1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <linux/fsnotify_backend.h> 77 #include <uapi/linux/limits.h> 78 79 #include "audit.h" 80 81 /* flags stating the success for a syscall */ 82 #define AUDITSC_INVALID 0 83 #define AUDITSC_SUCCESS 1 84 #define AUDITSC_FAILURE 2 85 86 /* no execve audit message should be longer than this (userspace limits), 87 * see the note near the top of audit_log_execve_info() about this value */ 88 #define MAX_EXECVE_AUDIT_LEN 7500 89 90 /* max length to print of cmdline/proctitle value during audit */ 91 #define MAX_PROCTITLE_AUDIT_LEN 128 92 93 /* number of audit rules */ 94 int audit_n_rules; 95 96 /* determines whether we collect data for signals sent */ 97 int audit_signals; 98 99 struct audit_aux_data { 100 struct audit_aux_data *next; 101 int type; 102 }; 103 104 #define AUDIT_AUX_IPCPERM 0 105 106 /* Number of target pids per aux struct. */ 107 #define AUDIT_AUX_PIDS 16 108 109 struct audit_aux_data_pids { 110 struct audit_aux_data d; 111 pid_t target_pid[AUDIT_AUX_PIDS]; 112 kuid_t target_auid[AUDIT_AUX_PIDS]; 113 kuid_t target_uid[AUDIT_AUX_PIDS]; 114 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 115 u32 target_sid[AUDIT_AUX_PIDS]; 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 117 int pid_count; 118 }; 119 120 struct audit_aux_data_bprm_fcaps { 121 struct audit_aux_data d; 122 struct audit_cap_data fcap; 123 unsigned int fcap_ver; 124 struct audit_cap_data old_pcap; 125 struct audit_cap_data new_pcap; 126 }; 127 128 struct audit_tree_refs { 129 struct audit_tree_refs *next; 130 struct audit_chunk *c[31]; 131 }; 132 133 static int audit_match_perm(struct audit_context *ctx, int mask) 134 { 135 unsigned n; 136 if (unlikely(!ctx)) 137 return 0; 138 n = ctx->major; 139 140 switch (audit_classify_syscall(ctx->arch, n)) { 141 case 0: /* native */ 142 if ((mask & AUDIT_PERM_WRITE) && 143 audit_match_class(AUDIT_CLASS_WRITE, n)) 144 return 1; 145 if ((mask & AUDIT_PERM_READ) && 146 audit_match_class(AUDIT_CLASS_READ, n)) 147 return 1; 148 if ((mask & AUDIT_PERM_ATTR) && 149 audit_match_class(AUDIT_CLASS_CHATTR, n)) 150 return 1; 151 return 0; 152 case 1: /* 32bit on biarch */ 153 if ((mask & AUDIT_PERM_WRITE) && 154 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 155 return 1; 156 if ((mask & AUDIT_PERM_READ) && 157 audit_match_class(AUDIT_CLASS_READ_32, n)) 158 return 1; 159 if ((mask & AUDIT_PERM_ATTR) && 160 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 161 return 1; 162 return 0; 163 case 2: /* open */ 164 return mask & ACC_MODE(ctx->argv[1]); 165 case 3: /* openat */ 166 return mask & ACC_MODE(ctx->argv[2]); 167 case 4: /* socketcall */ 168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 169 case 5: /* execve */ 170 return mask & AUDIT_PERM_EXEC; 171 default: 172 return 0; 173 } 174 } 175 176 static int audit_match_filetype(struct audit_context *ctx, int val) 177 { 178 struct audit_names *n; 179 umode_t mode = (umode_t)val; 180 181 if (unlikely(!ctx)) 182 return 0; 183 184 list_for_each_entry(n, &ctx->names_list, list) { 185 if ((n->ino != AUDIT_INO_UNSET) && 186 ((n->mode & S_IFMT) == mode)) 187 return 1; 188 } 189 190 return 0; 191 } 192 193 /* 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 195 * ->first_trees points to its beginning, ->trees - to the current end of data. 196 * ->tree_count is the number of free entries in array pointed to by ->trees. 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 199 * it's going to remain 1-element for almost any setup) until we free context itself. 200 * References in it _are_ dropped - at the same time we free/drop aux stuff. 201 */ 202 203 static void audit_set_auditable(struct audit_context *ctx) 204 { 205 if (!ctx->prio) { 206 ctx->prio = 1; 207 ctx->current_state = AUDIT_RECORD_CONTEXT; 208 } 209 } 210 211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 212 { 213 struct audit_tree_refs *p = ctx->trees; 214 int left = ctx->tree_count; 215 if (likely(left)) { 216 p->c[--left] = chunk; 217 ctx->tree_count = left; 218 return 1; 219 } 220 if (!p) 221 return 0; 222 p = p->next; 223 if (p) { 224 p->c[30] = chunk; 225 ctx->trees = p; 226 ctx->tree_count = 30; 227 return 1; 228 } 229 return 0; 230 } 231 232 static int grow_tree_refs(struct audit_context *ctx) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 236 if (!ctx->trees) { 237 ctx->trees = p; 238 return 0; 239 } 240 if (p) 241 p->next = ctx->trees; 242 else 243 ctx->first_trees = ctx->trees; 244 ctx->tree_count = 31; 245 return 1; 246 } 247 248 static void unroll_tree_refs(struct audit_context *ctx, 249 struct audit_tree_refs *p, int count) 250 { 251 struct audit_tree_refs *q; 252 int n; 253 if (!p) { 254 /* we started with empty chain */ 255 p = ctx->first_trees; 256 count = 31; 257 /* if the very first allocation has failed, nothing to do */ 258 if (!p) 259 return; 260 } 261 n = count; 262 for (q = p; q != ctx->trees; q = q->next, n = 31) { 263 while (n--) { 264 audit_put_chunk(q->c[n]); 265 q->c[n] = NULL; 266 } 267 } 268 while (n-- > ctx->tree_count) { 269 audit_put_chunk(q->c[n]); 270 q->c[n] = NULL; 271 } 272 ctx->trees = p; 273 ctx->tree_count = count; 274 } 275 276 static void free_tree_refs(struct audit_context *ctx) 277 { 278 struct audit_tree_refs *p, *q; 279 for (p = ctx->first_trees; p; p = q) { 280 q = p->next; 281 kfree(p); 282 } 283 } 284 285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 286 { 287 struct audit_tree_refs *p; 288 int n; 289 if (!tree) 290 return 0; 291 /* full ones */ 292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 293 for (n = 0; n < 31; n++) 294 if (audit_tree_match(p->c[n], tree)) 295 return 1; 296 } 297 /* partial */ 298 if (p) { 299 for (n = ctx->tree_count; n < 31; n++) 300 if (audit_tree_match(p->c[n], tree)) 301 return 1; 302 } 303 return 0; 304 } 305 306 static int audit_compare_uid(kuid_t uid, 307 struct audit_names *name, 308 struct audit_field *f, 309 struct audit_context *ctx) 310 { 311 struct audit_names *n; 312 int rc; 313 314 if (name) { 315 rc = audit_uid_comparator(uid, f->op, name->uid); 316 if (rc) 317 return rc; 318 } 319 320 if (ctx) { 321 list_for_each_entry(n, &ctx->names_list, list) { 322 rc = audit_uid_comparator(uid, f->op, n->uid); 323 if (rc) 324 return rc; 325 } 326 } 327 return 0; 328 } 329 330 static int audit_compare_gid(kgid_t gid, 331 struct audit_names *name, 332 struct audit_field *f, 333 struct audit_context *ctx) 334 { 335 struct audit_names *n; 336 int rc; 337 338 if (name) { 339 rc = audit_gid_comparator(gid, f->op, name->gid); 340 if (rc) 341 return rc; 342 } 343 344 if (ctx) { 345 list_for_each_entry(n, &ctx->names_list, list) { 346 rc = audit_gid_comparator(gid, f->op, n->gid); 347 if (rc) 348 return rc; 349 } 350 } 351 return 0; 352 } 353 354 static int audit_field_compare(struct task_struct *tsk, 355 const struct cred *cred, 356 struct audit_field *f, 357 struct audit_context *ctx, 358 struct audit_names *name) 359 { 360 switch (f->val) { 361 /* process to file object comparisons */ 362 case AUDIT_COMPARE_UID_TO_OBJ_UID: 363 return audit_compare_uid(cred->uid, name, f, ctx); 364 case AUDIT_COMPARE_GID_TO_OBJ_GID: 365 return audit_compare_gid(cred->gid, name, f, ctx); 366 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 367 return audit_compare_uid(cred->euid, name, f, ctx); 368 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 369 return audit_compare_gid(cred->egid, name, f, ctx); 370 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 372 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 373 return audit_compare_uid(cred->suid, name, f, ctx); 374 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 375 return audit_compare_gid(cred->sgid, name, f, ctx); 376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 377 return audit_compare_uid(cred->fsuid, name, f, ctx); 378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 379 return audit_compare_gid(cred->fsgid, name, f, ctx); 380 /* uid comparisons */ 381 case AUDIT_COMPARE_UID_TO_AUID: 382 return audit_uid_comparator(cred->uid, f->op, 383 audit_get_loginuid(tsk)); 384 case AUDIT_COMPARE_UID_TO_EUID: 385 return audit_uid_comparator(cred->uid, f->op, cred->euid); 386 case AUDIT_COMPARE_UID_TO_SUID: 387 return audit_uid_comparator(cred->uid, f->op, cred->suid); 388 case AUDIT_COMPARE_UID_TO_FSUID: 389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 390 /* auid comparisons */ 391 case AUDIT_COMPARE_AUID_TO_EUID: 392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 393 cred->euid); 394 case AUDIT_COMPARE_AUID_TO_SUID: 395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 396 cred->suid); 397 case AUDIT_COMPARE_AUID_TO_FSUID: 398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 399 cred->fsuid); 400 /* euid comparisons */ 401 case AUDIT_COMPARE_EUID_TO_SUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->suid); 403 case AUDIT_COMPARE_EUID_TO_FSUID: 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 405 /* suid comparisons */ 406 case AUDIT_COMPARE_SUID_TO_FSUID: 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 408 /* gid comparisons */ 409 case AUDIT_COMPARE_GID_TO_EGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->egid); 411 case AUDIT_COMPARE_GID_TO_SGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 413 case AUDIT_COMPARE_GID_TO_FSGID: 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 415 /* egid comparisons */ 416 case AUDIT_COMPARE_EGID_TO_SGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 418 case AUDIT_COMPARE_EGID_TO_FSGID: 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 420 /* sgid comparison */ 421 case AUDIT_COMPARE_SGID_TO_FSGID: 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 423 default: 424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 425 return 0; 426 } 427 return 0; 428 } 429 430 /* Determine if any context name data matches a rule's watch data */ 431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 432 * otherwise. 433 * 434 * If task_creation is true, this is an explicit indication that we are 435 * filtering a task rule at task creation time. This and tsk == current are 436 * the only situations where tsk->cred may be accessed without an rcu read lock. 437 */ 438 static int audit_filter_rules(struct task_struct *tsk, 439 struct audit_krule *rule, 440 struct audit_context *ctx, 441 struct audit_names *name, 442 enum audit_state *state, 443 bool task_creation) 444 { 445 const struct cred *cred; 446 int i, need_sid = 1; 447 u32 sid; 448 unsigned int sessionid; 449 450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 451 452 for (i = 0; i < rule->field_count; i++) { 453 struct audit_field *f = &rule->fields[i]; 454 struct audit_names *n; 455 int result = 0; 456 pid_t pid; 457 458 switch (f->type) { 459 case AUDIT_PID: 460 pid = task_tgid_nr(tsk); 461 result = audit_comparator(pid, f->op, f->val); 462 break; 463 case AUDIT_PPID: 464 if (ctx) { 465 if (!ctx->ppid) 466 ctx->ppid = task_ppid_nr(tsk); 467 result = audit_comparator(ctx->ppid, f->op, f->val); 468 } 469 break; 470 case AUDIT_EXE: 471 result = audit_exe_compare(tsk, rule->exe); 472 if (f->op == Audit_not_equal) 473 result = !result; 474 break; 475 case AUDIT_UID: 476 result = audit_uid_comparator(cred->uid, f->op, f->uid); 477 break; 478 case AUDIT_EUID: 479 result = audit_uid_comparator(cred->euid, f->op, f->uid); 480 break; 481 case AUDIT_SUID: 482 result = audit_uid_comparator(cred->suid, f->op, f->uid); 483 break; 484 case AUDIT_FSUID: 485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 486 break; 487 case AUDIT_GID: 488 result = audit_gid_comparator(cred->gid, f->op, f->gid); 489 if (f->op == Audit_equal) { 490 if (!result) 491 result = groups_search(cred->group_info, f->gid); 492 } else if (f->op == Audit_not_equal) { 493 if (result) 494 result = !groups_search(cred->group_info, f->gid); 495 } 496 break; 497 case AUDIT_EGID: 498 result = audit_gid_comparator(cred->egid, f->op, f->gid); 499 if (f->op == Audit_equal) { 500 if (!result) 501 result = groups_search(cred->group_info, f->gid); 502 } else if (f->op == Audit_not_equal) { 503 if (result) 504 result = !groups_search(cred->group_info, f->gid); 505 } 506 break; 507 case AUDIT_SGID: 508 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 509 break; 510 case AUDIT_FSGID: 511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 512 break; 513 case AUDIT_SESSIONID: 514 sessionid = audit_get_sessionid(tsk); 515 result = audit_comparator(sessionid, f->op, f->val); 516 break; 517 case AUDIT_PERS: 518 result = audit_comparator(tsk->personality, f->op, f->val); 519 break; 520 case AUDIT_ARCH: 521 if (ctx) 522 result = audit_comparator(ctx->arch, f->op, f->val); 523 break; 524 525 case AUDIT_EXIT: 526 if (ctx && ctx->return_valid) 527 result = audit_comparator(ctx->return_code, f->op, f->val); 528 break; 529 case AUDIT_SUCCESS: 530 if (ctx && ctx->return_valid) { 531 if (f->val) 532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 533 else 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 535 } 536 break; 537 case AUDIT_DEVMAJOR: 538 if (name) { 539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 540 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 541 ++result; 542 } else if (ctx) { 543 list_for_each_entry(n, &ctx->names_list, list) { 544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 546 ++result; 547 break; 548 } 549 } 550 } 551 break; 552 case AUDIT_DEVMINOR: 553 if (name) { 554 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 555 audit_comparator(MINOR(name->rdev), f->op, f->val)) 556 ++result; 557 } else if (ctx) { 558 list_for_each_entry(n, &ctx->names_list, list) { 559 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 560 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 561 ++result; 562 break; 563 } 564 } 565 } 566 break; 567 case AUDIT_INODE: 568 if (name) 569 result = audit_comparator(name->ino, f->op, f->val); 570 else if (ctx) { 571 list_for_each_entry(n, &ctx->names_list, list) { 572 if (audit_comparator(n->ino, f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_OBJ_UID: 580 if (name) { 581 result = audit_uid_comparator(name->uid, f->op, f->uid); 582 } else if (ctx) { 583 list_for_each_entry(n, &ctx->names_list, list) { 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 585 ++result; 586 break; 587 } 588 } 589 } 590 break; 591 case AUDIT_OBJ_GID: 592 if (name) { 593 result = audit_gid_comparator(name->gid, f->op, f->gid); 594 } else if (ctx) { 595 list_for_each_entry(n, &ctx->names_list, list) { 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 597 ++result; 598 break; 599 } 600 } 601 } 602 break; 603 case AUDIT_WATCH: 604 if (name) 605 result = audit_watch_compare(rule->watch, name->ino, name->dev); 606 break; 607 case AUDIT_DIR: 608 if (ctx) 609 result = match_tree_refs(ctx, rule->tree); 610 break; 611 case AUDIT_LOGINUID: 612 result = audit_uid_comparator(audit_get_loginuid(tsk), 613 f->op, f->uid); 614 break; 615 case AUDIT_LOGINUID_SET: 616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 617 break; 618 case AUDIT_SUBJ_USER: 619 case AUDIT_SUBJ_ROLE: 620 case AUDIT_SUBJ_TYPE: 621 case AUDIT_SUBJ_SEN: 622 case AUDIT_SUBJ_CLR: 623 /* NOTE: this may return negative values indicating 624 a temporary error. We simply treat this as a 625 match for now to avoid losing information that 626 may be wanted. An error message will also be 627 logged upon error */ 628 if (f->lsm_rule) { 629 if (need_sid) { 630 security_task_getsecid(tsk, &sid); 631 need_sid = 0; 632 } 633 result = security_audit_rule_match(sid, f->type, 634 f->op, 635 f->lsm_rule, 636 ctx); 637 } 638 break; 639 case AUDIT_OBJ_USER: 640 case AUDIT_OBJ_ROLE: 641 case AUDIT_OBJ_TYPE: 642 case AUDIT_OBJ_LEV_LOW: 643 case AUDIT_OBJ_LEV_HIGH: 644 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 645 also applies here */ 646 if (f->lsm_rule) { 647 /* Find files that match */ 648 if (name) { 649 result = security_audit_rule_match( 650 name->osid, f->type, f->op, 651 f->lsm_rule, ctx); 652 } else if (ctx) { 653 list_for_each_entry(n, &ctx->names_list, list) { 654 if (security_audit_rule_match(n->osid, f->type, 655 f->op, f->lsm_rule, 656 ctx)) { 657 ++result; 658 break; 659 } 660 } 661 } 662 /* Find ipc objects that match */ 663 if (!ctx || ctx->type != AUDIT_IPC) 664 break; 665 if (security_audit_rule_match(ctx->ipc.osid, 666 f->type, f->op, 667 f->lsm_rule, ctx)) 668 ++result; 669 } 670 break; 671 case AUDIT_ARG0: 672 case AUDIT_ARG1: 673 case AUDIT_ARG2: 674 case AUDIT_ARG3: 675 if (ctx) 676 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 677 break; 678 case AUDIT_FILTERKEY: 679 /* ignore this field for filtering */ 680 result = 1; 681 break; 682 case AUDIT_PERM: 683 result = audit_match_perm(ctx, f->val); 684 break; 685 case AUDIT_FILETYPE: 686 result = audit_match_filetype(ctx, f->val); 687 break; 688 case AUDIT_FIELD_COMPARE: 689 result = audit_field_compare(tsk, cred, f, ctx, name); 690 break; 691 } 692 if (!result) 693 return 0; 694 } 695 696 if (ctx) { 697 if (rule->prio <= ctx->prio) 698 return 0; 699 if (rule->filterkey) { 700 kfree(ctx->filterkey); 701 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 702 } 703 ctx->prio = rule->prio; 704 } 705 switch (rule->action) { 706 case AUDIT_NEVER: 707 *state = AUDIT_DISABLED; 708 break; 709 case AUDIT_ALWAYS: 710 *state = AUDIT_RECORD_CONTEXT; 711 break; 712 } 713 return 1; 714 } 715 716 /* At process creation time, we can determine if system-call auditing is 717 * completely disabled for this task. Since we only have the task 718 * structure at this point, we can only check uid and gid. 719 */ 720 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 721 { 722 struct audit_entry *e; 723 enum audit_state state; 724 725 rcu_read_lock(); 726 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 727 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 728 &state, true)) { 729 if (state == AUDIT_RECORD_CONTEXT) 730 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 731 rcu_read_unlock(); 732 return state; 733 } 734 } 735 rcu_read_unlock(); 736 return AUDIT_BUILD_CONTEXT; 737 } 738 739 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 740 { 741 int word, bit; 742 743 if (val > 0xffffffff) 744 return false; 745 746 word = AUDIT_WORD(val); 747 if (word >= AUDIT_BITMASK_SIZE) 748 return false; 749 750 bit = AUDIT_BIT(val); 751 752 return rule->mask[word] & bit; 753 } 754 755 /* At syscall entry and exit time, this filter is called if the 756 * audit_state is not low enough that auditing cannot take place, but is 757 * also not high enough that we already know we have to write an audit 758 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 759 */ 760 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 761 struct audit_context *ctx, 762 struct list_head *list) 763 { 764 struct audit_entry *e; 765 enum audit_state state; 766 767 if (auditd_test_task(tsk)) 768 return AUDIT_DISABLED; 769 770 rcu_read_lock(); 771 if (!list_empty(list)) { 772 list_for_each_entry_rcu(e, list, list) { 773 if (audit_in_mask(&e->rule, ctx->major) && 774 audit_filter_rules(tsk, &e->rule, ctx, NULL, 775 &state, false)) { 776 rcu_read_unlock(); 777 ctx->current_state = state; 778 return state; 779 } 780 } 781 } 782 rcu_read_unlock(); 783 return AUDIT_BUILD_CONTEXT; 784 } 785 786 /* 787 * Given an audit_name check the inode hash table to see if they match. 788 * Called holding the rcu read lock to protect the use of audit_inode_hash 789 */ 790 static int audit_filter_inode_name(struct task_struct *tsk, 791 struct audit_names *n, 792 struct audit_context *ctx) { 793 int h = audit_hash_ino((u32)n->ino); 794 struct list_head *list = &audit_inode_hash[h]; 795 struct audit_entry *e; 796 enum audit_state state; 797 798 if (list_empty(list)) 799 return 0; 800 801 list_for_each_entry_rcu(e, list, list) { 802 if (audit_in_mask(&e->rule, ctx->major) && 803 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 804 ctx->current_state = state; 805 return 1; 806 } 807 } 808 809 return 0; 810 } 811 812 /* At syscall exit time, this filter is called if any audit_names have been 813 * collected during syscall processing. We only check rules in sublists at hash 814 * buckets applicable to the inode numbers in audit_names. 815 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 816 */ 817 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 818 { 819 struct audit_names *n; 820 821 if (auditd_test_task(tsk)) 822 return; 823 824 rcu_read_lock(); 825 826 list_for_each_entry(n, &ctx->names_list, list) { 827 if (audit_filter_inode_name(tsk, n, ctx)) 828 break; 829 } 830 rcu_read_unlock(); 831 } 832 833 static inline void audit_proctitle_free(struct audit_context *context) 834 { 835 kfree(context->proctitle.value); 836 context->proctitle.value = NULL; 837 context->proctitle.len = 0; 838 } 839 840 static inline void audit_free_names(struct audit_context *context) 841 { 842 struct audit_names *n, *next; 843 844 list_for_each_entry_safe(n, next, &context->names_list, list) { 845 list_del(&n->list); 846 if (n->name) 847 putname(n->name); 848 if (n->should_free) 849 kfree(n); 850 } 851 context->name_count = 0; 852 path_put(&context->pwd); 853 context->pwd.dentry = NULL; 854 context->pwd.mnt = NULL; 855 } 856 857 static inline void audit_free_aux(struct audit_context *context) 858 { 859 struct audit_aux_data *aux; 860 861 while ((aux = context->aux)) { 862 context->aux = aux->next; 863 kfree(aux); 864 } 865 while ((aux = context->aux_pids)) { 866 context->aux_pids = aux->next; 867 kfree(aux); 868 } 869 } 870 871 static inline struct audit_context *audit_alloc_context(enum audit_state state) 872 { 873 struct audit_context *context; 874 875 context = kzalloc(sizeof(*context), GFP_KERNEL); 876 if (!context) 877 return NULL; 878 context->state = state; 879 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 880 INIT_LIST_HEAD(&context->killed_trees); 881 INIT_LIST_HEAD(&context->names_list); 882 return context; 883 } 884 885 /** 886 * audit_alloc - allocate an audit context block for a task 887 * @tsk: task 888 * 889 * Filter on the task information and allocate a per-task audit context 890 * if necessary. Doing so turns on system call auditing for the 891 * specified task. This is called from copy_process, so no lock is 892 * needed. 893 */ 894 int audit_alloc(struct task_struct *tsk) 895 { 896 struct audit_context *context; 897 enum audit_state state; 898 char *key = NULL; 899 900 if (likely(!audit_ever_enabled)) 901 return 0; /* Return if not auditing. */ 902 903 state = audit_filter_task(tsk, &key); 904 if (state == AUDIT_DISABLED) { 905 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 906 return 0; 907 } 908 909 if (!(context = audit_alloc_context(state))) { 910 kfree(key); 911 audit_log_lost("out of memory in audit_alloc"); 912 return -ENOMEM; 913 } 914 context->filterkey = key; 915 916 audit_set_context(tsk, context); 917 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 918 return 0; 919 } 920 921 static inline void audit_free_context(struct audit_context *context) 922 { 923 audit_free_names(context); 924 unroll_tree_refs(context, NULL, 0); 925 free_tree_refs(context); 926 audit_free_aux(context); 927 kfree(context->filterkey); 928 kfree(context->sockaddr); 929 audit_proctitle_free(context); 930 kfree(context); 931 } 932 933 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 934 kuid_t auid, kuid_t uid, unsigned int sessionid, 935 u32 sid, char *comm) 936 { 937 struct audit_buffer *ab; 938 char *ctx = NULL; 939 u32 len; 940 int rc = 0; 941 942 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 943 if (!ab) 944 return rc; 945 946 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 947 from_kuid(&init_user_ns, auid), 948 from_kuid(&init_user_ns, uid), sessionid); 949 if (sid) { 950 if (security_secid_to_secctx(sid, &ctx, &len)) { 951 audit_log_format(ab, " obj=(none)"); 952 rc = 1; 953 } else { 954 audit_log_format(ab, " obj=%s", ctx); 955 security_release_secctx(ctx, len); 956 } 957 } 958 audit_log_format(ab, " ocomm="); 959 audit_log_untrustedstring(ab, comm); 960 audit_log_end(ab); 961 962 return rc; 963 } 964 965 static void audit_log_execve_info(struct audit_context *context, 966 struct audit_buffer **ab) 967 { 968 long len_max; 969 long len_rem; 970 long len_full; 971 long len_buf; 972 long len_abuf = 0; 973 long len_tmp; 974 bool require_data; 975 bool encode; 976 unsigned int iter; 977 unsigned int arg; 978 char *buf_head; 979 char *buf; 980 const char __user *p = (const char __user *)current->mm->arg_start; 981 982 /* NOTE: this buffer needs to be large enough to hold all the non-arg 983 * data we put in the audit record for this argument (see the 984 * code below) ... at this point in time 96 is plenty */ 985 char abuf[96]; 986 987 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 988 * current value of 7500 is not as important as the fact that it 989 * is less than 8k, a setting of 7500 gives us plenty of wiggle 990 * room if we go over a little bit in the logging below */ 991 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 992 len_max = MAX_EXECVE_AUDIT_LEN; 993 994 /* scratch buffer to hold the userspace args */ 995 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 996 if (!buf_head) { 997 audit_panic("out of memory for argv string"); 998 return; 999 } 1000 buf = buf_head; 1001 1002 audit_log_format(*ab, "argc=%d", context->execve.argc); 1003 1004 len_rem = len_max; 1005 len_buf = 0; 1006 len_full = 0; 1007 require_data = true; 1008 encode = false; 1009 iter = 0; 1010 arg = 0; 1011 do { 1012 /* NOTE: we don't ever want to trust this value for anything 1013 * serious, but the audit record format insists we 1014 * provide an argument length for really long arguments, 1015 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1016 * to use strncpy_from_user() to obtain this value for 1017 * recording in the log, although we don't use it 1018 * anywhere here to avoid a double-fetch problem */ 1019 if (len_full == 0) 1020 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1021 1022 /* read more data from userspace */ 1023 if (require_data) { 1024 /* can we make more room in the buffer? */ 1025 if (buf != buf_head) { 1026 memmove(buf_head, buf, len_buf); 1027 buf = buf_head; 1028 } 1029 1030 /* fetch as much as we can of the argument */ 1031 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1032 len_max - len_buf); 1033 if (len_tmp == -EFAULT) { 1034 /* unable to copy from userspace */ 1035 send_sig(SIGKILL, current, 0); 1036 goto out; 1037 } else if (len_tmp == (len_max - len_buf)) { 1038 /* buffer is not large enough */ 1039 require_data = true; 1040 /* NOTE: if we are going to span multiple 1041 * buffers force the encoding so we stand 1042 * a chance at a sane len_full value and 1043 * consistent record encoding */ 1044 encode = true; 1045 len_full = len_full * 2; 1046 p += len_tmp; 1047 } else { 1048 require_data = false; 1049 if (!encode) 1050 encode = audit_string_contains_control( 1051 buf, len_tmp); 1052 /* try to use a trusted value for len_full */ 1053 if (len_full < len_max) 1054 len_full = (encode ? 1055 len_tmp * 2 : len_tmp); 1056 p += len_tmp + 1; 1057 } 1058 len_buf += len_tmp; 1059 buf_head[len_buf] = '\0'; 1060 1061 /* length of the buffer in the audit record? */ 1062 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1063 } 1064 1065 /* write as much as we can to the audit log */ 1066 if (len_buf >= 0) { 1067 /* NOTE: some magic numbers here - basically if we 1068 * can't fit a reasonable amount of data into the 1069 * existing audit buffer, flush it and start with 1070 * a new buffer */ 1071 if ((sizeof(abuf) + 8) > len_rem) { 1072 len_rem = len_max; 1073 audit_log_end(*ab); 1074 *ab = audit_log_start(context, 1075 GFP_KERNEL, AUDIT_EXECVE); 1076 if (!*ab) 1077 goto out; 1078 } 1079 1080 /* create the non-arg portion of the arg record */ 1081 len_tmp = 0; 1082 if (require_data || (iter > 0) || 1083 ((len_abuf + sizeof(abuf)) > len_rem)) { 1084 if (iter == 0) { 1085 len_tmp += snprintf(&abuf[len_tmp], 1086 sizeof(abuf) - len_tmp, 1087 " a%d_len=%lu", 1088 arg, len_full); 1089 } 1090 len_tmp += snprintf(&abuf[len_tmp], 1091 sizeof(abuf) - len_tmp, 1092 " a%d[%d]=", arg, iter++); 1093 } else 1094 len_tmp += snprintf(&abuf[len_tmp], 1095 sizeof(abuf) - len_tmp, 1096 " a%d=", arg); 1097 WARN_ON(len_tmp >= sizeof(abuf)); 1098 abuf[sizeof(abuf) - 1] = '\0'; 1099 1100 /* log the arg in the audit record */ 1101 audit_log_format(*ab, "%s", abuf); 1102 len_rem -= len_tmp; 1103 len_tmp = len_buf; 1104 if (encode) { 1105 if (len_abuf > len_rem) 1106 len_tmp = len_rem / 2; /* encoding */ 1107 audit_log_n_hex(*ab, buf, len_tmp); 1108 len_rem -= len_tmp * 2; 1109 len_abuf -= len_tmp * 2; 1110 } else { 1111 if (len_abuf > len_rem) 1112 len_tmp = len_rem - 2; /* quotes */ 1113 audit_log_n_string(*ab, buf, len_tmp); 1114 len_rem -= len_tmp + 2; 1115 /* don't subtract the "2" because we still need 1116 * to add quotes to the remaining string */ 1117 len_abuf -= len_tmp; 1118 } 1119 len_buf -= len_tmp; 1120 buf += len_tmp; 1121 } 1122 1123 /* ready to move to the next argument? */ 1124 if ((len_buf == 0) && !require_data) { 1125 arg++; 1126 iter = 0; 1127 len_full = 0; 1128 require_data = true; 1129 encode = false; 1130 } 1131 } while (arg < context->execve.argc); 1132 1133 /* NOTE: the caller handles the final audit_log_end() call */ 1134 1135 out: 1136 kfree(buf_head); 1137 } 1138 1139 static void show_special(struct audit_context *context, int *call_panic) 1140 { 1141 struct audit_buffer *ab; 1142 int i; 1143 1144 ab = audit_log_start(context, GFP_KERNEL, context->type); 1145 if (!ab) 1146 return; 1147 1148 switch (context->type) { 1149 case AUDIT_SOCKETCALL: { 1150 int nargs = context->socketcall.nargs; 1151 audit_log_format(ab, "nargs=%d", nargs); 1152 for (i = 0; i < nargs; i++) 1153 audit_log_format(ab, " a%d=%lx", i, 1154 context->socketcall.args[i]); 1155 break; } 1156 case AUDIT_IPC: { 1157 u32 osid = context->ipc.osid; 1158 1159 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1160 from_kuid(&init_user_ns, context->ipc.uid), 1161 from_kgid(&init_user_ns, context->ipc.gid), 1162 context->ipc.mode); 1163 if (osid) { 1164 char *ctx = NULL; 1165 u32 len; 1166 if (security_secid_to_secctx(osid, &ctx, &len)) { 1167 audit_log_format(ab, " osid=%u", osid); 1168 *call_panic = 1; 1169 } else { 1170 audit_log_format(ab, " obj=%s", ctx); 1171 security_release_secctx(ctx, len); 1172 } 1173 } 1174 if (context->ipc.has_perm) { 1175 audit_log_end(ab); 1176 ab = audit_log_start(context, GFP_KERNEL, 1177 AUDIT_IPC_SET_PERM); 1178 if (unlikely(!ab)) 1179 return; 1180 audit_log_format(ab, 1181 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1182 context->ipc.qbytes, 1183 context->ipc.perm_uid, 1184 context->ipc.perm_gid, 1185 context->ipc.perm_mode); 1186 } 1187 break; } 1188 case AUDIT_MQ_OPEN: 1189 audit_log_format(ab, 1190 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1191 "mq_msgsize=%ld mq_curmsgs=%ld", 1192 context->mq_open.oflag, context->mq_open.mode, 1193 context->mq_open.attr.mq_flags, 1194 context->mq_open.attr.mq_maxmsg, 1195 context->mq_open.attr.mq_msgsize, 1196 context->mq_open.attr.mq_curmsgs); 1197 break; 1198 case AUDIT_MQ_SENDRECV: 1199 audit_log_format(ab, 1200 "mqdes=%d msg_len=%zd msg_prio=%u " 1201 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1202 context->mq_sendrecv.mqdes, 1203 context->mq_sendrecv.msg_len, 1204 context->mq_sendrecv.msg_prio, 1205 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1206 context->mq_sendrecv.abs_timeout.tv_nsec); 1207 break; 1208 case AUDIT_MQ_NOTIFY: 1209 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1210 context->mq_notify.mqdes, 1211 context->mq_notify.sigev_signo); 1212 break; 1213 case AUDIT_MQ_GETSETATTR: { 1214 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1215 audit_log_format(ab, 1216 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1217 "mq_curmsgs=%ld ", 1218 context->mq_getsetattr.mqdes, 1219 attr->mq_flags, attr->mq_maxmsg, 1220 attr->mq_msgsize, attr->mq_curmsgs); 1221 break; } 1222 case AUDIT_CAPSET: 1223 audit_log_format(ab, "pid=%d", context->capset.pid); 1224 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1225 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1226 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1227 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1228 break; 1229 case AUDIT_MMAP: 1230 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1231 context->mmap.flags); 1232 break; 1233 case AUDIT_EXECVE: 1234 audit_log_execve_info(context, &ab); 1235 break; 1236 case AUDIT_KERN_MODULE: 1237 audit_log_format(ab, "name="); 1238 if (context->module.name) { 1239 audit_log_untrustedstring(ab, context->module.name); 1240 kfree(context->module.name); 1241 } else 1242 audit_log_format(ab, "(null)"); 1243 1244 break; 1245 } 1246 audit_log_end(ab); 1247 } 1248 1249 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1250 { 1251 char *end = proctitle + len - 1; 1252 while (end > proctitle && !isprint(*end)) 1253 end--; 1254 1255 /* catch the case where proctitle is only 1 non-print character */ 1256 len = end - proctitle + 1; 1257 len -= isprint(proctitle[len-1]) == 0; 1258 return len; 1259 } 1260 1261 static void audit_log_proctitle(void) 1262 { 1263 int res; 1264 char *buf; 1265 char *msg = "(null)"; 1266 int len = strlen(msg); 1267 struct audit_context *context = audit_context(); 1268 struct audit_buffer *ab; 1269 1270 if (!context || context->dummy) 1271 return; 1272 1273 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1274 if (!ab) 1275 return; /* audit_panic or being filtered */ 1276 1277 audit_log_format(ab, "proctitle="); 1278 1279 /* Not cached */ 1280 if (!context->proctitle.value) { 1281 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1282 if (!buf) 1283 goto out; 1284 /* Historically called this from procfs naming */ 1285 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1286 if (res == 0) { 1287 kfree(buf); 1288 goto out; 1289 } 1290 res = audit_proctitle_rtrim(buf, res); 1291 if (res == 0) { 1292 kfree(buf); 1293 goto out; 1294 } 1295 context->proctitle.value = buf; 1296 context->proctitle.len = res; 1297 } 1298 msg = context->proctitle.value; 1299 len = context->proctitle.len; 1300 out: 1301 audit_log_n_untrustedstring(ab, msg, len); 1302 audit_log_end(ab); 1303 } 1304 1305 static void audit_log_exit(void) 1306 { 1307 int i, call_panic = 0; 1308 struct audit_context *context = audit_context(); 1309 struct audit_buffer *ab; 1310 struct audit_aux_data *aux; 1311 struct audit_names *n; 1312 1313 context->personality = current->personality; 1314 1315 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1316 if (!ab) 1317 return; /* audit_panic has been called */ 1318 audit_log_format(ab, "arch=%x syscall=%d", 1319 context->arch, context->major); 1320 if (context->personality != PER_LINUX) 1321 audit_log_format(ab, " per=%lx", context->personality); 1322 if (context->return_valid) 1323 audit_log_format(ab, " success=%s exit=%ld", 1324 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1325 context->return_code); 1326 1327 audit_log_format(ab, 1328 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1329 context->argv[0], 1330 context->argv[1], 1331 context->argv[2], 1332 context->argv[3], 1333 context->name_count); 1334 1335 audit_log_task_info(ab); 1336 audit_log_key(ab, context->filterkey); 1337 audit_log_end(ab); 1338 1339 for (aux = context->aux; aux; aux = aux->next) { 1340 1341 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1342 if (!ab) 1343 continue; /* audit_panic has been called */ 1344 1345 switch (aux->type) { 1346 1347 case AUDIT_BPRM_FCAPS: { 1348 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1349 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1350 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1351 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1352 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1353 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1354 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1355 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1356 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1357 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1358 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1359 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1360 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1361 break; } 1362 1363 } 1364 audit_log_end(ab); 1365 } 1366 1367 if (context->type) 1368 show_special(context, &call_panic); 1369 1370 if (context->fds[0] >= 0) { 1371 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1372 if (ab) { 1373 audit_log_format(ab, "fd0=%d fd1=%d", 1374 context->fds[0], context->fds[1]); 1375 audit_log_end(ab); 1376 } 1377 } 1378 1379 if (context->sockaddr_len) { 1380 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1381 if (ab) { 1382 audit_log_format(ab, "saddr="); 1383 audit_log_n_hex(ab, (void *)context->sockaddr, 1384 context->sockaddr_len); 1385 audit_log_end(ab); 1386 } 1387 } 1388 1389 for (aux = context->aux_pids; aux; aux = aux->next) { 1390 struct audit_aux_data_pids *axs = (void *)aux; 1391 1392 for (i = 0; i < axs->pid_count; i++) 1393 if (audit_log_pid_context(context, axs->target_pid[i], 1394 axs->target_auid[i], 1395 axs->target_uid[i], 1396 axs->target_sessionid[i], 1397 axs->target_sid[i], 1398 axs->target_comm[i])) 1399 call_panic = 1; 1400 } 1401 1402 if (context->target_pid && 1403 audit_log_pid_context(context, context->target_pid, 1404 context->target_auid, context->target_uid, 1405 context->target_sessionid, 1406 context->target_sid, context->target_comm)) 1407 call_panic = 1; 1408 1409 if (context->pwd.dentry && context->pwd.mnt) { 1410 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1411 if (ab) { 1412 audit_log_d_path(ab, "cwd=", &context->pwd); 1413 audit_log_end(ab); 1414 } 1415 } 1416 1417 i = 0; 1418 list_for_each_entry(n, &context->names_list, list) { 1419 if (n->hidden) 1420 continue; 1421 audit_log_name(context, n, NULL, i++, &call_panic); 1422 } 1423 1424 audit_log_proctitle(); 1425 1426 /* Send end of event record to help user space know we are finished */ 1427 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1428 if (ab) 1429 audit_log_end(ab); 1430 if (call_panic) 1431 audit_panic("error converting sid to string"); 1432 } 1433 1434 /** 1435 * __audit_free - free a per-task audit context 1436 * @tsk: task whose audit context block to free 1437 * 1438 * Called from copy_process and do_exit 1439 */ 1440 void __audit_free(struct task_struct *tsk) 1441 { 1442 struct audit_context *context = tsk->audit_context; 1443 1444 if (!context) 1445 return; 1446 1447 /* We are called either by do_exit() or the fork() error handling code; 1448 * in the former case tsk == current and in the latter tsk is a 1449 * random task_struct that doesn't doesn't have any meaningful data we 1450 * need to log via audit_log_exit(). 1451 */ 1452 if (tsk == current && !context->dummy && context->in_syscall) { 1453 context->return_valid = 0; 1454 context->return_code = 0; 1455 1456 audit_filter_syscall(tsk, context, 1457 &audit_filter_list[AUDIT_FILTER_EXIT]); 1458 audit_filter_inodes(tsk, context); 1459 if (context->current_state == AUDIT_RECORD_CONTEXT) 1460 audit_log_exit(); 1461 } 1462 1463 if (!list_empty(&context->killed_trees)) 1464 audit_kill_trees(&context->killed_trees); 1465 1466 audit_set_context(tsk, NULL); 1467 audit_free_context(context); 1468 } 1469 1470 /** 1471 * __audit_syscall_entry - fill in an audit record at syscall entry 1472 * @major: major syscall type (function) 1473 * @a1: additional syscall register 1 1474 * @a2: additional syscall register 2 1475 * @a3: additional syscall register 3 1476 * @a4: additional syscall register 4 1477 * 1478 * Fill in audit context at syscall entry. This only happens if the 1479 * audit context was created when the task was created and the state or 1480 * filters demand the audit context be built. If the state from the 1481 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1482 * then the record will be written at syscall exit time (otherwise, it 1483 * will only be written if another part of the kernel requests that it 1484 * be written). 1485 */ 1486 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1487 unsigned long a3, unsigned long a4) 1488 { 1489 struct audit_context *context = audit_context(); 1490 enum audit_state state; 1491 1492 if (!audit_enabled || !context) 1493 return; 1494 1495 BUG_ON(context->in_syscall || context->name_count); 1496 1497 state = context->state; 1498 if (state == AUDIT_DISABLED) 1499 return; 1500 1501 context->dummy = !audit_n_rules; 1502 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1503 context->prio = 0; 1504 if (auditd_test_task(current)) 1505 return; 1506 } 1507 1508 context->arch = syscall_get_arch(); 1509 context->major = major; 1510 context->argv[0] = a1; 1511 context->argv[1] = a2; 1512 context->argv[2] = a3; 1513 context->argv[3] = a4; 1514 context->serial = 0; 1515 context->in_syscall = 1; 1516 context->current_state = state; 1517 context->ppid = 0; 1518 ktime_get_coarse_real_ts64(&context->ctime); 1519 } 1520 1521 /** 1522 * __audit_syscall_exit - deallocate audit context after a system call 1523 * @success: success value of the syscall 1524 * @return_code: return value of the syscall 1525 * 1526 * Tear down after system call. If the audit context has been marked as 1527 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1528 * filtering, or because some other part of the kernel wrote an audit 1529 * message), then write out the syscall information. In call cases, 1530 * free the names stored from getname(). 1531 */ 1532 void __audit_syscall_exit(int success, long return_code) 1533 { 1534 struct audit_context *context; 1535 1536 context = audit_context(); 1537 if (!context) 1538 return; 1539 1540 if (!context->dummy && context->in_syscall) { 1541 if (success) 1542 context->return_valid = AUDITSC_SUCCESS; 1543 else 1544 context->return_valid = AUDITSC_FAILURE; 1545 1546 /* 1547 * we need to fix up the return code in the audit logs if the 1548 * actual return codes are later going to be fixed up by the 1549 * arch specific signal handlers 1550 * 1551 * This is actually a test for: 1552 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1553 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1554 * 1555 * but is faster than a bunch of || 1556 */ 1557 if (unlikely(return_code <= -ERESTARTSYS) && 1558 (return_code >= -ERESTART_RESTARTBLOCK) && 1559 (return_code != -ENOIOCTLCMD)) 1560 context->return_code = -EINTR; 1561 else 1562 context->return_code = return_code; 1563 1564 audit_filter_syscall(current, context, 1565 &audit_filter_list[AUDIT_FILTER_EXIT]); 1566 audit_filter_inodes(current, context); 1567 if (context->current_state == AUDIT_RECORD_CONTEXT) 1568 audit_log_exit(); 1569 } 1570 1571 context->in_syscall = 0; 1572 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1573 1574 if (!list_empty(&context->killed_trees)) 1575 audit_kill_trees(&context->killed_trees); 1576 1577 audit_free_names(context); 1578 unroll_tree_refs(context, NULL, 0); 1579 audit_free_aux(context); 1580 context->aux = NULL; 1581 context->aux_pids = NULL; 1582 context->target_pid = 0; 1583 context->target_sid = 0; 1584 context->sockaddr_len = 0; 1585 context->type = 0; 1586 context->fds[0] = -1; 1587 if (context->state != AUDIT_RECORD_CONTEXT) { 1588 kfree(context->filterkey); 1589 context->filterkey = NULL; 1590 } 1591 } 1592 1593 static inline void handle_one(const struct inode *inode) 1594 { 1595 struct audit_context *context; 1596 struct audit_tree_refs *p; 1597 struct audit_chunk *chunk; 1598 int count; 1599 if (likely(!inode->i_fsnotify_marks)) 1600 return; 1601 context = audit_context(); 1602 p = context->trees; 1603 count = context->tree_count; 1604 rcu_read_lock(); 1605 chunk = audit_tree_lookup(inode); 1606 rcu_read_unlock(); 1607 if (!chunk) 1608 return; 1609 if (likely(put_tree_ref(context, chunk))) 1610 return; 1611 if (unlikely(!grow_tree_refs(context))) { 1612 pr_warn("out of memory, audit has lost a tree reference\n"); 1613 audit_set_auditable(context); 1614 audit_put_chunk(chunk); 1615 unroll_tree_refs(context, p, count); 1616 return; 1617 } 1618 put_tree_ref(context, chunk); 1619 } 1620 1621 static void handle_path(const struct dentry *dentry) 1622 { 1623 struct audit_context *context; 1624 struct audit_tree_refs *p; 1625 const struct dentry *d, *parent; 1626 struct audit_chunk *drop; 1627 unsigned long seq; 1628 int count; 1629 1630 context = audit_context(); 1631 p = context->trees; 1632 count = context->tree_count; 1633 retry: 1634 drop = NULL; 1635 d = dentry; 1636 rcu_read_lock(); 1637 seq = read_seqbegin(&rename_lock); 1638 for(;;) { 1639 struct inode *inode = d_backing_inode(d); 1640 if (inode && unlikely(inode->i_fsnotify_marks)) { 1641 struct audit_chunk *chunk; 1642 chunk = audit_tree_lookup(inode); 1643 if (chunk) { 1644 if (unlikely(!put_tree_ref(context, chunk))) { 1645 drop = chunk; 1646 break; 1647 } 1648 } 1649 } 1650 parent = d->d_parent; 1651 if (parent == d) 1652 break; 1653 d = parent; 1654 } 1655 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1656 rcu_read_unlock(); 1657 if (!drop) { 1658 /* just a race with rename */ 1659 unroll_tree_refs(context, p, count); 1660 goto retry; 1661 } 1662 audit_put_chunk(drop); 1663 if (grow_tree_refs(context)) { 1664 /* OK, got more space */ 1665 unroll_tree_refs(context, p, count); 1666 goto retry; 1667 } 1668 /* too bad */ 1669 pr_warn("out of memory, audit has lost a tree reference\n"); 1670 unroll_tree_refs(context, p, count); 1671 audit_set_auditable(context); 1672 return; 1673 } 1674 rcu_read_unlock(); 1675 } 1676 1677 static struct audit_names *audit_alloc_name(struct audit_context *context, 1678 unsigned char type) 1679 { 1680 struct audit_names *aname; 1681 1682 if (context->name_count < AUDIT_NAMES) { 1683 aname = &context->preallocated_names[context->name_count]; 1684 memset(aname, 0, sizeof(*aname)); 1685 } else { 1686 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1687 if (!aname) 1688 return NULL; 1689 aname->should_free = true; 1690 } 1691 1692 aname->ino = AUDIT_INO_UNSET; 1693 aname->type = type; 1694 list_add_tail(&aname->list, &context->names_list); 1695 1696 context->name_count++; 1697 return aname; 1698 } 1699 1700 /** 1701 * __audit_reusename - fill out filename with info from existing entry 1702 * @uptr: userland ptr to pathname 1703 * 1704 * Search the audit_names list for the current audit context. If there is an 1705 * existing entry with a matching "uptr" then return the filename 1706 * associated with that audit_name. If not, return NULL. 1707 */ 1708 struct filename * 1709 __audit_reusename(const __user char *uptr) 1710 { 1711 struct audit_context *context = audit_context(); 1712 struct audit_names *n; 1713 1714 list_for_each_entry(n, &context->names_list, list) { 1715 if (!n->name) 1716 continue; 1717 if (n->name->uptr == uptr) { 1718 n->name->refcnt++; 1719 return n->name; 1720 } 1721 } 1722 return NULL; 1723 } 1724 1725 /** 1726 * __audit_getname - add a name to the list 1727 * @name: name to add 1728 * 1729 * Add a name to the list of audit names for this context. 1730 * Called from fs/namei.c:getname(). 1731 */ 1732 void __audit_getname(struct filename *name) 1733 { 1734 struct audit_context *context = audit_context(); 1735 struct audit_names *n; 1736 1737 if (!context->in_syscall) 1738 return; 1739 1740 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1741 if (!n) 1742 return; 1743 1744 n->name = name; 1745 n->name_len = AUDIT_NAME_FULL; 1746 name->aname = n; 1747 name->refcnt++; 1748 1749 if (!context->pwd.dentry) 1750 get_fs_pwd(current->fs, &context->pwd); 1751 } 1752 1753 /** 1754 * __audit_inode - store the inode and device from a lookup 1755 * @name: name being audited 1756 * @dentry: dentry being audited 1757 * @flags: attributes for this particular entry 1758 */ 1759 void __audit_inode(struct filename *name, const struct dentry *dentry, 1760 unsigned int flags) 1761 { 1762 struct audit_context *context = audit_context(); 1763 struct inode *inode = d_backing_inode(dentry); 1764 struct audit_names *n; 1765 bool parent = flags & AUDIT_INODE_PARENT; 1766 1767 if (!context->in_syscall) 1768 return; 1769 1770 if (!name) 1771 goto out_alloc; 1772 1773 /* 1774 * If we have a pointer to an audit_names entry already, then we can 1775 * just use it directly if the type is correct. 1776 */ 1777 n = name->aname; 1778 if (n) { 1779 if (parent) { 1780 if (n->type == AUDIT_TYPE_PARENT || 1781 n->type == AUDIT_TYPE_UNKNOWN) 1782 goto out; 1783 } else { 1784 if (n->type != AUDIT_TYPE_PARENT) 1785 goto out; 1786 } 1787 } 1788 1789 list_for_each_entry_reverse(n, &context->names_list, list) { 1790 if (n->ino) { 1791 /* valid inode number, use that for the comparison */ 1792 if (n->ino != inode->i_ino || 1793 n->dev != inode->i_sb->s_dev) 1794 continue; 1795 } else if (n->name) { 1796 /* inode number has not been set, check the name */ 1797 if (strcmp(n->name->name, name->name)) 1798 continue; 1799 } else 1800 /* no inode and no name (?!) ... this is odd ... */ 1801 continue; 1802 1803 /* match the correct record type */ 1804 if (parent) { 1805 if (n->type == AUDIT_TYPE_PARENT || 1806 n->type == AUDIT_TYPE_UNKNOWN) 1807 goto out; 1808 } else { 1809 if (n->type != AUDIT_TYPE_PARENT) 1810 goto out; 1811 } 1812 } 1813 1814 out_alloc: 1815 /* unable to find an entry with both a matching name and type */ 1816 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1817 if (!n) 1818 return; 1819 if (name) { 1820 n->name = name; 1821 name->refcnt++; 1822 } 1823 1824 out: 1825 if (parent) { 1826 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1827 n->type = AUDIT_TYPE_PARENT; 1828 if (flags & AUDIT_INODE_HIDDEN) 1829 n->hidden = true; 1830 } else { 1831 n->name_len = AUDIT_NAME_FULL; 1832 n->type = AUDIT_TYPE_NORMAL; 1833 } 1834 handle_path(dentry); 1835 audit_copy_inode(n, dentry, inode); 1836 } 1837 1838 void __audit_file(const struct file *file) 1839 { 1840 __audit_inode(NULL, file->f_path.dentry, 0); 1841 } 1842 1843 /** 1844 * __audit_inode_child - collect inode info for created/removed objects 1845 * @parent: inode of dentry parent 1846 * @dentry: dentry being audited 1847 * @type: AUDIT_TYPE_* value that we're looking for 1848 * 1849 * For syscalls that create or remove filesystem objects, audit_inode 1850 * can only collect information for the filesystem object's parent. 1851 * This call updates the audit context with the child's information. 1852 * Syscalls that create a new filesystem object must be hooked after 1853 * the object is created. Syscalls that remove a filesystem object 1854 * must be hooked prior, in order to capture the target inode during 1855 * unsuccessful attempts. 1856 */ 1857 void __audit_inode_child(struct inode *parent, 1858 const struct dentry *dentry, 1859 const unsigned char type) 1860 { 1861 struct audit_context *context = audit_context(); 1862 struct inode *inode = d_backing_inode(dentry); 1863 const char *dname = dentry->d_name.name; 1864 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1865 struct audit_entry *e; 1866 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 1867 int i; 1868 1869 if (!context->in_syscall) 1870 return; 1871 1872 rcu_read_lock(); 1873 if (!list_empty(list)) { 1874 list_for_each_entry_rcu(e, list, list) { 1875 for (i = 0; i < e->rule.field_count; i++) { 1876 struct audit_field *f = &e->rule.fields[i]; 1877 1878 if (f->type == AUDIT_FSTYPE) { 1879 if (audit_comparator(parent->i_sb->s_magic, 1880 f->op, f->val)) { 1881 if (e->rule.action == AUDIT_NEVER) { 1882 rcu_read_unlock(); 1883 return; 1884 } 1885 } 1886 } 1887 } 1888 } 1889 } 1890 rcu_read_unlock(); 1891 1892 if (inode) 1893 handle_one(inode); 1894 1895 /* look for a parent entry first */ 1896 list_for_each_entry(n, &context->names_list, list) { 1897 if (!n->name || 1898 (n->type != AUDIT_TYPE_PARENT && 1899 n->type != AUDIT_TYPE_UNKNOWN)) 1900 continue; 1901 1902 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1903 !audit_compare_dname_path(dname, 1904 n->name->name, n->name_len)) { 1905 if (n->type == AUDIT_TYPE_UNKNOWN) 1906 n->type = AUDIT_TYPE_PARENT; 1907 found_parent = n; 1908 break; 1909 } 1910 } 1911 1912 /* is there a matching child entry? */ 1913 list_for_each_entry(n, &context->names_list, list) { 1914 /* can only match entries that have a name */ 1915 if (!n->name || 1916 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1917 continue; 1918 1919 if (!strcmp(dname, n->name->name) || 1920 !audit_compare_dname_path(dname, n->name->name, 1921 found_parent ? 1922 found_parent->name_len : 1923 AUDIT_NAME_FULL)) { 1924 if (n->type == AUDIT_TYPE_UNKNOWN) 1925 n->type = type; 1926 found_child = n; 1927 break; 1928 } 1929 } 1930 1931 if (!found_parent) { 1932 /* create a new, "anonymous" parent record */ 1933 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1934 if (!n) 1935 return; 1936 audit_copy_inode(n, NULL, parent); 1937 } 1938 1939 if (!found_child) { 1940 found_child = audit_alloc_name(context, type); 1941 if (!found_child) 1942 return; 1943 1944 /* Re-use the name belonging to the slot for a matching parent 1945 * directory. All names for this context are relinquished in 1946 * audit_free_names() */ 1947 if (found_parent) { 1948 found_child->name = found_parent->name; 1949 found_child->name_len = AUDIT_NAME_FULL; 1950 found_child->name->refcnt++; 1951 } 1952 } 1953 1954 if (inode) 1955 audit_copy_inode(found_child, dentry, inode); 1956 else 1957 found_child->ino = AUDIT_INO_UNSET; 1958 } 1959 EXPORT_SYMBOL_GPL(__audit_inode_child); 1960 1961 /** 1962 * auditsc_get_stamp - get local copies of audit_context values 1963 * @ctx: audit_context for the task 1964 * @t: timespec64 to store time recorded in the audit_context 1965 * @serial: serial value that is recorded in the audit_context 1966 * 1967 * Also sets the context as auditable. 1968 */ 1969 int auditsc_get_stamp(struct audit_context *ctx, 1970 struct timespec64 *t, unsigned int *serial) 1971 { 1972 if (!ctx->in_syscall) 1973 return 0; 1974 if (!ctx->serial) 1975 ctx->serial = audit_serial(); 1976 t->tv_sec = ctx->ctime.tv_sec; 1977 t->tv_nsec = ctx->ctime.tv_nsec; 1978 *serial = ctx->serial; 1979 if (!ctx->prio) { 1980 ctx->prio = 1; 1981 ctx->current_state = AUDIT_RECORD_CONTEXT; 1982 } 1983 return 1; 1984 } 1985 1986 /* global counter which is incremented every time something logs in */ 1987 static atomic_t session_id = ATOMIC_INIT(0); 1988 1989 static int audit_set_loginuid_perm(kuid_t loginuid) 1990 { 1991 /* if we are unset, we don't need privs */ 1992 if (!audit_loginuid_set(current)) 1993 return 0; 1994 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1995 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1996 return -EPERM; 1997 /* it is set, you need permission */ 1998 if (!capable(CAP_AUDIT_CONTROL)) 1999 return -EPERM; 2000 /* reject if this is not an unset and we don't allow that */ 2001 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 2002 return -EPERM; 2003 return 0; 2004 } 2005 2006 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2007 unsigned int oldsessionid, unsigned int sessionid, 2008 int rc) 2009 { 2010 struct audit_buffer *ab; 2011 uid_t uid, oldloginuid, loginuid; 2012 struct tty_struct *tty; 2013 2014 if (!audit_enabled) 2015 return; 2016 2017 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2018 if (!ab) 2019 return; 2020 2021 uid = from_kuid(&init_user_ns, task_uid(current)); 2022 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2023 loginuid = from_kuid(&init_user_ns, kloginuid), 2024 tty = audit_get_tty(); 2025 2026 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2027 audit_log_task_context(ab); 2028 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2029 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2030 oldsessionid, sessionid, !rc); 2031 audit_put_tty(tty); 2032 audit_log_end(ab); 2033 } 2034 2035 /** 2036 * audit_set_loginuid - set current task's audit_context loginuid 2037 * @loginuid: loginuid value 2038 * 2039 * Returns 0. 2040 * 2041 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2042 */ 2043 int audit_set_loginuid(kuid_t loginuid) 2044 { 2045 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2046 kuid_t oldloginuid; 2047 int rc; 2048 2049 oldloginuid = audit_get_loginuid(current); 2050 oldsessionid = audit_get_sessionid(current); 2051 2052 rc = audit_set_loginuid_perm(loginuid); 2053 if (rc) 2054 goto out; 2055 2056 /* are we setting or clearing? */ 2057 if (uid_valid(loginuid)) { 2058 sessionid = (unsigned int)atomic_inc_return(&session_id); 2059 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2060 sessionid = (unsigned int)atomic_inc_return(&session_id); 2061 } 2062 2063 current->sessionid = sessionid; 2064 current->loginuid = loginuid; 2065 out: 2066 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2067 return rc; 2068 } 2069 2070 /** 2071 * __audit_mq_open - record audit data for a POSIX MQ open 2072 * @oflag: open flag 2073 * @mode: mode bits 2074 * @attr: queue attributes 2075 * 2076 */ 2077 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2078 { 2079 struct audit_context *context = audit_context(); 2080 2081 if (attr) 2082 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2083 else 2084 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2085 2086 context->mq_open.oflag = oflag; 2087 context->mq_open.mode = mode; 2088 2089 context->type = AUDIT_MQ_OPEN; 2090 } 2091 2092 /** 2093 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2094 * @mqdes: MQ descriptor 2095 * @msg_len: Message length 2096 * @msg_prio: Message priority 2097 * @abs_timeout: Message timeout in absolute time 2098 * 2099 */ 2100 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2101 const struct timespec64 *abs_timeout) 2102 { 2103 struct audit_context *context = audit_context(); 2104 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2105 2106 if (abs_timeout) 2107 memcpy(p, abs_timeout, sizeof(*p)); 2108 else 2109 memset(p, 0, sizeof(*p)); 2110 2111 context->mq_sendrecv.mqdes = mqdes; 2112 context->mq_sendrecv.msg_len = msg_len; 2113 context->mq_sendrecv.msg_prio = msg_prio; 2114 2115 context->type = AUDIT_MQ_SENDRECV; 2116 } 2117 2118 /** 2119 * __audit_mq_notify - record audit data for a POSIX MQ notify 2120 * @mqdes: MQ descriptor 2121 * @notification: Notification event 2122 * 2123 */ 2124 2125 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2126 { 2127 struct audit_context *context = audit_context(); 2128 2129 if (notification) 2130 context->mq_notify.sigev_signo = notification->sigev_signo; 2131 else 2132 context->mq_notify.sigev_signo = 0; 2133 2134 context->mq_notify.mqdes = mqdes; 2135 context->type = AUDIT_MQ_NOTIFY; 2136 } 2137 2138 /** 2139 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2140 * @mqdes: MQ descriptor 2141 * @mqstat: MQ flags 2142 * 2143 */ 2144 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2145 { 2146 struct audit_context *context = audit_context(); 2147 context->mq_getsetattr.mqdes = mqdes; 2148 context->mq_getsetattr.mqstat = *mqstat; 2149 context->type = AUDIT_MQ_GETSETATTR; 2150 } 2151 2152 /** 2153 * __audit_ipc_obj - record audit data for ipc object 2154 * @ipcp: ipc permissions 2155 * 2156 */ 2157 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2158 { 2159 struct audit_context *context = audit_context(); 2160 context->ipc.uid = ipcp->uid; 2161 context->ipc.gid = ipcp->gid; 2162 context->ipc.mode = ipcp->mode; 2163 context->ipc.has_perm = 0; 2164 security_ipc_getsecid(ipcp, &context->ipc.osid); 2165 context->type = AUDIT_IPC; 2166 } 2167 2168 /** 2169 * __audit_ipc_set_perm - record audit data for new ipc permissions 2170 * @qbytes: msgq bytes 2171 * @uid: msgq user id 2172 * @gid: msgq group id 2173 * @mode: msgq mode (permissions) 2174 * 2175 * Called only after audit_ipc_obj(). 2176 */ 2177 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2178 { 2179 struct audit_context *context = audit_context(); 2180 2181 context->ipc.qbytes = qbytes; 2182 context->ipc.perm_uid = uid; 2183 context->ipc.perm_gid = gid; 2184 context->ipc.perm_mode = mode; 2185 context->ipc.has_perm = 1; 2186 } 2187 2188 void __audit_bprm(struct linux_binprm *bprm) 2189 { 2190 struct audit_context *context = audit_context(); 2191 2192 context->type = AUDIT_EXECVE; 2193 context->execve.argc = bprm->argc; 2194 } 2195 2196 2197 /** 2198 * __audit_socketcall - record audit data for sys_socketcall 2199 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2200 * @args: args array 2201 * 2202 */ 2203 int __audit_socketcall(int nargs, unsigned long *args) 2204 { 2205 struct audit_context *context = audit_context(); 2206 2207 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2208 return -EINVAL; 2209 context->type = AUDIT_SOCKETCALL; 2210 context->socketcall.nargs = nargs; 2211 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2212 return 0; 2213 } 2214 2215 /** 2216 * __audit_fd_pair - record audit data for pipe and socketpair 2217 * @fd1: the first file descriptor 2218 * @fd2: the second file descriptor 2219 * 2220 */ 2221 void __audit_fd_pair(int fd1, int fd2) 2222 { 2223 struct audit_context *context = audit_context(); 2224 context->fds[0] = fd1; 2225 context->fds[1] = fd2; 2226 } 2227 2228 /** 2229 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2230 * @len: data length in user space 2231 * @a: data address in kernel space 2232 * 2233 * Returns 0 for success or NULL context or < 0 on error. 2234 */ 2235 int __audit_sockaddr(int len, void *a) 2236 { 2237 struct audit_context *context = audit_context(); 2238 2239 if (!context->sockaddr) { 2240 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2241 if (!p) 2242 return -ENOMEM; 2243 context->sockaddr = p; 2244 } 2245 2246 context->sockaddr_len = len; 2247 memcpy(context->sockaddr, a, len); 2248 return 0; 2249 } 2250 2251 void __audit_ptrace(struct task_struct *t) 2252 { 2253 struct audit_context *context = audit_context(); 2254 2255 context->target_pid = task_tgid_nr(t); 2256 context->target_auid = audit_get_loginuid(t); 2257 context->target_uid = task_uid(t); 2258 context->target_sessionid = audit_get_sessionid(t); 2259 security_task_getsecid(t, &context->target_sid); 2260 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2261 } 2262 2263 /** 2264 * audit_signal_info - record signal info for shutting down audit subsystem 2265 * @sig: signal value 2266 * @t: task being signaled 2267 * 2268 * If the audit subsystem is being terminated, record the task (pid) 2269 * and uid that is doing that. 2270 */ 2271 int audit_signal_info(int sig, struct task_struct *t) 2272 { 2273 struct audit_aux_data_pids *axp; 2274 struct audit_context *ctx = audit_context(); 2275 kuid_t uid = current_uid(), auid, t_uid = task_uid(t); 2276 2277 if (auditd_test_task(t) && 2278 (sig == SIGTERM || sig == SIGHUP || 2279 sig == SIGUSR1 || sig == SIGUSR2)) { 2280 audit_sig_pid = task_tgid_nr(current); 2281 auid = audit_get_loginuid(current); 2282 if (uid_valid(auid)) 2283 audit_sig_uid = auid; 2284 else 2285 audit_sig_uid = uid; 2286 security_task_getsecid(current, &audit_sig_sid); 2287 } 2288 2289 if (!audit_signals || audit_dummy_context()) 2290 return 0; 2291 2292 /* optimize the common case by putting first signal recipient directly 2293 * in audit_context */ 2294 if (!ctx->target_pid) { 2295 ctx->target_pid = task_tgid_nr(t); 2296 ctx->target_auid = audit_get_loginuid(t); 2297 ctx->target_uid = t_uid; 2298 ctx->target_sessionid = audit_get_sessionid(t); 2299 security_task_getsecid(t, &ctx->target_sid); 2300 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2301 return 0; 2302 } 2303 2304 axp = (void *)ctx->aux_pids; 2305 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2306 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2307 if (!axp) 2308 return -ENOMEM; 2309 2310 axp->d.type = AUDIT_OBJ_PID; 2311 axp->d.next = ctx->aux_pids; 2312 ctx->aux_pids = (void *)axp; 2313 } 2314 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2315 2316 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2317 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2318 axp->target_uid[axp->pid_count] = t_uid; 2319 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2320 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2321 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2322 axp->pid_count++; 2323 2324 return 0; 2325 } 2326 2327 /** 2328 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2329 * @bprm: pointer to the bprm being processed 2330 * @new: the proposed new credentials 2331 * @old: the old credentials 2332 * 2333 * Simply check if the proc already has the caps given by the file and if not 2334 * store the priv escalation info for later auditing at the end of the syscall 2335 * 2336 * -Eric 2337 */ 2338 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2339 const struct cred *new, const struct cred *old) 2340 { 2341 struct audit_aux_data_bprm_fcaps *ax; 2342 struct audit_context *context = audit_context(); 2343 struct cpu_vfs_cap_data vcaps; 2344 2345 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2346 if (!ax) 2347 return -ENOMEM; 2348 2349 ax->d.type = AUDIT_BPRM_FCAPS; 2350 ax->d.next = context->aux; 2351 context->aux = (void *)ax; 2352 2353 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2354 2355 ax->fcap.permitted = vcaps.permitted; 2356 ax->fcap.inheritable = vcaps.inheritable; 2357 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2358 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2359 2360 ax->old_pcap.permitted = old->cap_permitted; 2361 ax->old_pcap.inheritable = old->cap_inheritable; 2362 ax->old_pcap.effective = old->cap_effective; 2363 ax->old_pcap.ambient = old->cap_ambient; 2364 2365 ax->new_pcap.permitted = new->cap_permitted; 2366 ax->new_pcap.inheritable = new->cap_inheritable; 2367 ax->new_pcap.effective = new->cap_effective; 2368 ax->new_pcap.ambient = new->cap_ambient; 2369 return 0; 2370 } 2371 2372 /** 2373 * __audit_log_capset - store information about the arguments to the capset syscall 2374 * @new: the new credentials 2375 * @old: the old (current) credentials 2376 * 2377 * Record the arguments userspace sent to sys_capset for later printing by the 2378 * audit system if applicable 2379 */ 2380 void __audit_log_capset(const struct cred *new, const struct cred *old) 2381 { 2382 struct audit_context *context = audit_context(); 2383 context->capset.pid = task_tgid_nr(current); 2384 context->capset.cap.effective = new->cap_effective; 2385 context->capset.cap.inheritable = new->cap_effective; 2386 context->capset.cap.permitted = new->cap_permitted; 2387 context->capset.cap.ambient = new->cap_ambient; 2388 context->type = AUDIT_CAPSET; 2389 } 2390 2391 void __audit_mmap_fd(int fd, int flags) 2392 { 2393 struct audit_context *context = audit_context(); 2394 context->mmap.fd = fd; 2395 context->mmap.flags = flags; 2396 context->type = AUDIT_MMAP; 2397 } 2398 2399 void __audit_log_kern_module(char *name) 2400 { 2401 struct audit_context *context = audit_context(); 2402 2403 context->module.name = kstrdup(name, GFP_KERNEL); 2404 if (!context->module.name) 2405 audit_log_lost("out of memory in __audit_log_kern_module"); 2406 context->type = AUDIT_KERN_MODULE; 2407 } 2408 2409 void __audit_fanotify(unsigned int response) 2410 { 2411 audit_log(audit_context(), GFP_KERNEL, 2412 AUDIT_FANOTIFY, "resp=%u", response); 2413 } 2414 2415 static void audit_log_task(struct audit_buffer *ab) 2416 { 2417 kuid_t auid, uid; 2418 kgid_t gid; 2419 unsigned int sessionid; 2420 char comm[sizeof(current->comm)]; 2421 2422 auid = audit_get_loginuid(current); 2423 sessionid = audit_get_sessionid(current); 2424 current_uid_gid(&uid, &gid); 2425 2426 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2427 from_kuid(&init_user_ns, auid), 2428 from_kuid(&init_user_ns, uid), 2429 from_kgid(&init_user_ns, gid), 2430 sessionid); 2431 audit_log_task_context(ab); 2432 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2433 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2434 audit_log_d_path_exe(ab, current->mm); 2435 } 2436 2437 /** 2438 * audit_core_dumps - record information about processes that end abnormally 2439 * @signr: signal value 2440 * 2441 * If a process ends with a core dump, something fishy is going on and we 2442 * should record the event for investigation. 2443 */ 2444 void audit_core_dumps(long signr) 2445 { 2446 struct audit_buffer *ab; 2447 2448 if (!audit_enabled) 2449 return; 2450 2451 if (signr == SIGQUIT) /* don't care for those */ 2452 return; 2453 2454 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2455 if (unlikely(!ab)) 2456 return; 2457 audit_log_task(ab); 2458 audit_log_format(ab, " sig=%ld res=1", signr); 2459 audit_log_end(ab); 2460 } 2461 2462 /** 2463 * audit_seccomp - record information about a seccomp action 2464 * @syscall: syscall number 2465 * @signr: signal value 2466 * @code: the seccomp action 2467 * 2468 * Record the information associated with a seccomp action. Event filtering for 2469 * seccomp actions that are not to be logged is done in seccomp_log(). 2470 * Therefore, this function forces auditing independent of the audit_enabled 2471 * and dummy context state because seccomp actions should be logged even when 2472 * audit is not in use. 2473 */ 2474 void audit_seccomp(unsigned long syscall, long signr, int code) 2475 { 2476 struct audit_buffer *ab; 2477 2478 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2479 if (unlikely(!ab)) 2480 return; 2481 audit_log_task(ab); 2482 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2483 signr, syscall_get_arch(), syscall, 2484 in_compat_syscall(), KSTK_EIP(current), code); 2485 audit_log_end(ab); 2486 } 2487 2488 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2489 int res) 2490 { 2491 struct audit_buffer *ab; 2492 2493 if (!audit_enabled) 2494 return; 2495 2496 ab = audit_log_start(audit_context(), GFP_KERNEL, 2497 AUDIT_CONFIG_CHANGE); 2498 if (unlikely(!ab)) 2499 return; 2500 2501 audit_log_format(ab, 2502 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2503 names, old_names, res); 2504 audit_log_end(ab); 2505 } 2506 2507 struct list_head *audit_killed_trees(void) 2508 { 2509 struct audit_context *ctx = audit_context(); 2510 if (likely(!ctx || !ctx->in_syscall)) 2511 return NULL; 2512 return &ctx->killed_trees; 2513 } 2514