1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/module.h> 52 #include <linux/mount.h> 53 #include <linux/socket.h> 54 #include <linux/mqueue.h> 55 #include <linux/audit.h> 56 #include <linux/personality.h> 57 #include <linux/time.h> 58 #include <linux/netlink.h> 59 #include <linux/compiler.h> 60 #include <asm/unistd.h> 61 #include <linux/security.h> 62 #include <linux/list.h> 63 #include <linux/tty.h> 64 #include <linux/binfmts.h> 65 #include <linux/highmem.h> 66 #include <linux/syscalls.h> 67 #include <linux/inotify.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 71 #include "audit.h" 72 73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 74 * for saving names from getname(). */ 75 #define AUDIT_NAMES 20 76 77 /* Indicates that audit should log the full pathname. */ 78 #define AUDIT_NAME_FULL -1 79 80 /* no execve audit message should be longer than this (userspace limits) */ 81 #define MAX_EXECVE_AUDIT_LEN 7500 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_cap_data { 90 kernel_cap_t permitted; 91 kernel_cap_t inheritable; 92 union { 93 unsigned int fE; /* effective bit of a file capability */ 94 kernel_cap_t effective; /* effective set of a process */ 95 }; 96 }; 97 98 /* When fs/namei.c:getname() is called, we store the pointer in name and 99 * we don't let putname() free it (instead we free all of the saved 100 * pointers at syscall exit time). 101 * 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 103 struct audit_names { 104 const char *name; 105 int name_len; /* number of name's characters to log */ 106 unsigned name_put; /* call __putname() for this name */ 107 unsigned long ino; 108 dev_t dev; 109 umode_t mode; 110 uid_t uid; 111 gid_t gid; 112 dev_t rdev; 113 u32 osid; 114 struct audit_cap_data fcap; 115 unsigned int fcap_ver; 116 }; 117 118 struct audit_aux_data { 119 struct audit_aux_data *next; 120 int type; 121 }; 122 123 #define AUDIT_AUX_IPCPERM 0 124 125 /* Number of target pids per aux struct. */ 126 #define AUDIT_AUX_PIDS 16 127 128 struct audit_aux_data_execve { 129 struct audit_aux_data d; 130 int argc; 131 int envc; 132 struct mm_struct *mm; 133 }; 134 135 struct audit_aux_data_pids { 136 struct audit_aux_data d; 137 pid_t target_pid[AUDIT_AUX_PIDS]; 138 uid_t target_auid[AUDIT_AUX_PIDS]; 139 uid_t target_uid[AUDIT_AUX_PIDS]; 140 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 141 u32 target_sid[AUDIT_AUX_PIDS]; 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 143 int pid_count; 144 }; 145 146 struct audit_aux_data_bprm_fcaps { 147 struct audit_aux_data d; 148 struct audit_cap_data fcap; 149 unsigned int fcap_ver; 150 struct audit_cap_data old_pcap; 151 struct audit_cap_data new_pcap; 152 }; 153 154 struct audit_aux_data_capset { 155 struct audit_aux_data d; 156 pid_t pid; 157 struct audit_cap_data cap; 158 }; 159 160 struct audit_tree_refs { 161 struct audit_tree_refs *next; 162 struct audit_chunk *c[31]; 163 }; 164 165 /* The per-task audit context. */ 166 struct audit_context { 167 int dummy; /* must be the first element */ 168 int in_syscall; /* 1 if task is in a syscall */ 169 enum audit_state state, current_state; 170 unsigned int serial; /* serial number for record */ 171 int major; /* syscall number */ 172 struct timespec ctime; /* time of syscall entry */ 173 unsigned long argv[4]; /* syscall arguments */ 174 long return_code;/* syscall return code */ 175 u64 prio; 176 int return_valid; /* return code is valid */ 177 int name_count; 178 struct audit_names names[AUDIT_NAMES]; 179 char * filterkey; /* key for rule that triggered record */ 180 struct path pwd; 181 struct audit_context *previous; /* For nested syscalls */ 182 struct audit_aux_data *aux; 183 struct audit_aux_data *aux_pids; 184 struct sockaddr_storage *sockaddr; 185 size_t sockaddr_len; 186 /* Save things to print about task_struct */ 187 pid_t pid, ppid; 188 uid_t uid, euid, suid, fsuid; 189 gid_t gid, egid, sgid, fsgid; 190 unsigned long personality; 191 int arch; 192 193 pid_t target_pid; 194 uid_t target_auid; 195 uid_t target_uid; 196 unsigned int target_sessionid; 197 u32 target_sid; 198 char target_comm[TASK_COMM_LEN]; 199 200 struct audit_tree_refs *trees, *first_trees; 201 struct list_head killed_trees; 202 int tree_count; 203 204 int type; 205 union { 206 struct { 207 int nargs; 208 long args[6]; 209 } socketcall; 210 struct { 211 uid_t uid; 212 gid_t gid; 213 mode_t mode; 214 u32 osid; 215 int has_perm; 216 uid_t perm_uid; 217 gid_t perm_gid; 218 mode_t perm_mode; 219 unsigned long qbytes; 220 } ipc; 221 struct { 222 mqd_t mqdes; 223 struct mq_attr mqstat; 224 } mq_getsetattr; 225 struct { 226 mqd_t mqdes; 227 int sigev_signo; 228 } mq_notify; 229 struct { 230 mqd_t mqdes; 231 size_t msg_len; 232 unsigned int msg_prio; 233 struct timespec abs_timeout; 234 } mq_sendrecv; 235 struct { 236 int oflag; 237 mode_t mode; 238 struct mq_attr attr; 239 } mq_open; 240 struct { 241 pid_t pid; 242 struct audit_cap_data cap; 243 } capset; 244 }; 245 int fds[2]; 246 247 #if AUDIT_DEBUG 248 int put_count; 249 int ino_count; 250 #endif 251 }; 252 253 static inline int open_arg(int flags, int mask) 254 { 255 int n = ACC_MODE(flags); 256 if (flags & (O_TRUNC | O_CREAT)) 257 n |= AUDIT_PERM_WRITE; 258 return n & mask; 259 } 260 261 static int audit_match_perm(struct audit_context *ctx, int mask) 262 { 263 unsigned n; 264 if (unlikely(!ctx)) 265 return 0; 266 n = ctx->major; 267 268 switch (audit_classify_syscall(ctx->arch, n)) { 269 case 0: /* native */ 270 if ((mask & AUDIT_PERM_WRITE) && 271 audit_match_class(AUDIT_CLASS_WRITE, n)) 272 return 1; 273 if ((mask & AUDIT_PERM_READ) && 274 audit_match_class(AUDIT_CLASS_READ, n)) 275 return 1; 276 if ((mask & AUDIT_PERM_ATTR) && 277 audit_match_class(AUDIT_CLASS_CHATTR, n)) 278 return 1; 279 return 0; 280 case 1: /* 32bit on biarch */ 281 if ((mask & AUDIT_PERM_WRITE) && 282 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 283 return 1; 284 if ((mask & AUDIT_PERM_READ) && 285 audit_match_class(AUDIT_CLASS_READ_32, n)) 286 return 1; 287 if ((mask & AUDIT_PERM_ATTR) && 288 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 289 return 1; 290 return 0; 291 case 2: /* open */ 292 return mask & ACC_MODE(ctx->argv[1]); 293 case 3: /* openat */ 294 return mask & ACC_MODE(ctx->argv[2]); 295 case 4: /* socketcall */ 296 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 297 case 5: /* execve */ 298 return mask & AUDIT_PERM_EXEC; 299 default: 300 return 0; 301 } 302 } 303 304 static int audit_match_filetype(struct audit_context *ctx, int which) 305 { 306 unsigned index = which & ~S_IFMT; 307 mode_t mode = which & S_IFMT; 308 309 if (unlikely(!ctx)) 310 return 0; 311 312 if (index >= ctx->name_count) 313 return 0; 314 if (ctx->names[index].ino == -1) 315 return 0; 316 if ((ctx->names[index].mode ^ mode) & S_IFMT) 317 return 0; 318 return 1; 319 } 320 321 /* 322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 323 * ->first_trees points to its beginning, ->trees - to the current end of data. 324 * ->tree_count is the number of free entries in array pointed to by ->trees. 325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 327 * it's going to remain 1-element for almost any setup) until we free context itself. 328 * References in it _are_ dropped - at the same time we free/drop aux stuff. 329 */ 330 331 #ifdef CONFIG_AUDIT_TREE 332 static void audit_set_auditable(struct audit_context *ctx) 333 { 334 if (!ctx->prio) { 335 ctx->prio = 1; 336 ctx->current_state = AUDIT_RECORD_CONTEXT; 337 } 338 } 339 340 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 341 { 342 struct audit_tree_refs *p = ctx->trees; 343 int left = ctx->tree_count; 344 if (likely(left)) { 345 p->c[--left] = chunk; 346 ctx->tree_count = left; 347 return 1; 348 } 349 if (!p) 350 return 0; 351 p = p->next; 352 if (p) { 353 p->c[30] = chunk; 354 ctx->trees = p; 355 ctx->tree_count = 30; 356 return 1; 357 } 358 return 0; 359 } 360 361 static int grow_tree_refs(struct audit_context *ctx) 362 { 363 struct audit_tree_refs *p = ctx->trees; 364 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 365 if (!ctx->trees) { 366 ctx->trees = p; 367 return 0; 368 } 369 if (p) 370 p->next = ctx->trees; 371 else 372 ctx->first_trees = ctx->trees; 373 ctx->tree_count = 31; 374 return 1; 375 } 376 #endif 377 378 static void unroll_tree_refs(struct audit_context *ctx, 379 struct audit_tree_refs *p, int count) 380 { 381 #ifdef CONFIG_AUDIT_TREE 382 struct audit_tree_refs *q; 383 int n; 384 if (!p) { 385 /* we started with empty chain */ 386 p = ctx->first_trees; 387 count = 31; 388 /* if the very first allocation has failed, nothing to do */ 389 if (!p) 390 return; 391 } 392 n = count; 393 for (q = p; q != ctx->trees; q = q->next, n = 31) { 394 while (n--) { 395 audit_put_chunk(q->c[n]); 396 q->c[n] = NULL; 397 } 398 } 399 while (n-- > ctx->tree_count) { 400 audit_put_chunk(q->c[n]); 401 q->c[n] = NULL; 402 } 403 ctx->trees = p; 404 ctx->tree_count = count; 405 #endif 406 } 407 408 static void free_tree_refs(struct audit_context *ctx) 409 { 410 struct audit_tree_refs *p, *q; 411 for (p = ctx->first_trees; p; p = q) { 412 q = p->next; 413 kfree(p); 414 } 415 } 416 417 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 418 { 419 #ifdef CONFIG_AUDIT_TREE 420 struct audit_tree_refs *p; 421 int n; 422 if (!tree) 423 return 0; 424 /* full ones */ 425 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 426 for (n = 0; n < 31; n++) 427 if (audit_tree_match(p->c[n], tree)) 428 return 1; 429 } 430 /* partial */ 431 if (p) { 432 for (n = ctx->tree_count; n < 31; n++) 433 if (audit_tree_match(p->c[n], tree)) 434 return 1; 435 } 436 #endif 437 return 0; 438 } 439 440 /* Determine if any context name data matches a rule's watch data */ 441 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 442 * otherwise. */ 443 static int audit_filter_rules(struct task_struct *tsk, 444 struct audit_krule *rule, 445 struct audit_context *ctx, 446 struct audit_names *name, 447 enum audit_state *state) 448 { 449 const struct cred *cred = get_task_cred(tsk); 450 int i, j, need_sid = 1; 451 u32 sid; 452 453 for (i = 0; i < rule->field_count; i++) { 454 struct audit_field *f = &rule->fields[i]; 455 int result = 0; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 result = audit_comparator(tsk->pid, f->op, f->val); 460 break; 461 case AUDIT_PPID: 462 if (ctx) { 463 if (!ctx->ppid) 464 ctx->ppid = sys_getppid(); 465 result = audit_comparator(ctx->ppid, f->op, f->val); 466 } 467 break; 468 case AUDIT_UID: 469 result = audit_comparator(cred->uid, f->op, f->val); 470 break; 471 case AUDIT_EUID: 472 result = audit_comparator(cred->euid, f->op, f->val); 473 break; 474 case AUDIT_SUID: 475 result = audit_comparator(cred->suid, f->op, f->val); 476 break; 477 case AUDIT_FSUID: 478 result = audit_comparator(cred->fsuid, f->op, f->val); 479 break; 480 case AUDIT_GID: 481 result = audit_comparator(cred->gid, f->op, f->val); 482 break; 483 case AUDIT_EGID: 484 result = audit_comparator(cred->egid, f->op, f->val); 485 break; 486 case AUDIT_SGID: 487 result = audit_comparator(cred->sgid, f->op, f->val); 488 break; 489 case AUDIT_FSGID: 490 result = audit_comparator(cred->fsgid, f->op, f->val); 491 break; 492 case AUDIT_PERS: 493 result = audit_comparator(tsk->personality, f->op, f->val); 494 break; 495 case AUDIT_ARCH: 496 if (ctx) 497 result = audit_comparator(ctx->arch, f->op, f->val); 498 break; 499 500 case AUDIT_EXIT: 501 if (ctx && ctx->return_valid) 502 result = audit_comparator(ctx->return_code, f->op, f->val); 503 break; 504 case AUDIT_SUCCESS: 505 if (ctx && ctx->return_valid) { 506 if (f->val) 507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 508 else 509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 510 } 511 break; 512 case AUDIT_DEVMAJOR: 513 if (name) 514 result = audit_comparator(MAJOR(name->dev), 515 f->op, f->val); 516 else if (ctx) { 517 for (j = 0; j < ctx->name_count; j++) { 518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 519 ++result; 520 break; 521 } 522 } 523 } 524 break; 525 case AUDIT_DEVMINOR: 526 if (name) 527 result = audit_comparator(MINOR(name->dev), 528 f->op, f->val); 529 else if (ctx) { 530 for (j = 0; j < ctx->name_count; j++) { 531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 532 ++result; 533 break; 534 } 535 } 536 } 537 break; 538 case AUDIT_INODE: 539 if (name) 540 result = (name->ino == f->val); 541 else if (ctx) { 542 for (j = 0; j < ctx->name_count; j++) { 543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 544 ++result; 545 break; 546 } 547 } 548 } 549 break; 550 case AUDIT_WATCH: 551 if (name && audit_watch_inode(rule->watch) != (unsigned long)-1) 552 result = (name->dev == audit_watch_dev(rule->watch) && 553 name->ino == audit_watch_inode(rule->watch)); 554 break; 555 case AUDIT_DIR: 556 if (ctx) 557 result = match_tree_refs(ctx, rule->tree); 558 break; 559 case AUDIT_LOGINUID: 560 result = 0; 561 if (ctx) 562 result = audit_comparator(tsk->loginuid, f->op, f->val); 563 break; 564 case AUDIT_SUBJ_USER: 565 case AUDIT_SUBJ_ROLE: 566 case AUDIT_SUBJ_TYPE: 567 case AUDIT_SUBJ_SEN: 568 case AUDIT_SUBJ_CLR: 569 /* NOTE: this may return negative values indicating 570 a temporary error. We simply treat this as a 571 match for now to avoid losing information that 572 may be wanted. An error message will also be 573 logged upon error */ 574 if (f->lsm_rule) { 575 if (need_sid) { 576 security_task_getsecid(tsk, &sid); 577 need_sid = 0; 578 } 579 result = security_audit_rule_match(sid, f->type, 580 f->op, 581 f->lsm_rule, 582 ctx); 583 } 584 break; 585 case AUDIT_OBJ_USER: 586 case AUDIT_OBJ_ROLE: 587 case AUDIT_OBJ_TYPE: 588 case AUDIT_OBJ_LEV_LOW: 589 case AUDIT_OBJ_LEV_HIGH: 590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 591 also applies here */ 592 if (f->lsm_rule) { 593 /* Find files that match */ 594 if (name) { 595 result = security_audit_rule_match( 596 name->osid, f->type, f->op, 597 f->lsm_rule, ctx); 598 } else if (ctx) { 599 for (j = 0; j < ctx->name_count; j++) { 600 if (security_audit_rule_match( 601 ctx->names[j].osid, 602 f->type, f->op, 603 f->lsm_rule, ctx)) { 604 ++result; 605 break; 606 } 607 } 608 } 609 /* Find ipc objects that match */ 610 if (!ctx || ctx->type != AUDIT_IPC) 611 break; 612 if (security_audit_rule_match(ctx->ipc.osid, 613 f->type, f->op, 614 f->lsm_rule, ctx)) 615 ++result; 616 } 617 break; 618 case AUDIT_ARG0: 619 case AUDIT_ARG1: 620 case AUDIT_ARG2: 621 case AUDIT_ARG3: 622 if (ctx) 623 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 624 break; 625 case AUDIT_FILTERKEY: 626 /* ignore this field for filtering */ 627 result = 1; 628 break; 629 case AUDIT_PERM: 630 result = audit_match_perm(ctx, f->val); 631 break; 632 case AUDIT_FILETYPE: 633 result = audit_match_filetype(ctx, f->val); 634 break; 635 } 636 637 if (!result) { 638 put_cred(cred); 639 return 0; 640 } 641 } 642 643 if (ctx) { 644 if (rule->prio <= ctx->prio) 645 return 0; 646 if (rule->filterkey) { 647 kfree(ctx->filterkey); 648 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 649 } 650 ctx->prio = rule->prio; 651 } 652 switch (rule->action) { 653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 655 } 656 put_cred(cred); 657 return 1; 658 } 659 660 /* At process creation time, we can determine if system-call auditing is 661 * completely disabled for this task. Since we only have the task 662 * structure at this point, we can only check uid and gid. 663 */ 664 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 665 { 666 struct audit_entry *e; 667 enum audit_state state; 668 669 rcu_read_lock(); 670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 672 if (state == AUDIT_RECORD_CONTEXT) 673 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 674 rcu_read_unlock(); 675 return state; 676 } 677 } 678 rcu_read_unlock(); 679 return AUDIT_BUILD_CONTEXT; 680 } 681 682 /* At syscall entry and exit time, this filter is called if the 683 * audit_state is not low enough that auditing cannot take place, but is 684 * also not high enough that we already know we have to write an audit 685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 686 */ 687 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 688 struct audit_context *ctx, 689 struct list_head *list) 690 { 691 struct audit_entry *e; 692 enum audit_state state; 693 694 if (audit_pid && tsk->tgid == audit_pid) 695 return AUDIT_DISABLED; 696 697 rcu_read_lock(); 698 if (!list_empty(list)) { 699 int word = AUDIT_WORD(ctx->major); 700 int bit = AUDIT_BIT(ctx->major); 701 702 list_for_each_entry_rcu(e, list, list) { 703 if ((e->rule.mask[word] & bit) == bit && 704 audit_filter_rules(tsk, &e->rule, ctx, NULL, 705 &state)) { 706 rcu_read_unlock(); 707 ctx->current_state = state; 708 return state; 709 } 710 } 711 } 712 rcu_read_unlock(); 713 return AUDIT_BUILD_CONTEXT; 714 } 715 716 /* At syscall exit time, this filter is called if any audit_names[] have been 717 * collected during syscall processing. We only check rules in sublists at hash 718 * buckets applicable to the inode numbers in audit_names[]. 719 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 720 */ 721 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 722 { 723 int i; 724 struct audit_entry *e; 725 enum audit_state state; 726 727 if (audit_pid && tsk->tgid == audit_pid) 728 return; 729 730 rcu_read_lock(); 731 for (i = 0; i < ctx->name_count; i++) { 732 int word = AUDIT_WORD(ctx->major); 733 int bit = AUDIT_BIT(ctx->major); 734 struct audit_names *n = &ctx->names[i]; 735 int h = audit_hash_ino((u32)n->ino); 736 struct list_head *list = &audit_inode_hash[h]; 737 738 if (list_empty(list)) 739 continue; 740 741 list_for_each_entry_rcu(e, list, list) { 742 if ((e->rule.mask[word] & bit) == bit && 743 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 744 rcu_read_unlock(); 745 ctx->current_state = state; 746 return; 747 } 748 } 749 } 750 rcu_read_unlock(); 751 } 752 753 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 754 int return_valid, 755 long return_code) 756 { 757 struct audit_context *context = tsk->audit_context; 758 759 if (likely(!context)) 760 return NULL; 761 context->return_valid = return_valid; 762 763 /* 764 * we need to fix up the return code in the audit logs if the actual 765 * return codes are later going to be fixed up by the arch specific 766 * signal handlers 767 * 768 * This is actually a test for: 769 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 770 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 771 * 772 * but is faster than a bunch of || 773 */ 774 if (unlikely(return_code <= -ERESTARTSYS) && 775 (return_code >= -ERESTART_RESTARTBLOCK) && 776 (return_code != -ENOIOCTLCMD)) 777 context->return_code = -EINTR; 778 else 779 context->return_code = return_code; 780 781 if (context->in_syscall && !context->dummy) { 782 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 783 audit_filter_inodes(tsk, context); 784 } 785 786 tsk->audit_context = NULL; 787 return context; 788 } 789 790 static inline void audit_free_names(struct audit_context *context) 791 { 792 int i; 793 794 #if AUDIT_DEBUG == 2 795 if (context->put_count + context->ino_count != context->name_count) { 796 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 797 " name_count=%d put_count=%d" 798 " ino_count=%d [NOT freeing]\n", 799 __FILE__, __LINE__, 800 context->serial, context->major, context->in_syscall, 801 context->name_count, context->put_count, 802 context->ino_count); 803 for (i = 0; i < context->name_count; i++) { 804 printk(KERN_ERR "names[%d] = %p = %s\n", i, 805 context->names[i].name, 806 context->names[i].name ?: "(null)"); 807 } 808 dump_stack(); 809 return; 810 } 811 #endif 812 #if AUDIT_DEBUG 813 context->put_count = 0; 814 context->ino_count = 0; 815 #endif 816 817 for (i = 0; i < context->name_count; i++) { 818 if (context->names[i].name && context->names[i].name_put) 819 __putname(context->names[i].name); 820 } 821 context->name_count = 0; 822 path_put(&context->pwd); 823 context->pwd.dentry = NULL; 824 context->pwd.mnt = NULL; 825 } 826 827 static inline void audit_free_aux(struct audit_context *context) 828 { 829 struct audit_aux_data *aux; 830 831 while ((aux = context->aux)) { 832 context->aux = aux->next; 833 kfree(aux); 834 } 835 while ((aux = context->aux_pids)) { 836 context->aux_pids = aux->next; 837 kfree(aux); 838 } 839 } 840 841 static inline void audit_zero_context(struct audit_context *context, 842 enum audit_state state) 843 { 844 memset(context, 0, sizeof(*context)); 845 context->state = state; 846 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 847 } 848 849 static inline struct audit_context *audit_alloc_context(enum audit_state state) 850 { 851 struct audit_context *context; 852 853 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 854 return NULL; 855 audit_zero_context(context, state); 856 INIT_LIST_HEAD(&context->killed_trees); 857 return context; 858 } 859 860 /** 861 * audit_alloc - allocate an audit context block for a task 862 * @tsk: task 863 * 864 * Filter on the task information and allocate a per-task audit context 865 * if necessary. Doing so turns on system call auditing for the 866 * specified task. This is called from copy_process, so no lock is 867 * needed. 868 */ 869 int audit_alloc(struct task_struct *tsk) 870 { 871 struct audit_context *context; 872 enum audit_state state; 873 char *key = NULL; 874 875 if (likely(!audit_ever_enabled)) 876 return 0; /* Return if not auditing. */ 877 878 state = audit_filter_task(tsk, &key); 879 if (likely(state == AUDIT_DISABLED)) 880 return 0; 881 882 if (!(context = audit_alloc_context(state))) { 883 kfree(key); 884 audit_log_lost("out of memory in audit_alloc"); 885 return -ENOMEM; 886 } 887 context->filterkey = key; 888 889 tsk->audit_context = context; 890 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 891 return 0; 892 } 893 894 static inline void audit_free_context(struct audit_context *context) 895 { 896 struct audit_context *previous; 897 int count = 0; 898 899 do { 900 previous = context->previous; 901 if (previous || (count && count < 10)) { 902 ++count; 903 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 904 " freeing multiple contexts (%d)\n", 905 context->serial, context->major, 906 context->name_count, count); 907 } 908 audit_free_names(context); 909 unroll_tree_refs(context, NULL, 0); 910 free_tree_refs(context); 911 audit_free_aux(context); 912 kfree(context->filterkey); 913 kfree(context->sockaddr); 914 kfree(context); 915 context = previous; 916 } while (context); 917 if (count >= 10) 918 printk(KERN_ERR "audit: freed %d contexts\n", count); 919 } 920 921 void audit_log_task_context(struct audit_buffer *ab) 922 { 923 char *ctx = NULL; 924 unsigned len; 925 int error; 926 u32 sid; 927 928 security_task_getsecid(current, &sid); 929 if (!sid) 930 return; 931 932 error = security_secid_to_secctx(sid, &ctx, &len); 933 if (error) { 934 if (error != -EINVAL) 935 goto error_path; 936 return; 937 } 938 939 audit_log_format(ab, " subj=%s", ctx); 940 security_release_secctx(ctx, len); 941 return; 942 943 error_path: 944 audit_panic("error in audit_log_task_context"); 945 return; 946 } 947 948 EXPORT_SYMBOL(audit_log_task_context); 949 950 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 951 { 952 char name[sizeof(tsk->comm)]; 953 struct mm_struct *mm = tsk->mm; 954 struct vm_area_struct *vma; 955 956 /* tsk == current */ 957 958 get_task_comm(name, tsk); 959 audit_log_format(ab, " comm="); 960 audit_log_untrustedstring(ab, name); 961 962 if (mm) { 963 down_read(&mm->mmap_sem); 964 vma = mm->mmap; 965 while (vma) { 966 if ((vma->vm_flags & VM_EXECUTABLE) && 967 vma->vm_file) { 968 audit_log_d_path(ab, "exe=", 969 &vma->vm_file->f_path); 970 break; 971 } 972 vma = vma->vm_next; 973 } 974 up_read(&mm->mmap_sem); 975 } 976 audit_log_task_context(ab); 977 } 978 979 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 980 uid_t auid, uid_t uid, unsigned int sessionid, 981 u32 sid, char *comm) 982 { 983 struct audit_buffer *ab; 984 char *ctx = NULL; 985 u32 len; 986 int rc = 0; 987 988 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 989 if (!ab) 990 return rc; 991 992 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 993 uid, sessionid); 994 if (security_secid_to_secctx(sid, &ctx, &len)) { 995 audit_log_format(ab, " obj=(none)"); 996 rc = 1; 997 } else { 998 audit_log_format(ab, " obj=%s", ctx); 999 security_release_secctx(ctx, len); 1000 } 1001 audit_log_format(ab, " ocomm="); 1002 audit_log_untrustedstring(ab, comm); 1003 audit_log_end(ab); 1004 1005 return rc; 1006 } 1007 1008 /* 1009 * to_send and len_sent accounting are very loose estimates. We aren't 1010 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1011 * within about 500 bytes (next page boundry) 1012 * 1013 * why snprintf? an int is up to 12 digits long. if we just assumed when 1014 * logging that a[%d]= was going to be 16 characters long we would be wasting 1015 * space in every audit message. In one 7500 byte message we can log up to 1016 * about 1000 min size arguments. That comes down to about 50% waste of space 1017 * if we didn't do the snprintf to find out how long arg_num_len was. 1018 */ 1019 static int audit_log_single_execve_arg(struct audit_context *context, 1020 struct audit_buffer **ab, 1021 int arg_num, 1022 size_t *len_sent, 1023 const char __user *p, 1024 char *buf) 1025 { 1026 char arg_num_len_buf[12]; 1027 const char __user *tmp_p = p; 1028 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1029 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1030 size_t len, len_left, to_send; 1031 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1032 unsigned int i, has_cntl = 0, too_long = 0; 1033 int ret; 1034 1035 /* strnlen_user includes the null we don't want to send */ 1036 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1037 1038 /* 1039 * We just created this mm, if we can't find the strings 1040 * we just copied into it something is _very_ wrong. Similar 1041 * for strings that are too long, we should not have created 1042 * any. 1043 */ 1044 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1045 WARN_ON(1); 1046 send_sig(SIGKILL, current, 0); 1047 return -1; 1048 } 1049 1050 /* walk the whole argument looking for non-ascii chars */ 1051 do { 1052 if (len_left > MAX_EXECVE_AUDIT_LEN) 1053 to_send = MAX_EXECVE_AUDIT_LEN; 1054 else 1055 to_send = len_left; 1056 ret = copy_from_user(buf, tmp_p, to_send); 1057 /* 1058 * There is no reason for this copy to be short. We just 1059 * copied them here, and the mm hasn't been exposed to user- 1060 * space yet. 1061 */ 1062 if (ret) { 1063 WARN_ON(1); 1064 send_sig(SIGKILL, current, 0); 1065 return -1; 1066 } 1067 buf[to_send] = '\0'; 1068 has_cntl = audit_string_contains_control(buf, to_send); 1069 if (has_cntl) { 1070 /* 1071 * hex messages get logged as 2 bytes, so we can only 1072 * send half as much in each message 1073 */ 1074 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1075 break; 1076 } 1077 len_left -= to_send; 1078 tmp_p += to_send; 1079 } while (len_left > 0); 1080 1081 len_left = len; 1082 1083 if (len > max_execve_audit_len) 1084 too_long = 1; 1085 1086 /* rewalk the argument actually logging the message */ 1087 for (i = 0; len_left > 0; i++) { 1088 int room_left; 1089 1090 if (len_left > max_execve_audit_len) 1091 to_send = max_execve_audit_len; 1092 else 1093 to_send = len_left; 1094 1095 /* do we have space left to send this argument in this ab? */ 1096 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1097 if (has_cntl) 1098 room_left -= (to_send * 2); 1099 else 1100 room_left -= to_send; 1101 if (room_left < 0) { 1102 *len_sent = 0; 1103 audit_log_end(*ab); 1104 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1105 if (!*ab) 1106 return 0; 1107 } 1108 1109 /* 1110 * first record needs to say how long the original string was 1111 * so we can be sure nothing was lost. 1112 */ 1113 if ((i == 0) && (too_long)) 1114 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1115 has_cntl ? 2*len : len); 1116 1117 /* 1118 * normally arguments are small enough to fit and we already 1119 * filled buf above when we checked for control characters 1120 * so don't bother with another copy_from_user 1121 */ 1122 if (len >= max_execve_audit_len) 1123 ret = copy_from_user(buf, p, to_send); 1124 else 1125 ret = 0; 1126 if (ret) { 1127 WARN_ON(1); 1128 send_sig(SIGKILL, current, 0); 1129 return -1; 1130 } 1131 buf[to_send] = '\0'; 1132 1133 /* actually log it */ 1134 audit_log_format(*ab, " a%d", arg_num); 1135 if (too_long) 1136 audit_log_format(*ab, "[%d]", i); 1137 audit_log_format(*ab, "="); 1138 if (has_cntl) 1139 audit_log_n_hex(*ab, buf, to_send); 1140 else 1141 audit_log_string(*ab, buf); 1142 1143 p += to_send; 1144 len_left -= to_send; 1145 *len_sent += arg_num_len; 1146 if (has_cntl) 1147 *len_sent += to_send * 2; 1148 else 1149 *len_sent += to_send; 1150 } 1151 /* include the null we didn't log */ 1152 return len + 1; 1153 } 1154 1155 static void audit_log_execve_info(struct audit_context *context, 1156 struct audit_buffer **ab, 1157 struct audit_aux_data_execve *axi) 1158 { 1159 int i; 1160 size_t len, len_sent = 0; 1161 const char __user *p; 1162 char *buf; 1163 1164 if (axi->mm != current->mm) 1165 return; /* execve failed, no additional info */ 1166 1167 p = (const char __user *)axi->mm->arg_start; 1168 1169 audit_log_format(*ab, "argc=%d", axi->argc); 1170 1171 /* 1172 * we need some kernel buffer to hold the userspace args. Just 1173 * allocate one big one rather than allocating one of the right size 1174 * for every single argument inside audit_log_single_execve_arg() 1175 * should be <8k allocation so should be pretty safe. 1176 */ 1177 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1178 if (!buf) { 1179 audit_panic("out of memory for argv string\n"); 1180 return; 1181 } 1182 1183 for (i = 0; i < axi->argc; i++) { 1184 len = audit_log_single_execve_arg(context, ab, i, 1185 &len_sent, p, buf); 1186 if (len <= 0) 1187 break; 1188 p += len; 1189 } 1190 kfree(buf); 1191 } 1192 1193 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1194 { 1195 int i; 1196 1197 audit_log_format(ab, " %s=", prefix); 1198 CAP_FOR_EACH_U32(i) { 1199 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1200 } 1201 } 1202 1203 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1204 { 1205 kernel_cap_t *perm = &name->fcap.permitted; 1206 kernel_cap_t *inh = &name->fcap.inheritable; 1207 int log = 0; 1208 1209 if (!cap_isclear(*perm)) { 1210 audit_log_cap(ab, "cap_fp", perm); 1211 log = 1; 1212 } 1213 if (!cap_isclear(*inh)) { 1214 audit_log_cap(ab, "cap_fi", inh); 1215 log = 1; 1216 } 1217 1218 if (log) 1219 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1220 } 1221 1222 static void show_special(struct audit_context *context, int *call_panic) 1223 { 1224 struct audit_buffer *ab; 1225 int i; 1226 1227 ab = audit_log_start(context, GFP_KERNEL, context->type); 1228 if (!ab) 1229 return; 1230 1231 switch (context->type) { 1232 case AUDIT_SOCKETCALL: { 1233 int nargs = context->socketcall.nargs; 1234 audit_log_format(ab, "nargs=%d", nargs); 1235 for (i = 0; i < nargs; i++) 1236 audit_log_format(ab, " a%d=%lx", i, 1237 context->socketcall.args[i]); 1238 break; } 1239 case AUDIT_IPC: { 1240 u32 osid = context->ipc.osid; 1241 1242 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o", 1243 context->ipc.uid, context->ipc.gid, context->ipc.mode); 1244 if (osid) { 1245 char *ctx = NULL; 1246 u32 len; 1247 if (security_secid_to_secctx(osid, &ctx, &len)) { 1248 audit_log_format(ab, " osid=%u", osid); 1249 *call_panic = 1; 1250 } else { 1251 audit_log_format(ab, " obj=%s", ctx); 1252 security_release_secctx(ctx, len); 1253 } 1254 } 1255 if (context->ipc.has_perm) { 1256 audit_log_end(ab); 1257 ab = audit_log_start(context, GFP_KERNEL, 1258 AUDIT_IPC_SET_PERM); 1259 audit_log_format(ab, 1260 "qbytes=%lx ouid=%u ogid=%u mode=%#o", 1261 context->ipc.qbytes, 1262 context->ipc.perm_uid, 1263 context->ipc.perm_gid, 1264 context->ipc.perm_mode); 1265 if (!ab) 1266 return; 1267 } 1268 break; } 1269 case AUDIT_MQ_OPEN: { 1270 audit_log_format(ab, 1271 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 1272 "mq_msgsize=%ld mq_curmsgs=%ld", 1273 context->mq_open.oflag, context->mq_open.mode, 1274 context->mq_open.attr.mq_flags, 1275 context->mq_open.attr.mq_maxmsg, 1276 context->mq_open.attr.mq_msgsize, 1277 context->mq_open.attr.mq_curmsgs); 1278 break; } 1279 case AUDIT_MQ_SENDRECV: { 1280 audit_log_format(ab, 1281 "mqdes=%d msg_len=%zd msg_prio=%u " 1282 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1283 context->mq_sendrecv.mqdes, 1284 context->mq_sendrecv.msg_len, 1285 context->mq_sendrecv.msg_prio, 1286 context->mq_sendrecv.abs_timeout.tv_sec, 1287 context->mq_sendrecv.abs_timeout.tv_nsec); 1288 break; } 1289 case AUDIT_MQ_NOTIFY: { 1290 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1291 context->mq_notify.mqdes, 1292 context->mq_notify.sigev_signo); 1293 break; } 1294 case AUDIT_MQ_GETSETATTR: { 1295 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1296 audit_log_format(ab, 1297 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1298 "mq_curmsgs=%ld ", 1299 context->mq_getsetattr.mqdes, 1300 attr->mq_flags, attr->mq_maxmsg, 1301 attr->mq_msgsize, attr->mq_curmsgs); 1302 break; } 1303 case AUDIT_CAPSET: { 1304 audit_log_format(ab, "pid=%d", context->capset.pid); 1305 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1306 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1307 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1308 break; } 1309 } 1310 audit_log_end(ab); 1311 } 1312 1313 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1314 { 1315 const struct cred *cred; 1316 int i, call_panic = 0; 1317 struct audit_buffer *ab; 1318 struct audit_aux_data *aux; 1319 const char *tty; 1320 1321 /* tsk == current */ 1322 context->pid = tsk->pid; 1323 if (!context->ppid) 1324 context->ppid = sys_getppid(); 1325 cred = current_cred(); 1326 context->uid = cred->uid; 1327 context->gid = cred->gid; 1328 context->euid = cred->euid; 1329 context->suid = cred->suid; 1330 context->fsuid = cred->fsuid; 1331 context->egid = cred->egid; 1332 context->sgid = cred->sgid; 1333 context->fsgid = cred->fsgid; 1334 context->personality = tsk->personality; 1335 1336 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1337 if (!ab) 1338 return; /* audit_panic has been called */ 1339 audit_log_format(ab, "arch=%x syscall=%d", 1340 context->arch, context->major); 1341 if (context->personality != PER_LINUX) 1342 audit_log_format(ab, " per=%lx", context->personality); 1343 if (context->return_valid) 1344 audit_log_format(ab, " success=%s exit=%ld", 1345 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1346 context->return_code); 1347 1348 spin_lock_irq(&tsk->sighand->siglock); 1349 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1350 tty = tsk->signal->tty->name; 1351 else 1352 tty = "(none)"; 1353 spin_unlock_irq(&tsk->sighand->siglock); 1354 1355 audit_log_format(ab, 1356 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1357 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1358 " euid=%u suid=%u fsuid=%u" 1359 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1360 context->argv[0], 1361 context->argv[1], 1362 context->argv[2], 1363 context->argv[3], 1364 context->name_count, 1365 context->ppid, 1366 context->pid, 1367 tsk->loginuid, 1368 context->uid, 1369 context->gid, 1370 context->euid, context->suid, context->fsuid, 1371 context->egid, context->sgid, context->fsgid, tty, 1372 tsk->sessionid); 1373 1374 1375 audit_log_task_info(ab, tsk); 1376 audit_log_key(ab, context->filterkey); 1377 audit_log_end(ab); 1378 1379 for (aux = context->aux; aux; aux = aux->next) { 1380 1381 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1382 if (!ab) 1383 continue; /* audit_panic has been called */ 1384 1385 switch (aux->type) { 1386 1387 case AUDIT_EXECVE: { 1388 struct audit_aux_data_execve *axi = (void *)aux; 1389 audit_log_execve_info(context, &ab, axi); 1390 break; } 1391 1392 case AUDIT_BPRM_FCAPS: { 1393 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1394 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1395 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1396 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1397 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1398 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1399 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1400 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1401 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1402 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1403 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1404 break; } 1405 1406 } 1407 audit_log_end(ab); 1408 } 1409 1410 if (context->type) 1411 show_special(context, &call_panic); 1412 1413 if (context->fds[0] >= 0) { 1414 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1415 if (ab) { 1416 audit_log_format(ab, "fd0=%d fd1=%d", 1417 context->fds[0], context->fds[1]); 1418 audit_log_end(ab); 1419 } 1420 } 1421 1422 if (context->sockaddr_len) { 1423 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1424 if (ab) { 1425 audit_log_format(ab, "saddr="); 1426 audit_log_n_hex(ab, (void *)context->sockaddr, 1427 context->sockaddr_len); 1428 audit_log_end(ab); 1429 } 1430 } 1431 1432 for (aux = context->aux_pids; aux; aux = aux->next) { 1433 struct audit_aux_data_pids *axs = (void *)aux; 1434 1435 for (i = 0; i < axs->pid_count; i++) 1436 if (audit_log_pid_context(context, axs->target_pid[i], 1437 axs->target_auid[i], 1438 axs->target_uid[i], 1439 axs->target_sessionid[i], 1440 axs->target_sid[i], 1441 axs->target_comm[i])) 1442 call_panic = 1; 1443 } 1444 1445 if (context->target_pid && 1446 audit_log_pid_context(context, context->target_pid, 1447 context->target_auid, context->target_uid, 1448 context->target_sessionid, 1449 context->target_sid, context->target_comm)) 1450 call_panic = 1; 1451 1452 if (context->pwd.dentry && context->pwd.mnt) { 1453 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1454 if (ab) { 1455 audit_log_d_path(ab, "cwd=", &context->pwd); 1456 audit_log_end(ab); 1457 } 1458 } 1459 for (i = 0; i < context->name_count; i++) { 1460 struct audit_names *n = &context->names[i]; 1461 1462 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1463 if (!ab) 1464 continue; /* audit_panic has been called */ 1465 1466 audit_log_format(ab, "item=%d", i); 1467 1468 if (n->name) { 1469 switch(n->name_len) { 1470 case AUDIT_NAME_FULL: 1471 /* log the full path */ 1472 audit_log_format(ab, " name="); 1473 audit_log_untrustedstring(ab, n->name); 1474 break; 1475 case 0: 1476 /* name was specified as a relative path and the 1477 * directory component is the cwd */ 1478 audit_log_d_path(ab, "name=", &context->pwd); 1479 break; 1480 default: 1481 /* log the name's directory component */ 1482 audit_log_format(ab, " name="); 1483 audit_log_n_untrustedstring(ab, n->name, 1484 n->name_len); 1485 } 1486 } else 1487 audit_log_format(ab, " name=(null)"); 1488 1489 if (n->ino != (unsigned long)-1) { 1490 audit_log_format(ab, " inode=%lu" 1491 " dev=%02x:%02x mode=%#o" 1492 " ouid=%u ogid=%u rdev=%02x:%02x", 1493 n->ino, 1494 MAJOR(n->dev), 1495 MINOR(n->dev), 1496 n->mode, 1497 n->uid, 1498 n->gid, 1499 MAJOR(n->rdev), 1500 MINOR(n->rdev)); 1501 } 1502 if (n->osid != 0) { 1503 char *ctx = NULL; 1504 u32 len; 1505 if (security_secid_to_secctx( 1506 n->osid, &ctx, &len)) { 1507 audit_log_format(ab, " osid=%u", n->osid); 1508 call_panic = 2; 1509 } else { 1510 audit_log_format(ab, " obj=%s", ctx); 1511 security_release_secctx(ctx, len); 1512 } 1513 } 1514 1515 audit_log_fcaps(ab, n); 1516 1517 audit_log_end(ab); 1518 } 1519 1520 /* Send end of event record to help user space know we are finished */ 1521 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1522 if (ab) 1523 audit_log_end(ab); 1524 if (call_panic) 1525 audit_panic("error converting sid to string"); 1526 } 1527 1528 /** 1529 * audit_free - free a per-task audit context 1530 * @tsk: task whose audit context block to free 1531 * 1532 * Called from copy_process and do_exit 1533 */ 1534 void audit_free(struct task_struct *tsk) 1535 { 1536 struct audit_context *context; 1537 1538 context = audit_get_context(tsk, 0, 0); 1539 if (likely(!context)) 1540 return; 1541 1542 /* Check for system calls that do not go through the exit 1543 * function (e.g., exit_group), then free context block. 1544 * We use GFP_ATOMIC here because we might be doing this 1545 * in the context of the idle thread */ 1546 /* that can happen only if we are called from do_exit() */ 1547 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1548 audit_log_exit(context, tsk); 1549 if (!list_empty(&context->killed_trees)) 1550 audit_kill_trees(&context->killed_trees); 1551 1552 audit_free_context(context); 1553 } 1554 1555 /** 1556 * audit_syscall_entry - fill in an audit record at syscall entry 1557 * @arch: architecture type 1558 * @major: major syscall type (function) 1559 * @a1: additional syscall register 1 1560 * @a2: additional syscall register 2 1561 * @a3: additional syscall register 3 1562 * @a4: additional syscall register 4 1563 * 1564 * Fill in audit context at syscall entry. This only happens if the 1565 * audit context was created when the task was created and the state or 1566 * filters demand the audit context be built. If the state from the 1567 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1568 * then the record will be written at syscall exit time (otherwise, it 1569 * will only be written if another part of the kernel requests that it 1570 * be written). 1571 */ 1572 void audit_syscall_entry(int arch, int major, 1573 unsigned long a1, unsigned long a2, 1574 unsigned long a3, unsigned long a4) 1575 { 1576 struct task_struct *tsk = current; 1577 struct audit_context *context = tsk->audit_context; 1578 enum audit_state state; 1579 1580 if (unlikely(!context)) 1581 return; 1582 1583 /* 1584 * This happens only on certain architectures that make system 1585 * calls in kernel_thread via the entry.S interface, instead of 1586 * with direct calls. (If you are porting to a new 1587 * architecture, hitting this condition can indicate that you 1588 * got the _exit/_leave calls backward in entry.S.) 1589 * 1590 * i386 no 1591 * x86_64 no 1592 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1593 * 1594 * This also happens with vm86 emulation in a non-nested manner 1595 * (entries without exits), so this case must be caught. 1596 */ 1597 if (context->in_syscall) { 1598 struct audit_context *newctx; 1599 1600 #if AUDIT_DEBUG 1601 printk(KERN_ERR 1602 "audit(:%d) pid=%d in syscall=%d;" 1603 " entering syscall=%d\n", 1604 context->serial, tsk->pid, context->major, major); 1605 #endif 1606 newctx = audit_alloc_context(context->state); 1607 if (newctx) { 1608 newctx->previous = context; 1609 context = newctx; 1610 tsk->audit_context = newctx; 1611 } else { 1612 /* If we can't alloc a new context, the best we 1613 * can do is to leak memory (any pending putname 1614 * will be lost). The only other alternative is 1615 * to abandon auditing. */ 1616 audit_zero_context(context, context->state); 1617 } 1618 } 1619 BUG_ON(context->in_syscall || context->name_count); 1620 1621 if (!audit_enabled) 1622 return; 1623 1624 context->arch = arch; 1625 context->major = major; 1626 context->argv[0] = a1; 1627 context->argv[1] = a2; 1628 context->argv[2] = a3; 1629 context->argv[3] = a4; 1630 1631 state = context->state; 1632 context->dummy = !audit_n_rules; 1633 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1634 context->prio = 0; 1635 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1636 } 1637 if (likely(state == AUDIT_DISABLED)) 1638 return; 1639 1640 context->serial = 0; 1641 context->ctime = CURRENT_TIME; 1642 context->in_syscall = 1; 1643 context->current_state = state; 1644 context->ppid = 0; 1645 } 1646 1647 void audit_finish_fork(struct task_struct *child) 1648 { 1649 struct audit_context *ctx = current->audit_context; 1650 struct audit_context *p = child->audit_context; 1651 if (!p || !ctx) 1652 return; 1653 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT) 1654 return; 1655 p->arch = ctx->arch; 1656 p->major = ctx->major; 1657 memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); 1658 p->ctime = ctx->ctime; 1659 p->dummy = ctx->dummy; 1660 p->in_syscall = ctx->in_syscall; 1661 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); 1662 p->ppid = current->pid; 1663 p->prio = ctx->prio; 1664 p->current_state = ctx->current_state; 1665 } 1666 1667 /** 1668 * audit_syscall_exit - deallocate audit context after a system call 1669 * @valid: success/failure flag 1670 * @return_code: syscall return value 1671 * 1672 * Tear down after system call. If the audit context has been marked as 1673 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1674 * filtering, or because some other part of the kernel write an audit 1675 * message), then write out the syscall information. In call cases, 1676 * free the names stored from getname(). 1677 */ 1678 void audit_syscall_exit(int valid, long return_code) 1679 { 1680 struct task_struct *tsk = current; 1681 struct audit_context *context; 1682 1683 context = audit_get_context(tsk, valid, return_code); 1684 1685 if (likely(!context)) 1686 return; 1687 1688 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1689 audit_log_exit(context, tsk); 1690 1691 context->in_syscall = 0; 1692 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1693 1694 if (!list_empty(&context->killed_trees)) 1695 audit_kill_trees(&context->killed_trees); 1696 1697 if (context->previous) { 1698 struct audit_context *new_context = context->previous; 1699 context->previous = NULL; 1700 audit_free_context(context); 1701 tsk->audit_context = new_context; 1702 } else { 1703 audit_free_names(context); 1704 unroll_tree_refs(context, NULL, 0); 1705 audit_free_aux(context); 1706 context->aux = NULL; 1707 context->aux_pids = NULL; 1708 context->target_pid = 0; 1709 context->target_sid = 0; 1710 context->sockaddr_len = 0; 1711 context->type = 0; 1712 context->fds[0] = -1; 1713 if (context->state != AUDIT_RECORD_CONTEXT) { 1714 kfree(context->filterkey); 1715 context->filterkey = NULL; 1716 } 1717 tsk->audit_context = context; 1718 } 1719 } 1720 1721 static inline void handle_one(const struct inode *inode) 1722 { 1723 #ifdef CONFIG_AUDIT_TREE 1724 struct audit_context *context; 1725 struct audit_tree_refs *p; 1726 struct audit_chunk *chunk; 1727 int count; 1728 if (likely(list_empty(&inode->inotify_watches))) 1729 return; 1730 context = current->audit_context; 1731 p = context->trees; 1732 count = context->tree_count; 1733 rcu_read_lock(); 1734 chunk = audit_tree_lookup(inode); 1735 rcu_read_unlock(); 1736 if (!chunk) 1737 return; 1738 if (likely(put_tree_ref(context, chunk))) 1739 return; 1740 if (unlikely(!grow_tree_refs(context))) { 1741 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1742 audit_set_auditable(context); 1743 audit_put_chunk(chunk); 1744 unroll_tree_refs(context, p, count); 1745 return; 1746 } 1747 put_tree_ref(context, chunk); 1748 #endif 1749 } 1750 1751 static void handle_path(const struct dentry *dentry) 1752 { 1753 #ifdef CONFIG_AUDIT_TREE 1754 struct audit_context *context; 1755 struct audit_tree_refs *p; 1756 const struct dentry *d, *parent; 1757 struct audit_chunk *drop; 1758 unsigned long seq; 1759 int count; 1760 1761 context = current->audit_context; 1762 p = context->trees; 1763 count = context->tree_count; 1764 retry: 1765 drop = NULL; 1766 d = dentry; 1767 rcu_read_lock(); 1768 seq = read_seqbegin(&rename_lock); 1769 for(;;) { 1770 struct inode *inode = d->d_inode; 1771 if (inode && unlikely(!list_empty(&inode->inotify_watches))) { 1772 struct audit_chunk *chunk; 1773 chunk = audit_tree_lookup(inode); 1774 if (chunk) { 1775 if (unlikely(!put_tree_ref(context, chunk))) { 1776 drop = chunk; 1777 break; 1778 } 1779 } 1780 } 1781 parent = d->d_parent; 1782 if (parent == d) 1783 break; 1784 d = parent; 1785 } 1786 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1787 rcu_read_unlock(); 1788 if (!drop) { 1789 /* just a race with rename */ 1790 unroll_tree_refs(context, p, count); 1791 goto retry; 1792 } 1793 audit_put_chunk(drop); 1794 if (grow_tree_refs(context)) { 1795 /* OK, got more space */ 1796 unroll_tree_refs(context, p, count); 1797 goto retry; 1798 } 1799 /* too bad */ 1800 printk(KERN_WARNING 1801 "out of memory, audit has lost a tree reference\n"); 1802 unroll_tree_refs(context, p, count); 1803 audit_set_auditable(context); 1804 return; 1805 } 1806 rcu_read_unlock(); 1807 #endif 1808 } 1809 1810 /** 1811 * audit_getname - add a name to the list 1812 * @name: name to add 1813 * 1814 * Add a name to the list of audit names for this context. 1815 * Called from fs/namei.c:getname(). 1816 */ 1817 void __audit_getname(const char *name) 1818 { 1819 struct audit_context *context = current->audit_context; 1820 1821 if (IS_ERR(name) || !name) 1822 return; 1823 1824 if (!context->in_syscall) { 1825 #if AUDIT_DEBUG == 2 1826 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1827 __FILE__, __LINE__, context->serial, name); 1828 dump_stack(); 1829 #endif 1830 return; 1831 } 1832 BUG_ON(context->name_count >= AUDIT_NAMES); 1833 context->names[context->name_count].name = name; 1834 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1835 context->names[context->name_count].name_put = 1; 1836 context->names[context->name_count].ino = (unsigned long)-1; 1837 context->names[context->name_count].osid = 0; 1838 ++context->name_count; 1839 if (!context->pwd.dentry) { 1840 read_lock(¤t->fs->lock); 1841 context->pwd = current->fs->pwd; 1842 path_get(¤t->fs->pwd); 1843 read_unlock(¤t->fs->lock); 1844 } 1845 1846 } 1847 1848 /* audit_putname - intercept a putname request 1849 * @name: name to intercept and delay for putname 1850 * 1851 * If we have stored the name from getname in the audit context, 1852 * then we delay the putname until syscall exit. 1853 * Called from include/linux/fs.h:putname(). 1854 */ 1855 void audit_putname(const char *name) 1856 { 1857 struct audit_context *context = current->audit_context; 1858 1859 BUG_ON(!context); 1860 if (!context->in_syscall) { 1861 #if AUDIT_DEBUG == 2 1862 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1863 __FILE__, __LINE__, context->serial, name); 1864 if (context->name_count) { 1865 int i; 1866 for (i = 0; i < context->name_count; i++) 1867 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1868 context->names[i].name, 1869 context->names[i].name ?: "(null)"); 1870 } 1871 #endif 1872 __putname(name); 1873 } 1874 #if AUDIT_DEBUG 1875 else { 1876 ++context->put_count; 1877 if (context->put_count > context->name_count) { 1878 printk(KERN_ERR "%s:%d(:%d): major=%d" 1879 " in_syscall=%d putname(%p) name_count=%d" 1880 " put_count=%d\n", 1881 __FILE__, __LINE__, 1882 context->serial, context->major, 1883 context->in_syscall, name, context->name_count, 1884 context->put_count); 1885 dump_stack(); 1886 } 1887 } 1888 #endif 1889 } 1890 1891 static int audit_inc_name_count(struct audit_context *context, 1892 const struct inode *inode) 1893 { 1894 if (context->name_count >= AUDIT_NAMES) { 1895 if (inode) 1896 printk(KERN_DEBUG "name_count maxed, losing inode data: " 1897 "dev=%02x:%02x, inode=%lu\n", 1898 MAJOR(inode->i_sb->s_dev), 1899 MINOR(inode->i_sb->s_dev), 1900 inode->i_ino); 1901 1902 else 1903 printk(KERN_DEBUG "name_count maxed, losing inode data\n"); 1904 return 1; 1905 } 1906 context->name_count++; 1907 #if AUDIT_DEBUG 1908 context->ino_count++; 1909 #endif 1910 return 0; 1911 } 1912 1913 1914 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 1915 { 1916 struct cpu_vfs_cap_data caps; 1917 int rc; 1918 1919 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t)); 1920 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t)); 1921 name->fcap.fE = 0; 1922 name->fcap_ver = 0; 1923 1924 if (!dentry) 1925 return 0; 1926 1927 rc = get_vfs_caps_from_disk(dentry, &caps); 1928 if (rc) 1929 return rc; 1930 1931 name->fcap.permitted = caps.permitted; 1932 name->fcap.inheritable = caps.inheritable; 1933 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1934 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 1935 1936 return 0; 1937 } 1938 1939 1940 /* Copy inode data into an audit_names. */ 1941 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1942 const struct inode *inode) 1943 { 1944 name->ino = inode->i_ino; 1945 name->dev = inode->i_sb->s_dev; 1946 name->mode = inode->i_mode; 1947 name->uid = inode->i_uid; 1948 name->gid = inode->i_gid; 1949 name->rdev = inode->i_rdev; 1950 security_inode_getsecid(inode, &name->osid); 1951 audit_copy_fcaps(name, dentry); 1952 } 1953 1954 /** 1955 * audit_inode - store the inode and device from a lookup 1956 * @name: name being audited 1957 * @dentry: dentry being audited 1958 * 1959 * Called from fs/namei.c:path_lookup(). 1960 */ 1961 void __audit_inode(const char *name, const struct dentry *dentry) 1962 { 1963 int idx; 1964 struct audit_context *context = current->audit_context; 1965 const struct inode *inode = dentry->d_inode; 1966 1967 if (!context->in_syscall) 1968 return; 1969 if (context->name_count 1970 && context->names[context->name_count-1].name 1971 && context->names[context->name_count-1].name == name) 1972 idx = context->name_count - 1; 1973 else if (context->name_count > 1 1974 && context->names[context->name_count-2].name 1975 && context->names[context->name_count-2].name == name) 1976 idx = context->name_count - 2; 1977 else { 1978 /* FIXME: how much do we care about inodes that have no 1979 * associated name? */ 1980 if (audit_inc_name_count(context, inode)) 1981 return; 1982 idx = context->name_count - 1; 1983 context->names[idx].name = NULL; 1984 } 1985 handle_path(dentry); 1986 audit_copy_inode(&context->names[idx], dentry, inode); 1987 } 1988 1989 /** 1990 * audit_inode_child - collect inode info for created/removed objects 1991 * @dname: inode's dentry name 1992 * @dentry: dentry being audited 1993 * @parent: inode of dentry parent 1994 * 1995 * For syscalls that create or remove filesystem objects, audit_inode 1996 * can only collect information for the filesystem object's parent. 1997 * This call updates the audit context with the child's information. 1998 * Syscalls that create a new filesystem object must be hooked after 1999 * the object is created. Syscalls that remove a filesystem object 2000 * must be hooked prior, in order to capture the target inode during 2001 * unsuccessful attempts. 2002 */ 2003 void __audit_inode_child(const char *dname, const struct dentry *dentry, 2004 const struct inode *parent) 2005 { 2006 int idx; 2007 struct audit_context *context = current->audit_context; 2008 const char *found_parent = NULL, *found_child = NULL; 2009 const struct inode *inode = dentry->d_inode; 2010 int dirlen = 0; 2011 2012 if (!context->in_syscall) 2013 return; 2014 2015 if (inode) 2016 handle_one(inode); 2017 /* determine matching parent */ 2018 if (!dname) 2019 goto add_names; 2020 2021 /* parent is more likely, look for it first */ 2022 for (idx = 0; idx < context->name_count; idx++) { 2023 struct audit_names *n = &context->names[idx]; 2024 2025 if (!n->name) 2026 continue; 2027 2028 if (n->ino == parent->i_ino && 2029 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2030 n->name_len = dirlen; /* update parent data in place */ 2031 found_parent = n->name; 2032 goto add_names; 2033 } 2034 } 2035 2036 /* no matching parent, look for matching child */ 2037 for (idx = 0; idx < context->name_count; idx++) { 2038 struct audit_names *n = &context->names[idx]; 2039 2040 if (!n->name) 2041 continue; 2042 2043 /* strcmp() is the more likely scenario */ 2044 if (!strcmp(dname, n->name) || 2045 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2046 if (inode) 2047 audit_copy_inode(n, NULL, inode); 2048 else 2049 n->ino = (unsigned long)-1; 2050 found_child = n->name; 2051 goto add_names; 2052 } 2053 } 2054 2055 add_names: 2056 if (!found_parent) { 2057 if (audit_inc_name_count(context, parent)) 2058 return; 2059 idx = context->name_count - 1; 2060 context->names[idx].name = NULL; 2061 audit_copy_inode(&context->names[idx], NULL, parent); 2062 } 2063 2064 if (!found_child) { 2065 if (audit_inc_name_count(context, inode)) 2066 return; 2067 idx = context->name_count - 1; 2068 2069 /* Re-use the name belonging to the slot for a matching parent 2070 * directory. All names for this context are relinquished in 2071 * audit_free_names() */ 2072 if (found_parent) { 2073 context->names[idx].name = found_parent; 2074 context->names[idx].name_len = AUDIT_NAME_FULL; 2075 /* don't call __putname() */ 2076 context->names[idx].name_put = 0; 2077 } else { 2078 context->names[idx].name = NULL; 2079 } 2080 2081 if (inode) 2082 audit_copy_inode(&context->names[idx], NULL, inode); 2083 else 2084 context->names[idx].ino = (unsigned long)-1; 2085 } 2086 } 2087 EXPORT_SYMBOL_GPL(__audit_inode_child); 2088 2089 /** 2090 * auditsc_get_stamp - get local copies of audit_context values 2091 * @ctx: audit_context for the task 2092 * @t: timespec to store time recorded in the audit_context 2093 * @serial: serial value that is recorded in the audit_context 2094 * 2095 * Also sets the context as auditable. 2096 */ 2097 int auditsc_get_stamp(struct audit_context *ctx, 2098 struct timespec *t, unsigned int *serial) 2099 { 2100 if (!ctx->in_syscall) 2101 return 0; 2102 if (!ctx->serial) 2103 ctx->serial = audit_serial(); 2104 t->tv_sec = ctx->ctime.tv_sec; 2105 t->tv_nsec = ctx->ctime.tv_nsec; 2106 *serial = ctx->serial; 2107 if (!ctx->prio) { 2108 ctx->prio = 1; 2109 ctx->current_state = AUDIT_RECORD_CONTEXT; 2110 } 2111 return 1; 2112 } 2113 2114 /* global counter which is incremented every time something logs in */ 2115 static atomic_t session_id = ATOMIC_INIT(0); 2116 2117 /** 2118 * audit_set_loginuid - set a task's audit_context loginuid 2119 * @task: task whose audit context is being modified 2120 * @loginuid: loginuid value 2121 * 2122 * Returns 0. 2123 * 2124 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2125 */ 2126 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 2127 { 2128 unsigned int sessionid = atomic_inc_return(&session_id); 2129 struct audit_context *context = task->audit_context; 2130 2131 if (context && context->in_syscall) { 2132 struct audit_buffer *ab; 2133 2134 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2135 if (ab) { 2136 audit_log_format(ab, "login pid=%d uid=%u " 2137 "old auid=%u new auid=%u" 2138 " old ses=%u new ses=%u", 2139 task->pid, task_uid(task), 2140 task->loginuid, loginuid, 2141 task->sessionid, sessionid); 2142 audit_log_end(ab); 2143 } 2144 } 2145 task->sessionid = sessionid; 2146 task->loginuid = loginuid; 2147 return 0; 2148 } 2149 2150 /** 2151 * __audit_mq_open - record audit data for a POSIX MQ open 2152 * @oflag: open flag 2153 * @mode: mode bits 2154 * @attr: queue attributes 2155 * 2156 */ 2157 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr) 2158 { 2159 struct audit_context *context = current->audit_context; 2160 2161 if (attr) 2162 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2163 else 2164 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2165 2166 context->mq_open.oflag = oflag; 2167 context->mq_open.mode = mode; 2168 2169 context->type = AUDIT_MQ_OPEN; 2170 } 2171 2172 /** 2173 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2174 * @mqdes: MQ descriptor 2175 * @msg_len: Message length 2176 * @msg_prio: Message priority 2177 * @abs_timeout: Message timeout in absolute time 2178 * 2179 */ 2180 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2181 const struct timespec *abs_timeout) 2182 { 2183 struct audit_context *context = current->audit_context; 2184 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2185 2186 if (abs_timeout) 2187 memcpy(p, abs_timeout, sizeof(struct timespec)); 2188 else 2189 memset(p, 0, sizeof(struct timespec)); 2190 2191 context->mq_sendrecv.mqdes = mqdes; 2192 context->mq_sendrecv.msg_len = msg_len; 2193 context->mq_sendrecv.msg_prio = msg_prio; 2194 2195 context->type = AUDIT_MQ_SENDRECV; 2196 } 2197 2198 /** 2199 * __audit_mq_notify - record audit data for a POSIX MQ notify 2200 * @mqdes: MQ descriptor 2201 * @notification: Notification event 2202 * 2203 */ 2204 2205 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2206 { 2207 struct audit_context *context = current->audit_context; 2208 2209 if (notification) 2210 context->mq_notify.sigev_signo = notification->sigev_signo; 2211 else 2212 context->mq_notify.sigev_signo = 0; 2213 2214 context->mq_notify.mqdes = mqdes; 2215 context->type = AUDIT_MQ_NOTIFY; 2216 } 2217 2218 /** 2219 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2220 * @mqdes: MQ descriptor 2221 * @mqstat: MQ flags 2222 * 2223 */ 2224 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2225 { 2226 struct audit_context *context = current->audit_context; 2227 context->mq_getsetattr.mqdes = mqdes; 2228 context->mq_getsetattr.mqstat = *mqstat; 2229 context->type = AUDIT_MQ_GETSETATTR; 2230 } 2231 2232 /** 2233 * audit_ipc_obj - record audit data for ipc object 2234 * @ipcp: ipc permissions 2235 * 2236 */ 2237 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2238 { 2239 struct audit_context *context = current->audit_context; 2240 context->ipc.uid = ipcp->uid; 2241 context->ipc.gid = ipcp->gid; 2242 context->ipc.mode = ipcp->mode; 2243 context->ipc.has_perm = 0; 2244 security_ipc_getsecid(ipcp, &context->ipc.osid); 2245 context->type = AUDIT_IPC; 2246 } 2247 2248 /** 2249 * audit_ipc_set_perm - record audit data for new ipc permissions 2250 * @qbytes: msgq bytes 2251 * @uid: msgq user id 2252 * @gid: msgq group id 2253 * @mode: msgq mode (permissions) 2254 * 2255 * Called only after audit_ipc_obj(). 2256 */ 2257 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2258 { 2259 struct audit_context *context = current->audit_context; 2260 2261 context->ipc.qbytes = qbytes; 2262 context->ipc.perm_uid = uid; 2263 context->ipc.perm_gid = gid; 2264 context->ipc.perm_mode = mode; 2265 context->ipc.has_perm = 1; 2266 } 2267 2268 int audit_bprm(struct linux_binprm *bprm) 2269 { 2270 struct audit_aux_data_execve *ax; 2271 struct audit_context *context = current->audit_context; 2272 2273 if (likely(!audit_enabled || !context || context->dummy)) 2274 return 0; 2275 2276 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2277 if (!ax) 2278 return -ENOMEM; 2279 2280 ax->argc = bprm->argc; 2281 ax->envc = bprm->envc; 2282 ax->mm = bprm->mm; 2283 ax->d.type = AUDIT_EXECVE; 2284 ax->d.next = context->aux; 2285 context->aux = (void *)ax; 2286 return 0; 2287 } 2288 2289 2290 /** 2291 * audit_socketcall - record audit data for sys_socketcall 2292 * @nargs: number of args 2293 * @args: args array 2294 * 2295 */ 2296 void audit_socketcall(int nargs, unsigned long *args) 2297 { 2298 struct audit_context *context = current->audit_context; 2299 2300 if (likely(!context || context->dummy)) 2301 return; 2302 2303 context->type = AUDIT_SOCKETCALL; 2304 context->socketcall.nargs = nargs; 2305 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2306 } 2307 2308 /** 2309 * __audit_fd_pair - record audit data for pipe and socketpair 2310 * @fd1: the first file descriptor 2311 * @fd2: the second file descriptor 2312 * 2313 */ 2314 void __audit_fd_pair(int fd1, int fd2) 2315 { 2316 struct audit_context *context = current->audit_context; 2317 context->fds[0] = fd1; 2318 context->fds[1] = fd2; 2319 } 2320 2321 /** 2322 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2323 * @len: data length in user space 2324 * @a: data address in kernel space 2325 * 2326 * Returns 0 for success or NULL context or < 0 on error. 2327 */ 2328 int audit_sockaddr(int len, void *a) 2329 { 2330 struct audit_context *context = current->audit_context; 2331 2332 if (likely(!context || context->dummy)) 2333 return 0; 2334 2335 if (!context->sockaddr) { 2336 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2337 if (!p) 2338 return -ENOMEM; 2339 context->sockaddr = p; 2340 } 2341 2342 context->sockaddr_len = len; 2343 memcpy(context->sockaddr, a, len); 2344 return 0; 2345 } 2346 2347 void __audit_ptrace(struct task_struct *t) 2348 { 2349 struct audit_context *context = current->audit_context; 2350 2351 context->target_pid = t->pid; 2352 context->target_auid = audit_get_loginuid(t); 2353 context->target_uid = task_uid(t); 2354 context->target_sessionid = audit_get_sessionid(t); 2355 security_task_getsecid(t, &context->target_sid); 2356 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2357 } 2358 2359 /** 2360 * audit_signal_info - record signal info for shutting down audit subsystem 2361 * @sig: signal value 2362 * @t: task being signaled 2363 * 2364 * If the audit subsystem is being terminated, record the task (pid) 2365 * and uid that is doing that. 2366 */ 2367 int __audit_signal_info(int sig, struct task_struct *t) 2368 { 2369 struct audit_aux_data_pids *axp; 2370 struct task_struct *tsk = current; 2371 struct audit_context *ctx = tsk->audit_context; 2372 uid_t uid = current_uid(), t_uid = task_uid(t); 2373 2374 if (audit_pid && t->tgid == audit_pid) { 2375 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2376 audit_sig_pid = tsk->pid; 2377 if (tsk->loginuid != -1) 2378 audit_sig_uid = tsk->loginuid; 2379 else 2380 audit_sig_uid = uid; 2381 security_task_getsecid(tsk, &audit_sig_sid); 2382 } 2383 if (!audit_signals || audit_dummy_context()) 2384 return 0; 2385 } 2386 2387 /* optimize the common case by putting first signal recipient directly 2388 * in audit_context */ 2389 if (!ctx->target_pid) { 2390 ctx->target_pid = t->tgid; 2391 ctx->target_auid = audit_get_loginuid(t); 2392 ctx->target_uid = t_uid; 2393 ctx->target_sessionid = audit_get_sessionid(t); 2394 security_task_getsecid(t, &ctx->target_sid); 2395 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2396 return 0; 2397 } 2398 2399 axp = (void *)ctx->aux_pids; 2400 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2401 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2402 if (!axp) 2403 return -ENOMEM; 2404 2405 axp->d.type = AUDIT_OBJ_PID; 2406 axp->d.next = ctx->aux_pids; 2407 ctx->aux_pids = (void *)axp; 2408 } 2409 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2410 2411 axp->target_pid[axp->pid_count] = t->tgid; 2412 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2413 axp->target_uid[axp->pid_count] = t_uid; 2414 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2415 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2416 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2417 axp->pid_count++; 2418 2419 return 0; 2420 } 2421 2422 /** 2423 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2424 * @bprm: pointer to the bprm being processed 2425 * @new: the proposed new credentials 2426 * @old: the old credentials 2427 * 2428 * Simply check if the proc already has the caps given by the file and if not 2429 * store the priv escalation info for later auditing at the end of the syscall 2430 * 2431 * -Eric 2432 */ 2433 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2434 const struct cred *new, const struct cred *old) 2435 { 2436 struct audit_aux_data_bprm_fcaps *ax; 2437 struct audit_context *context = current->audit_context; 2438 struct cpu_vfs_cap_data vcaps; 2439 struct dentry *dentry; 2440 2441 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2442 if (!ax) 2443 return -ENOMEM; 2444 2445 ax->d.type = AUDIT_BPRM_FCAPS; 2446 ax->d.next = context->aux; 2447 context->aux = (void *)ax; 2448 2449 dentry = dget(bprm->file->f_dentry); 2450 get_vfs_caps_from_disk(dentry, &vcaps); 2451 dput(dentry); 2452 2453 ax->fcap.permitted = vcaps.permitted; 2454 ax->fcap.inheritable = vcaps.inheritable; 2455 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2456 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2457 2458 ax->old_pcap.permitted = old->cap_permitted; 2459 ax->old_pcap.inheritable = old->cap_inheritable; 2460 ax->old_pcap.effective = old->cap_effective; 2461 2462 ax->new_pcap.permitted = new->cap_permitted; 2463 ax->new_pcap.inheritable = new->cap_inheritable; 2464 ax->new_pcap.effective = new->cap_effective; 2465 return 0; 2466 } 2467 2468 /** 2469 * __audit_log_capset - store information about the arguments to the capset syscall 2470 * @pid: target pid of the capset call 2471 * @new: the new credentials 2472 * @old: the old (current) credentials 2473 * 2474 * Record the aguments userspace sent to sys_capset for later printing by the 2475 * audit system if applicable 2476 */ 2477 void __audit_log_capset(pid_t pid, 2478 const struct cred *new, const struct cred *old) 2479 { 2480 struct audit_context *context = current->audit_context; 2481 context->capset.pid = pid; 2482 context->capset.cap.effective = new->cap_effective; 2483 context->capset.cap.inheritable = new->cap_effective; 2484 context->capset.cap.permitted = new->cap_permitted; 2485 context->type = AUDIT_CAPSET; 2486 } 2487 2488 /** 2489 * audit_core_dumps - record information about processes that end abnormally 2490 * @signr: signal value 2491 * 2492 * If a process ends with a core dump, something fishy is going on and we 2493 * should record the event for investigation. 2494 */ 2495 void audit_core_dumps(long signr) 2496 { 2497 struct audit_buffer *ab; 2498 u32 sid; 2499 uid_t auid = audit_get_loginuid(current), uid; 2500 gid_t gid; 2501 unsigned int sessionid = audit_get_sessionid(current); 2502 2503 if (!audit_enabled) 2504 return; 2505 2506 if (signr == SIGQUIT) /* don't care for those */ 2507 return; 2508 2509 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2510 current_uid_gid(&uid, &gid); 2511 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2512 auid, uid, gid, sessionid); 2513 security_task_getsecid(current, &sid); 2514 if (sid) { 2515 char *ctx = NULL; 2516 u32 len; 2517 2518 if (security_secid_to_secctx(sid, &ctx, &len)) 2519 audit_log_format(ab, " ssid=%u", sid); 2520 else { 2521 audit_log_format(ab, " subj=%s", ctx); 2522 security_release_secctx(ctx, len); 2523 } 2524 } 2525 audit_log_format(ab, " pid=%d comm=", current->pid); 2526 audit_log_untrustedstring(ab, current->comm); 2527 audit_log_format(ab, " sig=%ld", signr); 2528 audit_log_end(ab); 2529 } 2530 2531 struct list_head *audit_killed_trees(void) 2532 { 2533 struct audit_context *ctx = current->audit_context; 2534 if (likely(!ctx || !ctx->in_syscall)) 2535 return NULL; 2536 return &ctx->killed_trees; 2537 } 2538