1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <linux/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 #include <linux/compat.h> 71 72 #include "audit.h" 73 74 /* flags stating the success for a syscall */ 75 #define AUDITSC_INVALID 0 76 #define AUDITSC_SUCCESS 1 77 #define AUDITSC_FAILURE 2 78 79 /* no execve audit message should be longer than this (userspace limits) */ 80 #define MAX_EXECVE_AUDIT_LEN 7500 81 82 /* number of audit rules */ 83 int audit_n_rules; 84 85 /* determines whether we collect data for signals sent */ 86 int audit_signals; 87 88 struct audit_aux_data { 89 struct audit_aux_data *next; 90 int type; 91 }; 92 93 #define AUDIT_AUX_IPCPERM 0 94 95 /* Number of target pids per aux struct. */ 96 #define AUDIT_AUX_PIDS 16 97 98 struct audit_aux_data_execve { 99 struct audit_aux_data d; 100 int argc; 101 int envc; 102 struct mm_struct *mm; 103 }; 104 105 struct audit_aux_data_pids { 106 struct audit_aux_data d; 107 pid_t target_pid[AUDIT_AUX_PIDS]; 108 kuid_t target_auid[AUDIT_AUX_PIDS]; 109 kuid_t target_uid[AUDIT_AUX_PIDS]; 110 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 111 u32 target_sid[AUDIT_AUX_PIDS]; 112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 113 int pid_count; 114 }; 115 116 struct audit_aux_data_bprm_fcaps { 117 struct audit_aux_data d; 118 struct audit_cap_data fcap; 119 unsigned int fcap_ver; 120 struct audit_cap_data old_pcap; 121 struct audit_cap_data new_pcap; 122 }; 123 124 struct audit_aux_data_capset { 125 struct audit_aux_data d; 126 pid_t pid; 127 struct audit_cap_data cap; 128 }; 129 130 struct audit_tree_refs { 131 struct audit_tree_refs *next; 132 struct audit_chunk *c[31]; 133 }; 134 135 static inline int open_arg(int flags, int mask) 136 { 137 int n = ACC_MODE(flags); 138 if (flags & (O_TRUNC | O_CREAT)) 139 n |= AUDIT_PERM_WRITE; 140 return n & mask; 141 } 142 143 static int audit_match_perm(struct audit_context *ctx, int mask) 144 { 145 unsigned n; 146 if (unlikely(!ctx)) 147 return 0; 148 n = ctx->major; 149 150 switch (audit_classify_syscall(ctx->arch, n)) { 151 case 0: /* native */ 152 if ((mask & AUDIT_PERM_WRITE) && 153 audit_match_class(AUDIT_CLASS_WRITE, n)) 154 return 1; 155 if ((mask & AUDIT_PERM_READ) && 156 audit_match_class(AUDIT_CLASS_READ, n)) 157 return 1; 158 if ((mask & AUDIT_PERM_ATTR) && 159 audit_match_class(AUDIT_CLASS_CHATTR, n)) 160 return 1; 161 return 0; 162 case 1: /* 32bit on biarch */ 163 if ((mask & AUDIT_PERM_WRITE) && 164 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 165 return 1; 166 if ((mask & AUDIT_PERM_READ) && 167 audit_match_class(AUDIT_CLASS_READ_32, n)) 168 return 1; 169 if ((mask & AUDIT_PERM_ATTR) && 170 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 171 return 1; 172 return 0; 173 case 2: /* open */ 174 return mask & ACC_MODE(ctx->argv[1]); 175 case 3: /* openat */ 176 return mask & ACC_MODE(ctx->argv[2]); 177 case 4: /* socketcall */ 178 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 179 case 5: /* execve */ 180 return mask & AUDIT_PERM_EXEC; 181 default: 182 return 0; 183 } 184 } 185 186 static int audit_match_filetype(struct audit_context *ctx, int val) 187 { 188 struct audit_names *n; 189 umode_t mode = (umode_t)val; 190 191 if (unlikely(!ctx)) 192 return 0; 193 194 list_for_each_entry(n, &ctx->names_list, list) { 195 if ((n->ino != -1) && 196 ((n->mode & S_IFMT) == mode)) 197 return 1; 198 } 199 200 return 0; 201 } 202 203 /* 204 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 205 * ->first_trees points to its beginning, ->trees - to the current end of data. 206 * ->tree_count is the number of free entries in array pointed to by ->trees. 207 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 208 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 209 * it's going to remain 1-element for almost any setup) until we free context itself. 210 * References in it _are_ dropped - at the same time we free/drop aux stuff. 211 */ 212 213 #ifdef CONFIG_AUDIT_TREE 214 static void audit_set_auditable(struct audit_context *ctx) 215 { 216 if (!ctx->prio) { 217 ctx->prio = 1; 218 ctx->current_state = AUDIT_RECORD_CONTEXT; 219 } 220 } 221 222 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 223 { 224 struct audit_tree_refs *p = ctx->trees; 225 int left = ctx->tree_count; 226 if (likely(left)) { 227 p->c[--left] = chunk; 228 ctx->tree_count = left; 229 return 1; 230 } 231 if (!p) 232 return 0; 233 p = p->next; 234 if (p) { 235 p->c[30] = chunk; 236 ctx->trees = p; 237 ctx->tree_count = 30; 238 return 1; 239 } 240 return 0; 241 } 242 243 static int grow_tree_refs(struct audit_context *ctx) 244 { 245 struct audit_tree_refs *p = ctx->trees; 246 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 247 if (!ctx->trees) { 248 ctx->trees = p; 249 return 0; 250 } 251 if (p) 252 p->next = ctx->trees; 253 else 254 ctx->first_trees = ctx->trees; 255 ctx->tree_count = 31; 256 return 1; 257 } 258 #endif 259 260 static void unroll_tree_refs(struct audit_context *ctx, 261 struct audit_tree_refs *p, int count) 262 { 263 #ifdef CONFIG_AUDIT_TREE 264 struct audit_tree_refs *q; 265 int n; 266 if (!p) { 267 /* we started with empty chain */ 268 p = ctx->first_trees; 269 count = 31; 270 /* if the very first allocation has failed, nothing to do */ 271 if (!p) 272 return; 273 } 274 n = count; 275 for (q = p; q != ctx->trees; q = q->next, n = 31) { 276 while (n--) { 277 audit_put_chunk(q->c[n]); 278 q->c[n] = NULL; 279 } 280 } 281 while (n-- > ctx->tree_count) { 282 audit_put_chunk(q->c[n]); 283 q->c[n] = NULL; 284 } 285 ctx->trees = p; 286 ctx->tree_count = count; 287 #endif 288 } 289 290 static void free_tree_refs(struct audit_context *ctx) 291 { 292 struct audit_tree_refs *p, *q; 293 for (p = ctx->first_trees; p; p = q) { 294 q = p->next; 295 kfree(p); 296 } 297 } 298 299 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 300 { 301 #ifdef CONFIG_AUDIT_TREE 302 struct audit_tree_refs *p; 303 int n; 304 if (!tree) 305 return 0; 306 /* full ones */ 307 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 308 for (n = 0; n < 31; n++) 309 if (audit_tree_match(p->c[n], tree)) 310 return 1; 311 } 312 /* partial */ 313 if (p) { 314 for (n = ctx->tree_count; n < 31; n++) 315 if (audit_tree_match(p->c[n], tree)) 316 return 1; 317 } 318 #endif 319 return 0; 320 } 321 322 static int audit_compare_uid(kuid_t uid, 323 struct audit_names *name, 324 struct audit_field *f, 325 struct audit_context *ctx) 326 { 327 struct audit_names *n; 328 int rc; 329 330 if (name) { 331 rc = audit_uid_comparator(uid, f->op, name->uid); 332 if (rc) 333 return rc; 334 } 335 336 if (ctx) { 337 list_for_each_entry(n, &ctx->names_list, list) { 338 rc = audit_uid_comparator(uid, f->op, n->uid); 339 if (rc) 340 return rc; 341 } 342 } 343 return 0; 344 } 345 346 static int audit_compare_gid(kgid_t gid, 347 struct audit_names *name, 348 struct audit_field *f, 349 struct audit_context *ctx) 350 { 351 struct audit_names *n; 352 int rc; 353 354 if (name) { 355 rc = audit_gid_comparator(gid, f->op, name->gid); 356 if (rc) 357 return rc; 358 } 359 360 if (ctx) { 361 list_for_each_entry(n, &ctx->names_list, list) { 362 rc = audit_gid_comparator(gid, f->op, n->gid); 363 if (rc) 364 return rc; 365 } 366 } 367 return 0; 368 } 369 370 static int audit_field_compare(struct task_struct *tsk, 371 const struct cred *cred, 372 struct audit_field *f, 373 struct audit_context *ctx, 374 struct audit_names *name) 375 { 376 switch (f->val) { 377 /* process to file object comparisons */ 378 case AUDIT_COMPARE_UID_TO_OBJ_UID: 379 return audit_compare_uid(cred->uid, name, f, ctx); 380 case AUDIT_COMPARE_GID_TO_OBJ_GID: 381 return audit_compare_gid(cred->gid, name, f, ctx); 382 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 383 return audit_compare_uid(cred->euid, name, f, ctx); 384 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 385 return audit_compare_gid(cred->egid, name, f, ctx); 386 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 387 return audit_compare_uid(tsk->loginuid, name, f, ctx); 388 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 389 return audit_compare_uid(cred->suid, name, f, ctx); 390 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 391 return audit_compare_gid(cred->sgid, name, f, ctx); 392 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 393 return audit_compare_uid(cred->fsuid, name, f, ctx); 394 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 395 return audit_compare_gid(cred->fsgid, name, f, ctx); 396 /* uid comparisons */ 397 case AUDIT_COMPARE_UID_TO_AUID: 398 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 399 case AUDIT_COMPARE_UID_TO_EUID: 400 return audit_uid_comparator(cred->uid, f->op, cred->euid); 401 case AUDIT_COMPARE_UID_TO_SUID: 402 return audit_uid_comparator(cred->uid, f->op, cred->suid); 403 case AUDIT_COMPARE_UID_TO_FSUID: 404 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 405 /* auid comparisons */ 406 case AUDIT_COMPARE_AUID_TO_EUID: 407 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 408 case AUDIT_COMPARE_AUID_TO_SUID: 409 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 410 case AUDIT_COMPARE_AUID_TO_FSUID: 411 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 412 /* euid comparisons */ 413 case AUDIT_COMPARE_EUID_TO_SUID: 414 return audit_uid_comparator(cred->euid, f->op, cred->suid); 415 case AUDIT_COMPARE_EUID_TO_FSUID: 416 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 417 /* suid comparisons */ 418 case AUDIT_COMPARE_SUID_TO_FSUID: 419 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 420 /* gid comparisons */ 421 case AUDIT_COMPARE_GID_TO_EGID: 422 return audit_gid_comparator(cred->gid, f->op, cred->egid); 423 case AUDIT_COMPARE_GID_TO_SGID: 424 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 425 case AUDIT_COMPARE_GID_TO_FSGID: 426 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 427 /* egid comparisons */ 428 case AUDIT_COMPARE_EGID_TO_SGID: 429 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 430 case AUDIT_COMPARE_EGID_TO_FSGID: 431 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 432 /* sgid comparison */ 433 case AUDIT_COMPARE_SGID_TO_FSGID: 434 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 435 default: 436 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 437 return 0; 438 } 439 return 0; 440 } 441 442 /* Determine if any context name data matches a rule's watch data */ 443 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 444 * otherwise. 445 * 446 * If task_creation is true, this is an explicit indication that we are 447 * filtering a task rule at task creation time. This and tsk == current are 448 * the only situations where tsk->cred may be accessed without an rcu read lock. 449 */ 450 static int audit_filter_rules(struct task_struct *tsk, 451 struct audit_krule *rule, 452 struct audit_context *ctx, 453 struct audit_names *name, 454 enum audit_state *state, 455 bool task_creation) 456 { 457 const struct cred *cred; 458 int i, need_sid = 1; 459 u32 sid; 460 461 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 462 463 for (i = 0; i < rule->field_count; i++) { 464 struct audit_field *f = &rule->fields[i]; 465 struct audit_names *n; 466 int result = 0; 467 468 switch (f->type) { 469 case AUDIT_PID: 470 result = audit_comparator(tsk->pid, f->op, f->val); 471 break; 472 case AUDIT_PPID: 473 if (ctx) { 474 if (!ctx->ppid) 475 ctx->ppid = sys_getppid(); 476 result = audit_comparator(ctx->ppid, f->op, f->val); 477 } 478 break; 479 case AUDIT_UID: 480 result = audit_uid_comparator(cred->uid, f->op, f->uid); 481 break; 482 case AUDIT_EUID: 483 result = audit_uid_comparator(cred->euid, f->op, f->uid); 484 break; 485 case AUDIT_SUID: 486 result = audit_uid_comparator(cred->suid, f->op, f->uid); 487 break; 488 case AUDIT_FSUID: 489 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 490 break; 491 case AUDIT_GID: 492 result = audit_gid_comparator(cred->gid, f->op, f->gid); 493 if (f->op == Audit_equal) { 494 if (!result) 495 result = in_group_p(f->gid); 496 } else if (f->op == Audit_not_equal) { 497 if (result) 498 result = !in_group_p(f->gid); 499 } 500 break; 501 case AUDIT_EGID: 502 result = audit_gid_comparator(cred->egid, f->op, f->gid); 503 if (f->op == Audit_equal) { 504 if (!result) 505 result = in_egroup_p(f->gid); 506 } else if (f->op == Audit_not_equal) { 507 if (result) 508 result = !in_egroup_p(f->gid); 509 } 510 break; 511 case AUDIT_SGID: 512 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 513 break; 514 case AUDIT_FSGID: 515 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 516 break; 517 case AUDIT_PERS: 518 result = audit_comparator(tsk->personality, f->op, f->val); 519 break; 520 case AUDIT_ARCH: 521 if (ctx) 522 result = audit_comparator(ctx->arch, f->op, f->val); 523 break; 524 525 case AUDIT_EXIT: 526 if (ctx && ctx->return_valid) 527 result = audit_comparator(ctx->return_code, f->op, f->val); 528 break; 529 case AUDIT_SUCCESS: 530 if (ctx && ctx->return_valid) { 531 if (f->val) 532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 533 else 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 535 } 536 break; 537 case AUDIT_DEVMAJOR: 538 if (name) { 539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 540 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 541 ++result; 542 } else if (ctx) { 543 list_for_each_entry(n, &ctx->names_list, list) { 544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 546 ++result; 547 break; 548 } 549 } 550 } 551 break; 552 case AUDIT_DEVMINOR: 553 if (name) { 554 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 555 audit_comparator(MINOR(name->rdev), f->op, f->val)) 556 ++result; 557 } else if (ctx) { 558 list_for_each_entry(n, &ctx->names_list, list) { 559 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 560 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 561 ++result; 562 break; 563 } 564 } 565 } 566 break; 567 case AUDIT_INODE: 568 if (name) 569 result = (name->ino == f->val); 570 else if (ctx) { 571 list_for_each_entry(n, &ctx->names_list, list) { 572 if (audit_comparator(n->ino, f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_OBJ_UID: 580 if (name) { 581 result = audit_uid_comparator(name->uid, f->op, f->uid); 582 } else if (ctx) { 583 list_for_each_entry(n, &ctx->names_list, list) { 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 585 ++result; 586 break; 587 } 588 } 589 } 590 break; 591 case AUDIT_OBJ_GID: 592 if (name) { 593 result = audit_gid_comparator(name->gid, f->op, f->gid); 594 } else if (ctx) { 595 list_for_each_entry(n, &ctx->names_list, list) { 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 597 ++result; 598 break; 599 } 600 } 601 } 602 break; 603 case AUDIT_WATCH: 604 if (name) 605 result = audit_watch_compare(rule->watch, name->ino, name->dev); 606 break; 607 case AUDIT_DIR: 608 if (ctx) 609 result = match_tree_refs(ctx, rule->tree); 610 break; 611 case AUDIT_LOGINUID: 612 result = 0; 613 if (ctx) 614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 615 break; 616 case AUDIT_LOGINUID_SET: 617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 618 break; 619 case AUDIT_SUBJ_USER: 620 case AUDIT_SUBJ_ROLE: 621 case AUDIT_SUBJ_TYPE: 622 case AUDIT_SUBJ_SEN: 623 case AUDIT_SUBJ_CLR: 624 /* NOTE: this may return negative values indicating 625 a temporary error. We simply treat this as a 626 match for now to avoid losing information that 627 may be wanted. An error message will also be 628 logged upon error */ 629 if (f->lsm_rule) { 630 if (need_sid) { 631 security_task_getsecid(tsk, &sid); 632 need_sid = 0; 633 } 634 result = security_audit_rule_match(sid, f->type, 635 f->op, 636 f->lsm_rule, 637 ctx); 638 } 639 break; 640 case AUDIT_OBJ_USER: 641 case AUDIT_OBJ_ROLE: 642 case AUDIT_OBJ_TYPE: 643 case AUDIT_OBJ_LEV_LOW: 644 case AUDIT_OBJ_LEV_HIGH: 645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 646 also applies here */ 647 if (f->lsm_rule) { 648 /* Find files that match */ 649 if (name) { 650 result = security_audit_rule_match( 651 name->osid, f->type, f->op, 652 f->lsm_rule, ctx); 653 } else if (ctx) { 654 list_for_each_entry(n, &ctx->names_list, list) { 655 if (security_audit_rule_match(n->osid, f->type, 656 f->op, f->lsm_rule, 657 ctx)) { 658 ++result; 659 break; 660 } 661 } 662 } 663 /* Find ipc objects that match */ 664 if (!ctx || ctx->type != AUDIT_IPC) 665 break; 666 if (security_audit_rule_match(ctx->ipc.osid, 667 f->type, f->op, 668 f->lsm_rule, ctx)) 669 ++result; 670 } 671 break; 672 case AUDIT_ARG0: 673 case AUDIT_ARG1: 674 case AUDIT_ARG2: 675 case AUDIT_ARG3: 676 if (ctx) 677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 678 break; 679 case AUDIT_FILTERKEY: 680 /* ignore this field for filtering */ 681 result = 1; 682 break; 683 case AUDIT_PERM: 684 result = audit_match_perm(ctx, f->val); 685 break; 686 case AUDIT_FILETYPE: 687 result = audit_match_filetype(ctx, f->val); 688 break; 689 case AUDIT_FIELD_COMPARE: 690 result = audit_field_compare(tsk, cred, f, ctx, name); 691 break; 692 } 693 if (!result) 694 return 0; 695 } 696 697 if (ctx) { 698 if (rule->prio <= ctx->prio) 699 return 0; 700 if (rule->filterkey) { 701 kfree(ctx->filterkey); 702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 703 } 704 ctx->prio = rule->prio; 705 } 706 switch (rule->action) { 707 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 708 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 709 } 710 return 1; 711 } 712 713 /* At process creation time, we can determine if system-call auditing is 714 * completely disabled for this task. Since we only have the task 715 * structure at this point, we can only check uid and gid. 716 */ 717 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 718 { 719 struct audit_entry *e; 720 enum audit_state state; 721 722 rcu_read_lock(); 723 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 724 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 725 &state, true)) { 726 if (state == AUDIT_RECORD_CONTEXT) 727 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 728 rcu_read_unlock(); 729 return state; 730 } 731 } 732 rcu_read_unlock(); 733 return AUDIT_BUILD_CONTEXT; 734 } 735 736 /* At syscall entry and exit time, this filter is called if the 737 * audit_state is not low enough that auditing cannot take place, but is 738 * also not high enough that we already know we have to write an audit 739 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 740 */ 741 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 742 struct audit_context *ctx, 743 struct list_head *list) 744 { 745 struct audit_entry *e; 746 enum audit_state state; 747 748 if (audit_pid && tsk->tgid == audit_pid) 749 return AUDIT_DISABLED; 750 751 rcu_read_lock(); 752 if (!list_empty(list)) { 753 int word = AUDIT_WORD(ctx->major); 754 int bit = AUDIT_BIT(ctx->major); 755 756 list_for_each_entry_rcu(e, list, list) { 757 if ((e->rule.mask[word] & bit) == bit && 758 audit_filter_rules(tsk, &e->rule, ctx, NULL, 759 &state, false)) { 760 rcu_read_unlock(); 761 ctx->current_state = state; 762 return state; 763 } 764 } 765 } 766 rcu_read_unlock(); 767 return AUDIT_BUILD_CONTEXT; 768 } 769 770 /* 771 * Given an audit_name check the inode hash table to see if they match. 772 * Called holding the rcu read lock to protect the use of audit_inode_hash 773 */ 774 static int audit_filter_inode_name(struct task_struct *tsk, 775 struct audit_names *n, 776 struct audit_context *ctx) { 777 int word, bit; 778 int h = audit_hash_ino((u32)n->ino); 779 struct list_head *list = &audit_inode_hash[h]; 780 struct audit_entry *e; 781 enum audit_state state; 782 783 word = AUDIT_WORD(ctx->major); 784 bit = AUDIT_BIT(ctx->major); 785 786 if (list_empty(list)) 787 return 0; 788 789 list_for_each_entry_rcu(e, list, list) { 790 if ((e->rule.mask[word] & bit) == bit && 791 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 792 ctx->current_state = state; 793 return 1; 794 } 795 } 796 797 return 0; 798 } 799 800 /* At syscall exit time, this filter is called if any audit_names have been 801 * collected during syscall processing. We only check rules in sublists at hash 802 * buckets applicable to the inode numbers in audit_names. 803 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 804 */ 805 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 806 { 807 struct audit_names *n; 808 809 if (audit_pid && tsk->tgid == audit_pid) 810 return; 811 812 rcu_read_lock(); 813 814 list_for_each_entry(n, &ctx->names_list, list) { 815 if (audit_filter_inode_name(tsk, n, ctx)) 816 break; 817 } 818 rcu_read_unlock(); 819 } 820 821 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 822 int return_valid, 823 long return_code) 824 { 825 struct audit_context *context = tsk->audit_context; 826 827 if (!context) 828 return NULL; 829 context->return_valid = return_valid; 830 831 /* 832 * we need to fix up the return code in the audit logs if the actual 833 * return codes are later going to be fixed up by the arch specific 834 * signal handlers 835 * 836 * This is actually a test for: 837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 839 * 840 * but is faster than a bunch of || 841 */ 842 if (unlikely(return_code <= -ERESTARTSYS) && 843 (return_code >= -ERESTART_RESTARTBLOCK) && 844 (return_code != -ENOIOCTLCMD)) 845 context->return_code = -EINTR; 846 else 847 context->return_code = return_code; 848 849 if (context->in_syscall && !context->dummy) { 850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 851 audit_filter_inodes(tsk, context); 852 } 853 854 tsk->audit_context = NULL; 855 return context; 856 } 857 858 static inline void audit_free_names(struct audit_context *context) 859 { 860 struct audit_names *n, *next; 861 862 #if AUDIT_DEBUG == 2 863 if (context->put_count + context->ino_count != context->name_count) { 864 int i = 0; 865 866 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 867 " name_count=%d put_count=%d" 868 " ino_count=%d [NOT freeing]\n", 869 __FILE__, __LINE__, 870 context->serial, context->major, context->in_syscall, 871 context->name_count, context->put_count, 872 context->ino_count); 873 list_for_each_entry(n, &context->names_list, list) { 874 printk(KERN_ERR "names[%d] = %p = %s\n", i++, 875 n->name, n->name->name ?: "(null)"); 876 } 877 dump_stack(); 878 return; 879 } 880 #endif 881 #if AUDIT_DEBUG 882 context->put_count = 0; 883 context->ino_count = 0; 884 #endif 885 886 list_for_each_entry_safe(n, next, &context->names_list, list) { 887 list_del(&n->list); 888 if (n->name && n->name_put) 889 final_putname(n->name); 890 if (n->should_free) 891 kfree(n); 892 } 893 context->name_count = 0; 894 path_put(&context->pwd); 895 context->pwd.dentry = NULL; 896 context->pwd.mnt = NULL; 897 } 898 899 static inline void audit_free_aux(struct audit_context *context) 900 { 901 struct audit_aux_data *aux; 902 903 while ((aux = context->aux)) { 904 context->aux = aux->next; 905 kfree(aux); 906 } 907 while ((aux = context->aux_pids)) { 908 context->aux_pids = aux->next; 909 kfree(aux); 910 } 911 } 912 913 static inline struct audit_context *audit_alloc_context(enum audit_state state) 914 { 915 struct audit_context *context; 916 917 context = kzalloc(sizeof(*context), GFP_KERNEL); 918 if (!context) 919 return NULL; 920 context->state = state; 921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 922 INIT_LIST_HEAD(&context->killed_trees); 923 INIT_LIST_HEAD(&context->names_list); 924 return context; 925 } 926 927 /** 928 * audit_alloc - allocate an audit context block for a task 929 * @tsk: task 930 * 931 * Filter on the task information and allocate a per-task audit context 932 * if necessary. Doing so turns on system call auditing for the 933 * specified task. This is called from copy_process, so no lock is 934 * needed. 935 */ 936 int audit_alloc(struct task_struct *tsk) 937 { 938 struct audit_context *context; 939 enum audit_state state; 940 char *key = NULL; 941 942 if (likely(!audit_ever_enabled)) 943 return 0; /* Return if not auditing. */ 944 945 state = audit_filter_task(tsk, &key); 946 if (state == AUDIT_DISABLED) 947 return 0; 948 949 if (!(context = audit_alloc_context(state))) { 950 kfree(key); 951 audit_log_lost("out of memory in audit_alloc"); 952 return -ENOMEM; 953 } 954 context->filterkey = key; 955 956 tsk->audit_context = context; 957 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 958 return 0; 959 } 960 961 static inline void audit_free_context(struct audit_context *context) 962 { 963 audit_free_names(context); 964 unroll_tree_refs(context, NULL, 0); 965 free_tree_refs(context); 966 audit_free_aux(context); 967 kfree(context->filterkey); 968 kfree(context->sockaddr); 969 kfree(context); 970 } 971 972 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 973 kuid_t auid, kuid_t uid, unsigned int sessionid, 974 u32 sid, char *comm) 975 { 976 struct audit_buffer *ab; 977 char *ctx = NULL; 978 u32 len; 979 int rc = 0; 980 981 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 982 if (!ab) 983 return rc; 984 985 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 986 from_kuid(&init_user_ns, auid), 987 from_kuid(&init_user_ns, uid), sessionid); 988 if (sid) { 989 if (security_secid_to_secctx(sid, &ctx, &len)) { 990 audit_log_format(ab, " obj=(none)"); 991 rc = 1; 992 } else { 993 audit_log_format(ab, " obj=%s", ctx); 994 security_release_secctx(ctx, len); 995 } 996 } 997 audit_log_format(ab, " ocomm="); 998 audit_log_untrustedstring(ab, comm); 999 audit_log_end(ab); 1000 1001 return rc; 1002 } 1003 1004 /* 1005 * to_send and len_sent accounting are very loose estimates. We aren't 1006 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1007 * within about 500 bytes (next page boundary) 1008 * 1009 * why snprintf? an int is up to 12 digits long. if we just assumed when 1010 * logging that a[%d]= was going to be 16 characters long we would be wasting 1011 * space in every audit message. In one 7500 byte message we can log up to 1012 * about 1000 min size arguments. That comes down to about 50% waste of space 1013 * if we didn't do the snprintf to find out how long arg_num_len was. 1014 */ 1015 static int audit_log_single_execve_arg(struct audit_context *context, 1016 struct audit_buffer **ab, 1017 int arg_num, 1018 size_t *len_sent, 1019 const char __user *p, 1020 char *buf) 1021 { 1022 char arg_num_len_buf[12]; 1023 const char __user *tmp_p = p; 1024 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1025 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1026 size_t len, len_left, to_send; 1027 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1028 unsigned int i, has_cntl = 0, too_long = 0; 1029 int ret; 1030 1031 /* strnlen_user includes the null we don't want to send */ 1032 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1033 1034 /* 1035 * We just created this mm, if we can't find the strings 1036 * we just copied into it something is _very_ wrong. Similar 1037 * for strings that are too long, we should not have created 1038 * any. 1039 */ 1040 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1041 WARN_ON(1); 1042 send_sig(SIGKILL, current, 0); 1043 return -1; 1044 } 1045 1046 /* walk the whole argument looking for non-ascii chars */ 1047 do { 1048 if (len_left > MAX_EXECVE_AUDIT_LEN) 1049 to_send = MAX_EXECVE_AUDIT_LEN; 1050 else 1051 to_send = len_left; 1052 ret = copy_from_user(buf, tmp_p, to_send); 1053 /* 1054 * There is no reason for this copy to be short. We just 1055 * copied them here, and the mm hasn't been exposed to user- 1056 * space yet. 1057 */ 1058 if (ret) { 1059 WARN_ON(1); 1060 send_sig(SIGKILL, current, 0); 1061 return -1; 1062 } 1063 buf[to_send] = '\0'; 1064 has_cntl = audit_string_contains_control(buf, to_send); 1065 if (has_cntl) { 1066 /* 1067 * hex messages get logged as 2 bytes, so we can only 1068 * send half as much in each message 1069 */ 1070 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1071 break; 1072 } 1073 len_left -= to_send; 1074 tmp_p += to_send; 1075 } while (len_left > 0); 1076 1077 len_left = len; 1078 1079 if (len > max_execve_audit_len) 1080 too_long = 1; 1081 1082 /* rewalk the argument actually logging the message */ 1083 for (i = 0; len_left > 0; i++) { 1084 int room_left; 1085 1086 if (len_left > max_execve_audit_len) 1087 to_send = max_execve_audit_len; 1088 else 1089 to_send = len_left; 1090 1091 /* do we have space left to send this argument in this ab? */ 1092 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1093 if (has_cntl) 1094 room_left -= (to_send * 2); 1095 else 1096 room_left -= to_send; 1097 if (room_left < 0) { 1098 *len_sent = 0; 1099 audit_log_end(*ab); 1100 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1101 if (!*ab) 1102 return 0; 1103 } 1104 1105 /* 1106 * first record needs to say how long the original string was 1107 * so we can be sure nothing was lost. 1108 */ 1109 if ((i == 0) && (too_long)) 1110 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1111 has_cntl ? 2*len : len); 1112 1113 /* 1114 * normally arguments are small enough to fit and we already 1115 * filled buf above when we checked for control characters 1116 * so don't bother with another copy_from_user 1117 */ 1118 if (len >= max_execve_audit_len) 1119 ret = copy_from_user(buf, p, to_send); 1120 else 1121 ret = 0; 1122 if (ret) { 1123 WARN_ON(1); 1124 send_sig(SIGKILL, current, 0); 1125 return -1; 1126 } 1127 buf[to_send] = '\0'; 1128 1129 /* actually log it */ 1130 audit_log_format(*ab, " a%d", arg_num); 1131 if (too_long) 1132 audit_log_format(*ab, "[%d]", i); 1133 audit_log_format(*ab, "="); 1134 if (has_cntl) 1135 audit_log_n_hex(*ab, buf, to_send); 1136 else 1137 audit_log_string(*ab, buf); 1138 1139 p += to_send; 1140 len_left -= to_send; 1141 *len_sent += arg_num_len; 1142 if (has_cntl) 1143 *len_sent += to_send * 2; 1144 else 1145 *len_sent += to_send; 1146 } 1147 /* include the null we didn't log */ 1148 return len + 1; 1149 } 1150 1151 static void audit_log_execve_info(struct audit_context *context, 1152 struct audit_buffer **ab, 1153 struct audit_aux_data_execve *axi) 1154 { 1155 int i, len; 1156 size_t len_sent = 0; 1157 const char __user *p; 1158 char *buf; 1159 1160 if (axi->mm != current->mm) 1161 return; /* execve failed, no additional info */ 1162 1163 p = (const char __user *)axi->mm->arg_start; 1164 1165 audit_log_format(*ab, "argc=%d", axi->argc); 1166 1167 /* 1168 * we need some kernel buffer to hold the userspace args. Just 1169 * allocate one big one rather than allocating one of the right size 1170 * for every single argument inside audit_log_single_execve_arg() 1171 * should be <8k allocation so should be pretty safe. 1172 */ 1173 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1174 if (!buf) { 1175 audit_panic("out of memory for argv string\n"); 1176 return; 1177 } 1178 1179 for (i = 0; i < axi->argc; i++) { 1180 len = audit_log_single_execve_arg(context, ab, i, 1181 &len_sent, p, buf); 1182 if (len <= 0) 1183 break; 1184 p += len; 1185 } 1186 kfree(buf); 1187 } 1188 1189 static void show_special(struct audit_context *context, int *call_panic) 1190 { 1191 struct audit_buffer *ab; 1192 int i; 1193 1194 ab = audit_log_start(context, GFP_KERNEL, context->type); 1195 if (!ab) 1196 return; 1197 1198 switch (context->type) { 1199 case AUDIT_SOCKETCALL: { 1200 int nargs = context->socketcall.nargs; 1201 audit_log_format(ab, "nargs=%d", nargs); 1202 for (i = 0; i < nargs; i++) 1203 audit_log_format(ab, " a%d=%lx", i, 1204 context->socketcall.args[i]); 1205 break; } 1206 case AUDIT_IPC: { 1207 u32 osid = context->ipc.osid; 1208 1209 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1210 from_kuid(&init_user_ns, context->ipc.uid), 1211 from_kgid(&init_user_ns, context->ipc.gid), 1212 context->ipc.mode); 1213 if (osid) { 1214 char *ctx = NULL; 1215 u32 len; 1216 if (security_secid_to_secctx(osid, &ctx, &len)) { 1217 audit_log_format(ab, " osid=%u", osid); 1218 *call_panic = 1; 1219 } else { 1220 audit_log_format(ab, " obj=%s", ctx); 1221 security_release_secctx(ctx, len); 1222 } 1223 } 1224 if (context->ipc.has_perm) { 1225 audit_log_end(ab); 1226 ab = audit_log_start(context, GFP_KERNEL, 1227 AUDIT_IPC_SET_PERM); 1228 if (unlikely(!ab)) 1229 return; 1230 audit_log_format(ab, 1231 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1232 context->ipc.qbytes, 1233 context->ipc.perm_uid, 1234 context->ipc.perm_gid, 1235 context->ipc.perm_mode); 1236 } 1237 break; } 1238 case AUDIT_MQ_OPEN: { 1239 audit_log_format(ab, 1240 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1241 "mq_msgsize=%ld mq_curmsgs=%ld", 1242 context->mq_open.oflag, context->mq_open.mode, 1243 context->mq_open.attr.mq_flags, 1244 context->mq_open.attr.mq_maxmsg, 1245 context->mq_open.attr.mq_msgsize, 1246 context->mq_open.attr.mq_curmsgs); 1247 break; } 1248 case AUDIT_MQ_SENDRECV: { 1249 audit_log_format(ab, 1250 "mqdes=%d msg_len=%zd msg_prio=%u " 1251 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1252 context->mq_sendrecv.mqdes, 1253 context->mq_sendrecv.msg_len, 1254 context->mq_sendrecv.msg_prio, 1255 context->mq_sendrecv.abs_timeout.tv_sec, 1256 context->mq_sendrecv.abs_timeout.tv_nsec); 1257 break; } 1258 case AUDIT_MQ_NOTIFY: { 1259 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1260 context->mq_notify.mqdes, 1261 context->mq_notify.sigev_signo); 1262 break; } 1263 case AUDIT_MQ_GETSETATTR: { 1264 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1265 audit_log_format(ab, 1266 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1267 "mq_curmsgs=%ld ", 1268 context->mq_getsetattr.mqdes, 1269 attr->mq_flags, attr->mq_maxmsg, 1270 attr->mq_msgsize, attr->mq_curmsgs); 1271 break; } 1272 case AUDIT_CAPSET: { 1273 audit_log_format(ab, "pid=%d", context->capset.pid); 1274 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1275 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1276 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1277 break; } 1278 case AUDIT_MMAP: { 1279 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1280 context->mmap.flags); 1281 break; } 1282 } 1283 audit_log_end(ab); 1284 } 1285 1286 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1287 { 1288 int i, call_panic = 0; 1289 struct audit_buffer *ab; 1290 struct audit_aux_data *aux; 1291 struct audit_names *n; 1292 1293 /* tsk == current */ 1294 context->personality = tsk->personality; 1295 1296 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1297 if (!ab) 1298 return; /* audit_panic has been called */ 1299 audit_log_format(ab, "arch=%x syscall=%d", 1300 context->arch, context->major); 1301 if (context->personality != PER_LINUX) 1302 audit_log_format(ab, " per=%lx", context->personality); 1303 if (context->return_valid) 1304 audit_log_format(ab, " success=%s exit=%ld", 1305 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1306 context->return_code); 1307 1308 audit_log_format(ab, 1309 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1310 context->argv[0], 1311 context->argv[1], 1312 context->argv[2], 1313 context->argv[3], 1314 context->name_count); 1315 1316 audit_log_task_info(ab, tsk); 1317 audit_log_key(ab, context->filterkey); 1318 audit_log_end(ab); 1319 1320 for (aux = context->aux; aux; aux = aux->next) { 1321 1322 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1323 if (!ab) 1324 continue; /* audit_panic has been called */ 1325 1326 switch (aux->type) { 1327 1328 case AUDIT_EXECVE: { 1329 struct audit_aux_data_execve *axi = (void *)aux; 1330 audit_log_execve_info(context, &ab, axi); 1331 break; } 1332 1333 case AUDIT_BPRM_FCAPS: { 1334 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1335 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1336 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1337 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1338 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1339 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1340 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1341 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1342 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1343 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1344 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1345 break; } 1346 1347 } 1348 audit_log_end(ab); 1349 } 1350 1351 if (context->type) 1352 show_special(context, &call_panic); 1353 1354 if (context->fds[0] >= 0) { 1355 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1356 if (ab) { 1357 audit_log_format(ab, "fd0=%d fd1=%d", 1358 context->fds[0], context->fds[1]); 1359 audit_log_end(ab); 1360 } 1361 } 1362 1363 if (context->sockaddr_len) { 1364 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1365 if (ab) { 1366 audit_log_format(ab, "saddr="); 1367 audit_log_n_hex(ab, (void *)context->sockaddr, 1368 context->sockaddr_len); 1369 audit_log_end(ab); 1370 } 1371 } 1372 1373 for (aux = context->aux_pids; aux; aux = aux->next) { 1374 struct audit_aux_data_pids *axs = (void *)aux; 1375 1376 for (i = 0; i < axs->pid_count; i++) 1377 if (audit_log_pid_context(context, axs->target_pid[i], 1378 axs->target_auid[i], 1379 axs->target_uid[i], 1380 axs->target_sessionid[i], 1381 axs->target_sid[i], 1382 axs->target_comm[i])) 1383 call_panic = 1; 1384 } 1385 1386 if (context->target_pid && 1387 audit_log_pid_context(context, context->target_pid, 1388 context->target_auid, context->target_uid, 1389 context->target_sessionid, 1390 context->target_sid, context->target_comm)) 1391 call_panic = 1; 1392 1393 if (context->pwd.dentry && context->pwd.mnt) { 1394 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1395 if (ab) { 1396 audit_log_d_path(ab, " cwd=", &context->pwd); 1397 audit_log_end(ab); 1398 } 1399 } 1400 1401 i = 0; 1402 list_for_each_entry(n, &context->names_list, list) { 1403 if (n->hidden) 1404 continue; 1405 audit_log_name(context, n, NULL, i++, &call_panic); 1406 } 1407 1408 /* Send end of event record to help user space know we are finished */ 1409 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1410 if (ab) 1411 audit_log_end(ab); 1412 if (call_panic) 1413 audit_panic("error converting sid to string"); 1414 } 1415 1416 /** 1417 * audit_free - free a per-task audit context 1418 * @tsk: task whose audit context block to free 1419 * 1420 * Called from copy_process and do_exit 1421 */ 1422 void __audit_free(struct task_struct *tsk) 1423 { 1424 struct audit_context *context; 1425 1426 context = audit_get_context(tsk, 0, 0); 1427 if (!context) 1428 return; 1429 1430 /* Check for system calls that do not go through the exit 1431 * function (e.g., exit_group), then free context block. 1432 * We use GFP_ATOMIC here because we might be doing this 1433 * in the context of the idle thread */ 1434 /* that can happen only if we are called from do_exit() */ 1435 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1436 audit_log_exit(context, tsk); 1437 if (!list_empty(&context->killed_trees)) 1438 audit_kill_trees(&context->killed_trees); 1439 1440 audit_free_context(context); 1441 } 1442 1443 /** 1444 * audit_syscall_entry - fill in an audit record at syscall entry 1445 * @arch: architecture type 1446 * @major: major syscall type (function) 1447 * @a1: additional syscall register 1 1448 * @a2: additional syscall register 2 1449 * @a3: additional syscall register 3 1450 * @a4: additional syscall register 4 1451 * 1452 * Fill in audit context at syscall entry. This only happens if the 1453 * audit context was created when the task was created and the state or 1454 * filters demand the audit context be built. If the state from the 1455 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1456 * then the record will be written at syscall exit time (otherwise, it 1457 * will only be written if another part of the kernel requests that it 1458 * be written). 1459 */ 1460 void __audit_syscall_entry(int arch, int major, 1461 unsigned long a1, unsigned long a2, 1462 unsigned long a3, unsigned long a4) 1463 { 1464 struct task_struct *tsk = current; 1465 struct audit_context *context = tsk->audit_context; 1466 enum audit_state state; 1467 1468 if (!context) 1469 return; 1470 1471 BUG_ON(context->in_syscall || context->name_count); 1472 1473 if (!audit_enabled) 1474 return; 1475 1476 context->arch = arch; 1477 context->major = major; 1478 context->argv[0] = a1; 1479 context->argv[1] = a2; 1480 context->argv[2] = a3; 1481 context->argv[3] = a4; 1482 1483 state = context->state; 1484 context->dummy = !audit_n_rules; 1485 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1486 context->prio = 0; 1487 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1488 } 1489 if (state == AUDIT_DISABLED) 1490 return; 1491 1492 context->serial = 0; 1493 context->ctime = CURRENT_TIME; 1494 context->in_syscall = 1; 1495 context->current_state = state; 1496 context->ppid = 0; 1497 } 1498 1499 /** 1500 * audit_syscall_exit - deallocate audit context after a system call 1501 * @success: success value of the syscall 1502 * @return_code: return value of the syscall 1503 * 1504 * Tear down after system call. If the audit context has been marked as 1505 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1506 * filtering, or because some other part of the kernel wrote an audit 1507 * message), then write out the syscall information. In call cases, 1508 * free the names stored from getname(). 1509 */ 1510 void __audit_syscall_exit(int success, long return_code) 1511 { 1512 struct task_struct *tsk = current; 1513 struct audit_context *context; 1514 1515 if (success) 1516 success = AUDITSC_SUCCESS; 1517 else 1518 success = AUDITSC_FAILURE; 1519 1520 context = audit_get_context(tsk, success, return_code); 1521 if (!context) 1522 return; 1523 1524 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1525 audit_log_exit(context, tsk); 1526 1527 context->in_syscall = 0; 1528 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1529 1530 if (!list_empty(&context->killed_trees)) 1531 audit_kill_trees(&context->killed_trees); 1532 1533 audit_free_names(context); 1534 unroll_tree_refs(context, NULL, 0); 1535 audit_free_aux(context); 1536 context->aux = NULL; 1537 context->aux_pids = NULL; 1538 context->target_pid = 0; 1539 context->target_sid = 0; 1540 context->sockaddr_len = 0; 1541 context->type = 0; 1542 context->fds[0] = -1; 1543 if (context->state != AUDIT_RECORD_CONTEXT) { 1544 kfree(context->filterkey); 1545 context->filterkey = NULL; 1546 } 1547 tsk->audit_context = context; 1548 } 1549 1550 static inline void handle_one(const struct inode *inode) 1551 { 1552 #ifdef CONFIG_AUDIT_TREE 1553 struct audit_context *context; 1554 struct audit_tree_refs *p; 1555 struct audit_chunk *chunk; 1556 int count; 1557 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1558 return; 1559 context = current->audit_context; 1560 p = context->trees; 1561 count = context->tree_count; 1562 rcu_read_lock(); 1563 chunk = audit_tree_lookup(inode); 1564 rcu_read_unlock(); 1565 if (!chunk) 1566 return; 1567 if (likely(put_tree_ref(context, chunk))) 1568 return; 1569 if (unlikely(!grow_tree_refs(context))) { 1570 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1571 audit_set_auditable(context); 1572 audit_put_chunk(chunk); 1573 unroll_tree_refs(context, p, count); 1574 return; 1575 } 1576 put_tree_ref(context, chunk); 1577 #endif 1578 } 1579 1580 static void handle_path(const struct dentry *dentry) 1581 { 1582 #ifdef CONFIG_AUDIT_TREE 1583 struct audit_context *context; 1584 struct audit_tree_refs *p; 1585 const struct dentry *d, *parent; 1586 struct audit_chunk *drop; 1587 unsigned long seq; 1588 int count; 1589 1590 context = current->audit_context; 1591 p = context->trees; 1592 count = context->tree_count; 1593 retry: 1594 drop = NULL; 1595 d = dentry; 1596 rcu_read_lock(); 1597 seq = read_seqbegin(&rename_lock); 1598 for(;;) { 1599 struct inode *inode = d->d_inode; 1600 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1601 struct audit_chunk *chunk; 1602 chunk = audit_tree_lookup(inode); 1603 if (chunk) { 1604 if (unlikely(!put_tree_ref(context, chunk))) { 1605 drop = chunk; 1606 break; 1607 } 1608 } 1609 } 1610 parent = d->d_parent; 1611 if (parent == d) 1612 break; 1613 d = parent; 1614 } 1615 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1616 rcu_read_unlock(); 1617 if (!drop) { 1618 /* just a race with rename */ 1619 unroll_tree_refs(context, p, count); 1620 goto retry; 1621 } 1622 audit_put_chunk(drop); 1623 if (grow_tree_refs(context)) { 1624 /* OK, got more space */ 1625 unroll_tree_refs(context, p, count); 1626 goto retry; 1627 } 1628 /* too bad */ 1629 printk(KERN_WARNING 1630 "out of memory, audit has lost a tree reference\n"); 1631 unroll_tree_refs(context, p, count); 1632 audit_set_auditable(context); 1633 return; 1634 } 1635 rcu_read_unlock(); 1636 #endif 1637 } 1638 1639 static struct audit_names *audit_alloc_name(struct audit_context *context, 1640 unsigned char type) 1641 { 1642 struct audit_names *aname; 1643 1644 if (context->name_count < AUDIT_NAMES) { 1645 aname = &context->preallocated_names[context->name_count]; 1646 memset(aname, 0, sizeof(*aname)); 1647 } else { 1648 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1649 if (!aname) 1650 return NULL; 1651 aname->should_free = true; 1652 } 1653 1654 aname->ino = (unsigned long)-1; 1655 aname->type = type; 1656 list_add_tail(&aname->list, &context->names_list); 1657 1658 context->name_count++; 1659 #if AUDIT_DEBUG 1660 context->ino_count++; 1661 #endif 1662 return aname; 1663 } 1664 1665 /** 1666 * audit_reusename - fill out filename with info from existing entry 1667 * @uptr: userland ptr to pathname 1668 * 1669 * Search the audit_names list for the current audit context. If there is an 1670 * existing entry with a matching "uptr" then return the filename 1671 * associated with that audit_name. If not, return NULL. 1672 */ 1673 struct filename * 1674 __audit_reusename(const __user char *uptr) 1675 { 1676 struct audit_context *context = current->audit_context; 1677 struct audit_names *n; 1678 1679 list_for_each_entry(n, &context->names_list, list) { 1680 if (!n->name) 1681 continue; 1682 if (n->name->uptr == uptr) 1683 return n->name; 1684 } 1685 return NULL; 1686 } 1687 1688 /** 1689 * audit_getname - add a name to the list 1690 * @name: name to add 1691 * 1692 * Add a name to the list of audit names for this context. 1693 * Called from fs/namei.c:getname(). 1694 */ 1695 void __audit_getname(struct filename *name) 1696 { 1697 struct audit_context *context = current->audit_context; 1698 struct audit_names *n; 1699 1700 if (!context->in_syscall) { 1701 #if AUDIT_DEBUG == 2 1702 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1703 __FILE__, __LINE__, context->serial, name); 1704 dump_stack(); 1705 #endif 1706 return; 1707 } 1708 1709 #if AUDIT_DEBUG 1710 /* The filename _must_ have a populated ->name */ 1711 BUG_ON(!name->name); 1712 #endif 1713 1714 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1715 if (!n) 1716 return; 1717 1718 n->name = name; 1719 n->name_len = AUDIT_NAME_FULL; 1720 n->name_put = true; 1721 name->aname = n; 1722 1723 if (!context->pwd.dentry) 1724 get_fs_pwd(current->fs, &context->pwd); 1725 } 1726 1727 /* audit_putname - intercept a putname request 1728 * @name: name to intercept and delay for putname 1729 * 1730 * If we have stored the name from getname in the audit context, 1731 * then we delay the putname until syscall exit. 1732 * Called from include/linux/fs.h:putname(). 1733 */ 1734 void audit_putname(struct filename *name) 1735 { 1736 struct audit_context *context = current->audit_context; 1737 1738 BUG_ON(!context); 1739 if (!context->in_syscall) { 1740 #if AUDIT_DEBUG == 2 1741 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n", 1742 __FILE__, __LINE__, context->serial, name); 1743 if (context->name_count) { 1744 struct audit_names *n; 1745 int i = 0; 1746 1747 list_for_each_entry(n, &context->names_list, list) 1748 printk(KERN_ERR "name[%d] = %p = %s\n", i++, 1749 n->name, n->name->name ?: "(null)"); 1750 } 1751 #endif 1752 final_putname(name); 1753 } 1754 #if AUDIT_DEBUG 1755 else { 1756 ++context->put_count; 1757 if (context->put_count > context->name_count) { 1758 printk(KERN_ERR "%s:%d(:%d): major=%d" 1759 " in_syscall=%d putname(%p) name_count=%d" 1760 " put_count=%d\n", 1761 __FILE__, __LINE__, 1762 context->serial, context->major, 1763 context->in_syscall, name->name, 1764 context->name_count, context->put_count); 1765 dump_stack(); 1766 } 1767 } 1768 #endif 1769 } 1770 1771 /** 1772 * __audit_inode - store the inode and device from a lookup 1773 * @name: name being audited 1774 * @dentry: dentry being audited 1775 * @flags: attributes for this particular entry 1776 */ 1777 void __audit_inode(struct filename *name, const struct dentry *dentry, 1778 unsigned int flags) 1779 { 1780 struct audit_context *context = current->audit_context; 1781 const struct inode *inode = dentry->d_inode; 1782 struct audit_names *n; 1783 bool parent = flags & AUDIT_INODE_PARENT; 1784 1785 if (!context->in_syscall) 1786 return; 1787 1788 if (!name) 1789 goto out_alloc; 1790 1791 #if AUDIT_DEBUG 1792 /* The struct filename _must_ have a populated ->name */ 1793 BUG_ON(!name->name); 1794 #endif 1795 /* 1796 * If we have a pointer to an audit_names entry already, then we can 1797 * just use it directly if the type is correct. 1798 */ 1799 n = name->aname; 1800 if (n) { 1801 if (parent) { 1802 if (n->type == AUDIT_TYPE_PARENT || 1803 n->type == AUDIT_TYPE_UNKNOWN) 1804 goto out; 1805 } else { 1806 if (n->type != AUDIT_TYPE_PARENT) 1807 goto out; 1808 } 1809 } 1810 1811 list_for_each_entry_reverse(n, &context->names_list, list) { 1812 /* does the name pointer match? */ 1813 if (!n->name || n->name->name != name->name) 1814 continue; 1815 1816 /* match the correct record type */ 1817 if (parent) { 1818 if (n->type == AUDIT_TYPE_PARENT || 1819 n->type == AUDIT_TYPE_UNKNOWN) 1820 goto out; 1821 } else { 1822 if (n->type != AUDIT_TYPE_PARENT) 1823 goto out; 1824 } 1825 } 1826 1827 out_alloc: 1828 /* unable to find the name from a previous getname(). Allocate a new 1829 * anonymous entry. 1830 */ 1831 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL); 1832 if (!n) 1833 return; 1834 out: 1835 if (parent) { 1836 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1837 n->type = AUDIT_TYPE_PARENT; 1838 if (flags & AUDIT_INODE_HIDDEN) 1839 n->hidden = true; 1840 } else { 1841 n->name_len = AUDIT_NAME_FULL; 1842 n->type = AUDIT_TYPE_NORMAL; 1843 } 1844 handle_path(dentry); 1845 audit_copy_inode(n, dentry, inode); 1846 } 1847 1848 /** 1849 * __audit_inode_child - collect inode info for created/removed objects 1850 * @parent: inode of dentry parent 1851 * @dentry: dentry being audited 1852 * @type: AUDIT_TYPE_* value that we're looking for 1853 * 1854 * For syscalls that create or remove filesystem objects, audit_inode 1855 * can only collect information for the filesystem object's parent. 1856 * This call updates the audit context with the child's information. 1857 * Syscalls that create a new filesystem object must be hooked after 1858 * the object is created. Syscalls that remove a filesystem object 1859 * must be hooked prior, in order to capture the target inode during 1860 * unsuccessful attempts. 1861 */ 1862 void __audit_inode_child(const struct inode *parent, 1863 const struct dentry *dentry, 1864 const unsigned char type) 1865 { 1866 struct audit_context *context = current->audit_context; 1867 const struct inode *inode = dentry->d_inode; 1868 const char *dname = dentry->d_name.name; 1869 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1870 1871 if (!context->in_syscall) 1872 return; 1873 1874 if (inode) 1875 handle_one(inode); 1876 1877 /* look for a parent entry first */ 1878 list_for_each_entry(n, &context->names_list, list) { 1879 if (!n->name || n->type != AUDIT_TYPE_PARENT) 1880 continue; 1881 1882 if (n->ino == parent->i_ino && 1883 !audit_compare_dname_path(dname, n->name->name, n->name_len)) { 1884 found_parent = n; 1885 break; 1886 } 1887 } 1888 1889 /* is there a matching child entry? */ 1890 list_for_each_entry(n, &context->names_list, list) { 1891 /* can only match entries that have a name */ 1892 if (!n->name || n->type != type) 1893 continue; 1894 1895 /* if we found a parent, make sure this one is a child of it */ 1896 if (found_parent && (n->name != found_parent->name)) 1897 continue; 1898 1899 if (!strcmp(dname, n->name->name) || 1900 !audit_compare_dname_path(dname, n->name->name, 1901 found_parent ? 1902 found_parent->name_len : 1903 AUDIT_NAME_FULL)) { 1904 found_child = n; 1905 break; 1906 } 1907 } 1908 1909 if (!found_parent) { 1910 /* create a new, "anonymous" parent record */ 1911 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1912 if (!n) 1913 return; 1914 audit_copy_inode(n, NULL, parent); 1915 } 1916 1917 if (!found_child) { 1918 found_child = audit_alloc_name(context, type); 1919 if (!found_child) 1920 return; 1921 1922 /* Re-use the name belonging to the slot for a matching parent 1923 * directory. All names for this context are relinquished in 1924 * audit_free_names() */ 1925 if (found_parent) { 1926 found_child->name = found_parent->name; 1927 found_child->name_len = AUDIT_NAME_FULL; 1928 /* don't call __putname() */ 1929 found_child->name_put = false; 1930 } 1931 } 1932 if (inode) 1933 audit_copy_inode(found_child, dentry, inode); 1934 else 1935 found_child->ino = (unsigned long)-1; 1936 } 1937 EXPORT_SYMBOL_GPL(__audit_inode_child); 1938 1939 /** 1940 * auditsc_get_stamp - get local copies of audit_context values 1941 * @ctx: audit_context for the task 1942 * @t: timespec to store time recorded in the audit_context 1943 * @serial: serial value that is recorded in the audit_context 1944 * 1945 * Also sets the context as auditable. 1946 */ 1947 int auditsc_get_stamp(struct audit_context *ctx, 1948 struct timespec *t, unsigned int *serial) 1949 { 1950 if (!ctx->in_syscall) 1951 return 0; 1952 if (!ctx->serial) 1953 ctx->serial = audit_serial(); 1954 t->tv_sec = ctx->ctime.tv_sec; 1955 t->tv_nsec = ctx->ctime.tv_nsec; 1956 *serial = ctx->serial; 1957 if (!ctx->prio) { 1958 ctx->prio = 1; 1959 ctx->current_state = AUDIT_RECORD_CONTEXT; 1960 } 1961 return 1; 1962 } 1963 1964 /* global counter which is incremented every time something logs in */ 1965 static atomic_t session_id = ATOMIC_INIT(0); 1966 1967 /** 1968 * audit_set_loginuid - set current task's audit_context loginuid 1969 * @loginuid: loginuid value 1970 * 1971 * Returns 0. 1972 * 1973 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 1974 */ 1975 int audit_set_loginuid(kuid_t loginuid) 1976 { 1977 struct task_struct *task = current; 1978 struct audit_context *context = task->audit_context; 1979 unsigned int sessionid; 1980 1981 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE 1982 if (audit_loginuid_set(task)) 1983 return -EPERM; 1984 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */ 1985 if (!capable(CAP_AUDIT_CONTROL)) 1986 return -EPERM; 1987 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */ 1988 1989 sessionid = atomic_inc_return(&session_id); 1990 if (context && context->in_syscall) { 1991 struct audit_buffer *ab; 1992 1993 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1994 if (ab) { 1995 audit_log_format(ab, "login pid=%d uid=%u " 1996 "old auid=%u new auid=%u" 1997 " old ses=%u new ses=%u", 1998 task->pid, 1999 from_kuid(&init_user_ns, task_uid(task)), 2000 from_kuid(&init_user_ns, task->loginuid), 2001 from_kuid(&init_user_ns, loginuid), 2002 task->sessionid, sessionid); 2003 audit_log_end(ab); 2004 } 2005 } 2006 task->sessionid = sessionid; 2007 task->loginuid = loginuid; 2008 return 0; 2009 } 2010 2011 /** 2012 * __audit_mq_open - record audit data for a POSIX MQ open 2013 * @oflag: open flag 2014 * @mode: mode bits 2015 * @attr: queue attributes 2016 * 2017 */ 2018 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2019 { 2020 struct audit_context *context = current->audit_context; 2021 2022 if (attr) 2023 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2024 else 2025 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2026 2027 context->mq_open.oflag = oflag; 2028 context->mq_open.mode = mode; 2029 2030 context->type = AUDIT_MQ_OPEN; 2031 } 2032 2033 /** 2034 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2035 * @mqdes: MQ descriptor 2036 * @msg_len: Message length 2037 * @msg_prio: Message priority 2038 * @abs_timeout: Message timeout in absolute time 2039 * 2040 */ 2041 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2042 const struct timespec *abs_timeout) 2043 { 2044 struct audit_context *context = current->audit_context; 2045 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2046 2047 if (abs_timeout) 2048 memcpy(p, abs_timeout, sizeof(struct timespec)); 2049 else 2050 memset(p, 0, sizeof(struct timespec)); 2051 2052 context->mq_sendrecv.mqdes = mqdes; 2053 context->mq_sendrecv.msg_len = msg_len; 2054 context->mq_sendrecv.msg_prio = msg_prio; 2055 2056 context->type = AUDIT_MQ_SENDRECV; 2057 } 2058 2059 /** 2060 * __audit_mq_notify - record audit data for a POSIX MQ notify 2061 * @mqdes: MQ descriptor 2062 * @notification: Notification event 2063 * 2064 */ 2065 2066 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2067 { 2068 struct audit_context *context = current->audit_context; 2069 2070 if (notification) 2071 context->mq_notify.sigev_signo = notification->sigev_signo; 2072 else 2073 context->mq_notify.sigev_signo = 0; 2074 2075 context->mq_notify.mqdes = mqdes; 2076 context->type = AUDIT_MQ_NOTIFY; 2077 } 2078 2079 /** 2080 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2081 * @mqdes: MQ descriptor 2082 * @mqstat: MQ flags 2083 * 2084 */ 2085 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2086 { 2087 struct audit_context *context = current->audit_context; 2088 context->mq_getsetattr.mqdes = mqdes; 2089 context->mq_getsetattr.mqstat = *mqstat; 2090 context->type = AUDIT_MQ_GETSETATTR; 2091 } 2092 2093 /** 2094 * audit_ipc_obj - record audit data for ipc object 2095 * @ipcp: ipc permissions 2096 * 2097 */ 2098 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2099 { 2100 struct audit_context *context = current->audit_context; 2101 context->ipc.uid = ipcp->uid; 2102 context->ipc.gid = ipcp->gid; 2103 context->ipc.mode = ipcp->mode; 2104 context->ipc.has_perm = 0; 2105 security_ipc_getsecid(ipcp, &context->ipc.osid); 2106 context->type = AUDIT_IPC; 2107 } 2108 2109 /** 2110 * audit_ipc_set_perm - record audit data for new ipc permissions 2111 * @qbytes: msgq bytes 2112 * @uid: msgq user id 2113 * @gid: msgq group id 2114 * @mode: msgq mode (permissions) 2115 * 2116 * Called only after audit_ipc_obj(). 2117 */ 2118 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2119 { 2120 struct audit_context *context = current->audit_context; 2121 2122 context->ipc.qbytes = qbytes; 2123 context->ipc.perm_uid = uid; 2124 context->ipc.perm_gid = gid; 2125 context->ipc.perm_mode = mode; 2126 context->ipc.has_perm = 1; 2127 } 2128 2129 int __audit_bprm(struct linux_binprm *bprm) 2130 { 2131 struct audit_aux_data_execve *ax; 2132 struct audit_context *context = current->audit_context; 2133 2134 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2135 if (!ax) 2136 return -ENOMEM; 2137 2138 ax->argc = bprm->argc; 2139 ax->envc = bprm->envc; 2140 ax->mm = bprm->mm; 2141 ax->d.type = AUDIT_EXECVE; 2142 ax->d.next = context->aux; 2143 context->aux = (void *)ax; 2144 return 0; 2145 } 2146 2147 2148 /** 2149 * audit_socketcall - record audit data for sys_socketcall 2150 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2151 * @args: args array 2152 * 2153 */ 2154 int __audit_socketcall(int nargs, unsigned long *args) 2155 { 2156 struct audit_context *context = current->audit_context; 2157 2158 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2159 return -EINVAL; 2160 context->type = AUDIT_SOCKETCALL; 2161 context->socketcall.nargs = nargs; 2162 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2163 return 0; 2164 } 2165 2166 /** 2167 * __audit_fd_pair - record audit data for pipe and socketpair 2168 * @fd1: the first file descriptor 2169 * @fd2: the second file descriptor 2170 * 2171 */ 2172 void __audit_fd_pair(int fd1, int fd2) 2173 { 2174 struct audit_context *context = current->audit_context; 2175 context->fds[0] = fd1; 2176 context->fds[1] = fd2; 2177 } 2178 2179 /** 2180 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2181 * @len: data length in user space 2182 * @a: data address in kernel space 2183 * 2184 * Returns 0 for success or NULL context or < 0 on error. 2185 */ 2186 int __audit_sockaddr(int len, void *a) 2187 { 2188 struct audit_context *context = current->audit_context; 2189 2190 if (!context->sockaddr) { 2191 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2192 if (!p) 2193 return -ENOMEM; 2194 context->sockaddr = p; 2195 } 2196 2197 context->sockaddr_len = len; 2198 memcpy(context->sockaddr, a, len); 2199 return 0; 2200 } 2201 2202 void __audit_ptrace(struct task_struct *t) 2203 { 2204 struct audit_context *context = current->audit_context; 2205 2206 context->target_pid = t->pid; 2207 context->target_auid = audit_get_loginuid(t); 2208 context->target_uid = task_uid(t); 2209 context->target_sessionid = audit_get_sessionid(t); 2210 security_task_getsecid(t, &context->target_sid); 2211 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2212 } 2213 2214 /** 2215 * audit_signal_info - record signal info for shutting down audit subsystem 2216 * @sig: signal value 2217 * @t: task being signaled 2218 * 2219 * If the audit subsystem is being terminated, record the task (pid) 2220 * and uid that is doing that. 2221 */ 2222 int __audit_signal_info(int sig, struct task_struct *t) 2223 { 2224 struct audit_aux_data_pids *axp; 2225 struct task_struct *tsk = current; 2226 struct audit_context *ctx = tsk->audit_context; 2227 kuid_t uid = current_uid(), t_uid = task_uid(t); 2228 2229 if (audit_pid && t->tgid == audit_pid) { 2230 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2231 audit_sig_pid = tsk->pid; 2232 if (uid_valid(tsk->loginuid)) 2233 audit_sig_uid = tsk->loginuid; 2234 else 2235 audit_sig_uid = uid; 2236 security_task_getsecid(tsk, &audit_sig_sid); 2237 } 2238 if (!audit_signals || audit_dummy_context()) 2239 return 0; 2240 } 2241 2242 /* optimize the common case by putting first signal recipient directly 2243 * in audit_context */ 2244 if (!ctx->target_pid) { 2245 ctx->target_pid = t->tgid; 2246 ctx->target_auid = audit_get_loginuid(t); 2247 ctx->target_uid = t_uid; 2248 ctx->target_sessionid = audit_get_sessionid(t); 2249 security_task_getsecid(t, &ctx->target_sid); 2250 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2251 return 0; 2252 } 2253 2254 axp = (void *)ctx->aux_pids; 2255 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2256 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2257 if (!axp) 2258 return -ENOMEM; 2259 2260 axp->d.type = AUDIT_OBJ_PID; 2261 axp->d.next = ctx->aux_pids; 2262 ctx->aux_pids = (void *)axp; 2263 } 2264 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2265 2266 axp->target_pid[axp->pid_count] = t->tgid; 2267 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2268 axp->target_uid[axp->pid_count] = t_uid; 2269 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2270 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2271 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2272 axp->pid_count++; 2273 2274 return 0; 2275 } 2276 2277 /** 2278 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2279 * @bprm: pointer to the bprm being processed 2280 * @new: the proposed new credentials 2281 * @old: the old credentials 2282 * 2283 * Simply check if the proc already has the caps given by the file and if not 2284 * store the priv escalation info for later auditing at the end of the syscall 2285 * 2286 * -Eric 2287 */ 2288 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2289 const struct cred *new, const struct cred *old) 2290 { 2291 struct audit_aux_data_bprm_fcaps *ax; 2292 struct audit_context *context = current->audit_context; 2293 struct cpu_vfs_cap_data vcaps; 2294 struct dentry *dentry; 2295 2296 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2297 if (!ax) 2298 return -ENOMEM; 2299 2300 ax->d.type = AUDIT_BPRM_FCAPS; 2301 ax->d.next = context->aux; 2302 context->aux = (void *)ax; 2303 2304 dentry = dget(bprm->file->f_dentry); 2305 get_vfs_caps_from_disk(dentry, &vcaps); 2306 dput(dentry); 2307 2308 ax->fcap.permitted = vcaps.permitted; 2309 ax->fcap.inheritable = vcaps.inheritable; 2310 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2311 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2312 2313 ax->old_pcap.permitted = old->cap_permitted; 2314 ax->old_pcap.inheritable = old->cap_inheritable; 2315 ax->old_pcap.effective = old->cap_effective; 2316 2317 ax->new_pcap.permitted = new->cap_permitted; 2318 ax->new_pcap.inheritable = new->cap_inheritable; 2319 ax->new_pcap.effective = new->cap_effective; 2320 return 0; 2321 } 2322 2323 /** 2324 * __audit_log_capset - store information about the arguments to the capset syscall 2325 * @pid: target pid of the capset call 2326 * @new: the new credentials 2327 * @old: the old (current) credentials 2328 * 2329 * Record the aguments userspace sent to sys_capset for later printing by the 2330 * audit system if applicable 2331 */ 2332 void __audit_log_capset(pid_t pid, 2333 const struct cred *new, const struct cred *old) 2334 { 2335 struct audit_context *context = current->audit_context; 2336 context->capset.pid = pid; 2337 context->capset.cap.effective = new->cap_effective; 2338 context->capset.cap.inheritable = new->cap_effective; 2339 context->capset.cap.permitted = new->cap_permitted; 2340 context->type = AUDIT_CAPSET; 2341 } 2342 2343 void __audit_mmap_fd(int fd, int flags) 2344 { 2345 struct audit_context *context = current->audit_context; 2346 context->mmap.fd = fd; 2347 context->mmap.flags = flags; 2348 context->type = AUDIT_MMAP; 2349 } 2350 2351 static void audit_log_task(struct audit_buffer *ab) 2352 { 2353 kuid_t auid, uid; 2354 kgid_t gid; 2355 unsigned int sessionid; 2356 2357 auid = audit_get_loginuid(current); 2358 sessionid = audit_get_sessionid(current); 2359 current_uid_gid(&uid, &gid); 2360 2361 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2362 from_kuid(&init_user_ns, auid), 2363 from_kuid(&init_user_ns, uid), 2364 from_kgid(&init_user_ns, gid), 2365 sessionid); 2366 audit_log_task_context(ab); 2367 audit_log_format(ab, " pid=%d comm=", current->pid); 2368 audit_log_untrustedstring(ab, current->comm); 2369 } 2370 2371 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr) 2372 { 2373 audit_log_task(ab); 2374 audit_log_format(ab, " reason="); 2375 audit_log_string(ab, reason); 2376 audit_log_format(ab, " sig=%ld", signr); 2377 } 2378 /** 2379 * audit_core_dumps - record information about processes that end abnormally 2380 * @signr: signal value 2381 * 2382 * If a process ends with a core dump, something fishy is going on and we 2383 * should record the event for investigation. 2384 */ 2385 void audit_core_dumps(long signr) 2386 { 2387 struct audit_buffer *ab; 2388 2389 if (!audit_enabled) 2390 return; 2391 2392 if (signr == SIGQUIT) /* don't care for those */ 2393 return; 2394 2395 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2396 if (unlikely(!ab)) 2397 return; 2398 audit_log_abend(ab, "memory violation", signr); 2399 audit_log_end(ab); 2400 } 2401 2402 void __audit_seccomp(unsigned long syscall, long signr, int code) 2403 { 2404 struct audit_buffer *ab; 2405 2406 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2407 if (unlikely(!ab)) 2408 return; 2409 audit_log_task(ab); 2410 audit_log_format(ab, " sig=%ld", signr); 2411 audit_log_format(ab, " syscall=%ld", syscall); 2412 audit_log_format(ab, " compat=%d", is_compat_task()); 2413 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current)); 2414 audit_log_format(ab, " code=0x%x", code); 2415 audit_log_end(ab); 2416 } 2417 2418 struct list_head *audit_killed_trees(void) 2419 { 2420 struct audit_context *ctx = current->audit_context; 2421 if (likely(!ctx || !ctx->in_syscall)) 2422 return NULL; 2423 return &ctx->killed_trees; 2424 } 2425