1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 68 69 #include "audit.h" 70 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 75 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_aux_data { 90 struct audit_aux_data *next; 91 int type; 92 }; 93 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 96 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 106 }; 107 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 114 }; 115 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 119 }; 120 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 123 const char *s; 124 }; 125 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 147 }; 148 149 static int audit_match_perm(struct audit_context *ctx, int mask) 150 { 151 unsigned n; 152 153 if (unlikely(!ctx)) 154 return 0; 155 n = ctx->major; 156 157 switch (audit_classify_syscall(ctx->arch, n)) { 158 case AUDITSC_NATIVE: 159 if ((mask & AUDIT_PERM_WRITE) && 160 audit_match_class(AUDIT_CLASS_WRITE, n)) 161 return 1; 162 if ((mask & AUDIT_PERM_READ) && 163 audit_match_class(AUDIT_CLASS_READ, n)) 164 return 1; 165 if ((mask & AUDIT_PERM_ATTR) && 166 audit_match_class(AUDIT_CLASS_CHATTR, n)) 167 return 1; 168 return 0; 169 case AUDITSC_COMPAT: /* 32bit on biarch */ 170 if ((mask & AUDIT_PERM_WRITE) && 171 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 172 return 1; 173 if ((mask & AUDIT_PERM_READ) && 174 audit_match_class(AUDIT_CLASS_READ_32, n)) 175 return 1; 176 if ((mask & AUDIT_PERM_ATTR) && 177 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 178 return 1; 179 return 0; 180 case AUDITSC_OPEN: 181 return mask & ACC_MODE(ctx->argv[1]); 182 case AUDITSC_OPENAT: 183 return mask & ACC_MODE(ctx->argv[2]); 184 case AUDITSC_SOCKETCALL: 185 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 186 case AUDITSC_EXECVE: 187 return mask & AUDIT_PERM_EXEC; 188 case AUDITSC_OPENAT2: 189 return mask & ACC_MODE((u32)ctx->openat2.flags); 190 default: 191 return 0; 192 } 193 } 194 195 static int audit_match_filetype(struct audit_context *ctx, int val) 196 { 197 struct audit_names *n; 198 umode_t mode = (umode_t)val; 199 200 if (unlikely(!ctx)) 201 return 0; 202 203 list_for_each_entry(n, &ctx->names_list, list) { 204 if ((n->ino != AUDIT_INO_UNSET) && 205 ((n->mode & S_IFMT) == mode)) 206 return 1; 207 } 208 209 return 0; 210 } 211 212 /* 213 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 214 * ->first_trees points to its beginning, ->trees - to the current end of data. 215 * ->tree_count is the number of free entries in array pointed to by ->trees. 216 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 217 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 218 * it's going to remain 1-element for almost any setup) until we free context itself. 219 * References in it _are_ dropped - at the same time we free/drop aux stuff. 220 */ 221 222 static void audit_set_auditable(struct audit_context *ctx) 223 { 224 if (!ctx->prio) { 225 ctx->prio = 1; 226 ctx->current_state = AUDIT_STATE_RECORD; 227 } 228 } 229 230 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 231 { 232 struct audit_tree_refs *p = ctx->trees; 233 int left = ctx->tree_count; 234 235 if (likely(left)) { 236 p->c[--left] = chunk; 237 ctx->tree_count = left; 238 return 1; 239 } 240 if (!p) 241 return 0; 242 p = p->next; 243 if (p) { 244 p->c[30] = chunk; 245 ctx->trees = p; 246 ctx->tree_count = 30; 247 return 1; 248 } 249 return 0; 250 } 251 252 static int grow_tree_refs(struct audit_context *ctx) 253 { 254 struct audit_tree_refs *p = ctx->trees; 255 256 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 257 if (!ctx->trees) { 258 ctx->trees = p; 259 return 0; 260 } 261 if (p) 262 p->next = ctx->trees; 263 else 264 ctx->first_trees = ctx->trees; 265 ctx->tree_count = 31; 266 return 1; 267 } 268 269 static void unroll_tree_refs(struct audit_context *ctx, 270 struct audit_tree_refs *p, int count) 271 { 272 struct audit_tree_refs *q; 273 int n; 274 275 if (!p) { 276 /* we started with empty chain */ 277 p = ctx->first_trees; 278 count = 31; 279 /* if the very first allocation has failed, nothing to do */ 280 if (!p) 281 return; 282 } 283 n = count; 284 for (q = p; q != ctx->trees; q = q->next, n = 31) { 285 while (n--) { 286 audit_put_chunk(q->c[n]); 287 q->c[n] = NULL; 288 } 289 } 290 while (n-- > ctx->tree_count) { 291 audit_put_chunk(q->c[n]); 292 q->c[n] = NULL; 293 } 294 ctx->trees = p; 295 ctx->tree_count = count; 296 } 297 298 static void free_tree_refs(struct audit_context *ctx) 299 { 300 struct audit_tree_refs *p, *q; 301 302 for (p = ctx->first_trees; p; p = q) { 303 q = p->next; 304 kfree(p); 305 } 306 } 307 308 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 309 { 310 struct audit_tree_refs *p; 311 int n; 312 313 if (!tree) 314 return 0; 315 /* full ones */ 316 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 317 for (n = 0; n < 31; n++) 318 if (audit_tree_match(p->c[n], tree)) 319 return 1; 320 } 321 /* partial */ 322 if (p) { 323 for (n = ctx->tree_count; n < 31; n++) 324 if (audit_tree_match(p->c[n], tree)) 325 return 1; 326 } 327 return 0; 328 } 329 330 static int audit_compare_uid(kuid_t uid, 331 struct audit_names *name, 332 struct audit_field *f, 333 struct audit_context *ctx) 334 { 335 struct audit_names *n; 336 int rc; 337 338 if (name) { 339 rc = audit_uid_comparator(uid, f->op, name->uid); 340 if (rc) 341 return rc; 342 } 343 344 if (ctx) { 345 list_for_each_entry(n, &ctx->names_list, list) { 346 rc = audit_uid_comparator(uid, f->op, n->uid); 347 if (rc) 348 return rc; 349 } 350 } 351 return 0; 352 } 353 354 static int audit_compare_gid(kgid_t gid, 355 struct audit_names *name, 356 struct audit_field *f, 357 struct audit_context *ctx) 358 { 359 struct audit_names *n; 360 int rc; 361 362 if (name) { 363 rc = audit_gid_comparator(gid, f->op, name->gid); 364 if (rc) 365 return rc; 366 } 367 368 if (ctx) { 369 list_for_each_entry(n, &ctx->names_list, list) { 370 rc = audit_gid_comparator(gid, f->op, n->gid); 371 if (rc) 372 return rc; 373 } 374 } 375 return 0; 376 } 377 378 static int audit_field_compare(struct task_struct *tsk, 379 const struct cred *cred, 380 struct audit_field *f, 381 struct audit_context *ctx, 382 struct audit_names *name) 383 { 384 switch (f->val) { 385 /* process to file object comparisons */ 386 case AUDIT_COMPARE_UID_TO_OBJ_UID: 387 return audit_compare_uid(cred->uid, name, f, ctx); 388 case AUDIT_COMPARE_GID_TO_OBJ_GID: 389 return audit_compare_gid(cred->gid, name, f, ctx); 390 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 391 return audit_compare_uid(cred->euid, name, f, ctx); 392 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 393 return audit_compare_gid(cred->egid, name, f, ctx); 394 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 395 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 396 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 397 return audit_compare_uid(cred->suid, name, f, ctx); 398 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 399 return audit_compare_gid(cred->sgid, name, f, ctx); 400 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 401 return audit_compare_uid(cred->fsuid, name, f, ctx); 402 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 403 return audit_compare_gid(cred->fsgid, name, f, ctx); 404 /* uid comparisons */ 405 case AUDIT_COMPARE_UID_TO_AUID: 406 return audit_uid_comparator(cred->uid, f->op, 407 audit_get_loginuid(tsk)); 408 case AUDIT_COMPARE_UID_TO_EUID: 409 return audit_uid_comparator(cred->uid, f->op, cred->euid); 410 case AUDIT_COMPARE_UID_TO_SUID: 411 return audit_uid_comparator(cred->uid, f->op, cred->suid); 412 case AUDIT_COMPARE_UID_TO_FSUID: 413 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 414 /* auid comparisons */ 415 case AUDIT_COMPARE_AUID_TO_EUID: 416 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 417 cred->euid); 418 case AUDIT_COMPARE_AUID_TO_SUID: 419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 420 cred->suid); 421 case AUDIT_COMPARE_AUID_TO_FSUID: 422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 423 cred->fsuid); 424 /* euid comparisons */ 425 case AUDIT_COMPARE_EUID_TO_SUID: 426 return audit_uid_comparator(cred->euid, f->op, cred->suid); 427 case AUDIT_COMPARE_EUID_TO_FSUID: 428 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 429 /* suid comparisons */ 430 case AUDIT_COMPARE_SUID_TO_FSUID: 431 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 432 /* gid comparisons */ 433 case AUDIT_COMPARE_GID_TO_EGID: 434 return audit_gid_comparator(cred->gid, f->op, cred->egid); 435 case AUDIT_COMPARE_GID_TO_SGID: 436 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 437 case AUDIT_COMPARE_GID_TO_FSGID: 438 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 439 /* egid comparisons */ 440 case AUDIT_COMPARE_EGID_TO_SGID: 441 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 442 case AUDIT_COMPARE_EGID_TO_FSGID: 443 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 444 /* sgid comparison */ 445 case AUDIT_COMPARE_SGID_TO_FSGID: 446 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 447 default: 448 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 449 return 0; 450 } 451 return 0; 452 } 453 454 /* Determine if any context name data matches a rule's watch data */ 455 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 456 * otherwise. 457 * 458 * If task_creation is true, this is an explicit indication that we are 459 * filtering a task rule at task creation time. This and tsk == current are 460 * the only situations where tsk->cred may be accessed without an rcu read lock. 461 */ 462 static int audit_filter_rules(struct task_struct *tsk, 463 struct audit_krule *rule, 464 struct audit_context *ctx, 465 struct audit_names *name, 466 enum audit_state *state, 467 bool task_creation) 468 { 469 const struct cred *cred; 470 int i, need_sid = 1; 471 u32 sid; 472 unsigned int sessionid; 473 474 if (ctx && rule->prio <= ctx->prio) 475 return 0; 476 477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 478 479 for (i = 0; i < rule->field_count; i++) { 480 struct audit_field *f = &rule->fields[i]; 481 struct audit_names *n; 482 int result = 0; 483 pid_t pid; 484 485 switch (f->type) { 486 case AUDIT_PID: 487 pid = task_tgid_nr(tsk); 488 result = audit_comparator(pid, f->op, f->val); 489 break; 490 case AUDIT_PPID: 491 if (ctx) { 492 if (!ctx->ppid) 493 ctx->ppid = task_ppid_nr(tsk); 494 result = audit_comparator(ctx->ppid, f->op, f->val); 495 } 496 break; 497 case AUDIT_EXE: 498 result = audit_exe_compare(tsk, rule->exe); 499 if (f->op == Audit_not_equal) 500 result = !result; 501 break; 502 case AUDIT_UID: 503 result = audit_uid_comparator(cred->uid, f->op, f->uid); 504 break; 505 case AUDIT_EUID: 506 result = audit_uid_comparator(cred->euid, f->op, f->uid); 507 break; 508 case AUDIT_SUID: 509 result = audit_uid_comparator(cred->suid, f->op, f->uid); 510 break; 511 case AUDIT_FSUID: 512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 513 break; 514 case AUDIT_GID: 515 result = audit_gid_comparator(cred->gid, f->op, f->gid); 516 if (f->op == Audit_equal) { 517 if (!result) 518 result = groups_search(cred->group_info, f->gid); 519 } else if (f->op == Audit_not_equal) { 520 if (result) 521 result = !groups_search(cred->group_info, f->gid); 522 } 523 break; 524 case AUDIT_EGID: 525 result = audit_gid_comparator(cred->egid, f->op, f->gid); 526 if (f->op == Audit_equal) { 527 if (!result) 528 result = groups_search(cred->group_info, f->gid); 529 } else if (f->op == Audit_not_equal) { 530 if (result) 531 result = !groups_search(cred->group_info, f->gid); 532 } 533 break; 534 case AUDIT_SGID: 535 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 536 break; 537 case AUDIT_FSGID: 538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 539 break; 540 case AUDIT_SESSIONID: 541 sessionid = audit_get_sessionid(tsk); 542 result = audit_comparator(sessionid, f->op, f->val); 543 break; 544 case AUDIT_PERS: 545 result = audit_comparator(tsk->personality, f->op, f->val); 546 break; 547 case AUDIT_ARCH: 548 if (ctx) 549 result = audit_comparator(ctx->arch, f->op, f->val); 550 break; 551 552 case AUDIT_EXIT: 553 if (ctx && ctx->return_valid != AUDITSC_INVALID) 554 result = audit_comparator(ctx->return_code, f->op, f->val); 555 break; 556 case AUDIT_SUCCESS: 557 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 558 if (f->val) 559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 560 else 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 562 } 563 break; 564 case AUDIT_DEVMAJOR: 565 if (name) { 566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 567 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 568 ++result; 569 } else if (ctx) { 570 list_for_each_entry(n, &ctx->names_list, list) { 571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_DEVMINOR: 580 if (name) { 581 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 582 audit_comparator(MINOR(name->rdev), f->op, f->val)) 583 ++result; 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 587 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 588 ++result; 589 break; 590 } 591 } 592 } 593 break; 594 case AUDIT_INODE: 595 if (name) 596 result = audit_comparator(name->ino, f->op, f->val); 597 else if (ctx) { 598 list_for_each_entry(n, &ctx->names_list, list) { 599 if (audit_comparator(n->ino, f->op, f->val)) { 600 ++result; 601 break; 602 } 603 } 604 } 605 break; 606 case AUDIT_OBJ_UID: 607 if (name) { 608 result = audit_uid_comparator(name->uid, f->op, f->uid); 609 } else if (ctx) { 610 list_for_each_entry(n, &ctx->names_list, list) { 611 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 612 ++result; 613 break; 614 } 615 } 616 } 617 break; 618 case AUDIT_OBJ_GID: 619 if (name) { 620 result = audit_gid_comparator(name->gid, f->op, f->gid); 621 } else if (ctx) { 622 list_for_each_entry(n, &ctx->names_list, list) { 623 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 624 ++result; 625 break; 626 } 627 } 628 } 629 break; 630 case AUDIT_WATCH: 631 if (name) { 632 result = audit_watch_compare(rule->watch, 633 name->ino, 634 name->dev); 635 if (f->op == Audit_not_equal) 636 result = !result; 637 } 638 break; 639 case AUDIT_DIR: 640 if (ctx) { 641 result = match_tree_refs(ctx, rule->tree); 642 if (f->op == Audit_not_equal) 643 result = !result; 644 } 645 break; 646 case AUDIT_LOGINUID: 647 result = audit_uid_comparator(audit_get_loginuid(tsk), 648 f->op, f->uid); 649 break; 650 case AUDIT_LOGINUID_SET: 651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 652 break; 653 case AUDIT_SADDR_FAM: 654 if (ctx && ctx->sockaddr) 655 result = audit_comparator(ctx->sockaddr->ss_family, 656 f->op, f->val); 657 break; 658 case AUDIT_SUBJ_USER: 659 case AUDIT_SUBJ_ROLE: 660 case AUDIT_SUBJ_TYPE: 661 case AUDIT_SUBJ_SEN: 662 case AUDIT_SUBJ_CLR: 663 /* NOTE: this may return negative values indicating 664 a temporary error. We simply treat this as a 665 match for now to avoid losing information that 666 may be wanted. An error message will also be 667 logged upon error */ 668 if (f->lsm_rule) { 669 if (need_sid) { 670 /* @tsk should always be equal to 671 * @current with the exception of 672 * fork()/copy_process() in which case 673 * the new @tsk creds are still a dup 674 * of @current's creds so we can still 675 * use security_current_getsecid_subj() 676 * here even though it always refs 677 * @current's creds 678 */ 679 security_current_getsecid_subj(&sid); 680 need_sid = 0; 681 } 682 result = security_audit_rule_match(sid, f->type, 683 f->op, 684 f->lsm_rule); 685 } 686 break; 687 case AUDIT_OBJ_USER: 688 case AUDIT_OBJ_ROLE: 689 case AUDIT_OBJ_TYPE: 690 case AUDIT_OBJ_LEV_LOW: 691 case AUDIT_OBJ_LEV_HIGH: 692 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 693 also applies here */ 694 if (f->lsm_rule) { 695 /* Find files that match */ 696 if (name) { 697 result = security_audit_rule_match( 698 name->osid, 699 f->type, 700 f->op, 701 f->lsm_rule); 702 } else if (ctx) { 703 list_for_each_entry(n, &ctx->names_list, list) { 704 if (security_audit_rule_match( 705 n->osid, 706 f->type, 707 f->op, 708 f->lsm_rule)) { 709 ++result; 710 break; 711 } 712 } 713 } 714 /* Find ipc objects that match */ 715 if (!ctx || ctx->type != AUDIT_IPC) 716 break; 717 if (security_audit_rule_match(ctx->ipc.osid, 718 f->type, f->op, 719 f->lsm_rule)) 720 ++result; 721 } 722 break; 723 case AUDIT_ARG0: 724 case AUDIT_ARG1: 725 case AUDIT_ARG2: 726 case AUDIT_ARG3: 727 if (ctx) 728 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 729 break; 730 case AUDIT_FILTERKEY: 731 /* ignore this field for filtering */ 732 result = 1; 733 break; 734 case AUDIT_PERM: 735 result = audit_match_perm(ctx, f->val); 736 if (f->op == Audit_not_equal) 737 result = !result; 738 break; 739 case AUDIT_FILETYPE: 740 result = audit_match_filetype(ctx, f->val); 741 if (f->op == Audit_not_equal) 742 result = !result; 743 break; 744 case AUDIT_FIELD_COMPARE: 745 result = audit_field_compare(tsk, cred, f, ctx, name); 746 break; 747 } 748 if (!result) 749 return 0; 750 } 751 752 if (ctx) { 753 if (rule->filterkey) { 754 kfree(ctx->filterkey); 755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 756 } 757 ctx->prio = rule->prio; 758 } 759 switch (rule->action) { 760 case AUDIT_NEVER: 761 *state = AUDIT_STATE_DISABLED; 762 break; 763 case AUDIT_ALWAYS: 764 *state = AUDIT_STATE_RECORD; 765 break; 766 } 767 return 1; 768 } 769 770 /* At process creation time, we can determine if system-call auditing is 771 * completely disabled for this task. Since we only have the task 772 * structure at this point, we can only check uid and gid. 773 */ 774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 775 { 776 struct audit_entry *e; 777 enum audit_state state; 778 779 rcu_read_lock(); 780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 782 &state, true)) { 783 if (state == AUDIT_STATE_RECORD) 784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 785 rcu_read_unlock(); 786 return state; 787 } 788 } 789 rcu_read_unlock(); 790 return AUDIT_STATE_BUILD; 791 } 792 793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 794 { 795 int word, bit; 796 797 if (val > 0xffffffff) 798 return false; 799 800 word = AUDIT_WORD(val); 801 if (word >= AUDIT_BITMASK_SIZE) 802 return false; 803 804 bit = AUDIT_BIT(val); 805 806 return rule->mask[word] & bit; 807 } 808 809 /** 810 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 811 * @tsk: associated task 812 * @ctx: audit context 813 * @list: audit filter list 814 * @name: audit_name (can be NULL) 815 * @op: current syscall/uring_op 816 * 817 * Run the udit filters specified in @list against @tsk using @ctx, 818 * @name, and @op, as necessary; the caller is responsible for ensuring 819 * that the call is made while the RCU read lock is held. The @name 820 * parameter can be NULL, but all others must be specified. 821 * Returns 1/true if the filter finds a match, 0/false if none are found. 822 */ 823 static int __audit_filter_op(struct task_struct *tsk, 824 struct audit_context *ctx, 825 struct list_head *list, 826 struct audit_names *name, 827 unsigned long op) 828 { 829 struct audit_entry *e; 830 enum audit_state state; 831 832 list_for_each_entry_rcu(e, list, list) { 833 if (audit_in_mask(&e->rule, op) && 834 audit_filter_rules(tsk, &e->rule, ctx, name, 835 &state, false)) { 836 ctx->current_state = state; 837 return 1; 838 } 839 } 840 return 0; 841 } 842 843 /** 844 * audit_filter_uring - apply filters to an io_uring operation 845 * @tsk: associated task 846 * @ctx: audit context 847 */ 848 static void audit_filter_uring(struct task_struct *tsk, 849 struct audit_context *ctx) 850 { 851 if (auditd_test_task(tsk)) 852 return; 853 854 rcu_read_lock(); 855 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 856 NULL, ctx->uring_op); 857 rcu_read_unlock(); 858 } 859 860 /* At syscall exit time, this filter is called if the audit_state is 861 * not low enough that auditing cannot take place, but is also not 862 * high enough that we already know we have to write an audit record 863 * (i.e., the state is AUDIT_STATE_BUILD). 864 */ 865 static void audit_filter_syscall(struct task_struct *tsk, 866 struct audit_context *ctx) 867 { 868 if (auditd_test_task(tsk)) 869 return; 870 871 rcu_read_lock(); 872 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 873 NULL, ctx->major); 874 rcu_read_unlock(); 875 } 876 877 /* 878 * Given an audit_name check the inode hash table to see if they match. 879 * Called holding the rcu read lock to protect the use of audit_inode_hash 880 */ 881 static int audit_filter_inode_name(struct task_struct *tsk, 882 struct audit_names *n, 883 struct audit_context *ctx) 884 { 885 int h = audit_hash_ino((u32)n->ino); 886 struct list_head *list = &audit_inode_hash[h]; 887 888 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 889 } 890 891 /* At syscall exit time, this filter is called if any audit_names have been 892 * collected during syscall processing. We only check rules in sublists at hash 893 * buckets applicable to the inode numbers in audit_names. 894 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 895 */ 896 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 897 { 898 struct audit_names *n; 899 900 if (auditd_test_task(tsk)) 901 return; 902 903 rcu_read_lock(); 904 905 list_for_each_entry(n, &ctx->names_list, list) { 906 if (audit_filter_inode_name(tsk, n, ctx)) 907 break; 908 } 909 rcu_read_unlock(); 910 } 911 912 static inline void audit_proctitle_free(struct audit_context *context) 913 { 914 kfree(context->proctitle.value); 915 context->proctitle.value = NULL; 916 context->proctitle.len = 0; 917 } 918 919 static inline void audit_free_module(struct audit_context *context) 920 { 921 if (context->type == AUDIT_KERN_MODULE) { 922 kfree(context->module.name); 923 context->module.name = NULL; 924 } 925 } 926 static inline void audit_free_names(struct audit_context *context) 927 { 928 struct audit_names *n, *next; 929 930 list_for_each_entry_safe(n, next, &context->names_list, list) { 931 list_del(&n->list); 932 if (n->name) 933 putname(n->name); 934 if (n->should_free) 935 kfree(n); 936 } 937 context->name_count = 0; 938 path_put(&context->pwd); 939 context->pwd.dentry = NULL; 940 context->pwd.mnt = NULL; 941 } 942 943 static inline void audit_free_aux(struct audit_context *context) 944 { 945 struct audit_aux_data *aux; 946 947 while ((aux = context->aux)) { 948 context->aux = aux->next; 949 kfree(aux); 950 } 951 context->aux = NULL; 952 while ((aux = context->aux_pids)) { 953 context->aux_pids = aux->next; 954 kfree(aux); 955 } 956 context->aux_pids = NULL; 957 } 958 959 /** 960 * audit_reset_context - reset a audit_context structure 961 * @ctx: the audit_context to reset 962 * 963 * All fields in the audit_context will be reset to an initial state, all 964 * references held by fields will be dropped, and private memory will be 965 * released. When this function returns the audit_context will be suitable 966 * for reuse, so long as the passed context is not NULL or a dummy context. 967 */ 968 static void audit_reset_context(struct audit_context *ctx) 969 { 970 if (!ctx) 971 return; 972 973 /* if ctx is non-null, reset the "ctx->context" regardless */ 974 ctx->context = AUDIT_CTX_UNUSED; 975 if (ctx->dummy) 976 return; 977 978 /* 979 * NOTE: It shouldn't matter in what order we release the fields, so 980 * release them in the order in which they appear in the struct; 981 * this gives us some hope of quickly making sure we are 982 * resetting the audit_context properly. 983 * 984 * Other things worth mentioning: 985 * - we don't reset "dummy" 986 * - we don't reset "state", we do reset "current_state" 987 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 988 * - much of this is likely overkill, but play it safe for now 989 * - we really need to work on improving the audit_context struct 990 */ 991 992 ctx->current_state = ctx->state; 993 ctx->serial = 0; 994 ctx->major = 0; 995 ctx->uring_op = 0; 996 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 997 memset(ctx->argv, 0, sizeof(ctx->argv)); 998 ctx->return_code = 0; 999 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1000 ctx->return_valid = AUDITSC_INVALID; 1001 audit_free_names(ctx); 1002 if (ctx->state != AUDIT_STATE_RECORD) { 1003 kfree(ctx->filterkey); 1004 ctx->filterkey = NULL; 1005 } 1006 audit_free_aux(ctx); 1007 kfree(ctx->sockaddr); 1008 ctx->sockaddr = NULL; 1009 ctx->sockaddr_len = 0; 1010 ctx->ppid = 0; 1011 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1012 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1013 ctx->personality = 0; 1014 ctx->arch = 0; 1015 ctx->target_pid = 0; 1016 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1017 ctx->target_sessionid = 0; 1018 ctx->target_sid = 0; 1019 ctx->target_comm[0] = '\0'; 1020 unroll_tree_refs(ctx, NULL, 0); 1021 WARN_ON(!list_empty(&ctx->killed_trees)); 1022 audit_free_module(ctx); 1023 ctx->fds[0] = -1; 1024 ctx->type = 0; /* reset last for audit_free_*() */ 1025 } 1026 1027 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1028 { 1029 struct audit_context *context; 1030 1031 context = kzalloc(sizeof(*context), GFP_KERNEL); 1032 if (!context) 1033 return NULL; 1034 context->context = AUDIT_CTX_UNUSED; 1035 context->state = state; 1036 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1037 INIT_LIST_HEAD(&context->killed_trees); 1038 INIT_LIST_HEAD(&context->names_list); 1039 context->fds[0] = -1; 1040 context->return_valid = AUDITSC_INVALID; 1041 return context; 1042 } 1043 1044 /** 1045 * audit_alloc - allocate an audit context block for a task 1046 * @tsk: task 1047 * 1048 * Filter on the task information and allocate a per-task audit context 1049 * if necessary. Doing so turns on system call auditing for the 1050 * specified task. This is called from copy_process, so no lock is 1051 * needed. 1052 */ 1053 int audit_alloc(struct task_struct *tsk) 1054 { 1055 struct audit_context *context; 1056 enum audit_state state; 1057 char *key = NULL; 1058 1059 if (likely(!audit_ever_enabled)) 1060 return 0; 1061 1062 state = audit_filter_task(tsk, &key); 1063 if (state == AUDIT_STATE_DISABLED) { 1064 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1065 return 0; 1066 } 1067 1068 context = audit_alloc_context(state); 1069 if (!context) { 1070 kfree(key); 1071 audit_log_lost("out of memory in audit_alloc"); 1072 return -ENOMEM; 1073 } 1074 context->filterkey = key; 1075 1076 audit_set_context(tsk, context); 1077 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1078 return 0; 1079 } 1080 1081 static inline void audit_free_context(struct audit_context *context) 1082 { 1083 /* resetting is extra work, but it is likely just noise */ 1084 audit_reset_context(context); 1085 audit_proctitle_free(context); 1086 free_tree_refs(context); 1087 kfree(context->filterkey); 1088 kfree(context); 1089 } 1090 1091 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1092 kuid_t auid, kuid_t uid, unsigned int sessionid, 1093 u32 sid, char *comm) 1094 { 1095 struct audit_buffer *ab; 1096 char *ctx = NULL; 1097 u32 len; 1098 int rc = 0; 1099 1100 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1101 if (!ab) 1102 return rc; 1103 1104 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1105 from_kuid(&init_user_ns, auid), 1106 from_kuid(&init_user_ns, uid), sessionid); 1107 if (sid) { 1108 if (security_secid_to_secctx(sid, &ctx, &len)) { 1109 audit_log_format(ab, " obj=(none)"); 1110 rc = 1; 1111 } else { 1112 audit_log_format(ab, " obj=%s", ctx); 1113 security_release_secctx(ctx, len); 1114 } 1115 } 1116 audit_log_format(ab, " ocomm="); 1117 audit_log_untrustedstring(ab, comm); 1118 audit_log_end(ab); 1119 1120 return rc; 1121 } 1122 1123 static void audit_log_execve_info(struct audit_context *context, 1124 struct audit_buffer **ab) 1125 { 1126 long len_max; 1127 long len_rem; 1128 long len_full; 1129 long len_buf; 1130 long len_abuf = 0; 1131 long len_tmp; 1132 bool require_data; 1133 bool encode; 1134 unsigned int iter; 1135 unsigned int arg; 1136 char *buf_head; 1137 char *buf; 1138 const char __user *p = (const char __user *)current->mm->arg_start; 1139 1140 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1141 * data we put in the audit record for this argument (see the 1142 * code below) ... at this point in time 96 is plenty */ 1143 char abuf[96]; 1144 1145 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1146 * current value of 7500 is not as important as the fact that it 1147 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1148 * room if we go over a little bit in the logging below */ 1149 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1150 len_max = MAX_EXECVE_AUDIT_LEN; 1151 1152 /* scratch buffer to hold the userspace args */ 1153 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1154 if (!buf_head) { 1155 audit_panic("out of memory for argv string"); 1156 return; 1157 } 1158 buf = buf_head; 1159 1160 audit_log_format(*ab, "argc=%d", context->execve.argc); 1161 1162 len_rem = len_max; 1163 len_buf = 0; 1164 len_full = 0; 1165 require_data = true; 1166 encode = false; 1167 iter = 0; 1168 arg = 0; 1169 do { 1170 /* NOTE: we don't ever want to trust this value for anything 1171 * serious, but the audit record format insists we 1172 * provide an argument length for really long arguments, 1173 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1174 * to use strncpy_from_user() to obtain this value for 1175 * recording in the log, although we don't use it 1176 * anywhere here to avoid a double-fetch problem */ 1177 if (len_full == 0) 1178 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1179 1180 /* read more data from userspace */ 1181 if (require_data) { 1182 /* can we make more room in the buffer? */ 1183 if (buf != buf_head) { 1184 memmove(buf_head, buf, len_buf); 1185 buf = buf_head; 1186 } 1187 1188 /* fetch as much as we can of the argument */ 1189 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1190 len_max - len_buf); 1191 if (len_tmp == -EFAULT) { 1192 /* unable to copy from userspace */ 1193 send_sig(SIGKILL, current, 0); 1194 goto out; 1195 } else if (len_tmp == (len_max - len_buf)) { 1196 /* buffer is not large enough */ 1197 require_data = true; 1198 /* NOTE: if we are going to span multiple 1199 * buffers force the encoding so we stand 1200 * a chance at a sane len_full value and 1201 * consistent record encoding */ 1202 encode = true; 1203 len_full = len_full * 2; 1204 p += len_tmp; 1205 } else { 1206 require_data = false; 1207 if (!encode) 1208 encode = audit_string_contains_control( 1209 buf, len_tmp); 1210 /* try to use a trusted value for len_full */ 1211 if (len_full < len_max) 1212 len_full = (encode ? 1213 len_tmp * 2 : len_tmp); 1214 p += len_tmp + 1; 1215 } 1216 len_buf += len_tmp; 1217 buf_head[len_buf] = '\0'; 1218 1219 /* length of the buffer in the audit record? */ 1220 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1221 } 1222 1223 /* write as much as we can to the audit log */ 1224 if (len_buf >= 0) { 1225 /* NOTE: some magic numbers here - basically if we 1226 * can't fit a reasonable amount of data into the 1227 * existing audit buffer, flush it and start with 1228 * a new buffer */ 1229 if ((sizeof(abuf) + 8) > len_rem) { 1230 len_rem = len_max; 1231 audit_log_end(*ab); 1232 *ab = audit_log_start(context, 1233 GFP_KERNEL, AUDIT_EXECVE); 1234 if (!*ab) 1235 goto out; 1236 } 1237 1238 /* create the non-arg portion of the arg record */ 1239 len_tmp = 0; 1240 if (require_data || (iter > 0) || 1241 ((len_abuf + sizeof(abuf)) > len_rem)) { 1242 if (iter == 0) { 1243 len_tmp += snprintf(&abuf[len_tmp], 1244 sizeof(abuf) - len_tmp, 1245 " a%d_len=%lu", 1246 arg, len_full); 1247 } 1248 len_tmp += snprintf(&abuf[len_tmp], 1249 sizeof(abuf) - len_tmp, 1250 " a%d[%d]=", arg, iter++); 1251 } else 1252 len_tmp += snprintf(&abuf[len_tmp], 1253 sizeof(abuf) - len_tmp, 1254 " a%d=", arg); 1255 WARN_ON(len_tmp >= sizeof(abuf)); 1256 abuf[sizeof(abuf) - 1] = '\0'; 1257 1258 /* log the arg in the audit record */ 1259 audit_log_format(*ab, "%s", abuf); 1260 len_rem -= len_tmp; 1261 len_tmp = len_buf; 1262 if (encode) { 1263 if (len_abuf > len_rem) 1264 len_tmp = len_rem / 2; /* encoding */ 1265 audit_log_n_hex(*ab, buf, len_tmp); 1266 len_rem -= len_tmp * 2; 1267 len_abuf -= len_tmp * 2; 1268 } else { 1269 if (len_abuf > len_rem) 1270 len_tmp = len_rem - 2; /* quotes */ 1271 audit_log_n_string(*ab, buf, len_tmp); 1272 len_rem -= len_tmp + 2; 1273 /* don't subtract the "2" because we still need 1274 * to add quotes to the remaining string */ 1275 len_abuf -= len_tmp; 1276 } 1277 len_buf -= len_tmp; 1278 buf += len_tmp; 1279 } 1280 1281 /* ready to move to the next argument? */ 1282 if ((len_buf == 0) && !require_data) { 1283 arg++; 1284 iter = 0; 1285 len_full = 0; 1286 require_data = true; 1287 encode = false; 1288 } 1289 } while (arg < context->execve.argc); 1290 1291 /* NOTE: the caller handles the final audit_log_end() call */ 1292 1293 out: 1294 kfree(buf_head); 1295 } 1296 1297 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1298 kernel_cap_t *cap) 1299 { 1300 if (cap_isclear(*cap)) { 1301 audit_log_format(ab, " %s=0", prefix); 1302 return; 1303 } 1304 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1305 } 1306 1307 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1308 { 1309 if (name->fcap_ver == -1) { 1310 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1311 return; 1312 } 1313 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1314 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1315 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1316 name->fcap.fE, name->fcap_ver, 1317 from_kuid(&init_user_ns, name->fcap.rootid)); 1318 } 1319 1320 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1321 { 1322 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1323 const struct timespec64 *tk = &context->time.tk_injoffset; 1324 static const char * const ntp_name[] = { 1325 "offset", 1326 "freq", 1327 "status", 1328 "tai", 1329 "tick", 1330 "adjust", 1331 }; 1332 int type; 1333 1334 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1335 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1336 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1337 if (!*ab) { 1338 *ab = audit_log_start(context, 1339 GFP_KERNEL, 1340 AUDIT_TIME_ADJNTPVAL); 1341 if (!*ab) 1342 return; 1343 } 1344 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1345 ntp_name[type], 1346 ntp->vals[type].oldval, 1347 ntp->vals[type].newval); 1348 audit_log_end(*ab); 1349 *ab = NULL; 1350 } 1351 } 1352 } 1353 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1354 if (!*ab) { 1355 *ab = audit_log_start(context, GFP_KERNEL, 1356 AUDIT_TIME_INJOFFSET); 1357 if (!*ab) 1358 return; 1359 } 1360 audit_log_format(*ab, "sec=%lli nsec=%li", 1361 (long long)tk->tv_sec, tk->tv_nsec); 1362 audit_log_end(*ab); 1363 *ab = NULL; 1364 } 1365 } 1366 1367 static void show_special(struct audit_context *context, int *call_panic) 1368 { 1369 struct audit_buffer *ab; 1370 int i; 1371 1372 ab = audit_log_start(context, GFP_KERNEL, context->type); 1373 if (!ab) 1374 return; 1375 1376 switch (context->type) { 1377 case AUDIT_SOCKETCALL: { 1378 int nargs = context->socketcall.nargs; 1379 1380 audit_log_format(ab, "nargs=%d", nargs); 1381 for (i = 0; i < nargs; i++) 1382 audit_log_format(ab, " a%d=%lx", i, 1383 context->socketcall.args[i]); 1384 break; } 1385 case AUDIT_IPC: { 1386 u32 osid = context->ipc.osid; 1387 1388 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1389 from_kuid(&init_user_ns, context->ipc.uid), 1390 from_kgid(&init_user_ns, context->ipc.gid), 1391 context->ipc.mode); 1392 if (osid) { 1393 char *ctx = NULL; 1394 u32 len; 1395 1396 if (security_secid_to_secctx(osid, &ctx, &len)) { 1397 audit_log_format(ab, " osid=%u", osid); 1398 *call_panic = 1; 1399 } else { 1400 audit_log_format(ab, " obj=%s", ctx); 1401 security_release_secctx(ctx, len); 1402 } 1403 } 1404 if (context->ipc.has_perm) { 1405 audit_log_end(ab); 1406 ab = audit_log_start(context, GFP_KERNEL, 1407 AUDIT_IPC_SET_PERM); 1408 if (unlikely(!ab)) 1409 return; 1410 audit_log_format(ab, 1411 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1412 context->ipc.qbytes, 1413 context->ipc.perm_uid, 1414 context->ipc.perm_gid, 1415 context->ipc.perm_mode); 1416 } 1417 break; } 1418 case AUDIT_MQ_OPEN: 1419 audit_log_format(ab, 1420 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1421 "mq_msgsize=%ld mq_curmsgs=%ld", 1422 context->mq_open.oflag, context->mq_open.mode, 1423 context->mq_open.attr.mq_flags, 1424 context->mq_open.attr.mq_maxmsg, 1425 context->mq_open.attr.mq_msgsize, 1426 context->mq_open.attr.mq_curmsgs); 1427 break; 1428 case AUDIT_MQ_SENDRECV: 1429 audit_log_format(ab, 1430 "mqdes=%d msg_len=%zd msg_prio=%u " 1431 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1432 context->mq_sendrecv.mqdes, 1433 context->mq_sendrecv.msg_len, 1434 context->mq_sendrecv.msg_prio, 1435 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1436 context->mq_sendrecv.abs_timeout.tv_nsec); 1437 break; 1438 case AUDIT_MQ_NOTIFY: 1439 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1440 context->mq_notify.mqdes, 1441 context->mq_notify.sigev_signo); 1442 break; 1443 case AUDIT_MQ_GETSETATTR: { 1444 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1445 1446 audit_log_format(ab, 1447 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1448 "mq_curmsgs=%ld ", 1449 context->mq_getsetattr.mqdes, 1450 attr->mq_flags, attr->mq_maxmsg, 1451 attr->mq_msgsize, attr->mq_curmsgs); 1452 break; } 1453 case AUDIT_CAPSET: 1454 audit_log_format(ab, "pid=%d", context->capset.pid); 1455 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1456 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1457 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1458 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1459 break; 1460 case AUDIT_MMAP: 1461 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1462 context->mmap.flags); 1463 break; 1464 case AUDIT_OPENAT2: 1465 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1466 context->openat2.flags, 1467 context->openat2.mode, 1468 context->openat2.resolve); 1469 break; 1470 case AUDIT_EXECVE: 1471 audit_log_execve_info(context, &ab); 1472 break; 1473 case AUDIT_KERN_MODULE: 1474 audit_log_format(ab, "name="); 1475 if (context->module.name) { 1476 audit_log_untrustedstring(ab, context->module.name); 1477 } else 1478 audit_log_format(ab, "(null)"); 1479 1480 break; 1481 case AUDIT_TIME_ADJNTPVAL: 1482 case AUDIT_TIME_INJOFFSET: 1483 /* this call deviates from the rest, eating the buffer */ 1484 audit_log_time(context, &ab); 1485 break; 1486 } 1487 audit_log_end(ab); 1488 } 1489 1490 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1491 { 1492 char *end = proctitle + len - 1; 1493 1494 while (end > proctitle && !isprint(*end)) 1495 end--; 1496 1497 /* catch the case where proctitle is only 1 non-print character */ 1498 len = end - proctitle + 1; 1499 len -= isprint(proctitle[len-1]) == 0; 1500 return len; 1501 } 1502 1503 /* 1504 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1505 * @context: audit_context for the task 1506 * @n: audit_names structure with reportable details 1507 * @path: optional path to report instead of audit_names->name 1508 * @record_num: record number to report when handling a list of names 1509 * @call_panic: optional pointer to int that will be updated if secid fails 1510 */ 1511 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1512 const struct path *path, int record_num, int *call_panic) 1513 { 1514 struct audit_buffer *ab; 1515 1516 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1517 if (!ab) 1518 return; 1519 1520 audit_log_format(ab, "item=%d", record_num); 1521 1522 if (path) 1523 audit_log_d_path(ab, " name=", path); 1524 else if (n->name) { 1525 switch (n->name_len) { 1526 case AUDIT_NAME_FULL: 1527 /* log the full path */ 1528 audit_log_format(ab, " name="); 1529 audit_log_untrustedstring(ab, n->name->name); 1530 break; 1531 case 0: 1532 /* name was specified as a relative path and the 1533 * directory component is the cwd 1534 */ 1535 if (context->pwd.dentry && context->pwd.mnt) 1536 audit_log_d_path(ab, " name=", &context->pwd); 1537 else 1538 audit_log_format(ab, " name=(null)"); 1539 break; 1540 default: 1541 /* log the name's directory component */ 1542 audit_log_format(ab, " name="); 1543 audit_log_n_untrustedstring(ab, n->name->name, 1544 n->name_len); 1545 } 1546 } else 1547 audit_log_format(ab, " name=(null)"); 1548 1549 if (n->ino != AUDIT_INO_UNSET) 1550 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1551 n->ino, 1552 MAJOR(n->dev), 1553 MINOR(n->dev), 1554 n->mode, 1555 from_kuid(&init_user_ns, n->uid), 1556 from_kgid(&init_user_ns, n->gid), 1557 MAJOR(n->rdev), 1558 MINOR(n->rdev)); 1559 if (n->osid != 0) { 1560 char *ctx = NULL; 1561 u32 len; 1562 1563 if (security_secid_to_secctx( 1564 n->osid, &ctx, &len)) { 1565 audit_log_format(ab, " osid=%u", n->osid); 1566 if (call_panic) 1567 *call_panic = 2; 1568 } else { 1569 audit_log_format(ab, " obj=%s", ctx); 1570 security_release_secctx(ctx, len); 1571 } 1572 } 1573 1574 /* log the audit_names record type */ 1575 switch (n->type) { 1576 case AUDIT_TYPE_NORMAL: 1577 audit_log_format(ab, " nametype=NORMAL"); 1578 break; 1579 case AUDIT_TYPE_PARENT: 1580 audit_log_format(ab, " nametype=PARENT"); 1581 break; 1582 case AUDIT_TYPE_CHILD_DELETE: 1583 audit_log_format(ab, " nametype=DELETE"); 1584 break; 1585 case AUDIT_TYPE_CHILD_CREATE: 1586 audit_log_format(ab, " nametype=CREATE"); 1587 break; 1588 default: 1589 audit_log_format(ab, " nametype=UNKNOWN"); 1590 break; 1591 } 1592 1593 audit_log_fcaps(ab, n); 1594 audit_log_end(ab); 1595 } 1596 1597 static void audit_log_proctitle(void) 1598 { 1599 int res; 1600 char *buf; 1601 char *msg = "(null)"; 1602 int len = strlen(msg); 1603 struct audit_context *context = audit_context(); 1604 struct audit_buffer *ab; 1605 1606 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1607 if (!ab) 1608 return; /* audit_panic or being filtered */ 1609 1610 audit_log_format(ab, "proctitle="); 1611 1612 /* Not cached */ 1613 if (!context->proctitle.value) { 1614 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1615 if (!buf) 1616 goto out; 1617 /* Historically called this from procfs naming */ 1618 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1619 if (res == 0) { 1620 kfree(buf); 1621 goto out; 1622 } 1623 res = audit_proctitle_rtrim(buf, res); 1624 if (res == 0) { 1625 kfree(buf); 1626 goto out; 1627 } 1628 context->proctitle.value = buf; 1629 context->proctitle.len = res; 1630 } 1631 msg = context->proctitle.value; 1632 len = context->proctitle.len; 1633 out: 1634 audit_log_n_untrustedstring(ab, msg, len); 1635 audit_log_end(ab); 1636 } 1637 1638 /** 1639 * audit_log_uring - generate a AUDIT_URINGOP record 1640 * @ctx: the audit context 1641 */ 1642 static void audit_log_uring(struct audit_context *ctx) 1643 { 1644 struct audit_buffer *ab; 1645 const struct cred *cred; 1646 1647 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1648 if (!ab) 1649 return; 1650 cred = current_cred(); 1651 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1652 if (ctx->return_valid != AUDITSC_INVALID) 1653 audit_log_format(ab, " success=%s exit=%ld", 1654 (ctx->return_valid == AUDITSC_SUCCESS ? 1655 "yes" : "no"), 1656 ctx->return_code); 1657 audit_log_format(ab, 1658 " items=%d" 1659 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1660 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1661 ctx->name_count, 1662 task_ppid_nr(current), task_tgid_nr(current), 1663 from_kuid(&init_user_ns, cred->uid), 1664 from_kgid(&init_user_ns, cred->gid), 1665 from_kuid(&init_user_ns, cred->euid), 1666 from_kuid(&init_user_ns, cred->suid), 1667 from_kuid(&init_user_ns, cred->fsuid), 1668 from_kgid(&init_user_ns, cred->egid), 1669 from_kgid(&init_user_ns, cred->sgid), 1670 from_kgid(&init_user_ns, cred->fsgid)); 1671 audit_log_task_context(ab); 1672 audit_log_key(ab, ctx->filterkey); 1673 audit_log_end(ab); 1674 } 1675 1676 static void audit_log_exit(void) 1677 { 1678 int i, call_panic = 0; 1679 struct audit_context *context = audit_context(); 1680 struct audit_buffer *ab; 1681 struct audit_aux_data *aux; 1682 struct audit_names *n; 1683 1684 context->personality = current->personality; 1685 1686 switch (context->context) { 1687 case AUDIT_CTX_SYSCALL: 1688 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1689 if (!ab) 1690 return; 1691 audit_log_format(ab, "arch=%x syscall=%d", 1692 context->arch, context->major); 1693 if (context->personality != PER_LINUX) 1694 audit_log_format(ab, " per=%lx", context->personality); 1695 if (context->return_valid != AUDITSC_INVALID) 1696 audit_log_format(ab, " success=%s exit=%ld", 1697 (context->return_valid == AUDITSC_SUCCESS ? 1698 "yes" : "no"), 1699 context->return_code); 1700 audit_log_format(ab, 1701 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1702 context->argv[0], 1703 context->argv[1], 1704 context->argv[2], 1705 context->argv[3], 1706 context->name_count); 1707 audit_log_task_info(ab); 1708 audit_log_key(ab, context->filterkey); 1709 audit_log_end(ab); 1710 break; 1711 case AUDIT_CTX_URING: 1712 audit_log_uring(context); 1713 break; 1714 default: 1715 BUG(); 1716 break; 1717 } 1718 1719 for (aux = context->aux; aux; aux = aux->next) { 1720 1721 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1722 if (!ab) 1723 continue; /* audit_panic has been called */ 1724 1725 switch (aux->type) { 1726 1727 case AUDIT_BPRM_FCAPS: { 1728 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1729 1730 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1731 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1732 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1733 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1734 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1735 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1736 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1737 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1738 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1739 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1740 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1741 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1742 audit_log_format(ab, " frootid=%d", 1743 from_kuid(&init_user_ns, 1744 axs->fcap.rootid)); 1745 break; } 1746 1747 } 1748 audit_log_end(ab); 1749 } 1750 1751 if (context->type) 1752 show_special(context, &call_panic); 1753 1754 if (context->fds[0] >= 0) { 1755 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1756 if (ab) { 1757 audit_log_format(ab, "fd0=%d fd1=%d", 1758 context->fds[0], context->fds[1]); 1759 audit_log_end(ab); 1760 } 1761 } 1762 1763 if (context->sockaddr_len) { 1764 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1765 if (ab) { 1766 audit_log_format(ab, "saddr="); 1767 audit_log_n_hex(ab, (void *)context->sockaddr, 1768 context->sockaddr_len); 1769 audit_log_end(ab); 1770 } 1771 } 1772 1773 for (aux = context->aux_pids; aux; aux = aux->next) { 1774 struct audit_aux_data_pids *axs = (void *)aux; 1775 1776 for (i = 0; i < axs->pid_count; i++) 1777 if (audit_log_pid_context(context, axs->target_pid[i], 1778 axs->target_auid[i], 1779 axs->target_uid[i], 1780 axs->target_sessionid[i], 1781 axs->target_sid[i], 1782 axs->target_comm[i])) 1783 call_panic = 1; 1784 } 1785 1786 if (context->target_pid && 1787 audit_log_pid_context(context, context->target_pid, 1788 context->target_auid, context->target_uid, 1789 context->target_sessionid, 1790 context->target_sid, context->target_comm)) 1791 call_panic = 1; 1792 1793 if (context->pwd.dentry && context->pwd.mnt) { 1794 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1795 if (ab) { 1796 audit_log_d_path(ab, "cwd=", &context->pwd); 1797 audit_log_end(ab); 1798 } 1799 } 1800 1801 i = 0; 1802 list_for_each_entry(n, &context->names_list, list) { 1803 if (n->hidden) 1804 continue; 1805 audit_log_name(context, n, NULL, i++, &call_panic); 1806 } 1807 1808 if (context->context == AUDIT_CTX_SYSCALL) 1809 audit_log_proctitle(); 1810 1811 /* Send end of event record to help user space know we are finished */ 1812 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1813 if (ab) 1814 audit_log_end(ab); 1815 if (call_panic) 1816 audit_panic("error in audit_log_exit()"); 1817 } 1818 1819 /** 1820 * __audit_free - free a per-task audit context 1821 * @tsk: task whose audit context block to free 1822 * 1823 * Called from copy_process, do_exit, and the io_uring code 1824 */ 1825 void __audit_free(struct task_struct *tsk) 1826 { 1827 struct audit_context *context = tsk->audit_context; 1828 1829 if (!context) 1830 return; 1831 1832 /* this may generate CONFIG_CHANGE records */ 1833 if (!list_empty(&context->killed_trees)) 1834 audit_kill_trees(context); 1835 1836 /* We are called either by do_exit() or the fork() error handling code; 1837 * in the former case tsk == current and in the latter tsk is a 1838 * random task_struct that doesn't have any meaningful data we 1839 * need to log via audit_log_exit(). 1840 */ 1841 if (tsk == current && !context->dummy) { 1842 context->return_valid = AUDITSC_INVALID; 1843 context->return_code = 0; 1844 if (context->context == AUDIT_CTX_SYSCALL) { 1845 audit_filter_syscall(tsk, context); 1846 audit_filter_inodes(tsk, context); 1847 if (context->current_state == AUDIT_STATE_RECORD) 1848 audit_log_exit(); 1849 } else if (context->context == AUDIT_CTX_URING) { 1850 /* TODO: verify this case is real and valid */ 1851 audit_filter_uring(tsk, context); 1852 audit_filter_inodes(tsk, context); 1853 if (context->current_state == AUDIT_STATE_RECORD) 1854 audit_log_uring(context); 1855 } 1856 } 1857 1858 audit_set_context(tsk, NULL); 1859 audit_free_context(context); 1860 } 1861 1862 /** 1863 * audit_return_fixup - fixup the return codes in the audit_context 1864 * @ctx: the audit_context 1865 * @success: true/false value to indicate if the operation succeeded or not 1866 * @code: operation return code 1867 * 1868 * We need to fixup the return code in the audit logs if the actual return 1869 * codes are later going to be fixed by the arch specific signal handlers. 1870 */ 1871 static void audit_return_fixup(struct audit_context *ctx, 1872 int success, long code) 1873 { 1874 /* 1875 * This is actually a test for: 1876 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1877 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1878 * 1879 * but is faster than a bunch of || 1880 */ 1881 if (unlikely(code <= -ERESTARTSYS) && 1882 (code >= -ERESTART_RESTARTBLOCK) && 1883 (code != -ENOIOCTLCMD)) 1884 ctx->return_code = -EINTR; 1885 else 1886 ctx->return_code = code; 1887 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1888 } 1889 1890 /** 1891 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1892 * @op: the io_uring opcode 1893 * 1894 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1895 * operations. This function should only ever be called from 1896 * audit_uring_entry() as we rely on the audit context checking present in that 1897 * function. 1898 */ 1899 void __audit_uring_entry(u8 op) 1900 { 1901 struct audit_context *ctx = audit_context(); 1902 1903 if (ctx->state == AUDIT_STATE_DISABLED) 1904 return; 1905 1906 /* 1907 * NOTE: It's possible that we can be called from the process' context 1908 * before it returns to userspace, and before audit_syscall_exit() 1909 * is called. In this case there is not much to do, just record 1910 * the io_uring details and return. 1911 */ 1912 ctx->uring_op = op; 1913 if (ctx->context == AUDIT_CTX_SYSCALL) 1914 return; 1915 1916 ctx->dummy = !audit_n_rules; 1917 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1918 ctx->prio = 0; 1919 1920 ctx->context = AUDIT_CTX_URING; 1921 ctx->current_state = ctx->state; 1922 ktime_get_coarse_real_ts64(&ctx->ctime); 1923 } 1924 1925 /** 1926 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1927 * @success: true/false value to indicate if the operation succeeded or not 1928 * @code: operation return code 1929 * 1930 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1931 * operations. This function should only ever be called from 1932 * audit_uring_exit() as we rely on the audit context checking present in that 1933 * function. 1934 */ 1935 void __audit_uring_exit(int success, long code) 1936 { 1937 struct audit_context *ctx = audit_context(); 1938 1939 if (ctx->dummy) { 1940 if (ctx->context != AUDIT_CTX_URING) 1941 return; 1942 goto out; 1943 } 1944 1945 audit_return_fixup(ctx, success, code); 1946 if (ctx->context == AUDIT_CTX_SYSCALL) { 1947 /* 1948 * NOTE: See the note in __audit_uring_entry() about the case 1949 * where we may be called from process context before we 1950 * return to userspace via audit_syscall_exit(). In this 1951 * case we simply emit a URINGOP record and bail, the 1952 * normal syscall exit handling will take care of 1953 * everything else. 1954 * It is also worth mentioning that when we are called, 1955 * the current process creds may differ from the creds 1956 * used during the normal syscall processing; keep that 1957 * in mind if/when we move the record generation code. 1958 */ 1959 1960 /* 1961 * We need to filter on the syscall info here to decide if we 1962 * should emit a URINGOP record. I know it seems odd but this 1963 * solves the problem where users have a filter to block *all* 1964 * syscall records in the "exit" filter; we want to preserve 1965 * the behavior here. 1966 */ 1967 audit_filter_syscall(current, ctx); 1968 if (ctx->current_state != AUDIT_STATE_RECORD) 1969 audit_filter_uring(current, ctx); 1970 audit_filter_inodes(current, ctx); 1971 if (ctx->current_state != AUDIT_STATE_RECORD) 1972 return; 1973 1974 audit_log_uring(ctx); 1975 return; 1976 } 1977 1978 /* this may generate CONFIG_CHANGE records */ 1979 if (!list_empty(&ctx->killed_trees)) 1980 audit_kill_trees(ctx); 1981 1982 /* run through both filters to ensure we set the filterkey properly */ 1983 audit_filter_uring(current, ctx); 1984 audit_filter_inodes(current, ctx); 1985 if (ctx->current_state != AUDIT_STATE_RECORD) 1986 goto out; 1987 audit_log_exit(); 1988 1989 out: 1990 audit_reset_context(ctx); 1991 } 1992 1993 /** 1994 * __audit_syscall_entry - fill in an audit record at syscall entry 1995 * @major: major syscall type (function) 1996 * @a1: additional syscall register 1 1997 * @a2: additional syscall register 2 1998 * @a3: additional syscall register 3 1999 * @a4: additional syscall register 4 2000 * 2001 * Fill in audit context at syscall entry. This only happens if the 2002 * audit context was created when the task was created and the state or 2003 * filters demand the audit context be built. If the state from the 2004 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2005 * then the record will be written at syscall exit time (otherwise, it 2006 * will only be written if another part of the kernel requests that it 2007 * be written). 2008 */ 2009 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2010 unsigned long a3, unsigned long a4) 2011 { 2012 struct audit_context *context = audit_context(); 2013 enum audit_state state; 2014 2015 if (!audit_enabled || !context) 2016 return; 2017 2018 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2019 WARN_ON(context->name_count); 2020 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2021 audit_panic("unrecoverable error in audit_syscall_entry()"); 2022 return; 2023 } 2024 2025 state = context->state; 2026 if (state == AUDIT_STATE_DISABLED) 2027 return; 2028 2029 context->dummy = !audit_n_rules; 2030 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2031 context->prio = 0; 2032 if (auditd_test_task(current)) 2033 return; 2034 } 2035 2036 context->arch = syscall_get_arch(current); 2037 context->major = major; 2038 context->argv[0] = a1; 2039 context->argv[1] = a2; 2040 context->argv[2] = a3; 2041 context->argv[3] = a4; 2042 context->context = AUDIT_CTX_SYSCALL; 2043 context->current_state = state; 2044 ktime_get_coarse_real_ts64(&context->ctime); 2045 } 2046 2047 /** 2048 * __audit_syscall_exit - deallocate audit context after a system call 2049 * @success: success value of the syscall 2050 * @return_code: return value of the syscall 2051 * 2052 * Tear down after system call. If the audit context has been marked as 2053 * auditable (either because of the AUDIT_STATE_RECORD state from 2054 * filtering, or because some other part of the kernel wrote an audit 2055 * message), then write out the syscall information. In call cases, 2056 * free the names stored from getname(). 2057 */ 2058 void __audit_syscall_exit(int success, long return_code) 2059 { 2060 struct audit_context *context = audit_context(); 2061 2062 if (!context || context->dummy || 2063 context->context != AUDIT_CTX_SYSCALL) 2064 goto out; 2065 2066 /* this may generate CONFIG_CHANGE records */ 2067 if (!list_empty(&context->killed_trees)) 2068 audit_kill_trees(context); 2069 2070 audit_return_fixup(context, success, return_code); 2071 /* run through both filters to ensure we set the filterkey properly */ 2072 audit_filter_syscall(current, context); 2073 audit_filter_inodes(current, context); 2074 if (context->current_state != AUDIT_STATE_RECORD) 2075 goto out; 2076 2077 audit_log_exit(); 2078 2079 out: 2080 audit_reset_context(context); 2081 } 2082 2083 static inline void handle_one(const struct inode *inode) 2084 { 2085 struct audit_context *context; 2086 struct audit_tree_refs *p; 2087 struct audit_chunk *chunk; 2088 int count; 2089 2090 if (likely(!inode->i_fsnotify_marks)) 2091 return; 2092 context = audit_context(); 2093 p = context->trees; 2094 count = context->tree_count; 2095 rcu_read_lock(); 2096 chunk = audit_tree_lookup(inode); 2097 rcu_read_unlock(); 2098 if (!chunk) 2099 return; 2100 if (likely(put_tree_ref(context, chunk))) 2101 return; 2102 if (unlikely(!grow_tree_refs(context))) { 2103 pr_warn("out of memory, audit has lost a tree reference\n"); 2104 audit_set_auditable(context); 2105 audit_put_chunk(chunk); 2106 unroll_tree_refs(context, p, count); 2107 return; 2108 } 2109 put_tree_ref(context, chunk); 2110 } 2111 2112 static void handle_path(const struct dentry *dentry) 2113 { 2114 struct audit_context *context; 2115 struct audit_tree_refs *p; 2116 const struct dentry *d, *parent; 2117 struct audit_chunk *drop; 2118 unsigned long seq; 2119 int count; 2120 2121 context = audit_context(); 2122 p = context->trees; 2123 count = context->tree_count; 2124 retry: 2125 drop = NULL; 2126 d = dentry; 2127 rcu_read_lock(); 2128 seq = read_seqbegin(&rename_lock); 2129 for (;;) { 2130 struct inode *inode = d_backing_inode(d); 2131 2132 if (inode && unlikely(inode->i_fsnotify_marks)) { 2133 struct audit_chunk *chunk; 2134 2135 chunk = audit_tree_lookup(inode); 2136 if (chunk) { 2137 if (unlikely(!put_tree_ref(context, chunk))) { 2138 drop = chunk; 2139 break; 2140 } 2141 } 2142 } 2143 parent = d->d_parent; 2144 if (parent == d) 2145 break; 2146 d = parent; 2147 } 2148 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2149 rcu_read_unlock(); 2150 if (!drop) { 2151 /* just a race with rename */ 2152 unroll_tree_refs(context, p, count); 2153 goto retry; 2154 } 2155 audit_put_chunk(drop); 2156 if (grow_tree_refs(context)) { 2157 /* OK, got more space */ 2158 unroll_tree_refs(context, p, count); 2159 goto retry; 2160 } 2161 /* too bad */ 2162 pr_warn("out of memory, audit has lost a tree reference\n"); 2163 unroll_tree_refs(context, p, count); 2164 audit_set_auditable(context); 2165 return; 2166 } 2167 rcu_read_unlock(); 2168 } 2169 2170 static struct audit_names *audit_alloc_name(struct audit_context *context, 2171 unsigned char type) 2172 { 2173 struct audit_names *aname; 2174 2175 if (context->name_count < AUDIT_NAMES) { 2176 aname = &context->preallocated_names[context->name_count]; 2177 memset(aname, 0, sizeof(*aname)); 2178 } else { 2179 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2180 if (!aname) 2181 return NULL; 2182 aname->should_free = true; 2183 } 2184 2185 aname->ino = AUDIT_INO_UNSET; 2186 aname->type = type; 2187 list_add_tail(&aname->list, &context->names_list); 2188 2189 context->name_count++; 2190 if (!context->pwd.dentry) 2191 get_fs_pwd(current->fs, &context->pwd); 2192 return aname; 2193 } 2194 2195 /** 2196 * __audit_reusename - fill out filename with info from existing entry 2197 * @uptr: userland ptr to pathname 2198 * 2199 * Search the audit_names list for the current audit context. If there is an 2200 * existing entry with a matching "uptr" then return the filename 2201 * associated with that audit_name. If not, return NULL. 2202 */ 2203 struct filename * 2204 __audit_reusename(const __user char *uptr) 2205 { 2206 struct audit_context *context = audit_context(); 2207 struct audit_names *n; 2208 2209 list_for_each_entry(n, &context->names_list, list) { 2210 if (!n->name) 2211 continue; 2212 if (n->name->uptr == uptr) { 2213 n->name->refcnt++; 2214 return n->name; 2215 } 2216 } 2217 return NULL; 2218 } 2219 2220 /** 2221 * __audit_getname - add a name to the list 2222 * @name: name to add 2223 * 2224 * Add a name to the list of audit names for this context. 2225 * Called from fs/namei.c:getname(). 2226 */ 2227 void __audit_getname(struct filename *name) 2228 { 2229 struct audit_context *context = audit_context(); 2230 struct audit_names *n; 2231 2232 if (context->context == AUDIT_CTX_UNUSED) 2233 return; 2234 2235 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2236 if (!n) 2237 return; 2238 2239 n->name = name; 2240 n->name_len = AUDIT_NAME_FULL; 2241 name->aname = n; 2242 name->refcnt++; 2243 } 2244 2245 static inline int audit_copy_fcaps(struct audit_names *name, 2246 const struct dentry *dentry) 2247 { 2248 struct cpu_vfs_cap_data caps; 2249 int rc; 2250 2251 if (!dentry) 2252 return 0; 2253 2254 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2255 if (rc) 2256 return rc; 2257 2258 name->fcap.permitted = caps.permitted; 2259 name->fcap.inheritable = caps.inheritable; 2260 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2261 name->fcap.rootid = caps.rootid; 2262 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2263 VFS_CAP_REVISION_SHIFT; 2264 2265 return 0; 2266 } 2267 2268 /* Copy inode data into an audit_names. */ 2269 static void audit_copy_inode(struct audit_names *name, 2270 const struct dentry *dentry, 2271 struct inode *inode, unsigned int flags) 2272 { 2273 name->ino = inode->i_ino; 2274 name->dev = inode->i_sb->s_dev; 2275 name->mode = inode->i_mode; 2276 name->uid = inode->i_uid; 2277 name->gid = inode->i_gid; 2278 name->rdev = inode->i_rdev; 2279 security_inode_getsecid(inode, &name->osid); 2280 if (flags & AUDIT_INODE_NOEVAL) { 2281 name->fcap_ver = -1; 2282 return; 2283 } 2284 audit_copy_fcaps(name, dentry); 2285 } 2286 2287 /** 2288 * __audit_inode - store the inode and device from a lookup 2289 * @name: name being audited 2290 * @dentry: dentry being audited 2291 * @flags: attributes for this particular entry 2292 */ 2293 void __audit_inode(struct filename *name, const struct dentry *dentry, 2294 unsigned int flags) 2295 { 2296 struct audit_context *context = audit_context(); 2297 struct inode *inode = d_backing_inode(dentry); 2298 struct audit_names *n; 2299 bool parent = flags & AUDIT_INODE_PARENT; 2300 struct audit_entry *e; 2301 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2302 int i; 2303 2304 if (context->context == AUDIT_CTX_UNUSED) 2305 return; 2306 2307 rcu_read_lock(); 2308 list_for_each_entry_rcu(e, list, list) { 2309 for (i = 0; i < e->rule.field_count; i++) { 2310 struct audit_field *f = &e->rule.fields[i]; 2311 2312 if (f->type == AUDIT_FSTYPE 2313 && audit_comparator(inode->i_sb->s_magic, 2314 f->op, f->val) 2315 && e->rule.action == AUDIT_NEVER) { 2316 rcu_read_unlock(); 2317 return; 2318 } 2319 } 2320 } 2321 rcu_read_unlock(); 2322 2323 if (!name) 2324 goto out_alloc; 2325 2326 /* 2327 * If we have a pointer to an audit_names entry already, then we can 2328 * just use it directly if the type is correct. 2329 */ 2330 n = name->aname; 2331 if (n) { 2332 if (parent) { 2333 if (n->type == AUDIT_TYPE_PARENT || 2334 n->type == AUDIT_TYPE_UNKNOWN) 2335 goto out; 2336 } else { 2337 if (n->type != AUDIT_TYPE_PARENT) 2338 goto out; 2339 } 2340 } 2341 2342 list_for_each_entry_reverse(n, &context->names_list, list) { 2343 if (n->ino) { 2344 /* valid inode number, use that for the comparison */ 2345 if (n->ino != inode->i_ino || 2346 n->dev != inode->i_sb->s_dev) 2347 continue; 2348 } else if (n->name) { 2349 /* inode number has not been set, check the name */ 2350 if (strcmp(n->name->name, name->name)) 2351 continue; 2352 } else 2353 /* no inode and no name (?!) ... this is odd ... */ 2354 continue; 2355 2356 /* match the correct record type */ 2357 if (parent) { 2358 if (n->type == AUDIT_TYPE_PARENT || 2359 n->type == AUDIT_TYPE_UNKNOWN) 2360 goto out; 2361 } else { 2362 if (n->type != AUDIT_TYPE_PARENT) 2363 goto out; 2364 } 2365 } 2366 2367 out_alloc: 2368 /* unable to find an entry with both a matching name and type */ 2369 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2370 if (!n) 2371 return; 2372 if (name) { 2373 n->name = name; 2374 name->refcnt++; 2375 } 2376 2377 out: 2378 if (parent) { 2379 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2380 n->type = AUDIT_TYPE_PARENT; 2381 if (flags & AUDIT_INODE_HIDDEN) 2382 n->hidden = true; 2383 } else { 2384 n->name_len = AUDIT_NAME_FULL; 2385 n->type = AUDIT_TYPE_NORMAL; 2386 } 2387 handle_path(dentry); 2388 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2389 } 2390 2391 void __audit_file(const struct file *file) 2392 { 2393 __audit_inode(NULL, file->f_path.dentry, 0); 2394 } 2395 2396 /** 2397 * __audit_inode_child - collect inode info for created/removed objects 2398 * @parent: inode of dentry parent 2399 * @dentry: dentry being audited 2400 * @type: AUDIT_TYPE_* value that we're looking for 2401 * 2402 * For syscalls that create or remove filesystem objects, audit_inode 2403 * can only collect information for the filesystem object's parent. 2404 * This call updates the audit context with the child's information. 2405 * Syscalls that create a new filesystem object must be hooked after 2406 * the object is created. Syscalls that remove a filesystem object 2407 * must be hooked prior, in order to capture the target inode during 2408 * unsuccessful attempts. 2409 */ 2410 void __audit_inode_child(struct inode *parent, 2411 const struct dentry *dentry, 2412 const unsigned char type) 2413 { 2414 struct audit_context *context = audit_context(); 2415 struct inode *inode = d_backing_inode(dentry); 2416 const struct qstr *dname = &dentry->d_name; 2417 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2418 struct audit_entry *e; 2419 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2420 int i; 2421 2422 if (context->context == AUDIT_CTX_UNUSED) 2423 return; 2424 2425 rcu_read_lock(); 2426 list_for_each_entry_rcu(e, list, list) { 2427 for (i = 0; i < e->rule.field_count; i++) { 2428 struct audit_field *f = &e->rule.fields[i]; 2429 2430 if (f->type == AUDIT_FSTYPE 2431 && audit_comparator(parent->i_sb->s_magic, 2432 f->op, f->val) 2433 && e->rule.action == AUDIT_NEVER) { 2434 rcu_read_unlock(); 2435 return; 2436 } 2437 } 2438 } 2439 rcu_read_unlock(); 2440 2441 if (inode) 2442 handle_one(inode); 2443 2444 /* look for a parent entry first */ 2445 list_for_each_entry(n, &context->names_list, list) { 2446 if (!n->name || 2447 (n->type != AUDIT_TYPE_PARENT && 2448 n->type != AUDIT_TYPE_UNKNOWN)) 2449 continue; 2450 2451 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2452 !audit_compare_dname_path(dname, 2453 n->name->name, n->name_len)) { 2454 if (n->type == AUDIT_TYPE_UNKNOWN) 2455 n->type = AUDIT_TYPE_PARENT; 2456 found_parent = n; 2457 break; 2458 } 2459 } 2460 2461 cond_resched(); 2462 2463 /* is there a matching child entry? */ 2464 list_for_each_entry(n, &context->names_list, list) { 2465 /* can only match entries that have a name */ 2466 if (!n->name || 2467 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2468 continue; 2469 2470 if (!strcmp(dname->name, n->name->name) || 2471 !audit_compare_dname_path(dname, n->name->name, 2472 found_parent ? 2473 found_parent->name_len : 2474 AUDIT_NAME_FULL)) { 2475 if (n->type == AUDIT_TYPE_UNKNOWN) 2476 n->type = type; 2477 found_child = n; 2478 break; 2479 } 2480 } 2481 2482 if (!found_parent) { 2483 /* create a new, "anonymous" parent record */ 2484 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2485 if (!n) 2486 return; 2487 audit_copy_inode(n, NULL, parent, 0); 2488 } 2489 2490 if (!found_child) { 2491 found_child = audit_alloc_name(context, type); 2492 if (!found_child) 2493 return; 2494 2495 /* Re-use the name belonging to the slot for a matching parent 2496 * directory. All names for this context are relinquished in 2497 * audit_free_names() */ 2498 if (found_parent) { 2499 found_child->name = found_parent->name; 2500 found_child->name_len = AUDIT_NAME_FULL; 2501 found_child->name->refcnt++; 2502 } 2503 } 2504 2505 if (inode) 2506 audit_copy_inode(found_child, dentry, inode, 0); 2507 else 2508 found_child->ino = AUDIT_INO_UNSET; 2509 } 2510 EXPORT_SYMBOL_GPL(__audit_inode_child); 2511 2512 /** 2513 * auditsc_get_stamp - get local copies of audit_context values 2514 * @ctx: audit_context for the task 2515 * @t: timespec64 to store time recorded in the audit_context 2516 * @serial: serial value that is recorded in the audit_context 2517 * 2518 * Also sets the context as auditable. 2519 */ 2520 int auditsc_get_stamp(struct audit_context *ctx, 2521 struct timespec64 *t, unsigned int *serial) 2522 { 2523 if (ctx->context == AUDIT_CTX_UNUSED) 2524 return 0; 2525 if (!ctx->serial) 2526 ctx->serial = audit_serial(); 2527 t->tv_sec = ctx->ctime.tv_sec; 2528 t->tv_nsec = ctx->ctime.tv_nsec; 2529 *serial = ctx->serial; 2530 if (!ctx->prio) { 2531 ctx->prio = 1; 2532 ctx->current_state = AUDIT_STATE_RECORD; 2533 } 2534 return 1; 2535 } 2536 2537 /** 2538 * __audit_mq_open - record audit data for a POSIX MQ open 2539 * @oflag: open flag 2540 * @mode: mode bits 2541 * @attr: queue attributes 2542 * 2543 */ 2544 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2545 { 2546 struct audit_context *context = audit_context(); 2547 2548 if (attr) 2549 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2550 else 2551 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2552 2553 context->mq_open.oflag = oflag; 2554 context->mq_open.mode = mode; 2555 2556 context->type = AUDIT_MQ_OPEN; 2557 } 2558 2559 /** 2560 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2561 * @mqdes: MQ descriptor 2562 * @msg_len: Message length 2563 * @msg_prio: Message priority 2564 * @abs_timeout: Message timeout in absolute time 2565 * 2566 */ 2567 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2568 const struct timespec64 *abs_timeout) 2569 { 2570 struct audit_context *context = audit_context(); 2571 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2572 2573 if (abs_timeout) 2574 memcpy(p, abs_timeout, sizeof(*p)); 2575 else 2576 memset(p, 0, sizeof(*p)); 2577 2578 context->mq_sendrecv.mqdes = mqdes; 2579 context->mq_sendrecv.msg_len = msg_len; 2580 context->mq_sendrecv.msg_prio = msg_prio; 2581 2582 context->type = AUDIT_MQ_SENDRECV; 2583 } 2584 2585 /** 2586 * __audit_mq_notify - record audit data for a POSIX MQ notify 2587 * @mqdes: MQ descriptor 2588 * @notification: Notification event 2589 * 2590 */ 2591 2592 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2593 { 2594 struct audit_context *context = audit_context(); 2595 2596 if (notification) 2597 context->mq_notify.sigev_signo = notification->sigev_signo; 2598 else 2599 context->mq_notify.sigev_signo = 0; 2600 2601 context->mq_notify.mqdes = mqdes; 2602 context->type = AUDIT_MQ_NOTIFY; 2603 } 2604 2605 /** 2606 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2607 * @mqdes: MQ descriptor 2608 * @mqstat: MQ flags 2609 * 2610 */ 2611 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2612 { 2613 struct audit_context *context = audit_context(); 2614 2615 context->mq_getsetattr.mqdes = mqdes; 2616 context->mq_getsetattr.mqstat = *mqstat; 2617 context->type = AUDIT_MQ_GETSETATTR; 2618 } 2619 2620 /** 2621 * __audit_ipc_obj - record audit data for ipc object 2622 * @ipcp: ipc permissions 2623 * 2624 */ 2625 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2626 { 2627 struct audit_context *context = audit_context(); 2628 2629 context->ipc.uid = ipcp->uid; 2630 context->ipc.gid = ipcp->gid; 2631 context->ipc.mode = ipcp->mode; 2632 context->ipc.has_perm = 0; 2633 security_ipc_getsecid(ipcp, &context->ipc.osid); 2634 context->type = AUDIT_IPC; 2635 } 2636 2637 /** 2638 * __audit_ipc_set_perm - record audit data for new ipc permissions 2639 * @qbytes: msgq bytes 2640 * @uid: msgq user id 2641 * @gid: msgq group id 2642 * @mode: msgq mode (permissions) 2643 * 2644 * Called only after audit_ipc_obj(). 2645 */ 2646 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2647 { 2648 struct audit_context *context = audit_context(); 2649 2650 context->ipc.qbytes = qbytes; 2651 context->ipc.perm_uid = uid; 2652 context->ipc.perm_gid = gid; 2653 context->ipc.perm_mode = mode; 2654 context->ipc.has_perm = 1; 2655 } 2656 2657 void __audit_bprm(struct linux_binprm *bprm) 2658 { 2659 struct audit_context *context = audit_context(); 2660 2661 context->type = AUDIT_EXECVE; 2662 context->execve.argc = bprm->argc; 2663 } 2664 2665 2666 /** 2667 * __audit_socketcall - record audit data for sys_socketcall 2668 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2669 * @args: args array 2670 * 2671 */ 2672 int __audit_socketcall(int nargs, unsigned long *args) 2673 { 2674 struct audit_context *context = audit_context(); 2675 2676 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2677 return -EINVAL; 2678 context->type = AUDIT_SOCKETCALL; 2679 context->socketcall.nargs = nargs; 2680 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2681 return 0; 2682 } 2683 2684 /** 2685 * __audit_fd_pair - record audit data for pipe and socketpair 2686 * @fd1: the first file descriptor 2687 * @fd2: the second file descriptor 2688 * 2689 */ 2690 void __audit_fd_pair(int fd1, int fd2) 2691 { 2692 struct audit_context *context = audit_context(); 2693 2694 context->fds[0] = fd1; 2695 context->fds[1] = fd2; 2696 } 2697 2698 /** 2699 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2700 * @len: data length in user space 2701 * @a: data address in kernel space 2702 * 2703 * Returns 0 for success or NULL context or < 0 on error. 2704 */ 2705 int __audit_sockaddr(int len, void *a) 2706 { 2707 struct audit_context *context = audit_context(); 2708 2709 if (!context->sockaddr) { 2710 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2711 2712 if (!p) 2713 return -ENOMEM; 2714 context->sockaddr = p; 2715 } 2716 2717 context->sockaddr_len = len; 2718 memcpy(context->sockaddr, a, len); 2719 return 0; 2720 } 2721 2722 void __audit_ptrace(struct task_struct *t) 2723 { 2724 struct audit_context *context = audit_context(); 2725 2726 context->target_pid = task_tgid_nr(t); 2727 context->target_auid = audit_get_loginuid(t); 2728 context->target_uid = task_uid(t); 2729 context->target_sessionid = audit_get_sessionid(t); 2730 security_task_getsecid_obj(t, &context->target_sid); 2731 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2732 } 2733 2734 /** 2735 * audit_signal_info_syscall - record signal info for syscalls 2736 * @t: task being signaled 2737 * 2738 * If the audit subsystem is being terminated, record the task (pid) 2739 * and uid that is doing that. 2740 */ 2741 int audit_signal_info_syscall(struct task_struct *t) 2742 { 2743 struct audit_aux_data_pids *axp; 2744 struct audit_context *ctx = audit_context(); 2745 kuid_t t_uid = task_uid(t); 2746 2747 if (!audit_signals || audit_dummy_context()) 2748 return 0; 2749 2750 /* optimize the common case by putting first signal recipient directly 2751 * in audit_context */ 2752 if (!ctx->target_pid) { 2753 ctx->target_pid = task_tgid_nr(t); 2754 ctx->target_auid = audit_get_loginuid(t); 2755 ctx->target_uid = t_uid; 2756 ctx->target_sessionid = audit_get_sessionid(t); 2757 security_task_getsecid_obj(t, &ctx->target_sid); 2758 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2759 return 0; 2760 } 2761 2762 axp = (void *)ctx->aux_pids; 2763 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2764 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2765 if (!axp) 2766 return -ENOMEM; 2767 2768 axp->d.type = AUDIT_OBJ_PID; 2769 axp->d.next = ctx->aux_pids; 2770 ctx->aux_pids = (void *)axp; 2771 } 2772 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2773 2774 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2775 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2776 axp->target_uid[axp->pid_count] = t_uid; 2777 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2778 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2779 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2780 axp->pid_count++; 2781 2782 return 0; 2783 } 2784 2785 /** 2786 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2787 * @bprm: pointer to the bprm being processed 2788 * @new: the proposed new credentials 2789 * @old: the old credentials 2790 * 2791 * Simply check if the proc already has the caps given by the file and if not 2792 * store the priv escalation info for later auditing at the end of the syscall 2793 * 2794 * -Eric 2795 */ 2796 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2797 const struct cred *new, const struct cred *old) 2798 { 2799 struct audit_aux_data_bprm_fcaps *ax; 2800 struct audit_context *context = audit_context(); 2801 struct cpu_vfs_cap_data vcaps; 2802 2803 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2804 if (!ax) 2805 return -ENOMEM; 2806 2807 ax->d.type = AUDIT_BPRM_FCAPS; 2808 ax->d.next = context->aux; 2809 context->aux = (void *)ax; 2810 2811 get_vfs_caps_from_disk(&nop_mnt_idmap, 2812 bprm->file->f_path.dentry, &vcaps); 2813 2814 ax->fcap.permitted = vcaps.permitted; 2815 ax->fcap.inheritable = vcaps.inheritable; 2816 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2817 ax->fcap.rootid = vcaps.rootid; 2818 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2819 2820 ax->old_pcap.permitted = old->cap_permitted; 2821 ax->old_pcap.inheritable = old->cap_inheritable; 2822 ax->old_pcap.effective = old->cap_effective; 2823 ax->old_pcap.ambient = old->cap_ambient; 2824 2825 ax->new_pcap.permitted = new->cap_permitted; 2826 ax->new_pcap.inheritable = new->cap_inheritable; 2827 ax->new_pcap.effective = new->cap_effective; 2828 ax->new_pcap.ambient = new->cap_ambient; 2829 return 0; 2830 } 2831 2832 /** 2833 * __audit_log_capset - store information about the arguments to the capset syscall 2834 * @new: the new credentials 2835 * @old: the old (current) credentials 2836 * 2837 * Record the arguments userspace sent to sys_capset for later printing by the 2838 * audit system if applicable 2839 */ 2840 void __audit_log_capset(const struct cred *new, const struct cred *old) 2841 { 2842 struct audit_context *context = audit_context(); 2843 2844 context->capset.pid = task_tgid_nr(current); 2845 context->capset.cap.effective = new->cap_effective; 2846 context->capset.cap.inheritable = new->cap_effective; 2847 context->capset.cap.permitted = new->cap_permitted; 2848 context->capset.cap.ambient = new->cap_ambient; 2849 context->type = AUDIT_CAPSET; 2850 } 2851 2852 void __audit_mmap_fd(int fd, int flags) 2853 { 2854 struct audit_context *context = audit_context(); 2855 2856 context->mmap.fd = fd; 2857 context->mmap.flags = flags; 2858 context->type = AUDIT_MMAP; 2859 } 2860 2861 void __audit_openat2_how(struct open_how *how) 2862 { 2863 struct audit_context *context = audit_context(); 2864 2865 context->openat2.flags = how->flags; 2866 context->openat2.mode = how->mode; 2867 context->openat2.resolve = how->resolve; 2868 context->type = AUDIT_OPENAT2; 2869 } 2870 2871 void __audit_log_kern_module(char *name) 2872 { 2873 struct audit_context *context = audit_context(); 2874 2875 context->module.name = kstrdup(name, GFP_KERNEL); 2876 if (!context->module.name) 2877 audit_log_lost("out of memory in __audit_log_kern_module"); 2878 context->type = AUDIT_KERN_MODULE; 2879 } 2880 2881 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2882 { 2883 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2884 switch (friar->hdr.type) { 2885 case FAN_RESPONSE_INFO_NONE: 2886 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2887 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2888 response, FAN_RESPONSE_INFO_NONE); 2889 break; 2890 case FAN_RESPONSE_INFO_AUDIT_RULE: 2891 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2892 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2893 response, friar->hdr.type, friar->rule_number, 2894 friar->subj_trust, friar->obj_trust); 2895 } 2896 } 2897 2898 void __audit_tk_injoffset(struct timespec64 offset) 2899 { 2900 struct audit_context *context = audit_context(); 2901 2902 /* only set type if not already set by NTP */ 2903 if (!context->type) 2904 context->type = AUDIT_TIME_INJOFFSET; 2905 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2906 } 2907 2908 void __audit_ntp_log(const struct audit_ntp_data *ad) 2909 { 2910 struct audit_context *context = audit_context(); 2911 int type; 2912 2913 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2914 if (ad->vals[type].newval != ad->vals[type].oldval) { 2915 /* unconditionally set type, overwriting TK */ 2916 context->type = AUDIT_TIME_ADJNTPVAL; 2917 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2918 break; 2919 } 2920 } 2921 2922 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2923 enum audit_nfcfgop op, gfp_t gfp) 2924 { 2925 struct audit_buffer *ab; 2926 char comm[sizeof(current->comm)]; 2927 2928 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2929 if (!ab) 2930 return; 2931 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2932 name, af, nentries, audit_nfcfgs[op].s); 2933 2934 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2935 audit_log_task_context(ab); /* subj= */ 2936 audit_log_format(ab, " comm="); 2937 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2938 audit_log_end(ab); 2939 } 2940 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2941 2942 static void audit_log_task(struct audit_buffer *ab) 2943 { 2944 kuid_t auid, uid; 2945 kgid_t gid; 2946 unsigned int sessionid; 2947 char comm[sizeof(current->comm)]; 2948 2949 auid = audit_get_loginuid(current); 2950 sessionid = audit_get_sessionid(current); 2951 current_uid_gid(&uid, &gid); 2952 2953 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2954 from_kuid(&init_user_ns, auid), 2955 from_kuid(&init_user_ns, uid), 2956 from_kgid(&init_user_ns, gid), 2957 sessionid); 2958 audit_log_task_context(ab); 2959 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2960 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2961 audit_log_d_path_exe(ab, current->mm); 2962 } 2963 2964 /** 2965 * audit_core_dumps - record information about processes that end abnormally 2966 * @signr: signal value 2967 * 2968 * If a process ends with a core dump, something fishy is going on and we 2969 * should record the event for investigation. 2970 */ 2971 void audit_core_dumps(long signr) 2972 { 2973 struct audit_buffer *ab; 2974 2975 if (!audit_enabled) 2976 return; 2977 2978 if (signr == SIGQUIT) /* don't care for those */ 2979 return; 2980 2981 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2982 if (unlikely(!ab)) 2983 return; 2984 audit_log_task(ab); 2985 audit_log_format(ab, " sig=%ld res=1", signr); 2986 audit_log_end(ab); 2987 } 2988 2989 /** 2990 * audit_seccomp - record information about a seccomp action 2991 * @syscall: syscall number 2992 * @signr: signal value 2993 * @code: the seccomp action 2994 * 2995 * Record the information associated with a seccomp action. Event filtering for 2996 * seccomp actions that are not to be logged is done in seccomp_log(). 2997 * Therefore, this function forces auditing independent of the audit_enabled 2998 * and dummy context state because seccomp actions should be logged even when 2999 * audit is not in use. 3000 */ 3001 void audit_seccomp(unsigned long syscall, long signr, int code) 3002 { 3003 struct audit_buffer *ab; 3004 3005 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3006 if (unlikely(!ab)) 3007 return; 3008 audit_log_task(ab); 3009 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3010 signr, syscall_get_arch(current), syscall, 3011 in_compat_syscall(), KSTK_EIP(current), code); 3012 audit_log_end(ab); 3013 } 3014 3015 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3016 int res) 3017 { 3018 struct audit_buffer *ab; 3019 3020 if (!audit_enabled) 3021 return; 3022 3023 ab = audit_log_start(audit_context(), GFP_KERNEL, 3024 AUDIT_CONFIG_CHANGE); 3025 if (unlikely(!ab)) 3026 return; 3027 3028 audit_log_format(ab, 3029 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3030 names, old_names, res); 3031 audit_log_end(ab); 3032 } 3033 3034 struct list_head *audit_killed_trees(void) 3035 { 3036 struct audit_context *ctx = audit_context(); 3037 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3038 return NULL; 3039 return &ctx->killed_trees; 3040 } 3041