1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/module.h> 52 #include <linux/slab.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 71 #include "audit.h" 72 73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 74 * for saving names from getname(). */ 75 #define AUDIT_NAMES 20 76 77 /* Indicates that audit should log the full pathname. */ 78 #define AUDIT_NAME_FULL -1 79 80 /* no execve audit message should be longer than this (userspace limits) */ 81 #define MAX_EXECVE_AUDIT_LEN 7500 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_cap_data { 90 kernel_cap_t permitted; 91 kernel_cap_t inheritable; 92 union { 93 unsigned int fE; /* effective bit of a file capability */ 94 kernel_cap_t effective; /* effective set of a process */ 95 }; 96 }; 97 98 /* When fs/namei.c:getname() is called, we store the pointer in name and 99 * we don't let putname() free it (instead we free all of the saved 100 * pointers at syscall exit time). 101 * 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 103 struct audit_names { 104 const char *name; 105 int name_len; /* number of name's characters to log */ 106 unsigned name_put; /* call __putname() for this name */ 107 unsigned long ino; 108 dev_t dev; 109 umode_t mode; 110 uid_t uid; 111 gid_t gid; 112 dev_t rdev; 113 u32 osid; 114 struct audit_cap_data fcap; 115 unsigned int fcap_ver; 116 }; 117 118 struct audit_aux_data { 119 struct audit_aux_data *next; 120 int type; 121 }; 122 123 #define AUDIT_AUX_IPCPERM 0 124 125 /* Number of target pids per aux struct. */ 126 #define AUDIT_AUX_PIDS 16 127 128 struct audit_aux_data_execve { 129 struct audit_aux_data d; 130 int argc; 131 int envc; 132 struct mm_struct *mm; 133 }; 134 135 struct audit_aux_data_pids { 136 struct audit_aux_data d; 137 pid_t target_pid[AUDIT_AUX_PIDS]; 138 uid_t target_auid[AUDIT_AUX_PIDS]; 139 uid_t target_uid[AUDIT_AUX_PIDS]; 140 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 141 u32 target_sid[AUDIT_AUX_PIDS]; 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 143 int pid_count; 144 }; 145 146 struct audit_aux_data_bprm_fcaps { 147 struct audit_aux_data d; 148 struct audit_cap_data fcap; 149 unsigned int fcap_ver; 150 struct audit_cap_data old_pcap; 151 struct audit_cap_data new_pcap; 152 }; 153 154 struct audit_aux_data_capset { 155 struct audit_aux_data d; 156 pid_t pid; 157 struct audit_cap_data cap; 158 }; 159 160 struct audit_tree_refs { 161 struct audit_tree_refs *next; 162 struct audit_chunk *c[31]; 163 }; 164 165 /* The per-task audit context. */ 166 struct audit_context { 167 int dummy; /* must be the first element */ 168 int in_syscall; /* 1 if task is in a syscall */ 169 enum audit_state state, current_state; 170 unsigned int serial; /* serial number for record */ 171 int major; /* syscall number */ 172 struct timespec ctime; /* time of syscall entry */ 173 unsigned long argv[4]; /* syscall arguments */ 174 long return_code;/* syscall return code */ 175 u64 prio; 176 int return_valid; /* return code is valid */ 177 int name_count; 178 struct audit_names names[AUDIT_NAMES]; 179 char * filterkey; /* key for rule that triggered record */ 180 struct path pwd; 181 struct audit_context *previous; /* For nested syscalls */ 182 struct audit_aux_data *aux; 183 struct audit_aux_data *aux_pids; 184 struct sockaddr_storage *sockaddr; 185 size_t sockaddr_len; 186 /* Save things to print about task_struct */ 187 pid_t pid, ppid; 188 uid_t uid, euid, suid, fsuid; 189 gid_t gid, egid, sgid, fsgid; 190 unsigned long personality; 191 int arch; 192 193 pid_t target_pid; 194 uid_t target_auid; 195 uid_t target_uid; 196 unsigned int target_sessionid; 197 u32 target_sid; 198 char target_comm[TASK_COMM_LEN]; 199 200 struct audit_tree_refs *trees, *first_trees; 201 struct list_head killed_trees; 202 int tree_count; 203 204 int type; 205 union { 206 struct { 207 int nargs; 208 long args[6]; 209 } socketcall; 210 struct { 211 uid_t uid; 212 gid_t gid; 213 mode_t mode; 214 u32 osid; 215 int has_perm; 216 uid_t perm_uid; 217 gid_t perm_gid; 218 mode_t perm_mode; 219 unsigned long qbytes; 220 } ipc; 221 struct { 222 mqd_t mqdes; 223 struct mq_attr mqstat; 224 } mq_getsetattr; 225 struct { 226 mqd_t mqdes; 227 int sigev_signo; 228 } mq_notify; 229 struct { 230 mqd_t mqdes; 231 size_t msg_len; 232 unsigned int msg_prio; 233 struct timespec abs_timeout; 234 } mq_sendrecv; 235 struct { 236 int oflag; 237 mode_t mode; 238 struct mq_attr attr; 239 } mq_open; 240 struct { 241 pid_t pid; 242 struct audit_cap_data cap; 243 } capset; 244 struct { 245 int fd; 246 int flags; 247 } mmap; 248 }; 249 int fds[2]; 250 251 #if AUDIT_DEBUG 252 int put_count; 253 int ino_count; 254 #endif 255 }; 256 257 static inline int open_arg(int flags, int mask) 258 { 259 int n = ACC_MODE(flags); 260 if (flags & (O_TRUNC | O_CREAT)) 261 n |= AUDIT_PERM_WRITE; 262 return n & mask; 263 } 264 265 static int audit_match_perm(struct audit_context *ctx, int mask) 266 { 267 unsigned n; 268 if (unlikely(!ctx)) 269 return 0; 270 n = ctx->major; 271 272 switch (audit_classify_syscall(ctx->arch, n)) { 273 case 0: /* native */ 274 if ((mask & AUDIT_PERM_WRITE) && 275 audit_match_class(AUDIT_CLASS_WRITE, n)) 276 return 1; 277 if ((mask & AUDIT_PERM_READ) && 278 audit_match_class(AUDIT_CLASS_READ, n)) 279 return 1; 280 if ((mask & AUDIT_PERM_ATTR) && 281 audit_match_class(AUDIT_CLASS_CHATTR, n)) 282 return 1; 283 return 0; 284 case 1: /* 32bit on biarch */ 285 if ((mask & AUDIT_PERM_WRITE) && 286 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 287 return 1; 288 if ((mask & AUDIT_PERM_READ) && 289 audit_match_class(AUDIT_CLASS_READ_32, n)) 290 return 1; 291 if ((mask & AUDIT_PERM_ATTR) && 292 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 293 return 1; 294 return 0; 295 case 2: /* open */ 296 return mask & ACC_MODE(ctx->argv[1]); 297 case 3: /* openat */ 298 return mask & ACC_MODE(ctx->argv[2]); 299 case 4: /* socketcall */ 300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 301 case 5: /* execve */ 302 return mask & AUDIT_PERM_EXEC; 303 default: 304 return 0; 305 } 306 } 307 308 static int audit_match_filetype(struct audit_context *ctx, int which) 309 { 310 unsigned index = which & ~S_IFMT; 311 mode_t mode = which & S_IFMT; 312 313 if (unlikely(!ctx)) 314 return 0; 315 316 if (index >= ctx->name_count) 317 return 0; 318 if (ctx->names[index].ino == -1) 319 return 0; 320 if ((ctx->names[index].mode ^ mode) & S_IFMT) 321 return 0; 322 return 1; 323 } 324 325 /* 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 327 * ->first_trees points to its beginning, ->trees - to the current end of data. 328 * ->tree_count is the number of free entries in array pointed to by ->trees. 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 331 * it's going to remain 1-element for almost any setup) until we free context itself. 332 * References in it _are_ dropped - at the same time we free/drop aux stuff. 333 */ 334 335 #ifdef CONFIG_AUDIT_TREE 336 static void audit_set_auditable(struct audit_context *ctx) 337 { 338 if (!ctx->prio) { 339 ctx->prio = 1; 340 ctx->current_state = AUDIT_RECORD_CONTEXT; 341 } 342 } 343 344 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 345 { 346 struct audit_tree_refs *p = ctx->trees; 347 int left = ctx->tree_count; 348 if (likely(left)) { 349 p->c[--left] = chunk; 350 ctx->tree_count = left; 351 return 1; 352 } 353 if (!p) 354 return 0; 355 p = p->next; 356 if (p) { 357 p->c[30] = chunk; 358 ctx->trees = p; 359 ctx->tree_count = 30; 360 return 1; 361 } 362 return 0; 363 } 364 365 static int grow_tree_refs(struct audit_context *ctx) 366 { 367 struct audit_tree_refs *p = ctx->trees; 368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 369 if (!ctx->trees) { 370 ctx->trees = p; 371 return 0; 372 } 373 if (p) 374 p->next = ctx->trees; 375 else 376 ctx->first_trees = ctx->trees; 377 ctx->tree_count = 31; 378 return 1; 379 } 380 #endif 381 382 static void unroll_tree_refs(struct audit_context *ctx, 383 struct audit_tree_refs *p, int count) 384 { 385 #ifdef CONFIG_AUDIT_TREE 386 struct audit_tree_refs *q; 387 int n; 388 if (!p) { 389 /* we started with empty chain */ 390 p = ctx->first_trees; 391 count = 31; 392 /* if the very first allocation has failed, nothing to do */ 393 if (!p) 394 return; 395 } 396 n = count; 397 for (q = p; q != ctx->trees; q = q->next, n = 31) { 398 while (n--) { 399 audit_put_chunk(q->c[n]); 400 q->c[n] = NULL; 401 } 402 } 403 while (n-- > ctx->tree_count) { 404 audit_put_chunk(q->c[n]); 405 q->c[n] = NULL; 406 } 407 ctx->trees = p; 408 ctx->tree_count = count; 409 #endif 410 } 411 412 static void free_tree_refs(struct audit_context *ctx) 413 { 414 struct audit_tree_refs *p, *q; 415 for (p = ctx->first_trees; p; p = q) { 416 q = p->next; 417 kfree(p); 418 } 419 } 420 421 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 422 { 423 #ifdef CONFIG_AUDIT_TREE 424 struct audit_tree_refs *p; 425 int n; 426 if (!tree) 427 return 0; 428 /* full ones */ 429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 430 for (n = 0; n < 31; n++) 431 if (audit_tree_match(p->c[n], tree)) 432 return 1; 433 } 434 /* partial */ 435 if (p) { 436 for (n = ctx->tree_count; n < 31; n++) 437 if (audit_tree_match(p->c[n], tree)) 438 return 1; 439 } 440 #endif 441 return 0; 442 } 443 444 /* Determine if any context name data matches a rule's watch data */ 445 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 446 * otherwise. */ 447 static int audit_filter_rules(struct task_struct *tsk, 448 struct audit_krule *rule, 449 struct audit_context *ctx, 450 struct audit_names *name, 451 enum audit_state *state) 452 { 453 const struct cred *cred = get_task_cred(tsk); 454 int i, j, need_sid = 1; 455 u32 sid; 456 457 for (i = 0; i < rule->field_count; i++) { 458 struct audit_field *f = &rule->fields[i]; 459 int result = 0; 460 461 switch (f->type) { 462 case AUDIT_PID: 463 result = audit_comparator(tsk->pid, f->op, f->val); 464 break; 465 case AUDIT_PPID: 466 if (ctx) { 467 if (!ctx->ppid) 468 ctx->ppid = sys_getppid(); 469 result = audit_comparator(ctx->ppid, f->op, f->val); 470 } 471 break; 472 case AUDIT_UID: 473 result = audit_comparator(cred->uid, f->op, f->val); 474 break; 475 case AUDIT_EUID: 476 result = audit_comparator(cred->euid, f->op, f->val); 477 break; 478 case AUDIT_SUID: 479 result = audit_comparator(cred->suid, f->op, f->val); 480 break; 481 case AUDIT_FSUID: 482 result = audit_comparator(cred->fsuid, f->op, f->val); 483 break; 484 case AUDIT_GID: 485 result = audit_comparator(cred->gid, f->op, f->val); 486 break; 487 case AUDIT_EGID: 488 result = audit_comparator(cred->egid, f->op, f->val); 489 break; 490 case AUDIT_SGID: 491 result = audit_comparator(cred->sgid, f->op, f->val); 492 break; 493 case AUDIT_FSGID: 494 result = audit_comparator(cred->fsgid, f->op, f->val); 495 break; 496 case AUDIT_PERS: 497 result = audit_comparator(tsk->personality, f->op, f->val); 498 break; 499 case AUDIT_ARCH: 500 if (ctx) 501 result = audit_comparator(ctx->arch, f->op, f->val); 502 break; 503 504 case AUDIT_EXIT: 505 if (ctx && ctx->return_valid) 506 result = audit_comparator(ctx->return_code, f->op, f->val); 507 break; 508 case AUDIT_SUCCESS: 509 if (ctx && ctx->return_valid) { 510 if (f->val) 511 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 512 else 513 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 514 } 515 break; 516 case AUDIT_DEVMAJOR: 517 if (name) 518 result = audit_comparator(MAJOR(name->dev), 519 f->op, f->val); 520 else if (ctx) { 521 for (j = 0; j < ctx->name_count; j++) { 522 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 523 ++result; 524 break; 525 } 526 } 527 } 528 break; 529 case AUDIT_DEVMINOR: 530 if (name) 531 result = audit_comparator(MINOR(name->dev), 532 f->op, f->val); 533 else if (ctx) { 534 for (j = 0; j < ctx->name_count; j++) { 535 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 536 ++result; 537 break; 538 } 539 } 540 } 541 break; 542 case AUDIT_INODE: 543 if (name) 544 result = (name->ino == f->val); 545 else if (ctx) { 546 for (j = 0; j < ctx->name_count; j++) { 547 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 548 ++result; 549 break; 550 } 551 } 552 } 553 break; 554 case AUDIT_WATCH: 555 if (name) 556 result = audit_watch_compare(rule->watch, name->ino, name->dev); 557 break; 558 case AUDIT_DIR: 559 if (ctx) 560 result = match_tree_refs(ctx, rule->tree); 561 break; 562 case AUDIT_LOGINUID: 563 result = 0; 564 if (ctx) 565 result = audit_comparator(tsk->loginuid, f->op, f->val); 566 break; 567 case AUDIT_SUBJ_USER: 568 case AUDIT_SUBJ_ROLE: 569 case AUDIT_SUBJ_TYPE: 570 case AUDIT_SUBJ_SEN: 571 case AUDIT_SUBJ_CLR: 572 /* NOTE: this may return negative values indicating 573 a temporary error. We simply treat this as a 574 match for now to avoid losing information that 575 may be wanted. An error message will also be 576 logged upon error */ 577 if (f->lsm_rule) { 578 if (need_sid) { 579 security_task_getsecid(tsk, &sid); 580 need_sid = 0; 581 } 582 result = security_audit_rule_match(sid, f->type, 583 f->op, 584 f->lsm_rule, 585 ctx); 586 } 587 break; 588 case AUDIT_OBJ_USER: 589 case AUDIT_OBJ_ROLE: 590 case AUDIT_OBJ_TYPE: 591 case AUDIT_OBJ_LEV_LOW: 592 case AUDIT_OBJ_LEV_HIGH: 593 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 594 also applies here */ 595 if (f->lsm_rule) { 596 /* Find files that match */ 597 if (name) { 598 result = security_audit_rule_match( 599 name->osid, f->type, f->op, 600 f->lsm_rule, ctx); 601 } else if (ctx) { 602 for (j = 0; j < ctx->name_count; j++) { 603 if (security_audit_rule_match( 604 ctx->names[j].osid, 605 f->type, f->op, 606 f->lsm_rule, ctx)) { 607 ++result; 608 break; 609 } 610 } 611 } 612 /* Find ipc objects that match */ 613 if (!ctx || ctx->type != AUDIT_IPC) 614 break; 615 if (security_audit_rule_match(ctx->ipc.osid, 616 f->type, f->op, 617 f->lsm_rule, ctx)) 618 ++result; 619 } 620 break; 621 case AUDIT_ARG0: 622 case AUDIT_ARG1: 623 case AUDIT_ARG2: 624 case AUDIT_ARG3: 625 if (ctx) 626 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 627 break; 628 case AUDIT_FILTERKEY: 629 /* ignore this field for filtering */ 630 result = 1; 631 break; 632 case AUDIT_PERM: 633 result = audit_match_perm(ctx, f->val); 634 break; 635 case AUDIT_FILETYPE: 636 result = audit_match_filetype(ctx, f->val); 637 break; 638 } 639 640 if (!result) { 641 put_cred(cred); 642 return 0; 643 } 644 } 645 646 if (ctx) { 647 if (rule->prio <= ctx->prio) 648 return 0; 649 if (rule->filterkey) { 650 kfree(ctx->filterkey); 651 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 652 } 653 ctx->prio = rule->prio; 654 } 655 switch (rule->action) { 656 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 657 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 658 } 659 put_cred(cred); 660 return 1; 661 } 662 663 /* At process creation time, we can determine if system-call auditing is 664 * completely disabled for this task. Since we only have the task 665 * structure at this point, we can only check uid and gid. 666 */ 667 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 668 { 669 struct audit_entry *e; 670 enum audit_state state; 671 672 rcu_read_lock(); 673 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 674 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 675 if (state == AUDIT_RECORD_CONTEXT) 676 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 677 rcu_read_unlock(); 678 return state; 679 } 680 } 681 rcu_read_unlock(); 682 return AUDIT_BUILD_CONTEXT; 683 } 684 685 /* At syscall entry and exit time, this filter is called if the 686 * audit_state is not low enough that auditing cannot take place, but is 687 * also not high enough that we already know we have to write an audit 688 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 689 */ 690 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 691 struct audit_context *ctx, 692 struct list_head *list) 693 { 694 struct audit_entry *e; 695 enum audit_state state; 696 697 if (audit_pid && tsk->tgid == audit_pid) 698 return AUDIT_DISABLED; 699 700 rcu_read_lock(); 701 if (!list_empty(list)) { 702 int word = AUDIT_WORD(ctx->major); 703 int bit = AUDIT_BIT(ctx->major); 704 705 list_for_each_entry_rcu(e, list, list) { 706 if ((e->rule.mask[word] & bit) == bit && 707 audit_filter_rules(tsk, &e->rule, ctx, NULL, 708 &state)) { 709 rcu_read_unlock(); 710 ctx->current_state = state; 711 return state; 712 } 713 } 714 } 715 rcu_read_unlock(); 716 return AUDIT_BUILD_CONTEXT; 717 } 718 719 /* At syscall exit time, this filter is called if any audit_names[] have been 720 * collected during syscall processing. We only check rules in sublists at hash 721 * buckets applicable to the inode numbers in audit_names[]. 722 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 723 */ 724 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 725 { 726 int i; 727 struct audit_entry *e; 728 enum audit_state state; 729 730 if (audit_pid && tsk->tgid == audit_pid) 731 return; 732 733 rcu_read_lock(); 734 for (i = 0; i < ctx->name_count; i++) { 735 int word = AUDIT_WORD(ctx->major); 736 int bit = AUDIT_BIT(ctx->major); 737 struct audit_names *n = &ctx->names[i]; 738 int h = audit_hash_ino((u32)n->ino); 739 struct list_head *list = &audit_inode_hash[h]; 740 741 if (list_empty(list)) 742 continue; 743 744 list_for_each_entry_rcu(e, list, list) { 745 if ((e->rule.mask[word] & bit) == bit && 746 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 747 rcu_read_unlock(); 748 ctx->current_state = state; 749 return; 750 } 751 } 752 } 753 rcu_read_unlock(); 754 } 755 756 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 757 int return_valid, 758 long return_code) 759 { 760 struct audit_context *context = tsk->audit_context; 761 762 if (likely(!context)) 763 return NULL; 764 context->return_valid = return_valid; 765 766 /* 767 * we need to fix up the return code in the audit logs if the actual 768 * return codes are later going to be fixed up by the arch specific 769 * signal handlers 770 * 771 * This is actually a test for: 772 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 773 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 774 * 775 * but is faster than a bunch of || 776 */ 777 if (unlikely(return_code <= -ERESTARTSYS) && 778 (return_code >= -ERESTART_RESTARTBLOCK) && 779 (return_code != -ENOIOCTLCMD)) 780 context->return_code = -EINTR; 781 else 782 context->return_code = return_code; 783 784 if (context->in_syscall && !context->dummy) { 785 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 786 audit_filter_inodes(tsk, context); 787 } 788 789 tsk->audit_context = NULL; 790 return context; 791 } 792 793 static inline void audit_free_names(struct audit_context *context) 794 { 795 int i; 796 797 #if AUDIT_DEBUG == 2 798 if (context->put_count + context->ino_count != context->name_count) { 799 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 800 " name_count=%d put_count=%d" 801 " ino_count=%d [NOT freeing]\n", 802 __FILE__, __LINE__, 803 context->serial, context->major, context->in_syscall, 804 context->name_count, context->put_count, 805 context->ino_count); 806 for (i = 0; i < context->name_count; i++) { 807 printk(KERN_ERR "names[%d] = %p = %s\n", i, 808 context->names[i].name, 809 context->names[i].name ?: "(null)"); 810 } 811 dump_stack(); 812 return; 813 } 814 #endif 815 #if AUDIT_DEBUG 816 context->put_count = 0; 817 context->ino_count = 0; 818 #endif 819 820 for (i = 0; i < context->name_count; i++) { 821 if (context->names[i].name && context->names[i].name_put) 822 __putname(context->names[i].name); 823 } 824 context->name_count = 0; 825 path_put(&context->pwd); 826 context->pwd.dentry = NULL; 827 context->pwd.mnt = NULL; 828 } 829 830 static inline void audit_free_aux(struct audit_context *context) 831 { 832 struct audit_aux_data *aux; 833 834 while ((aux = context->aux)) { 835 context->aux = aux->next; 836 kfree(aux); 837 } 838 while ((aux = context->aux_pids)) { 839 context->aux_pids = aux->next; 840 kfree(aux); 841 } 842 } 843 844 static inline void audit_zero_context(struct audit_context *context, 845 enum audit_state state) 846 { 847 memset(context, 0, sizeof(*context)); 848 context->state = state; 849 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 850 } 851 852 static inline struct audit_context *audit_alloc_context(enum audit_state state) 853 { 854 struct audit_context *context; 855 856 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 857 return NULL; 858 audit_zero_context(context, state); 859 INIT_LIST_HEAD(&context->killed_trees); 860 return context; 861 } 862 863 /** 864 * audit_alloc - allocate an audit context block for a task 865 * @tsk: task 866 * 867 * Filter on the task information and allocate a per-task audit context 868 * if necessary. Doing so turns on system call auditing for the 869 * specified task. This is called from copy_process, so no lock is 870 * needed. 871 */ 872 int audit_alloc(struct task_struct *tsk) 873 { 874 struct audit_context *context; 875 enum audit_state state; 876 char *key = NULL; 877 878 if (likely(!audit_ever_enabled)) 879 return 0; /* Return if not auditing. */ 880 881 state = audit_filter_task(tsk, &key); 882 if (likely(state == AUDIT_DISABLED)) 883 return 0; 884 885 if (!(context = audit_alloc_context(state))) { 886 kfree(key); 887 audit_log_lost("out of memory in audit_alloc"); 888 return -ENOMEM; 889 } 890 context->filterkey = key; 891 892 tsk->audit_context = context; 893 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 894 return 0; 895 } 896 897 static inline void audit_free_context(struct audit_context *context) 898 { 899 struct audit_context *previous; 900 int count = 0; 901 902 do { 903 previous = context->previous; 904 if (previous || (count && count < 10)) { 905 ++count; 906 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 907 " freeing multiple contexts (%d)\n", 908 context->serial, context->major, 909 context->name_count, count); 910 } 911 audit_free_names(context); 912 unroll_tree_refs(context, NULL, 0); 913 free_tree_refs(context); 914 audit_free_aux(context); 915 kfree(context->filterkey); 916 kfree(context->sockaddr); 917 kfree(context); 918 context = previous; 919 } while (context); 920 if (count >= 10) 921 printk(KERN_ERR "audit: freed %d contexts\n", count); 922 } 923 924 void audit_log_task_context(struct audit_buffer *ab) 925 { 926 char *ctx = NULL; 927 unsigned len; 928 int error; 929 u32 sid; 930 931 security_task_getsecid(current, &sid); 932 if (!sid) 933 return; 934 935 error = security_secid_to_secctx(sid, &ctx, &len); 936 if (error) { 937 if (error != -EINVAL) 938 goto error_path; 939 return; 940 } 941 942 audit_log_format(ab, " subj=%s", ctx); 943 security_release_secctx(ctx, len); 944 return; 945 946 error_path: 947 audit_panic("error in audit_log_task_context"); 948 return; 949 } 950 951 EXPORT_SYMBOL(audit_log_task_context); 952 953 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 954 { 955 char name[sizeof(tsk->comm)]; 956 struct mm_struct *mm = tsk->mm; 957 struct vm_area_struct *vma; 958 959 /* tsk == current */ 960 961 get_task_comm(name, tsk); 962 audit_log_format(ab, " comm="); 963 audit_log_untrustedstring(ab, name); 964 965 if (mm) { 966 down_read(&mm->mmap_sem); 967 vma = mm->mmap; 968 while (vma) { 969 if ((vma->vm_flags & VM_EXECUTABLE) && 970 vma->vm_file) { 971 audit_log_d_path(ab, "exe=", 972 &vma->vm_file->f_path); 973 break; 974 } 975 vma = vma->vm_next; 976 } 977 up_read(&mm->mmap_sem); 978 } 979 audit_log_task_context(ab); 980 } 981 982 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 983 uid_t auid, uid_t uid, unsigned int sessionid, 984 u32 sid, char *comm) 985 { 986 struct audit_buffer *ab; 987 char *ctx = NULL; 988 u32 len; 989 int rc = 0; 990 991 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 992 if (!ab) 993 return rc; 994 995 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 996 uid, sessionid); 997 if (security_secid_to_secctx(sid, &ctx, &len)) { 998 audit_log_format(ab, " obj=(none)"); 999 rc = 1; 1000 } else { 1001 audit_log_format(ab, " obj=%s", ctx); 1002 security_release_secctx(ctx, len); 1003 } 1004 audit_log_format(ab, " ocomm="); 1005 audit_log_untrustedstring(ab, comm); 1006 audit_log_end(ab); 1007 1008 return rc; 1009 } 1010 1011 /* 1012 * to_send and len_sent accounting are very loose estimates. We aren't 1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1014 * within about 500 bytes (next page boundry) 1015 * 1016 * why snprintf? an int is up to 12 digits long. if we just assumed when 1017 * logging that a[%d]= was going to be 16 characters long we would be wasting 1018 * space in every audit message. In one 7500 byte message we can log up to 1019 * about 1000 min size arguments. That comes down to about 50% waste of space 1020 * if we didn't do the snprintf to find out how long arg_num_len was. 1021 */ 1022 static int audit_log_single_execve_arg(struct audit_context *context, 1023 struct audit_buffer **ab, 1024 int arg_num, 1025 size_t *len_sent, 1026 const char __user *p, 1027 char *buf) 1028 { 1029 char arg_num_len_buf[12]; 1030 const char __user *tmp_p = p; 1031 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1032 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1033 size_t len, len_left, to_send; 1034 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1035 unsigned int i, has_cntl = 0, too_long = 0; 1036 int ret; 1037 1038 /* strnlen_user includes the null we don't want to send */ 1039 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1040 1041 /* 1042 * We just created this mm, if we can't find the strings 1043 * we just copied into it something is _very_ wrong. Similar 1044 * for strings that are too long, we should not have created 1045 * any. 1046 */ 1047 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1048 WARN_ON(1); 1049 send_sig(SIGKILL, current, 0); 1050 return -1; 1051 } 1052 1053 /* walk the whole argument looking for non-ascii chars */ 1054 do { 1055 if (len_left > MAX_EXECVE_AUDIT_LEN) 1056 to_send = MAX_EXECVE_AUDIT_LEN; 1057 else 1058 to_send = len_left; 1059 ret = copy_from_user(buf, tmp_p, to_send); 1060 /* 1061 * There is no reason for this copy to be short. We just 1062 * copied them here, and the mm hasn't been exposed to user- 1063 * space yet. 1064 */ 1065 if (ret) { 1066 WARN_ON(1); 1067 send_sig(SIGKILL, current, 0); 1068 return -1; 1069 } 1070 buf[to_send] = '\0'; 1071 has_cntl = audit_string_contains_control(buf, to_send); 1072 if (has_cntl) { 1073 /* 1074 * hex messages get logged as 2 bytes, so we can only 1075 * send half as much in each message 1076 */ 1077 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1078 break; 1079 } 1080 len_left -= to_send; 1081 tmp_p += to_send; 1082 } while (len_left > 0); 1083 1084 len_left = len; 1085 1086 if (len > max_execve_audit_len) 1087 too_long = 1; 1088 1089 /* rewalk the argument actually logging the message */ 1090 for (i = 0; len_left > 0; i++) { 1091 int room_left; 1092 1093 if (len_left > max_execve_audit_len) 1094 to_send = max_execve_audit_len; 1095 else 1096 to_send = len_left; 1097 1098 /* do we have space left to send this argument in this ab? */ 1099 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1100 if (has_cntl) 1101 room_left -= (to_send * 2); 1102 else 1103 room_left -= to_send; 1104 if (room_left < 0) { 1105 *len_sent = 0; 1106 audit_log_end(*ab); 1107 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1108 if (!*ab) 1109 return 0; 1110 } 1111 1112 /* 1113 * first record needs to say how long the original string was 1114 * so we can be sure nothing was lost. 1115 */ 1116 if ((i == 0) && (too_long)) 1117 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1118 has_cntl ? 2*len : len); 1119 1120 /* 1121 * normally arguments are small enough to fit and we already 1122 * filled buf above when we checked for control characters 1123 * so don't bother with another copy_from_user 1124 */ 1125 if (len >= max_execve_audit_len) 1126 ret = copy_from_user(buf, p, to_send); 1127 else 1128 ret = 0; 1129 if (ret) { 1130 WARN_ON(1); 1131 send_sig(SIGKILL, current, 0); 1132 return -1; 1133 } 1134 buf[to_send] = '\0'; 1135 1136 /* actually log it */ 1137 audit_log_format(*ab, " a%d", arg_num); 1138 if (too_long) 1139 audit_log_format(*ab, "[%d]", i); 1140 audit_log_format(*ab, "="); 1141 if (has_cntl) 1142 audit_log_n_hex(*ab, buf, to_send); 1143 else 1144 audit_log_string(*ab, buf); 1145 1146 p += to_send; 1147 len_left -= to_send; 1148 *len_sent += arg_num_len; 1149 if (has_cntl) 1150 *len_sent += to_send * 2; 1151 else 1152 *len_sent += to_send; 1153 } 1154 /* include the null we didn't log */ 1155 return len + 1; 1156 } 1157 1158 static void audit_log_execve_info(struct audit_context *context, 1159 struct audit_buffer **ab, 1160 struct audit_aux_data_execve *axi) 1161 { 1162 int i; 1163 size_t len, len_sent = 0; 1164 const char __user *p; 1165 char *buf; 1166 1167 if (axi->mm != current->mm) 1168 return; /* execve failed, no additional info */ 1169 1170 p = (const char __user *)axi->mm->arg_start; 1171 1172 audit_log_format(*ab, "argc=%d", axi->argc); 1173 1174 /* 1175 * we need some kernel buffer to hold the userspace args. Just 1176 * allocate one big one rather than allocating one of the right size 1177 * for every single argument inside audit_log_single_execve_arg() 1178 * should be <8k allocation so should be pretty safe. 1179 */ 1180 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1181 if (!buf) { 1182 audit_panic("out of memory for argv string\n"); 1183 return; 1184 } 1185 1186 for (i = 0; i < axi->argc; i++) { 1187 len = audit_log_single_execve_arg(context, ab, i, 1188 &len_sent, p, buf); 1189 if (len <= 0) 1190 break; 1191 p += len; 1192 } 1193 kfree(buf); 1194 } 1195 1196 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1197 { 1198 int i; 1199 1200 audit_log_format(ab, " %s=", prefix); 1201 CAP_FOR_EACH_U32(i) { 1202 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1203 } 1204 } 1205 1206 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1207 { 1208 kernel_cap_t *perm = &name->fcap.permitted; 1209 kernel_cap_t *inh = &name->fcap.inheritable; 1210 int log = 0; 1211 1212 if (!cap_isclear(*perm)) { 1213 audit_log_cap(ab, "cap_fp", perm); 1214 log = 1; 1215 } 1216 if (!cap_isclear(*inh)) { 1217 audit_log_cap(ab, "cap_fi", inh); 1218 log = 1; 1219 } 1220 1221 if (log) 1222 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1223 } 1224 1225 static void show_special(struct audit_context *context, int *call_panic) 1226 { 1227 struct audit_buffer *ab; 1228 int i; 1229 1230 ab = audit_log_start(context, GFP_KERNEL, context->type); 1231 if (!ab) 1232 return; 1233 1234 switch (context->type) { 1235 case AUDIT_SOCKETCALL: { 1236 int nargs = context->socketcall.nargs; 1237 audit_log_format(ab, "nargs=%d", nargs); 1238 for (i = 0; i < nargs; i++) 1239 audit_log_format(ab, " a%d=%lx", i, 1240 context->socketcall.args[i]); 1241 break; } 1242 case AUDIT_IPC: { 1243 u32 osid = context->ipc.osid; 1244 1245 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o", 1246 context->ipc.uid, context->ipc.gid, context->ipc.mode); 1247 if (osid) { 1248 char *ctx = NULL; 1249 u32 len; 1250 if (security_secid_to_secctx(osid, &ctx, &len)) { 1251 audit_log_format(ab, " osid=%u", osid); 1252 *call_panic = 1; 1253 } else { 1254 audit_log_format(ab, " obj=%s", ctx); 1255 security_release_secctx(ctx, len); 1256 } 1257 } 1258 if (context->ipc.has_perm) { 1259 audit_log_end(ab); 1260 ab = audit_log_start(context, GFP_KERNEL, 1261 AUDIT_IPC_SET_PERM); 1262 audit_log_format(ab, 1263 "qbytes=%lx ouid=%u ogid=%u mode=%#o", 1264 context->ipc.qbytes, 1265 context->ipc.perm_uid, 1266 context->ipc.perm_gid, 1267 context->ipc.perm_mode); 1268 if (!ab) 1269 return; 1270 } 1271 break; } 1272 case AUDIT_MQ_OPEN: { 1273 audit_log_format(ab, 1274 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 1275 "mq_msgsize=%ld mq_curmsgs=%ld", 1276 context->mq_open.oflag, context->mq_open.mode, 1277 context->mq_open.attr.mq_flags, 1278 context->mq_open.attr.mq_maxmsg, 1279 context->mq_open.attr.mq_msgsize, 1280 context->mq_open.attr.mq_curmsgs); 1281 break; } 1282 case AUDIT_MQ_SENDRECV: { 1283 audit_log_format(ab, 1284 "mqdes=%d msg_len=%zd msg_prio=%u " 1285 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1286 context->mq_sendrecv.mqdes, 1287 context->mq_sendrecv.msg_len, 1288 context->mq_sendrecv.msg_prio, 1289 context->mq_sendrecv.abs_timeout.tv_sec, 1290 context->mq_sendrecv.abs_timeout.tv_nsec); 1291 break; } 1292 case AUDIT_MQ_NOTIFY: { 1293 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1294 context->mq_notify.mqdes, 1295 context->mq_notify.sigev_signo); 1296 break; } 1297 case AUDIT_MQ_GETSETATTR: { 1298 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1299 audit_log_format(ab, 1300 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1301 "mq_curmsgs=%ld ", 1302 context->mq_getsetattr.mqdes, 1303 attr->mq_flags, attr->mq_maxmsg, 1304 attr->mq_msgsize, attr->mq_curmsgs); 1305 break; } 1306 case AUDIT_CAPSET: { 1307 audit_log_format(ab, "pid=%d", context->capset.pid); 1308 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1309 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1310 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1311 break; } 1312 case AUDIT_MMAP: { 1313 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1314 context->mmap.flags); 1315 break; } 1316 } 1317 audit_log_end(ab); 1318 } 1319 1320 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1321 { 1322 const struct cred *cred; 1323 int i, call_panic = 0; 1324 struct audit_buffer *ab; 1325 struct audit_aux_data *aux; 1326 const char *tty; 1327 1328 /* tsk == current */ 1329 context->pid = tsk->pid; 1330 if (!context->ppid) 1331 context->ppid = sys_getppid(); 1332 cred = current_cred(); 1333 context->uid = cred->uid; 1334 context->gid = cred->gid; 1335 context->euid = cred->euid; 1336 context->suid = cred->suid; 1337 context->fsuid = cred->fsuid; 1338 context->egid = cred->egid; 1339 context->sgid = cred->sgid; 1340 context->fsgid = cred->fsgid; 1341 context->personality = tsk->personality; 1342 1343 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1344 if (!ab) 1345 return; /* audit_panic has been called */ 1346 audit_log_format(ab, "arch=%x syscall=%d", 1347 context->arch, context->major); 1348 if (context->personality != PER_LINUX) 1349 audit_log_format(ab, " per=%lx", context->personality); 1350 if (context->return_valid) 1351 audit_log_format(ab, " success=%s exit=%ld", 1352 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1353 context->return_code); 1354 1355 spin_lock_irq(&tsk->sighand->siglock); 1356 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1357 tty = tsk->signal->tty->name; 1358 else 1359 tty = "(none)"; 1360 spin_unlock_irq(&tsk->sighand->siglock); 1361 1362 audit_log_format(ab, 1363 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1364 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1365 " euid=%u suid=%u fsuid=%u" 1366 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1367 context->argv[0], 1368 context->argv[1], 1369 context->argv[2], 1370 context->argv[3], 1371 context->name_count, 1372 context->ppid, 1373 context->pid, 1374 tsk->loginuid, 1375 context->uid, 1376 context->gid, 1377 context->euid, context->suid, context->fsuid, 1378 context->egid, context->sgid, context->fsgid, tty, 1379 tsk->sessionid); 1380 1381 1382 audit_log_task_info(ab, tsk); 1383 audit_log_key(ab, context->filterkey); 1384 audit_log_end(ab); 1385 1386 for (aux = context->aux; aux; aux = aux->next) { 1387 1388 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1389 if (!ab) 1390 continue; /* audit_panic has been called */ 1391 1392 switch (aux->type) { 1393 1394 case AUDIT_EXECVE: { 1395 struct audit_aux_data_execve *axi = (void *)aux; 1396 audit_log_execve_info(context, &ab, axi); 1397 break; } 1398 1399 case AUDIT_BPRM_FCAPS: { 1400 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1401 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1402 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1403 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1404 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1405 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1406 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1407 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1408 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1409 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1410 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1411 break; } 1412 1413 } 1414 audit_log_end(ab); 1415 } 1416 1417 if (context->type) 1418 show_special(context, &call_panic); 1419 1420 if (context->fds[0] >= 0) { 1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1422 if (ab) { 1423 audit_log_format(ab, "fd0=%d fd1=%d", 1424 context->fds[0], context->fds[1]); 1425 audit_log_end(ab); 1426 } 1427 } 1428 1429 if (context->sockaddr_len) { 1430 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1431 if (ab) { 1432 audit_log_format(ab, "saddr="); 1433 audit_log_n_hex(ab, (void *)context->sockaddr, 1434 context->sockaddr_len); 1435 audit_log_end(ab); 1436 } 1437 } 1438 1439 for (aux = context->aux_pids; aux; aux = aux->next) { 1440 struct audit_aux_data_pids *axs = (void *)aux; 1441 1442 for (i = 0; i < axs->pid_count; i++) 1443 if (audit_log_pid_context(context, axs->target_pid[i], 1444 axs->target_auid[i], 1445 axs->target_uid[i], 1446 axs->target_sessionid[i], 1447 axs->target_sid[i], 1448 axs->target_comm[i])) 1449 call_panic = 1; 1450 } 1451 1452 if (context->target_pid && 1453 audit_log_pid_context(context, context->target_pid, 1454 context->target_auid, context->target_uid, 1455 context->target_sessionid, 1456 context->target_sid, context->target_comm)) 1457 call_panic = 1; 1458 1459 if (context->pwd.dentry && context->pwd.mnt) { 1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1461 if (ab) { 1462 audit_log_d_path(ab, "cwd=", &context->pwd); 1463 audit_log_end(ab); 1464 } 1465 } 1466 for (i = 0; i < context->name_count; i++) { 1467 struct audit_names *n = &context->names[i]; 1468 1469 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1470 if (!ab) 1471 continue; /* audit_panic has been called */ 1472 1473 audit_log_format(ab, "item=%d", i); 1474 1475 if (n->name) { 1476 switch(n->name_len) { 1477 case AUDIT_NAME_FULL: 1478 /* log the full path */ 1479 audit_log_format(ab, " name="); 1480 audit_log_untrustedstring(ab, n->name); 1481 break; 1482 case 0: 1483 /* name was specified as a relative path and the 1484 * directory component is the cwd */ 1485 audit_log_d_path(ab, "name=", &context->pwd); 1486 break; 1487 default: 1488 /* log the name's directory component */ 1489 audit_log_format(ab, " name="); 1490 audit_log_n_untrustedstring(ab, n->name, 1491 n->name_len); 1492 } 1493 } else 1494 audit_log_format(ab, " name=(null)"); 1495 1496 if (n->ino != (unsigned long)-1) { 1497 audit_log_format(ab, " inode=%lu" 1498 " dev=%02x:%02x mode=%#o" 1499 " ouid=%u ogid=%u rdev=%02x:%02x", 1500 n->ino, 1501 MAJOR(n->dev), 1502 MINOR(n->dev), 1503 n->mode, 1504 n->uid, 1505 n->gid, 1506 MAJOR(n->rdev), 1507 MINOR(n->rdev)); 1508 } 1509 if (n->osid != 0) { 1510 char *ctx = NULL; 1511 u32 len; 1512 if (security_secid_to_secctx( 1513 n->osid, &ctx, &len)) { 1514 audit_log_format(ab, " osid=%u", n->osid); 1515 call_panic = 2; 1516 } else { 1517 audit_log_format(ab, " obj=%s", ctx); 1518 security_release_secctx(ctx, len); 1519 } 1520 } 1521 1522 audit_log_fcaps(ab, n); 1523 1524 audit_log_end(ab); 1525 } 1526 1527 /* Send end of event record to help user space know we are finished */ 1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1529 if (ab) 1530 audit_log_end(ab); 1531 if (call_panic) 1532 audit_panic("error converting sid to string"); 1533 } 1534 1535 /** 1536 * audit_free - free a per-task audit context 1537 * @tsk: task whose audit context block to free 1538 * 1539 * Called from copy_process and do_exit 1540 */ 1541 void audit_free(struct task_struct *tsk) 1542 { 1543 struct audit_context *context; 1544 1545 context = audit_get_context(tsk, 0, 0); 1546 if (likely(!context)) 1547 return; 1548 1549 /* Check for system calls that do not go through the exit 1550 * function (e.g., exit_group), then free context block. 1551 * We use GFP_ATOMIC here because we might be doing this 1552 * in the context of the idle thread */ 1553 /* that can happen only if we are called from do_exit() */ 1554 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1555 audit_log_exit(context, tsk); 1556 if (!list_empty(&context->killed_trees)) 1557 audit_kill_trees(&context->killed_trees); 1558 1559 audit_free_context(context); 1560 } 1561 1562 /** 1563 * audit_syscall_entry - fill in an audit record at syscall entry 1564 * @arch: architecture type 1565 * @major: major syscall type (function) 1566 * @a1: additional syscall register 1 1567 * @a2: additional syscall register 2 1568 * @a3: additional syscall register 3 1569 * @a4: additional syscall register 4 1570 * 1571 * Fill in audit context at syscall entry. This only happens if the 1572 * audit context was created when the task was created and the state or 1573 * filters demand the audit context be built. If the state from the 1574 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1575 * then the record will be written at syscall exit time (otherwise, it 1576 * will only be written if another part of the kernel requests that it 1577 * be written). 1578 */ 1579 void audit_syscall_entry(int arch, int major, 1580 unsigned long a1, unsigned long a2, 1581 unsigned long a3, unsigned long a4) 1582 { 1583 struct task_struct *tsk = current; 1584 struct audit_context *context = tsk->audit_context; 1585 enum audit_state state; 1586 1587 if (unlikely(!context)) 1588 return; 1589 1590 /* 1591 * This happens only on certain architectures that make system 1592 * calls in kernel_thread via the entry.S interface, instead of 1593 * with direct calls. (If you are porting to a new 1594 * architecture, hitting this condition can indicate that you 1595 * got the _exit/_leave calls backward in entry.S.) 1596 * 1597 * i386 no 1598 * x86_64 no 1599 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1600 * 1601 * This also happens with vm86 emulation in a non-nested manner 1602 * (entries without exits), so this case must be caught. 1603 */ 1604 if (context->in_syscall) { 1605 struct audit_context *newctx; 1606 1607 #if AUDIT_DEBUG 1608 printk(KERN_ERR 1609 "audit(:%d) pid=%d in syscall=%d;" 1610 " entering syscall=%d\n", 1611 context->serial, tsk->pid, context->major, major); 1612 #endif 1613 newctx = audit_alloc_context(context->state); 1614 if (newctx) { 1615 newctx->previous = context; 1616 context = newctx; 1617 tsk->audit_context = newctx; 1618 } else { 1619 /* If we can't alloc a new context, the best we 1620 * can do is to leak memory (any pending putname 1621 * will be lost). The only other alternative is 1622 * to abandon auditing. */ 1623 audit_zero_context(context, context->state); 1624 } 1625 } 1626 BUG_ON(context->in_syscall || context->name_count); 1627 1628 if (!audit_enabled) 1629 return; 1630 1631 context->arch = arch; 1632 context->major = major; 1633 context->argv[0] = a1; 1634 context->argv[1] = a2; 1635 context->argv[2] = a3; 1636 context->argv[3] = a4; 1637 1638 state = context->state; 1639 context->dummy = !audit_n_rules; 1640 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1641 context->prio = 0; 1642 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1643 } 1644 if (likely(state == AUDIT_DISABLED)) 1645 return; 1646 1647 context->serial = 0; 1648 context->ctime = CURRENT_TIME; 1649 context->in_syscall = 1; 1650 context->current_state = state; 1651 context->ppid = 0; 1652 } 1653 1654 void audit_finish_fork(struct task_struct *child) 1655 { 1656 struct audit_context *ctx = current->audit_context; 1657 struct audit_context *p = child->audit_context; 1658 if (!p || !ctx) 1659 return; 1660 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT) 1661 return; 1662 p->arch = ctx->arch; 1663 p->major = ctx->major; 1664 memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); 1665 p->ctime = ctx->ctime; 1666 p->dummy = ctx->dummy; 1667 p->in_syscall = ctx->in_syscall; 1668 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); 1669 p->ppid = current->pid; 1670 p->prio = ctx->prio; 1671 p->current_state = ctx->current_state; 1672 } 1673 1674 /** 1675 * audit_syscall_exit - deallocate audit context after a system call 1676 * @valid: success/failure flag 1677 * @return_code: syscall return value 1678 * 1679 * Tear down after system call. If the audit context has been marked as 1680 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1681 * filtering, or because some other part of the kernel write an audit 1682 * message), then write out the syscall information. In call cases, 1683 * free the names stored from getname(). 1684 */ 1685 void audit_syscall_exit(int valid, long return_code) 1686 { 1687 struct task_struct *tsk = current; 1688 struct audit_context *context; 1689 1690 context = audit_get_context(tsk, valid, return_code); 1691 1692 if (likely(!context)) 1693 return; 1694 1695 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1696 audit_log_exit(context, tsk); 1697 1698 context->in_syscall = 0; 1699 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1700 1701 if (!list_empty(&context->killed_trees)) 1702 audit_kill_trees(&context->killed_trees); 1703 1704 if (context->previous) { 1705 struct audit_context *new_context = context->previous; 1706 context->previous = NULL; 1707 audit_free_context(context); 1708 tsk->audit_context = new_context; 1709 } else { 1710 audit_free_names(context); 1711 unroll_tree_refs(context, NULL, 0); 1712 audit_free_aux(context); 1713 context->aux = NULL; 1714 context->aux_pids = NULL; 1715 context->target_pid = 0; 1716 context->target_sid = 0; 1717 context->sockaddr_len = 0; 1718 context->type = 0; 1719 context->fds[0] = -1; 1720 if (context->state != AUDIT_RECORD_CONTEXT) { 1721 kfree(context->filterkey); 1722 context->filterkey = NULL; 1723 } 1724 tsk->audit_context = context; 1725 } 1726 } 1727 1728 static inline void handle_one(const struct inode *inode) 1729 { 1730 #ifdef CONFIG_AUDIT_TREE 1731 struct audit_context *context; 1732 struct audit_tree_refs *p; 1733 struct audit_chunk *chunk; 1734 int count; 1735 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1736 return; 1737 context = current->audit_context; 1738 p = context->trees; 1739 count = context->tree_count; 1740 rcu_read_lock(); 1741 chunk = audit_tree_lookup(inode); 1742 rcu_read_unlock(); 1743 if (!chunk) 1744 return; 1745 if (likely(put_tree_ref(context, chunk))) 1746 return; 1747 if (unlikely(!grow_tree_refs(context))) { 1748 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1749 audit_set_auditable(context); 1750 audit_put_chunk(chunk); 1751 unroll_tree_refs(context, p, count); 1752 return; 1753 } 1754 put_tree_ref(context, chunk); 1755 #endif 1756 } 1757 1758 static void handle_path(const struct dentry *dentry) 1759 { 1760 #ifdef CONFIG_AUDIT_TREE 1761 struct audit_context *context; 1762 struct audit_tree_refs *p; 1763 const struct dentry *d, *parent; 1764 struct audit_chunk *drop; 1765 unsigned long seq; 1766 int count; 1767 1768 context = current->audit_context; 1769 p = context->trees; 1770 count = context->tree_count; 1771 retry: 1772 drop = NULL; 1773 d = dentry; 1774 rcu_read_lock(); 1775 seq = read_seqbegin(&rename_lock); 1776 for(;;) { 1777 struct inode *inode = d->d_inode; 1778 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1779 struct audit_chunk *chunk; 1780 chunk = audit_tree_lookup(inode); 1781 if (chunk) { 1782 if (unlikely(!put_tree_ref(context, chunk))) { 1783 drop = chunk; 1784 break; 1785 } 1786 } 1787 } 1788 parent = d->d_parent; 1789 if (parent == d) 1790 break; 1791 d = parent; 1792 } 1793 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1794 rcu_read_unlock(); 1795 if (!drop) { 1796 /* just a race with rename */ 1797 unroll_tree_refs(context, p, count); 1798 goto retry; 1799 } 1800 audit_put_chunk(drop); 1801 if (grow_tree_refs(context)) { 1802 /* OK, got more space */ 1803 unroll_tree_refs(context, p, count); 1804 goto retry; 1805 } 1806 /* too bad */ 1807 printk(KERN_WARNING 1808 "out of memory, audit has lost a tree reference\n"); 1809 unroll_tree_refs(context, p, count); 1810 audit_set_auditable(context); 1811 return; 1812 } 1813 rcu_read_unlock(); 1814 #endif 1815 } 1816 1817 /** 1818 * audit_getname - add a name to the list 1819 * @name: name to add 1820 * 1821 * Add a name to the list of audit names for this context. 1822 * Called from fs/namei.c:getname(). 1823 */ 1824 void __audit_getname(const char *name) 1825 { 1826 struct audit_context *context = current->audit_context; 1827 1828 if (IS_ERR(name) || !name) 1829 return; 1830 1831 if (!context->in_syscall) { 1832 #if AUDIT_DEBUG == 2 1833 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1834 __FILE__, __LINE__, context->serial, name); 1835 dump_stack(); 1836 #endif 1837 return; 1838 } 1839 BUG_ON(context->name_count >= AUDIT_NAMES); 1840 context->names[context->name_count].name = name; 1841 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1842 context->names[context->name_count].name_put = 1; 1843 context->names[context->name_count].ino = (unsigned long)-1; 1844 context->names[context->name_count].osid = 0; 1845 ++context->name_count; 1846 if (!context->pwd.dentry) 1847 get_fs_pwd(current->fs, &context->pwd); 1848 } 1849 1850 /* audit_putname - intercept a putname request 1851 * @name: name to intercept and delay for putname 1852 * 1853 * If we have stored the name from getname in the audit context, 1854 * then we delay the putname until syscall exit. 1855 * Called from include/linux/fs.h:putname(). 1856 */ 1857 void audit_putname(const char *name) 1858 { 1859 struct audit_context *context = current->audit_context; 1860 1861 BUG_ON(!context); 1862 if (!context->in_syscall) { 1863 #if AUDIT_DEBUG == 2 1864 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1865 __FILE__, __LINE__, context->serial, name); 1866 if (context->name_count) { 1867 int i; 1868 for (i = 0; i < context->name_count; i++) 1869 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1870 context->names[i].name, 1871 context->names[i].name ?: "(null)"); 1872 } 1873 #endif 1874 __putname(name); 1875 } 1876 #if AUDIT_DEBUG 1877 else { 1878 ++context->put_count; 1879 if (context->put_count > context->name_count) { 1880 printk(KERN_ERR "%s:%d(:%d): major=%d" 1881 " in_syscall=%d putname(%p) name_count=%d" 1882 " put_count=%d\n", 1883 __FILE__, __LINE__, 1884 context->serial, context->major, 1885 context->in_syscall, name, context->name_count, 1886 context->put_count); 1887 dump_stack(); 1888 } 1889 } 1890 #endif 1891 } 1892 1893 static int audit_inc_name_count(struct audit_context *context, 1894 const struct inode *inode) 1895 { 1896 if (context->name_count >= AUDIT_NAMES) { 1897 if (inode) 1898 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: " 1899 "dev=%02x:%02x, inode=%lu\n", 1900 MAJOR(inode->i_sb->s_dev), 1901 MINOR(inode->i_sb->s_dev), 1902 inode->i_ino); 1903 1904 else 1905 printk(KERN_DEBUG "name_count maxed, losing inode data\n"); 1906 return 1; 1907 } 1908 context->name_count++; 1909 #if AUDIT_DEBUG 1910 context->ino_count++; 1911 #endif 1912 return 0; 1913 } 1914 1915 1916 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 1917 { 1918 struct cpu_vfs_cap_data caps; 1919 int rc; 1920 1921 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t)); 1922 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t)); 1923 name->fcap.fE = 0; 1924 name->fcap_ver = 0; 1925 1926 if (!dentry) 1927 return 0; 1928 1929 rc = get_vfs_caps_from_disk(dentry, &caps); 1930 if (rc) 1931 return rc; 1932 1933 name->fcap.permitted = caps.permitted; 1934 name->fcap.inheritable = caps.inheritable; 1935 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1936 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 1937 1938 return 0; 1939 } 1940 1941 1942 /* Copy inode data into an audit_names. */ 1943 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1944 const struct inode *inode) 1945 { 1946 name->ino = inode->i_ino; 1947 name->dev = inode->i_sb->s_dev; 1948 name->mode = inode->i_mode; 1949 name->uid = inode->i_uid; 1950 name->gid = inode->i_gid; 1951 name->rdev = inode->i_rdev; 1952 security_inode_getsecid(inode, &name->osid); 1953 audit_copy_fcaps(name, dentry); 1954 } 1955 1956 /** 1957 * audit_inode - store the inode and device from a lookup 1958 * @name: name being audited 1959 * @dentry: dentry being audited 1960 * 1961 * Called from fs/namei.c:path_lookup(). 1962 */ 1963 void __audit_inode(const char *name, const struct dentry *dentry) 1964 { 1965 int idx; 1966 struct audit_context *context = current->audit_context; 1967 const struct inode *inode = dentry->d_inode; 1968 1969 if (!context->in_syscall) 1970 return; 1971 if (context->name_count 1972 && context->names[context->name_count-1].name 1973 && context->names[context->name_count-1].name == name) 1974 idx = context->name_count - 1; 1975 else if (context->name_count > 1 1976 && context->names[context->name_count-2].name 1977 && context->names[context->name_count-2].name == name) 1978 idx = context->name_count - 2; 1979 else { 1980 /* FIXME: how much do we care about inodes that have no 1981 * associated name? */ 1982 if (audit_inc_name_count(context, inode)) 1983 return; 1984 idx = context->name_count - 1; 1985 context->names[idx].name = NULL; 1986 } 1987 handle_path(dentry); 1988 audit_copy_inode(&context->names[idx], dentry, inode); 1989 } 1990 1991 /** 1992 * audit_inode_child - collect inode info for created/removed objects 1993 * @dentry: dentry being audited 1994 * @parent: inode of dentry parent 1995 * 1996 * For syscalls that create or remove filesystem objects, audit_inode 1997 * can only collect information for the filesystem object's parent. 1998 * This call updates the audit context with the child's information. 1999 * Syscalls that create a new filesystem object must be hooked after 2000 * the object is created. Syscalls that remove a filesystem object 2001 * must be hooked prior, in order to capture the target inode during 2002 * unsuccessful attempts. 2003 */ 2004 void __audit_inode_child(const struct dentry *dentry, 2005 const struct inode *parent) 2006 { 2007 int idx; 2008 struct audit_context *context = current->audit_context; 2009 const char *found_parent = NULL, *found_child = NULL; 2010 const struct inode *inode = dentry->d_inode; 2011 const char *dname = dentry->d_name.name; 2012 int dirlen = 0; 2013 2014 if (!context->in_syscall) 2015 return; 2016 2017 if (inode) 2018 handle_one(inode); 2019 2020 /* parent is more likely, look for it first */ 2021 for (idx = 0; idx < context->name_count; idx++) { 2022 struct audit_names *n = &context->names[idx]; 2023 2024 if (!n->name) 2025 continue; 2026 2027 if (n->ino == parent->i_ino && 2028 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2029 n->name_len = dirlen; /* update parent data in place */ 2030 found_parent = n->name; 2031 goto add_names; 2032 } 2033 } 2034 2035 /* no matching parent, look for matching child */ 2036 for (idx = 0; idx < context->name_count; idx++) { 2037 struct audit_names *n = &context->names[idx]; 2038 2039 if (!n->name) 2040 continue; 2041 2042 /* strcmp() is the more likely scenario */ 2043 if (!strcmp(dname, n->name) || 2044 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2045 if (inode) 2046 audit_copy_inode(n, NULL, inode); 2047 else 2048 n->ino = (unsigned long)-1; 2049 found_child = n->name; 2050 goto add_names; 2051 } 2052 } 2053 2054 add_names: 2055 if (!found_parent) { 2056 if (audit_inc_name_count(context, parent)) 2057 return; 2058 idx = context->name_count - 1; 2059 context->names[idx].name = NULL; 2060 audit_copy_inode(&context->names[idx], NULL, parent); 2061 } 2062 2063 if (!found_child) { 2064 if (audit_inc_name_count(context, inode)) 2065 return; 2066 idx = context->name_count - 1; 2067 2068 /* Re-use the name belonging to the slot for a matching parent 2069 * directory. All names for this context are relinquished in 2070 * audit_free_names() */ 2071 if (found_parent) { 2072 context->names[idx].name = found_parent; 2073 context->names[idx].name_len = AUDIT_NAME_FULL; 2074 /* don't call __putname() */ 2075 context->names[idx].name_put = 0; 2076 } else { 2077 context->names[idx].name = NULL; 2078 } 2079 2080 if (inode) 2081 audit_copy_inode(&context->names[idx], NULL, inode); 2082 else 2083 context->names[idx].ino = (unsigned long)-1; 2084 } 2085 } 2086 EXPORT_SYMBOL_GPL(__audit_inode_child); 2087 2088 /** 2089 * auditsc_get_stamp - get local copies of audit_context values 2090 * @ctx: audit_context for the task 2091 * @t: timespec to store time recorded in the audit_context 2092 * @serial: serial value that is recorded in the audit_context 2093 * 2094 * Also sets the context as auditable. 2095 */ 2096 int auditsc_get_stamp(struct audit_context *ctx, 2097 struct timespec *t, unsigned int *serial) 2098 { 2099 if (!ctx->in_syscall) 2100 return 0; 2101 if (!ctx->serial) 2102 ctx->serial = audit_serial(); 2103 t->tv_sec = ctx->ctime.tv_sec; 2104 t->tv_nsec = ctx->ctime.tv_nsec; 2105 *serial = ctx->serial; 2106 if (!ctx->prio) { 2107 ctx->prio = 1; 2108 ctx->current_state = AUDIT_RECORD_CONTEXT; 2109 } 2110 return 1; 2111 } 2112 2113 /* global counter which is incremented every time something logs in */ 2114 static atomic_t session_id = ATOMIC_INIT(0); 2115 2116 /** 2117 * audit_set_loginuid - set a task's audit_context loginuid 2118 * @task: task whose audit context is being modified 2119 * @loginuid: loginuid value 2120 * 2121 * Returns 0. 2122 * 2123 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2124 */ 2125 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 2126 { 2127 unsigned int sessionid = atomic_inc_return(&session_id); 2128 struct audit_context *context = task->audit_context; 2129 2130 if (context && context->in_syscall) { 2131 struct audit_buffer *ab; 2132 2133 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2134 if (ab) { 2135 audit_log_format(ab, "login pid=%d uid=%u " 2136 "old auid=%u new auid=%u" 2137 " old ses=%u new ses=%u", 2138 task->pid, task_uid(task), 2139 task->loginuid, loginuid, 2140 task->sessionid, sessionid); 2141 audit_log_end(ab); 2142 } 2143 } 2144 task->sessionid = sessionid; 2145 task->loginuid = loginuid; 2146 return 0; 2147 } 2148 2149 /** 2150 * __audit_mq_open - record audit data for a POSIX MQ open 2151 * @oflag: open flag 2152 * @mode: mode bits 2153 * @attr: queue attributes 2154 * 2155 */ 2156 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr) 2157 { 2158 struct audit_context *context = current->audit_context; 2159 2160 if (attr) 2161 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2162 else 2163 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2164 2165 context->mq_open.oflag = oflag; 2166 context->mq_open.mode = mode; 2167 2168 context->type = AUDIT_MQ_OPEN; 2169 } 2170 2171 /** 2172 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2173 * @mqdes: MQ descriptor 2174 * @msg_len: Message length 2175 * @msg_prio: Message priority 2176 * @abs_timeout: Message timeout in absolute time 2177 * 2178 */ 2179 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2180 const struct timespec *abs_timeout) 2181 { 2182 struct audit_context *context = current->audit_context; 2183 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2184 2185 if (abs_timeout) 2186 memcpy(p, abs_timeout, sizeof(struct timespec)); 2187 else 2188 memset(p, 0, sizeof(struct timespec)); 2189 2190 context->mq_sendrecv.mqdes = mqdes; 2191 context->mq_sendrecv.msg_len = msg_len; 2192 context->mq_sendrecv.msg_prio = msg_prio; 2193 2194 context->type = AUDIT_MQ_SENDRECV; 2195 } 2196 2197 /** 2198 * __audit_mq_notify - record audit data for a POSIX MQ notify 2199 * @mqdes: MQ descriptor 2200 * @notification: Notification event 2201 * 2202 */ 2203 2204 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2205 { 2206 struct audit_context *context = current->audit_context; 2207 2208 if (notification) 2209 context->mq_notify.sigev_signo = notification->sigev_signo; 2210 else 2211 context->mq_notify.sigev_signo = 0; 2212 2213 context->mq_notify.mqdes = mqdes; 2214 context->type = AUDIT_MQ_NOTIFY; 2215 } 2216 2217 /** 2218 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2219 * @mqdes: MQ descriptor 2220 * @mqstat: MQ flags 2221 * 2222 */ 2223 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2224 { 2225 struct audit_context *context = current->audit_context; 2226 context->mq_getsetattr.mqdes = mqdes; 2227 context->mq_getsetattr.mqstat = *mqstat; 2228 context->type = AUDIT_MQ_GETSETATTR; 2229 } 2230 2231 /** 2232 * audit_ipc_obj - record audit data for ipc object 2233 * @ipcp: ipc permissions 2234 * 2235 */ 2236 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2237 { 2238 struct audit_context *context = current->audit_context; 2239 context->ipc.uid = ipcp->uid; 2240 context->ipc.gid = ipcp->gid; 2241 context->ipc.mode = ipcp->mode; 2242 context->ipc.has_perm = 0; 2243 security_ipc_getsecid(ipcp, &context->ipc.osid); 2244 context->type = AUDIT_IPC; 2245 } 2246 2247 /** 2248 * audit_ipc_set_perm - record audit data for new ipc permissions 2249 * @qbytes: msgq bytes 2250 * @uid: msgq user id 2251 * @gid: msgq group id 2252 * @mode: msgq mode (permissions) 2253 * 2254 * Called only after audit_ipc_obj(). 2255 */ 2256 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2257 { 2258 struct audit_context *context = current->audit_context; 2259 2260 context->ipc.qbytes = qbytes; 2261 context->ipc.perm_uid = uid; 2262 context->ipc.perm_gid = gid; 2263 context->ipc.perm_mode = mode; 2264 context->ipc.has_perm = 1; 2265 } 2266 2267 int audit_bprm(struct linux_binprm *bprm) 2268 { 2269 struct audit_aux_data_execve *ax; 2270 struct audit_context *context = current->audit_context; 2271 2272 if (likely(!audit_enabled || !context || context->dummy)) 2273 return 0; 2274 2275 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2276 if (!ax) 2277 return -ENOMEM; 2278 2279 ax->argc = bprm->argc; 2280 ax->envc = bprm->envc; 2281 ax->mm = bprm->mm; 2282 ax->d.type = AUDIT_EXECVE; 2283 ax->d.next = context->aux; 2284 context->aux = (void *)ax; 2285 return 0; 2286 } 2287 2288 2289 /** 2290 * audit_socketcall - record audit data for sys_socketcall 2291 * @nargs: number of args 2292 * @args: args array 2293 * 2294 */ 2295 void audit_socketcall(int nargs, unsigned long *args) 2296 { 2297 struct audit_context *context = current->audit_context; 2298 2299 if (likely(!context || context->dummy)) 2300 return; 2301 2302 context->type = AUDIT_SOCKETCALL; 2303 context->socketcall.nargs = nargs; 2304 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2305 } 2306 2307 /** 2308 * __audit_fd_pair - record audit data for pipe and socketpair 2309 * @fd1: the first file descriptor 2310 * @fd2: the second file descriptor 2311 * 2312 */ 2313 void __audit_fd_pair(int fd1, int fd2) 2314 { 2315 struct audit_context *context = current->audit_context; 2316 context->fds[0] = fd1; 2317 context->fds[1] = fd2; 2318 } 2319 2320 /** 2321 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2322 * @len: data length in user space 2323 * @a: data address in kernel space 2324 * 2325 * Returns 0 for success or NULL context or < 0 on error. 2326 */ 2327 int audit_sockaddr(int len, void *a) 2328 { 2329 struct audit_context *context = current->audit_context; 2330 2331 if (likely(!context || context->dummy)) 2332 return 0; 2333 2334 if (!context->sockaddr) { 2335 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2336 if (!p) 2337 return -ENOMEM; 2338 context->sockaddr = p; 2339 } 2340 2341 context->sockaddr_len = len; 2342 memcpy(context->sockaddr, a, len); 2343 return 0; 2344 } 2345 2346 void __audit_ptrace(struct task_struct *t) 2347 { 2348 struct audit_context *context = current->audit_context; 2349 2350 context->target_pid = t->pid; 2351 context->target_auid = audit_get_loginuid(t); 2352 context->target_uid = task_uid(t); 2353 context->target_sessionid = audit_get_sessionid(t); 2354 security_task_getsecid(t, &context->target_sid); 2355 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2356 } 2357 2358 /** 2359 * audit_signal_info - record signal info for shutting down audit subsystem 2360 * @sig: signal value 2361 * @t: task being signaled 2362 * 2363 * If the audit subsystem is being terminated, record the task (pid) 2364 * and uid that is doing that. 2365 */ 2366 int __audit_signal_info(int sig, struct task_struct *t) 2367 { 2368 struct audit_aux_data_pids *axp; 2369 struct task_struct *tsk = current; 2370 struct audit_context *ctx = tsk->audit_context; 2371 uid_t uid = current_uid(), t_uid = task_uid(t); 2372 2373 if (audit_pid && t->tgid == audit_pid) { 2374 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2375 audit_sig_pid = tsk->pid; 2376 if (tsk->loginuid != -1) 2377 audit_sig_uid = tsk->loginuid; 2378 else 2379 audit_sig_uid = uid; 2380 security_task_getsecid(tsk, &audit_sig_sid); 2381 } 2382 if (!audit_signals || audit_dummy_context()) 2383 return 0; 2384 } 2385 2386 /* optimize the common case by putting first signal recipient directly 2387 * in audit_context */ 2388 if (!ctx->target_pid) { 2389 ctx->target_pid = t->tgid; 2390 ctx->target_auid = audit_get_loginuid(t); 2391 ctx->target_uid = t_uid; 2392 ctx->target_sessionid = audit_get_sessionid(t); 2393 security_task_getsecid(t, &ctx->target_sid); 2394 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2395 return 0; 2396 } 2397 2398 axp = (void *)ctx->aux_pids; 2399 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2400 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2401 if (!axp) 2402 return -ENOMEM; 2403 2404 axp->d.type = AUDIT_OBJ_PID; 2405 axp->d.next = ctx->aux_pids; 2406 ctx->aux_pids = (void *)axp; 2407 } 2408 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2409 2410 axp->target_pid[axp->pid_count] = t->tgid; 2411 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2412 axp->target_uid[axp->pid_count] = t_uid; 2413 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2414 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2415 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2416 axp->pid_count++; 2417 2418 return 0; 2419 } 2420 2421 /** 2422 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2423 * @bprm: pointer to the bprm being processed 2424 * @new: the proposed new credentials 2425 * @old: the old credentials 2426 * 2427 * Simply check if the proc already has the caps given by the file and if not 2428 * store the priv escalation info for later auditing at the end of the syscall 2429 * 2430 * -Eric 2431 */ 2432 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2433 const struct cred *new, const struct cred *old) 2434 { 2435 struct audit_aux_data_bprm_fcaps *ax; 2436 struct audit_context *context = current->audit_context; 2437 struct cpu_vfs_cap_data vcaps; 2438 struct dentry *dentry; 2439 2440 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2441 if (!ax) 2442 return -ENOMEM; 2443 2444 ax->d.type = AUDIT_BPRM_FCAPS; 2445 ax->d.next = context->aux; 2446 context->aux = (void *)ax; 2447 2448 dentry = dget(bprm->file->f_dentry); 2449 get_vfs_caps_from_disk(dentry, &vcaps); 2450 dput(dentry); 2451 2452 ax->fcap.permitted = vcaps.permitted; 2453 ax->fcap.inheritable = vcaps.inheritable; 2454 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2455 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2456 2457 ax->old_pcap.permitted = old->cap_permitted; 2458 ax->old_pcap.inheritable = old->cap_inheritable; 2459 ax->old_pcap.effective = old->cap_effective; 2460 2461 ax->new_pcap.permitted = new->cap_permitted; 2462 ax->new_pcap.inheritable = new->cap_inheritable; 2463 ax->new_pcap.effective = new->cap_effective; 2464 return 0; 2465 } 2466 2467 /** 2468 * __audit_log_capset - store information about the arguments to the capset syscall 2469 * @pid: target pid of the capset call 2470 * @new: the new credentials 2471 * @old: the old (current) credentials 2472 * 2473 * Record the aguments userspace sent to sys_capset for later printing by the 2474 * audit system if applicable 2475 */ 2476 void __audit_log_capset(pid_t pid, 2477 const struct cred *new, const struct cred *old) 2478 { 2479 struct audit_context *context = current->audit_context; 2480 context->capset.pid = pid; 2481 context->capset.cap.effective = new->cap_effective; 2482 context->capset.cap.inheritable = new->cap_effective; 2483 context->capset.cap.permitted = new->cap_permitted; 2484 context->type = AUDIT_CAPSET; 2485 } 2486 2487 void __audit_mmap_fd(int fd, int flags) 2488 { 2489 struct audit_context *context = current->audit_context; 2490 context->mmap.fd = fd; 2491 context->mmap.flags = flags; 2492 context->type = AUDIT_MMAP; 2493 } 2494 2495 /** 2496 * audit_core_dumps - record information about processes that end abnormally 2497 * @signr: signal value 2498 * 2499 * If a process ends with a core dump, something fishy is going on and we 2500 * should record the event for investigation. 2501 */ 2502 void audit_core_dumps(long signr) 2503 { 2504 struct audit_buffer *ab; 2505 u32 sid; 2506 uid_t auid = audit_get_loginuid(current), uid; 2507 gid_t gid; 2508 unsigned int sessionid = audit_get_sessionid(current); 2509 2510 if (!audit_enabled) 2511 return; 2512 2513 if (signr == SIGQUIT) /* don't care for those */ 2514 return; 2515 2516 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2517 current_uid_gid(&uid, &gid); 2518 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2519 auid, uid, gid, sessionid); 2520 security_task_getsecid(current, &sid); 2521 if (sid) { 2522 char *ctx = NULL; 2523 u32 len; 2524 2525 if (security_secid_to_secctx(sid, &ctx, &len)) 2526 audit_log_format(ab, " ssid=%u", sid); 2527 else { 2528 audit_log_format(ab, " subj=%s", ctx); 2529 security_release_secctx(ctx, len); 2530 } 2531 } 2532 audit_log_format(ab, " pid=%d comm=", current->pid); 2533 audit_log_untrustedstring(ab, current->comm); 2534 audit_log_format(ab, " sig=%ld", signr); 2535 audit_log_end(ab); 2536 } 2537 2538 struct list_head *audit_killed_trees(void) 2539 { 2540 struct audit_context *ctx = current->audit_context; 2541 if (likely(!ctx || !ctx->in_syscall)) 2542 return NULL; 2543 return &ctx->killed_trees; 2544 } 2545