1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <linux/fsnotify_backend.h> 77 #include <uapi/linux/limits.h> 78 #include <uapi/linux/netfilter/nf_tables.h> 79 80 #include "audit.h" 81 82 /* flags stating the success for a syscall */ 83 #define AUDITSC_INVALID 0 84 #define AUDITSC_SUCCESS 1 85 #define AUDITSC_FAILURE 2 86 87 /* no execve audit message should be longer than this (userspace limits), 88 * see the note near the top of audit_log_execve_info() about this value */ 89 #define MAX_EXECVE_AUDIT_LEN 7500 90 91 /* max length to print of cmdline/proctitle value during audit */ 92 #define MAX_PROCTITLE_AUDIT_LEN 128 93 94 /* number of audit rules */ 95 int audit_n_rules; 96 97 /* determines whether we collect data for signals sent */ 98 int audit_signals; 99 100 struct audit_aux_data { 101 struct audit_aux_data *next; 102 int type; 103 }; 104 105 /* Number of target pids per aux struct. */ 106 #define AUDIT_AUX_PIDS 16 107 108 struct audit_aux_data_pids { 109 struct audit_aux_data d; 110 pid_t target_pid[AUDIT_AUX_PIDS]; 111 kuid_t target_auid[AUDIT_AUX_PIDS]; 112 kuid_t target_uid[AUDIT_AUX_PIDS]; 113 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 114 u32 target_sid[AUDIT_AUX_PIDS]; 115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 116 int pid_count; 117 }; 118 119 struct audit_aux_data_bprm_fcaps { 120 struct audit_aux_data d; 121 struct audit_cap_data fcap; 122 unsigned int fcap_ver; 123 struct audit_cap_data old_pcap; 124 struct audit_cap_data new_pcap; 125 }; 126 127 struct audit_tree_refs { 128 struct audit_tree_refs *next; 129 struct audit_chunk *c[31]; 130 }; 131 132 struct audit_nfcfgop_tab { 133 enum audit_nfcfgop op; 134 const char *s; 135 }; 136 137 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 138 { AUDIT_XT_OP_REGISTER, "xt_register" }, 139 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 140 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 141 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 142 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 143 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 144 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 145 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 146 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 147 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 148 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 149 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 150 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 151 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 152 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 153 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 154 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 155 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 156 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 157 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 158 }; 159 160 static int audit_match_perm(struct audit_context *ctx, int mask) 161 { 162 unsigned n; 163 if (unlikely(!ctx)) 164 return 0; 165 n = ctx->major; 166 167 switch (audit_classify_syscall(ctx->arch, n)) { 168 case 0: /* native */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR, n)) 177 return 1; 178 return 0; 179 case 1: /* 32bit on biarch */ 180 if ((mask & AUDIT_PERM_WRITE) && 181 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 182 return 1; 183 if ((mask & AUDIT_PERM_READ) && 184 audit_match_class(AUDIT_CLASS_READ_32, n)) 185 return 1; 186 if ((mask & AUDIT_PERM_ATTR) && 187 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 188 return 1; 189 return 0; 190 case 2: /* open */ 191 return mask & ACC_MODE(ctx->argv[1]); 192 case 3: /* openat */ 193 return mask & ACC_MODE(ctx->argv[2]); 194 case 4: /* socketcall */ 195 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 196 case 5: /* execve */ 197 return mask & AUDIT_PERM_EXEC; 198 default: 199 return 0; 200 } 201 } 202 203 static int audit_match_filetype(struct audit_context *ctx, int val) 204 { 205 struct audit_names *n; 206 umode_t mode = (umode_t)val; 207 208 if (unlikely(!ctx)) 209 return 0; 210 211 list_for_each_entry(n, &ctx->names_list, list) { 212 if ((n->ino != AUDIT_INO_UNSET) && 213 ((n->mode & S_IFMT) == mode)) 214 return 1; 215 } 216 217 return 0; 218 } 219 220 /* 221 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 222 * ->first_trees points to its beginning, ->trees - to the current end of data. 223 * ->tree_count is the number of free entries in array pointed to by ->trees. 224 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 225 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 226 * it's going to remain 1-element for almost any setup) until we free context itself. 227 * References in it _are_ dropped - at the same time we free/drop aux stuff. 228 */ 229 230 static void audit_set_auditable(struct audit_context *ctx) 231 { 232 if (!ctx->prio) { 233 ctx->prio = 1; 234 ctx->current_state = AUDIT_RECORD_CONTEXT; 235 } 236 } 237 238 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 239 { 240 struct audit_tree_refs *p = ctx->trees; 241 int left = ctx->tree_count; 242 if (likely(left)) { 243 p->c[--left] = chunk; 244 ctx->tree_count = left; 245 return 1; 246 } 247 if (!p) 248 return 0; 249 p = p->next; 250 if (p) { 251 p->c[30] = chunk; 252 ctx->trees = p; 253 ctx->tree_count = 30; 254 return 1; 255 } 256 return 0; 257 } 258 259 static int grow_tree_refs(struct audit_context *ctx) 260 { 261 struct audit_tree_refs *p = ctx->trees; 262 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 263 if (!ctx->trees) { 264 ctx->trees = p; 265 return 0; 266 } 267 if (p) 268 p->next = ctx->trees; 269 else 270 ctx->first_trees = ctx->trees; 271 ctx->tree_count = 31; 272 return 1; 273 } 274 275 static void unroll_tree_refs(struct audit_context *ctx, 276 struct audit_tree_refs *p, int count) 277 { 278 struct audit_tree_refs *q; 279 int n; 280 if (!p) { 281 /* we started with empty chain */ 282 p = ctx->first_trees; 283 count = 31; 284 /* if the very first allocation has failed, nothing to do */ 285 if (!p) 286 return; 287 } 288 n = count; 289 for (q = p; q != ctx->trees; q = q->next, n = 31) { 290 while (n--) { 291 audit_put_chunk(q->c[n]); 292 q->c[n] = NULL; 293 } 294 } 295 while (n-- > ctx->tree_count) { 296 audit_put_chunk(q->c[n]); 297 q->c[n] = NULL; 298 } 299 ctx->trees = p; 300 ctx->tree_count = count; 301 } 302 303 static void free_tree_refs(struct audit_context *ctx) 304 { 305 struct audit_tree_refs *p, *q; 306 for (p = ctx->first_trees; p; p = q) { 307 q = p->next; 308 kfree(p); 309 } 310 } 311 312 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 313 { 314 struct audit_tree_refs *p; 315 int n; 316 if (!tree) 317 return 0; 318 /* full ones */ 319 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 320 for (n = 0; n < 31; n++) 321 if (audit_tree_match(p->c[n], tree)) 322 return 1; 323 } 324 /* partial */ 325 if (p) { 326 for (n = ctx->tree_count; n < 31; n++) 327 if (audit_tree_match(p->c[n], tree)) 328 return 1; 329 } 330 return 0; 331 } 332 333 static int audit_compare_uid(kuid_t uid, 334 struct audit_names *name, 335 struct audit_field *f, 336 struct audit_context *ctx) 337 { 338 struct audit_names *n; 339 int rc; 340 341 if (name) { 342 rc = audit_uid_comparator(uid, f->op, name->uid); 343 if (rc) 344 return rc; 345 } 346 347 if (ctx) { 348 list_for_each_entry(n, &ctx->names_list, list) { 349 rc = audit_uid_comparator(uid, f->op, n->uid); 350 if (rc) 351 return rc; 352 } 353 } 354 return 0; 355 } 356 357 static int audit_compare_gid(kgid_t gid, 358 struct audit_names *name, 359 struct audit_field *f, 360 struct audit_context *ctx) 361 { 362 struct audit_names *n; 363 int rc; 364 365 if (name) { 366 rc = audit_gid_comparator(gid, f->op, name->gid); 367 if (rc) 368 return rc; 369 } 370 371 if (ctx) { 372 list_for_each_entry(n, &ctx->names_list, list) { 373 rc = audit_gid_comparator(gid, f->op, n->gid); 374 if (rc) 375 return rc; 376 } 377 } 378 return 0; 379 } 380 381 static int audit_field_compare(struct task_struct *tsk, 382 const struct cred *cred, 383 struct audit_field *f, 384 struct audit_context *ctx, 385 struct audit_names *name) 386 { 387 switch (f->val) { 388 /* process to file object comparisons */ 389 case AUDIT_COMPARE_UID_TO_OBJ_UID: 390 return audit_compare_uid(cred->uid, name, f, ctx); 391 case AUDIT_COMPARE_GID_TO_OBJ_GID: 392 return audit_compare_gid(cred->gid, name, f, ctx); 393 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 394 return audit_compare_uid(cred->euid, name, f, ctx); 395 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 396 return audit_compare_gid(cred->egid, name, f, ctx); 397 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 398 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 399 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->suid, name, f, ctx); 401 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->sgid, name, f, ctx); 403 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 404 return audit_compare_uid(cred->fsuid, name, f, ctx); 405 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 406 return audit_compare_gid(cred->fsgid, name, f, ctx); 407 /* uid comparisons */ 408 case AUDIT_COMPARE_UID_TO_AUID: 409 return audit_uid_comparator(cred->uid, f->op, 410 audit_get_loginuid(tsk)); 411 case AUDIT_COMPARE_UID_TO_EUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->euid); 413 case AUDIT_COMPARE_UID_TO_SUID: 414 return audit_uid_comparator(cred->uid, f->op, cred->suid); 415 case AUDIT_COMPARE_UID_TO_FSUID: 416 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 417 /* auid comparisons */ 418 case AUDIT_COMPARE_AUID_TO_EUID: 419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 420 cred->euid); 421 case AUDIT_COMPARE_AUID_TO_SUID: 422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 423 cred->suid); 424 case AUDIT_COMPARE_AUID_TO_FSUID: 425 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 426 cred->fsuid); 427 /* euid comparisons */ 428 case AUDIT_COMPARE_EUID_TO_SUID: 429 return audit_uid_comparator(cred->euid, f->op, cred->suid); 430 case AUDIT_COMPARE_EUID_TO_FSUID: 431 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 432 /* suid comparisons */ 433 case AUDIT_COMPARE_SUID_TO_FSUID: 434 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 435 /* gid comparisons */ 436 case AUDIT_COMPARE_GID_TO_EGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->egid); 438 case AUDIT_COMPARE_GID_TO_SGID: 439 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 440 case AUDIT_COMPARE_GID_TO_FSGID: 441 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 442 /* egid comparisons */ 443 case AUDIT_COMPARE_EGID_TO_SGID: 444 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 445 case AUDIT_COMPARE_EGID_TO_FSGID: 446 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 447 /* sgid comparison */ 448 case AUDIT_COMPARE_SGID_TO_FSGID: 449 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 450 default: 451 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 452 return 0; 453 } 454 return 0; 455 } 456 457 /* Determine if any context name data matches a rule's watch data */ 458 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 459 * otherwise. 460 * 461 * If task_creation is true, this is an explicit indication that we are 462 * filtering a task rule at task creation time. This and tsk == current are 463 * the only situations where tsk->cred may be accessed without an rcu read lock. 464 */ 465 static int audit_filter_rules(struct task_struct *tsk, 466 struct audit_krule *rule, 467 struct audit_context *ctx, 468 struct audit_names *name, 469 enum audit_state *state, 470 bool task_creation) 471 { 472 const struct cred *cred; 473 int i, need_sid = 1; 474 u32 sid; 475 unsigned int sessionid; 476 477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 478 479 for (i = 0; i < rule->field_count; i++) { 480 struct audit_field *f = &rule->fields[i]; 481 struct audit_names *n; 482 int result = 0; 483 pid_t pid; 484 485 switch (f->type) { 486 case AUDIT_PID: 487 pid = task_tgid_nr(tsk); 488 result = audit_comparator(pid, f->op, f->val); 489 break; 490 case AUDIT_PPID: 491 if (ctx) { 492 if (!ctx->ppid) 493 ctx->ppid = task_ppid_nr(tsk); 494 result = audit_comparator(ctx->ppid, f->op, f->val); 495 } 496 break; 497 case AUDIT_EXE: 498 result = audit_exe_compare(tsk, rule->exe); 499 if (f->op == Audit_not_equal) 500 result = !result; 501 break; 502 case AUDIT_UID: 503 result = audit_uid_comparator(cred->uid, f->op, f->uid); 504 break; 505 case AUDIT_EUID: 506 result = audit_uid_comparator(cred->euid, f->op, f->uid); 507 break; 508 case AUDIT_SUID: 509 result = audit_uid_comparator(cred->suid, f->op, f->uid); 510 break; 511 case AUDIT_FSUID: 512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 513 break; 514 case AUDIT_GID: 515 result = audit_gid_comparator(cred->gid, f->op, f->gid); 516 if (f->op == Audit_equal) { 517 if (!result) 518 result = groups_search(cred->group_info, f->gid); 519 } else if (f->op == Audit_not_equal) { 520 if (result) 521 result = !groups_search(cred->group_info, f->gid); 522 } 523 break; 524 case AUDIT_EGID: 525 result = audit_gid_comparator(cred->egid, f->op, f->gid); 526 if (f->op == Audit_equal) { 527 if (!result) 528 result = groups_search(cred->group_info, f->gid); 529 } else if (f->op == Audit_not_equal) { 530 if (result) 531 result = !groups_search(cred->group_info, f->gid); 532 } 533 break; 534 case AUDIT_SGID: 535 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 536 break; 537 case AUDIT_FSGID: 538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 539 break; 540 case AUDIT_SESSIONID: 541 sessionid = audit_get_sessionid(tsk); 542 result = audit_comparator(sessionid, f->op, f->val); 543 break; 544 case AUDIT_PERS: 545 result = audit_comparator(tsk->personality, f->op, f->val); 546 break; 547 case AUDIT_ARCH: 548 if (ctx) 549 result = audit_comparator(ctx->arch, f->op, f->val); 550 break; 551 552 case AUDIT_EXIT: 553 if (ctx && ctx->return_valid != AUDITSC_INVALID) 554 result = audit_comparator(ctx->return_code, f->op, f->val); 555 break; 556 case AUDIT_SUCCESS: 557 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 558 if (f->val) 559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 560 else 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 562 } 563 break; 564 case AUDIT_DEVMAJOR: 565 if (name) { 566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 567 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 568 ++result; 569 } else if (ctx) { 570 list_for_each_entry(n, &ctx->names_list, list) { 571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_DEVMINOR: 580 if (name) { 581 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 582 audit_comparator(MINOR(name->rdev), f->op, f->val)) 583 ++result; 584 } else if (ctx) { 585 list_for_each_entry(n, &ctx->names_list, list) { 586 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 587 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 588 ++result; 589 break; 590 } 591 } 592 } 593 break; 594 case AUDIT_INODE: 595 if (name) 596 result = audit_comparator(name->ino, f->op, f->val); 597 else if (ctx) { 598 list_for_each_entry(n, &ctx->names_list, list) { 599 if (audit_comparator(n->ino, f->op, f->val)) { 600 ++result; 601 break; 602 } 603 } 604 } 605 break; 606 case AUDIT_OBJ_UID: 607 if (name) { 608 result = audit_uid_comparator(name->uid, f->op, f->uid); 609 } else if (ctx) { 610 list_for_each_entry(n, &ctx->names_list, list) { 611 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 612 ++result; 613 break; 614 } 615 } 616 } 617 break; 618 case AUDIT_OBJ_GID: 619 if (name) { 620 result = audit_gid_comparator(name->gid, f->op, f->gid); 621 } else if (ctx) { 622 list_for_each_entry(n, &ctx->names_list, list) { 623 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 624 ++result; 625 break; 626 } 627 } 628 } 629 break; 630 case AUDIT_WATCH: 631 if (name) { 632 result = audit_watch_compare(rule->watch, 633 name->ino, 634 name->dev); 635 if (f->op == Audit_not_equal) 636 result = !result; 637 } 638 break; 639 case AUDIT_DIR: 640 if (ctx) { 641 result = match_tree_refs(ctx, rule->tree); 642 if (f->op == Audit_not_equal) 643 result = !result; 644 } 645 break; 646 case AUDIT_LOGINUID: 647 result = audit_uid_comparator(audit_get_loginuid(tsk), 648 f->op, f->uid); 649 break; 650 case AUDIT_LOGINUID_SET: 651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 652 break; 653 case AUDIT_SADDR_FAM: 654 if (ctx->sockaddr) 655 result = audit_comparator(ctx->sockaddr->ss_family, 656 f->op, f->val); 657 break; 658 case AUDIT_SUBJ_USER: 659 case AUDIT_SUBJ_ROLE: 660 case AUDIT_SUBJ_TYPE: 661 case AUDIT_SUBJ_SEN: 662 case AUDIT_SUBJ_CLR: 663 /* NOTE: this may return negative values indicating 664 a temporary error. We simply treat this as a 665 match for now to avoid losing information that 666 may be wanted. An error message will also be 667 logged upon error */ 668 if (f->lsm_rule) { 669 if (need_sid) { 670 security_task_getsecid(tsk, &sid); 671 need_sid = 0; 672 } 673 result = security_audit_rule_match(sid, f->type, 674 f->op, 675 f->lsm_rule); 676 } 677 break; 678 case AUDIT_OBJ_USER: 679 case AUDIT_OBJ_ROLE: 680 case AUDIT_OBJ_TYPE: 681 case AUDIT_OBJ_LEV_LOW: 682 case AUDIT_OBJ_LEV_HIGH: 683 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 684 also applies here */ 685 if (f->lsm_rule) { 686 /* Find files that match */ 687 if (name) { 688 result = security_audit_rule_match( 689 name->osid, 690 f->type, 691 f->op, 692 f->lsm_rule); 693 } else if (ctx) { 694 list_for_each_entry(n, &ctx->names_list, list) { 695 if (security_audit_rule_match( 696 n->osid, 697 f->type, 698 f->op, 699 f->lsm_rule)) { 700 ++result; 701 break; 702 } 703 } 704 } 705 /* Find ipc objects that match */ 706 if (!ctx || ctx->type != AUDIT_IPC) 707 break; 708 if (security_audit_rule_match(ctx->ipc.osid, 709 f->type, f->op, 710 f->lsm_rule)) 711 ++result; 712 } 713 break; 714 case AUDIT_ARG0: 715 case AUDIT_ARG1: 716 case AUDIT_ARG2: 717 case AUDIT_ARG3: 718 if (ctx) 719 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 720 break; 721 case AUDIT_FILTERKEY: 722 /* ignore this field for filtering */ 723 result = 1; 724 break; 725 case AUDIT_PERM: 726 result = audit_match_perm(ctx, f->val); 727 if (f->op == Audit_not_equal) 728 result = !result; 729 break; 730 case AUDIT_FILETYPE: 731 result = audit_match_filetype(ctx, f->val); 732 if (f->op == Audit_not_equal) 733 result = !result; 734 break; 735 case AUDIT_FIELD_COMPARE: 736 result = audit_field_compare(tsk, cred, f, ctx, name); 737 break; 738 } 739 if (!result) 740 return 0; 741 } 742 743 if (ctx) { 744 if (rule->prio <= ctx->prio) 745 return 0; 746 if (rule->filterkey) { 747 kfree(ctx->filterkey); 748 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 749 } 750 ctx->prio = rule->prio; 751 } 752 switch (rule->action) { 753 case AUDIT_NEVER: 754 *state = AUDIT_DISABLED; 755 break; 756 case AUDIT_ALWAYS: 757 *state = AUDIT_RECORD_CONTEXT; 758 break; 759 } 760 return 1; 761 } 762 763 /* At process creation time, we can determine if system-call auditing is 764 * completely disabled for this task. Since we only have the task 765 * structure at this point, we can only check uid and gid. 766 */ 767 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 768 { 769 struct audit_entry *e; 770 enum audit_state state; 771 772 rcu_read_lock(); 773 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 774 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 775 &state, true)) { 776 if (state == AUDIT_RECORD_CONTEXT) 777 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 778 rcu_read_unlock(); 779 return state; 780 } 781 } 782 rcu_read_unlock(); 783 return AUDIT_BUILD_CONTEXT; 784 } 785 786 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 787 { 788 int word, bit; 789 790 if (val > 0xffffffff) 791 return false; 792 793 word = AUDIT_WORD(val); 794 if (word >= AUDIT_BITMASK_SIZE) 795 return false; 796 797 bit = AUDIT_BIT(val); 798 799 return rule->mask[word] & bit; 800 } 801 802 /* At syscall entry and exit time, this filter is called if the 803 * audit_state is not low enough that auditing cannot take place, but is 804 * also not high enough that we already know we have to write an audit 805 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 806 */ 807 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 808 struct audit_context *ctx, 809 struct list_head *list) 810 { 811 struct audit_entry *e; 812 enum audit_state state; 813 814 if (auditd_test_task(tsk)) 815 return AUDIT_DISABLED; 816 817 rcu_read_lock(); 818 list_for_each_entry_rcu(e, list, list) { 819 if (audit_in_mask(&e->rule, ctx->major) && 820 audit_filter_rules(tsk, &e->rule, ctx, NULL, 821 &state, false)) { 822 rcu_read_unlock(); 823 ctx->current_state = state; 824 return state; 825 } 826 } 827 rcu_read_unlock(); 828 return AUDIT_BUILD_CONTEXT; 829 } 830 831 /* 832 * Given an audit_name check the inode hash table to see if they match. 833 * Called holding the rcu read lock to protect the use of audit_inode_hash 834 */ 835 static int audit_filter_inode_name(struct task_struct *tsk, 836 struct audit_names *n, 837 struct audit_context *ctx) { 838 int h = audit_hash_ino((u32)n->ino); 839 struct list_head *list = &audit_inode_hash[h]; 840 struct audit_entry *e; 841 enum audit_state state; 842 843 list_for_each_entry_rcu(e, list, list) { 844 if (audit_in_mask(&e->rule, ctx->major) && 845 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 846 ctx->current_state = state; 847 return 1; 848 } 849 } 850 return 0; 851 } 852 853 /* At syscall exit time, this filter is called if any audit_names have been 854 * collected during syscall processing. We only check rules in sublists at hash 855 * buckets applicable to the inode numbers in audit_names. 856 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 857 */ 858 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 859 { 860 struct audit_names *n; 861 862 if (auditd_test_task(tsk)) 863 return; 864 865 rcu_read_lock(); 866 867 list_for_each_entry(n, &ctx->names_list, list) { 868 if (audit_filter_inode_name(tsk, n, ctx)) 869 break; 870 } 871 rcu_read_unlock(); 872 } 873 874 static inline void audit_proctitle_free(struct audit_context *context) 875 { 876 kfree(context->proctitle.value); 877 context->proctitle.value = NULL; 878 context->proctitle.len = 0; 879 } 880 881 static inline void audit_free_module(struct audit_context *context) 882 { 883 if (context->type == AUDIT_KERN_MODULE) { 884 kfree(context->module.name); 885 context->module.name = NULL; 886 } 887 } 888 static inline void audit_free_names(struct audit_context *context) 889 { 890 struct audit_names *n, *next; 891 892 list_for_each_entry_safe(n, next, &context->names_list, list) { 893 list_del(&n->list); 894 if (n->name) 895 putname(n->name); 896 if (n->should_free) 897 kfree(n); 898 } 899 context->name_count = 0; 900 path_put(&context->pwd); 901 context->pwd.dentry = NULL; 902 context->pwd.mnt = NULL; 903 } 904 905 static inline void audit_free_aux(struct audit_context *context) 906 { 907 struct audit_aux_data *aux; 908 909 while ((aux = context->aux)) { 910 context->aux = aux->next; 911 kfree(aux); 912 } 913 while ((aux = context->aux_pids)) { 914 context->aux_pids = aux->next; 915 kfree(aux); 916 } 917 } 918 919 static inline struct audit_context *audit_alloc_context(enum audit_state state) 920 { 921 struct audit_context *context; 922 923 context = kzalloc(sizeof(*context), GFP_KERNEL); 924 if (!context) 925 return NULL; 926 context->state = state; 927 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 928 INIT_LIST_HEAD(&context->killed_trees); 929 INIT_LIST_HEAD(&context->names_list); 930 context->fds[0] = -1; 931 context->return_valid = AUDITSC_INVALID; 932 return context; 933 } 934 935 /** 936 * audit_alloc - allocate an audit context block for a task 937 * @tsk: task 938 * 939 * Filter on the task information and allocate a per-task audit context 940 * if necessary. Doing so turns on system call auditing for the 941 * specified task. This is called from copy_process, so no lock is 942 * needed. 943 */ 944 int audit_alloc(struct task_struct *tsk) 945 { 946 struct audit_context *context; 947 enum audit_state state; 948 char *key = NULL; 949 950 if (likely(!audit_ever_enabled)) 951 return 0; /* Return if not auditing. */ 952 953 state = audit_filter_task(tsk, &key); 954 if (state == AUDIT_DISABLED) { 955 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 956 return 0; 957 } 958 959 if (!(context = audit_alloc_context(state))) { 960 kfree(key); 961 audit_log_lost("out of memory in audit_alloc"); 962 return -ENOMEM; 963 } 964 context->filterkey = key; 965 966 audit_set_context(tsk, context); 967 set_task_syscall_work(tsk, SYSCALL_AUDIT); 968 return 0; 969 } 970 971 static inline void audit_free_context(struct audit_context *context) 972 { 973 audit_free_module(context); 974 audit_free_names(context); 975 unroll_tree_refs(context, NULL, 0); 976 free_tree_refs(context); 977 audit_free_aux(context); 978 kfree(context->filterkey); 979 kfree(context->sockaddr); 980 audit_proctitle_free(context); 981 kfree(context); 982 } 983 984 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 985 kuid_t auid, kuid_t uid, unsigned int sessionid, 986 u32 sid, char *comm) 987 { 988 struct audit_buffer *ab; 989 char *ctx = NULL; 990 u32 len; 991 int rc = 0; 992 993 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 994 if (!ab) 995 return rc; 996 997 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 998 from_kuid(&init_user_ns, auid), 999 from_kuid(&init_user_ns, uid), sessionid); 1000 if (sid) { 1001 if (security_secid_to_secctx(sid, &ctx, &len)) { 1002 audit_log_format(ab, " obj=(none)"); 1003 rc = 1; 1004 } else { 1005 audit_log_format(ab, " obj=%s", ctx); 1006 security_release_secctx(ctx, len); 1007 } 1008 } 1009 audit_log_format(ab, " ocomm="); 1010 audit_log_untrustedstring(ab, comm); 1011 audit_log_end(ab); 1012 1013 return rc; 1014 } 1015 1016 static void audit_log_execve_info(struct audit_context *context, 1017 struct audit_buffer **ab) 1018 { 1019 long len_max; 1020 long len_rem; 1021 long len_full; 1022 long len_buf; 1023 long len_abuf = 0; 1024 long len_tmp; 1025 bool require_data; 1026 bool encode; 1027 unsigned int iter; 1028 unsigned int arg; 1029 char *buf_head; 1030 char *buf; 1031 const char __user *p = (const char __user *)current->mm->arg_start; 1032 1033 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1034 * data we put in the audit record for this argument (see the 1035 * code below) ... at this point in time 96 is plenty */ 1036 char abuf[96]; 1037 1038 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1039 * current value of 7500 is not as important as the fact that it 1040 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1041 * room if we go over a little bit in the logging below */ 1042 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1043 len_max = MAX_EXECVE_AUDIT_LEN; 1044 1045 /* scratch buffer to hold the userspace args */ 1046 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1047 if (!buf_head) { 1048 audit_panic("out of memory for argv string"); 1049 return; 1050 } 1051 buf = buf_head; 1052 1053 audit_log_format(*ab, "argc=%d", context->execve.argc); 1054 1055 len_rem = len_max; 1056 len_buf = 0; 1057 len_full = 0; 1058 require_data = true; 1059 encode = false; 1060 iter = 0; 1061 arg = 0; 1062 do { 1063 /* NOTE: we don't ever want to trust this value for anything 1064 * serious, but the audit record format insists we 1065 * provide an argument length for really long arguments, 1066 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1067 * to use strncpy_from_user() to obtain this value for 1068 * recording in the log, although we don't use it 1069 * anywhere here to avoid a double-fetch problem */ 1070 if (len_full == 0) 1071 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1072 1073 /* read more data from userspace */ 1074 if (require_data) { 1075 /* can we make more room in the buffer? */ 1076 if (buf != buf_head) { 1077 memmove(buf_head, buf, len_buf); 1078 buf = buf_head; 1079 } 1080 1081 /* fetch as much as we can of the argument */ 1082 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1083 len_max - len_buf); 1084 if (len_tmp == -EFAULT) { 1085 /* unable to copy from userspace */ 1086 send_sig(SIGKILL, current, 0); 1087 goto out; 1088 } else if (len_tmp == (len_max - len_buf)) { 1089 /* buffer is not large enough */ 1090 require_data = true; 1091 /* NOTE: if we are going to span multiple 1092 * buffers force the encoding so we stand 1093 * a chance at a sane len_full value and 1094 * consistent record encoding */ 1095 encode = true; 1096 len_full = len_full * 2; 1097 p += len_tmp; 1098 } else { 1099 require_data = false; 1100 if (!encode) 1101 encode = audit_string_contains_control( 1102 buf, len_tmp); 1103 /* try to use a trusted value for len_full */ 1104 if (len_full < len_max) 1105 len_full = (encode ? 1106 len_tmp * 2 : len_tmp); 1107 p += len_tmp + 1; 1108 } 1109 len_buf += len_tmp; 1110 buf_head[len_buf] = '\0'; 1111 1112 /* length of the buffer in the audit record? */ 1113 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1114 } 1115 1116 /* write as much as we can to the audit log */ 1117 if (len_buf >= 0) { 1118 /* NOTE: some magic numbers here - basically if we 1119 * can't fit a reasonable amount of data into the 1120 * existing audit buffer, flush it and start with 1121 * a new buffer */ 1122 if ((sizeof(abuf) + 8) > len_rem) { 1123 len_rem = len_max; 1124 audit_log_end(*ab); 1125 *ab = audit_log_start(context, 1126 GFP_KERNEL, AUDIT_EXECVE); 1127 if (!*ab) 1128 goto out; 1129 } 1130 1131 /* create the non-arg portion of the arg record */ 1132 len_tmp = 0; 1133 if (require_data || (iter > 0) || 1134 ((len_abuf + sizeof(abuf)) > len_rem)) { 1135 if (iter == 0) { 1136 len_tmp += snprintf(&abuf[len_tmp], 1137 sizeof(abuf) - len_tmp, 1138 " a%d_len=%lu", 1139 arg, len_full); 1140 } 1141 len_tmp += snprintf(&abuf[len_tmp], 1142 sizeof(abuf) - len_tmp, 1143 " a%d[%d]=", arg, iter++); 1144 } else 1145 len_tmp += snprintf(&abuf[len_tmp], 1146 sizeof(abuf) - len_tmp, 1147 " a%d=", arg); 1148 WARN_ON(len_tmp >= sizeof(abuf)); 1149 abuf[sizeof(abuf) - 1] = '\0'; 1150 1151 /* log the arg in the audit record */ 1152 audit_log_format(*ab, "%s", abuf); 1153 len_rem -= len_tmp; 1154 len_tmp = len_buf; 1155 if (encode) { 1156 if (len_abuf > len_rem) 1157 len_tmp = len_rem / 2; /* encoding */ 1158 audit_log_n_hex(*ab, buf, len_tmp); 1159 len_rem -= len_tmp * 2; 1160 len_abuf -= len_tmp * 2; 1161 } else { 1162 if (len_abuf > len_rem) 1163 len_tmp = len_rem - 2; /* quotes */ 1164 audit_log_n_string(*ab, buf, len_tmp); 1165 len_rem -= len_tmp + 2; 1166 /* don't subtract the "2" because we still need 1167 * to add quotes to the remaining string */ 1168 len_abuf -= len_tmp; 1169 } 1170 len_buf -= len_tmp; 1171 buf += len_tmp; 1172 } 1173 1174 /* ready to move to the next argument? */ 1175 if ((len_buf == 0) && !require_data) { 1176 arg++; 1177 iter = 0; 1178 len_full = 0; 1179 require_data = true; 1180 encode = false; 1181 } 1182 } while (arg < context->execve.argc); 1183 1184 /* NOTE: the caller handles the final audit_log_end() call */ 1185 1186 out: 1187 kfree(buf_head); 1188 } 1189 1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1191 kernel_cap_t *cap) 1192 { 1193 int i; 1194 1195 if (cap_isclear(*cap)) { 1196 audit_log_format(ab, " %s=0", prefix); 1197 return; 1198 } 1199 audit_log_format(ab, " %s=", prefix); 1200 CAP_FOR_EACH_U32(i) 1201 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1202 } 1203 1204 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1205 { 1206 if (name->fcap_ver == -1) { 1207 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1208 return; 1209 } 1210 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1211 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1212 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1213 name->fcap.fE, name->fcap_ver, 1214 from_kuid(&init_user_ns, name->fcap.rootid)); 1215 } 1216 1217 static void show_special(struct audit_context *context, int *call_panic) 1218 { 1219 struct audit_buffer *ab; 1220 int i; 1221 1222 ab = audit_log_start(context, GFP_KERNEL, context->type); 1223 if (!ab) 1224 return; 1225 1226 switch (context->type) { 1227 case AUDIT_SOCKETCALL: { 1228 int nargs = context->socketcall.nargs; 1229 audit_log_format(ab, "nargs=%d", nargs); 1230 for (i = 0; i < nargs; i++) 1231 audit_log_format(ab, " a%d=%lx", i, 1232 context->socketcall.args[i]); 1233 break; } 1234 case AUDIT_IPC: { 1235 u32 osid = context->ipc.osid; 1236 1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1238 from_kuid(&init_user_ns, context->ipc.uid), 1239 from_kgid(&init_user_ns, context->ipc.gid), 1240 context->ipc.mode); 1241 if (osid) { 1242 char *ctx = NULL; 1243 u32 len; 1244 if (security_secid_to_secctx(osid, &ctx, &len)) { 1245 audit_log_format(ab, " osid=%u", osid); 1246 *call_panic = 1; 1247 } else { 1248 audit_log_format(ab, " obj=%s", ctx); 1249 security_release_secctx(ctx, len); 1250 } 1251 } 1252 if (context->ipc.has_perm) { 1253 audit_log_end(ab); 1254 ab = audit_log_start(context, GFP_KERNEL, 1255 AUDIT_IPC_SET_PERM); 1256 if (unlikely(!ab)) 1257 return; 1258 audit_log_format(ab, 1259 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1260 context->ipc.qbytes, 1261 context->ipc.perm_uid, 1262 context->ipc.perm_gid, 1263 context->ipc.perm_mode); 1264 } 1265 break; } 1266 case AUDIT_MQ_OPEN: 1267 audit_log_format(ab, 1268 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1269 "mq_msgsize=%ld mq_curmsgs=%ld", 1270 context->mq_open.oflag, context->mq_open.mode, 1271 context->mq_open.attr.mq_flags, 1272 context->mq_open.attr.mq_maxmsg, 1273 context->mq_open.attr.mq_msgsize, 1274 context->mq_open.attr.mq_curmsgs); 1275 break; 1276 case AUDIT_MQ_SENDRECV: 1277 audit_log_format(ab, 1278 "mqdes=%d msg_len=%zd msg_prio=%u " 1279 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1280 context->mq_sendrecv.mqdes, 1281 context->mq_sendrecv.msg_len, 1282 context->mq_sendrecv.msg_prio, 1283 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1284 context->mq_sendrecv.abs_timeout.tv_nsec); 1285 break; 1286 case AUDIT_MQ_NOTIFY: 1287 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1288 context->mq_notify.mqdes, 1289 context->mq_notify.sigev_signo); 1290 break; 1291 case AUDIT_MQ_GETSETATTR: { 1292 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1293 audit_log_format(ab, 1294 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1295 "mq_curmsgs=%ld ", 1296 context->mq_getsetattr.mqdes, 1297 attr->mq_flags, attr->mq_maxmsg, 1298 attr->mq_msgsize, attr->mq_curmsgs); 1299 break; } 1300 case AUDIT_CAPSET: 1301 audit_log_format(ab, "pid=%d", context->capset.pid); 1302 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1303 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1304 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1305 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1306 break; 1307 case AUDIT_MMAP: 1308 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1309 context->mmap.flags); 1310 break; 1311 case AUDIT_EXECVE: 1312 audit_log_execve_info(context, &ab); 1313 break; 1314 case AUDIT_KERN_MODULE: 1315 audit_log_format(ab, "name="); 1316 if (context->module.name) { 1317 audit_log_untrustedstring(ab, context->module.name); 1318 } else 1319 audit_log_format(ab, "(null)"); 1320 1321 break; 1322 } 1323 audit_log_end(ab); 1324 } 1325 1326 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1327 { 1328 char *end = proctitle + len - 1; 1329 while (end > proctitle && !isprint(*end)) 1330 end--; 1331 1332 /* catch the case where proctitle is only 1 non-print character */ 1333 len = end - proctitle + 1; 1334 len -= isprint(proctitle[len-1]) == 0; 1335 return len; 1336 } 1337 1338 /* 1339 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1340 * @context: audit_context for the task 1341 * @n: audit_names structure with reportable details 1342 * @path: optional path to report instead of audit_names->name 1343 * @record_num: record number to report when handling a list of names 1344 * @call_panic: optional pointer to int that will be updated if secid fails 1345 */ 1346 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1347 const struct path *path, int record_num, int *call_panic) 1348 { 1349 struct audit_buffer *ab; 1350 1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1352 if (!ab) 1353 return; 1354 1355 audit_log_format(ab, "item=%d", record_num); 1356 1357 if (path) 1358 audit_log_d_path(ab, " name=", path); 1359 else if (n->name) { 1360 switch (n->name_len) { 1361 case AUDIT_NAME_FULL: 1362 /* log the full path */ 1363 audit_log_format(ab, " name="); 1364 audit_log_untrustedstring(ab, n->name->name); 1365 break; 1366 case 0: 1367 /* name was specified as a relative path and the 1368 * directory component is the cwd 1369 */ 1370 if (context->pwd.dentry && context->pwd.mnt) 1371 audit_log_d_path(ab, " name=", &context->pwd); 1372 else 1373 audit_log_format(ab, " name=(null)"); 1374 break; 1375 default: 1376 /* log the name's directory component */ 1377 audit_log_format(ab, " name="); 1378 audit_log_n_untrustedstring(ab, n->name->name, 1379 n->name_len); 1380 } 1381 } else 1382 audit_log_format(ab, " name=(null)"); 1383 1384 if (n->ino != AUDIT_INO_UNSET) 1385 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1386 n->ino, 1387 MAJOR(n->dev), 1388 MINOR(n->dev), 1389 n->mode, 1390 from_kuid(&init_user_ns, n->uid), 1391 from_kgid(&init_user_ns, n->gid), 1392 MAJOR(n->rdev), 1393 MINOR(n->rdev)); 1394 if (n->osid != 0) { 1395 char *ctx = NULL; 1396 u32 len; 1397 1398 if (security_secid_to_secctx( 1399 n->osid, &ctx, &len)) { 1400 audit_log_format(ab, " osid=%u", n->osid); 1401 if (call_panic) 1402 *call_panic = 2; 1403 } else { 1404 audit_log_format(ab, " obj=%s", ctx); 1405 security_release_secctx(ctx, len); 1406 } 1407 } 1408 1409 /* log the audit_names record type */ 1410 switch (n->type) { 1411 case AUDIT_TYPE_NORMAL: 1412 audit_log_format(ab, " nametype=NORMAL"); 1413 break; 1414 case AUDIT_TYPE_PARENT: 1415 audit_log_format(ab, " nametype=PARENT"); 1416 break; 1417 case AUDIT_TYPE_CHILD_DELETE: 1418 audit_log_format(ab, " nametype=DELETE"); 1419 break; 1420 case AUDIT_TYPE_CHILD_CREATE: 1421 audit_log_format(ab, " nametype=CREATE"); 1422 break; 1423 default: 1424 audit_log_format(ab, " nametype=UNKNOWN"); 1425 break; 1426 } 1427 1428 audit_log_fcaps(ab, n); 1429 audit_log_end(ab); 1430 } 1431 1432 static void audit_log_proctitle(void) 1433 { 1434 int res; 1435 char *buf; 1436 char *msg = "(null)"; 1437 int len = strlen(msg); 1438 struct audit_context *context = audit_context(); 1439 struct audit_buffer *ab; 1440 1441 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1442 if (!ab) 1443 return; /* audit_panic or being filtered */ 1444 1445 audit_log_format(ab, "proctitle="); 1446 1447 /* Not cached */ 1448 if (!context->proctitle.value) { 1449 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1450 if (!buf) 1451 goto out; 1452 /* Historically called this from procfs naming */ 1453 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1454 if (res == 0) { 1455 kfree(buf); 1456 goto out; 1457 } 1458 res = audit_proctitle_rtrim(buf, res); 1459 if (res == 0) { 1460 kfree(buf); 1461 goto out; 1462 } 1463 context->proctitle.value = buf; 1464 context->proctitle.len = res; 1465 } 1466 msg = context->proctitle.value; 1467 len = context->proctitle.len; 1468 out: 1469 audit_log_n_untrustedstring(ab, msg, len); 1470 audit_log_end(ab); 1471 } 1472 1473 static void audit_log_exit(void) 1474 { 1475 int i, call_panic = 0; 1476 struct audit_context *context = audit_context(); 1477 struct audit_buffer *ab; 1478 struct audit_aux_data *aux; 1479 struct audit_names *n; 1480 1481 context->personality = current->personality; 1482 1483 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1484 if (!ab) 1485 return; /* audit_panic has been called */ 1486 audit_log_format(ab, "arch=%x syscall=%d", 1487 context->arch, context->major); 1488 if (context->personality != PER_LINUX) 1489 audit_log_format(ab, " per=%lx", context->personality); 1490 if (context->return_valid != AUDITSC_INVALID) 1491 audit_log_format(ab, " success=%s exit=%ld", 1492 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1493 context->return_code); 1494 1495 audit_log_format(ab, 1496 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1497 context->argv[0], 1498 context->argv[1], 1499 context->argv[2], 1500 context->argv[3], 1501 context->name_count); 1502 1503 audit_log_task_info(ab); 1504 audit_log_key(ab, context->filterkey); 1505 audit_log_end(ab); 1506 1507 for (aux = context->aux; aux; aux = aux->next) { 1508 1509 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1510 if (!ab) 1511 continue; /* audit_panic has been called */ 1512 1513 switch (aux->type) { 1514 1515 case AUDIT_BPRM_FCAPS: { 1516 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1517 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1518 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1519 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1520 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1521 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1522 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1523 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1524 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1525 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1526 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1527 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1528 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1529 audit_log_format(ab, " frootid=%d", 1530 from_kuid(&init_user_ns, 1531 axs->fcap.rootid)); 1532 break; } 1533 1534 } 1535 audit_log_end(ab); 1536 } 1537 1538 if (context->type) 1539 show_special(context, &call_panic); 1540 1541 if (context->fds[0] >= 0) { 1542 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1543 if (ab) { 1544 audit_log_format(ab, "fd0=%d fd1=%d", 1545 context->fds[0], context->fds[1]); 1546 audit_log_end(ab); 1547 } 1548 } 1549 1550 if (context->sockaddr_len) { 1551 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1552 if (ab) { 1553 audit_log_format(ab, "saddr="); 1554 audit_log_n_hex(ab, (void *)context->sockaddr, 1555 context->sockaddr_len); 1556 audit_log_end(ab); 1557 } 1558 } 1559 1560 for (aux = context->aux_pids; aux; aux = aux->next) { 1561 struct audit_aux_data_pids *axs = (void *)aux; 1562 1563 for (i = 0; i < axs->pid_count; i++) 1564 if (audit_log_pid_context(context, axs->target_pid[i], 1565 axs->target_auid[i], 1566 axs->target_uid[i], 1567 axs->target_sessionid[i], 1568 axs->target_sid[i], 1569 axs->target_comm[i])) 1570 call_panic = 1; 1571 } 1572 1573 if (context->target_pid && 1574 audit_log_pid_context(context, context->target_pid, 1575 context->target_auid, context->target_uid, 1576 context->target_sessionid, 1577 context->target_sid, context->target_comm)) 1578 call_panic = 1; 1579 1580 if (context->pwd.dentry && context->pwd.mnt) { 1581 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1582 if (ab) { 1583 audit_log_d_path(ab, "cwd=", &context->pwd); 1584 audit_log_end(ab); 1585 } 1586 } 1587 1588 i = 0; 1589 list_for_each_entry(n, &context->names_list, list) { 1590 if (n->hidden) 1591 continue; 1592 audit_log_name(context, n, NULL, i++, &call_panic); 1593 } 1594 1595 audit_log_proctitle(); 1596 1597 /* Send end of event record to help user space know we are finished */ 1598 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1599 if (ab) 1600 audit_log_end(ab); 1601 if (call_panic) 1602 audit_panic("error converting sid to string"); 1603 } 1604 1605 /** 1606 * __audit_free - free a per-task audit context 1607 * @tsk: task whose audit context block to free 1608 * 1609 * Called from copy_process and do_exit 1610 */ 1611 void __audit_free(struct task_struct *tsk) 1612 { 1613 struct audit_context *context = tsk->audit_context; 1614 1615 if (!context) 1616 return; 1617 1618 if (!list_empty(&context->killed_trees)) 1619 audit_kill_trees(context); 1620 1621 /* We are called either by do_exit() or the fork() error handling code; 1622 * in the former case tsk == current and in the latter tsk is a 1623 * random task_struct that doesn't doesn't have any meaningful data we 1624 * need to log via audit_log_exit(). 1625 */ 1626 if (tsk == current && !context->dummy && context->in_syscall) { 1627 context->return_valid = AUDITSC_INVALID; 1628 context->return_code = 0; 1629 1630 audit_filter_syscall(tsk, context, 1631 &audit_filter_list[AUDIT_FILTER_EXIT]); 1632 audit_filter_inodes(tsk, context); 1633 if (context->current_state == AUDIT_RECORD_CONTEXT) 1634 audit_log_exit(); 1635 } 1636 1637 audit_set_context(tsk, NULL); 1638 audit_free_context(context); 1639 } 1640 1641 /** 1642 * __audit_syscall_entry - fill in an audit record at syscall entry 1643 * @major: major syscall type (function) 1644 * @a1: additional syscall register 1 1645 * @a2: additional syscall register 2 1646 * @a3: additional syscall register 3 1647 * @a4: additional syscall register 4 1648 * 1649 * Fill in audit context at syscall entry. This only happens if the 1650 * audit context was created when the task was created and the state or 1651 * filters demand the audit context be built. If the state from the 1652 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1653 * then the record will be written at syscall exit time (otherwise, it 1654 * will only be written if another part of the kernel requests that it 1655 * be written). 1656 */ 1657 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1658 unsigned long a3, unsigned long a4) 1659 { 1660 struct audit_context *context = audit_context(); 1661 enum audit_state state; 1662 1663 if (!audit_enabled || !context) 1664 return; 1665 1666 BUG_ON(context->in_syscall || context->name_count); 1667 1668 state = context->state; 1669 if (state == AUDIT_DISABLED) 1670 return; 1671 1672 context->dummy = !audit_n_rules; 1673 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1674 context->prio = 0; 1675 if (auditd_test_task(current)) 1676 return; 1677 } 1678 1679 context->arch = syscall_get_arch(current); 1680 context->major = major; 1681 context->argv[0] = a1; 1682 context->argv[1] = a2; 1683 context->argv[2] = a3; 1684 context->argv[3] = a4; 1685 context->serial = 0; 1686 context->in_syscall = 1; 1687 context->current_state = state; 1688 context->ppid = 0; 1689 ktime_get_coarse_real_ts64(&context->ctime); 1690 } 1691 1692 /** 1693 * __audit_syscall_exit - deallocate audit context after a system call 1694 * @success: success value of the syscall 1695 * @return_code: return value of the syscall 1696 * 1697 * Tear down after system call. If the audit context has been marked as 1698 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1699 * filtering, or because some other part of the kernel wrote an audit 1700 * message), then write out the syscall information. In call cases, 1701 * free the names stored from getname(). 1702 */ 1703 void __audit_syscall_exit(int success, long return_code) 1704 { 1705 struct audit_context *context; 1706 1707 context = audit_context(); 1708 if (!context) 1709 return; 1710 1711 if (!list_empty(&context->killed_trees)) 1712 audit_kill_trees(context); 1713 1714 if (!context->dummy && context->in_syscall) { 1715 if (success) 1716 context->return_valid = AUDITSC_SUCCESS; 1717 else 1718 context->return_valid = AUDITSC_FAILURE; 1719 1720 /* 1721 * we need to fix up the return code in the audit logs if the 1722 * actual return codes are later going to be fixed up by the 1723 * arch specific signal handlers 1724 * 1725 * This is actually a test for: 1726 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1727 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1728 * 1729 * but is faster than a bunch of || 1730 */ 1731 if (unlikely(return_code <= -ERESTARTSYS) && 1732 (return_code >= -ERESTART_RESTARTBLOCK) && 1733 (return_code != -ENOIOCTLCMD)) 1734 context->return_code = -EINTR; 1735 else 1736 context->return_code = return_code; 1737 1738 audit_filter_syscall(current, context, 1739 &audit_filter_list[AUDIT_FILTER_EXIT]); 1740 audit_filter_inodes(current, context); 1741 if (context->current_state == AUDIT_RECORD_CONTEXT) 1742 audit_log_exit(); 1743 } 1744 1745 context->in_syscall = 0; 1746 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1747 1748 audit_free_module(context); 1749 audit_free_names(context); 1750 unroll_tree_refs(context, NULL, 0); 1751 audit_free_aux(context); 1752 context->aux = NULL; 1753 context->aux_pids = NULL; 1754 context->target_pid = 0; 1755 context->target_sid = 0; 1756 context->sockaddr_len = 0; 1757 context->type = 0; 1758 context->fds[0] = -1; 1759 if (context->state != AUDIT_RECORD_CONTEXT) { 1760 kfree(context->filterkey); 1761 context->filterkey = NULL; 1762 } 1763 } 1764 1765 static inline void handle_one(const struct inode *inode) 1766 { 1767 struct audit_context *context; 1768 struct audit_tree_refs *p; 1769 struct audit_chunk *chunk; 1770 int count; 1771 if (likely(!inode->i_fsnotify_marks)) 1772 return; 1773 context = audit_context(); 1774 p = context->trees; 1775 count = context->tree_count; 1776 rcu_read_lock(); 1777 chunk = audit_tree_lookup(inode); 1778 rcu_read_unlock(); 1779 if (!chunk) 1780 return; 1781 if (likely(put_tree_ref(context, chunk))) 1782 return; 1783 if (unlikely(!grow_tree_refs(context))) { 1784 pr_warn("out of memory, audit has lost a tree reference\n"); 1785 audit_set_auditable(context); 1786 audit_put_chunk(chunk); 1787 unroll_tree_refs(context, p, count); 1788 return; 1789 } 1790 put_tree_ref(context, chunk); 1791 } 1792 1793 static void handle_path(const struct dentry *dentry) 1794 { 1795 struct audit_context *context; 1796 struct audit_tree_refs *p; 1797 const struct dentry *d, *parent; 1798 struct audit_chunk *drop; 1799 unsigned long seq; 1800 int count; 1801 1802 context = audit_context(); 1803 p = context->trees; 1804 count = context->tree_count; 1805 retry: 1806 drop = NULL; 1807 d = dentry; 1808 rcu_read_lock(); 1809 seq = read_seqbegin(&rename_lock); 1810 for(;;) { 1811 struct inode *inode = d_backing_inode(d); 1812 if (inode && unlikely(inode->i_fsnotify_marks)) { 1813 struct audit_chunk *chunk; 1814 chunk = audit_tree_lookup(inode); 1815 if (chunk) { 1816 if (unlikely(!put_tree_ref(context, chunk))) { 1817 drop = chunk; 1818 break; 1819 } 1820 } 1821 } 1822 parent = d->d_parent; 1823 if (parent == d) 1824 break; 1825 d = parent; 1826 } 1827 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1828 rcu_read_unlock(); 1829 if (!drop) { 1830 /* just a race with rename */ 1831 unroll_tree_refs(context, p, count); 1832 goto retry; 1833 } 1834 audit_put_chunk(drop); 1835 if (grow_tree_refs(context)) { 1836 /* OK, got more space */ 1837 unroll_tree_refs(context, p, count); 1838 goto retry; 1839 } 1840 /* too bad */ 1841 pr_warn("out of memory, audit has lost a tree reference\n"); 1842 unroll_tree_refs(context, p, count); 1843 audit_set_auditable(context); 1844 return; 1845 } 1846 rcu_read_unlock(); 1847 } 1848 1849 static struct audit_names *audit_alloc_name(struct audit_context *context, 1850 unsigned char type) 1851 { 1852 struct audit_names *aname; 1853 1854 if (context->name_count < AUDIT_NAMES) { 1855 aname = &context->preallocated_names[context->name_count]; 1856 memset(aname, 0, sizeof(*aname)); 1857 } else { 1858 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1859 if (!aname) 1860 return NULL; 1861 aname->should_free = true; 1862 } 1863 1864 aname->ino = AUDIT_INO_UNSET; 1865 aname->type = type; 1866 list_add_tail(&aname->list, &context->names_list); 1867 1868 context->name_count++; 1869 if (!context->pwd.dentry) 1870 get_fs_pwd(current->fs, &context->pwd); 1871 return aname; 1872 } 1873 1874 /** 1875 * __audit_reusename - fill out filename with info from existing entry 1876 * @uptr: userland ptr to pathname 1877 * 1878 * Search the audit_names list for the current audit context. If there is an 1879 * existing entry with a matching "uptr" then return the filename 1880 * associated with that audit_name. If not, return NULL. 1881 */ 1882 struct filename * 1883 __audit_reusename(const __user char *uptr) 1884 { 1885 struct audit_context *context = audit_context(); 1886 struct audit_names *n; 1887 1888 list_for_each_entry(n, &context->names_list, list) { 1889 if (!n->name) 1890 continue; 1891 if (n->name->uptr == uptr) { 1892 n->name->refcnt++; 1893 return n->name; 1894 } 1895 } 1896 return NULL; 1897 } 1898 1899 /** 1900 * __audit_getname - add a name to the list 1901 * @name: name to add 1902 * 1903 * Add a name to the list of audit names for this context. 1904 * Called from fs/namei.c:getname(). 1905 */ 1906 void __audit_getname(struct filename *name) 1907 { 1908 struct audit_context *context = audit_context(); 1909 struct audit_names *n; 1910 1911 if (!context->in_syscall) 1912 return; 1913 1914 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1915 if (!n) 1916 return; 1917 1918 n->name = name; 1919 n->name_len = AUDIT_NAME_FULL; 1920 name->aname = n; 1921 name->refcnt++; 1922 } 1923 1924 static inline int audit_copy_fcaps(struct audit_names *name, 1925 const struct dentry *dentry) 1926 { 1927 struct cpu_vfs_cap_data caps; 1928 int rc; 1929 1930 if (!dentry) 1931 return 0; 1932 1933 rc = get_vfs_caps_from_disk(dentry, &caps); 1934 if (rc) 1935 return rc; 1936 1937 name->fcap.permitted = caps.permitted; 1938 name->fcap.inheritable = caps.inheritable; 1939 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1940 name->fcap.rootid = caps.rootid; 1941 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1942 VFS_CAP_REVISION_SHIFT; 1943 1944 return 0; 1945 } 1946 1947 /* Copy inode data into an audit_names. */ 1948 static void audit_copy_inode(struct audit_names *name, 1949 const struct dentry *dentry, 1950 struct inode *inode, unsigned int flags) 1951 { 1952 name->ino = inode->i_ino; 1953 name->dev = inode->i_sb->s_dev; 1954 name->mode = inode->i_mode; 1955 name->uid = inode->i_uid; 1956 name->gid = inode->i_gid; 1957 name->rdev = inode->i_rdev; 1958 security_inode_getsecid(inode, &name->osid); 1959 if (flags & AUDIT_INODE_NOEVAL) { 1960 name->fcap_ver = -1; 1961 return; 1962 } 1963 audit_copy_fcaps(name, dentry); 1964 } 1965 1966 /** 1967 * __audit_inode - store the inode and device from a lookup 1968 * @name: name being audited 1969 * @dentry: dentry being audited 1970 * @flags: attributes for this particular entry 1971 */ 1972 void __audit_inode(struct filename *name, const struct dentry *dentry, 1973 unsigned int flags) 1974 { 1975 struct audit_context *context = audit_context(); 1976 struct inode *inode = d_backing_inode(dentry); 1977 struct audit_names *n; 1978 bool parent = flags & AUDIT_INODE_PARENT; 1979 struct audit_entry *e; 1980 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 1981 int i; 1982 1983 if (!context->in_syscall) 1984 return; 1985 1986 rcu_read_lock(); 1987 list_for_each_entry_rcu(e, list, list) { 1988 for (i = 0; i < e->rule.field_count; i++) { 1989 struct audit_field *f = &e->rule.fields[i]; 1990 1991 if (f->type == AUDIT_FSTYPE 1992 && audit_comparator(inode->i_sb->s_magic, 1993 f->op, f->val) 1994 && e->rule.action == AUDIT_NEVER) { 1995 rcu_read_unlock(); 1996 return; 1997 } 1998 } 1999 } 2000 rcu_read_unlock(); 2001 2002 if (!name) 2003 goto out_alloc; 2004 2005 /* 2006 * If we have a pointer to an audit_names entry already, then we can 2007 * just use it directly if the type is correct. 2008 */ 2009 n = name->aname; 2010 if (n) { 2011 if (parent) { 2012 if (n->type == AUDIT_TYPE_PARENT || 2013 n->type == AUDIT_TYPE_UNKNOWN) 2014 goto out; 2015 } else { 2016 if (n->type != AUDIT_TYPE_PARENT) 2017 goto out; 2018 } 2019 } 2020 2021 list_for_each_entry_reverse(n, &context->names_list, list) { 2022 if (n->ino) { 2023 /* valid inode number, use that for the comparison */ 2024 if (n->ino != inode->i_ino || 2025 n->dev != inode->i_sb->s_dev) 2026 continue; 2027 } else if (n->name) { 2028 /* inode number has not been set, check the name */ 2029 if (strcmp(n->name->name, name->name)) 2030 continue; 2031 } else 2032 /* no inode and no name (?!) ... this is odd ... */ 2033 continue; 2034 2035 /* match the correct record type */ 2036 if (parent) { 2037 if (n->type == AUDIT_TYPE_PARENT || 2038 n->type == AUDIT_TYPE_UNKNOWN) 2039 goto out; 2040 } else { 2041 if (n->type != AUDIT_TYPE_PARENT) 2042 goto out; 2043 } 2044 } 2045 2046 out_alloc: 2047 /* unable to find an entry with both a matching name and type */ 2048 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2049 if (!n) 2050 return; 2051 if (name) { 2052 n->name = name; 2053 name->refcnt++; 2054 } 2055 2056 out: 2057 if (parent) { 2058 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2059 n->type = AUDIT_TYPE_PARENT; 2060 if (flags & AUDIT_INODE_HIDDEN) 2061 n->hidden = true; 2062 } else { 2063 n->name_len = AUDIT_NAME_FULL; 2064 n->type = AUDIT_TYPE_NORMAL; 2065 } 2066 handle_path(dentry); 2067 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2068 } 2069 2070 void __audit_file(const struct file *file) 2071 { 2072 __audit_inode(NULL, file->f_path.dentry, 0); 2073 } 2074 2075 /** 2076 * __audit_inode_child - collect inode info for created/removed objects 2077 * @parent: inode of dentry parent 2078 * @dentry: dentry being audited 2079 * @type: AUDIT_TYPE_* value that we're looking for 2080 * 2081 * For syscalls that create or remove filesystem objects, audit_inode 2082 * can only collect information for the filesystem object's parent. 2083 * This call updates the audit context with the child's information. 2084 * Syscalls that create a new filesystem object must be hooked after 2085 * the object is created. Syscalls that remove a filesystem object 2086 * must be hooked prior, in order to capture the target inode during 2087 * unsuccessful attempts. 2088 */ 2089 void __audit_inode_child(struct inode *parent, 2090 const struct dentry *dentry, 2091 const unsigned char type) 2092 { 2093 struct audit_context *context = audit_context(); 2094 struct inode *inode = d_backing_inode(dentry); 2095 const struct qstr *dname = &dentry->d_name; 2096 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2097 struct audit_entry *e; 2098 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2099 int i; 2100 2101 if (!context->in_syscall) 2102 return; 2103 2104 rcu_read_lock(); 2105 list_for_each_entry_rcu(e, list, list) { 2106 for (i = 0; i < e->rule.field_count; i++) { 2107 struct audit_field *f = &e->rule.fields[i]; 2108 2109 if (f->type == AUDIT_FSTYPE 2110 && audit_comparator(parent->i_sb->s_magic, 2111 f->op, f->val) 2112 && e->rule.action == AUDIT_NEVER) { 2113 rcu_read_unlock(); 2114 return; 2115 } 2116 } 2117 } 2118 rcu_read_unlock(); 2119 2120 if (inode) 2121 handle_one(inode); 2122 2123 /* look for a parent entry first */ 2124 list_for_each_entry(n, &context->names_list, list) { 2125 if (!n->name || 2126 (n->type != AUDIT_TYPE_PARENT && 2127 n->type != AUDIT_TYPE_UNKNOWN)) 2128 continue; 2129 2130 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2131 !audit_compare_dname_path(dname, 2132 n->name->name, n->name_len)) { 2133 if (n->type == AUDIT_TYPE_UNKNOWN) 2134 n->type = AUDIT_TYPE_PARENT; 2135 found_parent = n; 2136 break; 2137 } 2138 } 2139 2140 /* is there a matching child entry? */ 2141 list_for_each_entry(n, &context->names_list, list) { 2142 /* can only match entries that have a name */ 2143 if (!n->name || 2144 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2145 continue; 2146 2147 if (!strcmp(dname->name, n->name->name) || 2148 !audit_compare_dname_path(dname, n->name->name, 2149 found_parent ? 2150 found_parent->name_len : 2151 AUDIT_NAME_FULL)) { 2152 if (n->type == AUDIT_TYPE_UNKNOWN) 2153 n->type = type; 2154 found_child = n; 2155 break; 2156 } 2157 } 2158 2159 if (!found_parent) { 2160 /* create a new, "anonymous" parent record */ 2161 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2162 if (!n) 2163 return; 2164 audit_copy_inode(n, NULL, parent, 0); 2165 } 2166 2167 if (!found_child) { 2168 found_child = audit_alloc_name(context, type); 2169 if (!found_child) 2170 return; 2171 2172 /* Re-use the name belonging to the slot for a matching parent 2173 * directory. All names for this context are relinquished in 2174 * audit_free_names() */ 2175 if (found_parent) { 2176 found_child->name = found_parent->name; 2177 found_child->name_len = AUDIT_NAME_FULL; 2178 found_child->name->refcnt++; 2179 } 2180 } 2181 2182 if (inode) 2183 audit_copy_inode(found_child, dentry, inode, 0); 2184 else 2185 found_child->ino = AUDIT_INO_UNSET; 2186 } 2187 EXPORT_SYMBOL_GPL(__audit_inode_child); 2188 2189 /** 2190 * auditsc_get_stamp - get local copies of audit_context values 2191 * @ctx: audit_context for the task 2192 * @t: timespec64 to store time recorded in the audit_context 2193 * @serial: serial value that is recorded in the audit_context 2194 * 2195 * Also sets the context as auditable. 2196 */ 2197 int auditsc_get_stamp(struct audit_context *ctx, 2198 struct timespec64 *t, unsigned int *serial) 2199 { 2200 if (!ctx->in_syscall) 2201 return 0; 2202 if (!ctx->serial) 2203 ctx->serial = audit_serial(); 2204 t->tv_sec = ctx->ctime.tv_sec; 2205 t->tv_nsec = ctx->ctime.tv_nsec; 2206 *serial = ctx->serial; 2207 if (!ctx->prio) { 2208 ctx->prio = 1; 2209 ctx->current_state = AUDIT_RECORD_CONTEXT; 2210 } 2211 return 1; 2212 } 2213 2214 /** 2215 * __audit_mq_open - record audit data for a POSIX MQ open 2216 * @oflag: open flag 2217 * @mode: mode bits 2218 * @attr: queue attributes 2219 * 2220 */ 2221 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2222 { 2223 struct audit_context *context = audit_context(); 2224 2225 if (attr) 2226 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2227 else 2228 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2229 2230 context->mq_open.oflag = oflag; 2231 context->mq_open.mode = mode; 2232 2233 context->type = AUDIT_MQ_OPEN; 2234 } 2235 2236 /** 2237 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2238 * @mqdes: MQ descriptor 2239 * @msg_len: Message length 2240 * @msg_prio: Message priority 2241 * @abs_timeout: Message timeout in absolute time 2242 * 2243 */ 2244 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2245 const struct timespec64 *abs_timeout) 2246 { 2247 struct audit_context *context = audit_context(); 2248 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2249 2250 if (abs_timeout) 2251 memcpy(p, abs_timeout, sizeof(*p)); 2252 else 2253 memset(p, 0, sizeof(*p)); 2254 2255 context->mq_sendrecv.mqdes = mqdes; 2256 context->mq_sendrecv.msg_len = msg_len; 2257 context->mq_sendrecv.msg_prio = msg_prio; 2258 2259 context->type = AUDIT_MQ_SENDRECV; 2260 } 2261 2262 /** 2263 * __audit_mq_notify - record audit data for a POSIX MQ notify 2264 * @mqdes: MQ descriptor 2265 * @notification: Notification event 2266 * 2267 */ 2268 2269 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2270 { 2271 struct audit_context *context = audit_context(); 2272 2273 if (notification) 2274 context->mq_notify.sigev_signo = notification->sigev_signo; 2275 else 2276 context->mq_notify.sigev_signo = 0; 2277 2278 context->mq_notify.mqdes = mqdes; 2279 context->type = AUDIT_MQ_NOTIFY; 2280 } 2281 2282 /** 2283 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2284 * @mqdes: MQ descriptor 2285 * @mqstat: MQ flags 2286 * 2287 */ 2288 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2289 { 2290 struct audit_context *context = audit_context(); 2291 context->mq_getsetattr.mqdes = mqdes; 2292 context->mq_getsetattr.mqstat = *mqstat; 2293 context->type = AUDIT_MQ_GETSETATTR; 2294 } 2295 2296 /** 2297 * __audit_ipc_obj - record audit data for ipc object 2298 * @ipcp: ipc permissions 2299 * 2300 */ 2301 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2302 { 2303 struct audit_context *context = audit_context(); 2304 context->ipc.uid = ipcp->uid; 2305 context->ipc.gid = ipcp->gid; 2306 context->ipc.mode = ipcp->mode; 2307 context->ipc.has_perm = 0; 2308 security_ipc_getsecid(ipcp, &context->ipc.osid); 2309 context->type = AUDIT_IPC; 2310 } 2311 2312 /** 2313 * __audit_ipc_set_perm - record audit data for new ipc permissions 2314 * @qbytes: msgq bytes 2315 * @uid: msgq user id 2316 * @gid: msgq group id 2317 * @mode: msgq mode (permissions) 2318 * 2319 * Called only after audit_ipc_obj(). 2320 */ 2321 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2322 { 2323 struct audit_context *context = audit_context(); 2324 2325 context->ipc.qbytes = qbytes; 2326 context->ipc.perm_uid = uid; 2327 context->ipc.perm_gid = gid; 2328 context->ipc.perm_mode = mode; 2329 context->ipc.has_perm = 1; 2330 } 2331 2332 void __audit_bprm(struct linux_binprm *bprm) 2333 { 2334 struct audit_context *context = audit_context(); 2335 2336 context->type = AUDIT_EXECVE; 2337 context->execve.argc = bprm->argc; 2338 } 2339 2340 2341 /** 2342 * __audit_socketcall - record audit data for sys_socketcall 2343 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2344 * @args: args array 2345 * 2346 */ 2347 int __audit_socketcall(int nargs, unsigned long *args) 2348 { 2349 struct audit_context *context = audit_context(); 2350 2351 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2352 return -EINVAL; 2353 context->type = AUDIT_SOCKETCALL; 2354 context->socketcall.nargs = nargs; 2355 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2356 return 0; 2357 } 2358 2359 /** 2360 * __audit_fd_pair - record audit data for pipe and socketpair 2361 * @fd1: the first file descriptor 2362 * @fd2: the second file descriptor 2363 * 2364 */ 2365 void __audit_fd_pair(int fd1, int fd2) 2366 { 2367 struct audit_context *context = audit_context(); 2368 context->fds[0] = fd1; 2369 context->fds[1] = fd2; 2370 } 2371 2372 /** 2373 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2374 * @len: data length in user space 2375 * @a: data address in kernel space 2376 * 2377 * Returns 0 for success or NULL context or < 0 on error. 2378 */ 2379 int __audit_sockaddr(int len, void *a) 2380 { 2381 struct audit_context *context = audit_context(); 2382 2383 if (!context->sockaddr) { 2384 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2385 if (!p) 2386 return -ENOMEM; 2387 context->sockaddr = p; 2388 } 2389 2390 context->sockaddr_len = len; 2391 memcpy(context->sockaddr, a, len); 2392 return 0; 2393 } 2394 2395 void __audit_ptrace(struct task_struct *t) 2396 { 2397 struct audit_context *context = audit_context(); 2398 2399 context->target_pid = task_tgid_nr(t); 2400 context->target_auid = audit_get_loginuid(t); 2401 context->target_uid = task_uid(t); 2402 context->target_sessionid = audit_get_sessionid(t); 2403 security_task_getsecid(t, &context->target_sid); 2404 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2405 } 2406 2407 /** 2408 * audit_signal_info_syscall - record signal info for syscalls 2409 * @t: task being signaled 2410 * 2411 * If the audit subsystem is being terminated, record the task (pid) 2412 * and uid that is doing that. 2413 */ 2414 int audit_signal_info_syscall(struct task_struct *t) 2415 { 2416 struct audit_aux_data_pids *axp; 2417 struct audit_context *ctx = audit_context(); 2418 kuid_t t_uid = task_uid(t); 2419 2420 if (!audit_signals || audit_dummy_context()) 2421 return 0; 2422 2423 /* optimize the common case by putting first signal recipient directly 2424 * in audit_context */ 2425 if (!ctx->target_pid) { 2426 ctx->target_pid = task_tgid_nr(t); 2427 ctx->target_auid = audit_get_loginuid(t); 2428 ctx->target_uid = t_uid; 2429 ctx->target_sessionid = audit_get_sessionid(t); 2430 security_task_getsecid(t, &ctx->target_sid); 2431 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2432 return 0; 2433 } 2434 2435 axp = (void *)ctx->aux_pids; 2436 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2437 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2438 if (!axp) 2439 return -ENOMEM; 2440 2441 axp->d.type = AUDIT_OBJ_PID; 2442 axp->d.next = ctx->aux_pids; 2443 ctx->aux_pids = (void *)axp; 2444 } 2445 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2446 2447 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2448 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2449 axp->target_uid[axp->pid_count] = t_uid; 2450 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2451 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2452 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2453 axp->pid_count++; 2454 2455 return 0; 2456 } 2457 2458 /** 2459 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2460 * @bprm: pointer to the bprm being processed 2461 * @new: the proposed new credentials 2462 * @old: the old credentials 2463 * 2464 * Simply check if the proc already has the caps given by the file and if not 2465 * store the priv escalation info for later auditing at the end of the syscall 2466 * 2467 * -Eric 2468 */ 2469 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2470 const struct cred *new, const struct cred *old) 2471 { 2472 struct audit_aux_data_bprm_fcaps *ax; 2473 struct audit_context *context = audit_context(); 2474 struct cpu_vfs_cap_data vcaps; 2475 2476 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2477 if (!ax) 2478 return -ENOMEM; 2479 2480 ax->d.type = AUDIT_BPRM_FCAPS; 2481 ax->d.next = context->aux; 2482 context->aux = (void *)ax; 2483 2484 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2485 2486 ax->fcap.permitted = vcaps.permitted; 2487 ax->fcap.inheritable = vcaps.inheritable; 2488 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2489 ax->fcap.rootid = vcaps.rootid; 2490 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2491 2492 ax->old_pcap.permitted = old->cap_permitted; 2493 ax->old_pcap.inheritable = old->cap_inheritable; 2494 ax->old_pcap.effective = old->cap_effective; 2495 ax->old_pcap.ambient = old->cap_ambient; 2496 2497 ax->new_pcap.permitted = new->cap_permitted; 2498 ax->new_pcap.inheritable = new->cap_inheritable; 2499 ax->new_pcap.effective = new->cap_effective; 2500 ax->new_pcap.ambient = new->cap_ambient; 2501 return 0; 2502 } 2503 2504 /** 2505 * __audit_log_capset - store information about the arguments to the capset syscall 2506 * @new: the new credentials 2507 * @old: the old (current) credentials 2508 * 2509 * Record the arguments userspace sent to sys_capset for later printing by the 2510 * audit system if applicable 2511 */ 2512 void __audit_log_capset(const struct cred *new, const struct cred *old) 2513 { 2514 struct audit_context *context = audit_context(); 2515 context->capset.pid = task_tgid_nr(current); 2516 context->capset.cap.effective = new->cap_effective; 2517 context->capset.cap.inheritable = new->cap_effective; 2518 context->capset.cap.permitted = new->cap_permitted; 2519 context->capset.cap.ambient = new->cap_ambient; 2520 context->type = AUDIT_CAPSET; 2521 } 2522 2523 void __audit_mmap_fd(int fd, int flags) 2524 { 2525 struct audit_context *context = audit_context(); 2526 context->mmap.fd = fd; 2527 context->mmap.flags = flags; 2528 context->type = AUDIT_MMAP; 2529 } 2530 2531 void __audit_log_kern_module(char *name) 2532 { 2533 struct audit_context *context = audit_context(); 2534 2535 context->module.name = kstrdup(name, GFP_KERNEL); 2536 if (!context->module.name) 2537 audit_log_lost("out of memory in __audit_log_kern_module"); 2538 context->type = AUDIT_KERN_MODULE; 2539 } 2540 2541 void __audit_fanotify(unsigned int response) 2542 { 2543 audit_log(audit_context(), GFP_KERNEL, 2544 AUDIT_FANOTIFY, "resp=%u", response); 2545 } 2546 2547 void __audit_tk_injoffset(struct timespec64 offset) 2548 { 2549 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET, 2550 "sec=%lli nsec=%li", 2551 (long long)offset.tv_sec, offset.tv_nsec); 2552 } 2553 2554 static void audit_log_ntp_val(const struct audit_ntp_data *ad, 2555 const char *op, enum audit_ntp_type type) 2556 { 2557 const struct audit_ntp_val *val = &ad->vals[type]; 2558 2559 if (val->newval == val->oldval) 2560 return; 2561 2562 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL, 2563 "op=%s old=%lli new=%lli", op, val->oldval, val->newval); 2564 } 2565 2566 void __audit_ntp_log(const struct audit_ntp_data *ad) 2567 { 2568 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET); 2569 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ); 2570 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS); 2571 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI); 2572 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK); 2573 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST); 2574 } 2575 2576 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2577 enum audit_nfcfgop op, gfp_t gfp) 2578 { 2579 struct audit_buffer *ab; 2580 char comm[sizeof(current->comm)]; 2581 2582 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2583 if (!ab) 2584 return; 2585 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2586 name, af, nentries, audit_nfcfgs[op].s); 2587 2588 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2589 audit_log_task_context(ab); /* subj= */ 2590 audit_log_format(ab, " comm="); 2591 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2592 audit_log_end(ab); 2593 } 2594 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2595 2596 static void audit_log_task(struct audit_buffer *ab) 2597 { 2598 kuid_t auid, uid; 2599 kgid_t gid; 2600 unsigned int sessionid; 2601 char comm[sizeof(current->comm)]; 2602 2603 auid = audit_get_loginuid(current); 2604 sessionid = audit_get_sessionid(current); 2605 current_uid_gid(&uid, &gid); 2606 2607 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2608 from_kuid(&init_user_ns, auid), 2609 from_kuid(&init_user_ns, uid), 2610 from_kgid(&init_user_ns, gid), 2611 sessionid); 2612 audit_log_task_context(ab); 2613 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2614 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2615 audit_log_d_path_exe(ab, current->mm); 2616 } 2617 2618 /** 2619 * audit_core_dumps - record information about processes that end abnormally 2620 * @signr: signal value 2621 * 2622 * If a process ends with a core dump, something fishy is going on and we 2623 * should record the event for investigation. 2624 */ 2625 void audit_core_dumps(long signr) 2626 { 2627 struct audit_buffer *ab; 2628 2629 if (!audit_enabled) 2630 return; 2631 2632 if (signr == SIGQUIT) /* don't care for those */ 2633 return; 2634 2635 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2636 if (unlikely(!ab)) 2637 return; 2638 audit_log_task(ab); 2639 audit_log_format(ab, " sig=%ld res=1", signr); 2640 audit_log_end(ab); 2641 } 2642 2643 /** 2644 * audit_seccomp - record information about a seccomp action 2645 * @syscall: syscall number 2646 * @signr: signal value 2647 * @code: the seccomp action 2648 * 2649 * Record the information associated with a seccomp action. Event filtering for 2650 * seccomp actions that are not to be logged is done in seccomp_log(). 2651 * Therefore, this function forces auditing independent of the audit_enabled 2652 * and dummy context state because seccomp actions should be logged even when 2653 * audit is not in use. 2654 */ 2655 void audit_seccomp(unsigned long syscall, long signr, int code) 2656 { 2657 struct audit_buffer *ab; 2658 2659 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2660 if (unlikely(!ab)) 2661 return; 2662 audit_log_task(ab); 2663 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2664 signr, syscall_get_arch(current), syscall, 2665 in_compat_syscall(), KSTK_EIP(current), code); 2666 audit_log_end(ab); 2667 } 2668 2669 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2670 int res) 2671 { 2672 struct audit_buffer *ab; 2673 2674 if (!audit_enabled) 2675 return; 2676 2677 ab = audit_log_start(audit_context(), GFP_KERNEL, 2678 AUDIT_CONFIG_CHANGE); 2679 if (unlikely(!ab)) 2680 return; 2681 2682 audit_log_format(ab, 2683 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2684 names, old_names, res); 2685 audit_log_end(ab); 2686 } 2687 2688 struct list_head *audit_killed_trees(void) 2689 { 2690 struct audit_context *ctx = audit_context(); 2691 if (likely(!ctx || !ctx->in_syscall)) 2692 return NULL; 2693 return &ctx->killed_trees; 2694 } 2695