xref: /openbmc/linux/kernel/auditsc.c (revision bef7a78d)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 #include <uapi/linux/netfilter/nf_tables.h>
79 
80 #include "audit.h"
81 
82 /* flags stating the success for a syscall */
83 #define AUDITSC_INVALID 0
84 #define AUDITSC_SUCCESS 1
85 #define AUDITSC_FAILURE 2
86 
87 /* no execve audit message should be longer than this (userspace limits),
88  * see the note near the top of audit_log_execve_info() about this value */
89 #define MAX_EXECVE_AUDIT_LEN 7500
90 
91 /* max length to print of cmdline/proctitle value during audit */
92 #define MAX_PROCTITLE_AUDIT_LEN 128
93 
94 /* number of audit rules */
95 int audit_n_rules;
96 
97 /* determines whether we collect data for signals sent */
98 int audit_signals;
99 
100 struct audit_aux_data {
101 	struct audit_aux_data	*next;
102 	int			type;
103 };
104 
105 /* Number of target pids per aux struct. */
106 #define AUDIT_AUX_PIDS	16
107 
108 struct audit_aux_data_pids {
109 	struct audit_aux_data	d;
110 	pid_t			target_pid[AUDIT_AUX_PIDS];
111 	kuid_t			target_auid[AUDIT_AUX_PIDS];
112 	kuid_t			target_uid[AUDIT_AUX_PIDS];
113 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
114 	u32			target_sid[AUDIT_AUX_PIDS];
115 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
116 	int			pid_count;
117 };
118 
119 struct audit_aux_data_bprm_fcaps {
120 	struct audit_aux_data	d;
121 	struct audit_cap_data	fcap;
122 	unsigned int		fcap_ver;
123 	struct audit_cap_data	old_pcap;
124 	struct audit_cap_data	new_pcap;
125 };
126 
127 struct audit_tree_refs {
128 	struct audit_tree_refs *next;
129 	struct audit_chunk *c[31];
130 };
131 
132 struct audit_nfcfgop_tab {
133 	enum audit_nfcfgop	op;
134 	const char		*s;
135 };
136 
137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
138 	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
139 	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
140 	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
141 	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
142 	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
143 	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
144 	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
145 	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
146 	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
147 	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
148 	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
149 	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
150 	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
151 	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
152 	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
153 	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
154 	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
155 	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
156 	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
157 	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
158 };
159 
160 static int audit_match_perm(struct audit_context *ctx, int mask)
161 {
162 	unsigned n;
163 	if (unlikely(!ctx))
164 		return 0;
165 	n = ctx->major;
166 
167 	switch (audit_classify_syscall(ctx->arch, n)) {
168 	case 0:	/* native */
169 		if ((mask & AUDIT_PERM_WRITE) &&
170 		     audit_match_class(AUDIT_CLASS_WRITE, n))
171 			return 1;
172 		if ((mask & AUDIT_PERM_READ) &&
173 		     audit_match_class(AUDIT_CLASS_READ, n))
174 			return 1;
175 		if ((mask & AUDIT_PERM_ATTR) &&
176 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
177 			return 1;
178 		return 0;
179 	case 1: /* 32bit on biarch */
180 		if ((mask & AUDIT_PERM_WRITE) &&
181 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
182 			return 1;
183 		if ((mask & AUDIT_PERM_READ) &&
184 		     audit_match_class(AUDIT_CLASS_READ_32, n))
185 			return 1;
186 		if ((mask & AUDIT_PERM_ATTR) &&
187 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
188 			return 1;
189 		return 0;
190 	case 2: /* open */
191 		return mask & ACC_MODE(ctx->argv[1]);
192 	case 3: /* openat */
193 		return mask & ACC_MODE(ctx->argv[2]);
194 	case 4: /* socketcall */
195 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
196 	case 5: /* execve */
197 		return mask & AUDIT_PERM_EXEC;
198 	default:
199 		return 0;
200 	}
201 }
202 
203 static int audit_match_filetype(struct audit_context *ctx, int val)
204 {
205 	struct audit_names *n;
206 	umode_t mode = (umode_t)val;
207 
208 	if (unlikely(!ctx))
209 		return 0;
210 
211 	list_for_each_entry(n, &ctx->names_list, list) {
212 		if ((n->ino != AUDIT_INO_UNSET) &&
213 		    ((n->mode & S_IFMT) == mode))
214 			return 1;
215 	}
216 
217 	return 0;
218 }
219 
220 /*
221  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
222  * ->first_trees points to its beginning, ->trees - to the current end of data.
223  * ->tree_count is the number of free entries in array pointed to by ->trees.
224  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
225  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
226  * it's going to remain 1-element for almost any setup) until we free context itself.
227  * References in it _are_ dropped - at the same time we free/drop aux stuff.
228  */
229 
230 static void audit_set_auditable(struct audit_context *ctx)
231 {
232 	if (!ctx->prio) {
233 		ctx->prio = 1;
234 		ctx->current_state = AUDIT_RECORD_CONTEXT;
235 	}
236 }
237 
238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
239 {
240 	struct audit_tree_refs *p = ctx->trees;
241 	int left = ctx->tree_count;
242 	if (likely(left)) {
243 		p->c[--left] = chunk;
244 		ctx->tree_count = left;
245 		return 1;
246 	}
247 	if (!p)
248 		return 0;
249 	p = p->next;
250 	if (p) {
251 		p->c[30] = chunk;
252 		ctx->trees = p;
253 		ctx->tree_count = 30;
254 		return 1;
255 	}
256 	return 0;
257 }
258 
259 static int grow_tree_refs(struct audit_context *ctx)
260 {
261 	struct audit_tree_refs *p = ctx->trees;
262 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
263 	if (!ctx->trees) {
264 		ctx->trees = p;
265 		return 0;
266 	}
267 	if (p)
268 		p->next = ctx->trees;
269 	else
270 		ctx->first_trees = ctx->trees;
271 	ctx->tree_count = 31;
272 	return 1;
273 }
274 
275 static void unroll_tree_refs(struct audit_context *ctx,
276 		      struct audit_tree_refs *p, int count)
277 {
278 	struct audit_tree_refs *q;
279 	int n;
280 	if (!p) {
281 		/* we started with empty chain */
282 		p = ctx->first_trees;
283 		count = 31;
284 		/* if the very first allocation has failed, nothing to do */
285 		if (!p)
286 			return;
287 	}
288 	n = count;
289 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
290 		while (n--) {
291 			audit_put_chunk(q->c[n]);
292 			q->c[n] = NULL;
293 		}
294 	}
295 	while (n-- > ctx->tree_count) {
296 		audit_put_chunk(q->c[n]);
297 		q->c[n] = NULL;
298 	}
299 	ctx->trees = p;
300 	ctx->tree_count = count;
301 }
302 
303 static void free_tree_refs(struct audit_context *ctx)
304 {
305 	struct audit_tree_refs *p, *q;
306 	for (p = ctx->first_trees; p; p = q) {
307 		q = p->next;
308 		kfree(p);
309 	}
310 }
311 
312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
313 {
314 	struct audit_tree_refs *p;
315 	int n;
316 	if (!tree)
317 		return 0;
318 	/* full ones */
319 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
320 		for (n = 0; n < 31; n++)
321 			if (audit_tree_match(p->c[n], tree))
322 				return 1;
323 	}
324 	/* partial */
325 	if (p) {
326 		for (n = ctx->tree_count; n < 31; n++)
327 			if (audit_tree_match(p->c[n], tree))
328 				return 1;
329 	}
330 	return 0;
331 }
332 
333 static int audit_compare_uid(kuid_t uid,
334 			     struct audit_names *name,
335 			     struct audit_field *f,
336 			     struct audit_context *ctx)
337 {
338 	struct audit_names *n;
339 	int rc;
340 
341 	if (name) {
342 		rc = audit_uid_comparator(uid, f->op, name->uid);
343 		if (rc)
344 			return rc;
345 	}
346 
347 	if (ctx) {
348 		list_for_each_entry(n, &ctx->names_list, list) {
349 			rc = audit_uid_comparator(uid, f->op, n->uid);
350 			if (rc)
351 				return rc;
352 		}
353 	}
354 	return 0;
355 }
356 
357 static int audit_compare_gid(kgid_t gid,
358 			     struct audit_names *name,
359 			     struct audit_field *f,
360 			     struct audit_context *ctx)
361 {
362 	struct audit_names *n;
363 	int rc;
364 
365 	if (name) {
366 		rc = audit_gid_comparator(gid, f->op, name->gid);
367 		if (rc)
368 			return rc;
369 	}
370 
371 	if (ctx) {
372 		list_for_each_entry(n, &ctx->names_list, list) {
373 			rc = audit_gid_comparator(gid, f->op, n->gid);
374 			if (rc)
375 				return rc;
376 		}
377 	}
378 	return 0;
379 }
380 
381 static int audit_field_compare(struct task_struct *tsk,
382 			       const struct cred *cred,
383 			       struct audit_field *f,
384 			       struct audit_context *ctx,
385 			       struct audit_names *name)
386 {
387 	switch (f->val) {
388 	/* process to file object comparisons */
389 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
390 		return audit_compare_uid(cred->uid, name, f, ctx);
391 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
392 		return audit_compare_gid(cred->gid, name, f, ctx);
393 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
394 		return audit_compare_uid(cred->euid, name, f, ctx);
395 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
396 		return audit_compare_gid(cred->egid, name, f, ctx);
397 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
398 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
399 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
400 		return audit_compare_uid(cred->suid, name, f, ctx);
401 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
402 		return audit_compare_gid(cred->sgid, name, f, ctx);
403 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
404 		return audit_compare_uid(cred->fsuid, name, f, ctx);
405 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
406 		return audit_compare_gid(cred->fsgid, name, f, ctx);
407 	/* uid comparisons */
408 	case AUDIT_COMPARE_UID_TO_AUID:
409 		return audit_uid_comparator(cred->uid, f->op,
410 					    audit_get_loginuid(tsk));
411 	case AUDIT_COMPARE_UID_TO_EUID:
412 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
413 	case AUDIT_COMPARE_UID_TO_SUID:
414 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
415 	case AUDIT_COMPARE_UID_TO_FSUID:
416 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
417 	/* auid comparisons */
418 	case AUDIT_COMPARE_AUID_TO_EUID:
419 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
420 					    cred->euid);
421 	case AUDIT_COMPARE_AUID_TO_SUID:
422 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
423 					    cred->suid);
424 	case AUDIT_COMPARE_AUID_TO_FSUID:
425 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
426 					    cred->fsuid);
427 	/* euid comparisons */
428 	case AUDIT_COMPARE_EUID_TO_SUID:
429 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
430 	case AUDIT_COMPARE_EUID_TO_FSUID:
431 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
432 	/* suid comparisons */
433 	case AUDIT_COMPARE_SUID_TO_FSUID:
434 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
435 	/* gid comparisons */
436 	case AUDIT_COMPARE_GID_TO_EGID:
437 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
438 	case AUDIT_COMPARE_GID_TO_SGID:
439 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
440 	case AUDIT_COMPARE_GID_TO_FSGID:
441 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
442 	/* egid comparisons */
443 	case AUDIT_COMPARE_EGID_TO_SGID:
444 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
445 	case AUDIT_COMPARE_EGID_TO_FSGID:
446 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
447 	/* sgid comparison */
448 	case AUDIT_COMPARE_SGID_TO_FSGID:
449 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
450 	default:
451 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
452 		return 0;
453 	}
454 	return 0;
455 }
456 
457 /* Determine if any context name data matches a rule's watch data */
458 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
459  * otherwise.
460  *
461  * If task_creation is true, this is an explicit indication that we are
462  * filtering a task rule at task creation time.  This and tsk == current are
463  * the only situations where tsk->cred may be accessed without an rcu read lock.
464  */
465 static int audit_filter_rules(struct task_struct *tsk,
466 			      struct audit_krule *rule,
467 			      struct audit_context *ctx,
468 			      struct audit_names *name,
469 			      enum audit_state *state,
470 			      bool task_creation)
471 {
472 	const struct cred *cred;
473 	int i, need_sid = 1;
474 	u32 sid;
475 	unsigned int sessionid;
476 
477 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
478 
479 	for (i = 0; i < rule->field_count; i++) {
480 		struct audit_field *f = &rule->fields[i];
481 		struct audit_names *n;
482 		int result = 0;
483 		pid_t pid;
484 
485 		switch (f->type) {
486 		case AUDIT_PID:
487 			pid = task_tgid_nr(tsk);
488 			result = audit_comparator(pid, f->op, f->val);
489 			break;
490 		case AUDIT_PPID:
491 			if (ctx) {
492 				if (!ctx->ppid)
493 					ctx->ppid = task_ppid_nr(tsk);
494 				result = audit_comparator(ctx->ppid, f->op, f->val);
495 			}
496 			break;
497 		case AUDIT_EXE:
498 			result = audit_exe_compare(tsk, rule->exe);
499 			if (f->op == Audit_not_equal)
500 				result = !result;
501 			break;
502 		case AUDIT_UID:
503 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
504 			break;
505 		case AUDIT_EUID:
506 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
507 			break;
508 		case AUDIT_SUID:
509 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
510 			break;
511 		case AUDIT_FSUID:
512 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
513 			break;
514 		case AUDIT_GID:
515 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
516 			if (f->op == Audit_equal) {
517 				if (!result)
518 					result = groups_search(cred->group_info, f->gid);
519 			} else if (f->op == Audit_not_equal) {
520 				if (result)
521 					result = !groups_search(cred->group_info, f->gid);
522 			}
523 			break;
524 		case AUDIT_EGID:
525 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
526 			if (f->op == Audit_equal) {
527 				if (!result)
528 					result = groups_search(cred->group_info, f->gid);
529 			} else if (f->op == Audit_not_equal) {
530 				if (result)
531 					result = !groups_search(cred->group_info, f->gid);
532 			}
533 			break;
534 		case AUDIT_SGID:
535 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
536 			break;
537 		case AUDIT_FSGID:
538 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
539 			break;
540 		case AUDIT_SESSIONID:
541 			sessionid = audit_get_sessionid(tsk);
542 			result = audit_comparator(sessionid, f->op, f->val);
543 			break;
544 		case AUDIT_PERS:
545 			result = audit_comparator(tsk->personality, f->op, f->val);
546 			break;
547 		case AUDIT_ARCH:
548 			if (ctx)
549 				result = audit_comparator(ctx->arch, f->op, f->val);
550 			break;
551 
552 		case AUDIT_EXIT:
553 			if (ctx && ctx->return_valid != AUDITSC_INVALID)
554 				result = audit_comparator(ctx->return_code, f->op, f->val);
555 			break;
556 		case AUDIT_SUCCESS:
557 			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
558 				if (f->val)
559 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
560 				else
561 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
562 			}
563 			break;
564 		case AUDIT_DEVMAJOR:
565 			if (name) {
566 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
567 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
568 					++result;
569 			} else if (ctx) {
570 				list_for_each_entry(n, &ctx->names_list, list) {
571 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
572 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
573 						++result;
574 						break;
575 					}
576 				}
577 			}
578 			break;
579 		case AUDIT_DEVMINOR:
580 			if (name) {
581 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
582 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
583 					++result;
584 			} else if (ctx) {
585 				list_for_each_entry(n, &ctx->names_list, list) {
586 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
587 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
588 						++result;
589 						break;
590 					}
591 				}
592 			}
593 			break;
594 		case AUDIT_INODE:
595 			if (name)
596 				result = audit_comparator(name->ino, f->op, f->val);
597 			else if (ctx) {
598 				list_for_each_entry(n, &ctx->names_list, list) {
599 					if (audit_comparator(n->ino, f->op, f->val)) {
600 						++result;
601 						break;
602 					}
603 				}
604 			}
605 			break;
606 		case AUDIT_OBJ_UID:
607 			if (name) {
608 				result = audit_uid_comparator(name->uid, f->op, f->uid);
609 			} else if (ctx) {
610 				list_for_each_entry(n, &ctx->names_list, list) {
611 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
612 						++result;
613 						break;
614 					}
615 				}
616 			}
617 			break;
618 		case AUDIT_OBJ_GID:
619 			if (name) {
620 				result = audit_gid_comparator(name->gid, f->op, f->gid);
621 			} else if (ctx) {
622 				list_for_each_entry(n, &ctx->names_list, list) {
623 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
624 						++result;
625 						break;
626 					}
627 				}
628 			}
629 			break;
630 		case AUDIT_WATCH:
631 			if (name) {
632 				result = audit_watch_compare(rule->watch,
633 							     name->ino,
634 							     name->dev);
635 				if (f->op == Audit_not_equal)
636 					result = !result;
637 			}
638 			break;
639 		case AUDIT_DIR:
640 			if (ctx) {
641 				result = match_tree_refs(ctx, rule->tree);
642 				if (f->op == Audit_not_equal)
643 					result = !result;
644 			}
645 			break;
646 		case AUDIT_LOGINUID:
647 			result = audit_uid_comparator(audit_get_loginuid(tsk),
648 						      f->op, f->uid);
649 			break;
650 		case AUDIT_LOGINUID_SET:
651 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
652 			break;
653 		case AUDIT_SADDR_FAM:
654 			if (ctx->sockaddr)
655 				result = audit_comparator(ctx->sockaddr->ss_family,
656 							  f->op, f->val);
657 			break;
658 		case AUDIT_SUBJ_USER:
659 		case AUDIT_SUBJ_ROLE:
660 		case AUDIT_SUBJ_TYPE:
661 		case AUDIT_SUBJ_SEN:
662 		case AUDIT_SUBJ_CLR:
663 			/* NOTE: this may return negative values indicating
664 			   a temporary error.  We simply treat this as a
665 			   match for now to avoid losing information that
666 			   may be wanted.   An error message will also be
667 			   logged upon error */
668 			if (f->lsm_rule) {
669 				if (need_sid) {
670 					security_task_getsecid(tsk, &sid);
671 					need_sid = 0;
672 				}
673 				result = security_audit_rule_match(sid, f->type,
674 								   f->op,
675 								   f->lsm_rule);
676 			}
677 			break;
678 		case AUDIT_OBJ_USER:
679 		case AUDIT_OBJ_ROLE:
680 		case AUDIT_OBJ_TYPE:
681 		case AUDIT_OBJ_LEV_LOW:
682 		case AUDIT_OBJ_LEV_HIGH:
683 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
684 			   also applies here */
685 			if (f->lsm_rule) {
686 				/* Find files that match */
687 				if (name) {
688 					result = security_audit_rule_match(
689 								name->osid,
690 								f->type,
691 								f->op,
692 								f->lsm_rule);
693 				} else if (ctx) {
694 					list_for_each_entry(n, &ctx->names_list, list) {
695 						if (security_audit_rule_match(
696 								n->osid,
697 								f->type,
698 								f->op,
699 								f->lsm_rule)) {
700 							++result;
701 							break;
702 						}
703 					}
704 				}
705 				/* Find ipc objects that match */
706 				if (!ctx || ctx->type != AUDIT_IPC)
707 					break;
708 				if (security_audit_rule_match(ctx->ipc.osid,
709 							      f->type, f->op,
710 							      f->lsm_rule))
711 					++result;
712 			}
713 			break;
714 		case AUDIT_ARG0:
715 		case AUDIT_ARG1:
716 		case AUDIT_ARG2:
717 		case AUDIT_ARG3:
718 			if (ctx)
719 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
720 			break;
721 		case AUDIT_FILTERKEY:
722 			/* ignore this field for filtering */
723 			result = 1;
724 			break;
725 		case AUDIT_PERM:
726 			result = audit_match_perm(ctx, f->val);
727 			if (f->op == Audit_not_equal)
728 				result = !result;
729 			break;
730 		case AUDIT_FILETYPE:
731 			result = audit_match_filetype(ctx, f->val);
732 			if (f->op == Audit_not_equal)
733 				result = !result;
734 			break;
735 		case AUDIT_FIELD_COMPARE:
736 			result = audit_field_compare(tsk, cred, f, ctx, name);
737 			break;
738 		}
739 		if (!result)
740 			return 0;
741 	}
742 
743 	if (ctx) {
744 		if (rule->prio <= ctx->prio)
745 			return 0;
746 		if (rule->filterkey) {
747 			kfree(ctx->filterkey);
748 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
749 		}
750 		ctx->prio = rule->prio;
751 	}
752 	switch (rule->action) {
753 	case AUDIT_NEVER:
754 		*state = AUDIT_DISABLED;
755 		break;
756 	case AUDIT_ALWAYS:
757 		*state = AUDIT_RECORD_CONTEXT;
758 		break;
759 	}
760 	return 1;
761 }
762 
763 /* At process creation time, we can determine if system-call auditing is
764  * completely disabled for this task.  Since we only have the task
765  * structure at this point, we can only check uid and gid.
766  */
767 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
768 {
769 	struct audit_entry *e;
770 	enum audit_state   state;
771 
772 	rcu_read_lock();
773 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
774 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
775 				       &state, true)) {
776 			if (state == AUDIT_RECORD_CONTEXT)
777 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
778 			rcu_read_unlock();
779 			return state;
780 		}
781 	}
782 	rcu_read_unlock();
783 	return AUDIT_BUILD_CONTEXT;
784 }
785 
786 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
787 {
788 	int word, bit;
789 
790 	if (val > 0xffffffff)
791 		return false;
792 
793 	word = AUDIT_WORD(val);
794 	if (word >= AUDIT_BITMASK_SIZE)
795 		return false;
796 
797 	bit = AUDIT_BIT(val);
798 
799 	return rule->mask[word] & bit;
800 }
801 
802 /* At syscall entry and exit time, this filter is called if the
803  * audit_state is not low enough that auditing cannot take place, but is
804  * also not high enough that we already know we have to write an audit
805  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
806  */
807 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
808 					     struct audit_context *ctx,
809 					     struct list_head *list)
810 {
811 	struct audit_entry *e;
812 	enum audit_state state;
813 
814 	if (auditd_test_task(tsk))
815 		return AUDIT_DISABLED;
816 
817 	rcu_read_lock();
818 	list_for_each_entry_rcu(e, list, list) {
819 		if (audit_in_mask(&e->rule, ctx->major) &&
820 		    audit_filter_rules(tsk, &e->rule, ctx, NULL,
821 				       &state, false)) {
822 			rcu_read_unlock();
823 			ctx->current_state = state;
824 			return state;
825 		}
826 	}
827 	rcu_read_unlock();
828 	return AUDIT_BUILD_CONTEXT;
829 }
830 
831 /*
832  * Given an audit_name check the inode hash table to see if they match.
833  * Called holding the rcu read lock to protect the use of audit_inode_hash
834  */
835 static int audit_filter_inode_name(struct task_struct *tsk,
836 				   struct audit_names *n,
837 				   struct audit_context *ctx) {
838 	int h = audit_hash_ino((u32)n->ino);
839 	struct list_head *list = &audit_inode_hash[h];
840 	struct audit_entry *e;
841 	enum audit_state state;
842 
843 	list_for_each_entry_rcu(e, list, list) {
844 		if (audit_in_mask(&e->rule, ctx->major) &&
845 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
846 			ctx->current_state = state;
847 			return 1;
848 		}
849 	}
850 	return 0;
851 }
852 
853 /* At syscall exit time, this filter is called if any audit_names have been
854  * collected during syscall processing.  We only check rules in sublists at hash
855  * buckets applicable to the inode numbers in audit_names.
856  * Regarding audit_state, same rules apply as for audit_filter_syscall().
857  */
858 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
859 {
860 	struct audit_names *n;
861 
862 	if (auditd_test_task(tsk))
863 		return;
864 
865 	rcu_read_lock();
866 
867 	list_for_each_entry(n, &ctx->names_list, list) {
868 		if (audit_filter_inode_name(tsk, n, ctx))
869 			break;
870 	}
871 	rcu_read_unlock();
872 }
873 
874 static inline void audit_proctitle_free(struct audit_context *context)
875 {
876 	kfree(context->proctitle.value);
877 	context->proctitle.value = NULL;
878 	context->proctitle.len = 0;
879 }
880 
881 static inline void audit_free_module(struct audit_context *context)
882 {
883 	if (context->type == AUDIT_KERN_MODULE) {
884 		kfree(context->module.name);
885 		context->module.name = NULL;
886 	}
887 }
888 static inline void audit_free_names(struct audit_context *context)
889 {
890 	struct audit_names *n, *next;
891 
892 	list_for_each_entry_safe(n, next, &context->names_list, list) {
893 		list_del(&n->list);
894 		if (n->name)
895 			putname(n->name);
896 		if (n->should_free)
897 			kfree(n);
898 	}
899 	context->name_count = 0;
900 	path_put(&context->pwd);
901 	context->pwd.dentry = NULL;
902 	context->pwd.mnt = NULL;
903 }
904 
905 static inline void audit_free_aux(struct audit_context *context)
906 {
907 	struct audit_aux_data *aux;
908 
909 	while ((aux = context->aux)) {
910 		context->aux = aux->next;
911 		kfree(aux);
912 	}
913 	while ((aux = context->aux_pids)) {
914 		context->aux_pids = aux->next;
915 		kfree(aux);
916 	}
917 }
918 
919 static inline struct audit_context *audit_alloc_context(enum audit_state state)
920 {
921 	struct audit_context *context;
922 
923 	context = kzalloc(sizeof(*context), GFP_KERNEL);
924 	if (!context)
925 		return NULL;
926 	context->state = state;
927 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
928 	INIT_LIST_HEAD(&context->killed_trees);
929 	INIT_LIST_HEAD(&context->names_list);
930 	context->fds[0] = -1;
931 	context->return_valid = AUDITSC_INVALID;
932 	return context;
933 }
934 
935 /**
936  * audit_alloc - allocate an audit context block for a task
937  * @tsk: task
938  *
939  * Filter on the task information and allocate a per-task audit context
940  * if necessary.  Doing so turns on system call auditing for the
941  * specified task.  This is called from copy_process, so no lock is
942  * needed.
943  */
944 int audit_alloc(struct task_struct *tsk)
945 {
946 	struct audit_context *context;
947 	enum audit_state     state;
948 	char *key = NULL;
949 
950 	if (likely(!audit_ever_enabled))
951 		return 0; /* Return if not auditing. */
952 
953 	state = audit_filter_task(tsk, &key);
954 	if (state == AUDIT_DISABLED) {
955 		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
956 		return 0;
957 	}
958 
959 	if (!(context = audit_alloc_context(state))) {
960 		kfree(key);
961 		audit_log_lost("out of memory in audit_alloc");
962 		return -ENOMEM;
963 	}
964 	context->filterkey = key;
965 
966 	audit_set_context(tsk, context);
967 	set_task_syscall_work(tsk, SYSCALL_AUDIT);
968 	return 0;
969 }
970 
971 static inline void audit_free_context(struct audit_context *context)
972 {
973 	audit_free_module(context);
974 	audit_free_names(context);
975 	unroll_tree_refs(context, NULL, 0);
976 	free_tree_refs(context);
977 	audit_free_aux(context);
978 	kfree(context->filterkey);
979 	kfree(context->sockaddr);
980 	audit_proctitle_free(context);
981 	kfree(context);
982 }
983 
984 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
985 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
986 				 u32 sid, char *comm)
987 {
988 	struct audit_buffer *ab;
989 	char *ctx = NULL;
990 	u32 len;
991 	int rc = 0;
992 
993 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
994 	if (!ab)
995 		return rc;
996 
997 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
998 			 from_kuid(&init_user_ns, auid),
999 			 from_kuid(&init_user_ns, uid), sessionid);
1000 	if (sid) {
1001 		if (security_secid_to_secctx(sid, &ctx, &len)) {
1002 			audit_log_format(ab, " obj=(none)");
1003 			rc = 1;
1004 		} else {
1005 			audit_log_format(ab, " obj=%s", ctx);
1006 			security_release_secctx(ctx, len);
1007 		}
1008 	}
1009 	audit_log_format(ab, " ocomm=");
1010 	audit_log_untrustedstring(ab, comm);
1011 	audit_log_end(ab);
1012 
1013 	return rc;
1014 }
1015 
1016 static void audit_log_execve_info(struct audit_context *context,
1017 				  struct audit_buffer **ab)
1018 {
1019 	long len_max;
1020 	long len_rem;
1021 	long len_full;
1022 	long len_buf;
1023 	long len_abuf = 0;
1024 	long len_tmp;
1025 	bool require_data;
1026 	bool encode;
1027 	unsigned int iter;
1028 	unsigned int arg;
1029 	char *buf_head;
1030 	char *buf;
1031 	const char __user *p = (const char __user *)current->mm->arg_start;
1032 
1033 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1034 	 *       data we put in the audit record for this argument (see the
1035 	 *       code below) ... at this point in time 96 is plenty */
1036 	char abuf[96];
1037 
1038 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1039 	 *       current value of 7500 is not as important as the fact that it
1040 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1041 	 *       room if we go over a little bit in the logging below */
1042 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1043 	len_max = MAX_EXECVE_AUDIT_LEN;
1044 
1045 	/* scratch buffer to hold the userspace args */
1046 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1047 	if (!buf_head) {
1048 		audit_panic("out of memory for argv string");
1049 		return;
1050 	}
1051 	buf = buf_head;
1052 
1053 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1054 
1055 	len_rem = len_max;
1056 	len_buf = 0;
1057 	len_full = 0;
1058 	require_data = true;
1059 	encode = false;
1060 	iter = 0;
1061 	arg = 0;
1062 	do {
1063 		/* NOTE: we don't ever want to trust this value for anything
1064 		 *       serious, but the audit record format insists we
1065 		 *       provide an argument length for really long arguments,
1066 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1067 		 *       to use strncpy_from_user() to obtain this value for
1068 		 *       recording in the log, although we don't use it
1069 		 *       anywhere here to avoid a double-fetch problem */
1070 		if (len_full == 0)
1071 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1072 
1073 		/* read more data from userspace */
1074 		if (require_data) {
1075 			/* can we make more room in the buffer? */
1076 			if (buf != buf_head) {
1077 				memmove(buf_head, buf, len_buf);
1078 				buf = buf_head;
1079 			}
1080 
1081 			/* fetch as much as we can of the argument */
1082 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1083 						    len_max - len_buf);
1084 			if (len_tmp == -EFAULT) {
1085 				/* unable to copy from userspace */
1086 				send_sig(SIGKILL, current, 0);
1087 				goto out;
1088 			} else if (len_tmp == (len_max - len_buf)) {
1089 				/* buffer is not large enough */
1090 				require_data = true;
1091 				/* NOTE: if we are going to span multiple
1092 				 *       buffers force the encoding so we stand
1093 				 *       a chance at a sane len_full value and
1094 				 *       consistent record encoding */
1095 				encode = true;
1096 				len_full = len_full * 2;
1097 				p += len_tmp;
1098 			} else {
1099 				require_data = false;
1100 				if (!encode)
1101 					encode = audit_string_contains_control(
1102 								buf, len_tmp);
1103 				/* try to use a trusted value for len_full */
1104 				if (len_full < len_max)
1105 					len_full = (encode ?
1106 						    len_tmp * 2 : len_tmp);
1107 				p += len_tmp + 1;
1108 			}
1109 			len_buf += len_tmp;
1110 			buf_head[len_buf] = '\0';
1111 
1112 			/* length of the buffer in the audit record? */
1113 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1114 		}
1115 
1116 		/* write as much as we can to the audit log */
1117 		if (len_buf >= 0) {
1118 			/* NOTE: some magic numbers here - basically if we
1119 			 *       can't fit a reasonable amount of data into the
1120 			 *       existing audit buffer, flush it and start with
1121 			 *       a new buffer */
1122 			if ((sizeof(abuf) + 8) > len_rem) {
1123 				len_rem = len_max;
1124 				audit_log_end(*ab);
1125 				*ab = audit_log_start(context,
1126 						      GFP_KERNEL, AUDIT_EXECVE);
1127 				if (!*ab)
1128 					goto out;
1129 			}
1130 
1131 			/* create the non-arg portion of the arg record */
1132 			len_tmp = 0;
1133 			if (require_data || (iter > 0) ||
1134 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1135 				if (iter == 0) {
1136 					len_tmp += snprintf(&abuf[len_tmp],
1137 							sizeof(abuf) - len_tmp,
1138 							" a%d_len=%lu",
1139 							arg, len_full);
1140 				}
1141 				len_tmp += snprintf(&abuf[len_tmp],
1142 						    sizeof(abuf) - len_tmp,
1143 						    " a%d[%d]=", arg, iter++);
1144 			} else
1145 				len_tmp += snprintf(&abuf[len_tmp],
1146 						    sizeof(abuf) - len_tmp,
1147 						    " a%d=", arg);
1148 			WARN_ON(len_tmp >= sizeof(abuf));
1149 			abuf[sizeof(abuf) - 1] = '\0';
1150 
1151 			/* log the arg in the audit record */
1152 			audit_log_format(*ab, "%s", abuf);
1153 			len_rem -= len_tmp;
1154 			len_tmp = len_buf;
1155 			if (encode) {
1156 				if (len_abuf > len_rem)
1157 					len_tmp = len_rem / 2; /* encoding */
1158 				audit_log_n_hex(*ab, buf, len_tmp);
1159 				len_rem -= len_tmp * 2;
1160 				len_abuf -= len_tmp * 2;
1161 			} else {
1162 				if (len_abuf > len_rem)
1163 					len_tmp = len_rem - 2; /* quotes */
1164 				audit_log_n_string(*ab, buf, len_tmp);
1165 				len_rem -= len_tmp + 2;
1166 				/* don't subtract the "2" because we still need
1167 				 * to add quotes to the remaining string */
1168 				len_abuf -= len_tmp;
1169 			}
1170 			len_buf -= len_tmp;
1171 			buf += len_tmp;
1172 		}
1173 
1174 		/* ready to move to the next argument? */
1175 		if ((len_buf == 0) && !require_data) {
1176 			arg++;
1177 			iter = 0;
1178 			len_full = 0;
1179 			require_data = true;
1180 			encode = false;
1181 		}
1182 	} while (arg < context->execve.argc);
1183 
1184 	/* NOTE: the caller handles the final audit_log_end() call */
1185 
1186 out:
1187 	kfree(buf_head);
1188 }
1189 
1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1191 			  kernel_cap_t *cap)
1192 {
1193 	int i;
1194 
1195 	if (cap_isclear(*cap)) {
1196 		audit_log_format(ab, " %s=0", prefix);
1197 		return;
1198 	}
1199 	audit_log_format(ab, " %s=", prefix);
1200 	CAP_FOR_EACH_U32(i)
1201 		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1202 }
1203 
1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1205 {
1206 	if (name->fcap_ver == -1) {
1207 		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1208 		return;
1209 	}
1210 	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1211 	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1212 	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1213 			 name->fcap.fE, name->fcap_ver,
1214 			 from_kuid(&init_user_ns, name->fcap.rootid));
1215 }
1216 
1217 static void show_special(struct audit_context *context, int *call_panic)
1218 {
1219 	struct audit_buffer *ab;
1220 	int i;
1221 
1222 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 	if (!ab)
1224 		return;
1225 
1226 	switch (context->type) {
1227 	case AUDIT_SOCKETCALL: {
1228 		int nargs = context->socketcall.nargs;
1229 		audit_log_format(ab, "nargs=%d", nargs);
1230 		for (i = 0; i < nargs; i++)
1231 			audit_log_format(ab, " a%d=%lx", i,
1232 				context->socketcall.args[i]);
1233 		break; }
1234 	case AUDIT_IPC: {
1235 		u32 osid = context->ipc.osid;
1236 
1237 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1238 				 from_kuid(&init_user_ns, context->ipc.uid),
1239 				 from_kgid(&init_user_ns, context->ipc.gid),
1240 				 context->ipc.mode);
1241 		if (osid) {
1242 			char *ctx = NULL;
1243 			u32 len;
1244 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1245 				audit_log_format(ab, " osid=%u", osid);
1246 				*call_panic = 1;
1247 			} else {
1248 				audit_log_format(ab, " obj=%s", ctx);
1249 				security_release_secctx(ctx, len);
1250 			}
1251 		}
1252 		if (context->ipc.has_perm) {
1253 			audit_log_end(ab);
1254 			ab = audit_log_start(context, GFP_KERNEL,
1255 					     AUDIT_IPC_SET_PERM);
1256 			if (unlikely(!ab))
1257 				return;
1258 			audit_log_format(ab,
1259 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1260 				context->ipc.qbytes,
1261 				context->ipc.perm_uid,
1262 				context->ipc.perm_gid,
1263 				context->ipc.perm_mode);
1264 		}
1265 		break; }
1266 	case AUDIT_MQ_OPEN:
1267 		audit_log_format(ab,
1268 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1269 			"mq_msgsize=%ld mq_curmsgs=%ld",
1270 			context->mq_open.oflag, context->mq_open.mode,
1271 			context->mq_open.attr.mq_flags,
1272 			context->mq_open.attr.mq_maxmsg,
1273 			context->mq_open.attr.mq_msgsize,
1274 			context->mq_open.attr.mq_curmsgs);
1275 		break;
1276 	case AUDIT_MQ_SENDRECV:
1277 		audit_log_format(ab,
1278 			"mqdes=%d msg_len=%zd msg_prio=%u "
1279 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1280 			context->mq_sendrecv.mqdes,
1281 			context->mq_sendrecv.msg_len,
1282 			context->mq_sendrecv.msg_prio,
1283 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1284 			context->mq_sendrecv.abs_timeout.tv_nsec);
1285 		break;
1286 	case AUDIT_MQ_NOTIFY:
1287 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1288 				context->mq_notify.mqdes,
1289 				context->mq_notify.sigev_signo);
1290 		break;
1291 	case AUDIT_MQ_GETSETATTR: {
1292 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1293 		audit_log_format(ab,
1294 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1295 			"mq_curmsgs=%ld ",
1296 			context->mq_getsetattr.mqdes,
1297 			attr->mq_flags, attr->mq_maxmsg,
1298 			attr->mq_msgsize, attr->mq_curmsgs);
1299 		break; }
1300 	case AUDIT_CAPSET:
1301 		audit_log_format(ab, "pid=%d", context->capset.pid);
1302 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1303 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1304 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1305 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1306 		break;
1307 	case AUDIT_MMAP:
1308 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1309 				 context->mmap.flags);
1310 		break;
1311 	case AUDIT_EXECVE:
1312 		audit_log_execve_info(context, &ab);
1313 		break;
1314 	case AUDIT_KERN_MODULE:
1315 		audit_log_format(ab, "name=");
1316 		if (context->module.name) {
1317 			audit_log_untrustedstring(ab, context->module.name);
1318 		} else
1319 			audit_log_format(ab, "(null)");
1320 
1321 		break;
1322 	}
1323 	audit_log_end(ab);
1324 }
1325 
1326 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1327 {
1328 	char *end = proctitle + len - 1;
1329 	while (end > proctitle && !isprint(*end))
1330 		end--;
1331 
1332 	/* catch the case where proctitle is only 1 non-print character */
1333 	len = end - proctitle + 1;
1334 	len -= isprint(proctitle[len-1]) == 0;
1335 	return len;
1336 }
1337 
1338 /*
1339  * audit_log_name - produce AUDIT_PATH record from struct audit_names
1340  * @context: audit_context for the task
1341  * @n: audit_names structure with reportable details
1342  * @path: optional path to report instead of audit_names->name
1343  * @record_num: record number to report when handling a list of names
1344  * @call_panic: optional pointer to int that will be updated if secid fails
1345  */
1346 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1347 		    const struct path *path, int record_num, int *call_panic)
1348 {
1349 	struct audit_buffer *ab;
1350 
1351 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1352 	if (!ab)
1353 		return;
1354 
1355 	audit_log_format(ab, "item=%d", record_num);
1356 
1357 	if (path)
1358 		audit_log_d_path(ab, " name=", path);
1359 	else if (n->name) {
1360 		switch (n->name_len) {
1361 		case AUDIT_NAME_FULL:
1362 			/* log the full path */
1363 			audit_log_format(ab, " name=");
1364 			audit_log_untrustedstring(ab, n->name->name);
1365 			break;
1366 		case 0:
1367 			/* name was specified as a relative path and the
1368 			 * directory component is the cwd
1369 			 */
1370 			if (context->pwd.dentry && context->pwd.mnt)
1371 				audit_log_d_path(ab, " name=", &context->pwd);
1372 			else
1373 				audit_log_format(ab, " name=(null)");
1374 			break;
1375 		default:
1376 			/* log the name's directory component */
1377 			audit_log_format(ab, " name=");
1378 			audit_log_n_untrustedstring(ab, n->name->name,
1379 						    n->name_len);
1380 		}
1381 	} else
1382 		audit_log_format(ab, " name=(null)");
1383 
1384 	if (n->ino != AUDIT_INO_UNSET)
1385 		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1386 				 n->ino,
1387 				 MAJOR(n->dev),
1388 				 MINOR(n->dev),
1389 				 n->mode,
1390 				 from_kuid(&init_user_ns, n->uid),
1391 				 from_kgid(&init_user_ns, n->gid),
1392 				 MAJOR(n->rdev),
1393 				 MINOR(n->rdev));
1394 	if (n->osid != 0) {
1395 		char *ctx = NULL;
1396 		u32 len;
1397 
1398 		if (security_secid_to_secctx(
1399 			n->osid, &ctx, &len)) {
1400 			audit_log_format(ab, " osid=%u", n->osid);
1401 			if (call_panic)
1402 				*call_panic = 2;
1403 		} else {
1404 			audit_log_format(ab, " obj=%s", ctx);
1405 			security_release_secctx(ctx, len);
1406 		}
1407 	}
1408 
1409 	/* log the audit_names record type */
1410 	switch (n->type) {
1411 	case AUDIT_TYPE_NORMAL:
1412 		audit_log_format(ab, " nametype=NORMAL");
1413 		break;
1414 	case AUDIT_TYPE_PARENT:
1415 		audit_log_format(ab, " nametype=PARENT");
1416 		break;
1417 	case AUDIT_TYPE_CHILD_DELETE:
1418 		audit_log_format(ab, " nametype=DELETE");
1419 		break;
1420 	case AUDIT_TYPE_CHILD_CREATE:
1421 		audit_log_format(ab, " nametype=CREATE");
1422 		break;
1423 	default:
1424 		audit_log_format(ab, " nametype=UNKNOWN");
1425 		break;
1426 	}
1427 
1428 	audit_log_fcaps(ab, n);
1429 	audit_log_end(ab);
1430 }
1431 
1432 static void audit_log_proctitle(void)
1433 {
1434 	int res;
1435 	char *buf;
1436 	char *msg = "(null)";
1437 	int len = strlen(msg);
1438 	struct audit_context *context = audit_context();
1439 	struct audit_buffer *ab;
1440 
1441 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1442 	if (!ab)
1443 		return;	/* audit_panic or being filtered */
1444 
1445 	audit_log_format(ab, "proctitle=");
1446 
1447 	/* Not  cached */
1448 	if (!context->proctitle.value) {
1449 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1450 		if (!buf)
1451 			goto out;
1452 		/* Historically called this from procfs naming */
1453 		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1454 		if (res == 0) {
1455 			kfree(buf);
1456 			goto out;
1457 		}
1458 		res = audit_proctitle_rtrim(buf, res);
1459 		if (res == 0) {
1460 			kfree(buf);
1461 			goto out;
1462 		}
1463 		context->proctitle.value = buf;
1464 		context->proctitle.len = res;
1465 	}
1466 	msg = context->proctitle.value;
1467 	len = context->proctitle.len;
1468 out:
1469 	audit_log_n_untrustedstring(ab, msg, len);
1470 	audit_log_end(ab);
1471 }
1472 
1473 static void audit_log_exit(void)
1474 {
1475 	int i, call_panic = 0;
1476 	struct audit_context *context = audit_context();
1477 	struct audit_buffer *ab;
1478 	struct audit_aux_data *aux;
1479 	struct audit_names *n;
1480 
1481 	context->personality = current->personality;
1482 
1483 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1484 	if (!ab)
1485 		return;		/* audit_panic has been called */
1486 	audit_log_format(ab, "arch=%x syscall=%d",
1487 			 context->arch, context->major);
1488 	if (context->personality != PER_LINUX)
1489 		audit_log_format(ab, " per=%lx", context->personality);
1490 	if (context->return_valid != AUDITSC_INVALID)
1491 		audit_log_format(ab, " success=%s exit=%ld",
1492 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1493 				 context->return_code);
1494 
1495 	audit_log_format(ab,
1496 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1497 			 context->argv[0],
1498 			 context->argv[1],
1499 			 context->argv[2],
1500 			 context->argv[3],
1501 			 context->name_count);
1502 
1503 	audit_log_task_info(ab);
1504 	audit_log_key(ab, context->filterkey);
1505 	audit_log_end(ab);
1506 
1507 	for (aux = context->aux; aux; aux = aux->next) {
1508 
1509 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1510 		if (!ab)
1511 			continue; /* audit_panic has been called */
1512 
1513 		switch (aux->type) {
1514 
1515 		case AUDIT_BPRM_FCAPS: {
1516 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1517 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1518 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1519 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1520 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1521 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1522 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1523 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1524 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1525 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1526 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1527 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1528 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1529 			audit_log_format(ab, " frootid=%d",
1530 					 from_kuid(&init_user_ns,
1531 						   axs->fcap.rootid));
1532 			break; }
1533 
1534 		}
1535 		audit_log_end(ab);
1536 	}
1537 
1538 	if (context->type)
1539 		show_special(context, &call_panic);
1540 
1541 	if (context->fds[0] >= 0) {
1542 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1543 		if (ab) {
1544 			audit_log_format(ab, "fd0=%d fd1=%d",
1545 					context->fds[0], context->fds[1]);
1546 			audit_log_end(ab);
1547 		}
1548 	}
1549 
1550 	if (context->sockaddr_len) {
1551 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1552 		if (ab) {
1553 			audit_log_format(ab, "saddr=");
1554 			audit_log_n_hex(ab, (void *)context->sockaddr,
1555 					context->sockaddr_len);
1556 			audit_log_end(ab);
1557 		}
1558 	}
1559 
1560 	for (aux = context->aux_pids; aux; aux = aux->next) {
1561 		struct audit_aux_data_pids *axs = (void *)aux;
1562 
1563 		for (i = 0; i < axs->pid_count; i++)
1564 			if (audit_log_pid_context(context, axs->target_pid[i],
1565 						  axs->target_auid[i],
1566 						  axs->target_uid[i],
1567 						  axs->target_sessionid[i],
1568 						  axs->target_sid[i],
1569 						  axs->target_comm[i]))
1570 				call_panic = 1;
1571 	}
1572 
1573 	if (context->target_pid &&
1574 	    audit_log_pid_context(context, context->target_pid,
1575 				  context->target_auid, context->target_uid,
1576 				  context->target_sessionid,
1577 				  context->target_sid, context->target_comm))
1578 			call_panic = 1;
1579 
1580 	if (context->pwd.dentry && context->pwd.mnt) {
1581 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1582 		if (ab) {
1583 			audit_log_d_path(ab, "cwd=", &context->pwd);
1584 			audit_log_end(ab);
1585 		}
1586 	}
1587 
1588 	i = 0;
1589 	list_for_each_entry(n, &context->names_list, list) {
1590 		if (n->hidden)
1591 			continue;
1592 		audit_log_name(context, n, NULL, i++, &call_panic);
1593 	}
1594 
1595 	audit_log_proctitle();
1596 
1597 	/* Send end of event record to help user space know we are finished */
1598 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1599 	if (ab)
1600 		audit_log_end(ab);
1601 	if (call_panic)
1602 		audit_panic("error converting sid to string");
1603 }
1604 
1605 /**
1606  * __audit_free - free a per-task audit context
1607  * @tsk: task whose audit context block to free
1608  *
1609  * Called from copy_process and do_exit
1610  */
1611 void __audit_free(struct task_struct *tsk)
1612 {
1613 	struct audit_context *context = tsk->audit_context;
1614 
1615 	if (!context)
1616 		return;
1617 
1618 	if (!list_empty(&context->killed_trees))
1619 		audit_kill_trees(context);
1620 
1621 	/* We are called either by do_exit() or the fork() error handling code;
1622 	 * in the former case tsk == current and in the latter tsk is a
1623 	 * random task_struct that doesn't doesn't have any meaningful data we
1624 	 * need to log via audit_log_exit().
1625 	 */
1626 	if (tsk == current && !context->dummy && context->in_syscall) {
1627 		context->return_valid = AUDITSC_INVALID;
1628 		context->return_code = 0;
1629 
1630 		audit_filter_syscall(tsk, context,
1631 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1632 		audit_filter_inodes(tsk, context);
1633 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1634 			audit_log_exit();
1635 	}
1636 
1637 	audit_set_context(tsk, NULL);
1638 	audit_free_context(context);
1639 }
1640 
1641 /**
1642  * __audit_syscall_entry - fill in an audit record at syscall entry
1643  * @major: major syscall type (function)
1644  * @a1: additional syscall register 1
1645  * @a2: additional syscall register 2
1646  * @a3: additional syscall register 3
1647  * @a4: additional syscall register 4
1648  *
1649  * Fill in audit context at syscall entry.  This only happens if the
1650  * audit context was created when the task was created and the state or
1651  * filters demand the audit context be built.  If the state from the
1652  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1653  * then the record will be written at syscall exit time (otherwise, it
1654  * will only be written if another part of the kernel requests that it
1655  * be written).
1656  */
1657 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1658 			   unsigned long a3, unsigned long a4)
1659 {
1660 	struct audit_context *context = audit_context();
1661 	enum audit_state     state;
1662 
1663 	if (!audit_enabled || !context)
1664 		return;
1665 
1666 	BUG_ON(context->in_syscall || context->name_count);
1667 
1668 	state = context->state;
1669 	if (state == AUDIT_DISABLED)
1670 		return;
1671 
1672 	context->dummy = !audit_n_rules;
1673 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1674 		context->prio = 0;
1675 		if (auditd_test_task(current))
1676 			return;
1677 	}
1678 
1679 	context->arch	    = syscall_get_arch(current);
1680 	context->major      = major;
1681 	context->argv[0]    = a1;
1682 	context->argv[1]    = a2;
1683 	context->argv[2]    = a3;
1684 	context->argv[3]    = a4;
1685 	context->serial     = 0;
1686 	context->in_syscall = 1;
1687 	context->current_state  = state;
1688 	context->ppid       = 0;
1689 	ktime_get_coarse_real_ts64(&context->ctime);
1690 }
1691 
1692 /**
1693  * __audit_syscall_exit - deallocate audit context after a system call
1694  * @success: success value of the syscall
1695  * @return_code: return value of the syscall
1696  *
1697  * Tear down after system call.  If the audit context has been marked as
1698  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1699  * filtering, or because some other part of the kernel wrote an audit
1700  * message), then write out the syscall information.  In call cases,
1701  * free the names stored from getname().
1702  */
1703 void __audit_syscall_exit(int success, long return_code)
1704 {
1705 	struct audit_context *context;
1706 
1707 	context = audit_context();
1708 	if (!context)
1709 		return;
1710 
1711 	if (!list_empty(&context->killed_trees))
1712 		audit_kill_trees(context);
1713 
1714 	if (!context->dummy && context->in_syscall) {
1715 		if (success)
1716 			context->return_valid = AUDITSC_SUCCESS;
1717 		else
1718 			context->return_valid = AUDITSC_FAILURE;
1719 
1720 		/*
1721 		 * we need to fix up the return code in the audit logs if the
1722 		 * actual return codes are later going to be fixed up by the
1723 		 * arch specific signal handlers
1724 		 *
1725 		 * This is actually a test for:
1726 		 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1727 		 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1728 		 *
1729 		 * but is faster than a bunch of ||
1730 		 */
1731 		if (unlikely(return_code <= -ERESTARTSYS) &&
1732 		    (return_code >= -ERESTART_RESTARTBLOCK) &&
1733 		    (return_code != -ENOIOCTLCMD))
1734 			context->return_code = -EINTR;
1735 		else
1736 			context->return_code  = return_code;
1737 
1738 		audit_filter_syscall(current, context,
1739 				     &audit_filter_list[AUDIT_FILTER_EXIT]);
1740 		audit_filter_inodes(current, context);
1741 		if (context->current_state == AUDIT_RECORD_CONTEXT)
1742 			audit_log_exit();
1743 	}
1744 
1745 	context->in_syscall = 0;
1746 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1747 
1748 	audit_free_module(context);
1749 	audit_free_names(context);
1750 	unroll_tree_refs(context, NULL, 0);
1751 	audit_free_aux(context);
1752 	context->aux = NULL;
1753 	context->aux_pids = NULL;
1754 	context->target_pid = 0;
1755 	context->target_sid = 0;
1756 	context->sockaddr_len = 0;
1757 	context->type = 0;
1758 	context->fds[0] = -1;
1759 	if (context->state != AUDIT_RECORD_CONTEXT) {
1760 		kfree(context->filterkey);
1761 		context->filterkey = NULL;
1762 	}
1763 }
1764 
1765 static inline void handle_one(const struct inode *inode)
1766 {
1767 	struct audit_context *context;
1768 	struct audit_tree_refs *p;
1769 	struct audit_chunk *chunk;
1770 	int count;
1771 	if (likely(!inode->i_fsnotify_marks))
1772 		return;
1773 	context = audit_context();
1774 	p = context->trees;
1775 	count = context->tree_count;
1776 	rcu_read_lock();
1777 	chunk = audit_tree_lookup(inode);
1778 	rcu_read_unlock();
1779 	if (!chunk)
1780 		return;
1781 	if (likely(put_tree_ref(context, chunk)))
1782 		return;
1783 	if (unlikely(!grow_tree_refs(context))) {
1784 		pr_warn("out of memory, audit has lost a tree reference\n");
1785 		audit_set_auditable(context);
1786 		audit_put_chunk(chunk);
1787 		unroll_tree_refs(context, p, count);
1788 		return;
1789 	}
1790 	put_tree_ref(context, chunk);
1791 }
1792 
1793 static void handle_path(const struct dentry *dentry)
1794 {
1795 	struct audit_context *context;
1796 	struct audit_tree_refs *p;
1797 	const struct dentry *d, *parent;
1798 	struct audit_chunk *drop;
1799 	unsigned long seq;
1800 	int count;
1801 
1802 	context = audit_context();
1803 	p = context->trees;
1804 	count = context->tree_count;
1805 retry:
1806 	drop = NULL;
1807 	d = dentry;
1808 	rcu_read_lock();
1809 	seq = read_seqbegin(&rename_lock);
1810 	for(;;) {
1811 		struct inode *inode = d_backing_inode(d);
1812 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1813 			struct audit_chunk *chunk;
1814 			chunk = audit_tree_lookup(inode);
1815 			if (chunk) {
1816 				if (unlikely(!put_tree_ref(context, chunk))) {
1817 					drop = chunk;
1818 					break;
1819 				}
1820 			}
1821 		}
1822 		parent = d->d_parent;
1823 		if (parent == d)
1824 			break;
1825 		d = parent;
1826 	}
1827 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1828 		rcu_read_unlock();
1829 		if (!drop) {
1830 			/* just a race with rename */
1831 			unroll_tree_refs(context, p, count);
1832 			goto retry;
1833 		}
1834 		audit_put_chunk(drop);
1835 		if (grow_tree_refs(context)) {
1836 			/* OK, got more space */
1837 			unroll_tree_refs(context, p, count);
1838 			goto retry;
1839 		}
1840 		/* too bad */
1841 		pr_warn("out of memory, audit has lost a tree reference\n");
1842 		unroll_tree_refs(context, p, count);
1843 		audit_set_auditable(context);
1844 		return;
1845 	}
1846 	rcu_read_unlock();
1847 }
1848 
1849 static struct audit_names *audit_alloc_name(struct audit_context *context,
1850 						unsigned char type)
1851 {
1852 	struct audit_names *aname;
1853 
1854 	if (context->name_count < AUDIT_NAMES) {
1855 		aname = &context->preallocated_names[context->name_count];
1856 		memset(aname, 0, sizeof(*aname));
1857 	} else {
1858 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1859 		if (!aname)
1860 			return NULL;
1861 		aname->should_free = true;
1862 	}
1863 
1864 	aname->ino = AUDIT_INO_UNSET;
1865 	aname->type = type;
1866 	list_add_tail(&aname->list, &context->names_list);
1867 
1868 	context->name_count++;
1869 	if (!context->pwd.dentry)
1870 		get_fs_pwd(current->fs, &context->pwd);
1871 	return aname;
1872 }
1873 
1874 /**
1875  * __audit_reusename - fill out filename with info from existing entry
1876  * @uptr: userland ptr to pathname
1877  *
1878  * Search the audit_names list for the current audit context. If there is an
1879  * existing entry with a matching "uptr" then return the filename
1880  * associated with that audit_name. If not, return NULL.
1881  */
1882 struct filename *
1883 __audit_reusename(const __user char *uptr)
1884 {
1885 	struct audit_context *context = audit_context();
1886 	struct audit_names *n;
1887 
1888 	list_for_each_entry(n, &context->names_list, list) {
1889 		if (!n->name)
1890 			continue;
1891 		if (n->name->uptr == uptr) {
1892 			n->name->refcnt++;
1893 			return n->name;
1894 		}
1895 	}
1896 	return NULL;
1897 }
1898 
1899 /**
1900  * __audit_getname - add a name to the list
1901  * @name: name to add
1902  *
1903  * Add a name to the list of audit names for this context.
1904  * Called from fs/namei.c:getname().
1905  */
1906 void __audit_getname(struct filename *name)
1907 {
1908 	struct audit_context *context = audit_context();
1909 	struct audit_names *n;
1910 
1911 	if (!context->in_syscall)
1912 		return;
1913 
1914 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1915 	if (!n)
1916 		return;
1917 
1918 	n->name = name;
1919 	n->name_len = AUDIT_NAME_FULL;
1920 	name->aname = n;
1921 	name->refcnt++;
1922 }
1923 
1924 static inline int audit_copy_fcaps(struct audit_names *name,
1925 				   const struct dentry *dentry)
1926 {
1927 	struct cpu_vfs_cap_data caps;
1928 	int rc;
1929 
1930 	if (!dentry)
1931 		return 0;
1932 
1933 	rc = get_vfs_caps_from_disk(dentry, &caps);
1934 	if (rc)
1935 		return rc;
1936 
1937 	name->fcap.permitted = caps.permitted;
1938 	name->fcap.inheritable = caps.inheritable;
1939 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1940 	name->fcap.rootid = caps.rootid;
1941 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1942 				VFS_CAP_REVISION_SHIFT;
1943 
1944 	return 0;
1945 }
1946 
1947 /* Copy inode data into an audit_names. */
1948 static void audit_copy_inode(struct audit_names *name,
1949 			     const struct dentry *dentry,
1950 			     struct inode *inode, unsigned int flags)
1951 {
1952 	name->ino   = inode->i_ino;
1953 	name->dev   = inode->i_sb->s_dev;
1954 	name->mode  = inode->i_mode;
1955 	name->uid   = inode->i_uid;
1956 	name->gid   = inode->i_gid;
1957 	name->rdev  = inode->i_rdev;
1958 	security_inode_getsecid(inode, &name->osid);
1959 	if (flags & AUDIT_INODE_NOEVAL) {
1960 		name->fcap_ver = -1;
1961 		return;
1962 	}
1963 	audit_copy_fcaps(name, dentry);
1964 }
1965 
1966 /**
1967  * __audit_inode - store the inode and device from a lookup
1968  * @name: name being audited
1969  * @dentry: dentry being audited
1970  * @flags: attributes for this particular entry
1971  */
1972 void __audit_inode(struct filename *name, const struct dentry *dentry,
1973 		   unsigned int flags)
1974 {
1975 	struct audit_context *context = audit_context();
1976 	struct inode *inode = d_backing_inode(dentry);
1977 	struct audit_names *n;
1978 	bool parent = flags & AUDIT_INODE_PARENT;
1979 	struct audit_entry *e;
1980 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1981 	int i;
1982 
1983 	if (!context->in_syscall)
1984 		return;
1985 
1986 	rcu_read_lock();
1987 	list_for_each_entry_rcu(e, list, list) {
1988 		for (i = 0; i < e->rule.field_count; i++) {
1989 			struct audit_field *f = &e->rule.fields[i];
1990 
1991 			if (f->type == AUDIT_FSTYPE
1992 			    && audit_comparator(inode->i_sb->s_magic,
1993 						f->op, f->val)
1994 			    && e->rule.action == AUDIT_NEVER) {
1995 				rcu_read_unlock();
1996 				return;
1997 			}
1998 		}
1999 	}
2000 	rcu_read_unlock();
2001 
2002 	if (!name)
2003 		goto out_alloc;
2004 
2005 	/*
2006 	 * If we have a pointer to an audit_names entry already, then we can
2007 	 * just use it directly if the type is correct.
2008 	 */
2009 	n = name->aname;
2010 	if (n) {
2011 		if (parent) {
2012 			if (n->type == AUDIT_TYPE_PARENT ||
2013 			    n->type == AUDIT_TYPE_UNKNOWN)
2014 				goto out;
2015 		} else {
2016 			if (n->type != AUDIT_TYPE_PARENT)
2017 				goto out;
2018 		}
2019 	}
2020 
2021 	list_for_each_entry_reverse(n, &context->names_list, list) {
2022 		if (n->ino) {
2023 			/* valid inode number, use that for the comparison */
2024 			if (n->ino != inode->i_ino ||
2025 			    n->dev != inode->i_sb->s_dev)
2026 				continue;
2027 		} else if (n->name) {
2028 			/* inode number has not been set, check the name */
2029 			if (strcmp(n->name->name, name->name))
2030 				continue;
2031 		} else
2032 			/* no inode and no name (?!) ... this is odd ... */
2033 			continue;
2034 
2035 		/* match the correct record type */
2036 		if (parent) {
2037 			if (n->type == AUDIT_TYPE_PARENT ||
2038 			    n->type == AUDIT_TYPE_UNKNOWN)
2039 				goto out;
2040 		} else {
2041 			if (n->type != AUDIT_TYPE_PARENT)
2042 				goto out;
2043 		}
2044 	}
2045 
2046 out_alloc:
2047 	/* unable to find an entry with both a matching name and type */
2048 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2049 	if (!n)
2050 		return;
2051 	if (name) {
2052 		n->name = name;
2053 		name->refcnt++;
2054 	}
2055 
2056 out:
2057 	if (parent) {
2058 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2059 		n->type = AUDIT_TYPE_PARENT;
2060 		if (flags & AUDIT_INODE_HIDDEN)
2061 			n->hidden = true;
2062 	} else {
2063 		n->name_len = AUDIT_NAME_FULL;
2064 		n->type = AUDIT_TYPE_NORMAL;
2065 	}
2066 	handle_path(dentry);
2067 	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2068 }
2069 
2070 void __audit_file(const struct file *file)
2071 {
2072 	__audit_inode(NULL, file->f_path.dentry, 0);
2073 }
2074 
2075 /**
2076  * __audit_inode_child - collect inode info for created/removed objects
2077  * @parent: inode of dentry parent
2078  * @dentry: dentry being audited
2079  * @type:   AUDIT_TYPE_* value that we're looking for
2080  *
2081  * For syscalls that create or remove filesystem objects, audit_inode
2082  * can only collect information for the filesystem object's parent.
2083  * This call updates the audit context with the child's information.
2084  * Syscalls that create a new filesystem object must be hooked after
2085  * the object is created.  Syscalls that remove a filesystem object
2086  * must be hooked prior, in order to capture the target inode during
2087  * unsuccessful attempts.
2088  */
2089 void __audit_inode_child(struct inode *parent,
2090 			 const struct dentry *dentry,
2091 			 const unsigned char type)
2092 {
2093 	struct audit_context *context = audit_context();
2094 	struct inode *inode = d_backing_inode(dentry);
2095 	const struct qstr *dname = &dentry->d_name;
2096 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2097 	struct audit_entry *e;
2098 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2099 	int i;
2100 
2101 	if (!context->in_syscall)
2102 		return;
2103 
2104 	rcu_read_lock();
2105 	list_for_each_entry_rcu(e, list, list) {
2106 		for (i = 0; i < e->rule.field_count; i++) {
2107 			struct audit_field *f = &e->rule.fields[i];
2108 
2109 			if (f->type == AUDIT_FSTYPE
2110 			    && audit_comparator(parent->i_sb->s_magic,
2111 						f->op, f->val)
2112 			    && e->rule.action == AUDIT_NEVER) {
2113 				rcu_read_unlock();
2114 				return;
2115 			}
2116 		}
2117 	}
2118 	rcu_read_unlock();
2119 
2120 	if (inode)
2121 		handle_one(inode);
2122 
2123 	/* look for a parent entry first */
2124 	list_for_each_entry(n, &context->names_list, list) {
2125 		if (!n->name ||
2126 		    (n->type != AUDIT_TYPE_PARENT &&
2127 		     n->type != AUDIT_TYPE_UNKNOWN))
2128 			continue;
2129 
2130 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2131 		    !audit_compare_dname_path(dname,
2132 					      n->name->name, n->name_len)) {
2133 			if (n->type == AUDIT_TYPE_UNKNOWN)
2134 				n->type = AUDIT_TYPE_PARENT;
2135 			found_parent = n;
2136 			break;
2137 		}
2138 	}
2139 
2140 	/* is there a matching child entry? */
2141 	list_for_each_entry(n, &context->names_list, list) {
2142 		/* can only match entries that have a name */
2143 		if (!n->name ||
2144 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2145 			continue;
2146 
2147 		if (!strcmp(dname->name, n->name->name) ||
2148 		    !audit_compare_dname_path(dname, n->name->name,
2149 						found_parent ?
2150 						found_parent->name_len :
2151 						AUDIT_NAME_FULL)) {
2152 			if (n->type == AUDIT_TYPE_UNKNOWN)
2153 				n->type = type;
2154 			found_child = n;
2155 			break;
2156 		}
2157 	}
2158 
2159 	if (!found_parent) {
2160 		/* create a new, "anonymous" parent record */
2161 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2162 		if (!n)
2163 			return;
2164 		audit_copy_inode(n, NULL, parent, 0);
2165 	}
2166 
2167 	if (!found_child) {
2168 		found_child = audit_alloc_name(context, type);
2169 		if (!found_child)
2170 			return;
2171 
2172 		/* Re-use the name belonging to the slot for a matching parent
2173 		 * directory. All names for this context are relinquished in
2174 		 * audit_free_names() */
2175 		if (found_parent) {
2176 			found_child->name = found_parent->name;
2177 			found_child->name_len = AUDIT_NAME_FULL;
2178 			found_child->name->refcnt++;
2179 		}
2180 	}
2181 
2182 	if (inode)
2183 		audit_copy_inode(found_child, dentry, inode, 0);
2184 	else
2185 		found_child->ino = AUDIT_INO_UNSET;
2186 }
2187 EXPORT_SYMBOL_GPL(__audit_inode_child);
2188 
2189 /**
2190  * auditsc_get_stamp - get local copies of audit_context values
2191  * @ctx: audit_context for the task
2192  * @t: timespec64 to store time recorded in the audit_context
2193  * @serial: serial value that is recorded in the audit_context
2194  *
2195  * Also sets the context as auditable.
2196  */
2197 int auditsc_get_stamp(struct audit_context *ctx,
2198 		       struct timespec64 *t, unsigned int *serial)
2199 {
2200 	if (!ctx->in_syscall)
2201 		return 0;
2202 	if (!ctx->serial)
2203 		ctx->serial = audit_serial();
2204 	t->tv_sec  = ctx->ctime.tv_sec;
2205 	t->tv_nsec = ctx->ctime.tv_nsec;
2206 	*serial    = ctx->serial;
2207 	if (!ctx->prio) {
2208 		ctx->prio = 1;
2209 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2210 	}
2211 	return 1;
2212 }
2213 
2214 /**
2215  * __audit_mq_open - record audit data for a POSIX MQ open
2216  * @oflag: open flag
2217  * @mode: mode bits
2218  * @attr: queue attributes
2219  *
2220  */
2221 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2222 {
2223 	struct audit_context *context = audit_context();
2224 
2225 	if (attr)
2226 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2227 	else
2228 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2229 
2230 	context->mq_open.oflag = oflag;
2231 	context->mq_open.mode = mode;
2232 
2233 	context->type = AUDIT_MQ_OPEN;
2234 }
2235 
2236 /**
2237  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2238  * @mqdes: MQ descriptor
2239  * @msg_len: Message length
2240  * @msg_prio: Message priority
2241  * @abs_timeout: Message timeout in absolute time
2242  *
2243  */
2244 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2245 			const struct timespec64 *abs_timeout)
2246 {
2247 	struct audit_context *context = audit_context();
2248 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2249 
2250 	if (abs_timeout)
2251 		memcpy(p, abs_timeout, sizeof(*p));
2252 	else
2253 		memset(p, 0, sizeof(*p));
2254 
2255 	context->mq_sendrecv.mqdes = mqdes;
2256 	context->mq_sendrecv.msg_len = msg_len;
2257 	context->mq_sendrecv.msg_prio = msg_prio;
2258 
2259 	context->type = AUDIT_MQ_SENDRECV;
2260 }
2261 
2262 /**
2263  * __audit_mq_notify - record audit data for a POSIX MQ notify
2264  * @mqdes: MQ descriptor
2265  * @notification: Notification event
2266  *
2267  */
2268 
2269 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2270 {
2271 	struct audit_context *context = audit_context();
2272 
2273 	if (notification)
2274 		context->mq_notify.sigev_signo = notification->sigev_signo;
2275 	else
2276 		context->mq_notify.sigev_signo = 0;
2277 
2278 	context->mq_notify.mqdes = mqdes;
2279 	context->type = AUDIT_MQ_NOTIFY;
2280 }
2281 
2282 /**
2283  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2284  * @mqdes: MQ descriptor
2285  * @mqstat: MQ flags
2286  *
2287  */
2288 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2289 {
2290 	struct audit_context *context = audit_context();
2291 	context->mq_getsetattr.mqdes = mqdes;
2292 	context->mq_getsetattr.mqstat = *mqstat;
2293 	context->type = AUDIT_MQ_GETSETATTR;
2294 }
2295 
2296 /**
2297  * __audit_ipc_obj - record audit data for ipc object
2298  * @ipcp: ipc permissions
2299  *
2300  */
2301 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2302 {
2303 	struct audit_context *context = audit_context();
2304 	context->ipc.uid = ipcp->uid;
2305 	context->ipc.gid = ipcp->gid;
2306 	context->ipc.mode = ipcp->mode;
2307 	context->ipc.has_perm = 0;
2308 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2309 	context->type = AUDIT_IPC;
2310 }
2311 
2312 /**
2313  * __audit_ipc_set_perm - record audit data for new ipc permissions
2314  * @qbytes: msgq bytes
2315  * @uid: msgq user id
2316  * @gid: msgq group id
2317  * @mode: msgq mode (permissions)
2318  *
2319  * Called only after audit_ipc_obj().
2320  */
2321 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2322 {
2323 	struct audit_context *context = audit_context();
2324 
2325 	context->ipc.qbytes = qbytes;
2326 	context->ipc.perm_uid = uid;
2327 	context->ipc.perm_gid = gid;
2328 	context->ipc.perm_mode = mode;
2329 	context->ipc.has_perm = 1;
2330 }
2331 
2332 void __audit_bprm(struct linux_binprm *bprm)
2333 {
2334 	struct audit_context *context = audit_context();
2335 
2336 	context->type = AUDIT_EXECVE;
2337 	context->execve.argc = bprm->argc;
2338 }
2339 
2340 
2341 /**
2342  * __audit_socketcall - record audit data for sys_socketcall
2343  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2344  * @args: args array
2345  *
2346  */
2347 int __audit_socketcall(int nargs, unsigned long *args)
2348 {
2349 	struct audit_context *context = audit_context();
2350 
2351 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2352 		return -EINVAL;
2353 	context->type = AUDIT_SOCKETCALL;
2354 	context->socketcall.nargs = nargs;
2355 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2356 	return 0;
2357 }
2358 
2359 /**
2360  * __audit_fd_pair - record audit data for pipe and socketpair
2361  * @fd1: the first file descriptor
2362  * @fd2: the second file descriptor
2363  *
2364  */
2365 void __audit_fd_pair(int fd1, int fd2)
2366 {
2367 	struct audit_context *context = audit_context();
2368 	context->fds[0] = fd1;
2369 	context->fds[1] = fd2;
2370 }
2371 
2372 /**
2373  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2374  * @len: data length in user space
2375  * @a: data address in kernel space
2376  *
2377  * Returns 0 for success or NULL context or < 0 on error.
2378  */
2379 int __audit_sockaddr(int len, void *a)
2380 {
2381 	struct audit_context *context = audit_context();
2382 
2383 	if (!context->sockaddr) {
2384 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2385 		if (!p)
2386 			return -ENOMEM;
2387 		context->sockaddr = p;
2388 	}
2389 
2390 	context->sockaddr_len = len;
2391 	memcpy(context->sockaddr, a, len);
2392 	return 0;
2393 }
2394 
2395 void __audit_ptrace(struct task_struct *t)
2396 {
2397 	struct audit_context *context = audit_context();
2398 
2399 	context->target_pid = task_tgid_nr(t);
2400 	context->target_auid = audit_get_loginuid(t);
2401 	context->target_uid = task_uid(t);
2402 	context->target_sessionid = audit_get_sessionid(t);
2403 	security_task_getsecid(t, &context->target_sid);
2404 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2405 }
2406 
2407 /**
2408  * audit_signal_info_syscall - record signal info for syscalls
2409  * @t: task being signaled
2410  *
2411  * If the audit subsystem is being terminated, record the task (pid)
2412  * and uid that is doing that.
2413  */
2414 int audit_signal_info_syscall(struct task_struct *t)
2415 {
2416 	struct audit_aux_data_pids *axp;
2417 	struct audit_context *ctx = audit_context();
2418 	kuid_t t_uid = task_uid(t);
2419 
2420 	if (!audit_signals || audit_dummy_context())
2421 		return 0;
2422 
2423 	/* optimize the common case by putting first signal recipient directly
2424 	 * in audit_context */
2425 	if (!ctx->target_pid) {
2426 		ctx->target_pid = task_tgid_nr(t);
2427 		ctx->target_auid = audit_get_loginuid(t);
2428 		ctx->target_uid = t_uid;
2429 		ctx->target_sessionid = audit_get_sessionid(t);
2430 		security_task_getsecid(t, &ctx->target_sid);
2431 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2432 		return 0;
2433 	}
2434 
2435 	axp = (void *)ctx->aux_pids;
2436 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2437 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2438 		if (!axp)
2439 			return -ENOMEM;
2440 
2441 		axp->d.type = AUDIT_OBJ_PID;
2442 		axp->d.next = ctx->aux_pids;
2443 		ctx->aux_pids = (void *)axp;
2444 	}
2445 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2446 
2447 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2448 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2449 	axp->target_uid[axp->pid_count] = t_uid;
2450 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2451 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2452 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2453 	axp->pid_count++;
2454 
2455 	return 0;
2456 }
2457 
2458 /**
2459  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2460  * @bprm: pointer to the bprm being processed
2461  * @new: the proposed new credentials
2462  * @old: the old credentials
2463  *
2464  * Simply check if the proc already has the caps given by the file and if not
2465  * store the priv escalation info for later auditing at the end of the syscall
2466  *
2467  * -Eric
2468  */
2469 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2470 			   const struct cred *new, const struct cred *old)
2471 {
2472 	struct audit_aux_data_bprm_fcaps *ax;
2473 	struct audit_context *context = audit_context();
2474 	struct cpu_vfs_cap_data vcaps;
2475 
2476 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2477 	if (!ax)
2478 		return -ENOMEM;
2479 
2480 	ax->d.type = AUDIT_BPRM_FCAPS;
2481 	ax->d.next = context->aux;
2482 	context->aux = (void *)ax;
2483 
2484 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2485 
2486 	ax->fcap.permitted = vcaps.permitted;
2487 	ax->fcap.inheritable = vcaps.inheritable;
2488 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2489 	ax->fcap.rootid = vcaps.rootid;
2490 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2491 
2492 	ax->old_pcap.permitted   = old->cap_permitted;
2493 	ax->old_pcap.inheritable = old->cap_inheritable;
2494 	ax->old_pcap.effective   = old->cap_effective;
2495 	ax->old_pcap.ambient     = old->cap_ambient;
2496 
2497 	ax->new_pcap.permitted   = new->cap_permitted;
2498 	ax->new_pcap.inheritable = new->cap_inheritable;
2499 	ax->new_pcap.effective   = new->cap_effective;
2500 	ax->new_pcap.ambient     = new->cap_ambient;
2501 	return 0;
2502 }
2503 
2504 /**
2505  * __audit_log_capset - store information about the arguments to the capset syscall
2506  * @new: the new credentials
2507  * @old: the old (current) credentials
2508  *
2509  * Record the arguments userspace sent to sys_capset for later printing by the
2510  * audit system if applicable
2511  */
2512 void __audit_log_capset(const struct cred *new, const struct cred *old)
2513 {
2514 	struct audit_context *context = audit_context();
2515 	context->capset.pid = task_tgid_nr(current);
2516 	context->capset.cap.effective   = new->cap_effective;
2517 	context->capset.cap.inheritable = new->cap_effective;
2518 	context->capset.cap.permitted   = new->cap_permitted;
2519 	context->capset.cap.ambient     = new->cap_ambient;
2520 	context->type = AUDIT_CAPSET;
2521 }
2522 
2523 void __audit_mmap_fd(int fd, int flags)
2524 {
2525 	struct audit_context *context = audit_context();
2526 	context->mmap.fd = fd;
2527 	context->mmap.flags = flags;
2528 	context->type = AUDIT_MMAP;
2529 }
2530 
2531 void __audit_log_kern_module(char *name)
2532 {
2533 	struct audit_context *context = audit_context();
2534 
2535 	context->module.name = kstrdup(name, GFP_KERNEL);
2536 	if (!context->module.name)
2537 		audit_log_lost("out of memory in __audit_log_kern_module");
2538 	context->type = AUDIT_KERN_MODULE;
2539 }
2540 
2541 void __audit_fanotify(unsigned int response)
2542 {
2543 	audit_log(audit_context(), GFP_KERNEL,
2544 		AUDIT_FANOTIFY,	"resp=%u", response);
2545 }
2546 
2547 void __audit_tk_injoffset(struct timespec64 offset)
2548 {
2549 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2550 		  "sec=%lli nsec=%li",
2551 		  (long long)offset.tv_sec, offset.tv_nsec);
2552 }
2553 
2554 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2555 			      const char *op, enum audit_ntp_type type)
2556 {
2557 	const struct audit_ntp_val *val = &ad->vals[type];
2558 
2559 	if (val->newval == val->oldval)
2560 		return;
2561 
2562 	audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2563 		  "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2564 }
2565 
2566 void __audit_ntp_log(const struct audit_ntp_data *ad)
2567 {
2568 	audit_log_ntp_val(ad, "offset",	AUDIT_NTP_OFFSET);
2569 	audit_log_ntp_val(ad, "freq",	AUDIT_NTP_FREQ);
2570 	audit_log_ntp_val(ad, "status",	AUDIT_NTP_STATUS);
2571 	audit_log_ntp_val(ad, "tai",	AUDIT_NTP_TAI);
2572 	audit_log_ntp_val(ad, "tick",	AUDIT_NTP_TICK);
2573 	audit_log_ntp_val(ad, "adjust",	AUDIT_NTP_ADJUST);
2574 }
2575 
2576 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2577 		       enum audit_nfcfgop op, gfp_t gfp)
2578 {
2579 	struct audit_buffer *ab;
2580 	char comm[sizeof(current->comm)];
2581 
2582 	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2583 	if (!ab)
2584 		return;
2585 	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2586 			 name, af, nentries, audit_nfcfgs[op].s);
2587 
2588 	audit_log_format(ab, " pid=%u", task_pid_nr(current));
2589 	audit_log_task_context(ab); /* subj= */
2590 	audit_log_format(ab, " comm=");
2591 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2592 	audit_log_end(ab);
2593 }
2594 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2595 
2596 static void audit_log_task(struct audit_buffer *ab)
2597 {
2598 	kuid_t auid, uid;
2599 	kgid_t gid;
2600 	unsigned int sessionid;
2601 	char comm[sizeof(current->comm)];
2602 
2603 	auid = audit_get_loginuid(current);
2604 	sessionid = audit_get_sessionid(current);
2605 	current_uid_gid(&uid, &gid);
2606 
2607 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2608 			 from_kuid(&init_user_ns, auid),
2609 			 from_kuid(&init_user_ns, uid),
2610 			 from_kgid(&init_user_ns, gid),
2611 			 sessionid);
2612 	audit_log_task_context(ab);
2613 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2614 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2615 	audit_log_d_path_exe(ab, current->mm);
2616 }
2617 
2618 /**
2619  * audit_core_dumps - record information about processes that end abnormally
2620  * @signr: signal value
2621  *
2622  * If a process ends with a core dump, something fishy is going on and we
2623  * should record the event for investigation.
2624  */
2625 void audit_core_dumps(long signr)
2626 {
2627 	struct audit_buffer *ab;
2628 
2629 	if (!audit_enabled)
2630 		return;
2631 
2632 	if (signr == SIGQUIT)	/* don't care for those */
2633 		return;
2634 
2635 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2636 	if (unlikely(!ab))
2637 		return;
2638 	audit_log_task(ab);
2639 	audit_log_format(ab, " sig=%ld res=1", signr);
2640 	audit_log_end(ab);
2641 }
2642 
2643 /**
2644  * audit_seccomp - record information about a seccomp action
2645  * @syscall: syscall number
2646  * @signr: signal value
2647  * @code: the seccomp action
2648  *
2649  * Record the information associated with a seccomp action. Event filtering for
2650  * seccomp actions that are not to be logged is done in seccomp_log().
2651  * Therefore, this function forces auditing independent of the audit_enabled
2652  * and dummy context state because seccomp actions should be logged even when
2653  * audit is not in use.
2654  */
2655 void audit_seccomp(unsigned long syscall, long signr, int code)
2656 {
2657 	struct audit_buffer *ab;
2658 
2659 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2660 	if (unlikely(!ab))
2661 		return;
2662 	audit_log_task(ab);
2663 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2664 			 signr, syscall_get_arch(current), syscall,
2665 			 in_compat_syscall(), KSTK_EIP(current), code);
2666 	audit_log_end(ab);
2667 }
2668 
2669 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2670 				  int res)
2671 {
2672 	struct audit_buffer *ab;
2673 
2674 	if (!audit_enabled)
2675 		return;
2676 
2677 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2678 			     AUDIT_CONFIG_CHANGE);
2679 	if (unlikely(!ab))
2680 		return;
2681 
2682 	audit_log_format(ab,
2683 			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2684 			 names, old_names, res);
2685 	audit_log_end(ab);
2686 }
2687 
2688 struct list_head *audit_killed_trees(void)
2689 {
2690 	struct audit_context *ctx = audit_context();
2691 	if (likely(!ctx || !ctx->in_syscall))
2692 		return NULL;
2693 	return &ctx->killed_trees;
2694 }
2695