result = audit_gid_comparator(cred->egid, f->op, f->gid); 532 if (f->op == Audit_equal) { 533 if (!result) 534 result = groups_search(cred->group_info, f->gid); 535 } else if (f->op == Audit_not_equal) { 536 if (result) 537 result = !groups_search(cred->group_info, f->gid); 538 } 539 break; 540 case AUDIT_SGID: 541 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 542 break; 543 case AUDIT_FSGID: 544 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 545 break; 546 case AUDIT_SESSIONID: 547 sessionid = audit_get_sessionid(tsk); 548 result = audit_comparator(sessionid, f->op, f->val); 549 break; 550 case AUDIT_PERS: 551 result = audit_comparator(tsk->personality, f->op, f->val); 552 break; 553 case AUDIT_ARCH: 554 if (ctx) 555 result = audit_comparator(ctx->arch, f->op, f->val); 556 break; 557 558 case AUDIT_EXIT: 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) 560 result = audit_comparator(ctx->return_code, f->op, f->val); 561 break; 562 case AUDIT_SUCCESS: 563 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 564 if (f->val) 565 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 566 else 567 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 568 } 569 break; 570 case AUDIT_DEVMAJOR: 571 if (name) { 572 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 573 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 574 ++result; 575 } else if (ctx) { 576 list_for_each_entry(n, &ctx->names_list, list) { 577 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 578 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 579 ++result; 580 break; 581 } 582 } 583 } 584 break; 585 case AUDIT_DEVMINOR: 586 if (name) { 587 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 588 audit_comparator(MINOR(name->rdev), f->op, f->val)) 589 ++result; 590 } else if (ctx) { 591 list_for_each_entry(n, &ctx->names_list, list) { 592 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 593 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 594 ++result; 595 break; 596 } 597 } 598 } 599 break; 600 case AUDIT_INODE: 601 if (name) 602 result = audit_comparator(name->ino, f->op, f->val); 603 else if (ctx) { 604 list_for_each_entry(n, &ctx->names_list, list) { 605 if (audit_comparator(n->ino, f->op, f->val)) { 606 ++result; 607 break; 608 } 609 } 610 } 611 break; 612 case AUDIT_OBJ_UID: 613 if (name) { 614 result = audit_uid_comparator(name->uid, f->op, f->uid); 615 } else if (ctx) { 616 list_for_each_entry(n, &ctx->names_list, list) { 617 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 618 ++result; 619 break; 620 } 621 } 622 } 623 break; 624 case AUDIT_OBJ_GID: 625 if (name) { 626 result = audit_gid_comparator(name->gid, f->op, f->gid); 627 } else if (ctx) { 628 list_for_each_entry(n, &ctx->names_list, list) { 629 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 630 ++result; 631 break; 632 } 633 } 634 } 635 break; 636 case AUDIT_WATCH: 637 if (name) { 638 result = audit_watch_compare(rule->watch, 639 name->ino, 640 name->dev); 641 if (f->op == Audit_not_equal) 642 result = !result; 643 } 644 break; 645 case AUDIT_DIR: 646 if (ctx) { 647 result = match_tree_refs(ctx, rule->tree); 648 if (f->op == Audit_not_equal) 649 result = !result; 650 } 651 break; 652 case AUDIT_LOGINUID: 653 result = audit_uid_comparator(audit_get_loginuid(tsk), 654 f->op, f->uid); 655 break; 656 case AUDIT_LOGINUID_SET: 657 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 658 break; 659 case AUDIT_SADDR_FAM: 660 if (ctx->sockaddr) 661 result = audit_comparator(ctx->sockaddr->ss_family, 662 f->op, f->val); 663 break; 664 case AUDIT_SUBJ_USER: 665 case AUDIT_SUBJ_ROLE: 666 case AUDIT_SUBJ_TYPE: 667 case AUDIT_SUBJ_SEN: 668 case AUDIT_SUBJ_CLR: 669 /* NOTE: this may return negative values indicating 670 a temporary error. We simply treat this as a 671 match for now to avoid losing information that 672 may be wanted. An error message will also be 673 logged upon error */ 674 if (f->lsm_rule) { 675 if (need_sid) { 676 security_task_getsecid_subj(tsk, &sid); 677 need_sid = 0; 678 } 679 result = security_audit_rule_match(sid, f->type, 680 f->op, 681 f->lsm_rule); 682 } 683 break; 684 case AUDIT_OBJ_USER: 685 case AUDIT_OBJ_ROLE: 686 case AUDIT_OBJ_TYPE: 687 case AUDIT_OBJ_LEV_LOW: 688 case AUDIT_OBJ_LEV_HIGH: 689 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 690 also applies here */ 691 if (f->lsm_rule) { 692 /* Find files that match */ 693 if (name) { 694 result = security_audit_rule_match( 695 name->osid, 696 f->type, 697 f->op, 698 f->lsm_rule); 699 } else if (ctx) { 700 list_for_each_entry(n, &ctx->names_list, list) { 701 if (security_audit_rule_match( 702 n->osid, 703 f->type, 704 f->op, 705 f->lsm_rule)) { 706 ++result; 707 break; 708 } 709 } 710 } 711 /* Find ipc objects that match */ 712 if (!ctx || ctx->type != AUDIT_IPC) 713 break; 714 if (security_audit_rule_match(ctx->ipc.osid, 715 f->type, f->op, 716 f->lsm_rule)) 717 ++result; 718 } 719 break; 720 case AUDIT_ARG0: 721 case AUDIT_ARG1: 722 case AUDIT_ARG2: 723 case AUDIT_ARG3: 724 if (ctx) 725 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 726 break; 727 case AUDIT_FILTERKEY: 728 /* ignore this field for filtering */ 729 result = 1; 730 break; 731 case AUDIT_PERM: 732 result = audit_match_perm(ctx, f->val); 733 if (f->op == Audit_not_equal) 734 result = !result; 735 break; 736 case AUDIT_FILETYPE: 737 result = audit_match_filetype(ctx, f->val); 738 if (f->op == Audit_not_equal) 739 result = !result; 740 break; 741 case AUDIT_FIELD_COMPARE: 742 result = audit_field_compare(tsk, cred, f, ctx, name); 743 break; 744 } 745 if (!result) 746 return 0; 747 } 748 749 if (ctx) { 750 if (rule->prio <= ctx->prio) 751 return 0; 752 if (rule->filterkey) { 753 kfree(ctx->filterkey); 754 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 755 } 756 ctx->prio = rule->prio; 757 } 758 switch (rule->action) { 759 case AUDIT_NEVER: 760 *state = AUDIT_STATE_DISABLED; 761 break; 762 case AUDIT_ALWAYS: 763 *state = AUDIT_STATE_RECORD; 764 break; 765 } 766 return 1; 767 } 768 769 /* At process creation time, we can determine if system-call auditing is 770 * completely disabled for this task. Since we only have the task 771 * structure at this point, we can only check uid and gid. 772 */ 773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 774 { 775 struct audit_entry *e; 776 enum audit_state state; 777 778 rcu_read_lock(); 779 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 780 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 781 &state, true)) { 782 if (state == AUDIT_STATE_RECORD) 783 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 784 rcu_read_unlock(); 785 return state; 786 } 787 } 788 rcu_read_unlock(); 789 return AUDIT_STATE_BUILD; 790 } 791 792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 793 { 794 int word, bit; 795 796 if (val > 0xffffffff) 797 return false; 798 799 word = AUDIT_WORD(val); 800 if (word >= AUDIT_BITMASK_SIZE) 801 return false; 802 803 bit = AUDIT_BIT(val); 804 805 return rule->mask[word] & bit; 806 } 807 808 /* At syscall exit time, this filter is called if the audit_state is 809 * not low enough that auditing cannot take place, but is also not 810 * high enough that we already know we have to write an audit record 811 * (i.e., the state is AUDIT_STATE_BUILD). 812 */ 813 static void audit_filter_syscall(struct task_struct *tsk, 814 struct audit_context *ctx) 815 { 816 struct audit_entry *e; 817 enum audit_state state; 818 819 if (auditd_test_task(tsk)) 820 return; 821 822 rcu_read_lock(); 823 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { 824 if (audit_in_mask(&e->rule, ctx->major) && 825 audit_filter_rules(tsk, &e->rule, ctx, NULL, 826 &state, false)) { 827 rcu_read_unlock(); 828 ctx->current_state = state; 829 return; 830 } 831 } 832 rcu_read_unlock(); 833 return; 834 } 835 836 /* 837 * Given an audit_name check the inode hash table to see if they match. 838 * Called holding the rcu read lock to protect the use of audit_inode_hash 839 */ 840 static int audit_filter_inode_name(struct task_struct *tsk, 841 struct audit_names *n, 842 struct audit_context *ctx) { 843 int h = audit_hash_ino((u32)n->ino); 844 struct list_head *list = &audit_inode_hash[h]; 845 struct audit_entry *e; 846 enum audit_state state; 847 848 list_for_each_entry_rcu(e, list, list) { 849 if (audit_in_mask(&e->rule, ctx->major) && 850 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 851 ctx->current_state = state; 852 return 1; 853 } 854 } 855 return 0; 856 } 857 858 /* At syscall exit time, this filter is called if any audit_names have been 859 * collected during syscall processing. We only check rules in sublists at hash 860 * buckets applicable to the inode numbers in audit_names. 861 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 862 */ 863 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 864 { 865 struct audit_names *n; 866 867 if (auditd_test_task(tsk)) 868 return; 869 870 rcu_read_lock(); 871 872 list_for_each_entry(n, &ctx->names_list, list) { 873 if (audit_filter_inode_name(tsk, n, ctx)) 874 break; 875 } 876 rcu_read_unlock(); 877 } 878 879 static inline void audit_proctitle_free(struct audit_context *context) 880 { 881 kfree(context->proctitle.value); 882 context->proctitle.value = NULL; 883 context->proctitle.len = 0; 884 } 885 886 static inline void audit_free_module(struct audit_context *context) 887 { 888 if (context->type == AUDIT_KERN_MODULE) { 889 kfree(context->module.name); 890 context->module.name = NULL; 891 } 892 } 893 static inline void audit_free_names(struct audit_context *context) 894 { 895 struct audit_names *n, *next; 896 897 list_for_each_entry_safe(n, next, &context->names_list, list) { 898 list_del(&n->list); 899 if (n->name) 900 putname(n->name); 901 if (n->should_free) 902 kfree(n); 903 } 904 context->name_count = 0; 905 path_put(&context->pwd); 906 context->pwd.dentry = NULL; 907 context->pwd.mnt = NULL; 908 } 909 910 static inline void audit_free_aux(struct audit_context *context) 911 { 912 struct audit_aux_data *aux; 913 914 while ((aux = context->aux)) { 915 context->aux = aux->next; 916 kfree(aux); 917 } 918 while ((aux = context->aux_pids)) { 919 context->aux_pids = aux->next; 920 kfree(aux); 921 } 922 } 923 924 static inline struct audit_context *audit_alloc_context(enum audit_state state) 925 { 926 struct audit_context *context; 927 928 context = kzalloc(sizeof(*context), GFP_KERNEL); 929 if (!context) 930 return NULL; 931 context->state = state; 932 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 933 INIT_LIST_HEAD(&context->killed_trees); 934 INIT_LIST_HEAD(&context->names_list); 935 context->fds[0] = -1; 936 context->return_valid = AUDITSC_INVALID; 937 return context; 938 } 939 940 /** 941 * audit_alloc - allocate an audit context block for a task 942 * @tsk: task 943 * 944 * Filter on the task information and allocate a per-task audit context 945 * if necessary. Doing so turns on system call auditing for the 946 * specified task. This is called from copy_process, so no lock is 947 * needed. 948 */ 949 int audit_alloc(struct task_struct *tsk) 950 { 951 struct audit_context *context; 952 enum audit_state state; 953 char *key = NULL; 954 955 if (likely(!audit_ever_enabled)) 956 return 0; /* Return if not auditing. */ 957 958 state = audit_filter_task(tsk, &key); 959 if (state == AUDIT_STATE_DISABLED) { 960 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 961 return 0; 962 } 963 964 if (!(context = audit_alloc_context(state))) { 965 kfree(key); 966 audit_log_lost("out of memory in audit_alloc"); 967 return -ENOMEM; 968 } 969 context->filterkey = key; 970 971 audit_set_context(tsk, context); 972 set_task_syscall_work(tsk, SYSCALL_AUDIT); 973 return 0; 974 } 975 976 static inline void audit_free_context(struct audit_context *context) 977 { 978 audit_free_module(context); 979 audit_free_names(context); 980 unroll_tree_refs(context, NULL, 0); 981 free_tree_refs(context); 982 audit_free_aux(context); 983 kfree(context->filterkey); 984 kfree(context->sockaddr); 985 audit_proctitle_free(context); 986 kfree(context); 987 } 988 989 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 990 kuid_t auid, kuid_t uid, unsigned int sessionid, 991 u32 sid, char *comm) 992 { 993 struct audit_buffer *ab; 994 char *ctx = NULL; 995 u32 len; 996 int rc = 0; 997 998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 999 if (!ab) 1000 return rc; 1001 1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1003 from_kuid(&init_user_ns, auid), 1004 from_kuid(&init_user_ns, uid), sessionid); 1005 if (sid) { 1006 if (security_secid_to_secctx(sid, &ctx, &len)) { 1007 audit_log_format(ab, " obj=(none)"); 1008 rc = 1; 1009 } else { 1010 audit_log_format(ab, " obj=%s", ctx); 1011 security_release_secctx(ctx, len); 1012 } 1013 } 1014 audit_log_format(ab, " ocomm="); 1015 audit_log_untrustedstring(ab, comm); 1016 audit_log_end(ab); 1017 1018 return rc; 1019 } 1020 1021 static void audit_log_execve_info(struct audit_context *context, 1022 struct audit_buffer **ab) 1023 { 1024 long len_max; 1025 long len_rem; 1026 long len_full; 1027 long len_buf; 1028 long len_abuf = 0; 1029 long len_tmp; 1030 bool require_data; 1031 bool encode; 1032 unsigned int iter; 1033 unsigned int arg; 1034 char *buf_head; 1035 char *buf; 1036 const char __user *p = (const char __user *)current->mm->arg_start; 1037 1038 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1039 * data we put in the audit record for this argument (see the 1040 * code below) ... at this point in time 96 is plenty */ 1041 char abuf[96]; 1042 1043 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1044 * current value of 7500 is not as important as the fact that it 1045 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1046 * room if we go over a little bit in the logging below */ 1047 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1048 len_max = MAX_EXECVE_AUDIT_LEN; 1049 1050 /* scratch buffer to hold the userspace args */ 1051 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1052 if (!buf_head) { 1053 audit_panic("out of memory for argv string"); 1054 return; 1055 } 1056 buf = buf_head; 1057 1058 audit_log_format(*ab, "argc=%d", context->execve.argc); 1059 1060 len_rem = len_max; 1061 len_buf = 0; 1062 len_full = 0; 1063 require_data = true; 1064 encode = false; 1065 iter = 0; 1066 arg = 0; 1067 do { 1068 /* NOTE: we don't ever want to trust this value for anything 1069 * serious, but the audit record format insists we 1070 * provide an argument length for really long arguments, 1071 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1072 * to use strncpy_from_user() to obtain this value for 1073 * recording in the log, although we don't use it 1074 * anywhere here to avoid a double-fetch problem */ 1075 if (len_full == 0) 1076 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1077 1078 /* read more data from userspace */ 1079 if (require_data) { 1080 /* can we make more room in the buffer? */ 1081 if (buf != buf_head) { 1082 memmove(buf_head, buf, len_buf); 1083 buf = buf_head; 1084 } 1085 1086 /* fetch as much as we can of the argument */ 1087 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1088 len_max - len_buf); 1089 if (len_tmp == -EFAULT) { 1090 /* unable to copy from userspace */ 1091 send_sig(SIGKILL, current, 0); 1092 goto out; 1093 } else if (len_tmp == (len_max - len_buf)) { 1094 /* buffer is not large enough */ 1095 require_data = true; 1096 /* NOTE: if we are going to span multiple 1097 * buffers force the encoding so we stand 1098 * a chance at a sane len_full value and 1099 * consistent record encoding */ 1100 encode = true; 1101 len_full = len_full * 2; 1102 p += len_tmp; 1103 } else { 1104 require_data = false; 1105 if (!encode) 1106 encode = audit_string_contains_control( 1107 buf, len_tmp); 1108 /* try to use a trusted value for len_full */ 1109 if (len_full < len_max) 1110 len_full = (encode ? 1111 len_tmp * 2 : len_tmp); 1112 p += len_tmp + 1; 1113 } 1114 len_buf += len_tmp; 1115 buf_head[len_buf] = '\0'; 1116 1117 /* length of the buffer in the audit record? */ 1118 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1119 } 1120 1121 /* write as much as we can to the audit log */ 1122 if (len_buf >= 0) { 1123 /* NOTE: some magic numbers here - basically if we 1124 * can't fit a reasonable amount of data into the 1125 * existing audit buffer, flush it and start with 1126 * a new buffer */ 1127 if ((sizeof(abuf) + 8) > len_rem) { 1128 len_rem = len_max; 1129 audit_log_end(*ab); 1130 *ab = audit_log_start(context, 1131 GFP_KERNEL, AUDIT_EXECVE); 1132 if (!*ab) 1133 goto out; 1134 } 1135 1136 /* create the non-arg portion of the arg record */ 1137 len_tmp = 0; 1138 if (require_data || (iter > 0) || 1139 ((len_abuf + sizeof(abuf)) > len_rem)) { 1140 if (iter == 0) { 1141 len_tmp += snprintf(&abuf[len_tmp], 1142 sizeof(abuf) - len_tmp, 1143 " a%d_len=%lu", 1144 arg, len_full); 1145 } 1146 len_tmp += snprintf(&abuf[len_tmp], 1147 sizeof(abuf) - len_tmp, 1148 " a%d[%d]=", arg, iter++); 1149 } else 1150 len_tmp += snprintf(&abuf[len_tmp], 1151 sizeof(abuf) - len_tmp, 1152 " a%d=", arg); 1153 WARN_ON(len_tmp >= sizeof(abuf)); 1154 abuf[sizeof(abuf) - 1] = '\0'; 1155 1156 /* log the arg in the audit record */ 1157 audit_log_format(*ab, "%s", abuf); 1158 len_rem -= len_tmp; 1159 len_tmp = len_buf; 1160 if (encode) { 1161 if (len_abuf > len_rem) 1162 len_tmp = len_rem / 2; /* encoding */ 1163 audit_log_n_hex(*ab, buf, len_tmp); 1164 len_rem -= len_tmp * 2; 1165 len_abuf -= len_tmp * 2; 1166 } else { 1167 if (len_abuf > len_rem) 1168 len_tmp = len_rem - 2; /* quotes */ 1169 audit_log_n_string(*ab, buf, len_tmp); 1170 len_rem -= len_tmp + 2; 1171 /* don't subtract the "2" because we still need 1172 * to add quotes to the remaining string */ 1173 len_abuf -= len_tmp; 1174 } 1175 len_buf -= len_tmp; 1176 buf += len_tmp; 1177 } 1178 1179 /* ready to move to the next argument? */ 1180 if ((len_buf == 0) && !require_data) { 1181 arg++; 1182 iter = 0; 1183 len_full = 0; 1184 require_data = true; 1185 encode = false; 1186 } 1187 } while (arg < context->execve.argc); 1188 1189 /* NOTE: the caller handles the final audit_log_end() call */ 1190 1191 out: 1192 kfree(buf_head); 1193 } 1194 1195 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1196 kernel_cap_t *cap) 1197 { 1198 int i; 1199 1200 if (cap_isclear(*cap)) { 1201 audit_log_format(ab, " %s=0", prefix); 1202 return; 1203 } 1204 audit_log_format(ab, " %s=", prefix); 1205 CAP_FOR_EACH_U32(i) 1206 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1207 } 1208 1209 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1210 { 1211 if (name->fcap_ver == -1) { 1212 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1213 return; 1214 } 1215 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1216 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1217 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1218 name->fcap.fE, name->fcap_ver, 1219 from_kuid(&init_user_ns, name->fcap.rootid)); 1220 } 1221 1222 static void show_special(struct audit_context *context, int *call_panic) 1223 { 1224 struct audit_buffer *ab; 1225 int i; 1226 1227 ab = audit_log_start(context, GFP_KERNEL, context->type); 1228 if (!ab) 1229 return; 1230 1231 switch (context->type) { 1232 case AUDIT_SOCKETCALL: { 1233 int nargs = context->socketcall.nargs; 1234 1235 audit_log_format(ab, "nargs=%d", nargs); 1236 for (i = 0; i < nargs; i++) 1237 audit_log_format(ab, " a%d=%lx", i, 1238 context->socketcall.args[i]); 1239 break; } 1240 case AUDIT_IPC: { 1241 u32 osid = context->ipc.osid; 1242 1243 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1244 from_kuid(&init_user_ns, context->ipc.uid), 1245 from_kgid(&init_user_ns, context->ipc.gid), 1246 context->ipc.mode); 1247 if (osid) { 1248 char *ctx = NULL; 1249 u32 len; 1250 1251 if (security_secid_to_secctx(osid, &ctx, &len)) { 1252 audit_log_format(ab, " osid=%u", osid); 1253 *call_panic = 1; 1254 } else { 1255 audit_log_format(ab, " obj=%s", ctx); 1256 security_release_secctx(ctx, len); 1257 } 1258 } 1259 if (context->ipc.has_perm) { 1260 audit_log_end(ab); 1261 ab = audit_log_start(context, GFP_KERNEL, 1262 AUDIT_IPC_SET_PERM); 1263 if (unlikely(!ab)) 1264 return; 1265 audit_log_format(ab, 1266 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1267 context->ipc.qbytes, 1268 context->ipc.perm_uid, 1269 context->ipc.perm_gid, 1270 context->ipc.perm_mode); 1271 } 1272 break; } 1273 case AUDIT_MQ_OPEN: 1274 audit_log_format(ab, 1275 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1276 "mq_msgsize=%ld mq_curmsgs=%ld", 1277 context->mq_open.oflag, context->mq_open.mode, 1278 context->mq_open.attr.mq_flags, 1279 context->mq_open.attr.mq_maxmsg, 1280 context->mq_open.attr.mq_msgsize, 1281 context->mq_open.attr.mq_curmsgs); 1282 break; 1283 case AUDIT_MQ_SENDRECV: 1284 audit_log_format(ab, 1285 "mqdes=%d msg_len=%zd msg_prio=%u " 1286 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1287 context->mq_sendrecv.mqdes, 1288 context->mq_sendrecv.msg_len, 1289 context->mq_sendrecv.msg_prio, 1290 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1291 context->mq_sendrecv.abs_timeout.tv_nsec); 1292 break; 1293 case AUDIT_MQ_NOTIFY: 1294 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1295 context->mq_notify.mqdes, 1296 context->mq_notify.sigev_signo); 1297 break; 1298 case AUDIT_MQ_GETSETATTR: { 1299 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1300 1301 audit_log_format(ab, 1302 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1303 "mq_curmsgs=%ld ", 1304 context->mq_getsetattr.mqdes, 1305 attr->mq_flags, attr->mq_maxmsg, 1306 attr->mq_msgsize, attr->mq_curmsgs); 1307 break; } 1308 case AUDIT_CAPSET: 1309 audit_log_format(ab, "pid=%d", context->capset.pid); 1310 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1311 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1312 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1313 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1314 break; 1315 case AUDIT_MMAP: 1316 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1317 context->mmap.flags); 1318 break; 1319 case AUDIT_EXECVE: 1320 audit_log_execve_info(context, &ab); 1321 break; 1322 case AUDIT_KERN_MODULE: 1323 audit_log_format(ab, "name="); 1324 if (context->module.name) { 1325 audit_log_untrustedstring(ab, context->module.name); 1326 } else 1327 audit_log_format(ab, "(null)"); 1328 1329 break; 1330 } 1331 audit_log_end(ab); 1332 } 1333 1334 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1335 { 1336 char *end = proctitle + len - 1; 1337 1338 while (end > proctitle && !isprint(*end)) 1339 end--; 1340 1341 /* catch the case where proctitle is only 1 non-print character */ 1342 len = end - proctitle + 1; 1343 len -= isprint(proctitle[len-1]) == 0; 1344 return len; 1345 } 1346 1347 /* 1348 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1349 * @context: audit_context for the task 1350 * @n: audit_names structure with reportable details 1351 * @path: optional path to report instead of audit_names->name 1352 * @record_num: record number to report when handling a list of names 1353 * @call_panic: optional pointer to int that will be updated if secid fails 1354 */ 1355 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1356 const struct path *path, int record_num, int *call_panic) 1357 { 1358 struct audit_buffer *ab; 1359 1360 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1361 if (!ab) 1362 return; 1363 1364 audit_log_format(ab, "item=%d", record_num); 1365 1366 if (path) 1367 audit_log_d_path(ab, " name=", path); 1368 else if (n->name) { 1369 switch (n->name_len) { 1370 case AUDIT_NAME_FULL: 1371 /* log the full path */ 1372 audit_log_format(ab, " name="); 1373 audit_log_untrustedstring(ab, n->name->name); 1374 break; 1375 case 0: 1376 /* name was specified as a relative path and the 1377 * directory component is the cwd 1378 */ 1379 if (context->pwd.dentry && context->pwd.mnt) 1380 audit_log_d_path(ab, " name=", &context->pwd); 1381 else 1382 audit_log_format(ab, " name=(null)"); 1383 break; 1384 default: 1385 /* log the name's directory component */ 1386 audit_log_format(ab, " name="); 1387 audit_log_n_untrustedstring(ab, n->name->name, 1388 n->name_len); 1389 } 1390 } else 1391 audit_log_format(ab, " name=(null)"); 1392 1393 if (n->ino != AUDIT_INO_UNSET) 1394 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1395 n->ino, 1396 MAJOR(n->dev), 1397 MINOR(n->dev), 1398 n->mode, 1399 from_kuid(&init_user_ns, n->uid), 1400 from_kgid(&init_user_ns, n->gid), 1401 MAJOR(n->rdev), 1402 MINOR(n->rdev)); 1403 if (n->osid != 0) { 1404 char *ctx = NULL; 1405 u32 len; 1406 1407 if (security_secid_to_secctx( 1408 n->osid, &ctx, &len)) { 1409 audit_log_format(ab, " osid=%u", n->osid); 1410 if (call_panic) 1411 *call_panic = 2; 1412 } else { 1413 audit_log_format(ab, " obj=%s", ctx); 1414 security_release_secctx(ctx, len); 1415 } 1416 } 1417 1418 /* log the audit_names record type */ 1419 switch (n->type) { 1420 case AUDIT_TYPE_NORMAL: 1421 audit_log_format(ab, " nametype=NORMAL"); 1422 break; 1423 case AUDIT_TYPE_PARENT: 1424 audit_log_format(ab, " nametype=PARENT"); 1425 break; 1426 case AUDIT_TYPE_CHILD_DELETE: 1427 audit_log_format(ab, " nametype=DELETE"); 1428 break; 1429 case AUDIT_TYPE_CHILD_CREATE: 1430 audit_log_format(ab, " nametype=CREATE"); 1431 break; 1432 default: 1433 audit_log_format(ab, " nametype=UNKNOWN"); 1434 break; 1435 } 1436 1437 audit_log_fcaps(ab, n); 1438 audit_log_end(ab); 1439 } 1440 1441 static void audit_log_proctitle(void) 1442 { 1443 int res; 1444 char *buf; 1445 char *msg = "(null)"; 1446 int len = strlen(msg); 1447 struct audit_context *context = audit_context(); 1448 struct audit_buffer *ab; 1449 1450 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1451 if (!ab) 1452 return; /* audit_panic or being filtered */ 1453 1454 audit_log_format(ab, "proctitle="); 1455 1456 /* Not cached */ 1457 if (!context->proctitle.value) { 1458 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1459 if (!buf) 1460 goto out; 1461 /* Historically called this from procfs naming */ 1462 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1463 if (res == 0) { 1464 kfree(buf); 1465 goto out; 1466 } 1467 res = audit_proctitle_rtrim(buf, res); 1468 if (res == 0) { 1469 kfree(buf); 1470 goto out; 1471 } 1472 context->proctitle.value = buf; 1473 context->proctitle.len = res; 1474 } 1475 msg = context->proctitle.value; 1476 len = context->proctitle.len; 1477 out: 1478 audit_log_n_untrustedstring(ab, msg, len); 1479 audit_log_end(ab); 1480 } 1481 1482 static void audit_log_exit(void) 1483 { 1484 int i, call_panic = 0; 1485 struct audit_context *context = audit_context(); 1486 struct audit_buffer *ab; 1487 struct audit_aux_data *aux; 1488 struct audit_names *n; 1489 1490 context->personality = current->personality; 1491 1492 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1493 if (!ab) 1494 return; /* audit_panic has been called */ 1495 audit_log_format(ab, "arch=%x syscall=%d", 1496 context->arch, context->major); 1497 if (context->personality != PER_LINUX) 1498 audit_log_format(ab, " per=%lx", context->personality); 1499 if (context->return_valid != AUDITSC_INVALID) 1500 audit_log_format(ab, " success=%s exit=%ld", 1501 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1502 context->return_code); 1503 1504 audit_log_format(ab, 1505 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1506 context->argv[0], 1507 context->argv[1], 1508 context->argv[2], 1509 context->argv[3], 1510 context->name_count); 1511 1512 audit_log_task_info(ab); 1513 audit_log_key(ab, context->filterkey); 1514 audit_log_end(ab); 1515 1516 for (aux = context->aux; aux; aux = aux->next) { 1517 1518 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1519 if (!ab) 1520 continue; /* audit_panic has been called */ 1521 1522 switch (aux->type) { 1523 1524 case AUDIT_BPRM_FCAPS: { 1525 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1526 1527 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1528 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1529 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1530 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1531 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1532 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1533 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1534 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1535 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1536 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1537 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1538 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1539 audit_log_format(ab, " frootid=%d", 1540 from_kuid(&init_user_ns, 1541 axs->fcap.rootid)); 1542 break; } 1543 1544 } 1545 audit_log_end(ab); 1546 } 1547 1548 if (context->type) 1549 show_special(context, &call_panic); 1550 1551 if (context->fds[0] >= 0) { 1552 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1553 if (ab) { 1554 audit_log_format(ab, "fd0=%d fd1=%d", 1555 context->fds[0], context->fds[1]); 1556 audit_log_end(ab); 1557 } 1558 } 1559 1560 if (context->sockaddr_len) { 1561 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1562 if (ab) { 1563 audit_log_format(ab, "saddr="); 1564 audit_log_n_hex(ab, (void *)context->sockaddr, 1565 context->sockaddr_len); 1566 audit_log_end(ab); 1567 } 1568 } 1569 1570 for (aux = context->aux_pids; aux; aux = aux->next) { 1571 struct audit_aux_data_pids *axs = (void *)aux; 1572 1573 for (i = 0; i < axs->pid_count; i++) 1574 if (audit_log_pid_context(context, axs->target_pid[i], 1575 axs->target_auid[i], 1576 axs->target_uid[i], 1577 axs->target_sessionid[i], 1578 axs->target_sid[i], 1579 axs->target_comm[i])) 1580 call_panic = 1; 1581 } 1582 1583 if (context->target_pid && 1584 audit_log_pid_context(context, context->target_pid, 1585 context->target_auid, context->target_uid, 1586 context->target_sessionid, 1587 context->target_sid, context->target_comm)) 1588 call_panic = 1; 1589 1590 if (context->pwd.dentry && context->pwd.mnt) { 1591 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1592 if (ab) { 1593 audit_log_d_path(ab, "cwd=", &context->pwd); 1594 audit_log_end(ab); 1595 } 1596 } 1597 1598 i = 0; 1599 list_for_each_entry(n, &context->names_list, list) { 1600 if (n->hidden) 1601 continue; 1602 audit_log_name(context, n, NULL, i++, &call_panic); 1603 } 1604 1605 audit_log_proctitle(); 1606 1607 /* Send end of event record to help user space know we are finished */ 1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1609 if (ab) 1610 audit_log_end(ab); 1611 if (call_panic) 1612 audit_panic("error converting sid to string"); 1613 } 1614 1615 /** 1616 * __audit_free - free a per-task audit context 1617 * @tsk: task whose audit context block to free 1618 * 1619 * Called from copy_process and do_exit 1620 */ 1621 void __audit_free(struct task_struct *tsk) 1622 { 1623 struct audit_context *context = tsk->audit_context; 1624 1625 if (!context) 1626 return; 1627 1628 if (!list_empty(&context->killed_trees)) 1629 audit_kill_trees(context); 1630 1631 /* We are called either by do_exit() or the fork() error handling code; 1632 * in the former case tsk == current and in the latter tsk is a 1633 * random task_struct that doesn't doesn't have any meaningful data we 1634 * need to log via audit_log_exit(). 1635 */ 1636 if (tsk == current && !context->dummy && context->in_syscall) { 1637 context->return_valid = AUDITSC_INVALID; 1638 context->return_code = 0; 1639 1640 audit_filter_syscall(tsk, context); 1641 audit_filter_inodes(tsk, context); 1642 if (context->current_state == AUDIT_STATE_RECORD) 1643 audit_log_exit(); 1644 } 1645 1646 audit_set_context(tsk, NULL); 1647 audit_free_context(context); 1648 } 1649 1650 /** 1651 * __audit_syscall_entry - fill in an audit record at syscall entry 1652 * @major: major syscall type (function) 1653 * @a1: additional syscall register 1 1654 * @a2: additional syscall register 2 1655 * @a3: additional syscall register 3 1656 * @a4: additional syscall register 4 1657 * 1658 * Fill in audit context at syscall entry. This only happens if the 1659 * audit context was created when the task was created and the state or 1660 * filters demand the audit context be built. If the state from the 1661 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 1662 * then the record will be written at syscall exit time (otherwise, it 1663 * will only be written if another part of the kernel requests that it 1664 * be written). 1665 */ 1666 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1667 unsigned long a3, unsigned long a4) 1668 { 1669 struct audit_context *context = audit_context(); 1670 enum audit_state state; 1671 1672 if (!audit_enabled || !context) 1673 return; 1674 1675 BUG_ON(context->in_syscall || context->name_count); 1676 1677 state = context->state; 1678 if (state == AUDIT_STATE_DISABLED) 1679 return; 1680 1681 context->dummy = !audit_n_rules; 1682 if (!context->dummy && state == AUDIT_STATE_BUILD) { 1683 context->prio = 0; 1684 if (auditd_test_task(current)) 1685 return; 1686 } 1687 1688 context->arch = syscall_get_arch(current); 1689 context->major = major; 1690 context->argv[0] = a1; 1691 context->argv[1] = a2; 1692 context->argv[2] = a3; 1693 context->argv[3] = a4; 1694 context->serial = 0; 1695 context->in_syscall = 1; 1696 context->current_state = state; 1697 context->ppid = 0; 1698 ktime_get_coarse_real_ts64(&context->ctime); 1699 } 1700 1701 /** 1702 * __audit_syscall_exit - deallocate audit context after a system call 1703 * @success: success value of the syscall 1704 * @return_code: return value of the syscall 1705 * 1706 * Tear down after system call. If the audit context has been marked as 1707 * auditable (either because of the AUDIT_STATE_RECORD state from 1708 * filtering, or because some other part of the kernel wrote an audit 1709 * message), then write out the syscall information. In call cases, 1710 * free the names stored from getname(). 1711 */ 1712 void __audit_syscall_exit(int success, long return_code) 1713 { 1714 struct audit_context *context; 1715 1716 context = audit_context(); 1717 if (!context) 1718 return; 1719 1720 if (!list_empty(&context->killed_trees)) 1721 audit_kill_trees(context); 1722 1723 if (!context->dummy && context->in_syscall) { 1724 if (success) 1725 context->return_valid = AUDITSC_SUCCESS; 1726 else 1727 context->return_valid = AUDITSC_FAILURE; 1728 1729 /* 1730 * we need to fix up the return code in the audit logs if the 1731 * actual return codes are later going to be fixed up by the 1732 * arch specific signal handlers 1733 * 1734 * This is actually a test for: 1735 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1736 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1737 * 1738 * but is faster than a bunch of || 1739 */ 1740 if (unlikely(return_code <= -ERESTARTSYS) && 1741 (return_code >= -ERESTART_RESTARTBLOCK) && 1742 (return_code != -ENOIOCTLCMD)) 1743 context->return_code = -EINTR; 1744 else 1745 context->return_code = return_code; 1746 1747 audit_filter_syscall(current, context); 1748 audit_filter_inodes(current, context); 1749 if (context->current_state == AUDIT_STATE_RECORD) 1750 audit_log_exit(); 1751 } 1752 1753 context->in_syscall = 0; 1754 context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1755 1756 audit_free_module(context); 1757 audit_free_names(context); 1758 unroll_tree_refs(context, NULL, 0); 1759 audit_free_aux(context); 1760 context->aux = NULL; 1761 context->aux_pids = NULL; 1762 context->target_pid = 0; 1763 context->target_sid = 0; 1764 context->sockaddr_len = 0; 1765 context->type = 0; 1766 context->fds[0] = -1; 1767 if (context->state != AUDIT_STATE_RECORD) { 1768 kfree(context->filterkey); 1769 context->filterkey = NULL; 1770 } 1771 } 1772 1773 static inline void handle_one(const struct inode *inode) 1774 { 1775 struct audit_context *context; 1776 struct audit_tree_refs *p; 1777 struct audit_chunk *chunk; 1778 int count; 1779 1780 if (likely(!inode->i_fsnotify_marks)) 1781 return; 1782 context = audit_context(); 1783 p = context->trees; 1784 count = context->tree_count; 1785 rcu_read_lock(); 1786 chunk = audit_tree_lookup(inode); 1787 rcu_read_unlock(); 1788 if (!chunk) 1789 return; 1790 if (likely(put_tree_ref(context, chunk))) 1791 return; 1792 if (unlikely(!grow_tree_refs(context))) { 1793 pr_warn("out of memory, audit has lost a tree reference\n"); 1794 audit_set_auditable(context); 1795 audit_put_chunk(chunk); 1796 unroll_tree_refs(context, p, count); 1797 return; 1798 } 1799 put_tree_ref(context, chunk); 1800 } 1801 1802 static void handle_path(const struct dentry *dentry) 1803 { 1804 struct audit_context *context; 1805 struct audit_tree_refs *p; 1806 const struct dentry *d, *parent; 1807 struct audit_chunk *drop; 1808 unsigned long seq; 1809 int count; 1810 1811 context = audit_context(); 1812 p = context->trees; 1813 count = context->tree_count; 1814 retry: 1815 drop = NULL; 1816 d = dentry; 1817 rcu_read_lock(); 1818 seq = read_seqbegin(&rename_lock); 1819 for(;;) { 1820 struct inode *inode = d_backing_inode(d); 1821 1822 if (inode && unlikely(inode->i_fsnotify_marks)) { 1823 struct audit_chunk *chunk; 1824 1825 chunk = audit_tree_lookup(inode); 1826 if (chunk) { 1827 if (unlikely(!put_tree_ref(context, chunk))) { 1828 drop = chunk; 1829 break; 1830 } 1831 } 1832 } 1833 parent = d->d_parent; 1834 if (parent == d) 1835 break; 1836 d = parent; 1837 } 1838 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1839 rcu_read_unlock(); 1840 if (!drop) { 1841 /* just a race with rename */ 1842 unroll_tree_refs(context, p, count); 1843 goto retry; 1844 } 1845 audit_put_chunk(drop); 1846 if (grow_tree_refs(context)) { 1847 /* OK, got more space */ 1848 unroll_tree_refs(context, p, count); 1849 goto retry; 1850 } 1851 /* too bad */ 1852 pr_warn("out of memory, audit has lost a tree reference\n"); 1853 unroll_tree_refs(context, p, count); 1854 audit_set_auditable(context); 1855 return; 1856 } 1857 rcu_read_unlock(); 1858 } 1859 1860 static struct audit_names *audit_alloc_name(struct audit_context *context, 1861 unsigned char type) 1862 { 1863 struct audit_names *aname; 1864 1865 if (context->name_count < AUDIT_NAMES) { 1866 aname = &context->preallocated_names[context->name_count]; 1867 memset(aname, 0, sizeof(*aname)); 1868 } else { 1869 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1870 if (!aname) 1871 return NULL; 1872 aname->should_free = true; 1873 } 1874 1875 aname->ino = AUDIT_INO_UNSET; 1876 aname->type = type; 1877 list_add_tail(&aname->list, &context->names_list); 1878 1879 context->name_count++; 1880 if (!context->pwd.dentry) 1881 get_fs_pwd(current->fs, &context->pwd); 1882 return aname; 1883 } 1884 1885 /** 1886 * __audit_reusename - fill out filename with info from existing entry 1887 * @uptr: userland ptr to pathname 1888 * 1889 * Search the audit_names list for the current audit context. If there is an 1890 * existing entry with a matching "uptr" then return the filename 1891 * associated with that audit_name. If not, return NULL. 1892 */ 1893 struct filename * 1894 __audit_reusename(const __user char *uptr) 1895 { 1896 struct audit_context *context = audit_context(); 1897 struct audit_names *n; 1898 1899 list_for_each_entry(n, &context->names_list, list) { 1900 if (!n->name) 1901 continue; 1902 if (n->name->uptr == uptr) { 1903 n->name->refcnt++; 1904 return n->name; 1905 } 1906 } 1907 return NULL; 1908 } 1909 1910 /** 1911 * __audit_getname - add a name to the list 1912 * @name: name to add 1913 * 1914 * Add a name to the list of audit names for this context. 1915 * Called from fs/namei.c:getname(). 1916 */ 1917 void __audit_getname(struct filename *name) 1918 { 1919 struct audit_context *context = audit_context(); 1920 struct audit_names *n; 1921 1922 if (!context->in_syscall) 1923 return; 1924 1925 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1926 if (!n) 1927 return; 1928 1929 n->name = name; 1930 n->name_len = AUDIT_NAME_FULL; 1931 name->aname = n; 1932 name->refcnt++; 1933 } 1934 1935 static inline int audit_copy_fcaps(struct audit_names *name, 1936 const struct dentry *dentry) 1937 { 1938 struct cpu_vfs_cap_data caps; 1939 int rc; 1940 1941 if (!dentry) 1942 return 0; 1943 1944 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 1945 if (rc) 1946 return rc; 1947 1948 name->fcap.permitted = caps.permitted; 1949 name->fcap.inheritable = caps.inheritable; 1950 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1951 name->fcap.rootid = caps.rootid; 1952 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1953 VFS_CAP_REVISION_SHIFT; 1954 1955 return 0; 1956 } 1957 1958 /* Copy inode data into an audit_names. */ 1959 static void audit_copy_inode(struct audit_names *name, 1960 const struct dentry *dentry, 1961 struct inode *inode, unsigned int flags) 1962 { 1963 name->ino = inode->i_ino; 1964 name->dev = inode->i_sb->s_dev; 1965 name->mode = inode->i_mode; 1966 name->uid = inode->i_uid; 1967 name->gid = inode->i_gid; 1968 name->rdev = inode->i_rdev; 1969 security_inode_getsecid(inode, &name->osid); 1970 if (flags & AUDIT_INODE_NOEVAL) { 1971 name->fcap_ver = -1; 1972 return; 1973 } 1974 audit_copy_fcaps(name, dentry); 1975 } 1976 1977 /** 1978 * __audit_inode - store the inode and device from a lookup 1979 * @name: name being audited 1980 * @dentry: dentry being audited 1981 * @flags: attributes for this particular entry 1982 */ 1983 void __audit_inode(struct filename *name, const struct dentry *dentry, 1984 unsigned int flags) 1985 { 1986 struct audit_context *context = audit_context(); 1987 struct inode *inode = d_backing_inode(dentry); 1988 struct audit_names *n; 1989 bool parent = flags & AUDIT_INODE_PARENT; 1990 struct audit_entry *e; 1991 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 1992 int i; 1993 1994 if (!context->in_syscall) 1995 return; 1996 1997 rcu_read_lock(); 1998 list_for_each_entry_rcu(e, list, list) { 1999 for (i = 0; i < e->rule.field_count; i++) { 2000 struct audit_field *f = &e->rule.fields[i]; 2001 2002 if (f->type == AUDIT_FSTYPE 2003 && audit_comparator(inode->i_sb->s_magic, 2004 f->op, f->val) 2005 && e->rule.action == AUDIT_NEVER) { 2006 rcu_read_unlock(); 2007 return; 2008 } 2009 } 2010 } 2011 rcu_read_unlock(); 2012 2013 if (!name) 2014 goto out_alloc; 2015 2016 /* 2017 * If we have a pointer to an audit_names entry already, then we can 2018 * just use it directly if the type is correct. 2019 */ 2020 n = name->aname; 2021 if (n) { 2022 if (parent) { 2023 if (n->type == AUDIT_TYPE_PARENT || 2024 n->type == AUDIT_TYPE_UNKNOWN) 2025 goto out; 2026 } else { 2027 if (n->type != AUDIT_TYPE_PARENT) 2028 goto out; 2029 } 2030 } 2031 2032 list_for_each_entry_reverse(n, &context->names_list, list) { 2033 if (n->ino) { 2034 /* valid inode number, use that for the comparison */ 2035 if (n->ino != inode->i_ino || 2036 n->dev != inode->i_sb->s_dev) 2037 continue; 2038 } else if (n->name) { 2039 /* inode number has not been set, check the name */ 2040 if (strcmp(n->name->name, name->name)) 2041 continue; 2042 } else 2043 /* no inode and no name (?!) ... this is odd ... */ 2044 continue; 2045 2046 /* match the correct record type */ 2047 if (parent) { 2048 if (n->type == AUDIT_TYPE_PARENT || 2049 n->type == AUDIT_TYPE_UNKNOWN) 2050 goto out; 2051 } else { 2052 if (n->type != AUDIT_TYPE_PARENT) 2053 goto out; 2054 } 2055 } 2056 2057 out_alloc: 2058 /* unable to find an entry with both a matching name and type */ 2059 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2060 if (!n) 2061 return; 2062 if (name) { 2063 n->name = name; 2064 name->refcnt++; 2065 } 2066 2067 out: 2068 if (parent) { 2069 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2070 n->type = AUDIT_TYPE_PARENT; 2071 if (flags & AUDIT_INODE_HIDDEN) 2072 n->hidden = true; 2073 } else { 2074 n->name_len = AUDIT_NAME_FULL; 2075 n->type = AUDIT_TYPE_NORMAL; 2076 } 2077 handle_path(dentry); 2078 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2079 } 2080 2081 void __audit_file(const struct file *file) 2082 { 2083 __audit_inode(NULL, file->f_path.dentry, 0); 2084 } 2085 2086 /** 2087 * __audit_inode_child - collect inode info for created/removed objects 2088 * @parent: inode of dentry parent 2089 * @dentry: dentry being audited 2090 * @type: AUDIT_TYPE_* value that we're looking for 2091 * 2092 * For syscalls that create or remove filesystem objects, audit_inode 2093 * can only collect information for the filesystem object's parent. 2094 * This call updates the audit context with the child's information. 2095 * Syscalls that create a new filesystem object must be hooked after 2096 * the object is created. Syscalls that remove a filesystem object 2097 * must be hooked prior, in order to capture the target inode during 2098 * unsuccessful attempts. 2099 */ 2100 void __audit_inode_child(struct inode *parent, 2101 const struct dentry *dentry, 2102 const unsigned char type) 2103 { 2104 struct audit_context *context = audit_context(); 2105 struct inode *inode = d_backing_inode(dentry); 2106 const struct qstr *dname = &dentry->d_name; 2107 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2108 struct audit_entry *e; 2109 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2110 int i; 2111 2112 if (!context->in_syscall) 2113 return; 2114 2115 rcu_read_lock(); 2116 list_for_each_entry_rcu(e, list, list) { 2117 for (i = 0; i < e->rule.field_count; i++) { 2118 struct audit_field *f = &e->rule.fields[i]; 2119 2120 if (f->type == AUDIT_FSTYPE 2121 && audit_comparator(parent->i_sb->s_magic, 2122 f->op, f->val) 2123 && e->rule.action == AUDIT_NEVER) { 2124 rcu_read_unlock(); 2125 return; 2126 } 2127 } 2128 } 2129 rcu_read_unlock(); 2130 2131 if (inode) 2132 handle_one(inode); 2133 2134 /* look for a parent entry first */ 2135 list_for_each_entry(n, &context->names_list, list) { 2136 if (!n->name || 2137 (n->type != AUDIT_TYPE_PARENT && 2138 n->type != AUDIT_TYPE_UNKNOWN)) 2139 continue; 2140 2141 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2142 !audit_compare_dname_path(dname, 2143 n->name->name, n->name_len)) { 2144 if (n->type == AUDIT_TYPE_UNKNOWN) 2145 n->type = AUDIT_TYPE_PARENT; 2146 found_parent = n; 2147 break; 2148 } 2149 } 2150 2151 /* is there a matching child entry? */ 2152 list_for_each_entry(n, &context->names_list, list) { 2153 /* can only match entries that have a name */ 2154 if (!n->name || 2155 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2156 continue; 2157 2158 if (!strcmp(dname->name, n->name->name) || 2159 !audit_compare_dname_path(dname, n->name->name, 2160 found_parent ? 2161 found_parent->name_len : 2162 AUDIT_NAME_FULL)) { 2163 if (n->type == AUDIT_TYPE_UNKNOWN) 2164 n->type = type; 2165 found_child = n; 2166 break; 2167 } 2168 } 2169 2170 if (!found_parent) { 2171 /* create a new, "anonymous" parent record */ 2172 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2173 if (!n) 2174 return; 2175 audit_copy_inode(n, NULL, parent, 0); 2176 } 2177 2178 if (!found_child) { 2179 found_child = audit_alloc_name(context, type); 2180 if (!found_child) 2181 return; 2182 2183 /* Re-use the name belonging to the slot for a matching parent 2184 * directory. All names for this context are relinquished in 2185 * audit_free_names() */ 2186 if (found_parent) { 2187 found_child->name = found_parent->name; 2188 found_child->name_len = AUDIT_NAME_FULL; 2189 found_child->name->refcnt++; 2190 } 2191 } 2192 2193 if (inode) 2194 audit_copy_inode(found_child, dentry, inode, 0); 2195 else 2196 found_child->ino = AUDIT_INO_UNSET; 2197 } 2198 EXPORT_SYMBOL_GPL(__audit_inode_child); 2199 2200 /** 2201 * auditsc_get_stamp - get local copies of audit_context values 2202 * @ctx: audit_context for the task 2203 * @t: timespec64 to store time recorded in the audit_context 2204 * @serial: serial value that is recorded in the audit_context 2205 * 2206 * Also sets the context as auditable. 2207 */ 2208 int auditsc_get_stamp(struct audit_context *ctx, 2209 struct timespec64 *t, unsigned int *serial) 2210 { 2211 if (!ctx->in_syscall) 2212 return 0; 2213 if (!ctx->serial) 2214 ctx->serial = audit_serial(); 2215 t->tv_sec = ctx->ctime.tv_sec; 2216 t->tv_nsec = ctx->ctime.tv_nsec; 2217 *serial = ctx->serial; 2218 if (!ctx->prio) { 2219 ctx->prio = 1; 2220 ctx->current_state = AUDIT_STATE_RECORD; 2221 } 2222 return 1; 2223 } 2224 2225 /** 2226 * __audit_mq_open - record audit data for a POSIX MQ open 2227 * @oflag: open flag 2228 * @mode: mode bits 2229 * @attr: queue attributes 2230 * 2231 */ 2232 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2233 { 2234 struct audit_context *context = audit_context(); 2235 2236 if (attr) 2237 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2238 else 2239 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2240 2241 context->mq_open.oflag = oflag; 2242 context->mq_open.mode = mode; 2243 2244 context->type = AUDIT_MQ_OPEN; 2245 } 2246 2247 /** 2248 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2249 * @mqdes: MQ descriptor 2250 * @msg_len: Message length 2251 * @msg_prio: Message priority 2252 * @abs_timeout: Message timeout in absolute time 2253 * 2254 */ 2255 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2256 const struct timespec64 *abs_timeout) 2257 { 2258 struct audit_context *context = audit_context(); 2259 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2260 2261 if (abs_timeout) 2262 memcpy(p, abs_timeout, sizeof(*p)); 2263 else 2264 memset(p, 0, sizeof(*p)); 2265 2266 context->mq_sendrecv.mqdes = mqdes; 2267 context->mq_sendrecv.msg_len = msg_len; 2268 context->mq_sendrecv.msg_prio = msg_prio; 2269 2270 context->type = AUDIT_MQ_SENDRECV; 2271 } 2272 2273 /** 2274 * __audit_mq_notify - record audit data for a POSIX MQ notify 2275 * @mqdes: MQ descriptor 2276 * @notification: Notification event 2277 * 2278 */ 2279 2280 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2281 { 2282 struct audit_context *context = audit_context(); 2283 2284 if (notification) 2285 context->mq_notify.sigev_signo = notification->sigev_signo; 2286 else 2287 context->mq_notify.sigev_signo = 0; 2288 2289 context->mq_notify.mqdes = mqdes; 2290 context->type = AUDIT_MQ_NOTIFY; 2291 } 2292 2293 /** 2294 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2295 * @mqdes: MQ descriptor 2296 * @mqstat: MQ flags 2297 * 2298 */ 2299 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2300 { 2301 struct audit_context *context = audit_context(); 2302 2303 context->mq_getsetattr.mqdes = mqdes; 2304 context->mq_getsetattr.mqstat = *mqstat; 2305 context->type = AUDIT_MQ_GETSETATTR; 2306 } 2307 2308 /** 2309 * __audit_ipc_obj - record audit data for ipc object 2310 * @ipcp: ipc permissions 2311 * 2312 */ 2313 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2314 { 2315 struct audit_context *context = audit_context(); 2316 2317 context->ipc.uid = ipcp->uid; 2318 context->ipc.gid = ipcp->gid; 2319 context->ipc.mode = ipcp->mode; 2320 context->ipc.has_perm = 0; 2321 security_ipc_getsecid(ipcp, &context->ipc.osid); 2322 context->type = AUDIT_IPC; 2323 } 2324 2325 /** 2326 * __audit_ipc_set_perm - record audit data for new ipc permissions 2327 * @qbytes: msgq bytes 2328 * @uid: msgq user id 2329 * @gid: msgq group id 2330 * @mode: msgq mode (permissions) 2331 * 2332 * Called only after audit_ipc_obj(). 2333 */ 2334 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2335 { 2336 struct audit_context *context = audit_context(); 2337 2338 context->ipc.qbytes = qbytes; 2339 context->ipc.perm_uid = uid; 2340 context->ipc.perm_gid = gid; 2341 context->ipc.perm_mode = mode; 2342 context->ipc.has_perm = 1; 2343 } 2344 2345 void __audit_bprm(struct linux_binprm *bprm) 2346 { 2347 struct audit_context *context = audit_context(); 2348 2349 context->type = AUDIT_EXECVE; 2350 context->execve.argc = bprm->argc; 2351 } 2352 2353 2354 /** 2355 * __audit_socketcall - record audit data for sys_socketcall 2356 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2357 * @args: args array 2358 * 2359 */ 2360 int __audit_socketcall(int nargs, unsigned long *args) 2361 { 2362 struct audit_context *context = audit_context(); 2363 2364 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2365 return -EINVAL; 2366 context->type = AUDIT_SOCKETCALL; 2367 context->socketcall.nargs = nargs; 2368 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2369 return 0; 2370 } 2371 2372 /** 2373 * __audit_fd_pair - record audit data for pipe and socketpair 2374 * @fd1: the first file descriptor 2375 * @fd2: the second file descriptor 2376 * 2377 */ 2378 void __audit_fd_pair(int fd1, int fd2) 2379 { 2380 struct audit_context *context = audit_context(); 2381 2382 context->fds[0] = fd1; 2383 context->fds[1] = fd2; 2384 } 2385 2386 /** 2387 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2388 * @len: data length in user space 2389 * @a: data address in kernel space 2390 * 2391 * Returns 0 for success or NULL context or < 0 on error. 2392 */ 2393 int __audit_sockaddr(int len, void *a) 2394 { 2395 struct audit_context *context = audit_context(); 2396 2397 if (!context->sockaddr) { 2398 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2399 2400 if (!p) 2401 return -ENOMEM; 2402 context->sockaddr = p; 2403 } 2404 2405 context->sockaddr_len = len; 2406 memcpy(context->sockaddr, a, len); 2407 return 0; 2408 } 2409 2410 void __audit_ptrace(struct task_struct *t) 2411 { 2412 struct audit_context *context = audit_context(); 2413 2414 context->target_pid = task_tgid_nr(t); 2415 context->target_auid = audit_get_loginuid(t); 2416 context->target_uid = task_uid(t); 2417 context->target_sessionid = audit_get_sessionid(t); 2418 security_task_getsecid_obj(t, &context->target_sid); 2419 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2420 } 2421 2422 /** 2423 * audit_signal_info_syscall - record signal info for syscalls 2424 * @t: task being signaled 2425 * 2426 * If the audit subsystem is being terminated, record the task (pid) 2427 * and uid that is doing that. 2428 */ 2429 int audit_signal_info_syscall(struct task_struct *t) 2430 { 2431 struct audit_aux_data_pids *axp; 2432 struct audit_context *ctx = audit_context(); 2433 kuid_t t_uid = task_uid(t); 2434 2435 if (!audit_signals || audit_dummy_context()) 2436 return 0; 2437 2438 /* optimize the common case by putting first signal recipient directly 2439 * in audit_context */ 2440 if (!ctx->target_pid) { 2441 ctx->target_pid = task_tgid_nr(t); 2442 ctx->target_auid = audit_get_loginuid(t); 2443 ctx->target_uid = t_uid; 2444 ctx->target_sessionid = audit_get_sessionid(t); 2445 security_task_getsecid_obj(t, &ctx->target_sid); 2446 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2447 return 0; 2448 } 2449 2450 axp = (void *)ctx->aux_pids; 2451 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2452 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2453 if (!axp) 2454 return -ENOMEM; 2455 2456 axp->d.type = AUDIT_OBJ_PID; 2457 axp->d.next = ctx->aux_pids; 2458 ctx->aux_pids = (void *)axp; 2459 } 2460 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2461 2462 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2463 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2464 axp->target_uid[axp->pid_count] = t_uid; 2465 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2466 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2467 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2468 axp->pid_count++; 2469 2470 return 0; 2471 } 2472 2473 /** 2474 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2475 * @bprm: pointer to the bprm being processed 2476 * @new: the proposed new credentials 2477 * @old: the old credentials 2478 * 2479 * Simply check if the proc already has the caps given by the file and if not 2480 * store the priv escalation info for later auditing at the end of the syscall 2481 * 2482 * -Eric 2483 */ 2484 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2485 const struct cred *new, const struct cred *old) 2486 { 2487 struct audit_aux_data_bprm_fcaps *ax; 2488 struct audit_context *context = audit_context(); 2489 struct cpu_vfs_cap_data vcaps; 2490 2491 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2492 if (!ax) 2493 return -ENOMEM; 2494 2495 ax->d.type = AUDIT_BPRM_FCAPS; 2496 ax->d.next = context->aux; 2497 context->aux = (void *)ax; 2498 2499 get_vfs_caps_from_disk(&init_user_ns, 2500 bprm->file->f_path.dentry, &vcaps); 2501 2502 ax->fcap.permitted = vcaps.permitted; 2503 ax->fcap.inheritable = vcaps.inheritable; 2504 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2505 ax->fcap.rootid = vcaps.rootid; 2506 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2507 2508 ax->old_pcap.permitted = old->cap_permitted; 2509 ax->old_pcap.inheritable = old->cap_inheritable; 2510 ax->old_pcap.effective = old->cap_effective; 2511 ax->old_pcap.ambient = old->cap_ambient; 2512 2513 ax->new_pcap.permitted = new->cap_permitted; 2514 ax->new_pcap.inheritable = new->cap_inheritable; 2515 ax->new_pcap.effective = new->cap_effective; 2516 ax->new_pcap.ambient = new->cap_ambient; 2517 return 0; 2518 } 2519 2520 /** 2521 * __audit_log_capset - store information about the arguments to the capset syscall 2522 * @new: the new credentials 2523 * @old: the old (current) credentials 2524 * 2525 * Record the arguments userspace sent to sys_capset for later printing by the 2526 * audit system if applicable 2527 */ 2528 void __audit_log_capset(const struct cred *new, const struct cred *old) 2529 { 2530 struct audit_context *context = audit_context(); 2531 2532 context->capset.pid = task_tgid_nr(current); 2533 context->capset.cap.effective = new->cap_effective; 2534 context->capset.cap.inheritable = new->cap_effective; 2535 context->capset.cap.permitted = new->cap_permitted; 2536 context->capset.cap.ambient = new->cap_ambient; 2537 context->type = AUDIT_CAPSET; 2538 } 2539 2540 void __audit_mmap_fd(int fd, int flags) 2541 { 2542 struct audit_context *context = audit_context(); 2543 2544 context->mmap.fd = fd; 2545 context->mmap.flags = flags; 2546 context->type = AUDIT_MMAP; 2547 } 2548 2549 void __audit_log_kern_module(char *name) 2550 { 2551 struct audit_context *context = audit_context(); 2552 2553 context->module.name = kstrdup(name, GFP_KERNEL); 2554 if (!context->module.name) 2555 audit_log_lost("out of memory in __audit_log_kern_module"); 2556 context->type = AUDIT_KERN_MODULE; 2557 } 2558 2559 void __audit_fanotify(unsigned int response) 2560 { 2561 audit_log(audit_context(), GFP_KERNEL, 2562 AUDIT_FANOTIFY, "resp=%u", response); 2563 } 2564 2565 void __audit_tk_injoffset(struct timespec64 offset) 2566 { 2567 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET, 2568 "sec=%lli nsec=%li", 2569 (long long)offset.tv_sec, offset.tv_nsec); 2570 } 2571 2572 static void audit_log_ntp_val(const struct audit_ntp_data *ad, 2573 const char *op, enum audit_ntp_type type) 2574 { 2575 const struct audit_ntp_val *val = &ad->vals[type]; 2576 2577 if (val->newval == val->oldval) 2578 return; 2579 2580 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL, 2581 "op=%s old=%lli new=%lli", op, val->oldval, val->newval); 2582 } 2583 2584 void __audit_ntp_log(const struct audit_ntp_data *ad) 2585 { 2586 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET); 2587 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ); 2588 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS); 2589 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI); 2590 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK); 2591 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST); 2592 } 2593 2594 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2595 enum audit_nfcfgop op, gfp_t gfp) 2596 { 2597 struct audit_buffer *ab; 2598 char comm[sizeof(current->comm)]; 2599 2600 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2601 if (!ab) 2602 return; 2603 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2604 name, af, nentries, audit_nfcfgs[op].s); 2605 2606 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2607 audit_log_task_context(ab); /* subj= */ 2608 audit_log_format(ab, " comm="); 2609 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2610 audit_log_end(ab); 2611 } 2612 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2613 2614 static void audit_log_task(struct audit_buffer *ab) 2615 { 2616 kuid_t auid, uid; 2617 kgid_t gid; 2618 unsigned int sessionid; 2619 char comm[sizeof(current->comm)]; 2620 2621 auid = audit_get_loginuid(current); 2622 sessionid = audit_get_sessionid(current); 2623 current_uid_gid(&uid, &gid); 2624 2625 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2626 from_kuid(&init_user_ns, auid), 2627 from_kuid(&init_user_ns, uid), 2628 from_kgid(&init_user_ns, gid), 2629 sessionid); 2630 audit_log_task_context(ab); 2631 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2632 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2633 audit_log_d_path_exe(ab, current->mm); 2634 } 2635 2636 /** 2637 * audit_core_dumps - record information about processes that end abnormally 2638 * @signr: signal value 2639 * 2640 * If a process ends with a core dump, something fishy is going on and we 2641 * should record the event for investigation. 2642 */ 2643 void audit_core_dumps(long signr) 2644 { 2645 struct audit_buffer *ab; 2646 2647 if (!audit_enabled) 2648 return; 2649 2650 if (signr == SIGQUIT) /* don't care for those */ 2651 return; 2652 2653 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2654 if (unlikely(!ab)) 2655 return; 2656 audit_log_task(ab); 2657 audit_log_format(ab, " sig=%ld res=1", signr); 2658 audit_log_end(ab); 2659 } 2660 2661 /** 2662 * audit_seccomp - record information about a seccomp action 2663 * @syscall: syscall number 2664 * @signr: signal value 2665 * @code: the seccomp action 2666 * 2667 * Record the information associated with a seccomp action. Event filtering for 2668 * seccomp actions that are not to be logged is done in seccomp_log(). 2669 * Therefore, this function forces auditing independent of the audit_enabled 2670 * and dummy context state because seccomp actions should be logged even when 2671 * audit is not in use. 2672 */ 2673 void audit_seccomp(unsigned long syscall, long signr, int code) 2674 { 2675 struct audit_buffer *ab; 2676 2677 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2678 if (unlikely(!ab)) 2679 return; 2680 audit_log_task(ab); 2681 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2682 signr, syscall_get_arch(current), syscall, 2683 in_compat_syscall(), KSTK_EIP(current), code); 2684 audit_log_end(ab); 2685 } 2686 2687 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2688 int res) 2689 { 2690 struct audit_buffer *ab; 2691 2692 if (!audit_enabled) 2693 return; 2694 2695 ab = audit_log_start(audit_context(), GFP_KERNEL, 2696 AUDIT_CONFIG_CHANGE); 2697 if (unlikely(!ab)) 2698 return; 2699 2700 audit_log_format(ab, 2701 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2702 names, old_names, res); 2703 audit_log_end(ab); 2704 } 2705 2706 struct list_head *audit_killed_trees(void) 2707 { 2708 struct audit_context *ctx = audit_context(); 2709 2710 if (likely(!ctx || !ctx->in_syscall)) 2711 return NULL; 2712 return &ctx->killed_trees; 2713 } 2714