xref: /openbmc/linux/kernel/auditsc.c (revision e1f7c9ee)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 
76 #include "audit.h"
77 
78 /* flags stating the success for a syscall */
79 #define AUDITSC_INVALID 0
80 #define AUDITSC_SUCCESS 1
81 #define AUDITSC_FAILURE 2
82 
83 /* no execve audit message should be longer than this (userspace limits) */
84 #define MAX_EXECVE_AUDIT_LEN 7500
85 
86 /* max length to print of cmdline/proctitle value during audit */
87 #define MAX_PROCTITLE_AUDIT_LEN 128
88 
89 /* number of audit rules */
90 int audit_n_rules;
91 
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94 
95 struct audit_aux_data {
96 	struct audit_aux_data	*next;
97 	int			type;
98 };
99 
100 #define AUDIT_AUX_IPCPERM	0
101 
102 /* Number of target pids per aux struct. */
103 #define AUDIT_AUX_PIDS	16
104 
105 struct audit_aux_data_pids {
106 	struct audit_aux_data	d;
107 	pid_t			target_pid[AUDIT_AUX_PIDS];
108 	kuid_t			target_auid[AUDIT_AUX_PIDS];
109 	kuid_t			target_uid[AUDIT_AUX_PIDS];
110 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
111 	u32			target_sid[AUDIT_AUX_PIDS];
112 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
113 	int			pid_count;
114 };
115 
116 struct audit_aux_data_bprm_fcaps {
117 	struct audit_aux_data	d;
118 	struct audit_cap_data	fcap;
119 	unsigned int		fcap_ver;
120 	struct audit_cap_data	old_pcap;
121 	struct audit_cap_data	new_pcap;
122 };
123 
124 struct audit_tree_refs {
125 	struct audit_tree_refs *next;
126 	struct audit_chunk *c[31];
127 };
128 
129 static int audit_match_perm(struct audit_context *ctx, int mask)
130 {
131 	unsigned n;
132 	if (unlikely(!ctx))
133 		return 0;
134 	n = ctx->major;
135 
136 	switch (audit_classify_syscall(ctx->arch, n)) {
137 	case 0:	/* native */
138 		if ((mask & AUDIT_PERM_WRITE) &&
139 		     audit_match_class(AUDIT_CLASS_WRITE, n))
140 			return 1;
141 		if ((mask & AUDIT_PERM_READ) &&
142 		     audit_match_class(AUDIT_CLASS_READ, n))
143 			return 1;
144 		if ((mask & AUDIT_PERM_ATTR) &&
145 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
146 			return 1;
147 		return 0;
148 	case 1: /* 32bit on biarch */
149 		if ((mask & AUDIT_PERM_WRITE) &&
150 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
151 			return 1;
152 		if ((mask & AUDIT_PERM_READ) &&
153 		     audit_match_class(AUDIT_CLASS_READ_32, n))
154 			return 1;
155 		if ((mask & AUDIT_PERM_ATTR) &&
156 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
157 			return 1;
158 		return 0;
159 	case 2: /* open */
160 		return mask & ACC_MODE(ctx->argv[1]);
161 	case 3: /* openat */
162 		return mask & ACC_MODE(ctx->argv[2]);
163 	case 4: /* socketcall */
164 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
165 	case 5: /* execve */
166 		return mask & AUDIT_PERM_EXEC;
167 	default:
168 		return 0;
169 	}
170 }
171 
172 static int audit_match_filetype(struct audit_context *ctx, int val)
173 {
174 	struct audit_names *n;
175 	umode_t mode = (umode_t)val;
176 
177 	if (unlikely(!ctx))
178 		return 0;
179 
180 	list_for_each_entry(n, &ctx->names_list, list) {
181 		if ((n->ino != -1) &&
182 		    ((n->mode & S_IFMT) == mode))
183 			return 1;
184 	}
185 
186 	return 0;
187 }
188 
189 /*
190  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
191  * ->first_trees points to its beginning, ->trees - to the current end of data.
192  * ->tree_count is the number of free entries in array pointed to by ->trees.
193  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
194  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
195  * it's going to remain 1-element for almost any setup) until we free context itself.
196  * References in it _are_ dropped - at the same time we free/drop aux stuff.
197  */
198 
199 #ifdef CONFIG_AUDIT_TREE
200 static void audit_set_auditable(struct audit_context *ctx)
201 {
202 	if (!ctx->prio) {
203 		ctx->prio = 1;
204 		ctx->current_state = AUDIT_RECORD_CONTEXT;
205 	}
206 }
207 
208 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
209 {
210 	struct audit_tree_refs *p = ctx->trees;
211 	int left = ctx->tree_count;
212 	if (likely(left)) {
213 		p->c[--left] = chunk;
214 		ctx->tree_count = left;
215 		return 1;
216 	}
217 	if (!p)
218 		return 0;
219 	p = p->next;
220 	if (p) {
221 		p->c[30] = chunk;
222 		ctx->trees = p;
223 		ctx->tree_count = 30;
224 		return 1;
225 	}
226 	return 0;
227 }
228 
229 static int grow_tree_refs(struct audit_context *ctx)
230 {
231 	struct audit_tree_refs *p = ctx->trees;
232 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
233 	if (!ctx->trees) {
234 		ctx->trees = p;
235 		return 0;
236 	}
237 	if (p)
238 		p->next = ctx->trees;
239 	else
240 		ctx->first_trees = ctx->trees;
241 	ctx->tree_count = 31;
242 	return 1;
243 }
244 #endif
245 
246 static void unroll_tree_refs(struct audit_context *ctx,
247 		      struct audit_tree_refs *p, int count)
248 {
249 #ifdef CONFIG_AUDIT_TREE
250 	struct audit_tree_refs *q;
251 	int n;
252 	if (!p) {
253 		/* we started with empty chain */
254 		p = ctx->first_trees;
255 		count = 31;
256 		/* if the very first allocation has failed, nothing to do */
257 		if (!p)
258 			return;
259 	}
260 	n = count;
261 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
262 		while (n--) {
263 			audit_put_chunk(q->c[n]);
264 			q->c[n] = NULL;
265 		}
266 	}
267 	while (n-- > ctx->tree_count) {
268 		audit_put_chunk(q->c[n]);
269 		q->c[n] = NULL;
270 	}
271 	ctx->trees = p;
272 	ctx->tree_count = count;
273 #endif
274 }
275 
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 	struct audit_tree_refs *p, *q;
279 	for (p = ctx->first_trees; p; p = q) {
280 		q = p->next;
281 		kfree(p);
282 	}
283 }
284 
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 #ifdef CONFIG_AUDIT_TREE
288 	struct audit_tree_refs *p;
289 	int n;
290 	if (!tree)
291 		return 0;
292 	/* full ones */
293 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
294 		for (n = 0; n < 31; n++)
295 			if (audit_tree_match(p->c[n], tree))
296 				return 1;
297 	}
298 	/* partial */
299 	if (p) {
300 		for (n = ctx->tree_count; n < 31; n++)
301 			if (audit_tree_match(p->c[n], tree))
302 				return 1;
303 	}
304 #endif
305 	return 0;
306 }
307 
308 static int audit_compare_uid(kuid_t uid,
309 			     struct audit_names *name,
310 			     struct audit_field *f,
311 			     struct audit_context *ctx)
312 {
313 	struct audit_names *n;
314 	int rc;
315 
316 	if (name) {
317 		rc = audit_uid_comparator(uid, f->op, name->uid);
318 		if (rc)
319 			return rc;
320 	}
321 
322 	if (ctx) {
323 		list_for_each_entry(n, &ctx->names_list, list) {
324 			rc = audit_uid_comparator(uid, f->op, n->uid);
325 			if (rc)
326 				return rc;
327 		}
328 	}
329 	return 0;
330 }
331 
332 static int audit_compare_gid(kgid_t gid,
333 			     struct audit_names *name,
334 			     struct audit_field *f,
335 			     struct audit_context *ctx)
336 {
337 	struct audit_names *n;
338 	int rc;
339 
340 	if (name) {
341 		rc = audit_gid_comparator(gid, f->op, name->gid);
342 		if (rc)
343 			return rc;
344 	}
345 
346 	if (ctx) {
347 		list_for_each_entry(n, &ctx->names_list, list) {
348 			rc = audit_gid_comparator(gid, f->op, n->gid);
349 			if (rc)
350 				return rc;
351 		}
352 	}
353 	return 0;
354 }
355 
356 static int audit_field_compare(struct task_struct *tsk,
357 			       const struct cred *cred,
358 			       struct audit_field *f,
359 			       struct audit_context *ctx,
360 			       struct audit_names *name)
361 {
362 	switch (f->val) {
363 	/* process to file object comparisons */
364 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
365 		return audit_compare_uid(cred->uid, name, f, ctx);
366 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
367 		return audit_compare_gid(cred->gid, name, f, ctx);
368 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
369 		return audit_compare_uid(cred->euid, name, f, ctx);
370 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
371 		return audit_compare_gid(cred->egid, name, f, ctx);
372 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
373 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
374 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
375 		return audit_compare_uid(cred->suid, name, f, ctx);
376 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
377 		return audit_compare_gid(cred->sgid, name, f, ctx);
378 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
379 		return audit_compare_uid(cred->fsuid, name, f, ctx);
380 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
381 		return audit_compare_gid(cred->fsgid, name, f, ctx);
382 	/* uid comparisons */
383 	case AUDIT_COMPARE_UID_TO_AUID:
384 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
385 	case AUDIT_COMPARE_UID_TO_EUID:
386 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
387 	case AUDIT_COMPARE_UID_TO_SUID:
388 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
389 	case AUDIT_COMPARE_UID_TO_FSUID:
390 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
391 	/* auid comparisons */
392 	case AUDIT_COMPARE_AUID_TO_EUID:
393 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
394 	case AUDIT_COMPARE_AUID_TO_SUID:
395 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
396 	case AUDIT_COMPARE_AUID_TO_FSUID:
397 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
398 	/* euid comparisons */
399 	case AUDIT_COMPARE_EUID_TO_SUID:
400 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
401 	case AUDIT_COMPARE_EUID_TO_FSUID:
402 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
403 	/* suid comparisons */
404 	case AUDIT_COMPARE_SUID_TO_FSUID:
405 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
406 	/* gid comparisons */
407 	case AUDIT_COMPARE_GID_TO_EGID:
408 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
409 	case AUDIT_COMPARE_GID_TO_SGID:
410 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
411 	case AUDIT_COMPARE_GID_TO_FSGID:
412 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
413 	/* egid comparisons */
414 	case AUDIT_COMPARE_EGID_TO_SGID:
415 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
416 	case AUDIT_COMPARE_EGID_TO_FSGID:
417 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
418 	/* sgid comparison */
419 	case AUDIT_COMPARE_SGID_TO_FSGID:
420 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
421 	default:
422 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
423 		return 0;
424 	}
425 	return 0;
426 }
427 
428 /* Determine if any context name data matches a rule's watch data */
429 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
430  * otherwise.
431  *
432  * If task_creation is true, this is an explicit indication that we are
433  * filtering a task rule at task creation time.  This and tsk == current are
434  * the only situations where tsk->cred may be accessed without an rcu read lock.
435  */
436 static int audit_filter_rules(struct task_struct *tsk,
437 			      struct audit_krule *rule,
438 			      struct audit_context *ctx,
439 			      struct audit_names *name,
440 			      enum audit_state *state,
441 			      bool task_creation)
442 {
443 	const struct cred *cred;
444 	int i, need_sid = 1;
445 	u32 sid;
446 
447 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
448 
449 	for (i = 0; i < rule->field_count; i++) {
450 		struct audit_field *f = &rule->fields[i];
451 		struct audit_names *n;
452 		int result = 0;
453 		pid_t pid;
454 
455 		switch (f->type) {
456 		case AUDIT_PID:
457 			pid = task_pid_nr(tsk);
458 			result = audit_comparator(pid, f->op, f->val);
459 			break;
460 		case AUDIT_PPID:
461 			if (ctx) {
462 				if (!ctx->ppid)
463 					ctx->ppid = task_ppid_nr(tsk);
464 				result = audit_comparator(ctx->ppid, f->op, f->val);
465 			}
466 			break;
467 		case AUDIT_UID:
468 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
469 			break;
470 		case AUDIT_EUID:
471 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
472 			break;
473 		case AUDIT_SUID:
474 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
475 			break;
476 		case AUDIT_FSUID:
477 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
478 			break;
479 		case AUDIT_GID:
480 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
481 			if (f->op == Audit_equal) {
482 				if (!result)
483 					result = in_group_p(f->gid);
484 			} else if (f->op == Audit_not_equal) {
485 				if (result)
486 					result = !in_group_p(f->gid);
487 			}
488 			break;
489 		case AUDIT_EGID:
490 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
491 			if (f->op == Audit_equal) {
492 				if (!result)
493 					result = in_egroup_p(f->gid);
494 			} else if (f->op == Audit_not_equal) {
495 				if (result)
496 					result = !in_egroup_p(f->gid);
497 			}
498 			break;
499 		case AUDIT_SGID:
500 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
501 			break;
502 		case AUDIT_FSGID:
503 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
504 			break;
505 		case AUDIT_PERS:
506 			result = audit_comparator(tsk->personality, f->op, f->val);
507 			break;
508 		case AUDIT_ARCH:
509 			if (ctx)
510 				result = audit_comparator(ctx->arch, f->op, f->val);
511 			break;
512 
513 		case AUDIT_EXIT:
514 			if (ctx && ctx->return_valid)
515 				result = audit_comparator(ctx->return_code, f->op, f->val);
516 			break;
517 		case AUDIT_SUCCESS:
518 			if (ctx && ctx->return_valid) {
519 				if (f->val)
520 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
521 				else
522 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
523 			}
524 			break;
525 		case AUDIT_DEVMAJOR:
526 			if (name) {
527 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
528 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
529 					++result;
530 			} else if (ctx) {
531 				list_for_each_entry(n, &ctx->names_list, list) {
532 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
533 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
534 						++result;
535 						break;
536 					}
537 				}
538 			}
539 			break;
540 		case AUDIT_DEVMINOR:
541 			if (name) {
542 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
543 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
544 					++result;
545 			} else if (ctx) {
546 				list_for_each_entry(n, &ctx->names_list, list) {
547 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
548 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
549 						++result;
550 						break;
551 					}
552 				}
553 			}
554 			break;
555 		case AUDIT_INODE:
556 			if (name)
557 				result = audit_comparator(name->ino, f->op, f->val);
558 			else if (ctx) {
559 				list_for_each_entry(n, &ctx->names_list, list) {
560 					if (audit_comparator(n->ino, f->op, f->val)) {
561 						++result;
562 						break;
563 					}
564 				}
565 			}
566 			break;
567 		case AUDIT_OBJ_UID:
568 			if (name) {
569 				result = audit_uid_comparator(name->uid, f->op, f->uid);
570 			} else if (ctx) {
571 				list_for_each_entry(n, &ctx->names_list, list) {
572 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
573 						++result;
574 						break;
575 					}
576 				}
577 			}
578 			break;
579 		case AUDIT_OBJ_GID:
580 			if (name) {
581 				result = audit_gid_comparator(name->gid, f->op, f->gid);
582 			} else if (ctx) {
583 				list_for_each_entry(n, &ctx->names_list, list) {
584 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
585 						++result;
586 						break;
587 					}
588 				}
589 			}
590 			break;
591 		case AUDIT_WATCH:
592 			if (name)
593 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
594 			break;
595 		case AUDIT_DIR:
596 			if (ctx)
597 				result = match_tree_refs(ctx, rule->tree);
598 			break;
599 		case AUDIT_LOGINUID:
600 			result = 0;
601 			if (ctx)
602 				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
603 			break;
604 		case AUDIT_LOGINUID_SET:
605 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
606 			break;
607 		case AUDIT_SUBJ_USER:
608 		case AUDIT_SUBJ_ROLE:
609 		case AUDIT_SUBJ_TYPE:
610 		case AUDIT_SUBJ_SEN:
611 		case AUDIT_SUBJ_CLR:
612 			/* NOTE: this may return negative values indicating
613 			   a temporary error.  We simply treat this as a
614 			   match for now to avoid losing information that
615 			   may be wanted.   An error message will also be
616 			   logged upon error */
617 			if (f->lsm_rule) {
618 				if (need_sid) {
619 					security_task_getsecid(tsk, &sid);
620 					need_sid = 0;
621 				}
622 				result = security_audit_rule_match(sid, f->type,
623 				                                  f->op,
624 				                                  f->lsm_rule,
625 				                                  ctx);
626 			}
627 			break;
628 		case AUDIT_OBJ_USER:
629 		case AUDIT_OBJ_ROLE:
630 		case AUDIT_OBJ_TYPE:
631 		case AUDIT_OBJ_LEV_LOW:
632 		case AUDIT_OBJ_LEV_HIGH:
633 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
634 			   also applies here */
635 			if (f->lsm_rule) {
636 				/* Find files that match */
637 				if (name) {
638 					result = security_audit_rule_match(
639 					           name->osid, f->type, f->op,
640 					           f->lsm_rule, ctx);
641 				} else if (ctx) {
642 					list_for_each_entry(n, &ctx->names_list, list) {
643 						if (security_audit_rule_match(n->osid, f->type,
644 									      f->op, f->lsm_rule,
645 									      ctx)) {
646 							++result;
647 							break;
648 						}
649 					}
650 				}
651 				/* Find ipc objects that match */
652 				if (!ctx || ctx->type != AUDIT_IPC)
653 					break;
654 				if (security_audit_rule_match(ctx->ipc.osid,
655 							      f->type, f->op,
656 							      f->lsm_rule, ctx))
657 					++result;
658 			}
659 			break;
660 		case AUDIT_ARG0:
661 		case AUDIT_ARG1:
662 		case AUDIT_ARG2:
663 		case AUDIT_ARG3:
664 			if (ctx)
665 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
666 			break;
667 		case AUDIT_FILTERKEY:
668 			/* ignore this field for filtering */
669 			result = 1;
670 			break;
671 		case AUDIT_PERM:
672 			result = audit_match_perm(ctx, f->val);
673 			break;
674 		case AUDIT_FILETYPE:
675 			result = audit_match_filetype(ctx, f->val);
676 			break;
677 		case AUDIT_FIELD_COMPARE:
678 			result = audit_field_compare(tsk, cred, f, ctx, name);
679 			break;
680 		}
681 		if (!result)
682 			return 0;
683 	}
684 
685 	if (ctx) {
686 		if (rule->prio <= ctx->prio)
687 			return 0;
688 		if (rule->filterkey) {
689 			kfree(ctx->filterkey);
690 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
691 		}
692 		ctx->prio = rule->prio;
693 	}
694 	switch (rule->action) {
695 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
696 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
697 	}
698 	return 1;
699 }
700 
701 /* At process creation time, we can determine if system-call auditing is
702  * completely disabled for this task.  Since we only have the task
703  * structure at this point, we can only check uid and gid.
704  */
705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
706 {
707 	struct audit_entry *e;
708 	enum audit_state   state;
709 
710 	rcu_read_lock();
711 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
712 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
713 				       &state, true)) {
714 			if (state == AUDIT_RECORD_CONTEXT)
715 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
716 			rcu_read_unlock();
717 			return state;
718 		}
719 	}
720 	rcu_read_unlock();
721 	return AUDIT_BUILD_CONTEXT;
722 }
723 
724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
725 {
726 	int word, bit;
727 
728 	if (val > 0xffffffff)
729 		return false;
730 
731 	word = AUDIT_WORD(val);
732 	if (word >= AUDIT_BITMASK_SIZE)
733 		return false;
734 
735 	bit = AUDIT_BIT(val);
736 
737 	return rule->mask[word] & bit;
738 }
739 
740 /* At syscall entry and exit time, this filter is called if the
741  * audit_state is not low enough that auditing cannot take place, but is
742  * also not high enough that we already know we have to write an audit
743  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
744  */
745 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
746 					     struct audit_context *ctx,
747 					     struct list_head *list)
748 {
749 	struct audit_entry *e;
750 	enum audit_state state;
751 
752 	if (audit_pid && tsk->tgid == audit_pid)
753 		return AUDIT_DISABLED;
754 
755 	rcu_read_lock();
756 	if (!list_empty(list)) {
757 		list_for_each_entry_rcu(e, list, list) {
758 			if (audit_in_mask(&e->rule, ctx->major) &&
759 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
760 					       &state, false)) {
761 				rcu_read_unlock();
762 				ctx->current_state = state;
763 				return state;
764 			}
765 		}
766 	}
767 	rcu_read_unlock();
768 	return AUDIT_BUILD_CONTEXT;
769 }
770 
771 /*
772  * Given an audit_name check the inode hash table to see if they match.
773  * Called holding the rcu read lock to protect the use of audit_inode_hash
774  */
775 static int audit_filter_inode_name(struct task_struct *tsk,
776 				   struct audit_names *n,
777 				   struct audit_context *ctx) {
778 	int h = audit_hash_ino((u32)n->ino);
779 	struct list_head *list = &audit_inode_hash[h];
780 	struct audit_entry *e;
781 	enum audit_state state;
782 
783 	if (list_empty(list))
784 		return 0;
785 
786 	list_for_each_entry_rcu(e, list, list) {
787 		if (audit_in_mask(&e->rule, ctx->major) &&
788 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 			ctx->current_state = state;
790 			return 1;
791 		}
792 	}
793 
794 	return 0;
795 }
796 
797 /* At syscall exit time, this filter is called if any audit_names have been
798  * collected during syscall processing.  We only check rules in sublists at hash
799  * buckets applicable to the inode numbers in audit_names.
800  * Regarding audit_state, same rules apply as for audit_filter_syscall().
801  */
802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
803 {
804 	struct audit_names *n;
805 
806 	if (audit_pid && tsk->tgid == audit_pid)
807 		return;
808 
809 	rcu_read_lock();
810 
811 	list_for_each_entry(n, &ctx->names_list, list) {
812 		if (audit_filter_inode_name(tsk, n, ctx))
813 			break;
814 	}
815 	rcu_read_unlock();
816 }
817 
818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
819 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
820 						      int return_valid,
821 						      long return_code)
822 {
823 	struct audit_context *context = tsk->audit_context;
824 
825 	if (!context)
826 		return NULL;
827 	context->return_valid = return_valid;
828 
829 	/*
830 	 * we need to fix up the return code in the audit logs if the actual
831 	 * return codes are later going to be fixed up by the arch specific
832 	 * signal handlers
833 	 *
834 	 * This is actually a test for:
835 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
836 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
837 	 *
838 	 * but is faster than a bunch of ||
839 	 */
840 	if (unlikely(return_code <= -ERESTARTSYS) &&
841 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
842 	    (return_code != -ENOIOCTLCMD))
843 		context->return_code = -EINTR;
844 	else
845 		context->return_code  = return_code;
846 
847 	if (context->in_syscall && !context->dummy) {
848 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
849 		audit_filter_inodes(tsk, context);
850 	}
851 
852 	tsk->audit_context = NULL;
853 	return context;
854 }
855 
856 static inline void audit_proctitle_free(struct audit_context *context)
857 {
858 	kfree(context->proctitle.value);
859 	context->proctitle.value = NULL;
860 	context->proctitle.len = 0;
861 }
862 
863 static inline void audit_free_names(struct audit_context *context)
864 {
865 	struct audit_names *n, *next;
866 
867 #if AUDIT_DEBUG == 2
868 	if (context->put_count + context->ino_count != context->name_count) {
869 		int i = 0;
870 
871 		pr_err("%s:%d(:%d): major=%d in_syscall=%d"
872 		       " name_count=%d put_count=%d ino_count=%d"
873 		       " [NOT freeing]\n", __FILE__, __LINE__,
874 		       context->serial, context->major, context->in_syscall,
875 		       context->name_count, context->put_count,
876 		       context->ino_count);
877 		list_for_each_entry(n, &context->names_list, list) {
878 			pr_err("names[%d] = %p = %s\n", i++, n->name,
879 			       n->name->name ?: "(null)");
880 		}
881 		dump_stack();
882 		return;
883 	}
884 #endif
885 #if AUDIT_DEBUG
886 	context->put_count  = 0;
887 	context->ino_count  = 0;
888 #endif
889 
890 	list_for_each_entry_safe(n, next, &context->names_list, list) {
891 		list_del(&n->list);
892 		if (n->name && n->name_put)
893 			final_putname(n->name);
894 		if (n->should_free)
895 			kfree(n);
896 	}
897 	context->name_count = 0;
898 	path_put(&context->pwd);
899 	context->pwd.dentry = NULL;
900 	context->pwd.mnt = NULL;
901 }
902 
903 static inline void audit_free_aux(struct audit_context *context)
904 {
905 	struct audit_aux_data *aux;
906 
907 	while ((aux = context->aux)) {
908 		context->aux = aux->next;
909 		kfree(aux);
910 	}
911 	while ((aux = context->aux_pids)) {
912 		context->aux_pids = aux->next;
913 		kfree(aux);
914 	}
915 }
916 
917 static inline struct audit_context *audit_alloc_context(enum audit_state state)
918 {
919 	struct audit_context *context;
920 
921 	context = kzalloc(sizeof(*context), GFP_KERNEL);
922 	if (!context)
923 		return NULL;
924 	context->state = state;
925 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
926 	INIT_LIST_HEAD(&context->killed_trees);
927 	INIT_LIST_HEAD(&context->names_list);
928 	return context;
929 }
930 
931 /**
932  * audit_alloc - allocate an audit context block for a task
933  * @tsk: task
934  *
935  * Filter on the task information and allocate a per-task audit context
936  * if necessary.  Doing so turns on system call auditing for the
937  * specified task.  This is called from copy_process, so no lock is
938  * needed.
939  */
940 int audit_alloc(struct task_struct *tsk)
941 {
942 	struct audit_context *context;
943 	enum audit_state     state;
944 	char *key = NULL;
945 
946 	if (likely(!audit_ever_enabled))
947 		return 0; /* Return if not auditing. */
948 
949 	state = audit_filter_task(tsk, &key);
950 	if (state == AUDIT_DISABLED) {
951 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
952 		return 0;
953 	}
954 
955 	if (!(context = audit_alloc_context(state))) {
956 		kfree(key);
957 		audit_log_lost("out of memory in audit_alloc");
958 		return -ENOMEM;
959 	}
960 	context->filterkey = key;
961 
962 	tsk->audit_context  = context;
963 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
964 	return 0;
965 }
966 
967 static inline void audit_free_context(struct audit_context *context)
968 {
969 	audit_free_names(context);
970 	unroll_tree_refs(context, NULL, 0);
971 	free_tree_refs(context);
972 	audit_free_aux(context);
973 	kfree(context->filterkey);
974 	kfree(context->sockaddr);
975 	audit_proctitle_free(context);
976 	kfree(context);
977 }
978 
979 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
980 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
981 				 u32 sid, char *comm)
982 {
983 	struct audit_buffer *ab;
984 	char *ctx = NULL;
985 	u32 len;
986 	int rc = 0;
987 
988 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
989 	if (!ab)
990 		return rc;
991 
992 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
993 			 from_kuid(&init_user_ns, auid),
994 			 from_kuid(&init_user_ns, uid), sessionid);
995 	if (sid) {
996 		if (security_secid_to_secctx(sid, &ctx, &len)) {
997 			audit_log_format(ab, " obj=(none)");
998 			rc = 1;
999 		} else {
1000 			audit_log_format(ab, " obj=%s", ctx);
1001 			security_release_secctx(ctx, len);
1002 		}
1003 	}
1004 	audit_log_format(ab, " ocomm=");
1005 	audit_log_untrustedstring(ab, comm);
1006 	audit_log_end(ab);
1007 
1008 	return rc;
1009 }
1010 
1011 /*
1012  * to_send and len_sent accounting are very loose estimates.  We aren't
1013  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014  * within about 500 bytes (next page boundary)
1015  *
1016  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1017  * logging that a[%d]= was going to be 16 characters long we would be wasting
1018  * space in every audit message.  In one 7500 byte message we can log up to
1019  * about 1000 min size arguments.  That comes down to about 50% waste of space
1020  * if we didn't do the snprintf to find out how long arg_num_len was.
1021  */
1022 static int audit_log_single_execve_arg(struct audit_context *context,
1023 					struct audit_buffer **ab,
1024 					int arg_num,
1025 					size_t *len_sent,
1026 					const char __user *p,
1027 					char *buf)
1028 {
1029 	char arg_num_len_buf[12];
1030 	const char __user *tmp_p = p;
1031 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1032 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1033 	size_t len, len_left, to_send;
1034 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035 	unsigned int i, has_cntl = 0, too_long = 0;
1036 	int ret;
1037 
1038 	/* strnlen_user includes the null we don't want to send */
1039 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1040 
1041 	/*
1042 	 * We just created this mm, if we can't find the strings
1043 	 * we just copied into it something is _very_ wrong. Similar
1044 	 * for strings that are too long, we should not have created
1045 	 * any.
1046 	 */
1047 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1048 		WARN_ON(1);
1049 		send_sig(SIGKILL, current, 0);
1050 		return -1;
1051 	}
1052 
1053 	/* walk the whole argument looking for non-ascii chars */
1054 	do {
1055 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1056 			to_send = MAX_EXECVE_AUDIT_LEN;
1057 		else
1058 			to_send = len_left;
1059 		ret = copy_from_user(buf, tmp_p, to_send);
1060 		/*
1061 		 * There is no reason for this copy to be short. We just
1062 		 * copied them here, and the mm hasn't been exposed to user-
1063 		 * space yet.
1064 		 */
1065 		if (ret) {
1066 			WARN_ON(1);
1067 			send_sig(SIGKILL, current, 0);
1068 			return -1;
1069 		}
1070 		buf[to_send] = '\0';
1071 		has_cntl = audit_string_contains_control(buf, to_send);
1072 		if (has_cntl) {
1073 			/*
1074 			 * hex messages get logged as 2 bytes, so we can only
1075 			 * send half as much in each message
1076 			 */
1077 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1078 			break;
1079 		}
1080 		len_left -= to_send;
1081 		tmp_p += to_send;
1082 	} while (len_left > 0);
1083 
1084 	len_left = len;
1085 
1086 	if (len > max_execve_audit_len)
1087 		too_long = 1;
1088 
1089 	/* rewalk the argument actually logging the message */
1090 	for (i = 0; len_left > 0; i++) {
1091 		int room_left;
1092 
1093 		if (len_left > max_execve_audit_len)
1094 			to_send = max_execve_audit_len;
1095 		else
1096 			to_send = len_left;
1097 
1098 		/* do we have space left to send this argument in this ab? */
1099 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1100 		if (has_cntl)
1101 			room_left -= (to_send * 2);
1102 		else
1103 			room_left -= to_send;
1104 		if (room_left < 0) {
1105 			*len_sent = 0;
1106 			audit_log_end(*ab);
1107 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108 			if (!*ab)
1109 				return 0;
1110 		}
1111 
1112 		/*
1113 		 * first record needs to say how long the original string was
1114 		 * so we can be sure nothing was lost.
1115 		 */
1116 		if ((i == 0) && (too_long))
1117 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1118 					 has_cntl ? 2*len : len);
1119 
1120 		/*
1121 		 * normally arguments are small enough to fit and we already
1122 		 * filled buf above when we checked for control characters
1123 		 * so don't bother with another copy_from_user
1124 		 */
1125 		if (len >= max_execve_audit_len)
1126 			ret = copy_from_user(buf, p, to_send);
1127 		else
1128 			ret = 0;
1129 		if (ret) {
1130 			WARN_ON(1);
1131 			send_sig(SIGKILL, current, 0);
1132 			return -1;
1133 		}
1134 		buf[to_send] = '\0';
1135 
1136 		/* actually log it */
1137 		audit_log_format(*ab, " a%d", arg_num);
1138 		if (too_long)
1139 			audit_log_format(*ab, "[%d]", i);
1140 		audit_log_format(*ab, "=");
1141 		if (has_cntl)
1142 			audit_log_n_hex(*ab, buf, to_send);
1143 		else
1144 			audit_log_string(*ab, buf);
1145 
1146 		p += to_send;
1147 		len_left -= to_send;
1148 		*len_sent += arg_num_len;
1149 		if (has_cntl)
1150 			*len_sent += to_send * 2;
1151 		else
1152 			*len_sent += to_send;
1153 	}
1154 	/* include the null we didn't log */
1155 	return len + 1;
1156 }
1157 
1158 static void audit_log_execve_info(struct audit_context *context,
1159 				  struct audit_buffer **ab)
1160 {
1161 	int i, len;
1162 	size_t len_sent = 0;
1163 	const char __user *p;
1164 	char *buf;
1165 
1166 	p = (const char __user *)current->mm->arg_start;
1167 
1168 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1169 
1170 	/*
1171 	 * we need some kernel buffer to hold the userspace args.  Just
1172 	 * allocate one big one rather than allocating one of the right size
1173 	 * for every single argument inside audit_log_single_execve_arg()
1174 	 * should be <8k allocation so should be pretty safe.
1175 	 */
1176 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1177 	if (!buf) {
1178 		audit_panic("out of memory for argv string");
1179 		return;
1180 	}
1181 
1182 	for (i = 0; i < context->execve.argc; i++) {
1183 		len = audit_log_single_execve_arg(context, ab, i,
1184 						  &len_sent, p, buf);
1185 		if (len <= 0)
1186 			break;
1187 		p += len;
1188 	}
1189 	kfree(buf);
1190 }
1191 
1192 static void show_special(struct audit_context *context, int *call_panic)
1193 {
1194 	struct audit_buffer *ab;
1195 	int i;
1196 
1197 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1198 	if (!ab)
1199 		return;
1200 
1201 	switch (context->type) {
1202 	case AUDIT_SOCKETCALL: {
1203 		int nargs = context->socketcall.nargs;
1204 		audit_log_format(ab, "nargs=%d", nargs);
1205 		for (i = 0; i < nargs; i++)
1206 			audit_log_format(ab, " a%d=%lx", i,
1207 				context->socketcall.args[i]);
1208 		break; }
1209 	case AUDIT_IPC: {
1210 		u32 osid = context->ipc.osid;
1211 
1212 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1213 				 from_kuid(&init_user_ns, context->ipc.uid),
1214 				 from_kgid(&init_user_ns, context->ipc.gid),
1215 				 context->ipc.mode);
1216 		if (osid) {
1217 			char *ctx = NULL;
1218 			u32 len;
1219 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1220 				audit_log_format(ab, " osid=%u", osid);
1221 				*call_panic = 1;
1222 			} else {
1223 				audit_log_format(ab, " obj=%s", ctx);
1224 				security_release_secctx(ctx, len);
1225 			}
1226 		}
1227 		if (context->ipc.has_perm) {
1228 			audit_log_end(ab);
1229 			ab = audit_log_start(context, GFP_KERNEL,
1230 					     AUDIT_IPC_SET_PERM);
1231 			if (unlikely(!ab))
1232 				return;
1233 			audit_log_format(ab,
1234 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1235 				context->ipc.qbytes,
1236 				context->ipc.perm_uid,
1237 				context->ipc.perm_gid,
1238 				context->ipc.perm_mode);
1239 		}
1240 		break; }
1241 	case AUDIT_MQ_OPEN: {
1242 		audit_log_format(ab,
1243 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1244 			"mq_msgsize=%ld mq_curmsgs=%ld",
1245 			context->mq_open.oflag, context->mq_open.mode,
1246 			context->mq_open.attr.mq_flags,
1247 			context->mq_open.attr.mq_maxmsg,
1248 			context->mq_open.attr.mq_msgsize,
1249 			context->mq_open.attr.mq_curmsgs);
1250 		break; }
1251 	case AUDIT_MQ_SENDRECV: {
1252 		audit_log_format(ab,
1253 			"mqdes=%d msg_len=%zd msg_prio=%u "
1254 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1255 			context->mq_sendrecv.mqdes,
1256 			context->mq_sendrecv.msg_len,
1257 			context->mq_sendrecv.msg_prio,
1258 			context->mq_sendrecv.abs_timeout.tv_sec,
1259 			context->mq_sendrecv.abs_timeout.tv_nsec);
1260 		break; }
1261 	case AUDIT_MQ_NOTIFY: {
1262 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1263 				context->mq_notify.mqdes,
1264 				context->mq_notify.sigev_signo);
1265 		break; }
1266 	case AUDIT_MQ_GETSETATTR: {
1267 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1268 		audit_log_format(ab,
1269 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1270 			"mq_curmsgs=%ld ",
1271 			context->mq_getsetattr.mqdes,
1272 			attr->mq_flags, attr->mq_maxmsg,
1273 			attr->mq_msgsize, attr->mq_curmsgs);
1274 		break; }
1275 	case AUDIT_CAPSET: {
1276 		audit_log_format(ab, "pid=%d", context->capset.pid);
1277 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1278 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1279 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1280 		break; }
1281 	case AUDIT_MMAP: {
1282 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1283 				 context->mmap.flags);
1284 		break; }
1285 	case AUDIT_EXECVE: {
1286 		audit_log_execve_info(context, &ab);
1287 		break; }
1288 	}
1289 	audit_log_end(ab);
1290 }
1291 
1292 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1293 {
1294 	char *end = proctitle + len - 1;
1295 	while (end > proctitle && !isprint(*end))
1296 		end--;
1297 
1298 	/* catch the case where proctitle is only 1 non-print character */
1299 	len = end - proctitle + 1;
1300 	len -= isprint(proctitle[len-1]) == 0;
1301 	return len;
1302 }
1303 
1304 static void audit_log_proctitle(struct task_struct *tsk,
1305 			 struct audit_context *context)
1306 {
1307 	int res;
1308 	char *buf;
1309 	char *msg = "(null)";
1310 	int len = strlen(msg);
1311 	struct audit_buffer *ab;
1312 
1313 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1314 	if (!ab)
1315 		return;	/* audit_panic or being filtered */
1316 
1317 	audit_log_format(ab, "proctitle=");
1318 
1319 	/* Not  cached */
1320 	if (!context->proctitle.value) {
1321 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1322 		if (!buf)
1323 			goto out;
1324 		/* Historically called this from procfs naming */
1325 		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1326 		if (res == 0) {
1327 			kfree(buf);
1328 			goto out;
1329 		}
1330 		res = audit_proctitle_rtrim(buf, res);
1331 		if (res == 0) {
1332 			kfree(buf);
1333 			goto out;
1334 		}
1335 		context->proctitle.value = buf;
1336 		context->proctitle.len = res;
1337 	}
1338 	msg = context->proctitle.value;
1339 	len = context->proctitle.len;
1340 out:
1341 	audit_log_n_untrustedstring(ab, msg, len);
1342 	audit_log_end(ab);
1343 }
1344 
1345 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1346 {
1347 	int i, call_panic = 0;
1348 	struct audit_buffer *ab;
1349 	struct audit_aux_data *aux;
1350 	struct audit_names *n;
1351 
1352 	/* tsk == current */
1353 	context->personality = tsk->personality;
1354 
1355 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1356 	if (!ab)
1357 		return;		/* audit_panic has been called */
1358 	audit_log_format(ab, "arch=%x syscall=%d",
1359 			 context->arch, context->major);
1360 	if (context->personality != PER_LINUX)
1361 		audit_log_format(ab, " per=%lx", context->personality);
1362 	if (context->return_valid)
1363 		audit_log_format(ab, " success=%s exit=%ld",
1364 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1365 				 context->return_code);
1366 
1367 	audit_log_format(ab,
1368 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1369 			 context->argv[0],
1370 			 context->argv[1],
1371 			 context->argv[2],
1372 			 context->argv[3],
1373 			 context->name_count);
1374 
1375 	audit_log_task_info(ab, tsk);
1376 	audit_log_key(ab, context->filterkey);
1377 	audit_log_end(ab);
1378 
1379 	for (aux = context->aux; aux; aux = aux->next) {
1380 
1381 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1382 		if (!ab)
1383 			continue; /* audit_panic has been called */
1384 
1385 		switch (aux->type) {
1386 
1387 		case AUDIT_BPRM_FCAPS: {
1388 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1389 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1390 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1391 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1392 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1393 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1394 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1395 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1396 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1397 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1398 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1399 			break; }
1400 
1401 		}
1402 		audit_log_end(ab);
1403 	}
1404 
1405 	if (context->type)
1406 		show_special(context, &call_panic);
1407 
1408 	if (context->fds[0] >= 0) {
1409 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1410 		if (ab) {
1411 			audit_log_format(ab, "fd0=%d fd1=%d",
1412 					context->fds[0], context->fds[1]);
1413 			audit_log_end(ab);
1414 		}
1415 	}
1416 
1417 	if (context->sockaddr_len) {
1418 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1419 		if (ab) {
1420 			audit_log_format(ab, "saddr=");
1421 			audit_log_n_hex(ab, (void *)context->sockaddr,
1422 					context->sockaddr_len);
1423 			audit_log_end(ab);
1424 		}
1425 	}
1426 
1427 	for (aux = context->aux_pids; aux; aux = aux->next) {
1428 		struct audit_aux_data_pids *axs = (void *)aux;
1429 
1430 		for (i = 0; i < axs->pid_count; i++)
1431 			if (audit_log_pid_context(context, axs->target_pid[i],
1432 						  axs->target_auid[i],
1433 						  axs->target_uid[i],
1434 						  axs->target_sessionid[i],
1435 						  axs->target_sid[i],
1436 						  axs->target_comm[i]))
1437 				call_panic = 1;
1438 	}
1439 
1440 	if (context->target_pid &&
1441 	    audit_log_pid_context(context, context->target_pid,
1442 				  context->target_auid, context->target_uid,
1443 				  context->target_sessionid,
1444 				  context->target_sid, context->target_comm))
1445 			call_panic = 1;
1446 
1447 	if (context->pwd.dentry && context->pwd.mnt) {
1448 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1449 		if (ab) {
1450 			audit_log_d_path(ab, " cwd=", &context->pwd);
1451 			audit_log_end(ab);
1452 		}
1453 	}
1454 
1455 	i = 0;
1456 	list_for_each_entry(n, &context->names_list, list) {
1457 		if (n->hidden)
1458 			continue;
1459 		audit_log_name(context, n, NULL, i++, &call_panic);
1460 	}
1461 
1462 	audit_log_proctitle(tsk, context);
1463 
1464 	/* Send end of event record to help user space know we are finished */
1465 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1466 	if (ab)
1467 		audit_log_end(ab);
1468 	if (call_panic)
1469 		audit_panic("error converting sid to string");
1470 }
1471 
1472 /**
1473  * audit_free - free a per-task audit context
1474  * @tsk: task whose audit context block to free
1475  *
1476  * Called from copy_process and do_exit
1477  */
1478 void __audit_free(struct task_struct *tsk)
1479 {
1480 	struct audit_context *context;
1481 
1482 	context = audit_take_context(tsk, 0, 0);
1483 	if (!context)
1484 		return;
1485 
1486 	/* Check for system calls that do not go through the exit
1487 	 * function (e.g., exit_group), then free context block.
1488 	 * We use GFP_ATOMIC here because we might be doing this
1489 	 * in the context of the idle thread */
1490 	/* that can happen only if we are called from do_exit() */
1491 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1492 		audit_log_exit(context, tsk);
1493 	if (!list_empty(&context->killed_trees))
1494 		audit_kill_trees(&context->killed_trees);
1495 
1496 	audit_free_context(context);
1497 }
1498 
1499 /**
1500  * audit_syscall_entry - fill in an audit record at syscall entry
1501  * @major: major syscall type (function)
1502  * @a1: additional syscall register 1
1503  * @a2: additional syscall register 2
1504  * @a3: additional syscall register 3
1505  * @a4: additional syscall register 4
1506  *
1507  * Fill in audit context at syscall entry.  This only happens if the
1508  * audit context was created when the task was created and the state or
1509  * filters demand the audit context be built.  If the state from the
1510  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1511  * then the record will be written at syscall exit time (otherwise, it
1512  * will only be written if another part of the kernel requests that it
1513  * be written).
1514  */
1515 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1516 			   unsigned long a3, unsigned long a4)
1517 {
1518 	struct task_struct *tsk = current;
1519 	struct audit_context *context = tsk->audit_context;
1520 	enum audit_state     state;
1521 
1522 	if (!context)
1523 		return;
1524 
1525 	BUG_ON(context->in_syscall || context->name_count);
1526 
1527 	if (!audit_enabled)
1528 		return;
1529 
1530 	context->arch	    = syscall_get_arch();
1531 	context->major      = major;
1532 	context->argv[0]    = a1;
1533 	context->argv[1]    = a2;
1534 	context->argv[2]    = a3;
1535 	context->argv[3]    = a4;
1536 
1537 	state = context->state;
1538 	context->dummy = !audit_n_rules;
1539 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1540 		context->prio = 0;
1541 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1542 	}
1543 	if (state == AUDIT_DISABLED)
1544 		return;
1545 
1546 	context->serial     = 0;
1547 	context->ctime      = CURRENT_TIME;
1548 	context->in_syscall = 1;
1549 	context->current_state  = state;
1550 	context->ppid       = 0;
1551 }
1552 
1553 /**
1554  * audit_syscall_exit - deallocate audit context after a system call
1555  * @success: success value of the syscall
1556  * @return_code: return value of the syscall
1557  *
1558  * Tear down after system call.  If the audit context has been marked as
1559  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560  * filtering, or because some other part of the kernel wrote an audit
1561  * message), then write out the syscall information.  In call cases,
1562  * free the names stored from getname().
1563  */
1564 void __audit_syscall_exit(int success, long return_code)
1565 {
1566 	struct task_struct *tsk = current;
1567 	struct audit_context *context;
1568 
1569 	if (success)
1570 		success = AUDITSC_SUCCESS;
1571 	else
1572 		success = AUDITSC_FAILURE;
1573 
1574 	context = audit_take_context(tsk, success, return_code);
1575 	if (!context)
1576 		return;
1577 
1578 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579 		audit_log_exit(context, tsk);
1580 
1581 	context->in_syscall = 0;
1582 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1583 
1584 	if (!list_empty(&context->killed_trees))
1585 		audit_kill_trees(&context->killed_trees);
1586 
1587 	audit_free_names(context);
1588 	unroll_tree_refs(context, NULL, 0);
1589 	audit_free_aux(context);
1590 	context->aux = NULL;
1591 	context->aux_pids = NULL;
1592 	context->target_pid = 0;
1593 	context->target_sid = 0;
1594 	context->sockaddr_len = 0;
1595 	context->type = 0;
1596 	context->fds[0] = -1;
1597 	if (context->state != AUDIT_RECORD_CONTEXT) {
1598 		kfree(context->filterkey);
1599 		context->filterkey = NULL;
1600 	}
1601 	tsk->audit_context = context;
1602 }
1603 
1604 static inline void handle_one(const struct inode *inode)
1605 {
1606 #ifdef CONFIG_AUDIT_TREE
1607 	struct audit_context *context;
1608 	struct audit_tree_refs *p;
1609 	struct audit_chunk *chunk;
1610 	int count;
1611 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1612 		return;
1613 	context = current->audit_context;
1614 	p = context->trees;
1615 	count = context->tree_count;
1616 	rcu_read_lock();
1617 	chunk = audit_tree_lookup(inode);
1618 	rcu_read_unlock();
1619 	if (!chunk)
1620 		return;
1621 	if (likely(put_tree_ref(context, chunk)))
1622 		return;
1623 	if (unlikely(!grow_tree_refs(context))) {
1624 		pr_warn("out of memory, audit has lost a tree reference\n");
1625 		audit_set_auditable(context);
1626 		audit_put_chunk(chunk);
1627 		unroll_tree_refs(context, p, count);
1628 		return;
1629 	}
1630 	put_tree_ref(context, chunk);
1631 #endif
1632 }
1633 
1634 static void handle_path(const struct dentry *dentry)
1635 {
1636 #ifdef CONFIG_AUDIT_TREE
1637 	struct audit_context *context;
1638 	struct audit_tree_refs *p;
1639 	const struct dentry *d, *parent;
1640 	struct audit_chunk *drop;
1641 	unsigned long seq;
1642 	int count;
1643 
1644 	context = current->audit_context;
1645 	p = context->trees;
1646 	count = context->tree_count;
1647 retry:
1648 	drop = NULL;
1649 	d = dentry;
1650 	rcu_read_lock();
1651 	seq = read_seqbegin(&rename_lock);
1652 	for(;;) {
1653 		struct inode *inode = d->d_inode;
1654 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1655 			struct audit_chunk *chunk;
1656 			chunk = audit_tree_lookup(inode);
1657 			if (chunk) {
1658 				if (unlikely(!put_tree_ref(context, chunk))) {
1659 					drop = chunk;
1660 					break;
1661 				}
1662 			}
1663 		}
1664 		parent = d->d_parent;
1665 		if (parent == d)
1666 			break;
1667 		d = parent;
1668 	}
1669 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1670 		rcu_read_unlock();
1671 		if (!drop) {
1672 			/* just a race with rename */
1673 			unroll_tree_refs(context, p, count);
1674 			goto retry;
1675 		}
1676 		audit_put_chunk(drop);
1677 		if (grow_tree_refs(context)) {
1678 			/* OK, got more space */
1679 			unroll_tree_refs(context, p, count);
1680 			goto retry;
1681 		}
1682 		/* too bad */
1683 		pr_warn("out of memory, audit has lost a tree reference\n");
1684 		unroll_tree_refs(context, p, count);
1685 		audit_set_auditable(context);
1686 		return;
1687 	}
1688 	rcu_read_unlock();
1689 #endif
1690 }
1691 
1692 static struct audit_names *audit_alloc_name(struct audit_context *context,
1693 						unsigned char type)
1694 {
1695 	struct audit_names *aname;
1696 
1697 	if (context->name_count < AUDIT_NAMES) {
1698 		aname = &context->preallocated_names[context->name_count];
1699 		memset(aname, 0, sizeof(*aname));
1700 	} else {
1701 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1702 		if (!aname)
1703 			return NULL;
1704 		aname->should_free = true;
1705 	}
1706 
1707 	aname->ino = (unsigned long)-1;
1708 	aname->type = type;
1709 	list_add_tail(&aname->list, &context->names_list);
1710 
1711 	context->name_count++;
1712 #if AUDIT_DEBUG
1713 	context->ino_count++;
1714 #endif
1715 	return aname;
1716 }
1717 
1718 /**
1719  * audit_reusename - fill out filename with info from existing entry
1720  * @uptr: userland ptr to pathname
1721  *
1722  * Search the audit_names list for the current audit context. If there is an
1723  * existing entry with a matching "uptr" then return the filename
1724  * associated with that audit_name. If not, return NULL.
1725  */
1726 struct filename *
1727 __audit_reusename(const __user char *uptr)
1728 {
1729 	struct audit_context *context = current->audit_context;
1730 	struct audit_names *n;
1731 
1732 	list_for_each_entry(n, &context->names_list, list) {
1733 		if (!n->name)
1734 			continue;
1735 		if (n->name->uptr == uptr)
1736 			return n->name;
1737 	}
1738 	return NULL;
1739 }
1740 
1741 /**
1742  * audit_getname - add a name to the list
1743  * @name: name to add
1744  *
1745  * Add a name to the list of audit names for this context.
1746  * Called from fs/namei.c:getname().
1747  */
1748 void __audit_getname(struct filename *name)
1749 {
1750 	struct audit_context *context = current->audit_context;
1751 	struct audit_names *n;
1752 
1753 	if (!context->in_syscall) {
1754 #if AUDIT_DEBUG == 2
1755 		pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756 		       __FILE__, __LINE__, context->serial, name);
1757 		dump_stack();
1758 #endif
1759 		return;
1760 	}
1761 
1762 #if AUDIT_DEBUG
1763 	/* The filename _must_ have a populated ->name */
1764 	BUG_ON(!name->name);
1765 #endif
1766 
1767 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1768 	if (!n)
1769 		return;
1770 
1771 	n->name = name;
1772 	n->name_len = AUDIT_NAME_FULL;
1773 	n->name_put = true;
1774 	name->aname = n;
1775 
1776 	if (!context->pwd.dentry)
1777 		get_fs_pwd(current->fs, &context->pwd);
1778 }
1779 
1780 /* audit_putname - intercept a putname request
1781  * @name: name to intercept and delay for putname
1782  *
1783  * If we have stored the name from getname in the audit context,
1784  * then we delay the putname until syscall exit.
1785  * Called from include/linux/fs.h:putname().
1786  */
1787 void audit_putname(struct filename *name)
1788 {
1789 	struct audit_context *context = current->audit_context;
1790 
1791 	BUG_ON(!context);
1792 	if (!name->aname || !context->in_syscall) {
1793 #if AUDIT_DEBUG == 2
1794 		pr_err("%s:%d(:%d): final_putname(%p)\n",
1795 		       __FILE__, __LINE__, context->serial, name);
1796 		if (context->name_count) {
1797 			struct audit_names *n;
1798 			int i = 0;
1799 
1800 			list_for_each_entry(n, &context->names_list, list)
1801 				pr_err("name[%d] = %p = %s\n", i++, n->name,
1802 				       n->name->name ?: "(null)");
1803 			}
1804 #endif
1805 		final_putname(name);
1806 	}
1807 #if AUDIT_DEBUG
1808 	else {
1809 		++context->put_count;
1810 		if (context->put_count > context->name_count) {
1811 			pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812 			       " name_count=%d put_count=%d\n",
1813 			       __FILE__, __LINE__,
1814 			       context->serial, context->major,
1815 			       context->in_syscall, name->name,
1816 			       context->name_count, context->put_count);
1817 			dump_stack();
1818 		}
1819 	}
1820 #endif
1821 }
1822 
1823 /**
1824  * __audit_inode - store the inode and device from a lookup
1825  * @name: name being audited
1826  * @dentry: dentry being audited
1827  * @flags: attributes for this particular entry
1828  */
1829 void __audit_inode(struct filename *name, const struct dentry *dentry,
1830 		   unsigned int flags)
1831 {
1832 	struct audit_context *context = current->audit_context;
1833 	const struct inode *inode = dentry->d_inode;
1834 	struct audit_names *n;
1835 	bool parent = flags & AUDIT_INODE_PARENT;
1836 
1837 	if (!context->in_syscall)
1838 		return;
1839 
1840 	if (!name)
1841 		goto out_alloc;
1842 
1843 #if AUDIT_DEBUG
1844 	/* The struct filename _must_ have a populated ->name */
1845 	BUG_ON(!name->name);
1846 #endif
1847 	/*
1848 	 * If we have a pointer to an audit_names entry already, then we can
1849 	 * just use it directly if the type is correct.
1850 	 */
1851 	n = name->aname;
1852 	if (n) {
1853 		if (parent) {
1854 			if (n->type == AUDIT_TYPE_PARENT ||
1855 			    n->type == AUDIT_TYPE_UNKNOWN)
1856 				goto out;
1857 		} else {
1858 			if (n->type != AUDIT_TYPE_PARENT)
1859 				goto out;
1860 		}
1861 	}
1862 
1863 	list_for_each_entry_reverse(n, &context->names_list, list) {
1864 		/* does the name pointer match? */
1865 		if (!n->name || n->name->name != name->name)
1866 			continue;
1867 
1868 		/* match the correct record type */
1869 		if (parent) {
1870 			if (n->type == AUDIT_TYPE_PARENT ||
1871 			    n->type == AUDIT_TYPE_UNKNOWN)
1872 				goto out;
1873 		} else {
1874 			if (n->type != AUDIT_TYPE_PARENT)
1875 				goto out;
1876 		}
1877 	}
1878 
1879 out_alloc:
1880 	/* unable to find the name from a previous getname(). Allocate a new
1881 	 * anonymous entry.
1882 	 */
1883 	n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1884 	if (!n)
1885 		return;
1886 out:
1887 	if (parent) {
1888 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889 		n->type = AUDIT_TYPE_PARENT;
1890 		if (flags & AUDIT_INODE_HIDDEN)
1891 			n->hidden = true;
1892 	} else {
1893 		n->name_len = AUDIT_NAME_FULL;
1894 		n->type = AUDIT_TYPE_NORMAL;
1895 	}
1896 	handle_path(dentry);
1897 	audit_copy_inode(n, dentry, inode);
1898 }
1899 
1900 /**
1901  * __audit_inode_child - collect inode info for created/removed objects
1902  * @parent: inode of dentry parent
1903  * @dentry: dentry being audited
1904  * @type:   AUDIT_TYPE_* value that we're looking for
1905  *
1906  * For syscalls that create or remove filesystem objects, audit_inode
1907  * can only collect information for the filesystem object's parent.
1908  * This call updates the audit context with the child's information.
1909  * Syscalls that create a new filesystem object must be hooked after
1910  * the object is created.  Syscalls that remove a filesystem object
1911  * must be hooked prior, in order to capture the target inode during
1912  * unsuccessful attempts.
1913  */
1914 void __audit_inode_child(const struct inode *parent,
1915 			 const struct dentry *dentry,
1916 			 const unsigned char type)
1917 {
1918 	struct audit_context *context = current->audit_context;
1919 	const struct inode *inode = dentry->d_inode;
1920 	const char *dname = dentry->d_name.name;
1921 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1922 
1923 	if (!context->in_syscall)
1924 		return;
1925 
1926 	if (inode)
1927 		handle_one(inode);
1928 
1929 	/* look for a parent entry first */
1930 	list_for_each_entry(n, &context->names_list, list) {
1931 		if (!n->name || n->type != AUDIT_TYPE_PARENT)
1932 			continue;
1933 
1934 		if (n->ino == parent->i_ino &&
1935 		    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1936 			found_parent = n;
1937 			break;
1938 		}
1939 	}
1940 
1941 	/* is there a matching child entry? */
1942 	list_for_each_entry(n, &context->names_list, list) {
1943 		/* can only match entries that have a name */
1944 		if (!n->name || n->type != type)
1945 			continue;
1946 
1947 		/* if we found a parent, make sure this one is a child of it */
1948 		if (found_parent && (n->name != found_parent->name))
1949 			continue;
1950 
1951 		if (!strcmp(dname, n->name->name) ||
1952 		    !audit_compare_dname_path(dname, n->name->name,
1953 						found_parent ?
1954 						found_parent->name_len :
1955 						AUDIT_NAME_FULL)) {
1956 			found_child = n;
1957 			break;
1958 		}
1959 	}
1960 
1961 	if (!found_parent) {
1962 		/* create a new, "anonymous" parent record */
1963 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1964 		if (!n)
1965 			return;
1966 		audit_copy_inode(n, NULL, parent);
1967 	}
1968 
1969 	if (!found_child) {
1970 		found_child = audit_alloc_name(context, type);
1971 		if (!found_child)
1972 			return;
1973 
1974 		/* Re-use the name belonging to the slot for a matching parent
1975 		 * directory. All names for this context are relinquished in
1976 		 * audit_free_names() */
1977 		if (found_parent) {
1978 			found_child->name = found_parent->name;
1979 			found_child->name_len = AUDIT_NAME_FULL;
1980 			/* don't call __putname() */
1981 			found_child->name_put = false;
1982 		}
1983 	}
1984 	if (inode)
1985 		audit_copy_inode(found_child, dentry, inode);
1986 	else
1987 		found_child->ino = (unsigned long)-1;
1988 }
1989 EXPORT_SYMBOL_GPL(__audit_inode_child);
1990 
1991 /**
1992  * auditsc_get_stamp - get local copies of audit_context values
1993  * @ctx: audit_context for the task
1994  * @t: timespec to store time recorded in the audit_context
1995  * @serial: serial value that is recorded in the audit_context
1996  *
1997  * Also sets the context as auditable.
1998  */
1999 int auditsc_get_stamp(struct audit_context *ctx,
2000 		       struct timespec *t, unsigned int *serial)
2001 {
2002 	if (!ctx->in_syscall)
2003 		return 0;
2004 	if (!ctx->serial)
2005 		ctx->serial = audit_serial();
2006 	t->tv_sec  = ctx->ctime.tv_sec;
2007 	t->tv_nsec = ctx->ctime.tv_nsec;
2008 	*serial    = ctx->serial;
2009 	if (!ctx->prio) {
2010 		ctx->prio = 1;
2011 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2012 	}
2013 	return 1;
2014 }
2015 
2016 /* global counter which is incremented every time something logs in */
2017 static atomic_t session_id = ATOMIC_INIT(0);
2018 
2019 static int audit_set_loginuid_perm(kuid_t loginuid)
2020 {
2021 	/* if we are unset, we don't need privs */
2022 	if (!audit_loginuid_set(current))
2023 		return 0;
2024 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2025 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2026 		return -EPERM;
2027 	/* it is set, you need permission */
2028 	if (!capable(CAP_AUDIT_CONTROL))
2029 		return -EPERM;
2030 	/* reject if this is not an unset and we don't allow that */
2031 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2032 		return -EPERM;
2033 	return 0;
2034 }
2035 
2036 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2037 				   unsigned int oldsessionid, unsigned int sessionid,
2038 				   int rc)
2039 {
2040 	struct audit_buffer *ab;
2041 	uid_t uid, oldloginuid, loginuid;
2042 
2043 	if (!audit_enabled)
2044 		return;
2045 
2046 	uid = from_kuid(&init_user_ns, task_uid(current));
2047 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2048 	loginuid = from_kuid(&init_user_ns, kloginuid),
2049 
2050 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2051 	if (!ab)
2052 		return;
2053 	audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2054 	audit_log_task_context(ab);
2055 	audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2056 			 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2057 	audit_log_end(ab);
2058 }
2059 
2060 /**
2061  * audit_set_loginuid - set current task's audit_context loginuid
2062  * @loginuid: loginuid value
2063  *
2064  * Returns 0.
2065  *
2066  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2067  */
2068 int audit_set_loginuid(kuid_t loginuid)
2069 {
2070 	struct task_struct *task = current;
2071 	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2072 	kuid_t oldloginuid;
2073 	int rc;
2074 
2075 	oldloginuid = audit_get_loginuid(current);
2076 	oldsessionid = audit_get_sessionid(current);
2077 
2078 	rc = audit_set_loginuid_perm(loginuid);
2079 	if (rc)
2080 		goto out;
2081 
2082 	/* are we setting or clearing? */
2083 	if (uid_valid(loginuid))
2084 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2085 
2086 	task->sessionid = sessionid;
2087 	task->loginuid = loginuid;
2088 out:
2089 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2090 	return rc;
2091 }
2092 
2093 /**
2094  * __audit_mq_open - record audit data for a POSIX MQ open
2095  * @oflag: open flag
2096  * @mode: mode bits
2097  * @attr: queue attributes
2098  *
2099  */
2100 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2101 {
2102 	struct audit_context *context = current->audit_context;
2103 
2104 	if (attr)
2105 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2106 	else
2107 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2108 
2109 	context->mq_open.oflag = oflag;
2110 	context->mq_open.mode = mode;
2111 
2112 	context->type = AUDIT_MQ_OPEN;
2113 }
2114 
2115 /**
2116  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2117  * @mqdes: MQ descriptor
2118  * @msg_len: Message length
2119  * @msg_prio: Message priority
2120  * @abs_timeout: Message timeout in absolute time
2121  *
2122  */
2123 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2124 			const struct timespec *abs_timeout)
2125 {
2126 	struct audit_context *context = current->audit_context;
2127 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2128 
2129 	if (abs_timeout)
2130 		memcpy(p, abs_timeout, sizeof(struct timespec));
2131 	else
2132 		memset(p, 0, sizeof(struct timespec));
2133 
2134 	context->mq_sendrecv.mqdes = mqdes;
2135 	context->mq_sendrecv.msg_len = msg_len;
2136 	context->mq_sendrecv.msg_prio = msg_prio;
2137 
2138 	context->type = AUDIT_MQ_SENDRECV;
2139 }
2140 
2141 /**
2142  * __audit_mq_notify - record audit data for a POSIX MQ notify
2143  * @mqdes: MQ descriptor
2144  * @notification: Notification event
2145  *
2146  */
2147 
2148 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2149 {
2150 	struct audit_context *context = current->audit_context;
2151 
2152 	if (notification)
2153 		context->mq_notify.sigev_signo = notification->sigev_signo;
2154 	else
2155 		context->mq_notify.sigev_signo = 0;
2156 
2157 	context->mq_notify.mqdes = mqdes;
2158 	context->type = AUDIT_MQ_NOTIFY;
2159 }
2160 
2161 /**
2162  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163  * @mqdes: MQ descriptor
2164  * @mqstat: MQ flags
2165  *
2166  */
2167 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2168 {
2169 	struct audit_context *context = current->audit_context;
2170 	context->mq_getsetattr.mqdes = mqdes;
2171 	context->mq_getsetattr.mqstat = *mqstat;
2172 	context->type = AUDIT_MQ_GETSETATTR;
2173 }
2174 
2175 /**
2176  * audit_ipc_obj - record audit data for ipc object
2177  * @ipcp: ipc permissions
2178  *
2179  */
2180 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2181 {
2182 	struct audit_context *context = current->audit_context;
2183 	context->ipc.uid = ipcp->uid;
2184 	context->ipc.gid = ipcp->gid;
2185 	context->ipc.mode = ipcp->mode;
2186 	context->ipc.has_perm = 0;
2187 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2188 	context->type = AUDIT_IPC;
2189 }
2190 
2191 /**
2192  * audit_ipc_set_perm - record audit data for new ipc permissions
2193  * @qbytes: msgq bytes
2194  * @uid: msgq user id
2195  * @gid: msgq group id
2196  * @mode: msgq mode (permissions)
2197  *
2198  * Called only after audit_ipc_obj().
2199  */
2200 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2201 {
2202 	struct audit_context *context = current->audit_context;
2203 
2204 	context->ipc.qbytes = qbytes;
2205 	context->ipc.perm_uid = uid;
2206 	context->ipc.perm_gid = gid;
2207 	context->ipc.perm_mode = mode;
2208 	context->ipc.has_perm = 1;
2209 }
2210 
2211 void __audit_bprm(struct linux_binprm *bprm)
2212 {
2213 	struct audit_context *context = current->audit_context;
2214 
2215 	context->type = AUDIT_EXECVE;
2216 	context->execve.argc = bprm->argc;
2217 }
2218 
2219 
2220 /**
2221  * audit_socketcall - record audit data for sys_socketcall
2222  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2223  * @args: args array
2224  *
2225  */
2226 int __audit_socketcall(int nargs, unsigned long *args)
2227 {
2228 	struct audit_context *context = current->audit_context;
2229 
2230 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2231 		return -EINVAL;
2232 	context->type = AUDIT_SOCKETCALL;
2233 	context->socketcall.nargs = nargs;
2234 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2235 	return 0;
2236 }
2237 
2238 /**
2239  * __audit_fd_pair - record audit data for pipe and socketpair
2240  * @fd1: the first file descriptor
2241  * @fd2: the second file descriptor
2242  *
2243  */
2244 void __audit_fd_pair(int fd1, int fd2)
2245 {
2246 	struct audit_context *context = current->audit_context;
2247 	context->fds[0] = fd1;
2248 	context->fds[1] = fd2;
2249 }
2250 
2251 /**
2252  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253  * @len: data length in user space
2254  * @a: data address in kernel space
2255  *
2256  * Returns 0 for success or NULL context or < 0 on error.
2257  */
2258 int __audit_sockaddr(int len, void *a)
2259 {
2260 	struct audit_context *context = current->audit_context;
2261 
2262 	if (!context->sockaddr) {
2263 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2264 		if (!p)
2265 			return -ENOMEM;
2266 		context->sockaddr = p;
2267 	}
2268 
2269 	context->sockaddr_len = len;
2270 	memcpy(context->sockaddr, a, len);
2271 	return 0;
2272 }
2273 
2274 void __audit_ptrace(struct task_struct *t)
2275 {
2276 	struct audit_context *context = current->audit_context;
2277 
2278 	context->target_pid = task_pid_nr(t);
2279 	context->target_auid = audit_get_loginuid(t);
2280 	context->target_uid = task_uid(t);
2281 	context->target_sessionid = audit_get_sessionid(t);
2282 	security_task_getsecid(t, &context->target_sid);
2283 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2284 }
2285 
2286 /**
2287  * audit_signal_info - record signal info for shutting down audit subsystem
2288  * @sig: signal value
2289  * @t: task being signaled
2290  *
2291  * If the audit subsystem is being terminated, record the task (pid)
2292  * and uid that is doing that.
2293  */
2294 int __audit_signal_info(int sig, struct task_struct *t)
2295 {
2296 	struct audit_aux_data_pids *axp;
2297 	struct task_struct *tsk = current;
2298 	struct audit_context *ctx = tsk->audit_context;
2299 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2300 
2301 	if (audit_pid && t->tgid == audit_pid) {
2302 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2303 			audit_sig_pid = task_pid_nr(tsk);
2304 			if (uid_valid(tsk->loginuid))
2305 				audit_sig_uid = tsk->loginuid;
2306 			else
2307 				audit_sig_uid = uid;
2308 			security_task_getsecid(tsk, &audit_sig_sid);
2309 		}
2310 		if (!audit_signals || audit_dummy_context())
2311 			return 0;
2312 	}
2313 
2314 	/* optimize the common case by putting first signal recipient directly
2315 	 * in audit_context */
2316 	if (!ctx->target_pid) {
2317 		ctx->target_pid = task_tgid_nr(t);
2318 		ctx->target_auid = audit_get_loginuid(t);
2319 		ctx->target_uid = t_uid;
2320 		ctx->target_sessionid = audit_get_sessionid(t);
2321 		security_task_getsecid(t, &ctx->target_sid);
2322 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2323 		return 0;
2324 	}
2325 
2326 	axp = (void *)ctx->aux_pids;
2327 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2328 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2329 		if (!axp)
2330 			return -ENOMEM;
2331 
2332 		axp->d.type = AUDIT_OBJ_PID;
2333 		axp->d.next = ctx->aux_pids;
2334 		ctx->aux_pids = (void *)axp;
2335 	}
2336 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2337 
2338 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2339 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2340 	axp->target_uid[axp->pid_count] = t_uid;
2341 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2342 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2343 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2344 	axp->pid_count++;
2345 
2346 	return 0;
2347 }
2348 
2349 /**
2350  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2351  * @bprm: pointer to the bprm being processed
2352  * @new: the proposed new credentials
2353  * @old: the old credentials
2354  *
2355  * Simply check if the proc already has the caps given by the file and if not
2356  * store the priv escalation info for later auditing at the end of the syscall
2357  *
2358  * -Eric
2359  */
2360 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2361 			   const struct cred *new, const struct cred *old)
2362 {
2363 	struct audit_aux_data_bprm_fcaps *ax;
2364 	struct audit_context *context = current->audit_context;
2365 	struct cpu_vfs_cap_data vcaps;
2366 	struct dentry *dentry;
2367 
2368 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2369 	if (!ax)
2370 		return -ENOMEM;
2371 
2372 	ax->d.type = AUDIT_BPRM_FCAPS;
2373 	ax->d.next = context->aux;
2374 	context->aux = (void *)ax;
2375 
2376 	dentry = dget(bprm->file->f_dentry);
2377 	get_vfs_caps_from_disk(dentry, &vcaps);
2378 	dput(dentry);
2379 
2380 	ax->fcap.permitted = vcaps.permitted;
2381 	ax->fcap.inheritable = vcaps.inheritable;
2382 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2383 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2384 
2385 	ax->old_pcap.permitted   = old->cap_permitted;
2386 	ax->old_pcap.inheritable = old->cap_inheritable;
2387 	ax->old_pcap.effective   = old->cap_effective;
2388 
2389 	ax->new_pcap.permitted   = new->cap_permitted;
2390 	ax->new_pcap.inheritable = new->cap_inheritable;
2391 	ax->new_pcap.effective   = new->cap_effective;
2392 	return 0;
2393 }
2394 
2395 /**
2396  * __audit_log_capset - store information about the arguments to the capset syscall
2397  * @new: the new credentials
2398  * @old: the old (current) credentials
2399  *
2400  * Record the arguments userspace sent to sys_capset for later printing by the
2401  * audit system if applicable
2402  */
2403 void __audit_log_capset(const struct cred *new, const struct cred *old)
2404 {
2405 	struct audit_context *context = current->audit_context;
2406 	context->capset.pid = task_pid_nr(current);
2407 	context->capset.cap.effective   = new->cap_effective;
2408 	context->capset.cap.inheritable = new->cap_effective;
2409 	context->capset.cap.permitted   = new->cap_permitted;
2410 	context->type = AUDIT_CAPSET;
2411 }
2412 
2413 void __audit_mmap_fd(int fd, int flags)
2414 {
2415 	struct audit_context *context = current->audit_context;
2416 	context->mmap.fd = fd;
2417 	context->mmap.flags = flags;
2418 	context->type = AUDIT_MMAP;
2419 }
2420 
2421 static void audit_log_task(struct audit_buffer *ab)
2422 {
2423 	kuid_t auid, uid;
2424 	kgid_t gid;
2425 	unsigned int sessionid;
2426 	struct mm_struct *mm = current->mm;
2427 	char comm[sizeof(current->comm)];
2428 
2429 	auid = audit_get_loginuid(current);
2430 	sessionid = audit_get_sessionid(current);
2431 	current_uid_gid(&uid, &gid);
2432 
2433 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2434 			 from_kuid(&init_user_ns, auid),
2435 			 from_kuid(&init_user_ns, uid),
2436 			 from_kgid(&init_user_ns, gid),
2437 			 sessionid);
2438 	audit_log_task_context(ab);
2439 	audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2440 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2441 	if (mm) {
2442 		down_read(&mm->mmap_sem);
2443 		if (mm->exe_file)
2444 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2445 		up_read(&mm->mmap_sem);
2446 	} else
2447 		audit_log_format(ab, " exe=(null)");
2448 }
2449 
2450 /**
2451  * audit_core_dumps - record information about processes that end abnormally
2452  * @signr: signal value
2453  *
2454  * If a process ends with a core dump, something fishy is going on and we
2455  * should record the event for investigation.
2456  */
2457 void audit_core_dumps(long signr)
2458 {
2459 	struct audit_buffer *ab;
2460 
2461 	if (!audit_enabled)
2462 		return;
2463 
2464 	if (signr == SIGQUIT)	/* don't care for those */
2465 		return;
2466 
2467 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2468 	if (unlikely(!ab))
2469 		return;
2470 	audit_log_task(ab);
2471 	audit_log_format(ab, " sig=%ld", signr);
2472 	audit_log_end(ab);
2473 }
2474 
2475 void __audit_seccomp(unsigned long syscall, long signr, int code)
2476 {
2477 	struct audit_buffer *ab;
2478 
2479 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2480 	if (unlikely(!ab))
2481 		return;
2482 	audit_log_task(ab);
2483 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2484 			 signr, syscall_get_arch(), syscall, is_compat_task(),
2485 			 KSTK_EIP(current), code);
2486 	audit_log_end(ab);
2487 }
2488 
2489 struct list_head *audit_killed_trees(void)
2490 {
2491 	struct audit_context *ctx = current->audit_context;
2492 	if (likely(!ctx || !ctx->in_syscall))
2493 		return NULL;
2494 	return &ctx->killed_trees;
2495 }
2496