xref: /openbmc/linux/kernel/auditsc.c (revision e481ff3f)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79 
80 #include "audit.h"
81 
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86 
87 /* no execve audit message should be longer than this (userspace limits),
88  * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90 
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93 
94 /* number of audit rules */
95 int audit_n_rules;
96 
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99 
100 struct audit_aux_data {
101 	struct audit_aux_data	*next;
102 	int			type;
103 };
104 
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS	16
107 
108 struct audit_aux_data_pids {
109 	struct audit_aux_data	d;
110 	pid_t			target_pid[AUDIT_AUX_PIDS];
111 	kuid_t			target_auid[AUDIT_AUX_PIDS];
112 	kuid_t			target_uid[AUDIT_AUX_PIDS];
113 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
114 	u32			target_sid[AUDIT_AUX_PIDS];
115 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 	int			pid_count;
117 };
118 
119 struct audit_aux_data_bprm_fcaps {
120 	struct audit_aux_data	d;
121 	struct audit_cap_data	fcap;
122 	unsigned int		fcap_ver;
123 	struct audit_cap_data	old_pcap;
124 	struct audit_cap_data	new_pcap;
125 };
126 
127 struct audit_tree_refs {
128 	struct audit_tree_refs *next;
129 	struct audit_chunk *c[31];
130 };
131 
132 struct audit_nfcfgop_tab {
133 	enum audit_nfcfgop	op;
134 	const char		*s;
135 };
136 
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
139 	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
140 	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
141 	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
142 	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
143 	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
144 	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
145 	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
146 	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
147 	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
148 	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
149 	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
150 	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
151 	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
152 	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
153 	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
154 	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
155 	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
156 	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
157 	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
158 };
159 
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 	unsigned n;
163 
164 	if (unlikely(!ctx))
165 		return 0;
166 	n = ctx->major;
167 
168 	switch (audit_classify_syscall(ctx->arch, n)) {
169 	case 0:	/* native */
170 		if ((mask & AUDIT_PERM_WRITE) &&
171 		     audit_match_class(AUDIT_CLASS_WRITE, n))
172 			return 1;
173 		if ((mask & AUDIT_PERM_READ) &&
174 		     audit_match_class(AUDIT_CLASS_READ, n))
175 			return 1;
176 		if ((mask & AUDIT_PERM_ATTR) &&
177 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
178 			return 1;
179 		return 0;
180 	case 1: /* 32bit on biarch */
181 		if ((mask & AUDIT_PERM_WRITE) &&
182 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
183 			return 1;
184 		if ((mask & AUDIT_PERM_READ) &&
185 		     audit_match_class(AUDIT_CLASS_READ_32, n))
186 			return 1;
187 		if ((mask & AUDIT_PERM_ATTR) &&
188 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
189 			return 1;
190 		return 0;
191 	case 2: /* open */
192 		return mask & ACC_MODE(ctx->argv[1]);
193 	case 3: /* openat */
194 		return mask & ACC_MODE(ctx->argv[2]);
195 	case 4: /* socketcall */
196 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
197 	case 5: /* execve */
198 		return mask & AUDIT_PERM_EXEC;
199 	default:
200 		return 0;
201 	}
202 }
203 
204 static int audit_match_filetype(struct audit_context *ctx, int val)
205 {
206 	struct audit_names *n;
207 	umode_t mode = (umode_t)val;
208 
209 	if (unlikely(!ctx))
210 		return 0;
211 
212 	list_for_each_entry(n, &ctx->names_list, list) {
213 		if ((n->ino != AUDIT_INO_UNSET) &&
214 		    ((n->mode & S_IFMT) == mode))
215 			return 1;
216 	}
217 
218 	return 0;
219 }
220 
221 /*
222  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
223  * ->first_trees points to its beginning, ->trees - to the current end of data.
224  * ->tree_count is the number of free entries in array pointed to by ->trees.
225  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
226  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
227  * it's going to remain 1-element for almost any setup) until we free context itself.
228  * References in it _are_ dropped - at the same time we free/drop aux stuff.
229  */
230 
231 static void audit_set_auditable(struct audit_context *ctx)
232 {
233 	if (!ctx->prio) {
234 		ctx->prio = 1;
235 		ctx->current_state = AUDIT_STATE_RECORD;
236 	}
237 }
238 
239 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
240 {
241 	struct audit_tree_refs *p = ctx->trees;
242 	int left = ctx->tree_count;
243 
244 	if (likely(left)) {
245 		p->c[--left] = chunk;
246 		ctx->tree_count = left;
247 		return 1;
248 	}
249 	if (!p)
250 		return 0;
251 	p = p->next;
252 	if (p) {
253 		p->c[30] = chunk;
254 		ctx->trees = p;
255 		ctx->tree_count = 30;
256 		return 1;
257 	}
258 	return 0;
259 }
260 
261 static int grow_tree_refs(struct audit_context *ctx)
262 {
263 	struct audit_tree_refs *p = ctx->trees;
264 
265 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
266 	if (!ctx->trees) {
267 		ctx->trees = p;
268 		return 0;
269 	}
270 	if (p)
271 		p->next = ctx->trees;
272 	else
273 		ctx->first_trees = ctx->trees;
274 	ctx->tree_count = 31;
275 	return 1;
276 }
277 
278 static void unroll_tree_refs(struct audit_context *ctx,
279 		      struct audit_tree_refs *p, int count)
280 {
281 	struct audit_tree_refs *q;
282 	int n;
283 
284 	if (!p) {
285 		/* we started with empty chain */
286 		p = ctx->first_trees;
287 		count = 31;
288 		/* if the very first allocation has failed, nothing to do */
289 		if (!p)
290 			return;
291 	}
292 	n = count;
293 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
294 		while (n--) {
295 			audit_put_chunk(q->c[n]);
296 			q->c[n] = NULL;
297 		}
298 	}
299 	while (n-- > ctx->tree_count) {
300 		audit_put_chunk(q->c[n]);
301 		q->c[n] = NULL;
302 	}
303 	ctx->trees = p;
304 	ctx->tree_count = count;
305 }
306 
307 static void free_tree_refs(struct audit_context *ctx)
308 {
309 	struct audit_tree_refs *p, *q;
310 
311 	for (p = ctx->first_trees; p; p = q) {
312 		q = p->next;
313 		kfree(p);
314 	}
315 }
316 
317 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
318 {
319 	struct audit_tree_refs *p;
320 	int n;
321 
322 	if (!tree)
323 		return 0;
324 	/* full ones */
325 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
326 		for (n = 0; n < 31; n++)
327 			if (audit_tree_match(p->c[n], tree))
328 				return 1;
329 	}
330 	/* partial */
331 	if (p) {
332 		for (n = ctx->tree_count; n < 31; n++)
333 			if (audit_tree_match(p->c[n], tree))
334 				return 1;
335 	}
336 	return 0;
337 }
338 
339 static int audit_compare_uid(kuid_t uid,
340 			     struct audit_names *name,
341 			     struct audit_field *f,
342 			     struct audit_context *ctx)
343 {
344 	struct audit_names *n;
345 	int rc;
346 
347 	if (name) {
348 		rc = audit_uid_comparator(uid, f->op, name->uid);
349 		if (rc)
350 			return rc;
351 	}
352 
353 	if (ctx) {
354 		list_for_each_entry(n, &ctx->names_list, list) {
355 			rc = audit_uid_comparator(uid, f->op, n->uid);
356 			if (rc)
357 				return rc;
358 		}
359 	}
360 	return 0;
361 }
362 
363 static int audit_compare_gid(kgid_t gid,
364 			     struct audit_names *name,
365 			     struct audit_field *f,
366 			     struct audit_context *ctx)
367 {
368 	struct audit_names *n;
369 	int rc;
370 
371 	if (name) {
372 		rc = audit_gid_comparator(gid, f->op, name->gid);
373 		if (rc)
374 			return rc;
375 	}
376 
377 	if (ctx) {
378 		list_for_each_entry(n, &ctx->names_list, list) {
379 			rc = audit_gid_comparator(gid, f->op, n->gid);
380 			if (rc)
381 				return rc;
382 		}
383 	}
384 	return 0;
385 }
386 
387 static int audit_field_compare(struct task_struct *tsk,
388 			       const struct cred *cred,
389 			       struct audit_field *f,
390 			       struct audit_context *ctx,
391 			       struct audit_names *name)
392 {
393 	switch (f->val) {
394 	/* process to file object comparisons */
395 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
396 		return audit_compare_uid(cred->uid, name, f, ctx);
397 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
398 		return audit_compare_gid(cred->gid, name, f, ctx);
399 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
400 		return audit_compare_uid(cred->euid, name, f, ctx);
401 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
402 		return audit_compare_gid(cred->egid, name, f, ctx);
403 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
404 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
405 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
406 		return audit_compare_uid(cred->suid, name, f, ctx);
407 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
408 		return audit_compare_gid(cred->sgid, name, f, ctx);
409 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
410 		return audit_compare_uid(cred->fsuid, name, f, ctx);
411 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
412 		return audit_compare_gid(cred->fsgid, name, f, ctx);
413 	/* uid comparisons */
414 	case AUDIT_COMPARE_UID_TO_AUID:
415 		return audit_uid_comparator(cred->uid, f->op,
416 					    audit_get_loginuid(tsk));
417 	case AUDIT_COMPARE_UID_TO_EUID:
418 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
419 	case AUDIT_COMPARE_UID_TO_SUID:
420 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
421 	case AUDIT_COMPARE_UID_TO_FSUID:
422 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
423 	/* auid comparisons */
424 	case AUDIT_COMPARE_AUID_TO_EUID:
425 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 					    cred->euid);
427 	case AUDIT_COMPARE_AUID_TO_SUID:
428 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
429 					    cred->suid);
430 	case AUDIT_COMPARE_AUID_TO_FSUID:
431 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
432 					    cred->fsuid);
433 	/* euid comparisons */
434 	case AUDIT_COMPARE_EUID_TO_SUID:
435 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
436 	case AUDIT_COMPARE_EUID_TO_FSUID:
437 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
438 	/* suid comparisons */
439 	case AUDIT_COMPARE_SUID_TO_FSUID:
440 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
441 	/* gid comparisons */
442 	case AUDIT_COMPARE_GID_TO_EGID:
443 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
444 	case AUDIT_COMPARE_GID_TO_SGID:
445 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
446 	case AUDIT_COMPARE_GID_TO_FSGID:
447 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
448 	/* egid comparisons */
449 	case AUDIT_COMPARE_EGID_TO_SGID:
450 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
451 	case AUDIT_COMPARE_EGID_TO_FSGID:
452 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
453 	/* sgid comparison */
454 	case AUDIT_COMPARE_SGID_TO_FSGID:
455 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
456 	default:
457 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
458 		return 0;
459 	}
460 	return 0;
461 }
462 
463 /* Determine if any context name data matches a rule's watch data */
464 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
465  * otherwise.
466  *
467  * If task_creation is true, this is an explicit indication that we are
468  * filtering a task rule at task creation time.  This and tsk == current are
469  * the only situations where tsk->cred may be accessed without an rcu read lock.
470  */
471 static int audit_filter_rules(struct task_struct *tsk,
472 			      struct audit_krule *rule,
473 			      struct audit_context *ctx,
474 			      struct audit_names *name,
475 			      enum audit_state *state,
476 			      bool task_creation)
477 {
478 	const struct cred *cred;
479 	int i, need_sid = 1;
480 	u32 sid;
481 	unsigned int sessionid;
482 
483 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
484 
485 	for (i = 0; i < rule->field_count; i++) {
486 		struct audit_field *f = &rule->fields[i];
487 		struct audit_names *n;
488 		int result = 0;
489 		pid_t pid;
490 
491 		switch (f->type) {
492 		case AUDIT_PID:
493 			pid = task_tgid_nr(tsk);
494 			result = audit_comparator(pid, f->op, f->val);
495 			break;
496 		case AUDIT_PPID:
497 			if (ctx) {
498 				if (!ctx->ppid)
499 					ctx->ppid = task_ppid_nr(tsk);
500 				result = audit_comparator(ctx->ppid, f->op, f->val);
501 			}
502 			break;
503 		case AUDIT_EXE:
504 			result = audit_exe_compare(tsk, rule->exe);
505 			if (f->op == Audit_not_equal)
506 				result = !result;
507 			break;
508 		case AUDIT_UID:
509 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
510 			break;
511 		case AUDIT_EUID:
512 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
513 			break;
514 		case AUDIT_SUID:
515 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
516 			break;
517 		case AUDIT_FSUID:
518 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
519 			break;
520 		case AUDIT_GID:
521 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
522 			if (f->op == Audit_equal) {
523 				if (!result)
524 					result = groups_search(cred->group_info, f->gid);
525 			} else if (f->op == Audit_not_equal) {
526 				if (result)
527 					result = !groups_search(cred->group_info, f->gid);
528 			}
529 			break;
530 		case AUDIT_EGID:
531 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
532 			if (f->op == Audit_equal) {
533 				if (!result)
534 					result = groups_search(cred->group_info, f->gid);
535 			} else if (f->op == Audit_not_equal) {
536 				if (result)
537 					result = !groups_search(cred->group_info, f->gid);
538 			}
539 			break;
540 		case AUDIT_SGID:
541 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
542 			break;
543 		case AUDIT_FSGID:
544 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
545 			break;
546 		case AUDIT_SESSIONID:
547 			sessionid = audit_get_sessionid(tsk);
548 			result = audit_comparator(sessionid, f->op, f->val);
549 			break;
550 		case AUDIT_PERS:
551 			result = audit_comparator(tsk->personality, f->op, f->val);
552 			break;
553 		case AUDIT_ARCH:
554 			if (ctx)
555 				result = audit_comparator(ctx->arch, f->op, f->val);
556 			break;
557 
558 		case AUDIT_EXIT:
559 			if (ctx && ctx->return_valid != AUDITSC_INVALID)
560 				result = audit_comparator(ctx->return_code, f->op, f->val);
561 			break;
562 		case AUDIT_SUCCESS:
563 			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
564 				if (f->val)
565 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
566 				else
567 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
568 			}
569 			break;
570 		case AUDIT_DEVMAJOR:
571 			if (name) {
572 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
573 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
574 					++result;
575 			} else if (ctx) {
576 				list_for_each_entry(n, &ctx->names_list, list) {
577 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
578 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
579 						++result;
580 						break;
581 					}
582 				}
583 			}
584 			break;
585 		case AUDIT_DEVMINOR:
586 			if (name) {
587 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
588 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
589 					++result;
590 			} else if (ctx) {
591 				list_for_each_entry(n, &ctx->names_list, list) {
592 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
593 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
594 						++result;
595 						break;
596 					}
597 				}
598 			}
599 			break;
600 		case AUDIT_INODE:
601 			if (name)
602 				result = audit_comparator(name->ino, f->op, f->val);
603 			else if (ctx) {
604 				list_for_each_entry(n, &ctx->names_list, list) {
605 					if (audit_comparator(n->ino, f->op, f->val)) {
606 						++result;
607 						break;
608 					}
609 				}
610 			}
611 			break;
612 		case AUDIT_OBJ_UID:
613 			if (name) {
614 				result = audit_uid_comparator(name->uid, f->op, f->uid);
615 			} else if (ctx) {
616 				list_for_each_entry(n, &ctx->names_list, list) {
617 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
618 						++result;
619 						break;
620 					}
621 				}
622 			}
623 			break;
624 		case AUDIT_OBJ_GID:
625 			if (name) {
626 				result = audit_gid_comparator(name->gid, f->op, f->gid);
627 			} else if (ctx) {
628 				list_for_each_entry(n, &ctx->names_list, list) {
629 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
630 						++result;
631 						break;
632 					}
633 				}
634 			}
635 			break;
636 		case AUDIT_WATCH:
637 			if (name) {
638 				result = audit_watch_compare(rule->watch,
639 							     name->ino,
640 							     name->dev);
641 				if (f->op == Audit_not_equal)
642 					result = !result;
643 			}
644 			break;
645 		case AUDIT_DIR:
646 			if (ctx) {
647 				result = match_tree_refs(ctx, rule->tree);
648 				if (f->op == Audit_not_equal)
649 					result = !result;
650 			}
651 			break;
652 		case AUDIT_LOGINUID:
653 			result = audit_uid_comparator(audit_get_loginuid(tsk),
654 						      f->op, f->uid);
655 			break;
656 		case AUDIT_LOGINUID_SET:
657 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
658 			break;
659 		case AUDIT_SADDR_FAM:
660 			if (ctx->sockaddr)
661 				result = audit_comparator(ctx->sockaddr->ss_family,
662 							  f->op, f->val);
663 			break;
664 		case AUDIT_SUBJ_USER:
665 		case AUDIT_SUBJ_ROLE:
666 		case AUDIT_SUBJ_TYPE:
667 		case AUDIT_SUBJ_SEN:
668 		case AUDIT_SUBJ_CLR:
669 			/* NOTE: this may return negative values indicating
670 			   a temporary error.  We simply treat this as a
671 			   match for now to avoid losing information that
672 			   may be wanted.   An error message will also be
673 			   logged upon error */
674 			if (f->lsm_rule) {
675 				if (need_sid) {
676 					security_task_getsecid_subj(tsk, &sid);
677 					need_sid = 0;
678 				}
679 				result = security_audit_rule_match(sid, f->type,
680 								   f->op,
681 								   f->lsm_rule);
682 			}
683 			break;
684 		case AUDIT_OBJ_USER:
685 		case AUDIT_OBJ_ROLE:
686 		case AUDIT_OBJ_TYPE:
687 		case AUDIT_OBJ_LEV_LOW:
688 		case AUDIT_OBJ_LEV_HIGH:
689 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
690 			   also applies here */
691 			if (f->lsm_rule) {
692 				/* Find files that match */
693 				if (name) {
694 					result = security_audit_rule_match(
695 								name->osid,
696 								f->type,
697 								f->op,
698 								f->lsm_rule);
699 				} else if (ctx) {
700 					list_for_each_entry(n, &ctx->names_list, list) {
701 						if (security_audit_rule_match(
702 								n->osid,
703 								f->type,
704 								f->op,
705 								f->lsm_rule)) {
706 							++result;
707 							break;
708 						}
709 					}
710 				}
711 				/* Find ipc objects that match */
712 				if (!ctx || ctx->type != AUDIT_IPC)
713 					break;
714 				if (security_audit_rule_match(ctx->ipc.osid,
715 							      f->type, f->op,
716 							      f->lsm_rule))
717 					++result;
718 			}
719 			break;
720 		case AUDIT_ARG0:
721 		case AUDIT_ARG1:
722 		case AUDIT_ARG2:
723 		case AUDIT_ARG3:
724 			if (ctx)
725 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
726 			break;
727 		case AUDIT_FILTERKEY:
728 			/* ignore this field for filtering */
729 			result = 1;
730 			break;
731 		case AUDIT_PERM:
732 			result = audit_match_perm(ctx, f->val);
733 			if (f->op == Audit_not_equal)
734 				result = !result;
735 			break;
736 		case AUDIT_FILETYPE:
737 			result = audit_match_filetype(ctx, f->val);
738 			if (f->op == Audit_not_equal)
739 				result = !result;
740 			break;
741 		case AUDIT_FIELD_COMPARE:
742 			result = audit_field_compare(tsk, cred, f, ctx, name);
743 			break;
744 		}
745 		if (!result)
746 			return 0;
747 	}
748 
749 	if (ctx) {
750 		if (rule->prio <= ctx->prio)
751 			return 0;
752 		if (rule->filterkey) {
753 			kfree(ctx->filterkey);
754 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
755 		}
756 		ctx->prio = rule->prio;
757 	}
758 	switch (rule->action) {
759 	case AUDIT_NEVER:
760 		*state = AUDIT_STATE_DISABLED;
761 		break;
762 	case AUDIT_ALWAYS:
763 		*state = AUDIT_STATE_RECORD;
764 		break;
765 	}
766 	return 1;
767 }
768 
769 /* At process creation time, we can determine if system-call auditing is
770  * completely disabled for this task.  Since we only have the task
771  * structure at this point, we can only check uid and gid.
772  */
773 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
774 {
775 	struct audit_entry *e;
776 	enum audit_state   state;
777 
778 	rcu_read_lock();
779 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
780 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
781 				       &state, true)) {
782 			if (state == AUDIT_STATE_RECORD)
783 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
784 			rcu_read_unlock();
785 			return state;
786 		}
787 	}
788 	rcu_read_unlock();
789 	return AUDIT_STATE_BUILD;
790 }
791 
792 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
793 {
794 	int word, bit;
795 
796 	if (val > 0xffffffff)
797 		return false;
798 
799 	word = AUDIT_WORD(val);
800 	if (word >= AUDIT_BITMASK_SIZE)
801 		return false;
802 
803 	bit = AUDIT_BIT(val);
804 
805 	return rule->mask[word] & bit;
806 }
807 
808 /* At syscall exit time, this filter is called if the audit_state is
809  * not low enough that auditing cannot take place, but is also not
810  * high enough that we already know we have to write an audit record
811  * (i.e., the state is AUDIT_STATE_BUILD).
812  */
813 static void audit_filter_syscall(struct task_struct *tsk,
814 				 struct audit_context *ctx)
815 {
816 	struct audit_entry *e;
817 	enum audit_state state;
818 
819 	if (auditd_test_task(tsk))
820 		return;
821 
822 	rcu_read_lock();
823 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
824 		if (audit_in_mask(&e->rule, ctx->major) &&
825 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
826 				       &state, false)) {
827 			rcu_read_unlock();
828 			ctx->current_state = state;
829 			return;
830 		}
831 	}
832 	rcu_read_unlock();
833 	return;
834 }
835 
836 /*
837  * Given an audit_name check the inode hash table to see if they match.
838  * Called holding the rcu read lock to protect the use of audit_inode_hash
839  */
840 static int audit_filter_inode_name(struct task_struct *tsk,
841 				   struct audit_names *n,
842 				   struct audit_context *ctx) {
843 	int h = audit_hash_ino((u32)n->ino);
844 	struct list_head *list = &audit_inode_hash[h];
845 	struct audit_entry *e;
846 	enum audit_state state;
847 
848 	list_for_each_entry_rcu(e, list, list) {
849 		if (audit_in_mask(&e->rule, ctx->major) &&
850 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
851 			ctx->current_state = state;
852 			return 1;
853 		}
854 	}
855 	return 0;
856 }
857 
858 /* At syscall exit time, this filter is called if any audit_names have been
859  * collected during syscall processing.  We only check rules in sublists at hash
860  * buckets applicable to the inode numbers in audit_names.
861  * Regarding audit_state, same rules apply as for audit_filter_syscall().
862  */
863 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
864 {
865 	struct audit_names *n;
866 
867 	if (auditd_test_task(tsk))
868 		return;
869 
870 	rcu_read_lock();
871 
872 	list_for_each_entry(n, &ctx->names_list, list) {
873 		if (audit_filter_inode_name(tsk, n, ctx))
874 			break;
875 	}
876 	rcu_read_unlock();
877 }
878 
879 static inline void audit_proctitle_free(struct audit_context *context)
880 {
881 	kfree(context->proctitle.value);
882 	context->proctitle.value = NULL;
883 	context->proctitle.len = 0;
884 }
885 
886 static inline void audit_free_module(struct audit_context *context)
887 {
888 	if (context->type == AUDIT_KERN_MODULE) {
889 		kfree(context->module.name);
890 		context->module.name = NULL;
891 	}
892 }
893 static inline void audit_free_names(struct audit_context *context)
894 {
895 	struct audit_names *n, *next;
896 
897 	list_for_each_entry_safe(n, next, &context->names_list, list) {
898 		list_del(&n->list);
899 		if (n->name)
900 			putname(n->name);
901 		if (n->should_free)
902 			kfree(n);
903 	}
904 	context->name_count = 0;
905 	path_put(&context->pwd);
906 	context->pwd.dentry = NULL;
907 	context->pwd.mnt = NULL;
908 }
909 
910 static inline void audit_free_aux(struct audit_context *context)
911 {
912 	struct audit_aux_data *aux;
913 
914 	while ((aux = context->aux)) {
915 		context->aux = aux->next;
916 		kfree(aux);
917 	}
918 	while ((aux = context->aux_pids)) {
919 		context->aux_pids = aux->next;
920 		kfree(aux);
921 	}
922 }
923 
924 static inline struct audit_context *audit_alloc_context(enum audit_state state)
925 {
926 	struct audit_context *context;
927 
928 	context = kzalloc(sizeof(*context), GFP_KERNEL);
929 	if (!context)
930 		return NULL;
931 	context->state = state;
932 	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
933 	INIT_LIST_HEAD(&context->killed_trees);
934 	INIT_LIST_HEAD(&context->names_list);
935 	context->fds[0] = -1;
936 	context->return_valid = AUDITSC_INVALID;
937 	return context;
938 }
939 
940 /**
941  * audit_alloc - allocate an audit context block for a task
942  * @tsk: task
943  *
944  * Filter on the task information and allocate a per-task audit context
945  * if necessary.  Doing so turns on system call auditing for the
946  * specified task.  This is called from copy_process, so no lock is
947  * needed.
948  */
949 int audit_alloc(struct task_struct *tsk)
950 {
951 	struct audit_context *context;
952 	enum audit_state     state;
953 	char *key = NULL;
954 
955 	if (likely(!audit_ever_enabled))
956 		return 0; /* Return if not auditing. */
957 
958 	state = audit_filter_task(tsk, &key);
959 	if (state == AUDIT_STATE_DISABLED) {
960 		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
961 		return 0;
962 	}
963 
964 	if (!(context = audit_alloc_context(state))) {
965 		kfree(key);
966 		audit_log_lost("out of memory in audit_alloc");
967 		return -ENOMEM;
968 	}
969 	context->filterkey = key;
970 
971 	audit_set_context(tsk, context);
972 	set_task_syscall_work(tsk, SYSCALL_AUDIT);
973 	return 0;
974 }
975 
976 static inline void audit_free_context(struct audit_context *context)
977 {
978 	audit_free_module(context);
979 	audit_free_names(context);
980 	unroll_tree_refs(context, NULL, 0);
981 	free_tree_refs(context);
982 	audit_free_aux(context);
983 	kfree(context->filterkey);
984 	kfree(context->sockaddr);
985 	audit_proctitle_free(context);
986 	kfree(context);
987 }
988 
989 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
991 				 u32 sid, char *comm)
992 {
993 	struct audit_buffer *ab;
994 	char *ctx = NULL;
995 	u32 len;
996 	int rc = 0;
997 
998 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 	if (!ab)
1000 		return rc;
1001 
1002 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1003 			 from_kuid(&init_user_ns, auid),
1004 			 from_kuid(&init_user_ns, uid), sessionid);
1005 	if (sid) {
1006 		if (security_secid_to_secctx(sid, &ctx, &len)) {
1007 			audit_log_format(ab, " obj=(none)");
1008 			rc = 1;
1009 		} else {
1010 			audit_log_format(ab, " obj=%s", ctx);
1011 			security_release_secctx(ctx, len);
1012 		}
1013 	}
1014 	audit_log_format(ab, " ocomm=");
1015 	audit_log_untrustedstring(ab, comm);
1016 	audit_log_end(ab);
1017 
1018 	return rc;
1019 }
1020 
1021 static void audit_log_execve_info(struct audit_context *context,
1022 				  struct audit_buffer **ab)
1023 {
1024 	long len_max;
1025 	long len_rem;
1026 	long len_full;
1027 	long len_buf;
1028 	long len_abuf = 0;
1029 	long len_tmp;
1030 	bool require_data;
1031 	bool encode;
1032 	unsigned int iter;
1033 	unsigned int arg;
1034 	char *buf_head;
1035 	char *buf;
1036 	const char __user *p = (const char __user *)current->mm->arg_start;
1037 
1038 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1039 	 *       data we put in the audit record for this argument (see the
1040 	 *       code below) ... at this point in time 96 is plenty */
1041 	char abuf[96];
1042 
1043 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1044 	 *       current value of 7500 is not as important as the fact that it
1045 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1046 	 *       room if we go over a little bit in the logging below */
1047 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1048 	len_max = MAX_EXECVE_AUDIT_LEN;
1049 
1050 	/* scratch buffer to hold the userspace args */
1051 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1052 	if (!buf_head) {
1053 		audit_panic("out of memory for argv string");
1054 		return;
1055 	}
1056 	buf = buf_head;
1057 
1058 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1059 
1060 	len_rem = len_max;
1061 	len_buf = 0;
1062 	len_full = 0;
1063 	require_data = true;
1064 	encode = false;
1065 	iter = 0;
1066 	arg = 0;
1067 	do {
1068 		/* NOTE: we don't ever want to trust this value for anything
1069 		 *       serious, but the audit record format insists we
1070 		 *       provide an argument length for really long arguments,
1071 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1072 		 *       to use strncpy_from_user() to obtain this value for
1073 		 *       recording in the log, although we don't use it
1074 		 *       anywhere here to avoid a double-fetch problem */
1075 		if (len_full == 0)
1076 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1077 
1078 		/* read more data from userspace */
1079 		if (require_data) {
1080 			/* can we make more room in the buffer? */
1081 			if (buf != buf_head) {
1082 				memmove(buf_head, buf, len_buf);
1083 				buf = buf_head;
1084 			}
1085 
1086 			/* fetch as much as we can of the argument */
1087 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1088 						    len_max - len_buf);
1089 			if (len_tmp == -EFAULT) {
1090 				/* unable to copy from userspace */
1091 				send_sig(SIGKILL, current, 0);
1092 				goto out;
1093 			} else if (len_tmp == (len_max - len_buf)) {
1094 				/* buffer is not large enough */
1095 				require_data = true;
1096 				/* NOTE: if we are going to span multiple
1097 				 *       buffers force the encoding so we stand
1098 				 *       a chance at a sane len_full value and
1099 				 *       consistent record encoding */
1100 				encode = true;
1101 				len_full = len_full * 2;
1102 				p += len_tmp;
1103 			} else {
1104 				require_data = false;
1105 				if (!encode)
1106 					encode = audit_string_contains_control(
1107 								buf, len_tmp);
1108 				/* try to use a trusted value for len_full */
1109 				if (len_full < len_max)
1110 					len_full = (encode ?
1111 						    len_tmp * 2 : len_tmp);
1112 				p += len_tmp + 1;
1113 			}
1114 			len_buf += len_tmp;
1115 			buf_head[len_buf] = '\0';
1116 
1117 			/* length of the buffer in the audit record? */
1118 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1119 		}
1120 
1121 		/* write as much as we can to the audit log */
1122 		if (len_buf >= 0) {
1123 			/* NOTE: some magic numbers here - basically if we
1124 			 *       can't fit a reasonable amount of data into the
1125 			 *       existing audit buffer, flush it and start with
1126 			 *       a new buffer */
1127 			if ((sizeof(abuf) + 8) > len_rem) {
1128 				len_rem = len_max;
1129 				audit_log_end(*ab);
1130 				*ab = audit_log_start(context,
1131 						      GFP_KERNEL, AUDIT_EXECVE);
1132 				if (!*ab)
1133 					goto out;
1134 			}
1135 
1136 			/* create the non-arg portion of the arg record */
1137 			len_tmp = 0;
1138 			if (require_data || (iter > 0) ||
1139 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1140 				if (iter == 0) {
1141 					len_tmp += snprintf(&abuf[len_tmp],
1142 							sizeof(abuf) - len_tmp,
1143 							" a%d_len=%lu",
1144 							arg, len_full);
1145 				}
1146 				len_tmp += snprintf(&abuf[len_tmp],
1147 						    sizeof(abuf) - len_tmp,
1148 						    " a%d[%d]=", arg, iter++);
1149 			} else
1150 				len_tmp += snprintf(&abuf[len_tmp],
1151 						    sizeof(abuf) - len_tmp,
1152 						    " a%d=", arg);
1153 			WARN_ON(len_tmp >= sizeof(abuf));
1154 			abuf[sizeof(abuf) - 1] = '\0';
1155 
1156 			/* log the arg in the audit record */
1157 			audit_log_format(*ab, "%s", abuf);
1158 			len_rem -= len_tmp;
1159 			len_tmp = len_buf;
1160 			if (encode) {
1161 				if (len_abuf > len_rem)
1162 					len_tmp = len_rem / 2; /* encoding */
1163 				audit_log_n_hex(*ab, buf, len_tmp);
1164 				len_rem -= len_tmp * 2;
1165 				len_abuf -= len_tmp * 2;
1166 			} else {
1167 				if (len_abuf > len_rem)
1168 					len_tmp = len_rem - 2; /* quotes */
1169 				audit_log_n_string(*ab, buf, len_tmp);
1170 				len_rem -= len_tmp + 2;
1171 				/* don't subtract the "2" because we still need
1172 				 * to add quotes to the remaining string */
1173 				len_abuf -= len_tmp;
1174 			}
1175 			len_buf -= len_tmp;
1176 			buf += len_tmp;
1177 		}
1178 
1179 		/* ready to move to the next argument? */
1180 		if ((len_buf == 0) && !require_data) {
1181 			arg++;
1182 			iter = 0;
1183 			len_full = 0;
1184 			require_data = true;
1185 			encode = false;
1186 		}
1187 	} while (arg < context->execve.argc);
1188 
1189 	/* NOTE: the caller handles the final audit_log_end() call */
1190 
1191 out:
1192 	kfree(buf_head);
1193 }
1194 
1195 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1196 			  kernel_cap_t *cap)
1197 {
1198 	int i;
1199 
1200 	if (cap_isclear(*cap)) {
1201 		audit_log_format(ab, " %s=0", prefix);
1202 		return;
1203 	}
1204 	audit_log_format(ab, " %s=", prefix);
1205 	CAP_FOR_EACH_U32(i)
1206 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1207 }
1208 
1209 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1210 {
1211 	if (name->fcap_ver == -1) {
1212 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1213 		return;
1214 	}
1215 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1216 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1217 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1218 			 name->fcap.fE, name->fcap_ver,
1219 			 from_kuid(&init_user_ns, name->fcap.rootid));
1220 }
1221 
1222 static void show_special(struct audit_context *context, int *call_panic)
1223 {
1224 	struct audit_buffer *ab;
1225 	int i;
1226 
1227 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1228 	if (!ab)
1229 		return;
1230 
1231 	switch (context->type) {
1232 	case AUDIT_SOCKETCALL: {
1233 		int nargs = context->socketcall.nargs;
1234 
1235 		audit_log_format(ab, "nargs=%d", nargs);
1236 		for (i = 0; i < nargs; i++)
1237 			audit_log_format(ab, " a%d=%lx", i,
1238 				context->socketcall.args[i]);
1239 		break; }
1240 	case AUDIT_IPC: {
1241 		u32 osid = context->ipc.osid;
1242 
1243 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1244 				 from_kuid(&init_user_ns, context->ipc.uid),
1245 				 from_kgid(&init_user_ns, context->ipc.gid),
1246 				 context->ipc.mode);
1247 		if (osid) {
1248 			char *ctx = NULL;
1249 			u32 len;
1250 
1251 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1252 				audit_log_format(ab, " osid=%u", osid);
1253 				*call_panic = 1;
1254 			} else {
1255 				audit_log_format(ab, " obj=%s", ctx);
1256 				security_release_secctx(ctx, len);
1257 			}
1258 		}
1259 		if (context->ipc.has_perm) {
1260 			audit_log_end(ab);
1261 			ab = audit_log_start(context, GFP_KERNEL,
1262 					     AUDIT_IPC_SET_PERM);
1263 			if (unlikely(!ab))
1264 				return;
1265 			audit_log_format(ab,
1266 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1267 				context->ipc.qbytes,
1268 				context->ipc.perm_uid,
1269 				context->ipc.perm_gid,
1270 				context->ipc.perm_mode);
1271 		}
1272 		break; }
1273 	case AUDIT_MQ_OPEN:
1274 		audit_log_format(ab,
1275 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1276 			"mq_msgsize=%ld mq_curmsgs=%ld",
1277 			context->mq_open.oflag, context->mq_open.mode,
1278 			context->mq_open.attr.mq_flags,
1279 			context->mq_open.attr.mq_maxmsg,
1280 			context->mq_open.attr.mq_msgsize,
1281 			context->mq_open.attr.mq_curmsgs);
1282 		break;
1283 	case AUDIT_MQ_SENDRECV:
1284 		audit_log_format(ab,
1285 			"mqdes=%d msg_len=%zd msg_prio=%u "
1286 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1287 			context->mq_sendrecv.mqdes,
1288 			context->mq_sendrecv.msg_len,
1289 			context->mq_sendrecv.msg_prio,
1290 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1291 			context->mq_sendrecv.abs_timeout.tv_nsec);
1292 		break;
1293 	case AUDIT_MQ_NOTIFY:
1294 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1295 				context->mq_notify.mqdes,
1296 				context->mq_notify.sigev_signo);
1297 		break;
1298 	case AUDIT_MQ_GETSETATTR: {
1299 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1300 
1301 		audit_log_format(ab,
1302 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1303 			"mq_curmsgs=%ld ",
1304 			context->mq_getsetattr.mqdes,
1305 			attr->mq_flags, attr->mq_maxmsg,
1306 			attr->mq_msgsize, attr->mq_curmsgs);
1307 		break; }
1308 	case AUDIT_CAPSET:
1309 		audit_log_format(ab, "pid=%d", context->capset.pid);
1310 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1311 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1312 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1313 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1314 		break;
1315 	case AUDIT_MMAP:
1316 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1317 				 context->mmap.flags);
1318 		break;
1319 	case AUDIT_EXECVE:
1320 		audit_log_execve_info(context, &ab);
1321 		break;
1322 	case AUDIT_KERN_MODULE:
1323 		audit_log_format(ab, "name=");
1324 		if (context->module.name) {
1325 			audit_log_untrustedstring(ab, context->module.name);
1326 		} else
1327 			audit_log_format(ab, "(null)");
1328 
1329 		break;
1330 	}
1331 	audit_log_end(ab);
1332 }
1333 
1334 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1335 {
1336 	char *end = proctitle + len - 1;
1337 
1338 	while (end > proctitle && !isprint(*end))
1339 		end--;
1340 
1341 	/* catch the case where proctitle is only 1 non-print character */
1342 	len = end - proctitle + 1;
1343 	len -= isprint(proctitle[len-1]) == 0;
1344 	return len;
1345 }
1346 
1347 /*
1348  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1349  * @context: audit_context for the task
1350  * @n: audit_names structure with reportable details
1351  * @path: optional path to report instead of audit_names->name
1352  * @record_num: record number to report when handling a list of names
1353  * @call_panic: optional pointer to int that will be updated if secid fails
1354  */
1355 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1356 		    const struct path *path, int record_num, int *call_panic)
1357 {
1358 	struct audit_buffer *ab;
1359 
1360 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1361 	if (!ab)
1362 		return;
1363 
1364 	audit_log_format(ab, "item=%d", record_num);
1365 
1366 	if (path)
1367 		audit_log_d_path(ab, " name=", path);
1368 	else if (n->name) {
1369 		switch (n->name_len) {
1370 		case AUDIT_NAME_FULL:
1371 			/* log the full path */
1372 			audit_log_format(ab, " name=");
1373 			audit_log_untrustedstring(ab, n->name->name);
1374 			break;
1375 		case 0:
1376 			/* name was specified as a relative path and the
1377 			 * directory component is the cwd
1378 			 */
1379 			if (context->pwd.dentry && context->pwd.mnt)
1380 				audit_log_d_path(ab, " name=", &context->pwd);
1381 			else
1382 				audit_log_format(ab, " name=(null)");
1383 			break;
1384 		default:
1385 			/* log the name's directory component */
1386 			audit_log_format(ab, " name=");
1387 			audit_log_n_untrustedstring(ab, n->name->name,
1388 						    n->name_len);
1389 		}
1390 	} else
1391 		audit_log_format(ab, " name=(null)");
1392 
1393 	if (n->ino != AUDIT_INO_UNSET)
1394 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1395 				 n->ino,
1396 				 MAJOR(n->dev),
1397 				 MINOR(n->dev),
1398 				 n->mode,
1399 				 from_kuid(&init_user_ns, n->uid),
1400 				 from_kgid(&init_user_ns, n->gid),
1401 				 MAJOR(n->rdev),
1402 				 MINOR(n->rdev));
1403 	if (n->osid != 0) {
1404 		char *ctx = NULL;
1405 		u32 len;
1406 
1407 		if (security_secid_to_secctx(
1408 			n->osid, &ctx, &len)) {
1409 			audit_log_format(ab, " osid=%u", n->osid);
1410 			if (call_panic)
1411 				*call_panic = 2;
1412 		} else {
1413 			audit_log_format(ab, " obj=%s", ctx);
1414 			security_release_secctx(ctx, len);
1415 		}
1416 	}
1417 
1418 	/* log the audit_names record type */
1419 	switch (n->type) {
1420 	case AUDIT_TYPE_NORMAL:
1421 		audit_log_format(ab, " nametype=NORMAL");
1422 		break;
1423 	case AUDIT_TYPE_PARENT:
1424 		audit_log_format(ab, " nametype=PARENT");
1425 		break;
1426 	case AUDIT_TYPE_CHILD_DELETE:
1427 		audit_log_format(ab, " nametype=DELETE");
1428 		break;
1429 	case AUDIT_TYPE_CHILD_CREATE:
1430 		audit_log_format(ab, " nametype=CREATE");
1431 		break;
1432 	default:
1433 		audit_log_format(ab, " nametype=UNKNOWN");
1434 		break;
1435 	}
1436 
1437 	audit_log_fcaps(ab, n);
1438 	audit_log_end(ab);
1439 }
1440 
1441 static void audit_log_proctitle(void)
1442 {
1443 	int res;
1444 	char *buf;
1445 	char *msg = "(null)";
1446 	int len = strlen(msg);
1447 	struct audit_context *context = audit_context();
1448 	struct audit_buffer *ab;
1449 
1450 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1451 	if (!ab)
1452 		return;	/* audit_panic or being filtered */
1453 
1454 	audit_log_format(ab, "proctitle=");
1455 
1456 	/* Not  cached */
1457 	if (!context->proctitle.value) {
1458 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1459 		if (!buf)
1460 			goto out;
1461 		/* Historically called this from procfs naming */
1462 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1463 		if (res == 0) {
1464 			kfree(buf);
1465 			goto out;
1466 		}
1467 		res = audit_proctitle_rtrim(buf, res);
1468 		if (res == 0) {
1469 			kfree(buf);
1470 			goto out;
1471 		}
1472 		context->proctitle.value = buf;
1473 		context->proctitle.len = res;
1474 	}
1475 	msg = context->proctitle.value;
1476 	len = context->proctitle.len;
1477 out:
1478 	audit_log_n_untrustedstring(ab, msg, len);
1479 	audit_log_end(ab);
1480 }
1481 
1482 static void audit_log_exit(void)
1483 {
1484 	int i, call_panic = 0;
1485 	struct audit_context *context = audit_context();
1486 	struct audit_buffer *ab;
1487 	struct audit_aux_data *aux;
1488 	struct audit_names *n;
1489 
1490 	context->personality = current->personality;
1491 
1492 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1493 	if (!ab)
1494 		return;		/* audit_panic has been called */
1495 	audit_log_format(ab, "arch=%x syscall=%d",
1496 			 context->arch, context->major);
1497 	if (context->personality != PER_LINUX)
1498 		audit_log_format(ab, " per=%lx", context->personality);
1499 	if (context->return_valid != AUDITSC_INVALID)
1500 		audit_log_format(ab, " success=%s exit=%ld",
1501 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1502 				 context->return_code);
1503 
1504 	audit_log_format(ab,
1505 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1506 			 context->argv[0],
1507 			 context->argv[1],
1508 			 context->argv[2],
1509 			 context->argv[3],
1510 			 context->name_count);
1511 
1512 	audit_log_task_info(ab);
1513 	audit_log_key(ab, context->filterkey);
1514 	audit_log_end(ab);
1515 
1516 	for (aux = context->aux; aux; aux = aux->next) {
1517 
1518 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1519 		if (!ab)
1520 			continue; /* audit_panic has been called */
1521 
1522 		switch (aux->type) {
1523 
1524 		case AUDIT_BPRM_FCAPS: {
1525 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1526 
1527 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1528 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1529 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1530 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1531 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1532 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1533 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1534 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1535 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1536 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1537 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1538 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1539 			audit_log_format(ab, " frootid=%d",
1540 					 from_kuid(&init_user_ns,
1541 						   axs->fcap.rootid));
1542 			break; }
1543 
1544 		}
1545 		audit_log_end(ab);
1546 	}
1547 
1548 	if (context->type)
1549 		show_special(context, &call_panic);
1550 
1551 	if (context->fds[0] >= 0) {
1552 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1553 		if (ab) {
1554 			audit_log_format(ab, "fd0=%d fd1=%d",
1555 					context->fds[0], context->fds[1]);
1556 			audit_log_end(ab);
1557 		}
1558 	}
1559 
1560 	if (context->sockaddr_len) {
1561 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1562 		if (ab) {
1563 			audit_log_format(ab, "saddr=");
1564 			audit_log_n_hex(ab, (void *)context->sockaddr,
1565 					context->sockaddr_len);
1566 			audit_log_end(ab);
1567 		}
1568 	}
1569 
1570 	for (aux = context->aux_pids; aux; aux = aux->next) {
1571 		struct audit_aux_data_pids *axs = (void *)aux;
1572 
1573 		for (i = 0; i < axs->pid_count; i++)
1574 			if (audit_log_pid_context(context, axs->target_pid[i],
1575 						  axs->target_auid[i],
1576 						  axs->target_uid[i],
1577 						  axs->target_sessionid[i],
1578 						  axs->target_sid[i],
1579 						  axs->target_comm[i]))
1580 				call_panic = 1;
1581 	}
1582 
1583 	if (context->target_pid &&
1584 	    audit_log_pid_context(context, context->target_pid,
1585 				  context->target_auid, context->target_uid,
1586 				  context->target_sessionid,
1587 				  context->target_sid, context->target_comm))
1588 			call_panic = 1;
1589 
1590 	if (context->pwd.dentry && context->pwd.mnt) {
1591 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1592 		if (ab) {
1593 			audit_log_d_path(ab, "cwd=", &context->pwd);
1594 			audit_log_end(ab);
1595 		}
1596 	}
1597 
1598 	i = 0;
1599 	list_for_each_entry(n, &context->names_list, list) {
1600 		if (n->hidden)
1601 			continue;
1602 		audit_log_name(context, n, NULL, i++, &call_panic);
1603 	}
1604 
1605 	audit_log_proctitle();
1606 
1607 	/* Send end of event record to help user space know we are finished */
1608 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1609 	if (ab)
1610 		audit_log_end(ab);
1611 	if (call_panic)
1612 		audit_panic("error converting sid to string");
1613 }
1614 
1615 /**
1616  * __audit_free - free a per-task audit context
1617  * @tsk: task whose audit context block to free
1618  *
1619  * Called from copy_process and do_exit
1620  */
1621 void __audit_free(struct task_struct *tsk)
1622 {
1623 	struct audit_context *context = tsk->audit_context;
1624 
1625 	if (!context)
1626 		return;
1627 
1628 	if (!list_empty(&context->killed_trees))
1629 		audit_kill_trees(context);
1630 
1631 	/* We are called either by do_exit() or the fork() error handling code;
1632 	 * in the former case tsk == current and in the latter tsk is a
1633 	 * random task_struct that doesn't doesn't have any meaningful data we
1634 	 * need to log via audit_log_exit().
1635 	 */
1636 	if (tsk == current && !context->dummy && context->in_syscall) {
1637 		context->return_valid = AUDITSC_INVALID;
1638 		context->return_code = 0;
1639 
1640 		audit_filter_syscall(tsk, context);
1641 		audit_filter_inodes(tsk, context);
1642 		if (context->current_state == AUDIT_STATE_RECORD)
1643 			audit_log_exit();
1644 	}
1645 
1646 	audit_set_context(tsk, NULL);
1647 	audit_free_context(context);
1648 }
1649 
1650 /**
1651  * __audit_syscall_entry - fill in an audit record at syscall entry
1652  * @major: major syscall type (function)
1653  * @a1: additional syscall register 1
1654  * @a2: additional syscall register 2
1655  * @a3: additional syscall register 3
1656  * @a4: additional syscall register 4
1657  *
1658  * Fill in audit context at syscall entry.  This only happens if the
1659  * audit context was created when the task was created and the state or
1660  * filters demand the audit context be built.  If the state from the
1661  * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1662  * then the record will be written at syscall exit time (otherwise, it
1663  * will only be written if another part of the kernel requests that it
1664  * be written).
1665  */
1666 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1667 			   unsigned long a3, unsigned long a4)
1668 {
1669 	struct audit_context *context = audit_context();
1670 	enum audit_state     state;
1671 
1672 	if (!audit_enabled || !context)
1673 		return;
1674 
1675 	BUG_ON(context->in_syscall || context->name_count);
1676 
1677 	state = context->state;
1678 	if (state == AUDIT_STATE_DISABLED)
1679 		return;
1680 
1681 	context->dummy = !audit_n_rules;
1682 	if (!context->dummy && state == AUDIT_STATE_BUILD) {
1683 		context->prio = 0;
1684 		if (auditd_test_task(current))
1685 			return;
1686 	}
1687 
1688 	context->arch	    = syscall_get_arch(current);
1689 	context->major      = major;
1690 	context->argv[0]    = a1;
1691 	context->argv[1]    = a2;
1692 	context->argv[2]    = a3;
1693 	context->argv[3]    = a4;
1694 	context->serial     = 0;
1695 	context->in_syscall = 1;
1696 	context->current_state  = state;
1697 	context->ppid       = 0;
1698 	ktime_get_coarse_real_ts64(&context->ctime);
1699 }
1700 
1701 /**
1702  * __audit_syscall_exit - deallocate audit context after a system call
1703  * @success: success value of the syscall
1704  * @return_code: return value of the syscall
1705  *
1706  * Tear down after system call.  If the audit context has been marked as
1707  * auditable (either because of the AUDIT_STATE_RECORD state from
1708  * filtering, or because some other part of the kernel wrote an audit
1709  * message), then write out the syscall information.  In call cases,
1710  * free the names stored from getname().
1711  */
1712 void __audit_syscall_exit(int success, long return_code)
1713 {
1714 	struct audit_context *context;
1715 
1716 	context = audit_context();
1717 	if (!context)
1718 		return;
1719 
1720 	if (!list_empty(&context->killed_trees))
1721 		audit_kill_trees(context);
1722 
1723 	if (!context->dummy && context->in_syscall) {
1724 		if (success)
1725 			context->return_valid = AUDITSC_SUCCESS;
1726 		else
1727 			context->return_valid = AUDITSC_FAILURE;
1728 
1729 		/*
1730 		 * we need to fix up the return code in the audit logs if the
1731 		 * actual return codes are later going to be fixed up by the
1732 		 * arch specific signal handlers
1733 		 *
1734 		 * This is actually a test for:
1735 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1736 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1737 		 *
1738 		 * but is faster than a bunch of ||
1739 		 */
1740 		if (unlikely(return_code <= -ERESTARTSYS) &&
1741 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1742 		    (return_code != -ENOIOCTLCMD))
1743 			context->return_code = -EINTR;
1744 		else
1745 			context->return_code  = return_code;
1746 
1747 		audit_filter_syscall(current, context);
1748 		audit_filter_inodes(current, context);
1749 		if (context->current_state == AUDIT_STATE_RECORD)
1750 			audit_log_exit();
1751 	}
1752 
1753 	context->in_syscall = 0;
1754 	context->prio = context->state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1755 
1756 	audit_free_module(context);
1757 	audit_free_names(context);
1758 	unroll_tree_refs(context, NULL, 0);
1759 	audit_free_aux(context);
1760 	context->aux = NULL;
1761 	context->aux_pids = NULL;
1762 	context->target_pid = 0;
1763 	context->target_sid = 0;
1764 	context->sockaddr_len = 0;
1765 	context->type = 0;
1766 	context->fds[0] = -1;
1767 	if (context->state != AUDIT_STATE_RECORD) {
1768 		kfree(context->filterkey);
1769 		context->filterkey = NULL;
1770 	}
1771 }
1772 
1773 static inline void handle_one(const struct inode *inode)
1774 {
1775 	struct audit_context *context;
1776 	struct audit_tree_refs *p;
1777 	struct audit_chunk *chunk;
1778 	int count;
1779 
1780 	if (likely(!inode->i_fsnotify_marks))
1781 		return;
1782 	context = audit_context();
1783 	p = context->trees;
1784 	count = context->tree_count;
1785 	rcu_read_lock();
1786 	chunk = audit_tree_lookup(inode);
1787 	rcu_read_unlock();
1788 	if (!chunk)
1789 		return;
1790 	if (likely(put_tree_ref(context, chunk)))
1791 		return;
1792 	if (unlikely(!grow_tree_refs(context))) {
1793 		pr_warn("out of memory, audit has lost a tree reference\n");
1794 		audit_set_auditable(context);
1795 		audit_put_chunk(chunk);
1796 		unroll_tree_refs(context, p, count);
1797 		return;
1798 	}
1799 	put_tree_ref(context, chunk);
1800 }
1801 
1802 static void handle_path(const struct dentry *dentry)
1803 {
1804 	struct audit_context *context;
1805 	struct audit_tree_refs *p;
1806 	const struct dentry *d, *parent;
1807 	struct audit_chunk *drop;
1808 	unsigned long seq;
1809 	int count;
1810 
1811 	context = audit_context();
1812 	p = context->trees;
1813 	count = context->tree_count;
1814 retry:
1815 	drop = NULL;
1816 	d = dentry;
1817 	rcu_read_lock();
1818 	seq = read_seqbegin(&rename_lock);
1819 	for(;;) {
1820 		struct inode *inode = d_backing_inode(d);
1821 
1822 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1823 			struct audit_chunk *chunk;
1824 
1825 			chunk = audit_tree_lookup(inode);
1826 			if (chunk) {
1827 				if (unlikely(!put_tree_ref(context, chunk))) {
1828 					drop = chunk;
1829 					break;
1830 				}
1831 			}
1832 		}
1833 		parent = d->d_parent;
1834 		if (parent == d)
1835 			break;
1836 		d = parent;
1837 	}
1838 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1839 		rcu_read_unlock();
1840 		if (!drop) {
1841 			/* just a race with rename */
1842 			unroll_tree_refs(context, p, count);
1843 			goto retry;
1844 		}
1845 		audit_put_chunk(drop);
1846 		if (grow_tree_refs(context)) {
1847 			/* OK, got more space */
1848 			unroll_tree_refs(context, p, count);
1849 			goto retry;
1850 		}
1851 		/* too bad */
1852 		pr_warn("out of memory, audit has lost a tree reference\n");
1853 		unroll_tree_refs(context, p, count);
1854 		audit_set_auditable(context);
1855 		return;
1856 	}
1857 	rcu_read_unlock();
1858 }
1859 
1860 static struct audit_names *audit_alloc_name(struct audit_context *context,
1861 						unsigned char type)
1862 {
1863 	struct audit_names *aname;
1864 
1865 	if (context->name_count < AUDIT_NAMES) {
1866 		aname = &context->preallocated_names[context->name_count];
1867 		memset(aname, 0, sizeof(*aname));
1868 	} else {
1869 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1870 		if (!aname)
1871 			return NULL;
1872 		aname->should_free = true;
1873 	}
1874 
1875 	aname->ino = AUDIT_INO_UNSET;
1876 	aname->type = type;
1877 	list_add_tail(&aname->list, &context->names_list);
1878 
1879 	context->name_count++;
1880 	if (!context->pwd.dentry)
1881 		get_fs_pwd(current->fs, &context->pwd);
1882 	return aname;
1883 }
1884 
1885 /**
1886  * __audit_reusename - fill out filename with info from existing entry
1887  * @uptr: userland ptr to pathname
1888  *
1889  * Search the audit_names list for the current audit context. If there is an
1890  * existing entry with a matching "uptr" then return the filename
1891  * associated with that audit_name. If not, return NULL.
1892  */
1893 struct filename *
1894 __audit_reusename(const __user char *uptr)
1895 {
1896 	struct audit_context *context = audit_context();
1897 	struct audit_names *n;
1898 
1899 	list_for_each_entry(n, &context->names_list, list) {
1900 		if (!n->name)
1901 			continue;
1902 		if (n->name->uptr == uptr) {
1903 			n->name->refcnt++;
1904 			return n->name;
1905 		}
1906 	}
1907 	return NULL;
1908 }
1909 
1910 /**
1911  * __audit_getname - add a name to the list
1912  * @name: name to add
1913  *
1914  * Add a name to the list of audit names for this context.
1915  * Called from fs/namei.c:getname().
1916  */
1917 void __audit_getname(struct filename *name)
1918 {
1919 	struct audit_context *context = audit_context();
1920 	struct audit_names *n;
1921 
1922 	if (!context->in_syscall)
1923 		return;
1924 
1925 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1926 	if (!n)
1927 		return;
1928 
1929 	n->name = name;
1930 	n->name_len = AUDIT_NAME_FULL;
1931 	name->aname = n;
1932 	name->refcnt++;
1933 }
1934 
1935 static inline int audit_copy_fcaps(struct audit_names *name,
1936 				   const struct dentry *dentry)
1937 {
1938 	struct cpu_vfs_cap_data caps;
1939 	int rc;
1940 
1941 	if (!dentry)
1942 		return 0;
1943 
1944 	rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
1945 	if (rc)
1946 		return rc;
1947 
1948 	name->fcap.permitted = caps.permitted;
1949 	name->fcap.inheritable = caps.inheritable;
1950 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1951 	name->fcap.rootid = caps.rootid;
1952 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1953 				VFS_CAP_REVISION_SHIFT;
1954 
1955 	return 0;
1956 }
1957 
1958 /* Copy inode data into an audit_names. */
1959 static void audit_copy_inode(struct audit_names *name,
1960 			     const struct dentry *dentry,
1961 			     struct inode *inode, unsigned int flags)
1962 {
1963 	name->ino   = inode->i_ino;
1964 	name->dev   = inode->i_sb->s_dev;
1965 	name->mode  = inode->i_mode;
1966 	name->uid   = inode->i_uid;
1967 	name->gid   = inode->i_gid;
1968 	name->rdev  = inode->i_rdev;
1969 	security_inode_getsecid(inode, &name->osid);
1970 	if (flags & AUDIT_INODE_NOEVAL) {
1971 		name->fcap_ver = -1;
1972 		return;
1973 	}
1974 	audit_copy_fcaps(name, dentry);
1975 }
1976 
1977 /**
1978  * __audit_inode - store the inode and device from a lookup
1979  * @name: name being audited
1980  * @dentry: dentry being audited
1981  * @flags: attributes for this particular entry
1982  */
1983 void __audit_inode(struct filename *name, const struct dentry *dentry,
1984 		   unsigned int flags)
1985 {
1986 	struct audit_context *context = audit_context();
1987 	struct inode *inode = d_backing_inode(dentry);
1988 	struct audit_names *n;
1989 	bool parent = flags & AUDIT_INODE_PARENT;
1990 	struct audit_entry *e;
1991 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1992 	int i;
1993 
1994 	if (!context->in_syscall)
1995 		return;
1996 
1997 	rcu_read_lock();
1998 	list_for_each_entry_rcu(e, list, list) {
1999 		for (i = 0; i < e->rule.field_count; i++) {
2000 			struct audit_field *f = &e->rule.fields[i];
2001 
2002 			if (f->type == AUDIT_FSTYPE
2003 			    && audit_comparator(inode->i_sb->s_magic,
2004 						f->op, f->val)
2005 			    && e->rule.action == AUDIT_NEVER) {
2006 				rcu_read_unlock();
2007 				return;
2008 			}
2009 		}
2010 	}
2011 	rcu_read_unlock();
2012 
2013 	if (!name)
2014 		goto out_alloc;
2015 
2016 	/*
2017 	 * If we have a pointer to an audit_names entry already, then we can
2018 	 * just use it directly if the type is correct.
2019 	 */
2020 	n = name->aname;
2021 	if (n) {
2022 		if (parent) {
2023 			if (n->type == AUDIT_TYPE_PARENT ||
2024 			    n->type == AUDIT_TYPE_UNKNOWN)
2025 				goto out;
2026 		} else {
2027 			if (n->type != AUDIT_TYPE_PARENT)
2028 				goto out;
2029 		}
2030 	}
2031 
2032 	list_for_each_entry_reverse(n, &context->names_list, list) {
2033 		if (n->ino) {
2034 			/* valid inode number, use that for the comparison */
2035 			if (n->ino != inode->i_ino ||
2036 			    n->dev != inode->i_sb->s_dev)
2037 				continue;
2038 		} else if (n->name) {
2039 			/* inode number has not been set, check the name */
2040 			if (strcmp(n->name->name, name->name))
2041 				continue;
2042 		} else
2043 			/* no inode and no name (?!) ... this is odd ... */
2044 			continue;
2045 
2046 		/* match the correct record type */
2047 		if (parent) {
2048 			if (n->type == AUDIT_TYPE_PARENT ||
2049 			    n->type == AUDIT_TYPE_UNKNOWN)
2050 				goto out;
2051 		} else {
2052 			if (n->type != AUDIT_TYPE_PARENT)
2053 				goto out;
2054 		}
2055 	}
2056 
2057 out_alloc:
2058 	/* unable to find an entry with both a matching name and type */
2059 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2060 	if (!n)
2061 		return;
2062 	if (name) {
2063 		n->name = name;
2064 		name->refcnt++;
2065 	}
2066 
2067 out:
2068 	if (parent) {
2069 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2070 		n->type = AUDIT_TYPE_PARENT;
2071 		if (flags & AUDIT_INODE_HIDDEN)
2072 			n->hidden = true;
2073 	} else {
2074 		n->name_len = AUDIT_NAME_FULL;
2075 		n->type = AUDIT_TYPE_NORMAL;
2076 	}
2077 	handle_path(dentry);
2078 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2079 }
2080 
2081 void __audit_file(const struct file *file)
2082 {
2083 	__audit_inode(NULL, file->f_path.dentry, 0);
2084 }
2085 
2086 /**
2087  * __audit_inode_child - collect inode info for created/removed objects
2088  * @parent: inode of dentry parent
2089  * @dentry: dentry being audited
2090  * @type:   AUDIT_TYPE_* value that we're looking for
2091  *
2092  * For syscalls that create or remove filesystem objects, audit_inode
2093  * can only collect information for the filesystem object's parent.
2094  * This call updates the audit context with the child's information.
2095  * Syscalls that create a new filesystem object must be hooked after
2096  * the object is created.  Syscalls that remove a filesystem object
2097  * must be hooked prior, in order to capture the target inode during
2098  * unsuccessful attempts.
2099  */
2100 void __audit_inode_child(struct inode *parent,
2101 			 const struct dentry *dentry,
2102 			 const unsigned char type)
2103 {
2104 	struct audit_context *context = audit_context();
2105 	struct inode *inode = d_backing_inode(dentry);
2106 	const struct qstr *dname = &dentry->d_name;
2107 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2108 	struct audit_entry *e;
2109 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2110 	int i;
2111 
2112 	if (!context->in_syscall)
2113 		return;
2114 
2115 	rcu_read_lock();
2116 	list_for_each_entry_rcu(e, list, list) {
2117 		for (i = 0; i < e->rule.field_count; i++) {
2118 			struct audit_field *f = &e->rule.fields[i];
2119 
2120 			if (f->type == AUDIT_FSTYPE
2121 			    && audit_comparator(parent->i_sb->s_magic,
2122 						f->op, f->val)
2123 			    && e->rule.action == AUDIT_NEVER) {
2124 				rcu_read_unlock();
2125 				return;
2126 			}
2127 		}
2128 	}
2129 	rcu_read_unlock();
2130 
2131 	if (inode)
2132 		handle_one(inode);
2133 
2134 	/* look for a parent entry first */
2135 	list_for_each_entry(n, &context->names_list, list) {
2136 		if (!n->name ||
2137 		    (n->type != AUDIT_TYPE_PARENT &&
2138 		     n->type != AUDIT_TYPE_UNKNOWN))
2139 			continue;
2140 
2141 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2142 		    !audit_compare_dname_path(dname,
2143 					      n->name->name, n->name_len)) {
2144 			if (n->type == AUDIT_TYPE_UNKNOWN)
2145 				n->type = AUDIT_TYPE_PARENT;
2146 			found_parent = n;
2147 			break;
2148 		}
2149 	}
2150 
2151 	/* is there a matching child entry? */
2152 	list_for_each_entry(n, &context->names_list, list) {
2153 		/* can only match entries that have a name */
2154 		if (!n->name ||
2155 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2156 			continue;
2157 
2158 		if (!strcmp(dname->name, n->name->name) ||
2159 		    !audit_compare_dname_path(dname, n->name->name,
2160 						found_parent ?
2161 						found_parent->name_len :
2162 						AUDIT_NAME_FULL)) {
2163 			if (n->type == AUDIT_TYPE_UNKNOWN)
2164 				n->type = type;
2165 			found_child = n;
2166 			break;
2167 		}
2168 	}
2169 
2170 	if (!found_parent) {
2171 		/* create a new, "anonymous" parent record */
2172 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2173 		if (!n)
2174 			return;
2175 		audit_copy_inode(n, NULL, parent, 0);
2176 	}
2177 
2178 	if (!found_child) {
2179 		found_child = audit_alloc_name(context, type);
2180 		if (!found_child)
2181 			return;
2182 
2183 		/* Re-use the name belonging to the slot for a matching parent
2184 		 * directory. All names for this context are relinquished in
2185 		 * audit_free_names() */
2186 		if (found_parent) {
2187 			found_child->name = found_parent->name;
2188 			found_child->name_len = AUDIT_NAME_FULL;
2189 			found_child->name->refcnt++;
2190 		}
2191 	}
2192 
2193 	if (inode)
2194 		audit_copy_inode(found_child, dentry, inode, 0);
2195 	else
2196 		found_child->ino = AUDIT_INO_UNSET;
2197 }
2198 EXPORT_SYMBOL_GPL(__audit_inode_child);
2199 
2200 /**
2201  * auditsc_get_stamp - get local copies of audit_context values
2202  * @ctx: audit_context for the task
2203  * @t: timespec64 to store time recorded in the audit_context
2204  * @serial: serial value that is recorded in the audit_context
2205  *
2206  * Also sets the context as auditable.
2207  */
2208 int auditsc_get_stamp(struct audit_context *ctx,
2209 		       struct timespec64 *t, unsigned int *serial)
2210 {
2211 	if (!ctx->in_syscall)
2212 		return 0;
2213 	if (!ctx->serial)
2214 		ctx->serial = audit_serial();
2215 	t->tv_sec  = ctx->ctime.tv_sec;
2216 	t->tv_nsec = ctx->ctime.tv_nsec;
2217 	*serial    = ctx->serial;
2218 	if (!ctx->prio) {
2219 		ctx->prio = 1;
2220 		ctx->current_state = AUDIT_STATE_RECORD;
2221 	}
2222 	return 1;
2223 }
2224 
2225 /**
2226  * __audit_mq_open - record audit data for a POSIX MQ open
2227  * @oflag: open flag
2228  * @mode: mode bits
2229  * @attr: queue attributes
2230  *
2231  */
2232 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2233 {
2234 	struct audit_context *context = audit_context();
2235 
2236 	if (attr)
2237 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2238 	else
2239 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2240 
2241 	context->mq_open.oflag = oflag;
2242 	context->mq_open.mode = mode;
2243 
2244 	context->type = AUDIT_MQ_OPEN;
2245 }
2246 
2247 /**
2248  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2249  * @mqdes: MQ descriptor
2250  * @msg_len: Message length
2251  * @msg_prio: Message priority
2252  * @abs_timeout: Message timeout in absolute time
2253  *
2254  */
2255 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2256 			const struct timespec64 *abs_timeout)
2257 {
2258 	struct audit_context *context = audit_context();
2259 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2260 
2261 	if (abs_timeout)
2262 		memcpy(p, abs_timeout, sizeof(*p));
2263 	else
2264 		memset(p, 0, sizeof(*p));
2265 
2266 	context->mq_sendrecv.mqdes = mqdes;
2267 	context->mq_sendrecv.msg_len = msg_len;
2268 	context->mq_sendrecv.msg_prio = msg_prio;
2269 
2270 	context->type = AUDIT_MQ_SENDRECV;
2271 }
2272 
2273 /**
2274  * __audit_mq_notify - record audit data for a POSIX MQ notify
2275  * @mqdes: MQ descriptor
2276  * @notification: Notification event
2277  *
2278  */
2279 
2280 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2281 {
2282 	struct audit_context *context = audit_context();
2283 
2284 	if (notification)
2285 		context->mq_notify.sigev_signo = notification->sigev_signo;
2286 	else
2287 		context->mq_notify.sigev_signo = 0;
2288 
2289 	context->mq_notify.mqdes = mqdes;
2290 	context->type = AUDIT_MQ_NOTIFY;
2291 }
2292 
2293 /**
2294  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2295  * @mqdes: MQ descriptor
2296  * @mqstat: MQ flags
2297  *
2298  */
2299 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2300 {
2301 	struct audit_context *context = audit_context();
2302 
2303 	context->mq_getsetattr.mqdes = mqdes;
2304 	context->mq_getsetattr.mqstat = *mqstat;
2305 	context->type = AUDIT_MQ_GETSETATTR;
2306 }
2307 
2308 /**
2309  * __audit_ipc_obj - record audit data for ipc object
2310  * @ipcp: ipc permissions
2311  *
2312  */
2313 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2314 {
2315 	struct audit_context *context = audit_context();
2316 
2317 	context->ipc.uid = ipcp->uid;
2318 	context->ipc.gid = ipcp->gid;
2319 	context->ipc.mode = ipcp->mode;
2320 	context->ipc.has_perm = 0;
2321 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2322 	context->type = AUDIT_IPC;
2323 }
2324 
2325 /**
2326  * __audit_ipc_set_perm - record audit data for new ipc permissions
2327  * @qbytes: msgq bytes
2328  * @uid: msgq user id
2329  * @gid: msgq group id
2330  * @mode: msgq mode (permissions)
2331  *
2332  * Called only after audit_ipc_obj().
2333  */
2334 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2335 {
2336 	struct audit_context *context = audit_context();
2337 
2338 	context->ipc.qbytes = qbytes;
2339 	context->ipc.perm_uid = uid;
2340 	context->ipc.perm_gid = gid;
2341 	context->ipc.perm_mode = mode;
2342 	context->ipc.has_perm = 1;
2343 }
2344 
2345 void __audit_bprm(struct linux_binprm *bprm)
2346 {
2347 	struct audit_context *context = audit_context();
2348 
2349 	context->type = AUDIT_EXECVE;
2350 	context->execve.argc = bprm->argc;
2351 }
2352 
2353 
2354 /**
2355  * __audit_socketcall - record audit data for sys_socketcall
2356  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2357  * @args: args array
2358  *
2359  */
2360 int __audit_socketcall(int nargs, unsigned long *args)
2361 {
2362 	struct audit_context *context = audit_context();
2363 
2364 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2365 		return -EINVAL;
2366 	context->type = AUDIT_SOCKETCALL;
2367 	context->socketcall.nargs = nargs;
2368 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2369 	return 0;
2370 }
2371 
2372 /**
2373  * __audit_fd_pair - record audit data for pipe and socketpair
2374  * @fd1: the first file descriptor
2375  * @fd2: the second file descriptor
2376  *
2377  */
2378 void __audit_fd_pair(int fd1, int fd2)
2379 {
2380 	struct audit_context *context = audit_context();
2381 
2382 	context->fds[0] = fd1;
2383 	context->fds[1] = fd2;
2384 }
2385 
2386 /**
2387  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2388  * @len: data length in user space
2389  * @a: data address in kernel space
2390  *
2391  * Returns 0 for success or NULL context or < 0 on error.
2392  */
2393 int __audit_sockaddr(int len, void *a)
2394 {
2395 	struct audit_context *context = audit_context();
2396 
2397 	if (!context->sockaddr) {
2398 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2399 
2400 		if (!p)
2401 			return -ENOMEM;
2402 		context->sockaddr = p;
2403 	}
2404 
2405 	context->sockaddr_len = len;
2406 	memcpy(context->sockaddr, a, len);
2407 	return 0;
2408 }
2409 
2410 void __audit_ptrace(struct task_struct *t)
2411 {
2412 	struct audit_context *context = audit_context();
2413 
2414 	context->target_pid = task_tgid_nr(t);
2415 	context->target_auid = audit_get_loginuid(t);
2416 	context->target_uid = task_uid(t);
2417 	context->target_sessionid = audit_get_sessionid(t);
2418 	security_task_getsecid_obj(t, &context->target_sid);
2419 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2420 }
2421 
2422 /**
2423  * audit_signal_info_syscall - record signal info for syscalls
2424  * @t: task being signaled
2425  *
2426  * If the audit subsystem is being terminated, record the task (pid)
2427  * and uid that is doing that.
2428  */
2429 int audit_signal_info_syscall(struct task_struct *t)
2430 {
2431 	struct audit_aux_data_pids *axp;
2432 	struct audit_context *ctx = audit_context();
2433 	kuid_t t_uid = task_uid(t);
2434 
2435 	if (!audit_signals || audit_dummy_context())
2436 		return 0;
2437 
2438 	/* optimize the common case by putting first signal recipient directly
2439 	 * in audit_context */
2440 	if (!ctx->target_pid) {
2441 		ctx->target_pid = task_tgid_nr(t);
2442 		ctx->target_auid = audit_get_loginuid(t);
2443 		ctx->target_uid = t_uid;
2444 		ctx->target_sessionid = audit_get_sessionid(t);
2445 		security_task_getsecid_obj(t, &ctx->target_sid);
2446 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2447 		return 0;
2448 	}
2449 
2450 	axp = (void *)ctx->aux_pids;
2451 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2452 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2453 		if (!axp)
2454 			return -ENOMEM;
2455 
2456 		axp->d.type = AUDIT_OBJ_PID;
2457 		axp->d.next = ctx->aux_pids;
2458 		ctx->aux_pids = (void *)axp;
2459 	}
2460 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2461 
2462 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2463 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2464 	axp->target_uid[axp->pid_count] = t_uid;
2465 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2466 	security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2467 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2468 	axp->pid_count++;
2469 
2470 	return 0;
2471 }
2472 
2473 /**
2474  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2475  * @bprm: pointer to the bprm being processed
2476  * @new: the proposed new credentials
2477  * @old: the old credentials
2478  *
2479  * Simply check if the proc already has the caps given by the file and if not
2480  * store the priv escalation info for later auditing at the end of the syscall
2481  *
2482  * -Eric
2483  */
2484 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2485 			   const struct cred *new, const struct cred *old)
2486 {
2487 	struct audit_aux_data_bprm_fcaps *ax;
2488 	struct audit_context *context = audit_context();
2489 	struct cpu_vfs_cap_data vcaps;
2490 
2491 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2492 	if (!ax)
2493 		return -ENOMEM;
2494 
2495 	ax->d.type = AUDIT_BPRM_FCAPS;
2496 	ax->d.next = context->aux;
2497 	context->aux = (void *)ax;
2498 
2499 	get_vfs_caps_from_disk(&init_user_ns,
2500 			       bprm->file->f_path.dentry, &vcaps);
2501 
2502 	ax->fcap.permitted = vcaps.permitted;
2503 	ax->fcap.inheritable = vcaps.inheritable;
2504 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2505 	ax->fcap.rootid = vcaps.rootid;
2506 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2507 
2508 	ax->old_pcap.permitted   = old->cap_permitted;
2509 	ax->old_pcap.inheritable = old->cap_inheritable;
2510 	ax->old_pcap.effective   = old->cap_effective;
2511 	ax->old_pcap.ambient     = old->cap_ambient;
2512 
2513 	ax->new_pcap.permitted   = new->cap_permitted;
2514 	ax->new_pcap.inheritable = new->cap_inheritable;
2515 	ax->new_pcap.effective   = new->cap_effective;
2516 	ax->new_pcap.ambient     = new->cap_ambient;
2517 	return 0;
2518 }
2519 
2520 /**
2521  * __audit_log_capset - store information about the arguments to the capset syscall
2522  * @new: the new credentials
2523  * @old: the old (current) credentials
2524  *
2525  * Record the arguments userspace sent to sys_capset for later printing by the
2526  * audit system if applicable
2527  */
2528 void __audit_log_capset(const struct cred *new, const struct cred *old)
2529 {
2530 	struct audit_context *context = audit_context();
2531 
2532 	context->capset.pid = task_tgid_nr(current);
2533 	context->capset.cap.effective   = new->cap_effective;
2534 	context->capset.cap.inheritable = new->cap_effective;
2535 	context->capset.cap.permitted   = new->cap_permitted;
2536 	context->capset.cap.ambient     = new->cap_ambient;
2537 	context->type = AUDIT_CAPSET;
2538 }
2539 
2540 void __audit_mmap_fd(int fd, int flags)
2541 {
2542 	struct audit_context *context = audit_context();
2543 
2544 	context->mmap.fd = fd;
2545 	context->mmap.flags = flags;
2546 	context->type = AUDIT_MMAP;
2547 }
2548 
2549 void __audit_log_kern_module(char *name)
2550 {
2551 	struct audit_context *context = audit_context();
2552 
2553 	context->module.name = kstrdup(name, GFP_KERNEL);
2554 	if (!context->module.name)
2555 		audit_log_lost("out of memory in __audit_log_kern_module");
2556 	context->type = AUDIT_KERN_MODULE;
2557 }
2558 
2559 void __audit_fanotify(unsigned int response)
2560 {
2561 	audit_log(audit_context(), GFP_KERNEL,
2562 		AUDIT_FANOTIFY,	"resp=%u", response);
2563 }
2564 
2565 void __audit_tk_injoffset(struct timespec64 offset)
2566 {
2567 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2568 		  "sec=%lli nsec=%li",
2569 		  (long long)offset.tv_sec, offset.tv_nsec);
2570 }
2571 
2572 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2573 			      const char *op, enum audit_ntp_type type)
2574 {
2575 	const struct audit_ntp_val *val = &ad->vals[type];
2576 
2577 	if (val->newval == val->oldval)
2578 		return;
2579 
2580 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2581 		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2582 }
2583 
2584 void __audit_ntp_log(const struct audit_ntp_data *ad)
2585 {
2586 	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2587 	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2588 	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2589 	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2590 	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2591 	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2592 }
2593 
2594 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2595 		       enum audit_nfcfgop op, gfp_t gfp)
2596 {
2597 	struct audit_buffer *ab;
2598 	char comm[sizeof(current->comm)];
2599 
2600 	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2601 	if (!ab)
2602 		return;
2603 	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2604 			 name, af, nentries, audit_nfcfgs[op].s);
2605 
2606 	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2607 	audit_log_task_context(ab); /* subj= */
2608 	audit_log_format(ab, " comm=");
2609 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2610 	audit_log_end(ab);
2611 }
2612 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2613 
2614 static void audit_log_task(struct audit_buffer *ab)
2615 {
2616 	kuid_t auid, uid;
2617 	kgid_t gid;
2618 	unsigned int sessionid;
2619 	char comm[sizeof(current->comm)];
2620 
2621 	auid = audit_get_loginuid(current);
2622 	sessionid = audit_get_sessionid(current);
2623 	current_uid_gid(&uid, &gid);
2624 
2625 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2626 			 from_kuid(&init_user_ns, auid),
2627 			 from_kuid(&init_user_ns, uid),
2628 			 from_kgid(&init_user_ns, gid),
2629 			 sessionid);
2630 	audit_log_task_context(ab);
2631 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2632 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2633 	audit_log_d_path_exe(ab, current->mm);
2634 }
2635 
2636 /**
2637  * audit_core_dumps - record information about processes that end abnormally
2638  * @signr: signal value
2639  *
2640  * If a process ends with a core dump, something fishy is going on and we
2641  * should record the event for investigation.
2642  */
2643 void audit_core_dumps(long signr)
2644 {
2645 	struct audit_buffer *ab;
2646 
2647 	if (!audit_enabled)
2648 		return;
2649 
2650 	if (signr == SIGQUIT)	/* don't care for those */
2651 		return;
2652 
2653 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2654 	if (unlikely(!ab))
2655 		return;
2656 	audit_log_task(ab);
2657 	audit_log_format(ab, " sig=%ld res=1", signr);
2658 	audit_log_end(ab);
2659 }
2660 
2661 /**
2662  * audit_seccomp - record information about a seccomp action
2663  * @syscall: syscall number
2664  * @signr: signal value
2665  * @code: the seccomp action
2666  *
2667  * Record the information associated with a seccomp action. Event filtering for
2668  * seccomp actions that are not to be logged is done in seccomp_log().
2669  * Therefore, this function forces auditing independent of the audit_enabled
2670  * and dummy context state because seccomp actions should be logged even when
2671  * audit is not in use.
2672  */
2673 void audit_seccomp(unsigned long syscall, long signr, int code)
2674 {
2675 	struct audit_buffer *ab;
2676 
2677 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2678 	if (unlikely(!ab))
2679 		return;
2680 	audit_log_task(ab);
2681 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2682 			 signr, syscall_get_arch(current), syscall,
2683 			 in_compat_syscall(), KSTK_EIP(current), code);
2684 	audit_log_end(ab);
2685 }
2686 
2687 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2688 				  int res)
2689 {
2690 	struct audit_buffer *ab;
2691 
2692 	if (!audit_enabled)
2693 		return;
2694 
2695 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2696 			     AUDIT_CONFIG_CHANGE);
2697 	if (unlikely(!ab))
2698 		return;
2699 
2700 	audit_log_format(ab,
2701 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2702 			 names, old_names, res);
2703 	audit_log_end(ab);
2704 }
2705 
2706 struct list_head *audit_killed_trees(void)
2707 {
2708 	struct audit_context *ctx = audit_context();
2709 
2710 	if (likely(!ctx || !ctx->in_syscall))
2711 		return NULL;
2712 	return &ctx->killed_trees;
2713 }
2714