1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/tty.h> 67 #include <linux/binfmts.h> 68 #include <linux/highmem.h> 69 #include <linux/syscalls.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 75 #include "audit.h" 76 77 /* flags stating the success for a syscall */ 78 #define AUDITSC_INVALID 0 79 #define AUDITSC_SUCCESS 1 80 #define AUDITSC_FAILURE 2 81 82 /* no execve audit message should be longer than this (userspace limits) */ 83 #define MAX_EXECVE_AUDIT_LEN 7500 84 85 /* max length to print of cmdline/proctitle value during audit */ 86 #define MAX_PROCTITLE_AUDIT_LEN 128 87 88 /* number of audit rules */ 89 int audit_n_rules; 90 91 /* determines whether we collect data for signals sent */ 92 int audit_signals; 93 94 struct audit_aux_data { 95 struct audit_aux_data *next; 96 int type; 97 }; 98 99 #define AUDIT_AUX_IPCPERM 0 100 101 /* Number of target pids per aux struct. */ 102 #define AUDIT_AUX_PIDS 16 103 104 struct audit_aux_data_pids { 105 struct audit_aux_data d; 106 pid_t target_pid[AUDIT_AUX_PIDS]; 107 kuid_t target_auid[AUDIT_AUX_PIDS]; 108 kuid_t target_uid[AUDIT_AUX_PIDS]; 109 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 110 u32 target_sid[AUDIT_AUX_PIDS]; 111 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 112 int pid_count; 113 }; 114 115 struct audit_aux_data_bprm_fcaps { 116 struct audit_aux_data d; 117 struct audit_cap_data fcap; 118 unsigned int fcap_ver; 119 struct audit_cap_data old_pcap; 120 struct audit_cap_data new_pcap; 121 }; 122 123 struct audit_tree_refs { 124 struct audit_tree_refs *next; 125 struct audit_chunk *c[31]; 126 }; 127 128 static inline int open_arg(int flags, int mask) 129 { 130 int n = ACC_MODE(flags); 131 if (flags & (O_TRUNC | O_CREAT)) 132 n |= AUDIT_PERM_WRITE; 133 return n & mask; 134 } 135 136 static int audit_match_perm(struct audit_context *ctx, int mask) 137 { 138 unsigned n; 139 if (unlikely(!ctx)) 140 return 0; 141 n = ctx->major; 142 143 switch (audit_classify_syscall(ctx->arch, n)) { 144 case 0: /* native */ 145 if ((mask & AUDIT_PERM_WRITE) && 146 audit_match_class(AUDIT_CLASS_WRITE, n)) 147 return 1; 148 if ((mask & AUDIT_PERM_READ) && 149 audit_match_class(AUDIT_CLASS_READ, n)) 150 return 1; 151 if ((mask & AUDIT_PERM_ATTR) && 152 audit_match_class(AUDIT_CLASS_CHATTR, n)) 153 return 1; 154 return 0; 155 case 1: /* 32bit on biarch */ 156 if ((mask & AUDIT_PERM_WRITE) && 157 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 158 return 1; 159 if ((mask & AUDIT_PERM_READ) && 160 audit_match_class(AUDIT_CLASS_READ_32, n)) 161 return 1; 162 if ((mask & AUDIT_PERM_ATTR) && 163 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 164 return 1; 165 return 0; 166 case 2: /* open */ 167 return mask & ACC_MODE(ctx->argv[1]); 168 case 3: /* openat */ 169 return mask & ACC_MODE(ctx->argv[2]); 170 case 4: /* socketcall */ 171 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 172 case 5: /* execve */ 173 return mask & AUDIT_PERM_EXEC; 174 default: 175 return 0; 176 } 177 } 178 179 static int audit_match_filetype(struct audit_context *ctx, int val) 180 { 181 struct audit_names *n; 182 umode_t mode = (umode_t)val; 183 184 if (unlikely(!ctx)) 185 return 0; 186 187 list_for_each_entry(n, &ctx->names_list, list) { 188 if ((n->ino != -1) && 189 ((n->mode & S_IFMT) == mode)) 190 return 1; 191 } 192 193 return 0; 194 } 195 196 /* 197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 198 * ->first_trees points to its beginning, ->trees - to the current end of data. 199 * ->tree_count is the number of free entries in array pointed to by ->trees. 200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 202 * it's going to remain 1-element for almost any setup) until we free context itself. 203 * References in it _are_ dropped - at the same time we free/drop aux stuff. 204 */ 205 206 #ifdef CONFIG_AUDIT_TREE 207 static void audit_set_auditable(struct audit_context *ctx) 208 { 209 if (!ctx->prio) { 210 ctx->prio = 1; 211 ctx->current_state = AUDIT_RECORD_CONTEXT; 212 } 213 } 214 215 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 216 { 217 struct audit_tree_refs *p = ctx->trees; 218 int left = ctx->tree_count; 219 if (likely(left)) { 220 p->c[--left] = chunk; 221 ctx->tree_count = left; 222 return 1; 223 } 224 if (!p) 225 return 0; 226 p = p->next; 227 if (p) { 228 p->c[30] = chunk; 229 ctx->trees = p; 230 ctx->tree_count = 30; 231 return 1; 232 } 233 return 0; 234 } 235 236 static int grow_tree_refs(struct audit_context *ctx) 237 { 238 struct audit_tree_refs *p = ctx->trees; 239 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 240 if (!ctx->trees) { 241 ctx->trees = p; 242 return 0; 243 } 244 if (p) 245 p->next = ctx->trees; 246 else 247 ctx->first_trees = ctx->trees; 248 ctx->tree_count = 31; 249 return 1; 250 } 251 #endif 252 253 static void unroll_tree_refs(struct audit_context *ctx, 254 struct audit_tree_refs *p, int count) 255 { 256 #ifdef CONFIG_AUDIT_TREE 257 struct audit_tree_refs *q; 258 int n; 259 if (!p) { 260 /* we started with empty chain */ 261 p = ctx->first_trees; 262 count = 31; 263 /* if the very first allocation has failed, nothing to do */ 264 if (!p) 265 return; 266 } 267 n = count; 268 for (q = p; q != ctx->trees; q = q->next, n = 31) { 269 while (n--) { 270 audit_put_chunk(q->c[n]); 271 q->c[n] = NULL; 272 } 273 } 274 while (n-- > ctx->tree_count) { 275 audit_put_chunk(q->c[n]); 276 q->c[n] = NULL; 277 } 278 ctx->trees = p; 279 ctx->tree_count = count; 280 #endif 281 } 282 283 static void free_tree_refs(struct audit_context *ctx) 284 { 285 struct audit_tree_refs *p, *q; 286 for (p = ctx->first_trees; p; p = q) { 287 q = p->next; 288 kfree(p); 289 } 290 } 291 292 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 293 { 294 #ifdef CONFIG_AUDIT_TREE 295 struct audit_tree_refs *p; 296 int n; 297 if (!tree) 298 return 0; 299 /* full ones */ 300 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 301 for (n = 0; n < 31; n++) 302 if (audit_tree_match(p->c[n], tree)) 303 return 1; 304 } 305 /* partial */ 306 if (p) { 307 for (n = ctx->tree_count; n < 31; n++) 308 if (audit_tree_match(p->c[n], tree)) 309 return 1; 310 } 311 #endif 312 return 0; 313 } 314 315 static int audit_compare_uid(kuid_t uid, 316 struct audit_names *name, 317 struct audit_field *f, 318 struct audit_context *ctx) 319 { 320 struct audit_names *n; 321 int rc; 322 323 if (name) { 324 rc = audit_uid_comparator(uid, f->op, name->uid); 325 if (rc) 326 return rc; 327 } 328 329 if (ctx) { 330 list_for_each_entry(n, &ctx->names_list, list) { 331 rc = audit_uid_comparator(uid, f->op, n->uid); 332 if (rc) 333 return rc; 334 } 335 } 336 return 0; 337 } 338 339 static int audit_compare_gid(kgid_t gid, 340 struct audit_names *name, 341 struct audit_field *f, 342 struct audit_context *ctx) 343 { 344 struct audit_names *n; 345 int rc; 346 347 if (name) { 348 rc = audit_gid_comparator(gid, f->op, name->gid); 349 if (rc) 350 return rc; 351 } 352 353 if (ctx) { 354 list_for_each_entry(n, &ctx->names_list, list) { 355 rc = audit_gid_comparator(gid, f->op, n->gid); 356 if (rc) 357 return rc; 358 } 359 } 360 return 0; 361 } 362 363 static int audit_field_compare(struct task_struct *tsk, 364 const struct cred *cred, 365 struct audit_field *f, 366 struct audit_context *ctx, 367 struct audit_names *name) 368 { 369 switch (f->val) { 370 /* process to file object comparisons */ 371 case AUDIT_COMPARE_UID_TO_OBJ_UID: 372 return audit_compare_uid(cred->uid, name, f, ctx); 373 case AUDIT_COMPARE_GID_TO_OBJ_GID: 374 return audit_compare_gid(cred->gid, name, f, ctx); 375 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 376 return audit_compare_uid(cred->euid, name, f, ctx); 377 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 378 return audit_compare_gid(cred->egid, name, f, ctx); 379 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 380 return audit_compare_uid(tsk->loginuid, name, f, ctx); 381 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 382 return audit_compare_uid(cred->suid, name, f, ctx); 383 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 384 return audit_compare_gid(cred->sgid, name, f, ctx); 385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 386 return audit_compare_uid(cred->fsuid, name, f, ctx); 387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 388 return audit_compare_gid(cred->fsgid, name, f, ctx); 389 /* uid comparisons */ 390 case AUDIT_COMPARE_UID_TO_AUID: 391 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 392 case AUDIT_COMPARE_UID_TO_EUID: 393 return audit_uid_comparator(cred->uid, f->op, cred->euid); 394 case AUDIT_COMPARE_UID_TO_SUID: 395 return audit_uid_comparator(cred->uid, f->op, cred->suid); 396 case AUDIT_COMPARE_UID_TO_FSUID: 397 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 398 /* auid comparisons */ 399 case AUDIT_COMPARE_AUID_TO_EUID: 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 401 case AUDIT_COMPARE_AUID_TO_SUID: 402 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 403 case AUDIT_COMPARE_AUID_TO_FSUID: 404 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 405 /* euid comparisons */ 406 case AUDIT_COMPARE_EUID_TO_SUID: 407 return audit_uid_comparator(cred->euid, f->op, cred->suid); 408 case AUDIT_COMPARE_EUID_TO_FSUID: 409 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 410 /* suid comparisons */ 411 case AUDIT_COMPARE_SUID_TO_FSUID: 412 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 413 /* gid comparisons */ 414 case AUDIT_COMPARE_GID_TO_EGID: 415 return audit_gid_comparator(cred->gid, f->op, cred->egid); 416 case AUDIT_COMPARE_GID_TO_SGID: 417 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 418 case AUDIT_COMPARE_GID_TO_FSGID: 419 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 420 /* egid comparisons */ 421 case AUDIT_COMPARE_EGID_TO_SGID: 422 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 423 case AUDIT_COMPARE_EGID_TO_FSGID: 424 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 425 /* sgid comparison */ 426 case AUDIT_COMPARE_SGID_TO_FSGID: 427 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 428 default: 429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 430 return 0; 431 } 432 return 0; 433 } 434 435 /* Determine if any context name data matches a rule's watch data */ 436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 437 * otherwise. 438 * 439 * If task_creation is true, this is an explicit indication that we are 440 * filtering a task rule at task creation time. This and tsk == current are 441 * the only situations where tsk->cred may be accessed without an rcu read lock. 442 */ 443 static int audit_filter_rules(struct task_struct *tsk, 444 struct audit_krule *rule, 445 struct audit_context *ctx, 446 struct audit_names *name, 447 enum audit_state *state, 448 bool task_creation) 449 { 450 const struct cred *cred; 451 int i, need_sid = 1; 452 u32 sid; 453 454 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 455 456 for (i = 0; i < rule->field_count; i++) { 457 struct audit_field *f = &rule->fields[i]; 458 struct audit_names *n; 459 int result = 0; 460 pid_t pid; 461 462 switch (f->type) { 463 case AUDIT_PID: 464 pid = task_pid_nr(tsk); 465 result = audit_comparator(pid, f->op, f->val); 466 break; 467 case AUDIT_PPID: 468 if (ctx) { 469 if (!ctx->ppid) 470 ctx->ppid = task_ppid_nr(tsk); 471 result = audit_comparator(ctx->ppid, f->op, f->val); 472 } 473 break; 474 case AUDIT_UID: 475 result = audit_uid_comparator(cred->uid, f->op, f->uid); 476 break; 477 case AUDIT_EUID: 478 result = audit_uid_comparator(cred->euid, f->op, f->uid); 479 break; 480 case AUDIT_SUID: 481 result = audit_uid_comparator(cred->suid, f->op, f->uid); 482 break; 483 case AUDIT_FSUID: 484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 485 break; 486 case AUDIT_GID: 487 result = audit_gid_comparator(cred->gid, f->op, f->gid); 488 if (f->op == Audit_equal) { 489 if (!result) 490 result = in_group_p(f->gid); 491 } else if (f->op == Audit_not_equal) { 492 if (result) 493 result = !in_group_p(f->gid); 494 } 495 break; 496 case AUDIT_EGID: 497 result = audit_gid_comparator(cred->egid, f->op, f->gid); 498 if (f->op == Audit_equal) { 499 if (!result) 500 result = in_egroup_p(f->gid); 501 } else if (f->op == Audit_not_equal) { 502 if (result) 503 result = !in_egroup_p(f->gid); 504 } 505 break; 506 case AUDIT_SGID: 507 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 508 break; 509 case AUDIT_FSGID: 510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 511 break; 512 case AUDIT_PERS: 513 result = audit_comparator(tsk->personality, f->op, f->val); 514 break; 515 case AUDIT_ARCH: 516 if (ctx) 517 result = audit_comparator(ctx->arch, f->op, f->val); 518 break; 519 520 case AUDIT_EXIT: 521 if (ctx && ctx->return_valid) 522 result = audit_comparator(ctx->return_code, f->op, f->val); 523 break; 524 case AUDIT_SUCCESS: 525 if (ctx && ctx->return_valid) { 526 if (f->val) 527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 528 else 529 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 530 } 531 break; 532 case AUDIT_DEVMAJOR: 533 if (name) { 534 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 535 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 536 ++result; 537 } else if (ctx) { 538 list_for_each_entry(n, &ctx->names_list, list) { 539 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 540 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 541 ++result; 542 break; 543 } 544 } 545 } 546 break; 547 case AUDIT_DEVMINOR: 548 if (name) { 549 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 550 audit_comparator(MINOR(name->rdev), f->op, f->val)) 551 ++result; 552 } else if (ctx) { 553 list_for_each_entry(n, &ctx->names_list, list) { 554 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 555 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 556 ++result; 557 break; 558 } 559 } 560 } 561 break; 562 case AUDIT_INODE: 563 if (name) 564 result = audit_comparator(name->ino, f->op, f->val); 565 else if (ctx) { 566 list_for_each_entry(n, &ctx->names_list, list) { 567 if (audit_comparator(n->ino, f->op, f->val)) { 568 ++result; 569 break; 570 } 571 } 572 } 573 break; 574 case AUDIT_OBJ_UID: 575 if (name) { 576 result = audit_uid_comparator(name->uid, f->op, f->uid); 577 } else if (ctx) { 578 list_for_each_entry(n, &ctx->names_list, list) { 579 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 580 ++result; 581 break; 582 } 583 } 584 } 585 break; 586 case AUDIT_OBJ_GID: 587 if (name) { 588 result = audit_gid_comparator(name->gid, f->op, f->gid); 589 } else if (ctx) { 590 list_for_each_entry(n, &ctx->names_list, list) { 591 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 592 ++result; 593 break; 594 } 595 } 596 } 597 break; 598 case AUDIT_WATCH: 599 if (name) 600 result = audit_watch_compare(rule->watch, name->ino, name->dev); 601 break; 602 case AUDIT_DIR: 603 if (ctx) 604 result = match_tree_refs(ctx, rule->tree); 605 break; 606 case AUDIT_LOGINUID: 607 result = 0; 608 if (ctx) 609 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 610 break; 611 case AUDIT_LOGINUID_SET: 612 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 613 break; 614 case AUDIT_SUBJ_USER: 615 case AUDIT_SUBJ_ROLE: 616 case AUDIT_SUBJ_TYPE: 617 case AUDIT_SUBJ_SEN: 618 case AUDIT_SUBJ_CLR: 619 /* NOTE: this may return negative values indicating 620 a temporary error. We simply treat this as a 621 match for now to avoid losing information that 622 may be wanted. An error message will also be 623 logged upon error */ 624 if (f->lsm_rule) { 625 if (need_sid) { 626 security_task_getsecid(tsk, &sid); 627 need_sid = 0; 628 } 629 result = security_audit_rule_match(sid, f->type, 630 f->op, 631 f->lsm_rule, 632 ctx); 633 } 634 break; 635 case AUDIT_OBJ_USER: 636 case AUDIT_OBJ_ROLE: 637 case AUDIT_OBJ_TYPE: 638 case AUDIT_OBJ_LEV_LOW: 639 case AUDIT_OBJ_LEV_HIGH: 640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 641 also applies here */ 642 if (f->lsm_rule) { 643 /* Find files that match */ 644 if (name) { 645 result = security_audit_rule_match( 646 name->osid, f->type, f->op, 647 f->lsm_rule, ctx); 648 } else if (ctx) { 649 list_for_each_entry(n, &ctx->names_list, list) { 650 if (security_audit_rule_match(n->osid, f->type, 651 f->op, f->lsm_rule, 652 ctx)) { 653 ++result; 654 break; 655 } 656 } 657 } 658 /* Find ipc objects that match */ 659 if (!ctx || ctx->type != AUDIT_IPC) 660 break; 661 if (security_audit_rule_match(ctx->ipc.osid, 662 f->type, f->op, 663 f->lsm_rule, ctx)) 664 ++result; 665 } 666 break; 667 case AUDIT_ARG0: 668 case AUDIT_ARG1: 669 case AUDIT_ARG2: 670 case AUDIT_ARG3: 671 if (ctx) 672 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 673 break; 674 case AUDIT_FILTERKEY: 675 /* ignore this field for filtering */ 676 result = 1; 677 break; 678 case AUDIT_PERM: 679 result = audit_match_perm(ctx, f->val); 680 break; 681 case AUDIT_FILETYPE: 682 result = audit_match_filetype(ctx, f->val); 683 break; 684 case AUDIT_FIELD_COMPARE: 685 result = audit_field_compare(tsk, cred, f, ctx, name); 686 break; 687 } 688 if (!result) 689 return 0; 690 } 691 692 if (ctx) { 693 if (rule->prio <= ctx->prio) 694 return 0; 695 if (rule->filterkey) { 696 kfree(ctx->filterkey); 697 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 698 } 699 ctx->prio = rule->prio; 700 } 701 switch (rule->action) { 702 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 703 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 704 } 705 return 1; 706 } 707 708 /* At process creation time, we can determine if system-call auditing is 709 * completely disabled for this task. Since we only have the task 710 * structure at this point, we can only check uid and gid. 711 */ 712 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 713 { 714 struct audit_entry *e; 715 enum audit_state state; 716 717 rcu_read_lock(); 718 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 719 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 720 &state, true)) { 721 if (state == AUDIT_RECORD_CONTEXT) 722 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 723 rcu_read_unlock(); 724 return state; 725 } 726 } 727 rcu_read_unlock(); 728 return AUDIT_BUILD_CONTEXT; 729 } 730 731 /* At syscall entry and exit time, this filter is called if the 732 * audit_state is not low enough that auditing cannot take place, but is 733 * also not high enough that we already know we have to write an audit 734 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 735 */ 736 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 737 struct audit_context *ctx, 738 struct list_head *list) 739 { 740 struct audit_entry *e; 741 enum audit_state state; 742 743 if (audit_pid && tsk->tgid == audit_pid) 744 return AUDIT_DISABLED; 745 746 rcu_read_lock(); 747 if (!list_empty(list)) { 748 int word = AUDIT_WORD(ctx->major); 749 int bit = AUDIT_BIT(ctx->major); 750 751 list_for_each_entry_rcu(e, list, list) { 752 if ((e->rule.mask[word] & bit) == bit && 753 audit_filter_rules(tsk, &e->rule, ctx, NULL, 754 &state, false)) { 755 rcu_read_unlock(); 756 ctx->current_state = state; 757 return state; 758 } 759 } 760 } 761 rcu_read_unlock(); 762 return AUDIT_BUILD_CONTEXT; 763 } 764 765 /* 766 * Given an audit_name check the inode hash table to see if they match. 767 * Called holding the rcu read lock to protect the use of audit_inode_hash 768 */ 769 static int audit_filter_inode_name(struct task_struct *tsk, 770 struct audit_names *n, 771 struct audit_context *ctx) { 772 int word, bit; 773 int h = audit_hash_ino((u32)n->ino); 774 struct list_head *list = &audit_inode_hash[h]; 775 struct audit_entry *e; 776 enum audit_state state; 777 778 word = AUDIT_WORD(ctx->major); 779 bit = AUDIT_BIT(ctx->major); 780 781 if (list_empty(list)) 782 return 0; 783 784 list_for_each_entry_rcu(e, list, list) { 785 if ((e->rule.mask[word] & bit) == bit && 786 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 787 ctx->current_state = state; 788 return 1; 789 } 790 } 791 792 return 0; 793 } 794 795 /* At syscall exit time, this filter is called if any audit_names have been 796 * collected during syscall processing. We only check rules in sublists at hash 797 * buckets applicable to the inode numbers in audit_names. 798 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 799 */ 800 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 801 { 802 struct audit_names *n; 803 804 if (audit_pid && tsk->tgid == audit_pid) 805 return; 806 807 rcu_read_lock(); 808 809 list_for_each_entry(n, &ctx->names_list, list) { 810 if (audit_filter_inode_name(tsk, n, ctx)) 811 break; 812 } 813 rcu_read_unlock(); 814 } 815 816 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 817 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 818 int return_valid, 819 long return_code) 820 { 821 struct audit_context *context = tsk->audit_context; 822 823 if (!context) 824 return NULL; 825 context->return_valid = return_valid; 826 827 /* 828 * we need to fix up the return code in the audit logs if the actual 829 * return codes are later going to be fixed up by the arch specific 830 * signal handlers 831 * 832 * This is actually a test for: 833 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 834 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 835 * 836 * but is faster than a bunch of || 837 */ 838 if (unlikely(return_code <= -ERESTARTSYS) && 839 (return_code >= -ERESTART_RESTARTBLOCK) && 840 (return_code != -ENOIOCTLCMD)) 841 context->return_code = -EINTR; 842 else 843 context->return_code = return_code; 844 845 if (context->in_syscall && !context->dummy) { 846 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 847 audit_filter_inodes(tsk, context); 848 } 849 850 tsk->audit_context = NULL; 851 return context; 852 } 853 854 static inline void audit_proctitle_free(struct audit_context *context) 855 { 856 kfree(context->proctitle.value); 857 context->proctitle.value = NULL; 858 context->proctitle.len = 0; 859 } 860 861 static inline void audit_free_names(struct audit_context *context) 862 { 863 struct audit_names *n, *next; 864 865 #if AUDIT_DEBUG == 2 866 if (context->put_count + context->ino_count != context->name_count) { 867 int i = 0; 868 869 pr_err("%s:%d(:%d): major=%d in_syscall=%d" 870 " name_count=%d put_count=%d ino_count=%d" 871 " [NOT freeing]\n", __FILE__, __LINE__, 872 context->serial, context->major, context->in_syscall, 873 context->name_count, context->put_count, 874 context->ino_count); 875 list_for_each_entry(n, &context->names_list, list) { 876 pr_err("names[%d] = %p = %s\n", i++, n->name, 877 n->name->name ?: "(null)"); 878 } 879 dump_stack(); 880 return; 881 } 882 #endif 883 #if AUDIT_DEBUG 884 context->put_count = 0; 885 context->ino_count = 0; 886 #endif 887 888 list_for_each_entry_safe(n, next, &context->names_list, list) { 889 list_del(&n->list); 890 if (n->name && n->name_put) 891 final_putname(n->name); 892 if (n->should_free) 893 kfree(n); 894 } 895 context->name_count = 0; 896 path_put(&context->pwd); 897 context->pwd.dentry = NULL; 898 context->pwd.mnt = NULL; 899 } 900 901 static inline void audit_free_aux(struct audit_context *context) 902 { 903 struct audit_aux_data *aux; 904 905 while ((aux = context->aux)) { 906 context->aux = aux->next; 907 kfree(aux); 908 } 909 while ((aux = context->aux_pids)) { 910 context->aux_pids = aux->next; 911 kfree(aux); 912 } 913 } 914 915 static inline struct audit_context *audit_alloc_context(enum audit_state state) 916 { 917 struct audit_context *context; 918 919 context = kzalloc(sizeof(*context), GFP_KERNEL); 920 if (!context) 921 return NULL; 922 context->state = state; 923 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 924 INIT_LIST_HEAD(&context->killed_trees); 925 INIT_LIST_HEAD(&context->names_list); 926 return context; 927 } 928 929 /** 930 * audit_alloc - allocate an audit context block for a task 931 * @tsk: task 932 * 933 * Filter on the task information and allocate a per-task audit context 934 * if necessary. Doing so turns on system call auditing for the 935 * specified task. This is called from copy_process, so no lock is 936 * needed. 937 */ 938 int audit_alloc(struct task_struct *tsk) 939 { 940 struct audit_context *context; 941 enum audit_state state; 942 char *key = NULL; 943 944 if (likely(!audit_ever_enabled)) 945 return 0; /* Return if not auditing. */ 946 947 state = audit_filter_task(tsk, &key); 948 if (state == AUDIT_DISABLED) { 949 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 950 return 0; 951 } 952 953 if (!(context = audit_alloc_context(state))) { 954 kfree(key); 955 audit_log_lost("out of memory in audit_alloc"); 956 return -ENOMEM; 957 } 958 context->filterkey = key; 959 960 tsk->audit_context = context; 961 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 962 return 0; 963 } 964 965 static inline void audit_free_context(struct audit_context *context) 966 { 967 audit_free_names(context); 968 unroll_tree_refs(context, NULL, 0); 969 free_tree_refs(context); 970 audit_free_aux(context); 971 kfree(context->filterkey); 972 kfree(context->sockaddr); 973 audit_proctitle_free(context); 974 kfree(context); 975 } 976 977 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 978 kuid_t auid, kuid_t uid, unsigned int sessionid, 979 u32 sid, char *comm) 980 { 981 struct audit_buffer *ab; 982 char *ctx = NULL; 983 u32 len; 984 int rc = 0; 985 986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 987 if (!ab) 988 return rc; 989 990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 991 from_kuid(&init_user_ns, auid), 992 from_kuid(&init_user_ns, uid), sessionid); 993 if (sid) { 994 if (security_secid_to_secctx(sid, &ctx, &len)) { 995 audit_log_format(ab, " obj=(none)"); 996 rc = 1; 997 } else { 998 audit_log_format(ab, " obj=%s", ctx); 999 security_release_secctx(ctx, len); 1000 } 1001 } 1002 audit_log_format(ab, " ocomm="); 1003 audit_log_untrustedstring(ab, comm); 1004 audit_log_end(ab); 1005 1006 return rc; 1007 } 1008 1009 /* 1010 * to_send and len_sent accounting are very loose estimates. We aren't 1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1012 * within about 500 bytes (next page boundary) 1013 * 1014 * why snprintf? an int is up to 12 digits long. if we just assumed when 1015 * logging that a[%d]= was going to be 16 characters long we would be wasting 1016 * space in every audit message. In one 7500 byte message we can log up to 1017 * about 1000 min size arguments. That comes down to about 50% waste of space 1018 * if we didn't do the snprintf to find out how long arg_num_len was. 1019 */ 1020 static int audit_log_single_execve_arg(struct audit_context *context, 1021 struct audit_buffer **ab, 1022 int arg_num, 1023 size_t *len_sent, 1024 const char __user *p, 1025 char *buf) 1026 { 1027 char arg_num_len_buf[12]; 1028 const char __user *tmp_p = p; 1029 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1030 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1031 size_t len, len_left, to_send; 1032 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1033 unsigned int i, has_cntl = 0, too_long = 0; 1034 int ret; 1035 1036 /* strnlen_user includes the null we don't want to send */ 1037 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1038 1039 /* 1040 * We just created this mm, if we can't find the strings 1041 * we just copied into it something is _very_ wrong. Similar 1042 * for strings that are too long, we should not have created 1043 * any. 1044 */ 1045 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1046 WARN_ON(1); 1047 send_sig(SIGKILL, current, 0); 1048 return -1; 1049 } 1050 1051 /* walk the whole argument looking for non-ascii chars */ 1052 do { 1053 if (len_left > MAX_EXECVE_AUDIT_LEN) 1054 to_send = MAX_EXECVE_AUDIT_LEN; 1055 else 1056 to_send = len_left; 1057 ret = copy_from_user(buf, tmp_p, to_send); 1058 /* 1059 * There is no reason for this copy to be short. We just 1060 * copied them here, and the mm hasn't been exposed to user- 1061 * space yet. 1062 */ 1063 if (ret) { 1064 WARN_ON(1); 1065 send_sig(SIGKILL, current, 0); 1066 return -1; 1067 } 1068 buf[to_send] = '\0'; 1069 has_cntl = audit_string_contains_control(buf, to_send); 1070 if (has_cntl) { 1071 /* 1072 * hex messages get logged as 2 bytes, so we can only 1073 * send half as much in each message 1074 */ 1075 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1076 break; 1077 } 1078 len_left -= to_send; 1079 tmp_p += to_send; 1080 } while (len_left > 0); 1081 1082 len_left = len; 1083 1084 if (len > max_execve_audit_len) 1085 too_long = 1; 1086 1087 /* rewalk the argument actually logging the message */ 1088 for (i = 0; len_left > 0; i++) { 1089 int room_left; 1090 1091 if (len_left > max_execve_audit_len) 1092 to_send = max_execve_audit_len; 1093 else 1094 to_send = len_left; 1095 1096 /* do we have space left to send this argument in this ab? */ 1097 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1098 if (has_cntl) 1099 room_left -= (to_send * 2); 1100 else 1101 room_left -= to_send; 1102 if (room_left < 0) { 1103 *len_sent = 0; 1104 audit_log_end(*ab); 1105 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1106 if (!*ab) 1107 return 0; 1108 } 1109 1110 /* 1111 * first record needs to say how long the original string was 1112 * so we can be sure nothing was lost. 1113 */ 1114 if ((i == 0) && (too_long)) 1115 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1116 has_cntl ? 2*len : len); 1117 1118 /* 1119 * normally arguments are small enough to fit and we already 1120 * filled buf above when we checked for control characters 1121 * so don't bother with another copy_from_user 1122 */ 1123 if (len >= max_execve_audit_len) 1124 ret = copy_from_user(buf, p, to_send); 1125 else 1126 ret = 0; 1127 if (ret) { 1128 WARN_ON(1); 1129 send_sig(SIGKILL, current, 0); 1130 return -1; 1131 } 1132 buf[to_send] = '\0'; 1133 1134 /* actually log it */ 1135 audit_log_format(*ab, " a%d", arg_num); 1136 if (too_long) 1137 audit_log_format(*ab, "[%d]", i); 1138 audit_log_format(*ab, "="); 1139 if (has_cntl) 1140 audit_log_n_hex(*ab, buf, to_send); 1141 else 1142 audit_log_string(*ab, buf); 1143 1144 p += to_send; 1145 len_left -= to_send; 1146 *len_sent += arg_num_len; 1147 if (has_cntl) 1148 *len_sent += to_send * 2; 1149 else 1150 *len_sent += to_send; 1151 } 1152 /* include the null we didn't log */ 1153 return len + 1; 1154 } 1155 1156 static void audit_log_execve_info(struct audit_context *context, 1157 struct audit_buffer **ab) 1158 { 1159 int i, len; 1160 size_t len_sent = 0; 1161 const char __user *p; 1162 char *buf; 1163 1164 p = (const char __user *)current->mm->arg_start; 1165 1166 audit_log_format(*ab, "argc=%d", context->execve.argc); 1167 1168 /* 1169 * we need some kernel buffer to hold the userspace args. Just 1170 * allocate one big one rather than allocating one of the right size 1171 * for every single argument inside audit_log_single_execve_arg() 1172 * should be <8k allocation so should be pretty safe. 1173 */ 1174 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1175 if (!buf) { 1176 audit_panic("out of memory for argv string"); 1177 return; 1178 } 1179 1180 for (i = 0; i < context->execve.argc; i++) { 1181 len = audit_log_single_execve_arg(context, ab, i, 1182 &len_sent, p, buf); 1183 if (len <= 0) 1184 break; 1185 p += len; 1186 } 1187 kfree(buf); 1188 } 1189 1190 static void show_special(struct audit_context *context, int *call_panic) 1191 { 1192 struct audit_buffer *ab; 1193 int i; 1194 1195 ab = audit_log_start(context, GFP_KERNEL, context->type); 1196 if (!ab) 1197 return; 1198 1199 switch (context->type) { 1200 case AUDIT_SOCKETCALL: { 1201 int nargs = context->socketcall.nargs; 1202 audit_log_format(ab, "nargs=%d", nargs); 1203 for (i = 0; i < nargs; i++) 1204 audit_log_format(ab, " a%d=%lx", i, 1205 context->socketcall.args[i]); 1206 break; } 1207 case AUDIT_IPC: { 1208 u32 osid = context->ipc.osid; 1209 1210 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1211 from_kuid(&init_user_ns, context->ipc.uid), 1212 from_kgid(&init_user_ns, context->ipc.gid), 1213 context->ipc.mode); 1214 if (osid) { 1215 char *ctx = NULL; 1216 u32 len; 1217 if (security_secid_to_secctx(osid, &ctx, &len)) { 1218 audit_log_format(ab, " osid=%u", osid); 1219 *call_panic = 1; 1220 } else { 1221 audit_log_format(ab, " obj=%s", ctx); 1222 security_release_secctx(ctx, len); 1223 } 1224 } 1225 if (context->ipc.has_perm) { 1226 audit_log_end(ab); 1227 ab = audit_log_start(context, GFP_KERNEL, 1228 AUDIT_IPC_SET_PERM); 1229 if (unlikely(!ab)) 1230 return; 1231 audit_log_format(ab, 1232 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1233 context->ipc.qbytes, 1234 context->ipc.perm_uid, 1235 context->ipc.perm_gid, 1236 context->ipc.perm_mode); 1237 } 1238 break; } 1239 case AUDIT_MQ_OPEN: { 1240 audit_log_format(ab, 1241 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1242 "mq_msgsize=%ld mq_curmsgs=%ld", 1243 context->mq_open.oflag, context->mq_open.mode, 1244 context->mq_open.attr.mq_flags, 1245 context->mq_open.attr.mq_maxmsg, 1246 context->mq_open.attr.mq_msgsize, 1247 context->mq_open.attr.mq_curmsgs); 1248 break; } 1249 case AUDIT_MQ_SENDRECV: { 1250 audit_log_format(ab, 1251 "mqdes=%d msg_len=%zd msg_prio=%u " 1252 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1253 context->mq_sendrecv.mqdes, 1254 context->mq_sendrecv.msg_len, 1255 context->mq_sendrecv.msg_prio, 1256 context->mq_sendrecv.abs_timeout.tv_sec, 1257 context->mq_sendrecv.abs_timeout.tv_nsec); 1258 break; } 1259 case AUDIT_MQ_NOTIFY: { 1260 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1261 context->mq_notify.mqdes, 1262 context->mq_notify.sigev_signo); 1263 break; } 1264 case AUDIT_MQ_GETSETATTR: { 1265 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1266 audit_log_format(ab, 1267 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1268 "mq_curmsgs=%ld ", 1269 context->mq_getsetattr.mqdes, 1270 attr->mq_flags, attr->mq_maxmsg, 1271 attr->mq_msgsize, attr->mq_curmsgs); 1272 break; } 1273 case AUDIT_CAPSET: { 1274 audit_log_format(ab, "pid=%d", context->capset.pid); 1275 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1276 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1277 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1278 break; } 1279 case AUDIT_MMAP: { 1280 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1281 context->mmap.flags); 1282 break; } 1283 case AUDIT_EXECVE: { 1284 audit_log_execve_info(context, &ab); 1285 break; } 1286 } 1287 audit_log_end(ab); 1288 } 1289 1290 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1291 { 1292 char *end = proctitle + len - 1; 1293 while (end > proctitle && !isprint(*end)) 1294 end--; 1295 1296 /* catch the case where proctitle is only 1 non-print character */ 1297 len = end - proctitle + 1; 1298 len -= isprint(proctitle[len-1]) == 0; 1299 return len; 1300 } 1301 1302 static void audit_log_proctitle(struct task_struct *tsk, 1303 struct audit_context *context) 1304 { 1305 int res; 1306 char *buf; 1307 char *msg = "(null)"; 1308 int len = strlen(msg); 1309 struct audit_buffer *ab; 1310 1311 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1312 if (!ab) 1313 return; /* audit_panic or being filtered */ 1314 1315 audit_log_format(ab, "proctitle="); 1316 1317 /* Not cached */ 1318 if (!context->proctitle.value) { 1319 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1320 if (!buf) 1321 goto out; 1322 /* Historically called this from procfs naming */ 1323 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1324 if (res == 0) { 1325 kfree(buf); 1326 goto out; 1327 } 1328 res = audit_proctitle_rtrim(buf, res); 1329 if (res == 0) { 1330 kfree(buf); 1331 goto out; 1332 } 1333 context->proctitle.value = buf; 1334 context->proctitle.len = res; 1335 } 1336 msg = context->proctitle.value; 1337 len = context->proctitle.len; 1338 out: 1339 audit_log_n_untrustedstring(ab, msg, len); 1340 audit_log_end(ab); 1341 } 1342 1343 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1344 { 1345 int i, call_panic = 0; 1346 struct audit_buffer *ab; 1347 struct audit_aux_data *aux; 1348 struct audit_names *n; 1349 1350 /* tsk == current */ 1351 context->personality = tsk->personality; 1352 1353 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1354 if (!ab) 1355 return; /* audit_panic has been called */ 1356 audit_log_format(ab, "arch=%x syscall=%d", 1357 context->arch, context->major); 1358 if (context->personality != PER_LINUX) 1359 audit_log_format(ab, " per=%lx", context->personality); 1360 if (context->return_valid) 1361 audit_log_format(ab, " success=%s exit=%ld", 1362 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1363 context->return_code); 1364 1365 audit_log_format(ab, 1366 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1367 context->argv[0], 1368 context->argv[1], 1369 context->argv[2], 1370 context->argv[3], 1371 context->name_count); 1372 1373 audit_log_task_info(ab, tsk); 1374 audit_log_key(ab, context->filterkey); 1375 audit_log_end(ab); 1376 1377 for (aux = context->aux; aux; aux = aux->next) { 1378 1379 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1380 if (!ab) 1381 continue; /* audit_panic has been called */ 1382 1383 switch (aux->type) { 1384 1385 case AUDIT_BPRM_FCAPS: { 1386 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1387 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1388 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1389 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1390 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1391 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1392 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1393 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1394 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1395 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1396 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1397 break; } 1398 1399 } 1400 audit_log_end(ab); 1401 } 1402 1403 if (context->type) 1404 show_special(context, &call_panic); 1405 1406 if (context->fds[0] >= 0) { 1407 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1408 if (ab) { 1409 audit_log_format(ab, "fd0=%d fd1=%d", 1410 context->fds[0], context->fds[1]); 1411 audit_log_end(ab); 1412 } 1413 } 1414 1415 if (context->sockaddr_len) { 1416 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1417 if (ab) { 1418 audit_log_format(ab, "saddr="); 1419 audit_log_n_hex(ab, (void *)context->sockaddr, 1420 context->sockaddr_len); 1421 audit_log_end(ab); 1422 } 1423 } 1424 1425 for (aux = context->aux_pids; aux; aux = aux->next) { 1426 struct audit_aux_data_pids *axs = (void *)aux; 1427 1428 for (i = 0; i < axs->pid_count; i++) 1429 if (audit_log_pid_context(context, axs->target_pid[i], 1430 axs->target_auid[i], 1431 axs->target_uid[i], 1432 axs->target_sessionid[i], 1433 axs->target_sid[i], 1434 axs->target_comm[i])) 1435 call_panic = 1; 1436 } 1437 1438 if (context->target_pid && 1439 audit_log_pid_context(context, context->target_pid, 1440 context->target_auid, context->target_uid, 1441 context->target_sessionid, 1442 context->target_sid, context->target_comm)) 1443 call_panic = 1; 1444 1445 if (context->pwd.dentry && context->pwd.mnt) { 1446 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1447 if (ab) { 1448 audit_log_d_path(ab, " cwd=", &context->pwd); 1449 audit_log_end(ab); 1450 } 1451 } 1452 1453 i = 0; 1454 list_for_each_entry(n, &context->names_list, list) { 1455 if (n->hidden) 1456 continue; 1457 audit_log_name(context, n, NULL, i++, &call_panic); 1458 } 1459 1460 audit_log_proctitle(tsk, context); 1461 1462 /* Send end of event record to help user space know we are finished */ 1463 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1464 if (ab) 1465 audit_log_end(ab); 1466 if (call_panic) 1467 audit_panic("error converting sid to string"); 1468 } 1469 1470 /** 1471 * audit_free - free a per-task audit context 1472 * @tsk: task whose audit context block to free 1473 * 1474 * Called from copy_process and do_exit 1475 */ 1476 void __audit_free(struct task_struct *tsk) 1477 { 1478 struct audit_context *context; 1479 1480 context = audit_take_context(tsk, 0, 0); 1481 if (!context) 1482 return; 1483 1484 /* Check for system calls that do not go through the exit 1485 * function (e.g., exit_group), then free context block. 1486 * We use GFP_ATOMIC here because we might be doing this 1487 * in the context of the idle thread */ 1488 /* that can happen only if we are called from do_exit() */ 1489 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1490 audit_log_exit(context, tsk); 1491 if (!list_empty(&context->killed_trees)) 1492 audit_kill_trees(&context->killed_trees); 1493 1494 audit_free_context(context); 1495 } 1496 1497 /** 1498 * audit_syscall_entry - fill in an audit record at syscall entry 1499 * @arch: architecture type 1500 * @major: major syscall type (function) 1501 * @a1: additional syscall register 1 1502 * @a2: additional syscall register 2 1503 * @a3: additional syscall register 3 1504 * @a4: additional syscall register 4 1505 * 1506 * Fill in audit context at syscall entry. This only happens if the 1507 * audit context was created when the task was created and the state or 1508 * filters demand the audit context be built. If the state from the 1509 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1510 * then the record will be written at syscall exit time (otherwise, it 1511 * will only be written if another part of the kernel requests that it 1512 * be written). 1513 */ 1514 void __audit_syscall_entry(int arch, int major, 1515 unsigned long a1, unsigned long a2, 1516 unsigned long a3, unsigned long a4) 1517 { 1518 struct task_struct *tsk = current; 1519 struct audit_context *context = tsk->audit_context; 1520 enum audit_state state; 1521 1522 if (!context) 1523 return; 1524 1525 BUG_ON(context->in_syscall || context->name_count); 1526 1527 if (!audit_enabled) 1528 return; 1529 1530 context->arch = arch; 1531 context->major = major; 1532 context->argv[0] = a1; 1533 context->argv[1] = a2; 1534 context->argv[2] = a3; 1535 context->argv[3] = a4; 1536 1537 state = context->state; 1538 context->dummy = !audit_n_rules; 1539 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1540 context->prio = 0; 1541 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1542 } 1543 if (state == AUDIT_DISABLED) 1544 return; 1545 1546 context->serial = 0; 1547 context->ctime = CURRENT_TIME; 1548 context->in_syscall = 1; 1549 context->current_state = state; 1550 context->ppid = 0; 1551 } 1552 1553 /** 1554 * audit_syscall_exit - deallocate audit context after a system call 1555 * @success: success value of the syscall 1556 * @return_code: return value of the syscall 1557 * 1558 * Tear down after system call. If the audit context has been marked as 1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1560 * filtering, or because some other part of the kernel wrote an audit 1561 * message), then write out the syscall information. In call cases, 1562 * free the names stored from getname(). 1563 */ 1564 void __audit_syscall_exit(int success, long return_code) 1565 { 1566 struct task_struct *tsk = current; 1567 struct audit_context *context; 1568 1569 if (success) 1570 success = AUDITSC_SUCCESS; 1571 else 1572 success = AUDITSC_FAILURE; 1573 1574 context = audit_take_context(tsk, success, return_code); 1575 if (!context) 1576 return; 1577 1578 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1579 audit_log_exit(context, tsk); 1580 1581 context->in_syscall = 0; 1582 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1583 1584 if (!list_empty(&context->killed_trees)) 1585 audit_kill_trees(&context->killed_trees); 1586 1587 audit_free_names(context); 1588 unroll_tree_refs(context, NULL, 0); 1589 audit_free_aux(context); 1590 context->aux = NULL; 1591 context->aux_pids = NULL; 1592 context->target_pid = 0; 1593 context->target_sid = 0; 1594 context->sockaddr_len = 0; 1595 context->type = 0; 1596 context->fds[0] = -1; 1597 if (context->state != AUDIT_RECORD_CONTEXT) { 1598 kfree(context->filterkey); 1599 context->filterkey = NULL; 1600 } 1601 tsk->audit_context = context; 1602 } 1603 1604 static inline void handle_one(const struct inode *inode) 1605 { 1606 #ifdef CONFIG_AUDIT_TREE 1607 struct audit_context *context; 1608 struct audit_tree_refs *p; 1609 struct audit_chunk *chunk; 1610 int count; 1611 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1612 return; 1613 context = current->audit_context; 1614 p = context->trees; 1615 count = context->tree_count; 1616 rcu_read_lock(); 1617 chunk = audit_tree_lookup(inode); 1618 rcu_read_unlock(); 1619 if (!chunk) 1620 return; 1621 if (likely(put_tree_ref(context, chunk))) 1622 return; 1623 if (unlikely(!grow_tree_refs(context))) { 1624 pr_warn("out of memory, audit has lost a tree reference\n"); 1625 audit_set_auditable(context); 1626 audit_put_chunk(chunk); 1627 unroll_tree_refs(context, p, count); 1628 return; 1629 } 1630 put_tree_ref(context, chunk); 1631 #endif 1632 } 1633 1634 static void handle_path(const struct dentry *dentry) 1635 { 1636 #ifdef CONFIG_AUDIT_TREE 1637 struct audit_context *context; 1638 struct audit_tree_refs *p; 1639 const struct dentry *d, *parent; 1640 struct audit_chunk *drop; 1641 unsigned long seq; 1642 int count; 1643 1644 context = current->audit_context; 1645 p = context->trees; 1646 count = context->tree_count; 1647 retry: 1648 drop = NULL; 1649 d = dentry; 1650 rcu_read_lock(); 1651 seq = read_seqbegin(&rename_lock); 1652 for(;;) { 1653 struct inode *inode = d->d_inode; 1654 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1655 struct audit_chunk *chunk; 1656 chunk = audit_tree_lookup(inode); 1657 if (chunk) { 1658 if (unlikely(!put_tree_ref(context, chunk))) { 1659 drop = chunk; 1660 break; 1661 } 1662 } 1663 } 1664 parent = d->d_parent; 1665 if (parent == d) 1666 break; 1667 d = parent; 1668 } 1669 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1670 rcu_read_unlock(); 1671 if (!drop) { 1672 /* just a race with rename */ 1673 unroll_tree_refs(context, p, count); 1674 goto retry; 1675 } 1676 audit_put_chunk(drop); 1677 if (grow_tree_refs(context)) { 1678 /* OK, got more space */ 1679 unroll_tree_refs(context, p, count); 1680 goto retry; 1681 } 1682 /* too bad */ 1683 pr_warn("out of memory, audit has lost a tree reference\n"); 1684 unroll_tree_refs(context, p, count); 1685 audit_set_auditable(context); 1686 return; 1687 } 1688 rcu_read_unlock(); 1689 #endif 1690 } 1691 1692 static struct audit_names *audit_alloc_name(struct audit_context *context, 1693 unsigned char type) 1694 { 1695 struct audit_names *aname; 1696 1697 if (context->name_count < AUDIT_NAMES) { 1698 aname = &context->preallocated_names[context->name_count]; 1699 memset(aname, 0, sizeof(*aname)); 1700 } else { 1701 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1702 if (!aname) 1703 return NULL; 1704 aname->should_free = true; 1705 } 1706 1707 aname->ino = (unsigned long)-1; 1708 aname->type = type; 1709 list_add_tail(&aname->list, &context->names_list); 1710 1711 context->name_count++; 1712 #if AUDIT_DEBUG 1713 context->ino_count++; 1714 #endif 1715 return aname; 1716 } 1717 1718 /** 1719 * audit_reusename - fill out filename with info from existing entry 1720 * @uptr: userland ptr to pathname 1721 * 1722 * Search the audit_names list for the current audit context. If there is an 1723 * existing entry with a matching "uptr" then return the filename 1724 * associated with that audit_name. If not, return NULL. 1725 */ 1726 struct filename * 1727 __audit_reusename(const __user char *uptr) 1728 { 1729 struct audit_context *context = current->audit_context; 1730 struct audit_names *n; 1731 1732 list_for_each_entry(n, &context->names_list, list) { 1733 if (!n->name) 1734 continue; 1735 if (n->name->uptr == uptr) 1736 return n->name; 1737 } 1738 return NULL; 1739 } 1740 1741 /** 1742 * audit_getname - add a name to the list 1743 * @name: name to add 1744 * 1745 * Add a name to the list of audit names for this context. 1746 * Called from fs/namei.c:getname(). 1747 */ 1748 void __audit_getname(struct filename *name) 1749 { 1750 struct audit_context *context = current->audit_context; 1751 struct audit_names *n; 1752 1753 if (!context->in_syscall) { 1754 #if AUDIT_DEBUG == 2 1755 pr_err("%s:%d(:%d): ignoring getname(%p)\n", 1756 __FILE__, __LINE__, context->serial, name); 1757 dump_stack(); 1758 #endif 1759 return; 1760 } 1761 1762 #if AUDIT_DEBUG 1763 /* The filename _must_ have a populated ->name */ 1764 BUG_ON(!name->name); 1765 #endif 1766 1767 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1768 if (!n) 1769 return; 1770 1771 n->name = name; 1772 n->name_len = AUDIT_NAME_FULL; 1773 n->name_put = true; 1774 name->aname = n; 1775 1776 if (!context->pwd.dentry) 1777 get_fs_pwd(current->fs, &context->pwd); 1778 } 1779 1780 /* audit_putname - intercept a putname request 1781 * @name: name to intercept and delay for putname 1782 * 1783 * If we have stored the name from getname in the audit context, 1784 * then we delay the putname until syscall exit. 1785 * Called from include/linux/fs.h:putname(). 1786 */ 1787 void audit_putname(struct filename *name) 1788 { 1789 struct audit_context *context = current->audit_context; 1790 1791 BUG_ON(!context); 1792 if (!name->aname || !context->in_syscall) { 1793 #if AUDIT_DEBUG == 2 1794 pr_err("%s:%d(:%d): final_putname(%p)\n", 1795 __FILE__, __LINE__, context->serial, name); 1796 if (context->name_count) { 1797 struct audit_names *n; 1798 int i = 0; 1799 1800 list_for_each_entry(n, &context->names_list, list) 1801 pr_err("name[%d] = %p = %s\n", i++, n->name, 1802 n->name->name ?: "(null)"); 1803 } 1804 #endif 1805 final_putname(name); 1806 } 1807 #if AUDIT_DEBUG 1808 else { 1809 ++context->put_count; 1810 if (context->put_count > context->name_count) { 1811 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)" 1812 " name_count=%d put_count=%d\n", 1813 __FILE__, __LINE__, 1814 context->serial, context->major, 1815 context->in_syscall, name->name, 1816 context->name_count, context->put_count); 1817 dump_stack(); 1818 } 1819 } 1820 #endif 1821 } 1822 1823 /** 1824 * __audit_inode - store the inode and device from a lookup 1825 * @name: name being audited 1826 * @dentry: dentry being audited 1827 * @flags: attributes for this particular entry 1828 */ 1829 void __audit_inode(struct filename *name, const struct dentry *dentry, 1830 unsigned int flags) 1831 { 1832 struct audit_context *context = current->audit_context; 1833 const struct inode *inode = dentry->d_inode; 1834 struct audit_names *n; 1835 bool parent = flags & AUDIT_INODE_PARENT; 1836 1837 if (!context->in_syscall) 1838 return; 1839 1840 if (!name) 1841 goto out_alloc; 1842 1843 #if AUDIT_DEBUG 1844 /* The struct filename _must_ have a populated ->name */ 1845 BUG_ON(!name->name); 1846 #endif 1847 /* 1848 * If we have a pointer to an audit_names entry already, then we can 1849 * just use it directly if the type is correct. 1850 */ 1851 n = name->aname; 1852 if (n) { 1853 if (parent) { 1854 if (n->type == AUDIT_TYPE_PARENT || 1855 n->type == AUDIT_TYPE_UNKNOWN) 1856 goto out; 1857 } else { 1858 if (n->type != AUDIT_TYPE_PARENT) 1859 goto out; 1860 } 1861 } 1862 1863 list_for_each_entry_reverse(n, &context->names_list, list) { 1864 /* does the name pointer match? */ 1865 if (!n->name || n->name->name != name->name) 1866 continue; 1867 1868 /* match the correct record type */ 1869 if (parent) { 1870 if (n->type == AUDIT_TYPE_PARENT || 1871 n->type == AUDIT_TYPE_UNKNOWN) 1872 goto out; 1873 } else { 1874 if (n->type != AUDIT_TYPE_PARENT) 1875 goto out; 1876 } 1877 } 1878 1879 out_alloc: 1880 /* unable to find the name from a previous getname(). Allocate a new 1881 * anonymous entry. 1882 */ 1883 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL); 1884 if (!n) 1885 return; 1886 out: 1887 if (parent) { 1888 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1889 n->type = AUDIT_TYPE_PARENT; 1890 if (flags & AUDIT_INODE_HIDDEN) 1891 n->hidden = true; 1892 } else { 1893 n->name_len = AUDIT_NAME_FULL; 1894 n->type = AUDIT_TYPE_NORMAL; 1895 } 1896 handle_path(dentry); 1897 audit_copy_inode(n, dentry, inode); 1898 } 1899 1900 /** 1901 * __audit_inode_child - collect inode info for created/removed objects 1902 * @parent: inode of dentry parent 1903 * @dentry: dentry being audited 1904 * @type: AUDIT_TYPE_* value that we're looking for 1905 * 1906 * For syscalls that create or remove filesystem objects, audit_inode 1907 * can only collect information for the filesystem object's parent. 1908 * This call updates the audit context with the child's information. 1909 * Syscalls that create a new filesystem object must be hooked after 1910 * the object is created. Syscalls that remove a filesystem object 1911 * must be hooked prior, in order to capture the target inode during 1912 * unsuccessful attempts. 1913 */ 1914 void __audit_inode_child(const struct inode *parent, 1915 const struct dentry *dentry, 1916 const unsigned char type) 1917 { 1918 struct audit_context *context = current->audit_context; 1919 const struct inode *inode = dentry->d_inode; 1920 const char *dname = dentry->d_name.name; 1921 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1922 1923 if (!context->in_syscall) 1924 return; 1925 1926 if (inode) 1927 handle_one(inode); 1928 1929 /* look for a parent entry first */ 1930 list_for_each_entry(n, &context->names_list, list) { 1931 if (!n->name || n->type != AUDIT_TYPE_PARENT) 1932 continue; 1933 1934 if (n->ino == parent->i_ino && 1935 !audit_compare_dname_path(dname, n->name->name, n->name_len)) { 1936 found_parent = n; 1937 break; 1938 } 1939 } 1940 1941 /* is there a matching child entry? */ 1942 list_for_each_entry(n, &context->names_list, list) { 1943 /* can only match entries that have a name */ 1944 if (!n->name || n->type != type) 1945 continue; 1946 1947 /* if we found a parent, make sure this one is a child of it */ 1948 if (found_parent && (n->name != found_parent->name)) 1949 continue; 1950 1951 if (!strcmp(dname, n->name->name) || 1952 !audit_compare_dname_path(dname, n->name->name, 1953 found_parent ? 1954 found_parent->name_len : 1955 AUDIT_NAME_FULL)) { 1956 found_child = n; 1957 break; 1958 } 1959 } 1960 1961 if (!found_parent) { 1962 /* create a new, "anonymous" parent record */ 1963 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1964 if (!n) 1965 return; 1966 audit_copy_inode(n, NULL, parent); 1967 } 1968 1969 if (!found_child) { 1970 found_child = audit_alloc_name(context, type); 1971 if (!found_child) 1972 return; 1973 1974 /* Re-use the name belonging to the slot for a matching parent 1975 * directory. All names for this context are relinquished in 1976 * audit_free_names() */ 1977 if (found_parent) { 1978 found_child->name = found_parent->name; 1979 found_child->name_len = AUDIT_NAME_FULL; 1980 /* don't call __putname() */ 1981 found_child->name_put = false; 1982 } 1983 } 1984 if (inode) 1985 audit_copy_inode(found_child, dentry, inode); 1986 else 1987 found_child->ino = (unsigned long)-1; 1988 } 1989 EXPORT_SYMBOL_GPL(__audit_inode_child); 1990 1991 /** 1992 * auditsc_get_stamp - get local copies of audit_context values 1993 * @ctx: audit_context for the task 1994 * @t: timespec to store time recorded in the audit_context 1995 * @serial: serial value that is recorded in the audit_context 1996 * 1997 * Also sets the context as auditable. 1998 */ 1999 int auditsc_get_stamp(struct audit_context *ctx, 2000 struct timespec *t, unsigned int *serial) 2001 { 2002 if (!ctx->in_syscall) 2003 return 0; 2004 if (!ctx->serial) 2005 ctx->serial = audit_serial(); 2006 t->tv_sec = ctx->ctime.tv_sec; 2007 t->tv_nsec = ctx->ctime.tv_nsec; 2008 *serial = ctx->serial; 2009 if (!ctx->prio) { 2010 ctx->prio = 1; 2011 ctx->current_state = AUDIT_RECORD_CONTEXT; 2012 } 2013 return 1; 2014 } 2015 2016 /* global counter which is incremented every time something logs in */ 2017 static atomic_t session_id = ATOMIC_INIT(0); 2018 2019 static int audit_set_loginuid_perm(kuid_t loginuid) 2020 { 2021 /* if we are unset, we don't need privs */ 2022 if (!audit_loginuid_set(current)) 2023 return 0; 2024 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2025 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2026 return -EPERM; 2027 /* it is set, you need permission */ 2028 if (!capable(CAP_AUDIT_CONTROL)) 2029 return -EPERM; 2030 /* reject if this is not an unset and we don't allow that */ 2031 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 2032 return -EPERM; 2033 return 0; 2034 } 2035 2036 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2037 unsigned int oldsessionid, unsigned int sessionid, 2038 int rc) 2039 { 2040 struct audit_buffer *ab; 2041 uid_t uid, oldloginuid, loginuid; 2042 2043 if (!audit_enabled) 2044 return; 2045 2046 uid = from_kuid(&init_user_ns, task_uid(current)); 2047 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2048 loginuid = from_kuid(&init_user_ns, kloginuid), 2049 2050 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2051 if (!ab) 2052 return; 2053 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid); 2054 audit_log_task_context(ab); 2055 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d", 2056 oldloginuid, loginuid, oldsessionid, sessionid, !rc); 2057 audit_log_end(ab); 2058 } 2059 2060 /** 2061 * audit_set_loginuid - set current task's audit_context loginuid 2062 * @loginuid: loginuid value 2063 * 2064 * Returns 0. 2065 * 2066 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2067 */ 2068 int audit_set_loginuid(kuid_t loginuid) 2069 { 2070 struct task_struct *task = current; 2071 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2072 kuid_t oldloginuid; 2073 int rc; 2074 2075 oldloginuid = audit_get_loginuid(current); 2076 oldsessionid = audit_get_sessionid(current); 2077 2078 rc = audit_set_loginuid_perm(loginuid); 2079 if (rc) 2080 goto out; 2081 2082 /* are we setting or clearing? */ 2083 if (uid_valid(loginuid)) 2084 sessionid = (unsigned int)atomic_inc_return(&session_id); 2085 2086 task->sessionid = sessionid; 2087 task->loginuid = loginuid; 2088 out: 2089 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2090 return rc; 2091 } 2092 2093 /** 2094 * __audit_mq_open - record audit data for a POSIX MQ open 2095 * @oflag: open flag 2096 * @mode: mode bits 2097 * @attr: queue attributes 2098 * 2099 */ 2100 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2101 { 2102 struct audit_context *context = current->audit_context; 2103 2104 if (attr) 2105 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2106 else 2107 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2108 2109 context->mq_open.oflag = oflag; 2110 context->mq_open.mode = mode; 2111 2112 context->type = AUDIT_MQ_OPEN; 2113 } 2114 2115 /** 2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2117 * @mqdes: MQ descriptor 2118 * @msg_len: Message length 2119 * @msg_prio: Message priority 2120 * @abs_timeout: Message timeout in absolute time 2121 * 2122 */ 2123 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2124 const struct timespec *abs_timeout) 2125 { 2126 struct audit_context *context = current->audit_context; 2127 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2128 2129 if (abs_timeout) 2130 memcpy(p, abs_timeout, sizeof(struct timespec)); 2131 else 2132 memset(p, 0, sizeof(struct timespec)); 2133 2134 context->mq_sendrecv.mqdes = mqdes; 2135 context->mq_sendrecv.msg_len = msg_len; 2136 context->mq_sendrecv.msg_prio = msg_prio; 2137 2138 context->type = AUDIT_MQ_SENDRECV; 2139 } 2140 2141 /** 2142 * __audit_mq_notify - record audit data for a POSIX MQ notify 2143 * @mqdes: MQ descriptor 2144 * @notification: Notification event 2145 * 2146 */ 2147 2148 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2149 { 2150 struct audit_context *context = current->audit_context; 2151 2152 if (notification) 2153 context->mq_notify.sigev_signo = notification->sigev_signo; 2154 else 2155 context->mq_notify.sigev_signo = 0; 2156 2157 context->mq_notify.mqdes = mqdes; 2158 context->type = AUDIT_MQ_NOTIFY; 2159 } 2160 2161 /** 2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2163 * @mqdes: MQ descriptor 2164 * @mqstat: MQ flags 2165 * 2166 */ 2167 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2168 { 2169 struct audit_context *context = current->audit_context; 2170 context->mq_getsetattr.mqdes = mqdes; 2171 context->mq_getsetattr.mqstat = *mqstat; 2172 context->type = AUDIT_MQ_GETSETATTR; 2173 } 2174 2175 /** 2176 * audit_ipc_obj - record audit data for ipc object 2177 * @ipcp: ipc permissions 2178 * 2179 */ 2180 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2181 { 2182 struct audit_context *context = current->audit_context; 2183 context->ipc.uid = ipcp->uid; 2184 context->ipc.gid = ipcp->gid; 2185 context->ipc.mode = ipcp->mode; 2186 context->ipc.has_perm = 0; 2187 security_ipc_getsecid(ipcp, &context->ipc.osid); 2188 context->type = AUDIT_IPC; 2189 } 2190 2191 /** 2192 * audit_ipc_set_perm - record audit data for new ipc permissions 2193 * @qbytes: msgq bytes 2194 * @uid: msgq user id 2195 * @gid: msgq group id 2196 * @mode: msgq mode (permissions) 2197 * 2198 * Called only after audit_ipc_obj(). 2199 */ 2200 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2201 { 2202 struct audit_context *context = current->audit_context; 2203 2204 context->ipc.qbytes = qbytes; 2205 context->ipc.perm_uid = uid; 2206 context->ipc.perm_gid = gid; 2207 context->ipc.perm_mode = mode; 2208 context->ipc.has_perm = 1; 2209 } 2210 2211 void __audit_bprm(struct linux_binprm *bprm) 2212 { 2213 struct audit_context *context = current->audit_context; 2214 2215 context->type = AUDIT_EXECVE; 2216 context->execve.argc = bprm->argc; 2217 } 2218 2219 2220 /** 2221 * audit_socketcall - record audit data for sys_socketcall 2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2223 * @args: args array 2224 * 2225 */ 2226 int __audit_socketcall(int nargs, unsigned long *args) 2227 { 2228 struct audit_context *context = current->audit_context; 2229 2230 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2231 return -EINVAL; 2232 context->type = AUDIT_SOCKETCALL; 2233 context->socketcall.nargs = nargs; 2234 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2235 return 0; 2236 } 2237 2238 /** 2239 * __audit_fd_pair - record audit data for pipe and socketpair 2240 * @fd1: the first file descriptor 2241 * @fd2: the second file descriptor 2242 * 2243 */ 2244 void __audit_fd_pair(int fd1, int fd2) 2245 { 2246 struct audit_context *context = current->audit_context; 2247 context->fds[0] = fd1; 2248 context->fds[1] = fd2; 2249 } 2250 2251 /** 2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2253 * @len: data length in user space 2254 * @a: data address in kernel space 2255 * 2256 * Returns 0 for success or NULL context or < 0 on error. 2257 */ 2258 int __audit_sockaddr(int len, void *a) 2259 { 2260 struct audit_context *context = current->audit_context; 2261 2262 if (!context->sockaddr) { 2263 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2264 if (!p) 2265 return -ENOMEM; 2266 context->sockaddr = p; 2267 } 2268 2269 context->sockaddr_len = len; 2270 memcpy(context->sockaddr, a, len); 2271 return 0; 2272 } 2273 2274 void __audit_ptrace(struct task_struct *t) 2275 { 2276 struct audit_context *context = current->audit_context; 2277 2278 context->target_pid = task_pid_nr(t); 2279 context->target_auid = audit_get_loginuid(t); 2280 context->target_uid = task_uid(t); 2281 context->target_sessionid = audit_get_sessionid(t); 2282 security_task_getsecid(t, &context->target_sid); 2283 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2284 } 2285 2286 /** 2287 * audit_signal_info - record signal info for shutting down audit subsystem 2288 * @sig: signal value 2289 * @t: task being signaled 2290 * 2291 * If the audit subsystem is being terminated, record the task (pid) 2292 * and uid that is doing that. 2293 */ 2294 int __audit_signal_info(int sig, struct task_struct *t) 2295 { 2296 struct audit_aux_data_pids *axp; 2297 struct task_struct *tsk = current; 2298 struct audit_context *ctx = tsk->audit_context; 2299 kuid_t uid = current_uid(), t_uid = task_uid(t); 2300 2301 if (audit_pid && t->tgid == audit_pid) { 2302 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2303 audit_sig_pid = task_pid_nr(tsk); 2304 if (uid_valid(tsk->loginuid)) 2305 audit_sig_uid = tsk->loginuid; 2306 else 2307 audit_sig_uid = uid; 2308 security_task_getsecid(tsk, &audit_sig_sid); 2309 } 2310 if (!audit_signals || audit_dummy_context()) 2311 return 0; 2312 } 2313 2314 /* optimize the common case by putting first signal recipient directly 2315 * in audit_context */ 2316 if (!ctx->target_pid) { 2317 ctx->target_pid = task_tgid_nr(t); 2318 ctx->target_auid = audit_get_loginuid(t); 2319 ctx->target_uid = t_uid; 2320 ctx->target_sessionid = audit_get_sessionid(t); 2321 security_task_getsecid(t, &ctx->target_sid); 2322 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2323 return 0; 2324 } 2325 2326 axp = (void *)ctx->aux_pids; 2327 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2328 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2329 if (!axp) 2330 return -ENOMEM; 2331 2332 axp->d.type = AUDIT_OBJ_PID; 2333 axp->d.next = ctx->aux_pids; 2334 ctx->aux_pids = (void *)axp; 2335 } 2336 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2337 2338 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2339 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2340 axp->target_uid[axp->pid_count] = t_uid; 2341 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2342 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2343 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2344 axp->pid_count++; 2345 2346 return 0; 2347 } 2348 2349 /** 2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2351 * @bprm: pointer to the bprm being processed 2352 * @new: the proposed new credentials 2353 * @old: the old credentials 2354 * 2355 * Simply check if the proc already has the caps given by the file and if not 2356 * store the priv escalation info for later auditing at the end of the syscall 2357 * 2358 * -Eric 2359 */ 2360 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2361 const struct cred *new, const struct cred *old) 2362 { 2363 struct audit_aux_data_bprm_fcaps *ax; 2364 struct audit_context *context = current->audit_context; 2365 struct cpu_vfs_cap_data vcaps; 2366 struct dentry *dentry; 2367 2368 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2369 if (!ax) 2370 return -ENOMEM; 2371 2372 ax->d.type = AUDIT_BPRM_FCAPS; 2373 ax->d.next = context->aux; 2374 context->aux = (void *)ax; 2375 2376 dentry = dget(bprm->file->f_dentry); 2377 get_vfs_caps_from_disk(dentry, &vcaps); 2378 dput(dentry); 2379 2380 ax->fcap.permitted = vcaps.permitted; 2381 ax->fcap.inheritable = vcaps.inheritable; 2382 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2383 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2384 2385 ax->old_pcap.permitted = old->cap_permitted; 2386 ax->old_pcap.inheritable = old->cap_inheritable; 2387 ax->old_pcap.effective = old->cap_effective; 2388 2389 ax->new_pcap.permitted = new->cap_permitted; 2390 ax->new_pcap.inheritable = new->cap_inheritable; 2391 ax->new_pcap.effective = new->cap_effective; 2392 return 0; 2393 } 2394 2395 /** 2396 * __audit_log_capset - store information about the arguments to the capset syscall 2397 * @new: the new credentials 2398 * @old: the old (current) credentials 2399 * 2400 * Record the aguments userspace sent to sys_capset for later printing by the 2401 * audit system if applicable 2402 */ 2403 void __audit_log_capset(const struct cred *new, const struct cred *old) 2404 { 2405 struct audit_context *context = current->audit_context; 2406 context->capset.pid = task_pid_nr(current); 2407 context->capset.cap.effective = new->cap_effective; 2408 context->capset.cap.inheritable = new->cap_effective; 2409 context->capset.cap.permitted = new->cap_permitted; 2410 context->type = AUDIT_CAPSET; 2411 } 2412 2413 void __audit_mmap_fd(int fd, int flags) 2414 { 2415 struct audit_context *context = current->audit_context; 2416 context->mmap.fd = fd; 2417 context->mmap.flags = flags; 2418 context->type = AUDIT_MMAP; 2419 } 2420 2421 static void audit_log_task(struct audit_buffer *ab) 2422 { 2423 kuid_t auid, uid; 2424 kgid_t gid; 2425 unsigned int sessionid; 2426 struct mm_struct *mm = current->mm; 2427 2428 auid = audit_get_loginuid(current); 2429 sessionid = audit_get_sessionid(current); 2430 current_uid_gid(&uid, &gid); 2431 2432 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2433 from_kuid(&init_user_ns, auid), 2434 from_kuid(&init_user_ns, uid), 2435 from_kgid(&init_user_ns, gid), 2436 sessionid); 2437 audit_log_task_context(ab); 2438 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current)); 2439 audit_log_untrustedstring(ab, current->comm); 2440 if (mm) { 2441 down_read(&mm->mmap_sem); 2442 if (mm->exe_file) 2443 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path); 2444 up_read(&mm->mmap_sem); 2445 } else 2446 audit_log_format(ab, " exe=(null)"); 2447 } 2448 2449 /** 2450 * audit_core_dumps - record information about processes that end abnormally 2451 * @signr: signal value 2452 * 2453 * If a process ends with a core dump, something fishy is going on and we 2454 * should record the event for investigation. 2455 */ 2456 void audit_core_dumps(long signr) 2457 { 2458 struct audit_buffer *ab; 2459 2460 if (!audit_enabled) 2461 return; 2462 2463 if (signr == SIGQUIT) /* don't care for those */ 2464 return; 2465 2466 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2467 if (unlikely(!ab)) 2468 return; 2469 audit_log_task(ab); 2470 audit_log_format(ab, " sig=%ld", signr); 2471 audit_log_end(ab); 2472 } 2473 2474 void __audit_seccomp(unsigned long syscall, long signr, int code) 2475 { 2476 struct audit_buffer *ab; 2477 2478 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2479 if (unlikely(!ab)) 2480 return; 2481 audit_log_task(ab); 2482 audit_log_format(ab, " sig=%ld", signr); 2483 audit_log_format(ab, " syscall=%ld", syscall); 2484 audit_log_format(ab, " compat=%d", is_compat_task()); 2485 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current)); 2486 audit_log_format(ab, " code=0x%x", code); 2487 audit_log_end(ab); 2488 } 2489 2490 struct list_head *audit_killed_trees(void) 2491 { 2492 struct audit_context *ctx = current->audit_context; 2493 if (likely(!ctx || !ctx->in_syscall)) 2494 return NULL; 2495 return &ctx->killed_trees; 2496 } 2497