xref: /openbmc/linux/kernel/auditsc.c (revision d623f60d)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 
79 #include "audit.h"
80 
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85 
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92 
93 /* number of audit rules */
94 int audit_n_rules;
95 
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS	16
108 
109 struct audit_aux_data_pids {
110 	struct audit_aux_data	d;
111 	pid_t			target_pid[AUDIT_AUX_PIDS];
112 	kuid_t			target_auid[AUDIT_AUX_PIDS];
113 	kuid_t			target_uid[AUDIT_AUX_PIDS];
114 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
115 	u32			target_sid[AUDIT_AUX_PIDS];
116 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 	int			pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121 	struct audit_aux_data	d;
122 	struct audit_cap_data	fcap;
123 	unsigned int		fcap_ver;
124 	struct audit_cap_data	old_pcap;
125 	struct audit_cap_data	new_pcap;
126 };
127 
128 struct audit_tree_refs {
129 	struct audit_tree_refs *next;
130 	struct audit_chunk *c[31];
131 };
132 
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 	unsigned n;
136 	if (unlikely(!ctx))
137 		return 0;
138 	n = ctx->major;
139 
140 	switch (audit_classify_syscall(ctx->arch, n)) {
141 	case 0:	/* native */
142 		if ((mask & AUDIT_PERM_WRITE) &&
143 		     audit_match_class(AUDIT_CLASS_WRITE, n))
144 			return 1;
145 		if ((mask & AUDIT_PERM_READ) &&
146 		     audit_match_class(AUDIT_CLASS_READ, n))
147 			return 1;
148 		if ((mask & AUDIT_PERM_ATTR) &&
149 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
150 			return 1;
151 		return 0;
152 	case 1: /* 32bit on biarch */
153 		if ((mask & AUDIT_PERM_WRITE) &&
154 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 			return 1;
156 		if ((mask & AUDIT_PERM_READ) &&
157 		     audit_match_class(AUDIT_CLASS_READ_32, n))
158 			return 1;
159 		if ((mask & AUDIT_PERM_ATTR) &&
160 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 			return 1;
162 		return 0;
163 	case 2: /* open */
164 		return mask & ACC_MODE(ctx->argv[1]);
165 	case 3: /* openat */
166 		return mask & ACC_MODE(ctx->argv[2]);
167 	case 4: /* socketcall */
168 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 	case 5: /* execve */
170 		return mask & AUDIT_PERM_EXEC;
171 	default:
172 		return 0;
173 	}
174 }
175 
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 	struct audit_names *n;
179 	umode_t mode = (umode_t)val;
180 
181 	if (unlikely(!ctx))
182 		return 0;
183 
184 	list_for_each_entry(n, &ctx->names_list, list) {
185 		if ((n->ino != AUDIT_INO_UNSET) &&
186 		    ((n->mode & S_IFMT) == mode))
187 			return 1;
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 	if (!ctx->prio) {
207 		ctx->prio = 1;
208 		ctx->current_state = AUDIT_RECORD_CONTEXT;
209 	}
210 }
211 
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 	struct audit_tree_refs *p = ctx->trees;
215 	int left = ctx->tree_count;
216 	if (likely(left)) {
217 		p->c[--left] = chunk;
218 		ctx->tree_count = left;
219 		return 1;
220 	}
221 	if (!p)
222 		return 0;
223 	p = p->next;
224 	if (p) {
225 		p->c[30] = chunk;
226 		ctx->trees = p;
227 		ctx->tree_count = 30;
228 		return 1;
229 	}
230 	return 0;
231 }
232 
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 	struct audit_tree_refs *p = ctx->trees;
236 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 	if (!ctx->trees) {
238 		ctx->trees = p;
239 		return 0;
240 	}
241 	if (p)
242 		p->next = ctx->trees;
243 	else
244 		ctx->first_trees = ctx->trees;
245 	ctx->tree_count = 31;
246 	return 1;
247 }
248 #endif
249 
250 static void unroll_tree_refs(struct audit_context *ctx,
251 		      struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 	struct audit_tree_refs *q;
255 	int n;
256 	if (!p) {
257 		/* we started with empty chain */
258 		p = ctx->first_trees;
259 		count = 31;
260 		/* if the very first allocation has failed, nothing to do */
261 		if (!p)
262 			return;
263 	}
264 	n = count;
265 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 		while (n--) {
267 			audit_put_chunk(q->c[n]);
268 			q->c[n] = NULL;
269 		}
270 	}
271 	while (n-- > ctx->tree_count) {
272 		audit_put_chunk(q->c[n]);
273 		q->c[n] = NULL;
274 	}
275 	ctx->trees = p;
276 	ctx->tree_count = count;
277 #endif
278 }
279 
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 	struct audit_tree_refs *p, *q;
283 	for (p = ctx->first_trees; p; p = q) {
284 		q = p->next;
285 		kfree(p);
286 	}
287 }
288 
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 	struct audit_tree_refs *p;
293 	int n;
294 	if (!tree)
295 		return 0;
296 	/* full ones */
297 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 		for (n = 0; n < 31; n++)
299 			if (audit_tree_match(p->c[n], tree))
300 				return 1;
301 	}
302 	/* partial */
303 	if (p) {
304 		for (n = ctx->tree_count; n < 31; n++)
305 			if (audit_tree_match(p->c[n], tree))
306 				return 1;
307 	}
308 #endif
309 	return 0;
310 }
311 
312 static int audit_compare_uid(kuid_t uid,
313 			     struct audit_names *name,
314 			     struct audit_field *f,
315 			     struct audit_context *ctx)
316 {
317 	struct audit_names *n;
318 	int rc;
319 
320 	if (name) {
321 		rc = audit_uid_comparator(uid, f->op, name->uid);
322 		if (rc)
323 			return rc;
324 	}
325 
326 	if (ctx) {
327 		list_for_each_entry(n, &ctx->names_list, list) {
328 			rc = audit_uid_comparator(uid, f->op, n->uid);
329 			if (rc)
330 				return rc;
331 		}
332 	}
333 	return 0;
334 }
335 
336 static int audit_compare_gid(kgid_t gid,
337 			     struct audit_names *name,
338 			     struct audit_field *f,
339 			     struct audit_context *ctx)
340 {
341 	struct audit_names *n;
342 	int rc;
343 
344 	if (name) {
345 		rc = audit_gid_comparator(gid, f->op, name->gid);
346 		if (rc)
347 			return rc;
348 	}
349 
350 	if (ctx) {
351 		list_for_each_entry(n, &ctx->names_list, list) {
352 			rc = audit_gid_comparator(gid, f->op, n->gid);
353 			if (rc)
354 				return rc;
355 		}
356 	}
357 	return 0;
358 }
359 
360 static int audit_field_compare(struct task_struct *tsk,
361 			       const struct cred *cred,
362 			       struct audit_field *f,
363 			       struct audit_context *ctx,
364 			       struct audit_names *name)
365 {
366 	switch (f->val) {
367 	/* process to file object comparisons */
368 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 		return audit_compare_uid(cred->uid, name, f, ctx);
370 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 		return audit_compare_gid(cred->gid, name, f, ctx);
372 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 		return audit_compare_uid(cred->euid, name, f, ctx);
374 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 		return audit_compare_gid(cred->egid, name, f, ctx);
376 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
378 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 		return audit_compare_uid(cred->suid, name, f, ctx);
380 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 		return audit_compare_gid(cred->sgid, name, f, ctx);
382 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 		return audit_compare_uid(cred->fsuid, name, f, ctx);
384 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 		return audit_compare_gid(cred->fsgid, name, f, ctx);
386 	/* uid comparisons */
387 	case AUDIT_COMPARE_UID_TO_AUID:
388 		return audit_uid_comparator(cred->uid, f->op,
389 					    audit_get_loginuid(tsk));
390 	case AUDIT_COMPARE_UID_TO_EUID:
391 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
392 	case AUDIT_COMPARE_UID_TO_SUID:
393 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
394 	case AUDIT_COMPARE_UID_TO_FSUID:
395 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
396 	/* auid comparisons */
397 	case AUDIT_COMPARE_AUID_TO_EUID:
398 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 					    cred->euid);
400 	case AUDIT_COMPARE_AUID_TO_SUID:
401 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
402 					    cred->suid);
403 	case AUDIT_COMPARE_AUID_TO_FSUID:
404 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
405 					    cred->fsuid);
406 	/* euid comparisons */
407 	case AUDIT_COMPARE_EUID_TO_SUID:
408 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
409 	case AUDIT_COMPARE_EUID_TO_FSUID:
410 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
411 	/* suid comparisons */
412 	case AUDIT_COMPARE_SUID_TO_FSUID:
413 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
414 	/* gid comparisons */
415 	case AUDIT_COMPARE_GID_TO_EGID:
416 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
417 	case AUDIT_COMPARE_GID_TO_SGID:
418 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
419 	case AUDIT_COMPARE_GID_TO_FSGID:
420 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
421 	/* egid comparisons */
422 	case AUDIT_COMPARE_EGID_TO_SGID:
423 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
424 	case AUDIT_COMPARE_EGID_TO_FSGID:
425 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
426 	/* sgid comparison */
427 	case AUDIT_COMPARE_SGID_TO_FSGID:
428 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
429 	default:
430 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
431 		return 0;
432 	}
433 	return 0;
434 }
435 
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
438  * otherwise.
439  *
440  * If task_creation is true, this is an explicit indication that we are
441  * filtering a task rule at task creation time.  This and tsk == current are
442  * the only situations where tsk->cred may be accessed without an rcu read lock.
443  */
444 static int audit_filter_rules(struct task_struct *tsk,
445 			      struct audit_krule *rule,
446 			      struct audit_context *ctx,
447 			      struct audit_names *name,
448 			      enum audit_state *state,
449 			      bool task_creation)
450 {
451 	const struct cred *cred;
452 	int i, need_sid = 1;
453 	u32 sid;
454 	unsigned int sessionid;
455 
456 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
457 
458 	for (i = 0; i < rule->field_count; i++) {
459 		struct audit_field *f = &rule->fields[i];
460 		struct audit_names *n;
461 		int result = 0;
462 		pid_t pid;
463 
464 		switch (f->type) {
465 		case AUDIT_PID:
466 			pid = task_tgid_nr(tsk);
467 			result = audit_comparator(pid, f->op, f->val);
468 			break;
469 		case AUDIT_PPID:
470 			if (ctx) {
471 				if (!ctx->ppid)
472 					ctx->ppid = task_ppid_nr(tsk);
473 				result = audit_comparator(ctx->ppid, f->op, f->val);
474 			}
475 			break;
476 		case AUDIT_EXE:
477 			result = audit_exe_compare(tsk, rule->exe);
478 			if (f->op == Audit_not_equal)
479 				result = !result;
480 			break;
481 		case AUDIT_UID:
482 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
483 			break;
484 		case AUDIT_EUID:
485 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
486 			break;
487 		case AUDIT_SUID:
488 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
489 			break;
490 		case AUDIT_FSUID:
491 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
492 			break;
493 		case AUDIT_GID:
494 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
495 			if (f->op == Audit_equal) {
496 				if (!result)
497 					result = in_group_p(f->gid);
498 			} else if (f->op == Audit_not_equal) {
499 				if (result)
500 					result = !in_group_p(f->gid);
501 			}
502 			break;
503 		case AUDIT_EGID:
504 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
505 			if (f->op == Audit_equal) {
506 				if (!result)
507 					result = in_egroup_p(f->gid);
508 			} else if (f->op == Audit_not_equal) {
509 				if (result)
510 					result = !in_egroup_p(f->gid);
511 			}
512 			break;
513 		case AUDIT_SGID:
514 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
515 			break;
516 		case AUDIT_FSGID:
517 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
518 			break;
519 		case AUDIT_SESSIONID:
520 			sessionid = audit_get_sessionid(tsk);
521 			result = audit_comparator(sessionid, f->op, f->val);
522 			break;
523 		case AUDIT_PERS:
524 			result = audit_comparator(tsk->personality, f->op, f->val);
525 			break;
526 		case AUDIT_ARCH:
527 			if (ctx)
528 				result = audit_comparator(ctx->arch, f->op, f->val);
529 			break;
530 
531 		case AUDIT_EXIT:
532 			if (ctx && ctx->return_valid)
533 				result = audit_comparator(ctx->return_code, f->op, f->val);
534 			break;
535 		case AUDIT_SUCCESS:
536 			if (ctx && ctx->return_valid) {
537 				if (f->val)
538 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
539 				else
540 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
541 			}
542 			break;
543 		case AUDIT_DEVMAJOR:
544 			if (name) {
545 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
546 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
547 					++result;
548 			} else if (ctx) {
549 				list_for_each_entry(n, &ctx->names_list, list) {
550 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
551 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
552 						++result;
553 						break;
554 					}
555 				}
556 			}
557 			break;
558 		case AUDIT_DEVMINOR:
559 			if (name) {
560 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
561 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
562 					++result;
563 			} else if (ctx) {
564 				list_for_each_entry(n, &ctx->names_list, list) {
565 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
566 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
567 						++result;
568 						break;
569 					}
570 				}
571 			}
572 			break;
573 		case AUDIT_INODE:
574 			if (name)
575 				result = audit_comparator(name->ino, f->op, f->val);
576 			else if (ctx) {
577 				list_for_each_entry(n, &ctx->names_list, list) {
578 					if (audit_comparator(n->ino, f->op, f->val)) {
579 						++result;
580 						break;
581 					}
582 				}
583 			}
584 			break;
585 		case AUDIT_OBJ_UID:
586 			if (name) {
587 				result = audit_uid_comparator(name->uid, f->op, f->uid);
588 			} else if (ctx) {
589 				list_for_each_entry(n, &ctx->names_list, list) {
590 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
591 						++result;
592 						break;
593 					}
594 				}
595 			}
596 			break;
597 		case AUDIT_OBJ_GID:
598 			if (name) {
599 				result = audit_gid_comparator(name->gid, f->op, f->gid);
600 			} else if (ctx) {
601 				list_for_each_entry(n, &ctx->names_list, list) {
602 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
603 						++result;
604 						break;
605 					}
606 				}
607 			}
608 			break;
609 		case AUDIT_WATCH:
610 			if (name)
611 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
612 			break;
613 		case AUDIT_DIR:
614 			if (ctx)
615 				result = match_tree_refs(ctx, rule->tree);
616 			break;
617 		case AUDIT_LOGINUID:
618 			result = audit_uid_comparator(audit_get_loginuid(tsk),
619 						      f->op, f->uid);
620 			break;
621 		case AUDIT_LOGINUID_SET:
622 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
623 			break;
624 		case AUDIT_SUBJ_USER:
625 		case AUDIT_SUBJ_ROLE:
626 		case AUDIT_SUBJ_TYPE:
627 		case AUDIT_SUBJ_SEN:
628 		case AUDIT_SUBJ_CLR:
629 			/* NOTE: this may return negative values indicating
630 			   a temporary error.  We simply treat this as a
631 			   match for now to avoid losing information that
632 			   may be wanted.   An error message will also be
633 			   logged upon error */
634 			if (f->lsm_rule) {
635 				if (need_sid) {
636 					security_task_getsecid(tsk, &sid);
637 					need_sid = 0;
638 				}
639 				result = security_audit_rule_match(sid, f->type,
640 				                                  f->op,
641 				                                  f->lsm_rule,
642 				                                  ctx);
643 			}
644 			break;
645 		case AUDIT_OBJ_USER:
646 		case AUDIT_OBJ_ROLE:
647 		case AUDIT_OBJ_TYPE:
648 		case AUDIT_OBJ_LEV_LOW:
649 		case AUDIT_OBJ_LEV_HIGH:
650 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
651 			   also applies here */
652 			if (f->lsm_rule) {
653 				/* Find files that match */
654 				if (name) {
655 					result = security_audit_rule_match(
656 					           name->osid, f->type, f->op,
657 					           f->lsm_rule, ctx);
658 				} else if (ctx) {
659 					list_for_each_entry(n, &ctx->names_list, list) {
660 						if (security_audit_rule_match(n->osid, f->type,
661 									      f->op, f->lsm_rule,
662 									      ctx)) {
663 							++result;
664 							break;
665 						}
666 					}
667 				}
668 				/* Find ipc objects that match */
669 				if (!ctx || ctx->type != AUDIT_IPC)
670 					break;
671 				if (security_audit_rule_match(ctx->ipc.osid,
672 							      f->type, f->op,
673 							      f->lsm_rule, ctx))
674 					++result;
675 			}
676 			break;
677 		case AUDIT_ARG0:
678 		case AUDIT_ARG1:
679 		case AUDIT_ARG2:
680 		case AUDIT_ARG3:
681 			if (ctx)
682 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
683 			break;
684 		case AUDIT_FILTERKEY:
685 			/* ignore this field for filtering */
686 			result = 1;
687 			break;
688 		case AUDIT_PERM:
689 			result = audit_match_perm(ctx, f->val);
690 			break;
691 		case AUDIT_FILETYPE:
692 			result = audit_match_filetype(ctx, f->val);
693 			break;
694 		case AUDIT_FIELD_COMPARE:
695 			result = audit_field_compare(tsk, cred, f, ctx, name);
696 			break;
697 		}
698 		if (!result)
699 			return 0;
700 	}
701 
702 	if (ctx) {
703 		if (rule->prio <= ctx->prio)
704 			return 0;
705 		if (rule->filterkey) {
706 			kfree(ctx->filterkey);
707 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
708 		}
709 		ctx->prio = rule->prio;
710 	}
711 	switch (rule->action) {
712 	case AUDIT_NEVER:
713 		*state = AUDIT_DISABLED;
714 		break;
715 	case AUDIT_ALWAYS:
716 		*state = AUDIT_RECORD_CONTEXT;
717 		break;
718 	}
719 	return 1;
720 }
721 
722 /* At process creation time, we can determine if system-call auditing is
723  * completely disabled for this task.  Since we only have the task
724  * structure at this point, we can only check uid and gid.
725  */
726 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
727 {
728 	struct audit_entry *e;
729 	enum audit_state   state;
730 
731 	rcu_read_lock();
732 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
733 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
734 				       &state, true)) {
735 			if (state == AUDIT_RECORD_CONTEXT)
736 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
737 			rcu_read_unlock();
738 			return state;
739 		}
740 	}
741 	rcu_read_unlock();
742 	return AUDIT_BUILD_CONTEXT;
743 }
744 
745 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
746 {
747 	int word, bit;
748 
749 	if (val > 0xffffffff)
750 		return false;
751 
752 	word = AUDIT_WORD(val);
753 	if (word >= AUDIT_BITMASK_SIZE)
754 		return false;
755 
756 	bit = AUDIT_BIT(val);
757 
758 	return rule->mask[word] & bit;
759 }
760 
761 /* At syscall entry and exit time, this filter is called if the
762  * audit_state is not low enough that auditing cannot take place, but is
763  * also not high enough that we already know we have to write an audit
764  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
765  */
766 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
767 					     struct audit_context *ctx,
768 					     struct list_head *list)
769 {
770 	struct audit_entry *e;
771 	enum audit_state state;
772 
773 	if (auditd_test_task(tsk))
774 		return AUDIT_DISABLED;
775 
776 	rcu_read_lock();
777 	if (!list_empty(list)) {
778 		list_for_each_entry_rcu(e, list, list) {
779 			if (audit_in_mask(&e->rule, ctx->major) &&
780 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
781 					       &state, false)) {
782 				rcu_read_unlock();
783 				ctx->current_state = state;
784 				return state;
785 			}
786 		}
787 	}
788 	rcu_read_unlock();
789 	return AUDIT_BUILD_CONTEXT;
790 }
791 
792 /*
793  * Given an audit_name check the inode hash table to see if they match.
794  * Called holding the rcu read lock to protect the use of audit_inode_hash
795  */
796 static int audit_filter_inode_name(struct task_struct *tsk,
797 				   struct audit_names *n,
798 				   struct audit_context *ctx) {
799 	int h = audit_hash_ino((u32)n->ino);
800 	struct list_head *list = &audit_inode_hash[h];
801 	struct audit_entry *e;
802 	enum audit_state state;
803 
804 	if (list_empty(list))
805 		return 0;
806 
807 	list_for_each_entry_rcu(e, list, list) {
808 		if (audit_in_mask(&e->rule, ctx->major) &&
809 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
810 			ctx->current_state = state;
811 			return 1;
812 		}
813 	}
814 
815 	return 0;
816 }
817 
818 /* At syscall exit time, this filter is called if any audit_names have been
819  * collected during syscall processing.  We only check rules in sublists at hash
820  * buckets applicable to the inode numbers in audit_names.
821  * Regarding audit_state, same rules apply as for audit_filter_syscall().
822  */
823 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
824 {
825 	struct audit_names *n;
826 
827 	if (auditd_test_task(tsk))
828 		return;
829 
830 	rcu_read_lock();
831 
832 	list_for_each_entry(n, &ctx->names_list, list) {
833 		if (audit_filter_inode_name(tsk, n, ctx))
834 			break;
835 	}
836 	rcu_read_unlock();
837 }
838 
839 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
840 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
841 						      int return_valid,
842 						      long return_code)
843 {
844 	struct audit_context *context = tsk->audit_context;
845 
846 	if (!context)
847 		return NULL;
848 	context->return_valid = return_valid;
849 
850 	/*
851 	 * we need to fix up the return code in the audit logs if the actual
852 	 * return codes are later going to be fixed up by the arch specific
853 	 * signal handlers
854 	 *
855 	 * This is actually a test for:
856 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
857 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
858 	 *
859 	 * but is faster than a bunch of ||
860 	 */
861 	if (unlikely(return_code <= -ERESTARTSYS) &&
862 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
863 	    (return_code != -ENOIOCTLCMD))
864 		context->return_code = -EINTR;
865 	else
866 		context->return_code  = return_code;
867 
868 	if (context->in_syscall && !context->dummy) {
869 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
870 		audit_filter_inodes(tsk, context);
871 	}
872 
873 	audit_set_context(tsk, NULL);
874 	return context;
875 }
876 
877 static inline void audit_proctitle_free(struct audit_context *context)
878 {
879 	kfree(context->proctitle.value);
880 	context->proctitle.value = NULL;
881 	context->proctitle.len = 0;
882 }
883 
884 static inline void audit_free_names(struct audit_context *context)
885 {
886 	struct audit_names *n, *next;
887 
888 	list_for_each_entry_safe(n, next, &context->names_list, list) {
889 		list_del(&n->list);
890 		if (n->name)
891 			putname(n->name);
892 		if (n->should_free)
893 			kfree(n);
894 	}
895 	context->name_count = 0;
896 	path_put(&context->pwd);
897 	context->pwd.dentry = NULL;
898 	context->pwd.mnt = NULL;
899 }
900 
901 static inline void audit_free_aux(struct audit_context *context)
902 {
903 	struct audit_aux_data *aux;
904 
905 	while ((aux = context->aux)) {
906 		context->aux = aux->next;
907 		kfree(aux);
908 	}
909 	while ((aux = context->aux_pids)) {
910 		context->aux_pids = aux->next;
911 		kfree(aux);
912 	}
913 }
914 
915 static inline struct audit_context *audit_alloc_context(enum audit_state state)
916 {
917 	struct audit_context *context;
918 
919 	context = kzalloc(sizeof(*context), GFP_KERNEL);
920 	if (!context)
921 		return NULL;
922 	context->state = state;
923 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
924 	INIT_LIST_HEAD(&context->killed_trees);
925 	INIT_LIST_HEAD(&context->names_list);
926 	return context;
927 }
928 
929 /**
930  * audit_alloc - allocate an audit context block for a task
931  * @tsk: task
932  *
933  * Filter on the task information and allocate a per-task audit context
934  * if necessary.  Doing so turns on system call auditing for the
935  * specified task.  This is called from copy_process, so no lock is
936  * needed.
937  */
938 int audit_alloc(struct task_struct *tsk)
939 {
940 	struct audit_context *context;
941 	enum audit_state     state;
942 	char *key = NULL;
943 
944 	if (likely(!audit_ever_enabled))
945 		return 0; /* Return if not auditing. */
946 
947 	state = audit_filter_task(tsk, &key);
948 	if (state == AUDIT_DISABLED) {
949 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950 		return 0;
951 	}
952 
953 	if (!(context = audit_alloc_context(state))) {
954 		kfree(key);
955 		audit_log_lost("out of memory in audit_alloc");
956 		return -ENOMEM;
957 	}
958 	context->filterkey = key;
959 
960 	audit_set_context(tsk, context);
961 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
962 	return 0;
963 }
964 
965 static inline void audit_free_context(struct audit_context *context)
966 {
967 	audit_free_names(context);
968 	unroll_tree_refs(context, NULL, 0);
969 	free_tree_refs(context);
970 	audit_free_aux(context);
971 	kfree(context->filterkey);
972 	kfree(context->sockaddr);
973 	audit_proctitle_free(context);
974 	kfree(context);
975 }
976 
977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
979 				 u32 sid, char *comm)
980 {
981 	struct audit_buffer *ab;
982 	char *ctx = NULL;
983 	u32 len;
984 	int rc = 0;
985 
986 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
987 	if (!ab)
988 		return rc;
989 
990 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
991 			 from_kuid(&init_user_ns, auid),
992 			 from_kuid(&init_user_ns, uid), sessionid);
993 	if (sid) {
994 		if (security_secid_to_secctx(sid, &ctx, &len)) {
995 			audit_log_format(ab, " obj=(none)");
996 			rc = 1;
997 		} else {
998 			audit_log_format(ab, " obj=%s", ctx);
999 			security_release_secctx(ctx, len);
1000 		}
1001 	}
1002 	audit_log_format(ab, " ocomm=");
1003 	audit_log_untrustedstring(ab, comm);
1004 	audit_log_end(ab);
1005 
1006 	return rc;
1007 }
1008 
1009 static void audit_log_execve_info(struct audit_context *context,
1010 				  struct audit_buffer **ab)
1011 {
1012 	long len_max;
1013 	long len_rem;
1014 	long len_full;
1015 	long len_buf;
1016 	long len_abuf = 0;
1017 	long len_tmp;
1018 	bool require_data;
1019 	bool encode;
1020 	unsigned int iter;
1021 	unsigned int arg;
1022 	char *buf_head;
1023 	char *buf;
1024 	const char __user *p = (const char __user *)current->mm->arg_start;
1025 
1026 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1027 	 *       data we put in the audit record for this argument (see the
1028 	 *       code below) ... at this point in time 96 is plenty */
1029 	char abuf[96];
1030 
1031 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1032 	 *       current value of 7500 is not as important as the fact that it
1033 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1034 	 *       room if we go over a little bit in the logging below */
1035 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1036 	len_max = MAX_EXECVE_AUDIT_LEN;
1037 
1038 	/* scratch buffer to hold the userspace args */
1039 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1040 	if (!buf_head) {
1041 		audit_panic("out of memory for argv string");
1042 		return;
1043 	}
1044 	buf = buf_head;
1045 
1046 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1047 
1048 	len_rem = len_max;
1049 	len_buf = 0;
1050 	len_full = 0;
1051 	require_data = true;
1052 	encode = false;
1053 	iter = 0;
1054 	arg = 0;
1055 	do {
1056 		/* NOTE: we don't ever want to trust this value for anything
1057 		 *       serious, but the audit record format insists we
1058 		 *       provide an argument length for really long arguments,
1059 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1060 		 *       to use strncpy_from_user() to obtain this value for
1061 		 *       recording in the log, although we don't use it
1062 		 *       anywhere here to avoid a double-fetch problem */
1063 		if (len_full == 0)
1064 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1065 
1066 		/* read more data from userspace */
1067 		if (require_data) {
1068 			/* can we make more room in the buffer? */
1069 			if (buf != buf_head) {
1070 				memmove(buf_head, buf, len_buf);
1071 				buf = buf_head;
1072 			}
1073 
1074 			/* fetch as much as we can of the argument */
1075 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1076 						    len_max - len_buf);
1077 			if (len_tmp == -EFAULT) {
1078 				/* unable to copy from userspace */
1079 				send_sig(SIGKILL, current, 0);
1080 				goto out;
1081 			} else if (len_tmp == (len_max - len_buf)) {
1082 				/* buffer is not large enough */
1083 				require_data = true;
1084 				/* NOTE: if we are going to span multiple
1085 				 *       buffers force the encoding so we stand
1086 				 *       a chance at a sane len_full value and
1087 				 *       consistent record encoding */
1088 				encode = true;
1089 				len_full = len_full * 2;
1090 				p += len_tmp;
1091 			} else {
1092 				require_data = false;
1093 				if (!encode)
1094 					encode = audit_string_contains_control(
1095 								buf, len_tmp);
1096 				/* try to use a trusted value for len_full */
1097 				if (len_full < len_max)
1098 					len_full = (encode ?
1099 						    len_tmp * 2 : len_tmp);
1100 				p += len_tmp + 1;
1101 			}
1102 			len_buf += len_tmp;
1103 			buf_head[len_buf] = '\0';
1104 
1105 			/* length of the buffer in the audit record? */
1106 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1107 		}
1108 
1109 		/* write as much as we can to the audit log */
1110 		if (len_buf > 0) {
1111 			/* NOTE: some magic numbers here - basically if we
1112 			 *       can't fit a reasonable amount of data into the
1113 			 *       existing audit buffer, flush it and start with
1114 			 *       a new buffer */
1115 			if ((sizeof(abuf) + 8) > len_rem) {
1116 				len_rem = len_max;
1117 				audit_log_end(*ab);
1118 				*ab = audit_log_start(context,
1119 						      GFP_KERNEL, AUDIT_EXECVE);
1120 				if (!*ab)
1121 					goto out;
1122 			}
1123 
1124 			/* create the non-arg portion of the arg record */
1125 			len_tmp = 0;
1126 			if (require_data || (iter > 0) ||
1127 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1128 				if (iter == 0) {
1129 					len_tmp += snprintf(&abuf[len_tmp],
1130 							sizeof(abuf) - len_tmp,
1131 							" a%d_len=%lu",
1132 							arg, len_full);
1133 				}
1134 				len_tmp += snprintf(&abuf[len_tmp],
1135 						    sizeof(abuf) - len_tmp,
1136 						    " a%d[%d]=", arg, iter++);
1137 			} else
1138 				len_tmp += snprintf(&abuf[len_tmp],
1139 						    sizeof(abuf) - len_tmp,
1140 						    " a%d=", arg);
1141 			WARN_ON(len_tmp >= sizeof(abuf));
1142 			abuf[sizeof(abuf) - 1] = '\0';
1143 
1144 			/* log the arg in the audit record */
1145 			audit_log_format(*ab, "%s", abuf);
1146 			len_rem -= len_tmp;
1147 			len_tmp = len_buf;
1148 			if (encode) {
1149 				if (len_abuf > len_rem)
1150 					len_tmp = len_rem / 2; /* encoding */
1151 				audit_log_n_hex(*ab, buf, len_tmp);
1152 				len_rem -= len_tmp * 2;
1153 				len_abuf -= len_tmp * 2;
1154 			} else {
1155 				if (len_abuf > len_rem)
1156 					len_tmp = len_rem - 2; /* quotes */
1157 				audit_log_n_string(*ab, buf, len_tmp);
1158 				len_rem -= len_tmp + 2;
1159 				/* don't subtract the "2" because we still need
1160 				 * to add quotes to the remaining string */
1161 				len_abuf -= len_tmp;
1162 			}
1163 			len_buf -= len_tmp;
1164 			buf += len_tmp;
1165 		}
1166 
1167 		/* ready to move to the next argument? */
1168 		if ((len_buf == 0) && !require_data) {
1169 			arg++;
1170 			iter = 0;
1171 			len_full = 0;
1172 			require_data = true;
1173 			encode = false;
1174 		}
1175 	} while (arg < context->execve.argc);
1176 
1177 	/* NOTE: the caller handles the final audit_log_end() call */
1178 
1179 out:
1180 	kfree(buf_head);
1181 }
1182 
1183 static void show_special(struct audit_context *context, int *call_panic)
1184 {
1185 	struct audit_buffer *ab;
1186 	int i;
1187 
1188 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1189 	if (!ab)
1190 		return;
1191 
1192 	switch (context->type) {
1193 	case AUDIT_SOCKETCALL: {
1194 		int nargs = context->socketcall.nargs;
1195 		audit_log_format(ab, "nargs=%d", nargs);
1196 		for (i = 0; i < nargs; i++)
1197 			audit_log_format(ab, " a%d=%lx", i,
1198 				context->socketcall.args[i]);
1199 		break; }
1200 	case AUDIT_IPC: {
1201 		u32 osid = context->ipc.osid;
1202 
1203 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1204 				 from_kuid(&init_user_ns, context->ipc.uid),
1205 				 from_kgid(&init_user_ns, context->ipc.gid),
1206 				 context->ipc.mode);
1207 		if (osid) {
1208 			char *ctx = NULL;
1209 			u32 len;
1210 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1211 				audit_log_format(ab, " osid=%u", osid);
1212 				*call_panic = 1;
1213 			} else {
1214 				audit_log_format(ab, " obj=%s", ctx);
1215 				security_release_secctx(ctx, len);
1216 			}
1217 		}
1218 		if (context->ipc.has_perm) {
1219 			audit_log_end(ab);
1220 			ab = audit_log_start(context, GFP_KERNEL,
1221 					     AUDIT_IPC_SET_PERM);
1222 			if (unlikely(!ab))
1223 				return;
1224 			audit_log_format(ab,
1225 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1226 				context->ipc.qbytes,
1227 				context->ipc.perm_uid,
1228 				context->ipc.perm_gid,
1229 				context->ipc.perm_mode);
1230 		}
1231 		break; }
1232 	case AUDIT_MQ_OPEN:
1233 		audit_log_format(ab,
1234 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1235 			"mq_msgsize=%ld mq_curmsgs=%ld",
1236 			context->mq_open.oflag, context->mq_open.mode,
1237 			context->mq_open.attr.mq_flags,
1238 			context->mq_open.attr.mq_maxmsg,
1239 			context->mq_open.attr.mq_msgsize,
1240 			context->mq_open.attr.mq_curmsgs);
1241 		break;
1242 	case AUDIT_MQ_SENDRECV:
1243 		audit_log_format(ab,
1244 			"mqdes=%d msg_len=%zd msg_prio=%u "
1245 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1246 			context->mq_sendrecv.mqdes,
1247 			context->mq_sendrecv.msg_len,
1248 			context->mq_sendrecv.msg_prio,
1249 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1250 			context->mq_sendrecv.abs_timeout.tv_nsec);
1251 		break;
1252 	case AUDIT_MQ_NOTIFY:
1253 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1254 				context->mq_notify.mqdes,
1255 				context->mq_notify.sigev_signo);
1256 		break;
1257 	case AUDIT_MQ_GETSETATTR: {
1258 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1259 		audit_log_format(ab,
1260 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1261 			"mq_curmsgs=%ld ",
1262 			context->mq_getsetattr.mqdes,
1263 			attr->mq_flags, attr->mq_maxmsg,
1264 			attr->mq_msgsize, attr->mq_curmsgs);
1265 		break; }
1266 	case AUDIT_CAPSET:
1267 		audit_log_format(ab, "pid=%d", context->capset.pid);
1268 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1269 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1270 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1271 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1272 		break;
1273 	case AUDIT_MMAP:
1274 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1275 				 context->mmap.flags);
1276 		break;
1277 	case AUDIT_EXECVE:
1278 		audit_log_execve_info(context, &ab);
1279 		break;
1280 	case AUDIT_KERN_MODULE:
1281 		audit_log_format(ab, "name=");
1282 		audit_log_untrustedstring(ab, context->module.name);
1283 		kfree(context->module.name);
1284 		break;
1285 	}
1286 	audit_log_end(ab);
1287 }
1288 
1289 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1290 {
1291 	char *end = proctitle + len - 1;
1292 	while (end > proctitle && !isprint(*end))
1293 		end--;
1294 
1295 	/* catch the case where proctitle is only 1 non-print character */
1296 	len = end - proctitle + 1;
1297 	len -= isprint(proctitle[len-1]) == 0;
1298 	return len;
1299 }
1300 
1301 static void audit_log_proctitle(struct task_struct *tsk,
1302 			 struct audit_context *context)
1303 {
1304 	int res;
1305 	char *buf;
1306 	char *msg = "(null)";
1307 	int len = strlen(msg);
1308 	struct audit_buffer *ab;
1309 
1310 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1311 	if (!ab)
1312 		return;	/* audit_panic or being filtered */
1313 
1314 	audit_log_format(ab, "proctitle=");
1315 
1316 	/* Not  cached */
1317 	if (!context->proctitle.value) {
1318 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1319 		if (!buf)
1320 			goto out;
1321 		/* Historically called this from procfs naming */
1322 		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1323 		if (res == 0) {
1324 			kfree(buf);
1325 			goto out;
1326 		}
1327 		res = audit_proctitle_rtrim(buf, res);
1328 		if (res == 0) {
1329 			kfree(buf);
1330 			goto out;
1331 		}
1332 		context->proctitle.value = buf;
1333 		context->proctitle.len = res;
1334 	}
1335 	msg = context->proctitle.value;
1336 	len = context->proctitle.len;
1337 out:
1338 	audit_log_n_untrustedstring(ab, msg, len);
1339 	audit_log_end(ab);
1340 }
1341 
1342 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1343 {
1344 	int i, call_panic = 0;
1345 	struct audit_buffer *ab;
1346 	struct audit_aux_data *aux;
1347 	struct audit_names *n;
1348 
1349 	/* tsk == current */
1350 	context->personality = tsk->personality;
1351 
1352 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1353 	if (!ab)
1354 		return;		/* audit_panic has been called */
1355 	audit_log_format(ab, "arch=%x syscall=%d",
1356 			 context->arch, context->major);
1357 	if (context->personality != PER_LINUX)
1358 		audit_log_format(ab, " per=%lx", context->personality);
1359 	if (context->return_valid)
1360 		audit_log_format(ab, " success=%s exit=%ld",
1361 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1362 				 context->return_code);
1363 
1364 	audit_log_format(ab,
1365 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1366 			 context->argv[0],
1367 			 context->argv[1],
1368 			 context->argv[2],
1369 			 context->argv[3],
1370 			 context->name_count);
1371 
1372 	audit_log_task_info(ab, tsk);
1373 	audit_log_key(ab, context->filterkey);
1374 	audit_log_end(ab);
1375 
1376 	for (aux = context->aux; aux; aux = aux->next) {
1377 
1378 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1379 		if (!ab)
1380 			continue; /* audit_panic has been called */
1381 
1382 		switch (aux->type) {
1383 
1384 		case AUDIT_BPRM_FCAPS: {
1385 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1386 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1387 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1388 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1389 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1390 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1391 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1392 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1393 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1394 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1395 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1396 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1397 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1398 			break; }
1399 
1400 		}
1401 		audit_log_end(ab);
1402 	}
1403 
1404 	if (context->type)
1405 		show_special(context, &call_panic);
1406 
1407 	if (context->fds[0] >= 0) {
1408 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1409 		if (ab) {
1410 			audit_log_format(ab, "fd0=%d fd1=%d",
1411 					context->fds[0], context->fds[1]);
1412 			audit_log_end(ab);
1413 		}
1414 	}
1415 
1416 	if (context->sockaddr_len) {
1417 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1418 		if (ab) {
1419 			audit_log_format(ab, "saddr=");
1420 			audit_log_n_hex(ab, (void *)context->sockaddr,
1421 					context->sockaddr_len);
1422 			audit_log_end(ab);
1423 		}
1424 	}
1425 
1426 	for (aux = context->aux_pids; aux; aux = aux->next) {
1427 		struct audit_aux_data_pids *axs = (void *)aux;
1428 
1429 		for (i = 0; i < axs->pid_count; i++)
1430 			if (audit_log_pid_context(context, axs->target_pid[i],
1431 						  axs->target_auid[i],
1432 						  axs->target_uid[i],
1433 						  axs->target_sessionid[i],
1434 						  axs->target_sid[i],
1435 						  axs->target_comm[i]))
1436 				call_panic = 1;
1437 	}
1438 
1439 	if (context->target_pid &&
1440 	    audit_log_pid_context(context, context->target_pid,
1441 				  context->target_auid, context->target_uid,
1442 				  context->target_sessionid,
1443 				  context->target_sid, context->target_comm))
1444 			call_panic = 1;
1445 
1446 	if (context->pwd.dentry && context->pwd.mnt) {
1447 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1448 		if (ab) {
1449 			audit_log_d_path(ab, "cwd=", &context->pwd);
1450 			audit_log_end(ab);
1451 		}
1452 	}
1453 
1454 	i = 0;
1455 	list_for_each_entry(n, &context->names_list, list) {
1456 		if (n->hidden)
1457 			continue;
1458 		audit_log_name(context, n, NULL, i++, &call_panic);
1459 	}
1460 
1461 	audit_log_proctitle(tsk, context);
1462 
1463 	/* Send end of event record to help user space know we are finished */
1464 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1465 	if (ab)
1466 		audit_log_end(ab);
1467 	if (call_panic)
1468 		audit_panic("error converting sid to string");
1469 }
1470 
1471 /**
1472  * __audit_free - free a per-task audit context
1473  * @tsk: task whose audit context block to free
1474  *
1475  * Called from copy_process and do_exit
1476  */
1477 void __audit_free(struct task_struct *tsk)
1478 {
1479 	struct audit_context *context;
1480 
1481 	context = audit_take_context(tsk, 0, 0);
1482 	if (!context)
1483 		return;
1484 
1485 	/* Check for system calls that do not go through the exit
1486 	 * function (e.g., exit_group), then free context block.
1487 	 * We use GFP_ATOMIC here because we might be doing this
1488 	 * in the context of the idle thread */
1489 	/* that can happen only if we are called from do_exit() */
1490 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1491 		audit_log_exit(context, tsk);
1492 	if (!list_empty(&context->killed_trees))
1493 		audit_kill_trees(&context->killed_trees);
1494 
1495 	audit_free_context(context);
1496 }
1497 
1498 /**
1499  * __audit_syscall_entry - fill in an audit record at syscall entry
1500  * @major: major syscall type (function)
1501  * @a1: additional syscall register 1
1502  * @a2: additional syscall register 2
1503  * @a3: additional syscall register 3
1504  * @a4: additional syscall register 4
1505  *
1506  * Fill in audit context at syscall entry.  This only happens if the
1507  * audit context was created when the task was created and the state or
1508  * filters demand the audit context be built.  If the state from the
1509  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1510  * then the record will be written at syscall exit time (otherwise, it
1511  * will only be written if another part of the kernel requests that it
1512  * be written).
1513  */
1514 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1515 			   unsigned long a3, unsigned long a4)
1516 {
1517 	struct audit_context *context = audit_context();
1518 	enum audit_state     state;
1519 
1520 	if (!audit_enabled || !context)
1521 		return;
1522 
1523 	BUG_ON(context->in_syscall || context->name_count);
1524 
1525 	state = context->state;
1526 	if (state == AUDIT_DISABLED)
1527 		return;
1528 
1529 	context->dummy = !audit_n_rules;
1530 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1531 		context->prio = 0;
1532 		if (auditd_test_task(current))
1533 			return;
1534 	}
1535 
1536 	context->arch	    = syscall_get_arch();
1537 	context->major      = major;
1538 	context->argv[0]    = a1;
1539 	context->argv[1]    = a2;
1540 	context->argv[2]    = a3;
1541 	context->argv[3]    = a4;
1542 	context->serial     = 0;
1543 	context->ctime = current_kernel_time64();
1544 	context->in_syscall = 1;
1545 	context->current_state  = state;
1546 	context->ppid       = 0;
1547 }
1548 
1549 /**
1550  * __audit_syscall_exit - deallocate audit context after a system call
1551  * @success: success value of the syscall
1552  * @return_code: return value of the syscall
1553  *
1554  * Tear down after system call.  If the audit context has been marked as
1555  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1556  * filtering, or because some other part of the kernel wrote an audit
1557  * message), then write out the syscall information.  In call cases,
1558  * free the names stored from getname().
1559  */
1560 void __audit_syscall_exit(int success, long return_code)
1561 {
1562 	struct audit_context *context;
1563 
1564 	if (success)
1565 		success = AUDITSC_SUCCESS;
1566 	else
1567 		success = AUDITSC_FAILURE;
1568 
1569 	context = audit_take_context(current, success, return_code);
1570 	if (!context)
1571 		return;
1572 
1573 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1574 		audit_log_exit(context, current);
1575 
1576 	context->in_syscall = 0;
1577 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1578 
1579 	if (!list_empty(&context->killed_trees))
1580 		audit_kill_trees(&context->killed_trees);
1581 
1582 	audit_free_names(context);
1583 	unroll_tree_refs(context, NULL, 0);
1584 	audit_free_aux(context);
1585 	context->aux = NULL;
1586 	context->aux_pids = NULL;
1587 	context->target_pid = 0;
1588 	context->target_sid = 0;
1589 	context->sockaddr_len = 0;
1590 	context->type = 0;
1591 	context->fds[0] = -1;
1592 	if (context->state != AUDIT_RECORD_CONTEXT) {
1593 		kfree(context->filterkey);
1594 		context->filterkey = NULL;
1595 	}
1596 	audit_set_context(current, context);
1597 }
1598 
1599 static inline void handle_one(const struct inode *inode)
1600 {
1601 #ifdef CONFIG_AUDIT_TREE
1602 	struct audit_context *context;
1603 	struct audit_tree_refs *p;
1604 	struct audit_chunk *chunk;
1605 	int count;
1606 	if (likely(!inode->i_fsnotify_marks))
1607 		return;
1608 	context = audit_context();
1609 	p = context->trees;
1610 	count = context->tree_count;
1611 	rcu_read_lock();
1612 	chunk = audit_tree_lookup(inode);
1613 	rcu_read_unlock();
1614 	if (!chunk)
1615 		return;
1616 	if (likely(put_tree_ref(context, chunk)))
1617 		return;
1618 	if (unlikely(!grow_tree_refs(context))) {
1619 		pr_warn("out of memory, audit has lost a tree reference\n");
1620 		audit_set_auditable(context);
1621 		audit_put_chunk(chunk);
1622 		unroll_tree_refs(context, p, count);
1623 		return;
1624 	}
1625 	put_tree_ref(context, chunk);
1626 #endif
1627 }
1628 
1629 static void handle_path(const struct dentry *dentry)
1630 {
1631 #ifdef CONFIG_AUDIT_TREE
1632 	struct audit_context *context;
1633 	struct audit_tree_refs *p;
1634 	const struct dentry *d, *parent;
1635 	struct audit_chunk *drop;
1636 	unsigned long seq;
1637 	int count;
1638 
1639 	context = audit_context();
1640 	p = context->trees;
1641 	count = context->tree_count;
1642 retry:
1643 	drop = NULL;
1644 	d = dentry;
1645 	rcu_read_lock();
1646 	seq = read_seqbegin(&rename_lock);
1647 	for(;;) {
1648 		struct inode *inode = d_backing_inode(d);
1649 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1650 			struct audit_chunk *chunk;
1651 			chunk = audit_tree_lookup(inode);
1652 			if (chunk) {
1653 				if (unlikely(!put_tree_ref(context, chunk))) {
1654 					drop = chunk;
1655 					break;
1656 				}
1657 			}
1658 		}
1659 		parent = d->d_parent;
1660 		if (parent == d)
1661 			break;
1662 		d = parent;
1663 	}
1664 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1665 		rcu_read_unlock();
1666 		if (!drop) {
1667 			/* just a race with rename */
1668 			unroll_tree_refs(context, p, count);
1669 			goto retry;
1670 		}
1671 		audit_put_chunk(drop);
1672 		if (grow_tree_refs(context)) {
1673 			/* OK, got more space */
1674 			unroll_tree_refs(context, p, count);
1675 			goto retry;
1676 		}
1677 		/* too bad */
1678 		pr_warn("out of memory, audit has lost a tree reference\n");
1679 		unroll_tree_refs(context, p, count);
1680 		audit_set_auditable(context);
1681 		return;
1682 	}
1683 	rcu_read_unlock();
1684 #endif
1685 }
1686 
1687 static struct audit_names *audit_alloc_name(struct audit_context *context,
1688 						unsigned char type)
1689 {
1690 	struct audit_names *aname;
1691 
1692 	if (context->name_count < AUDIT_NAMES) {
1693 		aname = &context->preallocated_names[context->name_count];
1694 		memset(aname, 0, sizeof(*aname));
1695 	} else {
1696 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1697 		if (!aname)
1698 			return NULL;
1699 		aname->should_free = true;
1700 	}
1701 
1702 	aname->ino = AUDIT_INO_UNSET;
1703 	aname->type = type;
1704 	list_add_tail(&aname->list, &context->names_list);
1705 
1706 	context->name_count++;
1707 	return aname;
1708 }
1709 
1710 /**
1711  * __audit_reusename - fill out filename with info from existing entry
1712  * @uptr: userland ptr to pathname
1713  *
1714  * Search the audit_names list for the current audit context. If there is an
1715  * existing entry with a matching "uptr" then return the filename
1716  * associated with that audit_name. If not, return NULL.
1717  */
1718 struct filename *
1719 __audit_reusename(const __user char *uptr)
1720 {
1721 	struct audit_context *context = audit_context();
1722 	struct audit_names *n;
1723 
1724 	list_for_each_entry(n, &context->names_list, list) {
1725 		if (!n->name)
1726 			continue;
1727 		if (n->name->uptr == uptr) {
1728 			n->name->refcnt++;
1729 			return n->name;
1730 		}
1731 	}
1732 	return NULL;
1733 }
1734 
1735 /**
1736  * __audit_getname - add a name to the list
1737  * @name: name to add
1738  *
1739  * Add a name to the list of audit names for this context.
1740  * Called from fs/namei.c:getname().
1741  */
1742 void __audit_getname(struct filename *name)
1743 {
1744 	struct audit_context *context = audit_context();
1745 	struct audit_names *n;
1746 
1747 	if (!context->in_syscall)
1748 		return;
1749 
1750 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1751 	if (!n)
1752 		return;
1753 
1754 	n->name = name;
1755 	n->name_len = AUDIT_NAME_FULL;
1756 	name->aname = n;
1757 	name->refcnt++;
1758 
1759 	if (!context->pwd.dentry)
1760 		get_fs_pwd(current->fs, &context->pwd);
1761 }
1762 
1763 /**
1764  * __audit_inode - store the inode and device from a lookup
1765  * @name: name being audited
1766  * @dentry: dentry being audited
1767  * @flags: attributes for this particular entry
1768  */
1769 void __audit_inode(struct filename *name, const struct dentry *dentry,
1770 		   unsigned int flags)
1771 {
1772 	struct audit_context *context = audit_context();
1773 	struct inode *inode = d_backing_inode(dentry);
1774 	struct audit_names *n;
1775 	bool parent = flags & AUDIT_INODE_PARENT;
1776 
1777 	if (!context->in_syscall)
1778 		return;
1779 
1780 	if (!name)
1781 		goto out_alloc;
1782 
1783 	/*
1784 	 * If we have a pointer to an audit_names entry already, then we can
1785 	 * just use it directly if the type is correct.
1786 	 */
1787 	n = name->aname;
1788 	if (n) {
1789 		if (parent) {
1790 			if (n->type == AUDIT_TYPE_PARENT ||
1791 			    n->type == AUDIT_TYPE_UNKNOWN)
1792 				goto out;
1793 		} else {
1794 			if (n->type != AUDIT_TYPE_PARENT)
1795 				goto out;
1796 		}
1797 	}
1798 
1799 	list_for_each_entry_reverse(n, &context->names_list, list) {
1800 		if (n->ino) {
1801 			/* valid inode number, use that for the comparison */
1802 			if (n->ino != inode->i_ino ||
1803 			    n->dev != inode->i_sb->s_dev)
1804 				continue;
1805 		} else if (n->name) {
1806 			/* inode number has not been set, check the name */
1807 			if (strcmp(n->name->name, name->name))
1808 				continue;
1809 		} else
1810 			/* no inode and no name (?!) ... this is odd ... */
1811 			continue;
1812 
1813 		/* match the correct record type */
1814 		if (parent) {
1815 			if (n->type == AUDIT_TYPE_PARENT ||
1816 			    n->type == AUDIT_TYPE_UNKNOWN)
1817 				goto out;
1818 		} else {
1819 			if (n->type != AUDIT_TYPE_PARENT)
1820 				goto out;
1821 		}
1822 	}
1823 
1824 out_alloc:
1825 	/* unable to find an entry with both a matching name and type */
1826 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1827 	if (!n)
1828 		return;
1829 	if (name) {
1830 		n->name = name;
1831 		name->refcnt++;
1832 	}
1833 
1834 out:
1835 	if (parent) {
1836 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1837 		n->type = AUDIT_TYPE_PARENT;
1838 		if (flags & AUDIT_INODE_HIDDEN)
1839 			n->hidden = true;
1840 	} else {
1841 		n->name_len = AUDIT_NAME_FULL;
1842 		n->type = AUDIT_TYPE_NORMAL;
1843 	}
1844 	handle_path(dentry);
1845 	audit_copy_inode(n, dentry, inode);
1846 }
1847 
1848 void __audit_file(const struct file *file)
1849 {
1850 	__audit_inode(NULL, file->f_path.dentry, 0);
1851 }
1852 
1853 /**
1854  * __audit_inode_child - collect inode info for created/removed objects
1855  * @parent: inode of dentry parent
1856  * @dentry: dentry being audited
1857  * @type:   AUDIT_TYPE_* value that we're looking for
1858  *
1859  * For syscalls that create or remove filesystem objects, audit_inode
1860  * can only collect information for the filesystem object's parent.
1861  * This call updates the audit context with the child's information.
1862  * Syscalls that create a new filesystem object must be hooked after
1863  * the object is created.  Syscalls that remove a filesystem object
1864  * must be hooked prior, in order to capture the target inode during
1865  * unsuccessful attempts.
1866  */
1867 void __audit_inode_child(struct inode *parent,
1868 			 const struct dentry *dentry,
1869 			 const unsigned char type)
1870 {
1871 	struct audit_context *context = audit_context();
1872 	struct inode *inode = d_backing_inode(dentry);
1873 	const char *dname = dentry->d_name.name;
1874 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1875 	struct audit_entry *e;
1876 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1877 	int i;
1878 
1879 	if (!context->in_syscall)
1880 		return;
1881 
1882 	rcu_read_lock();
1883 	if (!list_empty(list)) {
1884 		list_for_each_entry_rcu(e, list, list) {
1885 			for (i = 0; i < e->rule.field_count; i++) {
1886 				struct audit_field *f = &e->rule.fields[i];
1887 
1888 				if (f->type == AUDIT_FSTYPE) {
1889 					if (audit_comparator(parent->i_sb->s_magic,
1890 					    f->op, f->val)) {
1891 						if (e->rule.action == AUDIT_NEVER) {
1892 							rcu_read_unlock();
1893 							return;
1894 						}
1895 					}
1896 				}
1897 			}
1898 		}
1899 	}
1900 	rcu_read_unlock();
1901 
1902 	if (inode)
1903 		handle_one(inode);
1904 
1905 	/* look for a parent entry first */
1906 	list_for_each_entry(n, &context->names_list, list) {
1907 		if (!n->name ||
1908 		    (n->type != AUDIT_TYPE_PARENT &&
1909 		     n->type != AUDIT_TYPE_UNKNOWN))
1910 			continue;
1911 
1912 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1913 		    !audit_compare_dname_path(dname,
1914 					      n->name->name, n->name_len)) {
1915 			if (n->type == AUDIT_TYPE_UNKNOWN)
1916 				n->type = AUDIT_TYPE_PARENT;
1917 			found_parent = n;
1918 			break;
1919 		}
1920 	}
1921 
1922 	/* is there a matching child entry? */
1923 	list_for_each_entry(n, &context->names_list, list) {
1924 		/* can only match entries that have a name */
1925 		if (!n->name ||
1926 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1927 			continue;
1928 
1929 		if (!strcmp(dname, n->name->name) ||
1930 		    !audit_compare_dname_path(dname, n->name->name,
1931 						found_parent ?
1932 						found_parent->name_len :
1933 						AUDIT_NAME_FULL)) {
1934 			if (n->type == AUDIT_TYPE_UNKNOWN)
1935 				n->type = type;
1936 			found_child = n;
1937 			break;
1938 		}
1939 	}
1940 
1941 	if (!found_parent) {
1942 		/* create a new, "anonymous" parent record */
1943 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1944 		if (!n)
1945 			return;
1946 		audit_copy_inode(n, NULL, parent);
1947 	}
1948 
1949 	if (!found_child) {
1950 		found_child = audit_alloc_name(context, type);
1951 		if (!found_child)
1952 			return;
1953 
1954 		/* Re-use the name belonging to the slot for a matching parent
1955 		 * directory. All names for this context are relinquished in
1956 		 * audit_free_names() */
1957 		if (found_parent) {
1958 			found_child->name = found_parent->name;
1959 			found_child->name_len = AUDIT_NAME_FULL;
1960 			found_child->name->refcnt++;
1961 		}
1962 	}
1963 
1964 	if (inode)
1965 		audit_copy_inode(found_child, dentry, inode);
1966 	else
1967 		found_child->ino = AUDIT_INO_UNSET;
1968 }
1969 EXPORT_SYMBOL_GPL(__audit_inode_child);
1970 
1971 /**
1972  * auditsc_get_stamp - get local copies of audit_context values
1973  * @ctx: audit_context for the task
1974  * @t: timespec64 to store time recorded in the audit_context
1975  * @serial: serial value that is recorded in the audit_context
1976  *
1977  * Also sets the context as auditable.
1978  */
1979 int auditsc_get_stamp(struct audit_context *ctx,
1980 		       struct timespec64 *t, unsigned int *serial)
1981 {
1982 	if (!ctx->in_syscall)
1983 		return 0;
1984 	if (!ctx->serial)
1985 		ctx->serial = audit_serial();
1986 	t->tv_sec  = ctx->ctime.tv_sec;
1987 	t->tv_nsec = ctx->ctime.tv_nsec;
1988 	*serial    = ctx->serial;
1989 	if (!ctx->prio) {
1990 		ctx->prio = 1;
1991 		ctx->current_state = AUDIT_RECORD_CONTEXT;
1992 	}
1993 	return 1;
1994 }
1995 
1996 /* global counter which is incremented every time something logs in */
1997 static atomic_t session_id = ATOMIC_INIT(0);
1998 
1999 static int audit_set_loginuid_perm(kuid_t loginuid)
2000 {
2001 	/* if we are unset, we don't need privs */
2002 	if (!audit_loginuid_set(current))
2003 		return 0;
2004 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2005 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2006 		return -EPERM;
2007 	/* it is set, you need permission */
2008 	if (!capable(CAP_AUDIT_CONTROL))
2009 		return -EPERM;
2010 	/* reject if this is not an unset and we don't allow that */
2011 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2012 		return -EPERM;
2013 	return 0;
2014 }
2015 
2016 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2017 				   unsigned int oldsessionid, unsigned int sessionid,
2018 				   int rc)
2019 {
2020 	struct audit_buffer *ab;
2021 	uid_t uid, oldloginuid, loginuid;
2022 	struct tty_struct *tty;
2023 
2024 	if (!audit_enabled)
2025 		return;
2026 
2027 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2028 	if (!ab)
2029 		return;
2030 
2031 	uid = from_kuid(&init_user_ns, task_uid(current));
2032 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2033 	loginuid = from_kuid(&init_user_ns, kloginuid),
2034 	tty = audit_get_tty(current);
2035 
2036 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2037 	audit_log_task_context(ab);
2038 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2039 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2040 			 oldsessionid, sessionid, !rc);
2041 	audit_put_tty(tty);
2042 	audit_log_end(ab);
2043 }
2044 
2045 /**
2046  * audit_set_loginuid - set current task's audit_context loginuid
2047  * @loginuid: loginuid value
2048  *
2049  * Returns 0.
2050  *
2051  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2052  */
2053 int audit_set_loginuid(kuid_t loginuid)
2054 {
2055 	struct task_struct *task = current;
2056 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2057 	kuid_t oldloginuid;
2058 	int rc;
2059 
2060 	oldloginuid = audit_get_loginuid(current);
2061 	oldsessionid = audit_get_sessionid(current);
2062 
2063 	rc = audit_set_loginuid_perm(loginuid);
2064 	if (rc)
2065 		goto out;
2066 
2067 	/* are we setting or clearing? */
2068 	if (uid_valid(loginuid)) {
2069 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2070 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2071 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2072 	}
2073 
2074 	task->sessionid = sessionid;
2075 	task->loginuid = loginuid;
2076 out:
2077 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2078 	return rc;
2079 }
2080 
2081 /**
2082  * __audit_mq_open - record audit data for a POSIX MQ open
2083  * @oflag: open flag
2084  * @mode: mode bits
2085  * @attr: queue attributes
2086  *
2087  */
2088 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2089 {
2090 	struct audit_context *context = audit_context();
2091 
2092 	if (attr)
2093 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2094 	else
2095 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2096 
2097 	context->mq_open.oflag = oflag;
2098 	context->mq_open.mode = mode;
2099 
2100 	context->type = AUDIT_MQ_OPEN;
2101 }
2102 
2103 /**
2104  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2105  * @mqdes: MQ descriptor
2106  * @msg_len: Message length
2107  * @msg_prio: Message priority
2108  * @abs_timeout: Message timeout in absolute time
2109  *
2110  */
2111 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2112 			const struct timespec64 *abs_timeout)
2113 {
2114 	struct audit_context *context = audit_context();
2115 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2116 
2117 	if (abs_timeout)
2118 		memcpy(p, abs_timeout, sizeof(*p));
2119 	else
2120 		memset(p, 0, sizeof(*p));
2121 
2122 	context->mq_sendrecv.mqdes = mqdes;
2123 	context->mq_sendrecv.msg_len = msg_len;
2124 	context->mq_sendrecv.msg_prio = msg_prio;
2125 
2126 	context->type = AUDIT_MQ_SENDRECV;
2127 }
2128 
2129 /**
2130  * __audit_mq_notify - record audit data for a POSIX MQ notify
2131  * @mqdes: MQ descriptor
2132  * @notification: Notification event
2133  *
2134  */
2135 
2136 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2137 {
2138 	struct audit_context *context = audit_context();
2139 
2140 	if (notification)
2141 		context->mq_notify.sigev_signo = notification->sigev_signo;
2142 	else
2143 		context->mq_notify.sigev_signo = 0;
2144 
2145 	context->mq_notify.mqdes = mqdes;
2146 	context->type = AUDIT_MQ_NOTIFY;
2147 }
2148 
2149 /**
2150  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2151  * @mqdes: MQ descriptor
2152  * @mqstat: MQ flags
2153  *
2154  */
2155 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2156 {
2157 	struct audit_context *context = audit_context();
2158 	context->mq_getsetattr.mqdes = mqdes;
2159 	context->mq_getsetattr.mqstat = *mqstat;
2160 	context->type = AUDIT_MQ_GETSETATTR;
2161 }
2162 
2163 /**
2164  * __audit_ipc_obj - record audit data for ipc object
2165  * @ipcp: ipc permissions
2166  *
2167  */
2168 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2169 {
2170 	struct audit_context *context = audit_context();
2171 	context->ipc.uid = ipcp->uid;
2172 	context->ipc.gid = ipcp->gid;
2173 	context->ipc.mode = ipcp->mode;
2174 	context->ipc.has_perm = 0;
2175 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2176 	context->type = AUDIT_IPC;
2177 }
2178 
2179 /**
2180  * __audit_ipc_set_perm - record audit data for new ipc permissions
2181  * @qbytes: msgq bytes
2182  * @uid: msgq user id
2183  * @gid: msgq group id
2184  * @mode: msgq mode (permissions)
2185  *
2186  * Called only after audit_ipc_obj().
2187  */
2188 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2189 {
2190 	struct audit_context *context = audit_context();
2191 
2192 	context->ipc.qbytes = qbytes;
2193 	context->ipc.perm_uid = uid;
2194 	context->ipc.perm_gid = gid;
2195 	context->ipc.perm_mode = mode;
2196 	context->ipc.has_perm = 1;
2197 }
2198 
2199 void __audit_bprm(struct linux_binprm *bprm)
2200 {
2201 	struct audit_context *context = audit_context();
2202 
2203 	context->type = AUDIT_EXECVE;
2204 	context->execve.argc = bprm->argc;
2205 }
2206 
2207 
2208 /**
2209  * __audit_socketcall - record audit data for sys_socketcall
2210  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2211  * @args: args array
2212  *
2213  */
2214 int __audit_socketcall(int nargs, unsigned long *args)
2215 {
2216 	struct audit_context *context = audit_context();
2217 
2218 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2219 		return -EINVAL;
2220 	context->type = AUDIT_SOCKETCALL;
2221 	context->socketcall.nargs = nargs;
2222 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2223 	return 0;
2224 }
2225 
2226 /**
2227  * __audit_fd_pair - record audit data for pipe and socketpair
2228  * @fd1: the first file descriptor
2229  * @fd2: the second file descriptor
2230  *
2231  */
2232 void __audit_fd_pair(int fd1, int fd2)
2233 {
2234 	struct audit_context *context = audit_context();
2235 	context->fds[0] = fd1;
2236 	context->fds[1] = fd2;
2237 }
2238 
2239 /**
2240  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2241  * @len: data length in user space
2242  * @a: data address in kernel space
2243  *
2244  * Returns 0 for success or NULL context or < 0 on error.
2245  */
2246 int __audit_sockaddr(int len, void *a)
2247 {
2248 	struct audit_context *context = audit_context();
2249 
2250 	if (!context->sockaddr) {
2251 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2252 		if (!p)
2253 			return -ENOMEM;
2254 		context->sockaddr = p;
2255 	}
2256 
2257 	context->sockaddr_len = len;
2258 	memcpy(context->sockaddr, a, len);
2259 	return 0;
2260 }
2261 
2262 void __audit_ptrace(struct task_struct *t)
2263 {
2264 	struct audit_context *context = audit_context();
2265 
2266 	context->target_pid = task_tgid_nr(t);
2267 	context->target_auid = audit_get_loginuid(t);
2268 	context->target_uid = task_uid(t);
2269 	context->target_sessionid = audit_get_sessionid(t);
2270 	security_task_getsecid(t, &context->target_sid);
2271 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2272 }
2273 
2274 /**
2275  * audit_signal_info - record signal info for shutting down audit subsystem
2276  * @sig: signal value
2277  * @t: task being signaled
2278  *
2279  * If the audit subsystem is being terminated, record the task (pid)
2280  * and uid that is doing that.
2281  */
2282 int audit_signal_info(int sig, struct task_struct *t)
2283 {
2284 	struct audit_aux_data_pids *axp;
2285 	struct audit_context *ctx = audit_context();
2286 	kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2287 
2288 	if (auditd_test_task(t) &&
2289 	    (sig == SIGTERM || sig == SIGHUP ||
2290 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2291 		audit_sig_pid = task_tgid_nr(current);
2292 		auid = audit_get_loginuid(current);
2293 		if (uid_valid(auid))
2294 			audit_sig_uid = auid;
2295 		else
2296 			audit_sig_uid = uid;
2297 		security_task_getsecid(current, &audit_sig_sid);
2298 	}
2299 
2300 	if (!audit_signals || audit_dummy_context())
2301 		return 0;
2302 
2303 	/* optimize the common case by putting first signal recipient directly
2304 	 * in audit_context */
2305 	if (!ctx->target_pid) {
2306 		ctx->target_pid = task_tgid_nr(t);
2307 		ctx->target_auid = audit_get_loginuid(t);
2308 		ctx->target_uid = t_uid;
2309 		ctx->target_sessionid = audit_get_sessionid(t);
2310 		security_task_getsecid(t, &ctx->target_sid);
2311 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2312 		return 0;
2313 	}
2314 
2315 	axp = (void *)ctx->aux_pids;
2316 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2317 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2318 		if (!axp)
2319 			return -ENOMEM;
2320 
2321 		axp->d.type = AUDIT_OBJ_PID;
2322 		axp->d.next = ctx->aux_pids;
2323 		ctx->aux_pids = (void *)axp;
2324 	}
2325 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2326 
2327 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2328 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2329 	axp->target_uid[axp->pid_count] = t_uid;
2330 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2331 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2332 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2333 	axp->pid_count++;
2334 
2335 	return 0;
2336 }
2337 
2338 /**
2339  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2340  * @bprm: pointer to the bprm being processed
2341  * @new: the proposed new credentials
2342  * @old: the old credentials
2343  *
2344  * Simply check if the proc already has the caps given by the file and if not
2345  * store the priv escalation info for later auditing at the end of the syscall
2346  *
2347  * -Eric
2348  */
2349 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2350 			   const struct cred *new, const struct cred *old)
2351 {
2352 	struct audit_aux_data_bprm_fcaps *ax;
2353 	struct audit_context *context = audit_context();
2354 	struct cpu_vfs_cap_data vcaps;
2355 
2356 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2357 	if (!ax)
2358 		return -ENOMEM;
2359 
2360 	ax->d.type = AUDIT_BPRM_FCAPS;
2361 	ax->d.next = context->aux;
2362 	context->aux = (void *)ax;
2363 
2364 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2365 
2366 	ax->fcap.permitted = vcaps.permitted;
2367 	ax->fcap.inheritable = vcaps.inheritable;
2368 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2369 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2370 
2371 	ax->old_pcap.permitted   = old->cap_permitted;
2372 	ax->old_pcap.inheritable = old->cap_inheritable;
2373 	ax->old_pcap.effective   = old->cap_effective;
2374 	ax->old_pcap.ambient     = old->cap_ambient;
2375 
2376 	ax->new_pcap.permitted   = new->cap_permitted;
2377 	ax->new_pcap.inheritable = new->cap_inheritable;
2378 	ax->new_pcap.effective   = new->cap_effective;
2379 	ax->new_pcap.ambient     = new->cap_ambient;
2380 	return 0;
2381 }
2382 
2383 /**
2384  * __audit_log_capset - store information about the arguments to the capset syscall
2385  * @new: the new credentials
2386  * @old: the old (current) credentials
2387  *
2388  * Record the arguments userspace sent to sys_capset for later printing by the
2389  * audit system if applicable
2390  */
2391 void __audit_log_capset(const struct cred *new, const struct cred *old)
2392 {
2393 	struct audit_context *context = audit_context();
2394 	context->capset.pid = task_tgid_nr(current);
2395 	context->capset.cap.effective   = new->cap_effective;
2396 	context->capset.cap.inheritable = new->cap_effective;
2397 	context->capset.cap.permitted   = new->cap_permitted;
2398 	context->capset.cap.ambient     = new->cap_ambient;
2399 	context->type = AUDIT_CAPSET;
2400 }
2401 
2402 void __audit_mmap_fd(int fd, int flags)
2403 {
2404 	struct audit_context *context = audit_context();
2405 	context->mmap.fd = fd;
2406 	context->mmap.flags = flags;
2407 	context->type = AUDIT_MMAP;
2408 }
2409 
2410 void __audit_log_kern_module(char *name)
2411 {
2412 	struct audit_context *context = audit_context();
2413 
2414 	context->module.name = kmalloc(strlen(name) + 1, GFP_KERNEL);
2415 	strcpy(context->module.name, name);
2416 	context->type = AUDIT_KERN_MODULE;
2417 }
2418 
2419 void __audit_fanotify(unsigned int response)
2420 {
2421 	audit_log(audit_context(), GFP_KERNEL,
2422 		AUDIT_FANOTIFY,	"resp=%u", response);
2423 }
2424 
2425 static void audit_log_task(struct audit_buffer *ab)
2426 {
2427 	kuid_t auid, uid;
2428 	kgid_t gid;
2429 	unsigned int sessionid;
2430 	char comm[sizeof(current->comm)];
2431 
2432 	auid = audit_get_loginuid(current);
2433 	sessionid = audit_get_sessionid(current);
2434 	current_uid_gid(&uid, &gid);
2435 
2436 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2437 			 from_kuid(&init_user_ns, auid),
2438 			 from_kuid(&init_user_ns, uid),
2439 			 from_kgid(&init_user_ns, gid),
2440 			 sessionid);
2441 	audit_log_task_context(ab);
2442 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2443 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2444 	audit_log_d_path_exe(ab, current->mm);
2445 }
2446 
2447 /**
2448  * audit_core_dumps - record information about processes that end abnormally
2449  * @signr: signal value
2450  *
2451  * If a process ends with a core dump, something fishy is going on and we
2452  * should record the event for investigation.
2453  */
2454 void audit_core_dumps(long signr)
2455 {
2456 	struct audit_buffer *ab;
2457 
2458 	if (!audit_enabled)
2459 		return;
2460 
2461 	if (signr == SIGQUIT)	/* don't care for those */
2462 		return;
2463 
2464 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2465 	if (unlikely(!ab))
2466 		return;
2467 	audit_log_task(ab);
2468 	audit_log_format(ab, " sig=%ld res=1", signr);
2469 	audit_log_end(ab);
2470 }
2471 
2472 /**
2473  * audit_seccomp - record information about a seccomp action
2474  * @syscall: syscall number
2475  * @signr: signal value
2476  * @code: the seccomp action
2477  *
2478  * Record the information associated with a seccomp action. Event filtering for
2479  * seccomp actions that are not to be logged is done in seccomp_log().
2480  * Therefore, this function forces auditing independent of the audit_enabled
2481  * and dummy context state because seccomp actions should be logged even when
2482  * audit is not in use.
2483  */
2484 void audit_seccomp(unsigned long syscall, long signr, int code)
2485 {
2486 	struct audit_buffer *ab;
2487 
2488 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2489 	if (unlikely(!ab))
2490 		return;
2491 	audit_log_task(ab);
2492 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2493 			 signr, syscall_get_arch(), syscall,
2494 			 in_compat_syscall(), KSTK_EIP(current), code);
2495 	audit_log_end(ab);
2496 }
2497 
2498 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2499 				  int res)
2500 {
2501 	struct audit_buffer *ab;
2502 
2503 	if (!audit_enabled)
2504 		return;
2505 
2506 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2507 			     AUDIT_CONFIG_CHANGE);
2508 	if (unlikely(!ab))
2509 		return;
2510 
2511 	audit_log_format(ab, "op=seccomp-logging");
2512 	audit_log_format(ab, " actions=%s", names);
2513 	audit_log_format(ab, " old-actions=%s", old_names);
2514 	audit_log_format(ab, " res=%d", res);
2515 	audit_log_end(ab);
2516 }
2517 
2518 struct list_head *audit_killed_trees(void)
2519 {
2520 	struct audit_context *ctx = audit_context();
2521 	if (likely(!ctx || !ctx->in_syscall))
2522 		return NULL;
2523 	return &ctx->killed_trees;
2524 }
2525