xref: /openbmc/linux/kernel/auditsc.c (revision c0e297dc)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <uapi/linux/limits.h>
77 
78 #include "audit.h"
79 
80 /* flags stating the success for a syscall */
81 #define AUDITSC_INVALID 0
82 #define AUDITSC_SUCCESS 1
83 #define AUDITSC_FAILURE 2
84 
85 /* no execve audit message should be longer than this (userspace limits) */
86 #define MAX_EXECVE_AUDIT_LEN 7500
87 
88 /* max length to print of cmdline/proctitle value during audit */
89 #define MAX_PROCTITLE_AUDIT_LEN 128
90 
91 /* number of audit rules */
92 int audit_n_rules;
93 
94 /* determines whether we collect data for signals sent */
95 int audit_signals;
96 
97 struct audit_aux_data {
98 	struct audit_aux_data	*next;
99 	int			type;
100 };
101 
102 #define AUDIT_AUX_IPCPERM	0
103 
104 /* Number of target pids per aux struct. */
105 #define AUDIT_AUX_PIDS	16
106 
107 struct audit_aux_data_pids {
108 	struct audit_aux_data	d;
109 	pid_t			target_pid[AUDIT_AUX_PIDS];
110 	kuid_t			target_auid[AUDIT_AUX_PIDS];
111 	kuid_t			target_uid[AUDIT_AUX_PIDS];
112 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
113 	u32			target_sid[AUDIT_AUX_PIDS];
114 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
115 	int			pid_count;
116 };
117 
118 struct audit_aux_data_bprm_fcaps {
119 	struct audit_aux_data	d;
120 	struct audit_cap_data	fcap;
121 	unsigned int		fcap_ver;
122 	struct audit_cap_data	old_pcap;
123 	struct audit_cap_data	new_pcap;
124 };
125 
126 struct audit_tree_refs {
127 	struct audit_tree_refs *next;
128 	struct audit_chunk *c[31];
129 };
130 
131 static int audit_match_perm(struct audit_context *ctx, int mask)
132 {
133 	unsigned n;
134 	if (unlikely(!ctx))
135 		return 0;
136 	n = ctx->major;
137 
138 	switch (audit_classify_syscall(ctx->arch, n)) {
139 	case 0:	/* native */
140 		if ((mask & AUDIT_PERM_WRITE) &&
141 		     audit_match_class(AUDIT_CLASS_WRITE, n))
142 			return 1;
143 		if ((mask & AUDIT_PERM_READ) &&
144 		     audit_match_class(AUDIT_CLASS_READ, n))
145 			return 1;
146 		if ((mask & AUDIT_PERM_ATTR) &&
147 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
148 			return 1;
149 		return 0;
150 	case 1: /* 32bit on biarch */
151 		if ((mask & AUDIT_PERM_WRITE) &&
152 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
153 			return 1;
154 		if ((mask & AUDIT_PERM_READ) &&
155 		     audit_match_class(AUDIT_CLASS_READ_32, n))
156 			return 1;
157 		if ((mask & AUDIT_PERM_ATTR) &&
158 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
159 			return 1;
160 		return 0;
161 	case 2: /* open */
162 		return mask & ACC_MODE(ctx->argv[1]);
163 	case 3: /* openat */
164 		return mask & ACC_MODE(ctx->argv[2]);
165 	case 4: /* socketcall */
166 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
167 	case 5: /* execve */
168 		return mask & AUDIT_PERM_EXEC;
169 	default:
170 		return 0;
171 	}
172 }
173 
174 static int audit_match_filetype(struct audit_context *ctx, int val)
175 {
176 	struct audit_names *n;
177 	umode_t mode = (umode_t)val;
178 
179 	if (unlikely(!ctx))
180 		return 0;
181 
182 	list_for_each_entry(n, &ctx->names_list, list) {
183 		if ((n->ino != -1) &&
184 		    ((n->mode & S_IFMT) == mode))
185 			return 1;
186 	}
187 
188 	return 0;
189 }
190 
191 /*
192  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
193  * ->first_trees points to its beginning, ->trees - to the current end of data.
194  * ->tree_count is the number of free entries in array pointed to by ->trees.
195  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
196  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
197  * it's going to remain 1-element for almost any setup) until we free context itself.
198  * References in it _are_ dropped - at the same time we free/drop aux stuff.
199  */
200 
201 #ifdef CONFIG_AUDIT_TREE
202 static void audit_set_auditable(struct audit_context *ctx)
203 {
204 	if (!ctx->prio) {
205 		ctx->prio = 1;
206 		ctx->current_state = AUDIT_RECORD_CONTEXT;
207 	}
208 }
209 
210 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211 {
212 	struct audit_tree_refs *p = ctx->trees;
213 	int left = ctx->tree_count;
214 	if (likely(left)) {
215 		p->c[--left] = chunk;
216 		ctx->tree_count = left;
217 		return 1;
218 	}
219 	if (!p)
220 		return 0;
221 	p = p->next;
222 	if (p) {
223 		p->c[30] = chunk;
224 		ctx->trees = p;
225 		ctx->tree_count = 30;
226 		return 1;
227 	}
228 	return 0;
229 }
230 
231 static int grow_tree_refs(struct audit_context *ctx)
232 {
233 	struct audit_tree_refs *p = ctx->trees;
234 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
235 	if (!ctx->trees) {
236 		ctx->trees = p;
237 		return 0;
238 	}
239 	if (p)
240 		p->next = ctx->trees;
241 	else
242 		ctx->first_trees = ctx->trees;
243 	ctx->tree_count = 31;
244 	return 1;
245 }
246 #endif
247 
248 static void unroll_tree_refs(struct audit_context *ctx,
249 		      struct audit_tree_refs *p, int count)
250 {
251 #ifdef CONFIG_AUDIT_TREE
252 	struct audit_tree_refs *q;
253 	int n;
254 	if (!p) {
255 		/* we started with empty chain */
256 		p = ctx->first_trees;
257 		count = 31;
258 		/* if the very first allocation has failed, nothing to do */
259 		if (!p)
260 			return;
261 	}
262 	n = count;
263 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
264 		while (n--) {
265 			audit_put_chunk(q->c[n]);
266 			q->c[n] = NULL;
267 		}
268 	}
269 	while (n-- > ctx->tree_count) {
270 		audit_put_chunk(q->c[n]);
271 		q->c[n] = NULL;
272 	}
273 	ctx->trees = p;
274 	ctx->tree_count = count;
275 #endif
276 }
277 
278 static void free_tree_refs(struct audit_context *ctx)
279 {
280 	struct audit_tree_refs *p, *q;
281 	for (p = ctx->first_trees; p; p = q) {
282 		q = p->next;
283 		kfree(p);
284 	}
285 }
286 
287 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288 {
289 #ifdef CONFIG_AUDIT_TREE
290 	struct audit_tree_refs *p;
291 	int n;
292 	if (!tree)
293 		return 0;
294 	/* full ones */
295 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
296 		for (n = 0; n < 31; n++)
297 			if (audit_tree_match(p->c[n], tree))
298 				return 1;
299 	}
300 	/* partial */
301 	if (p) {
302 		for (n = ctx->tree_count; n < 31; n++)
303 			if (audit_tree_match(p->c[n], tree))
304 				return 1;
305 	}
306 #endif
307 	return 0;
308 }
309 
310 static int audit_compare_uid(kuid_t uid,
311 			     struct audit_names *name,
312 			     struct audit_field *f,
313 			     struct audit_context *ctx)
314 {
315 	struct audit_names *n;
316 	int rc;
317 
318 	if (name) {
319 		rc = audit_uid_comparator(uid, f->op, name->uid);
320 		if (rc)
321 			return rc;
322 	}
323 
324 	if (ctx) {
325 		list_for_each_entry(n, &ctx->names_list, list) {
326 			rc = audit_uid_comparator(uid, f->op, n->uid);
327 			if (rc)
328 				return rc;
329 		}
330 	}
331 	return 0;
332 }
333 
334 static int audit_compare_gid(kgid_t gid,
335 			     struct audit_names *name,
336 			     struct audit_field *f,
337 			     struct audit_context *ctx)
338 {
339 	struct audit_names *n;
340 	int rc;
341 
342 	if (name) {
343 		rc = audit_gid_comparator(gid, f->op, name->gid);
344 		if (rc)
345 			return rc;
346 	}
347 
348 	if (ctx) {
349 		list_for_each_entry(n, &ctx->names_list, list) {
350 			rc = audit_gid_comparator(gid, f->op, n->gid);
351 			if (rc)
352 				return rc;
353 		}
354 	}
355 	return 0;
356 }
357 
358 static int audit_field_compare(struct task_struct *tsk,
359 			       const struct cred *cred,
360 			       struct audit_field *f,
361 			       struct audit_context *ctx,
362 			       struct audit_names *name)
363 {
364 	switch (f->val) {
365 	/* process to file object comparisons */
366 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
367 		return audit_compare_uid(cred->uid, name, f, ctx);
368 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
369 		return audit_compare_gid(cred->gid, name, f, ctx);
370 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
371 		return audit_compare_uid(cred->euid, name, f, ctx);
372 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
373 		return audit_compare_gid(cred->egid, name, f, ctx);
374 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
375 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
376 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
377 		return audit_compare_uid(cred->suid, name, f, ctx);
378 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
379 		return audit_compare_gid(cred->sgid, name, f, ctx);
380 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
381 		return audit_compare_uid(cred->fsuid, name, f, ctx);
382 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
383 		return audit_compare_gid(cred->fsgid, name, f, ctx);
384 	/* uid comparisons */
385 	case AUDIT_COMPARE_UID_TO_AUID:
386 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
387 	case AUDIT_COMPARE_UID_TO_EUID:
388 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
389 	case AUDIT_COMPARE_UID_TO_SUID:
390 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
391 	case AUDIT_COMPARE_UID_TO_FSUID:
392 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
393 	/* auid comparisons */
394 	case AUDIT_COMPARE_AUID_TO_EUID:
395 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
396 	case AUDIT_COMPARE_AUID_TO_SUID:
397 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
398 	case AUDIT_COMPARE_AUID_TO_FSUID:
399 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
400 	/* euid comparisons */
401 	case AUDIT_COMPARE_EUID_TO_SUID:
402 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 	case AUDIT_COMPARE_EUID_TO_FSUID:
404 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 	/* suid comparisons */
406 	case AUDIT_COMPARE_SUID_TO_FSUID:
407 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 	/* gid comparisons */
409 	case AUDIT_COMPARE_GID_TO_EGID:
410 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 	case AUDIT_COMPARE_GID_TO_SGID:
412 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 	case AUDIT_COMPARE_GID_TO_FSGID:
414 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 	/* egid comparisons */
416 	case AUDIT_COMPARE_EGID_TO_SGID:
417 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 	case AUDIT_COMPARE_EGID_TO_FSGID:
419 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 	/* sgid comparison */
421 	case AUDIT_COMPARE_SGID_TO_FSGID:
422 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 	default:
424 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
425 		return 0;
426 	}
427 	return 0;
428 }
429 
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
432  * otherwise.
433  *
434  * If task_creation is true, this is an explicit indication that we are
435  * filtering a task rule at task creation time.  This and tsk == current are
436  * the only situations where tsk->cred may be accessed without an rcu read lock.
437  */
438 static int audit_filter_rules(struct task_struct *tsk,
439 			      struct audit_krule *rule,
440 			      struct audit_context *ctx,
441 			      struct audit_names *name,
442 			      enum audit_state *state,
443 			      bool task_creation)
444 {
445 	const struct cred *cred;
446 	int i, need_sid = 1;
447 	u32 sid;
448 
449 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450 
451 	for (i = 0; i < rule->field_count; i++) {
452 		struct audit_field *f = &rule->fields[i];
453 		struct audit_names *n;
454 		int result = 0;
455 		pid_t pid;
456 
457 		switch (f->type) {
458 		case AUDIT_PID:
459 			pid = task_pid_nr(tsk);
460 			result = audit_comparator(pid, f->op, f->val);
461 			break;
462 		case AUDIT_PPID:
463 			if (ctx) {
464 				if (!ctx->ppid)
465 					ctx->ppid = task_ppid_nr(tsk);
466 				result = audit_comparator(ctx->ppid, f->op, f->val);
467 			}
468 			break;
469 		case AUDIT_UID:
470 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
471 			break;
472 		case AUDIT_EUID:
473 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
474 			break;
475 		case AUDIT_SUID:
476 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
477 			break;
478 		case AUDIT_FSUID:
479 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
480 			break;
481 		case AUDIT_GID:
482 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
483 			if (f->op == Audit_equal) {
484 				if (!result)
485 					result = in_group_p(f->gid);
486 			} else if (f->op == Audit_not_equal) {
487 				if (result)
488 					result = !in_group_p(f->gid);
489 			}
490 			break;
491 		case AUDIT_EGID:
492 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
493 			if (f->op == Audit_equal) {
494 				if (!result)
495 					result = in_egroup_p(f->gid);
496 			} else if (f->op == Audit_not_equal) {
497 				if (result)
498 					result = !in_egroup_p(f->gid);
499 			}
500 			break;
501 		case AUDIT_SGID:
502 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
503 			break;
504 		case AUDIT_FSGID:
505 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
506 			break;
507 		case AUDIT_PERS:
508 			result = audit_comparator(tsk->personality, f->op, f->val);
509 			break;
510 		case AUDIT_ARCH:
511 			if (ctx)
512 				result = audit_comparator(ctx->arch, f->op, f->val);
513 			break;
514 
515 		case AUDIT_EXIT:
516 			if (ctx && ctx->return_valid)
517 				result = audit_comparator(ctx->return_code, f->op, f->val);
518 			break;
519 		case AUDIT_SUCCESS:
520 			if (ctx && ctx->return_valid) {
521 				if (f->val)
522 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
523 				else
524 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
525 			}
526 			break;
527 		case AUDIT_DEVMAJOR:
528 			if (name) {
529 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
530 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
531 					++result;
532 			} else if (ctx) {
533 				list_for_each_entry(n, &ctx->names_list, list) {
534 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
535 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
536 						++result;
537 						break;
538 					}
539 				}
540 			}
541 			break;
542 		case AUDIT_DEVMINOR:
543 			if (name) {
544 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
545 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
546 					++result;
547 			} else if (ctx) {
548 				list_for_each_entry(n, &ctx->names_list, list) {
549 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
550 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
551 						++result;
552 						break;
553 					}
554 				}
555 			}
556 			break;
557 		case AUDIT_INODE:
558 			if (name)
559 				result = audit_comparator(name->ino, f->op, f->val);
560 			else if (ctx) {
561 				list_for_each_entry(n, &ctx->names_list, list) {
562 					if (audit_comparator(n->ino, f->op, f->val)) {
563 						++result;
564 						break;
565 					}
566 				}
567 			}
568 			break;
569 		case AUDIT_OBJ_UID:
570 			if (name) {
571 				result = audit_uid_comparator(name->uid, f->op, f->uid);
572 			} else if (ctx) {
573 				list_for_each_entry(n, &ctx->names_list, list) {
574 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
575 						++result;
576 						break;
577 					}
578 				}
579 			}
580 			break;
581 		case AUDIT_OBJ_GID:
582 			if (name) {
583 				result = audit_gid_comparator(name->gid, f->op, f->gid);
584 			} else if (ctx) {
585 				list_for_each_entry(n, &ctx->names_list, list) {
586 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
587 						++result;
588 						break;
589 					}
590 				}
591 			}
592 			break;
593 		case AUDIT_WATCH:
594 			if (name)
595 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
596 			break;
597 		case AUDIT_DIR:
598 			if (ctx)
599 				result = match_tree_refs(ctx, rule->tree);
600 			break;
601 		case AUDIT_LOGINUID:
602 			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
603 			break;
604 		case AUDIT_LOGINUID_SET:
605 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
606 			break;
607 		case AUDIT_SUBJ_USER:
608 		case AUDIT_SUBJ_ROLE:
609 		case AUDIT_SUBJ_TYPE:
610 		case AUDIT_SUBJ_SEN:
611 		case AUDIT_SUBJ_CLR:
612 			/* NOTE: this may return negative values indicating
613 			   a temporary error.  We simply treat this as a
614 			   match for now to avoid losing information that
615 			   may be wanted.   An error message will also be
616 			   logged upon error */
617 			if (f->lsm_rule) {
618 				if (need_sid) {
619 					security_task_getsecid(tsk, &sid);
620 					need_sid = 0;
621 				}
622 				result = security_audit_rule_match(sid, f->type,
623 				                                  f->op,
624 				                                  f->lsm_rule,
625 				                                  ctx);
626 			}
627 			break;
628 		case AUDIT_OBJ_USER:
629 		case AUDIT_OBJ_ROLE:
630 		case AUDIT_OBJ_TYPE:
631 		case AUDIT_OBJ_LEV_LOW:
632 		case AUDIT_OBJ_LEV_HIGH:
633 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
634 			   also applies here */
635 			if (f->lsm_rule) {
636 				/* Find files that match */
637 				if (name) {
638 					result = security_audit_rule_match(
639 					           name->osid, f->type, f->op,
640 					           f->lsm_rule, ctx);
641 				} else if (ctx) {
642 					list_for_each_entry(n, &ctx->names_list, list) {
643 						if (security_audit_rule_match(n->osid, f->type,
644 									      f->op, f->lsm_rule,
645 									      ctx)) {
646 							++result;
647 							break;
648 						}
649 					}
650 				}
651 				/* Find ipc objects that match */
652 				if (!ctx || ctx->type != AUDIT_IPC)
653 					break;
654 				if (security_audit_rule_match(ctx->ipc.osid,
655 							      f->type, f->op,
656 							      f->lsm_rule, ctx))
657 					++result;
658 			}
659 			break;
660 		case AUDIT_ARG0:
661 		case AUDIT_ARG1:
662 		case AUDIT_ARG2:
663 		case AUDIT_ARG3:
664 			if (ctx)
665 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
666 			break;
667 		case AUDIT_FILTERKEY:
668 			/* ignore this field for filtering */
669 			result = 1;
670 			break;
671 		case AUDIT_PERM:
672 			result = audit_match_perm(ctx, f->val);
673 			break;
674 		case AUDIT_FILETYPE:
675 			result = audit_match_filetype(ctx, f->val);
676 			break;
677 		case AUDIT_FIELD_COMPARE:
678 			result = audit_field_compare(tsk, cred, f, ctx, name);
679 			break;
680 		}
681 		if (!result)
682 			return 0;
683 	}
684 
685 	if (ctx) {
686 		if (rule->prio <= ctx->prio)
687 			return 0;
688 		if (rule->filterkey) {
689 			kfree(ctx->filterkey);
690 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
691 		}
692 		ctx->prio = rule->prio;
693 	}
694 	switch (rule->action) {
695 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
696 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
697 	}
698 	return 1;
699 }
700 
701 /* At process creation time, we can determine if system-call auditing is
702  * completely disabled for this task.  Since we only have the task
703  * structure at this point, we can only check uid and gid.
704  */
705 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
706 {
707 	struct audit_entry *e;
708 	enum audit_state   state;
709 
710 	rcu_read_lock();
711 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
712 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
713 				       &state, true)) {
714 			if (state == AUDIT_RECORD_CONTEXT)
715 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
716 			rcu_read_unlock();
717 			return state;
718 		}
719 	}
720 	rcu_read_unlock();
721 	return AUDIT_BUILD_CONTEXT;
722 }
723 
724 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
725 {
726 	int word, bit;
727 
728 	if (val > 0xffffffff)
729 		return false;
730 
731 	word = AUDIT_WORD(val);
732 	if (word >= AUDIT_BITMASK_SIZE)
733 		return false;
734 
735 	bit = AUDIT_BIT(val);
736 
737 	return rule->mask[word] & bit;
738 }
739 
740 /* At syscall entry and exit time, this filter is called if the
741  * audit_state is not low enough that auditing cannot take place, but is
742  * also not high enough that we already know we have to write an audit
743  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
744  */
745 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
746 					     struct audit_context *ctx,
747 					     struct list_head *list)
748 {
749 	struct audit_entry *e;
750 	enum audit_state state;
751 
752 	if (audit_pid && tsk->tgid == audit_pid)
753 		return AUDIT_DISABLED;
754 
755 	rcu_read_lock();
756 	if (!list_empty(list)) {
757 		list_for_each_entry_rcu(e, list, list) {
758 			if (audit_in_mask(&e->rule, ctx->major) &&
759 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
760 					       &state, false)) {
761 				rcu_read_unlock();
762 				ctx->current_state = state;
763 				return state;
764 			}
765 		}
766 	}
767 	rcu_read_unlock();
768 	return AUDIT_BUILD_CONTEXT;
769 }
770 
771 /*
772  * Given an audit_name check the inode hash table to see if they match.
773  * Called holding the rcu read lock to protect the use of audit_inode_hash
774  */
775 static int audit_filter_inode_name(struct task_struct *tsk,
776 				   struct audit_names *n,
777 				   struct audit_context *ctx) {
778 	int h = audit_hash_ino((u32)n->ino);
779 	struct list_head *list = &audit_inode_hash[h];
780 	struct audit_entry *e;
781 	enum audit_state state;
782 
783 	if (list_empty(list))
784 		return 0;
785 
786 	list_for_each_entry_rcu(e, list, list) {
787 		if (audit_in_mask(&e->rule, ctx->major) &&
788 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
789 			ctx->current_state = state;
790 			return 1;
791 		}
792 	}
793 
794 	return 0;
795 }
796 
797 /* At syscall exit time, this filter is called if any audit_names have been
798  * collected during syscall processing.  We only check rules in sublists at hash
799  * buckets applicable to the inode numbers in audit_names.
800  * Regarding audit_state, same rules apply as for audit_filter_syscall().
801  */
802 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
803 {
804 	struct audit_names *n;
805 
806 	if (audit_pid && tsk->tgid == audit_pid)
807 		return;
808 
809 	rcu_read_lock();
810 
811 	list_for_each_entry(n, &ctx->names_list, list) {
812 		if (audit_filter_inode_name(tsk, n, ctx))
813 			break;
814 	}
815 	rcu_read_unlock();
816 }
817 
818 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
819 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
820 						      int return_valid,
821 						      long return_code)
822 {
823 	struct audit_context *context = tsk->audit_context;
824 
825 	if (!context)
826 		return NULL;
827 	context->return_valid = return_valid;
828 
829 	/*
830 	 * we need to fix up the return code in the audit logs if the actual
831 	 * return codes are later going to be fixed up by the arch specific
832 	 * signal handlers
833 	 *
834 	 * This is actually a test for:
835 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
836 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
837 	 *
838 	 * but is faster than a bunch of ||
839 	 */
840 	if (unlikely(return_code <= -ERESTARTSYS) &&
841 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
842 	    (return_code != -ENOIOCTLCMD))
843 		context->return_code = -EINTR;
844 	else
845 		context->return_code  = return_code;
846 
847 	if (context->in_syscall && !context->dummy) {
848 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
849 		audit_filter_inodes(tsk, context);
850 	}
851 
852 	tsk->audit_context = NULL;
853 	return context;
854 }
855 
856 static inline void audit_proctitle_free(struct audit_context *context)
857 {
858 	kfree(context->proctitle.value);
859 	context->proctitle.value = NULL;
860 	context->proctitle.len = 0;
861 }
862 
863 static inline void audit_free_names(struct audit_context *context)
864 {
865 	struct audit_names *n, *next;
866 
867 	list_for_each_entry_safe(n, next, &context->names_list, list) {
868 		list_del(&n->list);
869 		if (n->name)
870 			putname(n->name);
871 		if (n->should_free)
872 			kfree(n);
873 	}
874 	context->name_count = 0;
875 	path_put(&context->pwd);
876 	context->pwd.dentry = NULL;
877 	context->pwd.mnt = NULL;
878 }
879 
880 static inline void audit_free_aux(struct audit_context *context)
881 {
882 	struct audit_aux_data *aux;
883 
884 	while ((aux = context->aux)) {
885 		context->aux = aux->next;
886 		kfree(aux);
887 	}
888 	while ((aux = context->aux_pids)) {
889 		context->aux_pids = aux->next;
890 		kfree(aux);
891 	}
892 }
893 
894 static inline struct audit_context *audit_alloc_context(enum audit_state state)
895 {
896 	struct audit_context *context;
897 
898 	context = kzalloc(sizeof(*context), GFP_KERNEL);
899 	if (!context)
900 		return NULL;
901 	context->state = state;
902 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
903 	INIT_LIST_HEAD(&context->killed_trees);
904 	INIT_LIST_HEAD(&context->names_list);
905 	return context;
906 }
907 
908 /**
909  * audit_alloc - allocate an audit context block for a task
910  * @tsk: task
911  *
912  * Filter on the task information and allocate a per-task audit context
913  * if necessary.  Doing so turns on system call auditing for the
914  * specified task.  This is called from copy_process, so no lock is
915  * needed.
916  */
917 int audit_alloc(struct task_struct *tsk)
918 {
919 	struct audit_context *context;
920 	enum audit_state     state;
921 	char *key = NULL;
922 
923 	if (likely(!audit_ever_enabled))
924 		return 0; /* Return if not auditing. */
925 
926 	state = audit_filter_task(tsk, &key);
927 	if (state == AUDIT_DISABLED) {
928 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
929 		return 0;
930 	}
931 
932 	if (!(context = audit_alloc_context(state))) {
933 		kfree(key);
934 		audit_log_lost("out of memory in audit_alloc");
935 		return -ENOMEM;
936 	}
937 	context->filterkey = key;
938 
939 	tsk->audit_context  = context;
940 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
941 	return 0;
942 }
943 
944 static inline void audit_free_context(struct audit_context *context)
945 {
946 	audit_free_names(context);
947 	unroll_tree_refs(context, NULL, 0);
948 	free_tree_refs(context);
949 	audit_free_aux(context);
950 	kfree(context->filterkey);
951 	kfree(context->sockaddr);
952 	audit_proctitle_free(context);
953 	kfree(context);
954 }
955 
956 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
957 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
958 				 u32 sid, char *comm)
959 {
960 	struct audit_buffer *ab;
961 	char *ctx = NULL;
962 	u32 len;
963 	int rc = 0;
964 
965 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
966 	if (!ab)
967 		return rc;
968 
969 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
970 			 from_kuid(&init_user_ns, auid),
971 			 from_kuid(&init_user_ns, uid), sessionid);
972 	if (sid) {
973 		if (security_secid_to_secctx(sid, &ctx, &len)) {
974 			audit_log_format(ab, " obj=(none)");
975 			rc = 1;
976 		} else {
977 			audit_log_format(ab, " obj=%s", ctx);
978 			security_release_secctx(ctx, len);
979 		}
980 	}
981 	audit_log_format(ab, " ocomm=");
982 	audit_log_untrustedstring(ab, comm);
983 	audit_log_end(ab);
984 
985 	return rc;
986 }
987 
988 /*
989  * to_send and len_sent accounting are very loose estimates.  We aren't
990  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
991  * within about 500 bytes (next page boundary)
992  *
993  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
994  * logging that a[%d]= was going to be 16 characters long we would be wasting
995  * space in every audit message.  In one 7500 byte message we can log up to
996  * about 1000 min size arguments.  That comes down to about 50% waste of space
997  * if we didn't do the snprintf to find out how long arg_num_len was.
998  */
999 static int audit_log_single_execve_arg(struct audit_context *context,
1000 					struct audit_buffer **ab,
1001 					int arg_num,
1002 					size_t *len_sent,
1003 					const char __user *p,
1004 					char *buf)
1005 {
1006 	char arg_num_len_buf[12];
1007 	const char __user *tmp_p = p;
1008 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1009 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1010 	size_t len, len_left, to_send;
1011 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1012 	unsigned int i, has_cntl = 0, too_long = 0;
1013 	int ret;
1014 
1015 	/* strnlen_user includes the null we don't want to send */
1016 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1017 
1018 	/*
1019 	 * We just created this mm, if we can't find the strings
1020 	 * we just copied into it something is _very_ wrong. Similar
1021 	 * for strings that are too long, we should not have created
1022 	 * any.
1023 	 */
1024 	if (WARN_ON_ONCE(len < 0 || len > MAX_ARG_STRLEN - 1)) {
1025 		send_sig(SIGKILL, current, 0);
1026 		return -1;
1027 	}
1028 
1029 	/* walk the whole argument looking for non-ascii chars */
1030 	do {
1031 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1032 			to_send = MAX_EXECVE_AUDIT_LEN;
1033 		else
1034 			to_send = len_left;
1035 		ret = copy_from_user(buf, tmp_p, to_send);
1036 		/*
1037 		 * There is no reason for this copy to be short. We just
1038 		 * copied them here, and the mm hasn't been exposed to user-
1039 		 * space yet.
1040 		 */
1041 		if (ret) {
1042 			WARN_ON(1);
1043 			send_sig(SIGKILL, current, 0);
1044 			return -1;
1045 		}
1046 		buf[to_send] = '\0';
1047 		has_cntl = audit_string_contains_control(buf, to_send);
1048 		if (has_cntl) {
1049 			/*
1050 			 * hex messages get logged as 2 bytes, so we can only
1051 			 * send half as much in each message
1052 			 */
1053 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1054 			break;
1055 		}
1056 		len_left -= to_send;
1057 		tmp_p += to_send;
1058 	} while (len_left > 0);
1059 
1060 	len_left = len;
1061 
1062 	if (len > max_execve_audit_len)
1063 		too_long = 1;
1064 
1065 	/* rewalk the argument actually logging the message */
1066 	for (i = 0; len_left > 0; i++) {
1067 		int room_left;
1068 
1069 		if (len_left > max_execve_audit_len)
1070 			to_send = max_execve_audit_len;
1071 		else
1072 			to_send = len_left;
1073 
1074 		/* do we have space left to send this argument in this ab? */
1075 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1076 		if (has_cntl)
1077 			room_left -= (to_send * 2);
1078 		else
1079 			room_left -= to_send;
1080 		if (room_left < 0) {
1081 			*len_sent = 0;
1082 			audit_log_end(*ab);
1083 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1084 			if (!*ab)
1085 				return 0;
1086 		}
1087 
1088 		/*
1089 		 * first record needs to say how long the original string was
1090 		 * so we can be sure nothing was lost.
1091 		 */
1092 		if ((i == 0) && (too_long))
1093 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1094 					 has_cntl ? 2*len : len);
1095 
1096 		/*
1097 		 * normally arguments are small enough to fit and we already
1098 		 * filled buf above when we checked for control characters
1099 		 * so don't bother with another copy_from_user
1100 		 */
1101 		if (len >= max_execve_audit_len)
1102 			ret = copy_from_user(buf, p, to_send);
1103 		else
1104 			ret = 0;
1105 		if (ret) {
1106 			WARN_ON(1);
1107 			send_sig(SIGKILL, current, 0);
1108 			return -1;
1109 		}
1110 		buf[to_send] = '\0';
1111 
1112 		/* actually log it */
1113 		audit_log_format(*ab, " a%d", arg_num);
1114 		if (too_long)
1115 			audit_log_format(*ab, "[%d]", i);
1116 		audit_log_format(*ab, "=");
1117 		if (has_cntl)
1118 			audit_log_n_hex(*ab, buf, to_send);
1119 		else
1120 			audit_log_string(*ab, buf);
1121 
1122 		p += to_send;
1123 		len_left -= to_send;
1124 		*len_sent += arg_num_len;
1125 		if (has_cntl)
1126 			*len_sent += to_send * 2;
1127 		else
1128 			*len_sent += to_send;
1129 	}
1130 	/* include the null we didn't log */
1131 	return len + 1;
1132 }
1133 
1134 static void audit_log_execve_info(struct audit_context *context,
1135 				  struct audit_buffer **ab)
1136 {
1137 	int i, len;
1138 	size_t len_sent = 0;
1139 	const char __user *p;
1140 	char *buf;
1141 
1142 	p = (const char __user *)current->mm->arg_start;
1143 
1144 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1145 
1146 	/*
1147 	 * we need some kernel buffer to hold the userspace args.  Just
1148 	 * allocate one big one rather than allocating one of the right size
1149 	 * for every single argument inside audit_log_single_execve_arg()
1150 	 * should be <8k allocation so should be pretty safe.
1151 	 */
1152 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1153 	if (!buf) {
1154 		audit_panic("out of memory for argv string");
1155 		return;
1156 	}
1157 
1158 	for (i = 0; i < context->execve.argc; i++) {
1159 		len = audit_log_single_execve_arg(context, ab, i,
1160 						  &len_sent, p, buf);
1161 		if (len <= 0)
1162 			break;
1163 		p += len;
1164 	}
1165 	kfree(buf);
1166 }
1167 
1168 static void show_special(struct audit_context *context, int *call_panic)
1169 {
1170 	struct audit_buffer *ab;
1171 	int i;
1172 
1173 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1174 	if (!ab)
1175 		return;
1176 
1177 	switch (context->type) {
1178 	case AUDIT_SOCKETCALL: {
1179 		int nargs = context->socketcall.nargs;
1180 		audit_log_format(ab, "nargs=%d", nargs);
1181 		for (i = 0; i < nargs; i++)
1182 			audit_log_format(ab, " a%d=%lx", i,
1183 				context->socketcall.args[i]);
1184 		break; }
1185 	case AUDIT_IPC: {
1186 		u32 osid = context->ipc.osid;
1187 
1188 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1189 				 from_kuid(&init_user_ns, context->ipc.uid),
1190 				 from_kgid(&init_user_ns, context->ipc.gid),
1191 				 context->ipc.mode);
1192 		if (osid) {
1193 			char *ctx = NULL;
1194 			u32 len;
1195 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1196 				audit_log_format(ab, " osid=%u", osid);
1197 				*call_panic = 1;
1198 			} else {
1199 				audit_log_format(ab, " obj=%s", ctx);
1200 				security_release_secctx(ctx, len);
1201 			}
1202 		}
1203 		if (context->ipc.has_perm) {
1204 			audit_log_end(ab);
1205 			ab = audit_log_start(context, GFP_KERNEL,
1206 					     AUDIT_IPC_SET_PERM);
1207 			if (unlikely(!ab))
1208 				return;
1209 			audit_log_format(ab,
1210 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1211 				context->ipc.qbytes,
1212 				context->ipc.perm_uid,
1213 				context->ipc.perm_gid,
1214 				context->ipc.perm_mode);
1215 		}
1216 		break; }
1217 	case AUDIT_MQ_OPEN: {
1218 		audit_log_format(ab,
1219 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1220 			"mq_msgsize=%ld mq_curmsgs=%ld",
1221 			context->mq_open.oflag, context->mq_open.mode,
1222 			context->mq_open.attr.mq_flags,
1223 			context->mq_open.attr.mq_maxmsg,
1224 			context->mq_open.attr.mq_msgsize,
1225 			context->mq_open.attr.mq_curmsgs);
1226 		break; }
1227 	case AUDIT_MQ_SENDRECV: {
1228 		audit_log_format(ab,
1229 			"mqdes=%d msg_len=%zd msg_prio=%u "
1230 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1231 			context->mq_sendrecv.mqdes,
1232 			context->mq_sendrecv.msg_len,
1233 			context->mq_sendrecv.msg_prio,
1234 			context->mq_sendrecv.abs_timeout.tv_sec,
1235 			context->mq_sendrecv.abs_timeout.tv_nsec);
1236 		break; }
1237 	case AUDIT_MQ_NOTIFY: {
1238 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1239 				context->mq_notify.mqdes,
1240 				context->mq_notify.sigev_signo);
1241 		break; }
1242 	case AUDIT_MQ_GETSETATTR: {
1243 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1244 		audit_log_format(ab,
1245 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1246 			"mq_curmsgs=%ld ",
1247 			context->mq_getsetattr.mqdes,
1248 			attr->mq_flags, attr->mq_maxmsg,
1249 			attr->mq_msgsize, attr->mq_curmsgs);
1250 		break; }
1251 	case AUDIT_CAPSET: {
1252 		audit_log_format(ab, "pid=%d", context->capset.pid);
1253 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1254 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1255 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1256 		break; }
1257 	case AUDIT_MMAP: {
1258 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1259 				 context->mmap.flags);
1260 		break; }
1261 	case AUDIT_EXECVE: {
1262 		audit_log_execve_info(context, &ab);
1263 		break; }
1264 	}
1265 	audit_log_end(ab);
1266 }
1267 
1268 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1269 {
1270 	char *end = proctitle + len - 1;
1271 	while (end > proctitle && !isprint(*end))
1272 		end--;
1273 
1274 	/* catch the case where proctitle is only 1 non-print character */
1275 	len = end - proctitle + 1;
1276 	len -= isprint(proctitle[len-1]) == 0;
1277 	return len;
1278 }
1279 
1280 static void audit_log_proctitle(struct task_struct *tsk,
1281 			 struct audit_context *context)
1282 {
1283 	int res;
1284 	char *buf;
1285 	char *msg = "(null)";
1286 	int len = strlen(msg);
1287 	struct audit_buffer *ab;
1288 
1289 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1290 	if (!ab)
1291 		return;	/* audit_panic or being filtered */
1292 
1293 	audit_log_format(ab, "proctitle=");
1294 
1295 	/* Not  cached */
1296 	if (!context->proctitle.value) {
1297 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1298 		if (!buf)
1299 			goto out;
1300 		/* Historically called this from procfs naming */
1301 		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1302 		if (res == 0) {
1303 			kfree(buf);
1304 			goto out;
1305 		}
1306 		res = audit_proctitle_rtrim(buf, res);
1307 		if (res == 0) {
1308 			kfree(buf);
1309 			goto out;
1310 		}
1311 		context->proctitle.value = buf;
1312 		context->proctitle.len = res;
1313 	}
1314 	msg = context->proctitle.value;
1315 	len = context->proctitle.len;
1316 out:
1317 	audit_log_n_untrustedstring(ab, msg, len);
1318 	audit_log_end(ab);
1319 }
1320 
1321 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1322 {
1323 	int i, call_panic = 0;
1324 	struct audit_buffer *ab;
1325 	struct audit_aux_data *aux;
1326 	struct audit_names *n;
1327 
1328 	/* tsk == current */
1329 	context->personality = tsk->personality;
1330 
1331 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1332 	if (!ab)
1333 		return;		/* audit_panic has been called */
1334 	audit_log_format(ab, "arch=%x syscall=%d",
1335 			 context->arch, context->major);
1336 	if (context->personality != PER_LINUX)
1337 		audit_log_format(ab, " per=%lx", context->personality);
1338 	if (context->return_valid)
1339 		audit_log_format(ab, " success=%s exit=%ld",
1340 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1341 				 context->return_code);
1342 
1343 	audit_log_format(ab,
1344 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1345 			 context->argv[0],
1346 			 context->argv[1],
1347 			 context->argv[2],
1348 			 context->argv[3],
1349 			 context->name_count);
1350 
1351 	audit_log_task_info(ab, tsk);
1352 	audit_log_key(ab, context->filterkey);
1353 	audit_log_end(ab);
1354 
1355 	for (aux = context->aux; aux; aux = aux->next) {
1356 
1357 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1358 		if (!ab)
1359 			continue; /* audit_panic has been called */
1360 
1361 		switch (aux->type) {
1362 
1363 		case AUDIT_BPRM_FCAPS: {
1364 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1365 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1366 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1367 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1368 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1369 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1370 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1371 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1372 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1373 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1374 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1375 			break; }
1376 
1377 		}
1378 		audit_log_end(ab);
1379 	}
1380 
1381 	if (context->type)
1382 		show_special(context, &call_panic);
1383 
1384 	if (context->fds[0] >= 0) {
1385 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1386 		if (ab) {
1387 			audit_log_format(ab, "fd0=%d fd1=%d",
1388 					context->fds[0], context->fds[1]);
1389 			audit_log_end(ab);
1390 		}
1391 	}
1392 
1393 	if (context->sockaddr_len) {
1394 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1395 		if (ab) {
1396 			audit_log_format(ab, "saddr=");
1397 			audit_log_n_hex(ab, (void *)context->sockaddr,
1398 					context->sockaddr_len);
1399 			audit_log_end(ab);
1400 		}
1401 	}
1402 
1403 	for (aux = context->aux_pids; aux; aux = aux->next) {
1404 		struct audit_aux_data_pids *axs = (void *)aux;
1405 
1406 		for (i = 0; i < axs->pid_count; i++)
1407 			if (audit_log_pid_context(context, axs->target_pid[i],
1408 						  axs->target_auid[i],
1409 						  axs->target_uid[i],
1410 						  axs->target_sessionid[i],
1411 						  axs->target_sid[i],
1412 						  axs->target_comm[i]))
1413 				call_panic = 1;
1414 	}
1415 
1416 	if (context->target_pid &&
1417 	    audit_log_pid_context(context, context->target_pid,
1418 				  context->target_auid, context->target_uid,
1419 				  context->target_sessionid,
1420 				  context->target_sid, context->target_comm))
1421 			call_panic = 1;
1422 
1423 	if (context->pwd.dentry && context->pwd.mnt) {
1424 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1425 		if (ab) {
1426 			audit_log_d_path(ab, " cwd=", &context->pwd);
1427 			audit_log_end(ab);
1428 		}
1429 	}
1430 
1431 	i = 0;
1432 	list_for_each_entry(n, &context->names_list, list) {
1433 		if (n->hidden)
1434 			continue;
1435 		audit_log_name(context, n, NULL, i++, &call_panic);
1436 	}
1437 
1438 	audit_log_proctitle(tsk, context);
1439 
1440 	/* Send end of event record to help user space know we are finished */
1441 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1442 	if (ab)
1443 		audit_log_end(ab);
1444 	if (call_panic)
1445 		audit_panic("error converting sid to string");
1446 }
1447 
1448 /**
1449  * audit_free - free a per-task audit context
1450  * @tsk: task whose audit context block to free
1451  *
1452  * Called from copy_process and do_exit
1453  */
1454 void __audit_free(struct task_struct *tsk)
1455 {
1456 	struct audit_context *context;
1457 
1458 	context = audit_take_context(tsk, 0, 0);
1459 	if (!context)
1460 		return;
1461 
1462 	/* Check for system calls that do not go through the exit
1463 	 * function (e.g., exit_group), then free context block.
1464 	 * We use GFP_ATOMIC here because we might be doing this
1465 	 * in the context of the idle thread */
1466 	/* that can happen only if we are called from do_exit() */
1467 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1468 		audit_log_exit(context, tsk);
1469 	if (!list_empty(&context->killed_trees))
1470 		audit_kill_trees(&context->killed_trees);
1471 
1472 	audit_free_context(context);
1473 }
1474 
1475 /**
1476  * audit_syscall_entry - fill in an audit record at syscall entry
1477  * @major: major syscall type (function)
1478  * @a1: additional syscall register 1
1479  * @a2: additional syscall register 2
1480  * @a3: additional syscall register 3
1481  * @a4: additional syscall register 4
1482  *
1483  * Fill in audit context at syscall entry.  This only happens if the
1484  * audit context was created when the task was created and the state or
1485  * filters demand the audit context be built.  If the state from the
1486  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1487  * then the record will be written at syscall exit time (otherwise, it
1488  * will only be written if another part of the kernel requests that it
1489  * be written).
1490  */
1491 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1492 			   unsigned long a3, unsigned long a4)
1493 {
1494 	struct task_struct *tsk = current;
1495 	struct audit_context *context = tsk->audit_context;
1496 	enum audit_state     state;
1497 
1498 	if (!context)
1499 		return;
1500 
1501 	BUG_ON(context->in_syscall || context->name_count);
1502 
1503 	if (!audit_enabled)
1504 		return;
1505 
1506 	context->arch	    = syscall_get_arch();
1507 	context->major      = major;
1508 	context->argv[0]    = a1;
1509 	context->argv[1]    = a2;
1510 	context->argv[2]    = a3;
1511 	context->argv[3]    = a4;
1512 
1513 	state = context->state;
1514 	context->dummy = !audit_n_rules;
1515 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1516 		context->prio = 0;
1517 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1518 	}
1519 	if (state == AUDIT_DISABLED)
1520 		return;
1521 
1522 	context->serial     = 0;
1523 	context->ctime      = CURRENT_TIME;
1524 	context->in_syscall = 1;
1525 	context->current_state  = state;
1526 	context->ppid       = 0;
1527 }
1528 
1529 /**
1530  * audit_syscall_exit - deallocate audit context after a system call
1531  * @success: success value of the syscall
1532  * @return_code: return value of the syscall
1533  *
1534  * Tear down after system call.  If the audit context has been marked as
1535  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1536  * filtering, or because some other part of the kernel wrote an audit
1537  * message), then write out the syscall information.  In call cases,
1538  * free the names stored from getname().
1539  */
1540 void __audit_syscall_exit(int success, long return_code)
1541 {
1542 	struct task_struct *tsk = current;
1543 	struct audit_context *context;
1544 
1545 	if (success)
1546 		success = AUDITSC_SUCCESS;
1547 	else
1548 		success = AUDITSC_FAILURE;
1549 
1550 	context = audit_take_context(tsk, success, return_code);
1551 	if (!context)
1552 		return;
1553 
1554 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1555 		audit_log_exit(context, tsk);
1556 
1557 	context->in_syscall = 0;
1558 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1559 
1560 	if (!list_empty(&context->killed_trees))
1561 		audit_kill_trees(&context->killed_trees);
1562 
1563 	audit_free_names(context);
1564 	unroll_tree_refs(context, NULL, 0);
1565 	audit_free_aux(context);
1566 	context->aux = NULL;
1567 	context->aux_pids = NULL;
1568 	context->target_pid = 0;
1569 	context->target_sid = 0;
1570 	context->sockaddr_len = 0;
1571 	context->type = 0;
1572 	context->fds[0] = -1;
1573 	if (context->state != AUDIT_RECORD_CONTEXT) {
1574 		kfree(context->filterkey);
1575 		context->filterkey = NULL;
1576 	}
1577 	tsk->audit_context = context;
1578 }
1579 
1580 static inline void handle_one(const struct inode *inode)
1581 {
1582 #ifdef CONFIG_AUDIT_TREE
1583 	struct audit_context *context;
1584 	struct audit_tree_refs *p;
1585 	struct audit_chunk *chunk;
1586 	int count;
1587 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1588 		return;
1589 	context = current->audit_context;
1590 	p = context->trees;
1591 	count = context->tree_count;
1592 	rcu_read_lock();
1593 	chunk = audit_tree_lookup(inode);
1594 	rcu_read_unlock();
1595 	if (!chunk)
1596 		return;
1597 	if (likely(put_tree_ref(context, chunk)))
1598 		return;
1599 	if (unlikely(!grow_tree_refs(context))) {
1600 		pr_warn("out of memory, audit has lost a tree reference\n");
1601 		audit_set_auditable(context);
1602 		audit_put_chunk(chunk);
1603 		unroll_tree_refs(context, p, count);
1604 		return;
1605 	}
1606 	put_tree_ref(context, chunk);
1607 #endif
1608 }
1609 
1610 static void handle_path(const struct dentry *dentry)
1611 {
1612 #ifdef CONFIG_AUDIT_TREE
1613 	struct audit_context *context;
1614 	struct audit_tree_refs *p;
1615 	const struct dentry *d, *parent;
1616 	struct audit_chunk *drop;
1617 	unsigned long seq;
1618 	int count;
1619 
1620 	context = current->audit_context;
1621 	p = context->trees;
1622 	count = context->tree_count;
1623 retry:
1624 	drop = NULL;
1625 	d = dentry;
1626 	rcu_read_lock();
1627 	seq = read_seqbegin(&rename_lock);
1628 	for(;;) {
1629 		struct inode *inode = d_backing_inode(d);
1630 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1631 			struct audit_chunk *chunk;
1632 			chunk = audit_tree_lookup(inode);
1633 			if (chunk) {
1634 				if (unlikely(!put_tree_ref(context, chunk))) {
1635 					drop = chunk;
1636 					break;
1637 				}
1638 			}
1639 		}
1640 		parent = d->d_parent;
1641 		if (parent == d)
1642 			break;
1643 		d = parent;
1644 	}
1645 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1646 		rcu_read_unlock();
1647 		if (!drop) {
1648 			/* just a race with rename */
1649 			unroll_tree_refs(context, p, count);
1650 			goto retry;
1651 		}
1652 		audit_put_chunk(drop);
1653 		if (grow_tree_refs(context)) {
1654 			/* OK, got more space */
1655 			unroll_tree_refs(context, p, count);
1656 			goto retry;
1657 		}
1658 		/* too bad */
1659 		pr_warn("out of memory, audit has lost a tree reference\n");
1660 		unroll_tree_refs(context, p, count);
1661 		audit_set_auditable(context);
1662 		return;
1663 	}
1664 	rcu_read_unlock();
1665 #endif
1666 }
1667 
1668 static struct audit_names *audit_alloc_name(struct audit_context *context,
1669 						unsigned char type)
1670 {
1671 	struct audit_names *aname;
1672 
1673 	if (context->name_count < AUDIT_NAMES) {
1674 		aname = &context->preallocated_names[context->name_count];
1675 		memset(aname, 0, sizeof(*aname));
1676 	} else {
1677 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1678 		if (!aname)
1679 			return NULL;
1680 		aname->should_free = true;
1681 	}
1682 
1683 	aname->ino = (unsigned long)-1;
1684 	aname->type = type;
1685 	list_add_tail(&aname->list, &context->names_list);
1686 
1687 	context->name_count++;
1688 	return aname;
1689 }
1690 
1691 /**
1692  * audit_reusename - fill out filename with info from existing entry
1693  * @uptr: userland ptr to pathname
1694  *
1695  * Search the audit_names list for the current audit context. If there is an
1696  * existing entry with a matching "uptr" then return the filename
1697  * associated with that audit_name. If not, return NULL.
1698  */
1699 struct filename *
1700 __audit_reusename(const __user char *uptr)
1701 {
1702 	struct audit_context *context = current->audit_context;
1703 	struct audit_names *n;
1704 
1705 	list_for_each_entry(n, &context->names_list, list) {
1706 		if (!n->name)
1707 			continue;
1708 		if (n->name->uptr == uptr) {
1709 			n->name->refcnt++;
1710 			return n->name;
1711 		}
1712 	}
1713 	return NULL;
1714 }
1715 
1716 /**
1717  * audit_getname - add a name to the list
1718  * @name: name to add
1719  *
1720  * Add a name to the list of audit names for this context.
1721  * Called from fs/namei.c:getname().
1722  */
1723 void __audit_getname(struct filename *name)
1724 {
1725 	struct audit_context *context = current->audit_context;
1726 	struct audit_names *n;
1727 
1728 	if (!context->in_syscall)
1729 		return;
1730 
1731 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1732 	if (!n)
1733 		return;
1734 
1735 	n->name = name;
1736 	n->name_len = AUDIT_NAME_FULL;
1737 	name->aname = n;
1738 	name->refcnt++;
1739 
1740 	if (!context->pwd.dentry)
1741 		get_fs_pwd(current->fs, &context->pwd);
1742 }
1743 
1744 /**
1745  * __audit_inode - store the inode and device from a lookup
1746  * @name: name being audited
1747  * @dentry: dentry being audited
1748  * @flags: attributes for this particular entry
1749  */
1750 void __audit_inode(struct filename *name, const struct dentry *dentry,
1751 		   unsigned int flags)
1752 {
1753 	struct audit_context *context = current->audit_context;
1754 	const struct inode *inode = d_backing_inode(dentry);
1755 	struct audit_names *n;
1756 	bool parent = flags & AUDIT_INODE_PARENT;
1757 
1758 	if (!context->in_syscall)
1759 		return;
1760 
1761 	if (!name)
1762 		goto out_alloc;
1763 
1764 	/*
1765 	 * If we have a pointer to an audit_names entry already, then we can
1766 	 * just use it directly if the type is correct.
1767 	 */
1768 	n = name->aname;
1769 	if (n) {
1770 		if (parent) {
1771 			if (n->type == AUDIT_TYPE_PARENT ||
1772 			    n->type == AUDIT_TYPE_UNKNOWN)
1773 				goto out;
1774 		} else {
1775 			if (n->type != AUDIT_TYPE_PARENT)
1776 				goto out;
1777 		}
1778 	}
1779 
1780 	list_for_each_entry_reverse(n, &context->names_list, list) {
1781 		if (n->ino) {
1782 			/* valid inode number, use that for the comparison */
1783 			if (n->ino != inode->i_ino ||
1784 			    n->dev != inode->i_sb->s_dev)
1785 				continue;
1786 		} else if (n->name) {
1787 			/* inode number has not been set, check the name */
1788 			if (strcmp(n->name->name, name->name))
1789 				continue;
1790 		} else
1791 			/* no inode and no name (?!) ... this is odd ... */
1792 			continue;
1793 
1794 		/* match the correct record type */
1795 		if (parent) {
1796 			if (n->type == AUDIT_TYPE_PARENT ||
1797 			    n->type == AUDIT_TYPE_UNKNOWN)
1798 				goto out;
1799 		} else {
1800 			if (n->type != AUDIT_TYPE_PARENT)
1801 				goto out;
1802 		}
1803 	}
1804 
1805 out_alloc:
1806 	/* unable to find an entry with both a matching name and type */
1807 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1808 	if (!n)
1809 		return;
1810 	if (name) {
1811 		n->name = name;
1812 		name->refcnt++;
1813 	}
1814 
1815 out:
1816 	if (parent) {
1817 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1818 		n->type = AUDIT_TYPE_PARENT;
1819 		if (flags & AUDIT_INODE_HIDDEN)
1820 			n->hidden = true;
1821 	} else {
1822 		n->name_len = AUDIT_NAME_FULL;
1823 		n->type = AUDIT_TYPE_NORMAL;
1824 	}
1825 	handle_path(dentry);
1826 	audit_copy_inode(n, dentry, inode);
1827 }
1828 
1829 void __audit_file(const struct file *file)
1830 {
1831 	__audit_inode(NULL, file->f_path.dentry, 0);
1832 }
1833 
1834 /**
1835  * __audit_inode_child - collect inode info for created/removed objects
1836  * @parent: inode of dentry parent
1837  * @dentry: dentry being audited
1838  * @type:   AUDIT_TYPE_* value that we're looking for
1839  *
1840  * For syscalls that create or remove filesystem objects, audit_inode
1841  * can only collect information for the filesystem object's parent.
1842  * This call updates the audit context with the child's information.
1843  * Syscalls that create a new filesystem object must be hooked after
1844  * the object is created.  Syscalls that remove a filesystem object
1845  * must be hooked prior, in order to capture the target inode during
1846  * unsuccessful attempts.
1847  */
1848 void __audit_inode_child(const struct inode *parent,
1849 			 const struct dentry *dentry,
1850 			 const unsigned char type)
1851 {
1852 	struct audit_context *context = current->audit_context;
1853 	const struct inode *inode = d_backing_inode(dentry);
1854 	const char *dname = dentry->d_name.name;
1855 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1856 
1857 	if (!context->in_syscall)
1858 		return;
1859 
1860 	if (inode)
1861 		handle_one(inode);
1862 
1863 	/* look for a parent entry first */
1864 	list_for_each_entry(n, &context->names_list, list) {
1865 		if (!n->name ||
1866 		    (n->type != AUDIT_TYPE_PARENT &&
1867 		     n->type != AUDIT_TYPE_UNKNOWN))
1868 			continue;
1869 
1870 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1871 		    !audit_compare_dname_path(dname,
1872 					      n->name->name, n->name_len)) {
1873 			if (n->type == AUDIT_TYPE_UNKNOWN)
1874 				n->type = AUDIT_TYPE_PARENT;
1875 			found_parent = n;
1876 			break;
1877 		}
1878 	}
1879 
1880 	/* is there a matching child entry? */
1881 	list_for_each_entry(n, &context->names_list, list) {
1882 		/* can only match entries that have a name */
1883 		if (!n->name ||
1884 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1885 			continue;
1886 
1887 		if (!strcmp(dname, n->name->name) ||
1888 		    !audit_compare_dname_path(dname, n->name->name,
1889 						found_parent ?
1890 						found_parent->name_len :
1891 						AUDIT_NAME_FULL)) {
1892 			if (n->type == AUDIT_TYPE_UNKNOWN)
1893 				n->type = type;
1894 			found_child = n;
1895 			break;
1896 		}
1897 	}
1898 
1899 	if (!found_parent) {
1900 		/* create a new, "anonymous" parent record */
1901 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1902 		if (!n)
1903 			return;
1904 		audit_copy_inode(n, NULL, parent);
1905 	}
1906 
1907 	if (!found_child) {
1908 		found_child = audit_alloc_name(context, type);
1909 		if (!found_child)
1910 			return;
1911 
1912 		/* Re-use the name belonging to the slot for a matching parent
1913 		 * directory. All names for this context are relinquished in
1914 		 * audit_free_names() */
1915 		if (found_parent) {
1916 			found_child->name = found_parent->name;
1917 			found_child->name_len = AUDIT_NAME_FULL;
1918 			found_child->name->refcnt++;
1919 		}
1920 	}
1921 
1922 	if (inode)
1923 		audit_copy_inode(found_child, dentry, inode);
1924 	else
1925 		found_child->ino = (unsigned long)-1;
1926 }
1927 EXPORT_SYMBOL_GPL(__audit_inode_child);
1928 
1929 /**
1930  * auditsc_get_stamp - get local copies of audit_context values
1931  * @ctx: audit_context for the task
1932  * @t: timespec to store time recorded in the audit_context
1933  * @serial: serial value that is recorded in the audit_context
1934  *
1935  * Also sets the context as auditable.
1936  */
1937 int auditsc_get_stamp(struct audit_context *ctx,
1938 		       struct timespec *t, unsigned int *serial)
1939 {
1940 	if (!ctx->in_syscall)
1941 		return 0;
1942 	if (!ctx->serial)
1943 		ctx->serial = audit_serial();
1944 	t->tv_sec  = ctx->ctime.tv_sec;
1945 	t->tv_nsec = ctx->ctime.tv_nsec;
1946 	*serial    = ctx->serial;
1947 	if (!ctx->prio) {
1948 		ctx->prio = 1;
1949 		ctx->current_state = AUDIT_RECORD_CONTEXT;
1950 	}
1951 	return 1;
1952 }
1953 
1954 /* global counter which is incremented every time something logs in */
1955 static atomic_t session_id = ATOMIC_INIT(0);
1956 
1957 static int audit_set_loginuid_perm(kuid_t loginuid)
1958 {
1959 	/* if we are unset, we don't need privs */
1960 	if (!audit_loginuid_set(current))
1961 		return 0;
1962 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1963 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1964 		return -EPERM;
1965 	/* it is set, you need permission */
1966 	if (!capable(CAP_AUDIT_CONTROL))
1967 		return -EPERM;
1968 	/* reject if this is not an unset and we don't allow that */
1969 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1970 		return -EPERM;
1971 	return 0;
1972 }
1973 
1974 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1975 				   unsigned int oldsessionid, unsigned int sessionid,
1976 				   int rc)
1977 {
1978 	struct audit_buffer *ab;
1979 	uid_t uid, oldloginuid, loginuid;
1980 
1981 	if (!audit_enabled)
1982 		return;
1983 
1984 	uid = from_kuid(&init_user_ns, task_uid(current));
1985 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1986 	loginuid = from_kuid(&init_user_ns, kloginuid),
1987 
1988 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1989 	if (!ab)
1990 		return;
1991 	audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
1992 	audit_log_task_context(ab);
1993 	audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1994 			 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1995 	audit_log_end(ab);
1996 }
1997 
1998 /**
1999  * audit_set_loginuid - set current task's audit_context loginuid
2000  * @loginuid: loginuid value
2001  *
2002  * Returns 0.
2003  *
2004  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2005  */
2006 int audit_set_loginuid(kuid_t loginuid)
2007 {
2008 	struct task_struct *task = current;
2009 	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2010 	kuid_t oldloginuid;
2011 	int rc;
2012 
2013 	oldloginuid = audit_get_loginuid(current);
2014 	oldsessionid = audit_get_sessionid(current);
2015 
2016 	rc = audit_set_loginuid_perm(loginuid);
2017 	if (rc)
2018 		goto out;
2019 
2020 	/* are we setting or clearing? */
2021 	if (uid_valid(loginuid))
2022 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2023 
2024 	task->sessionid = sessionid;
2025 	task->loginuid = loginuid;
2026 out:
2027 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2028 	return rc;
2029 }
2030 
2031 /**
2032  * __audit_mq_open - record audit data for a POSIX MQ open
2033  * @oflag: open flag
2034  * @mode: mode bits
2035  * @attr: queue attributes
2036  *
2037  */
2038 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2039 {
2040 	struct audit_context *context = current->audit_context;
2041 
2042 	if (attr)
2043 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2044 	else
2045 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2046 
2047 	context->mq_open.oflag = oflag;
2048 	context->mq_open.mode = mode;
2049 
2050 	context->type = AUDIT_MQ_OPEN;
2051 }
2052 
2053 /**
2054  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2055  * @mqdes: MQ descriptor
2056  * @msg_len: Message length
2057  * @msg_prio: Message priority
2058  * @abs_timeout: Message timeout in absolute time
2059  *
2060  */
2061 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2062 			const struct timespec *abs_timeout)
2063 {
2064 	struct audit_context *context = current->audit_context;
2065 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2066 
2067 	if (abs_timeout)
2068 		memcpy(p, abs_timeout, sizeof(struct timespec));
2069 	else
2070 		memset(p, 0, sizeof(struct timespec));
2071 
2072 	context->mq_sendrecv.mqdes = mqdes;
2073 	context->mq_sendrecv.msg_len = msg_len;
2074 	context->mq_sendrecv.msg_prio = msg_prio;
2075 
2076 	context->type = AUDIT_MQ_SENDRECV;
2077 }
2078 
2079 /**
2080  * __audit_mq_notify - record audit data for a POSIX MQ notify
2081  * @mqdes: MQ descriptor
2082  * @notification: Notification event
2083  *
2084  */
2085 
2086 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2087 {
2088 	struct audit_context *context = current->audit_context;
2089 
2090 	if (notification)
2091 		context->mq_notify.sigev_signo = notification->sigev_signo;
2092 	else
2093 		context->mq_notify.sigev_signo = 0;
2094 
2095 	context->mq_notify.mqdes = mqdes;
2096 	context->type = AUDIT_MQ_NOTIFY;
2097 }
2098 
2099 /**
2100  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2101  * @mqdes: MQ descriptor
2102  * @mqstat: MQ flags
2103  *
2104  */
2105 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2106 {
2107 	struct audit_context *context = current->audit_context;
2108 	context->mq_getsetattr.mqdes = mqdes;
2109 	context->mq_getsetattr.mqstat = *mqstat;
2110 	context->type = AUDIT_MQ_GETSETATTR;
2111 }
2112 
2113 /**
2114  * audit_ipc_obj - record audit data for ipc object
2115  * @ipcp: ipc permissions
2116  *
2117  */
2118 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2119 {
2120 	struct audit_context *context = current->audit_context;
2121 	context->ipc.uid = ipcp->uid;
2122 	context->ipc.gid = ipcp->gid;
2123 	context->ipc.mode = ipcp->mode;
2124 	context->ipc.has_perm = 0;
2125 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2126 	context->type = AUDIT_IPC;
2127 }
2128 
2129 /**
2130  * audit_ipc_set_perm - record audit data for new ipc permissions
2131  * @qbytes: msgq bytes
2132  * @uid: msgq user id
2133  * @gid: msgq group id
2134  * @mode: msgq mode (permissions)
2135  *
2136  * Called only after audit_ipc_obj().
2137  */
2138 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2139 {
2140 	struct audit_context *context = current->audit_context;
2141 
2142 	context->ipc.qbytes = qbytes;
2143 	context->ipc.perm_uid = uid;
2144 	context->ipc.perm_gid = gid;
2145 	context->ipc.perm_mode = mode;
2146 	context->ipc.has_perm = 1;
2147 }
2148 
2149 void __audit_bprm(struct linux_binprm *bprm)
2150 {
2151 	struct audit_context *context = current->audit_context;
2152 
2153 	context->type = AUDIT_EXECVE;
2154 	context->execve.argc = bprm->argc;
2155 }
2156 
2157 
2158 /**
2159  * audit_socketcall - record audit data for sys_socketcall
2160  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2161  * @args: args array
2162  *
2163  */
2164 int __audit_socketcall(int nargs, unsigned long *args)
2165 {
2166 	struct audit_context *context = current->audit_context;
2167 
2168 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2169 		return -EINVAL;
2170 	context->type = AUDIT_SOCKETCALL;
2171 	context->socketcall.nargs = nargs;
2172 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2173 	return 0;
2174 }
2175 
2176 /**
2177  * __audit_fd_pair - record audit data for pipe and socketpair
2178  * @fd1: the first file descriptor
2179  * @fd2: the second file descriptor
2180  *
2181  */
2182 void __audit_fd_pair(int fd1, int fd2)
2183 {
2184 	struct audit_context *context = current->audit_context;
2185 	context->fds[0] = fd1;
2186 	context->fds[1] = fd2;
2187 }
2188 
2189 /**
2190  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2191  * @len: data length in user space
2192  * @a: data address in kernel space
2193  *
2194  * Returns 0 for success or NULL context or < 0 on error.
2195  */
2196 int __audit_sockaddr(int len, void *a)
2197 {
2198 	struct audit_context *context = current->audit_context;
2199 
2200 	if (!context->sockaddr) {
2201 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2202 		if (!p)
2203 			return -ENOMEM;
2204 		context->sockaddr = p;
2205 	}
2206 
2207 	context->sockaddr_len = len;
2208 	memcpy(context->sockaddr, a, len);
2209 	return 0;
2210 }
2211 
2212 void __audit_ptrace(struct task_struct *t)
2213 {
2214 	struct audit_context *context = current->audit_context;
2215 
2216 	context->target_pid = task_pid_nr(t);
2217 	context->target_auid = audit_get_loginuid(t);
2218 	context->target_uid = task_uid(t);
2219 	context->target_sessionid = audit_get_sessionid(t);
2220 	security_task_getsecid(t, &context->target_sid);
2221 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2222 }
2223 
2224 /**
2225  * audit_signal_info - record signal info for shutting down audit subsystem
2226  * @sig: signal value
2227  * @t: task being signaled
2228  *
2229  * If the audit subsystem is being terminated, record the task (pid)
2230  * and uid that is doing that.
2231  */
2232 int __audit_signal_info(int sig, struct task_struct *t)
2233 {
2234 	struct audit_aux_data_pids *axp;
2235 	struct task_struct *tsk = current;
2236 	struct audit_context *ctx = tsk->audit_context;
2237 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2238 
2239 	if (audit_pid && t->tgid == audit_pid) {
2240 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2241 			audit_sig_pid = task_pid_nr(tsk);
2242 			if (uid_valid(tsk->loginuid))
2243 				audit_sig_uid = tsk->loginuid;
2244 			else
2245 				audit_sig_uid = uid;
2246 			security_task_getsecid(tsk, &audit_sig_sid);
2247 		}
2248 		if (!audit_signals || audit_dummy_context())
2249 			return 0;
2250 	}
2251 
2252 	/* optimize the common case by putting first signal recipient directly
2253 	 * in audit_context */
2254 	if (!ctx->target_pid) {
2255 		ctx->target_pid = task_tgid_nr(t);
2256 		ctx->target_auid = audit_get_loginuid(t);
2257 		ctx->target_uid = t_uid;
2258 		ctx->target_sessionid = audit_get_sessionid(t);
2259 		security_task_getsecid(t, &ctx->target_sid);
2260 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2261 		return 0;
2262 	}
2263 
2264 	axp = (void *)ctx->aux_pids;
2265 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2266 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2267 		if (!axp)
2268 			return -ENOMEM;
2269 
2270 		axp->d.type = AUDIT_OBJ_PID;
2271 		axp->d.next = ctx->aux_pids;
2272 		ctx->aux_pids = (void *)axp;
2273 	}
2274 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2275 
2276 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2277 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2278 	axp->target_uid[axp->pid_count] = t_uid;
2279 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2280 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2281 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2282 	axp->pid_count++;
2283 
2284 	return 0;
2285 }
2286 
2287 /**
2288  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2289  * @bprm: pointer to the bprm being processed
2290  * @new: the proposed new credentials
2291  * @old: the old credentials
2292  *
2293  * Simply check if the proc already has the caps given by the file and if not
2294  * store the priv escalation info for later auditing at the end of the syscall
2295  *
2296  * -Eric
2297  */
2298 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2299 			   const struct cred *new, const struct cred *old)
2300 {
2301 	struct audit_aux_data_bprm_fcaps *ax;
2302 	struct audit_context *context = current->audit_context;
2303 	struct cpu_vfs_cap_data vcaps;
2304 
2305 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2306 	if (!ax)
2307 		return -ENOMEM;
2308 
2309 	ax->d.type = AUDIT_BPRM_FCAPS;
2310 	ax->d.next = context->aux;
2311 	context->aux = (void *)ax;
2312 
2313 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2314 
2315 	ax->fcap.permitted = vcaps.permitted;
2316 	ax->fcap.inheritable = vcaps.inheritable;
2317 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2318 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2319 
2320 	ax->old_pcap.permitted   = old->cap_permitted;
2321 	ax->old_pcap.inheritable = old->cap_inheritable;
2322 	ax->old_pcap.effective   = old->cap_effective;
2323 
2324 	ax->new_pcap.permitted   = new->cap_permitted;
2325 	ax->new_pcap.inheritable = new->cap_inheritable;
2326 	ax->new_pcap.effective   = new->cap_effective;
2327 	return 0;
2328 }
2329 
2330 /**
2331  * __audit_log_capset - store information about the arguments to the capset syscall
2332  * @new: the new credentials
2333  * @old: the old (current) credentials
2334  *
2335  * Record the arguments userspace sent to sys_capset for later printing by the
2336  * audit system if applicable
2337  */
2338 void __audit_log_capset(const struct cred *new, const struct cred *old)
2339 {
2340 	struct audit_context *context = current->audit_context;
2341 	context->capset.pid = task_pid_nr(current);
2342 	context->capset.cap.effective   = new->cap_effective;
2343 	context->capset.cap.inheritable = new->cap_effective;
2344 	context->capset.cap.permitted   = new->cap_permitted;
2345 	context->type = AUDIT_CAPSET;
2346 }
2347 
2348 void __audit_mmap_fd(int fd, int flags)
2349 {
2350 	struct audit_context *context = current->audit_context;
2351 	context->mmap.fd = fd;
2352 	context->mmap.flags = flags;
2353 	context->type = AUDIT_MMAP;
2354 }
2355 
2356 static void audit_log_task(struct audit_buffer *ab)
2357 {
2358 	kuid_t auid, uid;
2359 	kgid_t gid;
2360 	unsigned int sessionid;
2361 	char comm[sizeof(current->comm)];
2362 
2363 	auid = audit_get_loginuid(current);
2364 	sessionid = audit_get_sessionid(current);
2365 	current_uid_gid(&uid, &gid);
2366 
2367 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2368 			 from_kuid(&init_user_ns, auid),
2369 			 from_kuid(&init_user_ns, uid),
2370 			 from_kgid(&init_user_ns, gid),
2371 			 sessionid);
2372 	audit_log_task_context(ab);
2373 	audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2374 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2375 	audit_log_d_path_exe(ab, current->mm);
2376 }
2377 
2378 /**
2379  * audit_core_dumps - record information about processes that end abnormally
2380  * @signr: signal value
2381  *
2382  * If a process ends with a core dump, something fishy is going on and we
2383  * should record the event for investigation.
2384  */
2385 void audit_core_dumps(long signr)
2386 {
2387 	struct audit_buffer *ab;
2388 
2389 	if (!audit_enabled)
2390 		return;
2391 
2392 	if (signr == SIGQUIT)	/* don't care for those */
2393 		return;
2394 
2395 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2396 	if (unlikely(!ab))
2397 		return;
2398 	audit_log_task(ab);
2399 	audit_log_format(ab, " sig=%ld", signr);
2400 	audit_log_end(ab);
2401 }
2402 
2403 void __audit_seccomp(unsigned long syscall, long signr, int code)
2404 {
2405 	struct audit_buffer *ab;
2406 
2407 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2408 	if (unlikely(!ab))
2409 		return;
2410 	audit_log_task(ab);
2411 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2412 			 signr, syscall_get_arch(), syscall, is_compat_task(),
2413 			 KSTK_EIP(current), code);
2414 	audit_log_end(ab);
2415 }
2416 
2417 struct list_head *audit_killed_trees(void)
2418 {
2419 	struct audit_context *ctx = current->audit_context;
2420 	if (likely(!ctx || !ctx->in_syscall))
2421 		return NULL;
2422 	return &ctx->killed_trees;
2423 }
2424