1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/module.h> 52 #include <linux/mount.h> 53 #include <linux/socket.h> 54 #include <linux/mqueue.h> 55 #include <linux/audit.h> 56 #include <linux/personality.h> 57 #include <linux/time.h> 58 #include <linux/netlink.h> 59 #include <linux/compiler.h> 60 #include <asm/unistd.h> 61 #include <linux/security.h> 62 #include <linux/list.h> 63 #include <linux/tty.h> 64 #include <linux/selinux.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/inotify.h> 69 70 #include "audit.h" 71 72 extern struct list_head audit_filter_list[]; 73 extern int audit_ever_enabled; 74 75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 76 * for saving names from getname(). */ 77 #define AUDIT_NAMES 20 78 79 /* Indicates that audit should log the full pathname. */ 80 #define AUDIT_NAME_FULL -1 81 82 /* no execve audit message should be longer than this (userspace limits) */ 83 #define MAX_EXECVE_AUDIT_LEN 7500 84 85 /* number of audit rules */ 86 int audit_n_rules; 87 88 /* determines whether we collect data for signals sent */ 89 int audit_signals; 90 91 /* When fs/namei.c:getname() is called, we store the pointer in name and 92 * we don't let putname() free it (instead we free all of the saved 93 * pointers at syscall exit time). 94 * 95 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 96 struct audit_names { 97 const char *name; 98 int name_len; /* number of name's characters to log */ 99 unsigned name_put; /* call __putname() for this name */ 100 unsigned long ino; 101 dev_t dev; 102 umode_t mode; 103 uid_t uid; 104 gid_t gid; 105 dev_t rdev; 106 u32 osid; 107 }; 108 109 struct audit_aux_data { 110 struct audit_aux_data *next; 111 int type; 112 }; 113 114 #define AUDIT_AUX_IPCPERM 0 115 116 /* Number of target pids per aux struct. */ 117 #define AUDIT_AUX_PIDS 16 118 119 struct audit_aux_data_mq_open { 120 struct audit_aux_data d; 121 int oflag; 122 mode_t mode; 123 struct mq_attr attr; 124 }; 125 126 struct audit_aux_data_mq_sendrecv { 127 struct audit_aux_data d; 128 mqd_t mqdes; 129 size_t msg_len; 130 unsigned int msg_prio; 131 struct timespec abs_timeout; 132 }; 133 134 struct audit_aux_data_mq_notify { 135 struct audit_aux_data d; 136 mqd_t mqdes; 137 struct sigevent notification; 138 }; 139 140 struct audit_aux_data_mq_getsetattr { 141 struct audit_aux_data d; 142 mqd_t mqdes; 143 struct mq_attr mqstat; 144 }; 145 146 struct audit_aux_data_ipcctl { 147 struct audit_aux_data d; 148 struct ipc_perm p; 149 unsigned long qbytes; 150 uid_t uid; 151 gid_t gid; 152 mode_t mode; 153 u32 osid; 154 }; 155 156 struct audit_aux_data_execve { 157 struct audit_aux_data d; 158 int argc; 159 int envc; 160 struct mm_struct *mm; 161 }; 162 163 struct audit_aux_data_socketcall { 164 struct audit_aux_data d; 165 int nargs; 166 unsigned long args[0]; 167 }; 168 169 struct audit_aux_data_sockaddr { 170 struct audit_aux_data d; 171 int len; 172 char a[0]; 173 }; 174 175 struct audit_aux_data_fd_pair { 176 struct audit_aux_data d; 177 int fd[2]; 178 }; 179 180 struct audit_aux_data_pids { 181 struct audit_aux_data d; 182 pid_t target_pid[AUDIT_AUX_PIDS]; 183 uid_t target_auid[AUDIT_AUX_PIDS]; 184 uid_t target_uid[AUDIT_AUX_PIDS]; 185 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 186 u32 target_sid[AUDIT_AUX_PIDS]; 187 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 188 int pid_count; 189 }; 190 191 struct audit_tree_refs { 192 struct audit_tree_refs *next; 193 struct audit_chunk *c[31]; 194 }; 195 196 /* The per-task audit context. */ 197 struct audit_context { 198 int dummy; /* must be the first element */ 199 int in_syscall; /* 1 if task is in a syscall */ 200 enum audit_state state; 201 unsigned int serial; /* serial number for record */ 202 struct timespec ctime; /* time of syscall entry */ 203 int major; /* syscall number */ 204 unsigned long argv[4]; /* syscall arguments */ 205 int return_valid; /* return code is valid */ 206 long return_code;/* syscall return code */ 207 int auditable; /* 1 if record should be written */ 208 int name_count; 209 struct audit_names names[AUDIT_NAMES]; 210 char * filterkey; /* key for rule that triggered record */ 211 struct path pwd; 212 struct audit_context *previous; /* For nested syscalls */ 213 struct audit_aux_data *aux; 214 struct audit_aux_data *aux_pids; 215 216 /* Save things to print about task_struct */ 217 pid_t pid, ppid; 218 uid_t uid, euid, suid, fsuid; 219 gid_t gid, egid, sgid, fsgid; 220 unsigned long personality; 221 int arch; 222 223 pid_t target_pid; 224 uid_t target_auid; 225 uid_t target_uid; 226 unsigned int target_sessionid; 227 u32 target_sid; 228 char target_comm[TASK_COMM_LEN]; 229 230 struct audit_tree_refs *trees, *first_trees; 231 int tree_count; 232 233 #if AUDIT_DEBUG 234 int put_count; 235 int ino_count; 236 #endif 237 }; 238 239 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 240 static inline int open_arg(int flags, int mask) 241 { 242 int n = ACC_MODE(flags); 243 if (flags & (O_TRUNC | O_CREAT)) 244 n |= AUDIT_PERM_WRITE; 245 return n & mask; 246 } 247 248 static int audit_match_perm(struct audit_context *ctx, int mask) 249 { 250 unsigned n = ctx->major; 251 switch (audit_classify_syscall(ctx->arch, n)) { 252 case 0: /* native */ 253 if ((mask & AUDIT_PERM_WRITE) && 254 audit_match_class(AUDIT_CLASS_WRITE, n)) 255 return 1; 256 if ((mask & AUDIT_PERM_READ) && 257 audit_match_class(AUDIT_CLASS_READ, n)) 258 return 1; 259 if ((mask & AUDIT_PERM_ATTR) && 260 audit_match_class(AUDIT_CLASS_CHATTR, n)) 261 return 1; 262 return 0; 263 case 1: /* 32bit on biarch */ 264 if ((mask & AUDIT_PERM_WRITE) && 265 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 266 return 1; 267 if ((mask & AUDIT_PERM_READ) && 268 audit_match_class(AUDIT_CLASS_READ_32, n)) 269 return 1; 270 if ((mask & AUDIT_PERM_ATTR) && 271 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 272 return 1; 273 return 0; 274 case 2: /* open */ 275 return mask & ACC_MODE(ctx->argv[1]); 276 case 3: /* openat */ 277 return mask & ACC_MODE(ctx->argv[2]); 278 case 4: /* socketcall */ 279 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 280 case 5: /* execve */ 281 return mask & AUDIT_PERM_EXEC; 282 default: 283 return 0; 284 } 285 } 286 287 /* 288 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 289 * ->first_trees points to its beginning, ->trees - to the current end of data. 290 * ->tree_count is the number of free entries in array pointed to by ->trees. 291 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 292 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 293 * it's going to remain 1-element for almost any setup) until we free context itself. 294 * References in it _are_ dropped - at the same time we free/drop aux stuff. 295 */ 296 297 #ifdef CONFIG_AUDIT_TREE 298 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 299 { 300 struct audit_tree_refs *p = ctx->trees; 301 int left = ctx->tree_count; 302 if (likely(left)) { 303 p->c[--left] = chunk; 304 ctx->tree_count = left; 305 return 1; 306 } 307 if (!p) 308 return 0; 309 p = p->next; 310 if (p) { 311 p->c[30] = chunk; 312 ctx->trees = p; 313 ctx->tree_count = 30; 314 return 1; 315 } 316 return 0; 317 } 318 319 static int grow_tree_refs(struct audit_context *ctx) 320 { 321 struct audit_tree_refs *p = ctx->trees; 322 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 323 if (!ctx->trees) { 324 ctx->trees = p; 325 return 0; 326 } 327 if (p) 328 p->next = ctx->trees; 329 else 330 ctx->first_trees = ctx->trees; 331 ctx->tree_count = 31; 332 return 1; 333 } 334 #endif 335 336 static void unroll_tree_refs(struct audit_context *ctx, 337 struct audit_tree_refs *p, int count) 338 { 339 #ifdef CONFIG_AUDIT_TREE 340 struct audit_tree_refs *q; 341 int n; 342 if (!p) { 343 /* we started with empty chain */ 344 p = ctx->first_trees; 345 count = 31; 346 /* if the very first allocation has failed, nothing to do */ 347 if (!p) 348 return; 349 } 350 n = count; 351 for (q = p; q != ctx->trees; q = q->next, n = 31) { 352 while (n--) { 353 audit_put_chunk(q->c[n]); 354 q->c[n] = NULL; 355 } 356 } 357 while (n-- > ctx->tree_count) { 358 audit_put_chunk(q->c[n]); 359 q->c[n] = NULL; 360 } 361 ctx->trees = p; 362 ctx->tree_count = count; 363 #endif 364 } 365 366 static void free_tree_refs(struct audit_context *ctx) 367 { 368 struct audit_tree_refs *p, *q; 369 for (p = ctx->first_trees; p; p = q) { 370 q = p->next; 371 kfree(p); 372 } 373 } 374 375 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 376 { 377 #ifdef CONFIG_AUDIT_TREE 378 struct audit_tree_refs *p; 379 int n; 380 if (!tree) 381 return 0; 382 /* full ones */ 383 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 384 for (n = 0; n < 31; n++) 385 if (audit_tree_match(p->c[n], tree)) 386 return 1; 387 } 388 /* partial */ 389 if (p) { 390 for (n = ctx->tree_count; n < 31; n++) 391 if (audit_tree_match(p->c[n], tree)) 392 return 1; 393 } 394 #endif 395 return 0; 396 } 397 398 /* Determine if any context name data matches a rule's watch data */ 399 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 400 * otherwise. */ 401 static int audit_filter_rules(struct task_struct *tsk, 402 struct audit_krule *rule, 403 struct audit_context *ctx, 404 struct audit_names *name, 405 enum audit_state *state) 406 { 407 int i, j, need_sid = 1; 408 u32 sid; 409 410 for (i = 0; i < rule->field_count; i++) { 411 struct audit_field *f = &rule->fields[i]; 412 int result = 0; 413 414 switch (f->type) { 415 case AUDIT_PID: 416 result = audit_comparator(tsk->pid, f->op, f->val); 417 break; 418 case AUDIT_PPID: 419 if (ctx) { 420 if (!ctx->ppid) 421 ctx->ppid = sys_getppid(); 422 result = audit_comparator(ctx->ppid, f->op, f->val); 423 } 424 break; 425 case AUDIT_UID: 426 result = audit_comparator(tsk->uid, f->op, f->val); 427 break; 428 case AUDIT_EUID: 429 result = audit_comparator(tsk->euid, f->op, f->val); 430 break; 431 case AUDIT_SUID: 432 result = audit_comparator(tsk->suid, f->op, f->val); 433 break; 434 case AUDIT_FSUID: 435 result = audit_comparator(tsk->fsuid, f->op, f->val); 436 break; 437 case AUDIT_GID: 438 result = audit_comparator(tsk->gid, f->op, f->val); 439 break; 440 case AUDIT_EGID: 441 result = audit_comparator(tsk->egid, f->op, f->val); 442 break; 443 case AUDIT_SGID: 444 result = audit_comparator(tsk->sgid, f->op, f->val); 445 break; 446 case AUDIT_FSGID: 447 result = audit_comparator(tsk->fsgid, f->op, f->val); 448 break; 449 case AUDIT_PERS: 450 result = audit_comparator(tsk->personality, f->op, f->val); 451 break; 452 case AUDIT_ARCH: 453 if (ctx) 454 result = audit_comparator(ctx->arch, f->op, f->val); 455 break; 456 457 case AUDIT_EXIT: 458 if (ctx && ctx->return_valid) 459 result = audit_comparator(ctx->return_code, f->op, f->val); 460 break; 461 case AUDIT_SUCCESS: 462 if (ctx && ctx->return_valid) { 463 if (f->val) 464 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 465 else 466 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 467 } 468 break; 469 case AUDIT_DEVMAJOR: 470 if (name) 471 result = audit_comparator(MAJOR(name->dev), 472 f->op, f->val); 473 else if (ctx) { 474 for (j = 0; j < ctx->name_count; j++) { 475 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 476 ++result; 477 break; 478 } 479 } 480 } 481 break; 482 case AUDIT_DEVMINOR: 483 if (name) 484 result = audit_comparator(MINOR(name->dev), 485 f->op, f->val); 486 else if (ctx) { 487 for (j = 0; j < ctx->name_count; j++) { 488 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 489 ++result; 490 break; 491 } 492 } 493 } 494 break; 495 case AUDIT_INODE: 496 if (name) 497 result = (name->ino == f->val); 498 else if (ctx) { 499 for (j = 0; j < ctx->name_count; j++) { 500 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 501 ++result; 502 break; 503 } 504 } 505 } 506 break; 507 case AUDIT_WATCH: 508 if (name && rule->watch->ino != (unsigned long)-1) 509 result = (name->dev == rule->watch->dev && 510 name->ino == rule->watch->ino); 511 break; 512 case AUDIT_DIR: 513 if (ctx) 514 result = match_tree_refs(ctx, rule->tree); 515 break; 516 case AUDIT_LOGINUID: 517 result = 0; 518 if (ctx) 519 result = audit_comparator(tsk->loginuid, f->op, f->val); 520 break; 521 case AUDIT_SUBJ_USER: 522 case AUDIT_SUBJ_ROLE: 523 case AUDIT_SUBJ_TYPE: 524 case AUDIT_SUBJ_SEN: 525 case AUDIT_SUBJ_CLR: 526 /* NOTE: this may return negative values indicating 527 a temporary error. We simply treat this as a 528 match for now to avoid losing information that 529 may be wanted. An error message will also be 530 logged upon error */ 531 if (f->se_rule) { 532 if (need_sid) { 533 selinux_get_task_sid(tsk, &sid); 534 need_sid = 0; 535 } 536 result = selinux_audit_rule_match(sid, f->type, 537 f->op, 538 f->se_rule, 539 ctx); 540 } 541 break; 542 case AUDIT_OBJ_USER: 543 case AUDIT_OBJ_ROLE: 544 case AUDIT_OBJ_TYPE: 545 case AUDIT_OBJ_LEV_LOW: 546 case AUDIT_OBJ_LEV_HIGH: 547 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 548 also applies here */ 549 if (f->se_rule) { 550 /* Find files that match */ 551 if (name) { 552 result = selinux_audit_rule_match( 553 name->osid, f->type, f->op, 554 f->se_rule, ctx); 555 } else if (ctx) { 556 for (j = 0; j < ctx->name_count; j++) { 557 if (selinux_audit_rule_match( 558 ctx->names[j].osid, 559 f->type, f->op, 560 f->se_rule, ctx)) { 561 ++result; 562 break; 563 } 564 } 565 } 566 /* Find ipc objects that match */ 567 if (ctx) { 568 struct audit_aux_data *aux; 569 for (aux = ctx->aux; aux; 570 aux = aux->next) { 571 if (aux->type == AUDIT_IPC) { 572 struct audit_aux_data_ipcctl *axi = (void *)aux; 573 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) { 574 ++result; 575 break; 576 } 577 } 578 } 579 } 580 } 581 break; 582 case AUDIT_ARG0: 583 case AUDIT_ARG1: 584 case AUDIT_ARG2: 585 case AUDIT_ARG3: 586 if (ctx) 587 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 588 break; 589 case AUDIT_FILTERKEY: 590 /* ignore this field for filtering */ 591 result = 1; 592 break; 593 case AUDIT_PERM: 594 result = audit_match_perm(ctx, f->val); 595 break; 596 } 597 598 if (!result) 599 return 0; 600 } 601 if (rule->filterkey) 602 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 603 switch (rule->action) { 604 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 605 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 606 } 607 return 1; 608 } 609 610 /* At process creation time, we can determine if system-call auditing is 611 * completely disabled for this task. Since we only have the task 612 * structure at this point, we can only check uid and gid. 613 */ 614 static enum audit_state audit_filter_task(struct task_struct *tsk) 615 { 616 struct audit_entry *e; 617 enum audit_state state; 618 619 rcu_read_lock(); 620 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 621 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 622 rcu_read_unlock(); 623 return state; 624 } 625 } 626 rcu_read_unlock(); 627 return AUDIT_BUILD_CONTEXT; 628 } 629 630 /* At syscall entry and exit time, this filter is called if the 631 * audit_state is not low enough that auditing cannot take place, but is 632 * also not high enough that we already know we have to write an audit 633 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 634 */ 635 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 636 struct audit_context *ctx, 637 struct list_head *list) 638 { 639 struct audit_entry *e; 640 enum audit_state state; 641 642 if (audit_pid && tsk->tgid == audit_pid) 643 return AUDIT_DISABLED; 644 645 rcu_read_lock(); 646 if (!list_empty(list)) { 647 int word = AUDIT_WORD(ctx->major); 648 int bit = AUDIT_BIT(ctx->major); 649 650 list_for_each_entry_rcu(e, list, list) { 651 if ((e->rule.mask[word] & bit) == bit && 652 audit_filter_rules(tsk, &e->rule, ctx, NULL, 653 &state)) { 654 rcu_read_unlock(); 655 return state; 656 } 657 } 658 } 659 rcu_read_unlock(); 660 return AUDIT_BUILD_CONTEXT; 661 } 662 663 /* At syscall exit time, this filter is called if any audit_names[] have been 664 * collected during syscall processing. We only check rules in sublists at hash 665 * buckets applicable to the inode numbers in audit_names[]. 666 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 667 */ 668 enum audit_state audit_filter_inodes(struct task_struct *tsk, 669 struct audit_context *ctx) 670 { 671 int i; 672 struct audit_entry *e; 673 enum audit_state state; 674 675 if (audit_pid && tsk->tgid == audit_pid) 676 return AUDIT_DISABLED; 677 678 rcu_read_lock(); 679 for (i = 0; i < ctx->name_count; i++) { 680 int word = AUDIT_WORD(ctx->major); 681 int bit = AUDIT_BIT(ctx->major); 682 struct audit_names *n = &ctx->names[i]; 683 int h = audit_hash_ino((u32)n->ino); 684 struct list_head *list = &audit_inode_hash[h]; 685 686 if (list_empty(list)) 687 continue; 688 689 list_for_each_entry_rcu(e, list, list) { 690 if ((e->rule.mask[word] & bit) == bit && 691 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 692 rcu_read_unlock(); 693 return state; 694 } 695 } 696 } 697 rcu_read_unlock(); 698 return AUDIT_BUILD_CONTEXT; 699 } 700 701 void audit_set_auditable(struct audit_context *ctx) 702 { 703 ctx->auditable = 1; 704 } 705 706 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 707 int return_valid, 708 int return_code) 709 { 710 struct audit_context *context = tsk->audit_context; 711 712 if (likely(!context)) 713 return NULL; 714 context->return_valid = return_valid; 715 716 /* 717 * we need to fix up the return code in the audit logs if the actual 718 * return codes are later going to be fixed up by the arch specific 719 * signal handlers 720 * 721 * This is actually a test for: 722 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 723 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 724 * 725 * but is faster than a bunch of || 726 */ 727 if (unlikely(return_code <= -ERESTARTSYS) && 728 (return_code >= -ERESTART_RESTARTBLOCK) && 729 (return_code != -ENOIOCTLCMD)) 730 context->return_code = -EINTR; 731 else 732 context->return_code = return_code; 733 734 if (context->in_syscall && !context->dummy && !context->auditable) { 735 enum audit_state state; 736 737 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 738 if (state == AUDIT_RECORD_CONTEXT) { 739 context->auditable = 1; 740 goto get_context; 741 } 742 743 state = audit_filter_inodes(tsk, context); 744 if (state == AUDIT_RECORD_CONTEXT) 745 context->auditable = 1; 746 747 } 748 749 get_context: 750 751 tsk->audit_context = NULL; 752 return context; 753 } 754 755 static inline void audit_free_names(struct audit_context *context) 756 { 757 int i; 758 759 #if AUDIT_DEBUG == 2 760 if (context->auditable 761 ||context->put_count + context->ino_count != context->name_count) { 762 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 763 " name_count=%d put_count=%d" 764 " ino_count=%d [NOT freeing]\n", 765 __FILE__, __LINE__, 766 context->serial, context->major, context->in_syscall, 767 context->name_count, context->put_count, 768 context->ino_count); 769 for (i = 0; i < context->name_count; i++) { 770 printk(KERN_ERR "names[%d] = %p = %s\n", i, 771 context->names[i].name, 772 context->names[i].name ?: "(null)"); 773 } 774 dump_stack(); 775 return; 776 } 777 #endif 778 #if AUDIT_DEBUG 779 context->put_count = 0; 780 context->ino_count = 0; 781 #endif 782 783 for (i = 0; i < context->name_count; i++) { 784 if (context->names[i].name && context->names[i].name_put) 785 __putname(context->names[i].name); 786 } 787 context->name_count = 0; 788 path_put(&context->pwd); 789 context->pwd.dentry = NULL; 790 context->pwd.mnt = NULL; 791 } 792 793 static inline void audit_free_aux(struct audit_context *context) 794 { 795 struct audit_aux_data *aux; 796 797 while ((aux = context->aux)) { 798 context->aux = aux->next; 799 kfree(aux); 800 } 801 while ((aux = context->aux_pids)) { 802 context->aux_pids = aux->next; 803 kfree(aux); 804 } 805 } 806 807 static inline void audit_zero_context(struct audit_context *context, 808 enum audit_state state) 809 { 810 memset(context, 0, sizeof(*context)); 811 context->state = state; 812 } 813 814 static inline struct audit_context *audit_alloc_context(enum audit_state state) 815 { 816 struct audit_context *context; 817 818 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 819 return NULL; 820 audit_zero_context(context, state); 821 return context; 822 } 823 824 /** 825 * audit_alloc - allocate an audit context block for a task 826 * @tsk: task 827 * 828 * Filter on the task information and allocate a per-task audit context 829 * if necessary. Doing so turns on system call auditing for the 830 * specified task. This is called from copy_process, so no lock is 831 * needed. 832 */ 833 int audit_alloc(struct task_struct *tsk) 834 { 835 struct audit_context *context; 836 enum audit_state state; 837 838 if (likely(!audit_ever_enabled)) 839 return 0; /* Return if not auditing. */ 840 841 state = audit_filter_task(tsk); 842 if (likely(state == AUDIT_DISABLED)) 843 return 0; 844 845 if (!(context = audit_alloc_context(state))) { 846 audit_log_lost("out of memory in audit_alloc"); 847 return -ENOMEM; 848 } 849 850 tsk->audit_context = context; 851 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 852 return 0; 853 } 854 855 static inline void audit_free_context(struct audit_context *context) 856 { 857 struct audit_context *previous; 858 int count = 0; 859 860 do { 861 previous = context->previous; 862 if (previous || (count && count < 10)) { 863 ++count; 864 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 865 " freeing multiple contexts (%d)\n", 866 context->serial, context->major, 867 context->name_count, count); 868 } 869 audit_free_names(context); 870 unroll_tree_refs(context, NULL, 0); 871 free_tree_refs(context); 872 audit_free_aux(context); 873 kfree(context->filterkey); 874 kfree(context); 875 context = previous; 876 } while (context); 877 if (count >= 10) 878 printk(KERN_ERR "audit: freed %d contexts\n", count); 879 } 880 881 void audit_log_task_context(struct audit_buffer *ab) 882 { 883 char *ctx = NULL; 884 unsigned len; 885 int error; 886 u32 sid; 887 888 selinux_get_task_sid(current, &sid); 889 if (!sid) 890 return; 891 892 error = selinux_sid_to_string(sid, &ctx, &len); 893 if (error) { 894 if (error != -EINVAL) 895 goto error_path; 896 return; 897 } 898 899 audit_log_format(ab, " subj=%s", ctx); 900 kfree(ctx); 901 return; 902 903 error_path: 904 audit_panic("error in audit_log_task_context"); 905 return; 906 } 907 908 EXPORT_SYMBOL(audit_log_task_context); 909 910 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 911 { 912 char name[sizeof(tsk->comm)]; 913 struct mm_struct *mm = tsk->mm; 914 struct vm_area_struct *vma; 915 916 /* tsk == current */ 917 918 get_task_comm(name, tsk); 919 audit_log_format(ab, " comm="); 920 audit_log_untrustedstring(ab, name); 921 922 if (mm) { 923 down_read(&mm->mmap_sem); 924 vma = mm->mmap; 925 while (vma) { 926 if ((vma->vm_flags & VM_EXECUTABLE) && 927 vma->vm_file) { 928 audit_log_d_path(ab, "exe=", 929 &vma->vm_file->f_path); 930 break; 931 } 932 vma = vma->vm_next; 933 } 934 up_read(&mm->mmap_sem); 935 } 936 audit_log_task_context(ab); 937 } 938 939 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 940 uid_t auid, uid_t uid, unsigned int sessionid, 941 u32 sid, char *comm) 942 { 943 struct audit_buffer *ab; 944 char *s = NULL; 945 u32 len; 946 int rc = 0; 947 948 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 949 if (!ab) 950 return rc; 951 952 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 953 uid, sessionid); 954 if (selinux_sid_to_string(sid, &s, &len)) { 955 audit_log_format(ab, " obj=(none)"); 956 rc = 1; 957 } else 958 audit_log_format(ab, " obj=%s", s); 959 audit_log_format(ab, " ocomm="); 960 audit_log_untrustedstring(ab, comm); 961 audit_log_end(ab); 962 kfree(s); 963 964 return rc; 965 } 966 967 /* 968 * to_send and len_sent accounting are very loose estimates. We aren't 969 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 970 * within about 500 bytes (next page boundry) 971 * 972 * why snprintf? an int is up to 12 digits long. if we just assumed when 973 * logging that a[%d]= was going to be 16 characters long we would be wasting 974 * space in every audit message. In one 7500 byte message we can log up to 975 * about 1000 min size arguments. That comes down to about 50% waste of space 976 * if we didn't do the snprintf to find out how long arg_num_len was. 977 */ 978 static int audit_log_single_execve_arg(struct audit_context *context, 979 struct audit_buffer **ab, 980 int arg_num, 981 size_t *len_sent, 982 const char __user *p, 983 char *buf) 984 { 985 char arg_num_len_buf[12]; 986 const char __user *tmp_p = p; 987 /* how many digits are in arg_num? 3 is the length of a=\n */ 988 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3; 989 size_t len, len_left, to_send; 990 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 991 unsigned int i, has_cntl = 0, too_long = 0; 992 int ret; 993 994 /* strnlen_user includes the null we don't want to send */ 995 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 996 997 /* 998 * We just created this mm, if we can't find the strings 999 * we just copied into it something is _very_ wrong. Similar 1000 * for strings that are too long, we should not have created 1001 * any. 1002 */ 1003 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1004 WARN_ON(1); 1005 send_sig(SIGKILL, current, 0); 1006 return -1; 1007 } 1008 1009 /* walk the whole argument looking for non-ascii chars */ 1010 do { 1011 if (len_left > MAX_EXECVE_AUDIT_LEN) 1012 to_send = MAX_EXECVE_AUDIT_LEN; 1013 else 1014 to_send = len_left; 1015 ret = copy_from_user(buf, tmp_p, to_send); 1016 /* 1017 * There is no reason for this copy to be short. We just 1018 * copied them here, and the mm hasn't been exposed to user- 1019 * space yet. 1020 */ 1021 if (ret) { 1022 WARN_ON(1); 1023 send_sig(SIGKILL, current, 0); 1024 return -1; 1025 } 1026 buf[to_send] = '\0'; 1027 has_cntl = audit_string_contains_control(buf, to_send); 1028 if (has_cntl) { 1029 /* 1030 * hex messages get logged as 2 bytes, so we can only 1031 * send half as much in each message 1032 */ 1033 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1034 break; 1035 } 1036 len_left -= to_send; 1037 tmp_p += to_send; 1038 } while (len_left > 0); 1039 1040 len_left = len; 1041 1042 if (len > max_execve_audit_len) 1043 too_long = 1; 1044 1045 /* rewalk the argument actually logging the message */ 1046 for (i = 0; len_left > 0; i++) { 1047 int room_left; 1048 1049 if (len_left > max_execve_audit_len) 1050 to_send = max_execve_audit_len; 1051 else 1052 to_send = len_left; 1053 1054 /* do we have space left to send this argument in this ab? */ 1055 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1056 if (has_cntl) 1057 room_left -= (to_send * 2); 1058 else 1059 room_left -= to_send; 1060 if (room_left < 0) { 1061 *len_sent = 0; 1062 audit_log_end(*ab); 1063 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1064 if (!*ab) 1065 return 0; 1066 } 1067 1068 /* 1069 * first record needs to say how long the original string was 1070 * so we can be sure nothing was lost. 1071 */ 1072 if ((i == 0) && (too_long)) 1073 audit_log_format(*ab, "a%d_len=%zu ", arg_num, 1074 has_cntl ? 2*len : len); 1075 1076 /* 1077 * normally arguments are small enough to fit and we already 1078 * filled buf above when we checked for control characters 1079 * so don't bother with another copy_from_user 1080 */ 1081 if (len >= max_execve_audit_len) 1082 ret = copy_from_user(buf, p, to_send); 1083 else 1084 ret = 0; 1085 if (ret) { 1086 WARN_ON(1); 1087 send_sig(SIGKILL, current, 0); 1088 return -1; 1089 } 1090 buf[to_send] = '\0'; 1091 1092 /* actually log it */ 1093 audit_log_format(*ab, "a%d", arg_num); 1094 if (too_long) 1095 audit_log_format(*ab, "[%d]", i); 1096 audit_log_format(*ab, "="); 1097 if (has_cntl) 1098 audit_log_hex(*ab, buf, to_send); 1099 else 1100 audit_log_format(*ab, "\"%s\"", buf); 1101 audit_log_format(*ab, "\n"); 1102 1103 p += to_send; 1104 len_left -= to_send; 1105 *len_sent += arg_num_len; 1106 if (has_cntl) 1107 *len_sent += to_send * 2; 1108 else 1109 *len_sent += to_send; 1110 } 1111 /* include the null we didn't log */ 1112 return len + 1; 1113 } 1114 1115 static void audit_log_execve_info(struct audit_context *context, 1116 struct audit_buffer **ab, 1117 struct audit_aux_data_execve *axi) 1118 { 1119 int i; 1120 size_t len, len_sent = 0; 1121 const char __user *p; 1122 char *buf; 1123 1124 if (axi->mm != current->mm) 1125 return; /* execve failed, no additional info */ 1126 1127 p = (const char __user *)axi->mm->arg_start; 1128 1129 audit_log_format(*ab, "argc=%d ", axi->argc); 1130 1131 /* 1132 * we need some kernel buffer to hold the userspace args. Just 1133 * allocate one big one rather than allocating one of the right size 1134 * for every single argument inside audit_log_single_execve_arg() 1135 * should be <8k allocation so should be pretty safe. 1136 */ 1137 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1138 if (!buf) { 1139 audit_panic("out of memory for argv string\n"); 1140 return; 1141 } 1142 1143 for (i = 0; i < axi->argc; i++) { 1144 len = audit_log_single_execve_arg(context, ab, i, 1145 &len_sent, p, buf); 1146 if (len <= 0) 1147 break; 1148 p += len; 1149 } 1150 kfree(buf); 1151 } 1152 1153 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1154 { 1155 int i, call_panic = 0; 1156 struct audit_buffer *ab; 1157 struct audit_aux_data *aux; 1158 const char *tty; 1159 1160 /* tsk == current */ 1161 context->pid = tsk->pid; 1162 if (!context->ppid) 1163 context->ppid = sys_getppid(); 1164 context->uid = tsk->uid; 1165 context->gid = tsk->gid; 1166 context->euid = tsk->euid; 1167 context->suid = tsk->suid; 1168 context->fsuid = tsk->fsuid; 1169 context->egid = tsk->egid; 1170 context->sgid = tsk->sgid; 1171 context->fsgid = tsk->fsgid; 1172 context->personality = tsk->personality; 1173 1174 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1175 if (!ab) 1176 return; /* audit_panic has been called */ 1177 audit_log_format(ab, "arch=%x syscall=%d", 1178 context->arch, context->major); 1179 if (context->personality != PER_LINUX) 1180 audit_log_format(ab, " per=%lx", context->personality); 1181 if (context->return_valid) 1182 audit_log_format(ab, " success=%s exit=%ld", 1183 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1184 context->return_code); 1185 1186 mutex_lock(&tty_mutex); 1187 read_lock(&tasklist_lock); 1188 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1189 tty = tsk->signal->tty->name; 1190 else 1191 tty = "(none)"; 1192 read_unlock(&tasklist_lock); 1193 audit_log_format(ab, 1194 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1195 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1196 " euid=%u suid=%u fsuid=%u" 1197 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1198 context->argv[0], 1199 context->argv[1], 1200 context->argv[2], 1201 context->argv[3], 1202 context->name_count, 1203 context->ppid, 1204 context->pid, 1205 tsk->loginuid, 1206 context->uid, 1207 context->gid, 1208 context->euid, context->suid, context->fsuid, 1209 context->egid, context->sgid, context->fsgid, tty, 1210 tsk->sessionid); 1211 1212 mutex_unlock(&tty_mutex); 1213 1214 audit_log_task_info(ab, tsk); 1215 if (context->filterkey) { 1216 audit_log_format(ab, " key="); 1217 audit_log_untrustedstring(ab, context->filterkey); 1218 } else 1219 audit_log_format(ab, " key=(null)"); 1220 audit_log_end(ab); 1221 1222 for (aux = context->aux; aux; aux = aux->next) { 1223 1224 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1225 if (!ab) 1226 continue; /* audit_panic has been called */ 1227 1228 switch (aux->type) { 1229 case AUDIT_MQ_OPEN: { 1230 struct audit_aux_data_mq_open *axi = (void *)aux; 1231 audit_log_format(ab, 1232 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 1233 "mq_msgsize=%ld mq_curmsgs=%ld", 1234 axi->oflag, axi->mode, axi->attr.mq_flags, 1235 axi->attr.mq_maxmsg, axi->attr.mq_msgsize, 1236 axi->attr.mq_curmsgs); 1237 break; } 1238 1239 case AUDIT_MQ_SENDRECV: { 1240 struct audit_aux_data_mq_sendrecv *axi = (void *)aux; 1241 audit_log_format(ab, 1242 "mqdes=%d msg_len=%zd msg_prio=%u " 1243 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1244 axi->mqdes, axi->msg_len, axi->msg_prio, 1245 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec); 1246 break; } 1247 1248 case AUDIT_MQ_NOTIFY: { 1249 struct audit_aux_data_mq_notify *axi = (void *)aux; 1250 audit_log_format(ab, 1251 "mqdes=%d sigev_signo=%d", 1252 axi->mqdes, 1253 axi->notification.sigev_signo); 1254 break; } 1255 1256 case AUDIT_MQ_GETSETATTR: { 1257 struct audit_aux_data_mq_getsetattr *axi = (void *)aux; 1258 audit_log_format(ab, 1259 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1260 "mq_curmsgs=%ld ", 1261 axi->mqdes, 1262 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg, 1263 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs); 1264 break; } 1265 1266 case AUDIT_IPC: { 1267 struct audit_aux_data_ipcctl *axi = (void *)aux; 1268 audit_log_format(ab, 1269 "ouid=%u ogid=%u mode=%#o", 1270 axi->uid, axi->gid, axi->mode); 1271 if (axi->osid != 0) { 1272 char *ctx = NULL; 1273 u32 len; 1274 if (selinux_sid_to_string( 1275 axi->osid, &ctx, &len)) { 1276 audit_log_format(ab, " osid=%u", 1277 axi->osid); 1278 call_panic = 1; 1279 } else 1280 audit_log_format(ab, " obj=%s", ctx); 1281 kfree(ctx); 1282 } 1283 break; } 1284 1285 case AUDIT_IPC_SET_PERM: { 1286 struct audit_aux_data_ipcctl *axi = (void *)aux; 1287 audit_log_format(ab, 1288 "qbytes=%lx ouid=%u ogid=%u mode=%#o", 1289 axi->qbytes, axi->uid, axi->gid, axi->mode); 1290 break; } 1291 1292 case AUDIT_EXECVE: { 1293 struct audit_aux_data_execve *axi = (void *)aux; 1294 audit_log_execve_info(context, &ab, axi); 1295 break; } 1296 1297 case AUDIT_SOCKETCALL: { 1298 int i; 1299 struct audit_aux_data_socketcall *axs = (void *)aux; 1300 audit_log_format(ab, "nargs=%d", axs->nargs); 1301 for (i=0; i<axs->nargs; i++) 1302 audit_log_format(ab, " a%d=%lx", i, axs->args[i]); 1303 break; } 1304 1305 case AUDIT_SOCKADDR: { 1306 struct audit_aux_data_sockaddr *axs = (void *)aux; 1307 1308 audit_log_format(ab, "saddr="); 1309 audit_log_hex(ab, axs->a, axs->len); 1310 break; } 1311 1312 case AUDIT_FD_PAIR: { 1313 struct audit_aux_data_fd_pair *axs = (void *)aux; 1314 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]); 1315 break; } 1316 1317 } 1318 audit_log_end(ab); 1319 } 1320 1321 for (aux = context->aux_pids; aux; aux = aux->next) { 1322 struct audit_aux_data_pids *axs = (void *)aux; 1323 int i; 1324 1325 for (i = 0; i < axs->pid_count; i++) 1326 if (audit_log_pid_context(context, axs->target_pid[i], 1327 axs->target_auid[i], 1328 axs->target_uid[i], 1329 axs->target_sessionid[i], 1330 axs->target_sid[i], 1331 axs->target_comm[i])) 1332 call_panic = 1; 1333 } 1334 1335 if (context->target_pid && 1336 audit_log_pid_context(context, context->target_pid, 1337 context->target_auid, context->target_uid, 1338 context->target_sessionid, 1339 context->target_sid, context->target_comm)) 1340 call_panic = 1; 1341 1342 if (context->pwd.dentry && context->pwd.mnt) { 1343 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1344 if (ab) { 1345 audit_log_d_path(ab, "cwd=", &context->pwd); 1346 audit_log_end(ab); 1347 } 1348 } 1349 for (i = 0; i < context->name_count; i++) { 1350 struct audit_names *n = &context->names[i]; 1351 1352 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1353 if (!ab) 1354 continue; /* audit_panic has been called */ 1355 1356 audit_log_format(ab, "item=%d", i); 1357 1358 if (n->name) { 1359 switch(n->name_len) { 1360 case AUDIT_NAME_FULL: 1361 /* log the full path */ 1362 audit_log_format(ab, " name="); 1363 audit_log_untrustedstring(ab, n->name); 1364 break; 1365 case 0: 1366 /* name was specified as a relative path and the 1367 * directory component is the cwd */ 1368 audit_log_d_path(ab, " name=", &context->pwd); 1369 break; 1370 default: 1371 /* log the name's directory component */ 1372 audit_log_format(ab, " name="); 1373 audit_log_n_untrustedstring(ab, n->name_len, 1374 n->name); 1375 } 1376 } else 1377 audit_log_format(ab, " name=(null)"); 1378 1379 if (n->ino != (unsigned long)-1) { 1380 audit_log_format(ab, " inode=%lu" 1381 " dev=%02x:%02x mode=%#o" 1382 " ouid=%u ogid=%u rdev=%02x:%02x", 1383 n->ino, 1384 MAJOR(n->dev), 1385 MINOR(n->dev), 1386 n->mode, 1387 n->uid, 1388 n->gid, 1389 MAJOR(n->rdev), 1390 MINOR(n->rdev)); 1391 } 1392 if (n->osid != 0) { 1393 char *ctx = NULL; 1394 u32 len; 1395 if (selinux_sid_to_string( 1396 n->osid, &ctx, &len)) { 1397 audit_log_format(ab, " osid=%u", n->osid); 1398 call_panic = 2; 1399 } else 1400 audit_log_format(ab, " obj=%s", ctx); 1401 kfree(ctx); 1402 } 1403 1404 audit_log_end(ab); 1405 } 1406 1407 /* Send end of event record to help user space know we are finished */ 1408 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1409 if (ab) 1410 audit_log_end(ab); 1411 if (call_panic) 1412 audit_panic("error converting sid to string"); 1413 } 1414 1415 /** 1416 * audit_free - free a per-task audit context 1417 * @tsk: task whose audit context block to free 1418 * 1419 * Called from copy_process and do_exit 1420 */ 1421 void audit_free(struct task_struct *tsk) 1422 { 1423 struct audit_context *context; 1424 1425 context = audit_get_context(tsk, 0, 0); 1426 if (likely(!context)) 1427 return; 1428 1429 /* Check for system calls that do not go through the exit 1430 * function (e.g., exit_group), then free context block. 1431 * We use GFP_ATOMIC here because we might be doing this 1432 * in the context of the idle thread */ 1433 /* that can happen only if we are called from do_exit() */ 1434 if (context->in_syscall && context->auditable) 1435 audit_log_exit(context, tsk); 1436 1437 audit_free_context(context); 1438 } 1439 1440 /** 1441 * audit_syscall_entry - fill in an audit record at syscall entry 1442 * @tsk: task being audited 1443 * @arch: architecture type 1444 * @major: major syscall type (function) 1445 * @a1: additional syscall register 1 1446 * @a2: additional syscall register 2 1447 * @a3: additional syscall register 3 1448 * @a4: additional syscall register 4 1449 * 1450 * Fill in audit context at syscall entry. This only happens if the 1451 * audit context was created when the task was created and the state or 1452 * filters demand the audit context be built. If the state from the 1453 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1454 * then the record will be written at syscall exit time (otherwise, it 1455 * will only be written if another part of the kernel requests that it 1456 * be written). 1457 */ 1458 void audit_syscall_entry(int arch, int major, 1459 unsigned long a1, unsigned long a2, 1460 unsigned long a3, unsigned long a4) 1461 { 1462 struct task_struct *tsk = current; 1463 struct audit_context *context = tsk->audit_context; 1464 enum audit_state state; 1465 1466 BUG_ON(!context); 1467 1468 /* 1469 * This happens only on certain architectures that make system 1470 * calls in kernel_thread via the entry.S interface, instead of 1471 * with direct calls. (If you are porting to a new 1472 * architecture, hitting this condition can indicate that you 1473 * got the _exit/_leave calls backward in entry.S.) 1474 * 1475 * i386 no 1476 * x86_64 no 1477 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1478 * 1479 * This also happens with vm86 emulation in a non-nested manner 1480 * (entries without exits), so this case must be caught. 1481 */ 1482 if (context->in_syscall) { 1483 struct audit_context *newctx; 1484 1485 #if AUDIT_DEBUG 1486 printk(KERN_ERR 1487 "audit(:%d) pid=%d in syscall=%d;" 1488 " entering syscall=%d\n", 1489 context->serial, tsk->pid, context->major, major); 1490 #endif 1491 newctx = audit_alloc_context(context->state); 1492 if (newctx) { 1493 newctx->previous = context; 1494 context = newctx; 1495 tsk->audit_context = newctx; 1496 } else { 1497 /* If we can't alloc a new context, the best we 1498 * can do is to leak memory (any pending putname 1499 * will be lost). The only other alternative is 1500 * to abandon auditing. */ 1501 audit_zero_context(context, context->state); 1502 } 1503 } 1504 BUG_ON(context->in_syscall || context->name_count); 1505 1506 if (!audit_enabled) 1507 return; 1508 1509 context->arch = arch; 1510 context->major = major; 1511 context->argv[0] = a1; 1512 context->argv[1] = a2; 1513 context->argv[2] = a3; 1514 context->argv[3] = a4; 1515 1516 state = context->state; 1517 context->dummy = !audit_n_rules; 1518 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT)) 1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1520 if (likely(state == AUDIT_DISABLED)) 1521 return; 1522 1523 context->serial = 0; 1524 context->ctime = CURRENT_TIME; 1525 context->in_syscall = 1; 1526 context->auditable = !!(state == AUDIT_RECORD_CONTEXT); 1527 context->ppid = 0; 1528 } 1529 1530 /** 1531 * audit_syscall_exit - deallocate audit context after a system call 1532 * @tsk: task being audited 1533 * @valid: success/failure flag 1534 * @return_code: syscall return value 1535 * 1536 * Tear down after system call. If the audit context has been marked as 1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1538 * filtering, or because some other part of the kernel write an audit 1539 * message), then write out the syscall information. In call cases, 1540 * free the names stored from getname(). 1541 */ 1542 void audit_syscall_exit(int valid, long return_code) 1543 { 1544 struct task_struct *tsk = current; 1545 struct audit_context *context; 1546 1547 context = audit_get_context(tsk, valid, return_code); 1548 1549 if (likely(!context)) 1550 return; 1551 1552 if (context->in_syscall && context->auditable) 1553 audit_log_exit(context, tsk); 1554 1555 context->in_syscall = 0; 1556 context->auditable = 0; 1557 1558 if (context->previous) { 1559 struct audit_context *new_context = context->previous; 1560 context->previous = NULL; 1561 audit_free_context(context); 1562 tsk->audit_context = new_context; 1563 } else { 1564 audit_free_names(context); 1565 unroll_tree_refs(context, NULL, 0); 1566 audit_free_aux(context); 1567 context->aux = NULL; 1568 context->aux_pids = NULL; 1569 context->target_pid = 0; 1570 context->target_sid = 0; 1571 kfree(context->filterkey); 1572 context->filterkey = NULL; 1573 tsk->audit_context = context; 1574 } 1575 } 1576 1577 static inline void handle_one(const struct inode *inode) 1578 { 1579 #ifdef CONFIG_AUDIT_TREE 1580 struct audit_context *context; 1581 struct audit_tree_refs *p; 1582 struct audit_chunk *chunk; 1583 int count; 1584 if (likely(list_empty(&inode->inotify_watches))) 1585 return; 1586 context = current->audit_context; 1587 p = context->trees; 1588 count = context->tree_count; 1589 rcu_read_lock(); 1590 chunk = audit_tree_lookup(inode); 1591 rcu_read_unlock(); 1592 if (!chunk) 1593 return; 1594 if (likely(put_tree_ref(context, chunk))) 1595 return; 1596 if (unlikely(!grow_tree_refs(context))) { 1597 printk(KERN_WARNING "out of memory, audit has lost a tree reference"); 1598 audit_set_auditable(context); 1599 audit_put_chunk(chunk); 1600 unroll_tree_refs(context, p, count); 1601 return; 1602 } 1603 put_tree_ref(context, chunk); 1604 #endif 1605 } 1606 1607 static void handle_path(const struct dentry *dentry) 1608 { 1609 #ifdef CONFIG_AUDIT_TREE 1610 struct audit_context *context; 1611 struct audit_tree_refs *p; 1612 const struct dentry *d, *parent; 1613 struct audit_chunk *drop; 1614 unsigned long seq; 1615 int count; 1616 1617 context = current->audit_context; 1618 p = context->trees; 1619 count = context->tree_count; 1620 retry: 1621 drop = NULL; 1622 d = dentry; 1623 rcu_read_lock(); 1624 seq = read_seqbegin(&rename_lock); 1625 for(;;) { 1626 struct inode *inode = d->d_inode; 1627 if (inode && unlikely(!list_empty(&inode->inotify_watches))) { 1628 struct audit_chunk *chunk; 1629 chunk = audit_tree_lookup(inode); 1630 if (chunk) { 1631 if (unlikely(!put_tree_ref(context, chunk))) { 1632 drop = chunk; 1633 break; 1634 } 1635 } 1636 } 1637 parent = d->d_parent; 1638 if (parent == d) 1639 break; 1640 d = parent; 1641 } 1642 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1643 rcu_read_unlock(); 1644 if (!drop) { 1645 /* just a race with rename */ 1646 unroll_tree_refs(context, p, count); 1647 goto retry; 1648 } 1649 audit_put_chunk(drop); 1650 if (grow_tree_refs(context)) { 1651 /* OK, got more space */ 1652 unroll_tree_refs(context, p, count); 1653 goto retry; 1654 } 1655 /* too bad */ 1656 printk(KERN_WARNING 1657 "out of memory, audit has lost a tree reference"); 1658 unroll_tree_refs(context, p, count); 1659 audit_set_auditable(context); 1660 return; 1661 } 1662 rcu_read_unlock(); 1663 #endif 1664 } 1665 1666 /** 1667 * audit_getname - add a name to the list 1668 * @name: name to add 1669 * 1670 * Add a name to the list of audit names for this context. 1671 * Called from fs/namei.c:getname(). 1672 */ 1673 void __audit_getname(const char *name) 1674 { 1675 struct audit_context *context = current->audit_context; 1676 1677 if (IS_ERR(name) || !name) 1678 return; 1679 1680 if (!context->in_syscall) { 1681 #if AUDIT_DEBUG == 2 1682 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1683 __FILE__, __LINE__, context->serial, name); 1684 dump_stack(); 1685 #endif 1686 return; 1687 } 1688 BUG_ON(context->name_count >= AUDIT_NAMES); 1689 context->names[context->name_count].name = name; 1690 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1691 context->names[context->name_count].name_put = 1; 1692 context->names[context->name_count].ino = (unsigned long)-1; 1693 context->names[context->name_count].osid = 0; 1694 ++context->name_count; 1695 if (!context->pwd.dentry) { 1696 read_lock(¤t->fs->lock); 1697 context->pwd = current->fs->pwd; 1698 path_get(¤t->fs->pwd); 1699 read_unlock(¤t->fs->lock); 1700 } 1701 1702 } 1703 1704 /* audit_putname - intercept a putname request 1705 * @name: name to intercept and delay for putname 1706 * 1707 * If we have stored the name from getname in the audit context, 1708 * then we delay the putname until syscall exit. 1709 * Called from include/linux/fs.h:putname(). 1710 */ 1711 void audit_putname(const char *name) 1712 { 1713 struct audit_context *context = current->audit_context; 1714 1715 BUG_ON(!context); 1716 if (!context->in_syscall) { 1717 #if AUDIT_DEBUG == 2 1718 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1719 __FILE__, __LINE__, context->serial, name); 1720 if (context->name_count) { 1721 int i; 1722 for (i = 0; i < context->name_count; i++) 1723 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1724 context->names[i].name, 1725 context->names[i].name ?: "(null)"); 1726 } 1727 #endif 1728 __putname(name); 1729 } 1730 #if AUDIT_DEBUG 1731 else { 1732 ++context->put_count; 1733 if (context->put_count > context->name_count) { 1734 printk(KERN_ERR "%s:%d(:%d): major=%d" 1735 " in_syscall=%d putname(%p) name_count=%d" 1736 " put_count=%d\n", 1737 __FILE__, __LINE__, 1738 context->serial, context->major, 1739 context->in_syscall, name, context->name_count, 1740 context->put_count); 1741 dump_stack(); 1742 } 1743 } 1744 #endif 1745 } 1746 1747 static int audit_inc_name_count(struct audit_context *context, 1748 const struct inode *inode) 1749 { 1750 if (context->name_count >= AUDIT_NAMES) { 1751 if (inode) 1752 printk(KERN_DEBUG "name_count maxed, losing inode data: " 1753 "dev=%02x:%02x, inode=%lu", 1754 MAJOR(inode->i_sb->s_dev), 1755 MINOR(inode->i_sb->s_dev), 1756 inode->i_ino); 1757 1758 else 1759 printk(KERN_DEBUG "name_count maxed, losing inode data"); 1760 return 1; 1761 } 1762 context->name_count++; 1763 #if AUDIT_DEBUG 1764 context->ino_count++; 1765 #endif 1766 return 0; 1767 } 1768 1769 /* Copy inode data into an audit_names. */ 1770 static void audit_copy_inode(struct audit_names *name, const struct inode *inode) 1771 { 1772 name->ino = inode->i_ino; 1773 name->dev = inode->i_sb->s_dev; 1774 name->mode = inode->i_mode; 1775 name->uid = inode->i_uid; 1776 name->gid = inode->i_gid; 1777 name->rdev = inode->i_rdev; 1778 selinux_get_inode_sid(inode, &name->osid); 1779 } 1780 1781 /** 1782 * audit_inode - store the inode and device from a lookup 1783 * @name: name being audited 1784 * @dentry: dentry being audited 1785 * 1786 * Called from fs/namei.c:path_lookup(). 1787 */ 1788 void __audit_inode(const char *name, const struct dentry *dentry) 1789 { 1790 int idx; 1791 struct audit_context *context = current->audit_context; 1792 const struct inode *inode = dentry->d_inode; 1793 1794 if (!context->in_syscall) 1795 return; 1796 if (context->name_count 1797 && context->names[context->name_count-1].name 1798 && context->names[context->name_count-1].name == name) 1799 idx = context->name_count - 1; 1800 else if (context->name_count > 1 1801 && context->names[context->name_count-2].name 1802 && context->names[context->name_count-2].name == name) 1803 idx = context->name_count - 2; 1804 else { 1805 /* FIXME: how much do we care about inodes that have no 1806 * associated name? */ 1807 if (audit_inc_name_count(context, inode)) 1808 return; 1809 idx = context->name_count - 1; 1810 context->names[idx].name = NULL; 1811 } 1812 handle_path(dentry); 1813 audit_copy_inode(&context->names[idx], inode); 1814 } 1815 1816 /** 1817 * audit_inode_child - collect inode info for created/removed objects 1818 * @dname: inode's dentry name 1819 * @dentry: dentry being audited 1820 * @parent: inode of dentry parent 1821 * 1822 * For syscalls that create or remove filesystem objects, audit_inode 1823 * can only collect information for the filesystem object's parent. 1824 * This call updates the audit context with the child's information. 1825 * Syscalls that create a new filesystem object must be hooked after 1826 * the object is created. Syscalls that remove a filesystem object 1827 * must be hooked prior, in order to capture the target inode during 1828 * unsuccessful attempts. 1829 */ 1830 void __audit_inode_child(const char *dname, const struct dentry *dentry, 1831 const struct inode *parent) 1832 { 1833 int idx; 1834 struct audit_context *context = current->audit_context; 1835 const char *found_parent = NULL, *found_child = NULL; 1836 const struct inode *inode = dentry->d_inode; 1837 int dirlen = 0; 1838 1839 if (!context->in_syscall) 1840 return; 1841 1842 if (inode) 1843 handle_one(inode); 1844 /* determine matching parent */ 1845 if (!dname) 1846 goto add_names; 1847 1848 /* parent is more likely, look for it first */ 1849 for (idx = 0; idx < context->name_count; idx++) { 1850 struct audit_names *n = &context->names[idx]; 1851 1852 if (!n->name) 1853 continue; 1854 1855 if (n->ino == parent->i_ino && 1856 !audit_compare_dname_path(dname, n->name, &dirlen)) { 1857 n->name_len = dirlen; /* update parent data in place */ 1858 found_parent = n->name; 1859 goto add_names; 1860 } 1861 } 1862 1863 /* no matching parent, look for matching child */ 1864 for (idx = 0; idx < context->name_count; idx++) { 1865 struct audit_names *n = &context->names[idx]; 1866 1867 if (!n->name) 1868 continue; 1869 1870 /* strcmp() is the more likely scenario */ 1871 if (!strcmp(dname, n->name) || 1872 !audit_compare_dname_path(dname, n->name, &dirlen)) { 1873 if (inode) 1874 audit_copy_inode(n, inode); 1875 else 1876 n->ino = (unsigned long)-1; 1877 found_child = n->name; 1878 goto add_names; 1879 } 1880 } 1881 1882 add_names: 1883 if (!found_parent) { 1884 if (audit_inc_name_count(context, parent)) 1885 return; 1886 idx = context->name_count - 1; 1887 context->names[idx].name = NULL; 1888 audit_copy_inode(&context->names[idx], parent); 1889 } 1890 1891 if (!found_child) { 1892 if (audit_inc_name_count(context, inode)) 1893 return; 1894 idx = context->name_count - 1; 1895 1896 /* Re-use the name belonging to the slot for a matching parent 1897 * directory. All names for this context are relinquished in 1898 * audit_free_names() */ 1899 if (found_parent) { 1900 context->names[idx].name = found_parent; 1901 context->names[idx].name_len = AUDIT_NAME_FULL; 1902 /* don't call __putname() */ 1903 context->names[idx].name_put = 0; 1904 } else { 1905 context->names[idx].name = NULL; 1906 } 1907 1908 if (inode) 1909 audit_copy_inode(&context->names[idx], inode); 1910 else 1911 context->names[idx].ino = (unsigned long)-1; 1912 } 1913 } 1914 EXPORT_SYMBOL_GPL(__audit_inode_child); 1915 1916 /** 1917 * auditsc_get_stamp - get local copies of audit_context values 1918 * @ctx: audit_context for the task 1919 * @t: timespec to store time recorded in the audit_context 1920 * @serial: serial value that is recorded in the audit_context 1921 * 1922 * Also sets the context as auditable. 1923 */ 1924 void auditsc_get_stamp(struct audit_context *ctx, 1925 struct timespec *t, unsigned int *serial) 1926 { 1927 if (!ctx->serial) 1928 ctx->serial = audit_serial(); 1929 t->tv_sec = ctx->ctime.tv_sec; 1930 t->tv_nsec = ctx->ctime.tv_nsec; 1931 *serial = ctx->serial; 1932 ctx->auditable = 1; 1933 } 1934 1935 /* global counter which is incremented every time something logs in */ 1936 static atomic_t session_id = ATOMIC_INIT(0); 1937 1938 /** 1939 * audit_set_loginuid - set a task's audit_context loginuid 1940 * @task: task whose audit context is being modified 1941 * @loginuid: loginuid value 1942 * 1943 * Returns 0. 1944 * 1945 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 1946 */ 1947 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 1948 { 1949 unsigned int sessionid = atomic_inc_return(&session_id); 1950 struct audit_context *context = task->audit_context; 1951 1952 if (context && context->in_syscall) { 1953 struct audit_buffer *ab; 1954 1955 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1956 if (ab) { 1957 audit_log_format(ab, "login pid=%d uid=%u " 1958 "old auid=%u new auid=%u" 1959 " old ses=%u new ses=%u", 1960 task->pid, task->uid, 1961 task->loginuid, loginuid, 1962 task->sessionid, sessionid); 1963 audit_log_end(ab); 1964 } 1965 } 1966 task->sessionid = sessionid; 1967 task->loginuid = loginuid; 1968 return 0; 1969 } 1970 1971 /** 1972 * __audit_mq_open - record audit data for a POSIX MQ open 1973 * @oflag: open flag 1974 * @mode: mode bits 1975 * @u_attr: queue attributes 1976 * 1977 * Returns 0 for success or NULL context or < 0 on error. 1978 */ 1979 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr) 1980 { 1981 struct audit_aux_data_mq_open *ax; 1982 struct audit_context *context = current->audit_context; 1983 1984 if (!audit_enabled) 1985 return 0; 1986 1987 if (likely(!context)) 1988 return 0; 1989 1990 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 1991 if (!ax) 1992 return -ENOMEM; 1993 1994 if (u_attr != NULL) { 1995 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) { 1996 kfree(ax); 1997 return -EFAULT; 1998 } 1999 } else 2000 memset(&ax->attr, 0, sizeof(ax->attr)); 2001 2002 ax->oflag = oflag; 2003 ax->mode = mode; 2004 2005 ax->d.type = AUDIT_MQ_OPEN; 2006 ax->d.next = context->aux; 2007 context->aux = (void *)ax; 2008 return 0; 2009 } 2010 2011 /** 2012 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send 2013 * @mqdes: MQ descriptor 2014 * @msg_len: Message length 2015 * @msg_prio: Message priority 2016 * @u_abs_timeout: Message timeout in absolute time 2017 * 2018 * Returns 0 for success or NULL context or < 0 on error. 2019 */ 2020 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2021 const struct timespec __user *u_abs_timeout) 2022 { 2023 struct audit_aux_data_mq_sendrecv *ax; 2024 struct audit_context *context = current->audit_context; 2025 2026 if (!audit_enabled) 2027 return 0; 2028 2029 if (likely(!context)) 2030 return 0; 2031 2032 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2033 if (!ax) 2034 return -ENOMEM; 2035 2036 if (u_abs_timeout != NULL) { 2037 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) { 2038 kfree(ax); 2039 return -EFAULT; 2040 } 2041 } else 2042 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout)); 2043 2044 ax->mqdes = mqdes; 2045 ax->msg_len = msg_len; 2046 ax->msg_prio = msg_prio; 2047 2048 ax->d.type = AUDIT_MQ_SENDRECV; 2049 ax->d.next = context->aux; 2050 context->aux = (void *)ax; 2051 return 0; 2052 } 2053 2054 /** 2055 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive 2056 * @mqdes: MQ descriptor 2057 * @msg_len: Message length 2058 * @u_msg_prio: Message priority 2059 * @u_abs_timeout: Message timeout in absolute time 2060 * 2061 * Returns 0 for success or NULL context or < 0 on error. 2062 */ 2063 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len, 2064 unsigned int __user *u_msg_prio, 2065 const struct timespec __user *u_abs_timeout) 2066 { 2067 struct audit_aux_data_mq_sendrecv *ax; 2068 struct audit_context *context = current->audit_context; 2069 2070 if (!audit_enabled) 2071 return 0; 2072 2073 if (likely(!context)) 2074 return 0; 2075 2076 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2077 if (!ax) 2078 return -ENOMEM; 2079 2080 if (u_msg_prio != NULL) { 2081 if (get_user(ax->msg_prio, u_msg_prio)) { 2082 kfree(ax); 2083 return -EFAULT; 2084 } 2085 } else 2086 ax->msg_prio = 0; 2087 2088 if (u_abs_timeout != NULL) { 2089 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) { 2090 kfree(ax); 2091 return -EFAULT; 2092 } 2093 } else 2094 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout)); 2095 2096 ax->mqdes = mqdes; 2097 ax->msg_len = msg_len; 2098 2099 ax->d.type = AUDIT_MQ_SENDRECV; 2100 ax->d.next = context->aux; 2101 context->aux = (void *)ax; 2102 return 0; 2103 } 2104 2105 /** 2106 * __audit_mq_notify - record audit data for a POSIX MQ notify 2107 * @mqdes: MQ descriptor 2108 * @u_notification: Notification event 2109 * 2110 * Returns 0 for success or NULL context or < 0 on error. 2111 */ 2112 2113 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification) 2114 { 2115 struct audit_aux_data_mq_notify *ax; 2116 struct audit_context *context = current->audit_context; 2117 2118 if (!audit_enabled) 2119 return 0; 2120 2121 if (likely(!context)) 2122 return 0; 2123 2124 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2125 if (!ax) 2126 return -ENOMEM; 2127 2128 if (u_notification != NULL) { 2129 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) { 2130 kfree(ax); 2131 return -EFAULT; 2132 } 2133 } else 2134 memset(&ax->notification, 0, sizeof(ax->notification)); 2135 2136 ax->mqdes = mqdes; 2137 2138 ax->d.type = AUDIT_MQ_NOTIFY; 2139 ax->d.next = context->aux; 2140 context->aux = (void *)ax; 2141 return 0; 2142 } 2143 2144 /** 2145 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2146 * @mqdes: MQ descriptor 2147 * @mqstat: MQ flags 2148 * 2149 * Returns 0 for success or NULL context or < 0 on error. 2150 */ 2151 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2152 { 2153 struct audit_aux_data_mq_getsetattr *ax; 2154 struct audit_context *context = current->audit_context; 2155 2156 if (!audit_enabled) 2157 return 0; 2158 2159 if (likely(!context)) 2160 return 0; 2161 2162 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2163 if (!ax) 2164 return -ENOMEM; 2165 2166 ax->mqdes = mqdes; 2167 ax->mqstat = *mqstat; 2168 2169 ax->d.type = AUDIT_MQ_GETSETATTR; 2170 ax->d.next = context->aux; 2171 context->aux = (void *)ax; 2172 return 0; 2173 } 2174 2175 /** 2176 * audit_ipc_obj - record audit data for ipc object 2177 * @ipcp: ipc permissions 2178 * 2179 * Returns 0 for success or NULL context or < 0 on error. 2180 */ 2181 int __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2182 { 2183 struct audit_aux_data_ipcctl *ax; 2184 struct audit_context *context = current->audit_context; 2185 2186 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2187 if (!ax) 2188 return -ENOMEM; 2189 2190 ax->uid = ipcp->uid; 2191 ax->gid = ipcp->gid; 2192 ax->mode = ipcp->mode; 2193 selinux_get_ipc_sid(ipcp, &ax->osid); 2194 2195 ax->d.type = AUDIT_IPC; 2196 ax->d.next = context->aux; 2197 context->aux = (void *)ax; 2198 return 0; 2199 } 2200 2201 /** 2202 * audit_ipc_set_perm - record audit data for new ipc permissions 2203 * @qbytes: msgq bytes 2204 * @uid: msgq user id 2205 * @gid: msgq group id 2206 * @mode: msgq mode (permissions) 2207 * 2208 * Returns 0 for success or NULL context or < 0 on error. 2209 */ 2210 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2211 { 2212 struct audit_aux_data_ipcctl *ax; 2213 struct audit_context *context = current->audit_context; 2214 2215 ax = kmalloc(sizeof(*ax), GFP_ATOMIC); 2216 if (!ax) 2217 return -ENOMEM; 2218 2219 ax->qbytes = qbytes; 2220 ax->uid = uid; 2221 ax->gid = gid; 2222 ax->mode = mode; 2223 2224 ax->d.type = AUDIT_IPC_SET_PERM; 2225 ax->d.next = context->aux; 2226 context->aux = (void *)ax; 2227 return 0; 2228 } 2229 2230 int audit_bprm(struct linux_binprm *bprm) 2231 { 2232 struct audit_aux_data_execve *ax; 2233 struct audit_context *context = current->audit_context; 2234 2235 if (likely(!audit_enabled || !context || context->dummy)) 2236 return 0; 2237 2238 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2239 if (!ax) 2240 return -ENOMEM; 2241 2242 ax->argc = bprm->argc; 2243 ax->envc = bprm->envc; 2244 ax->mm = bprm->mm; 2245 ax->d.type = AUDIT_EXECVE; 2246 ax->d.next = context->aux; 2247 context->aux = (void *)ax; 2248 return 0; 2249 } 2250 2251 2252 /** 2253 * audit_socketcall - record audit data for sys_socketcall 2254 * @nargs: number of args 2255 * @args: args array 2256 * 2257 * Returns 0 for success or NULL context or < 0 on error. 2258 */ 2259 int audit_socketcall(int nargs, unsigned long *args) 2260 { 2261 struct audit_aux_data_socketcall *ax; 2262 struct audit_context *context = current->audit_context; 2263 2264 if (likely(!context || context->dummy)) 2265 return 0; 2266 2267 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL); 2268 if (!ax) 2269 return -ENOMEM; 2270 2271 ax->nargs = nargs; 2272 memcpy(ax->args, args, nargs * sizeof(unsigned long)); 2273 2274 ax->d.type = AUDIT_SOCKETCALL; 2275 ax->d.next = context->aux; 2276 context->aux = (void *)ax; 2277 return 0; 2278 } 2279 2280 /** 2281 * __audit_fd_pair - record audit data for pipe and socketpair 2282 * @fd1: the first file descriptor 2283 * @fd2: the second file descriptor 2284 * 2285 * Returns 0 for success or NULL context or < 0 on error. 2286 */ 2287 int __audit_fd_pair(int fd1, int fd2) 2288 { 2289 struct audit_context *context = current->audit_context; 2290 struct audit_aux_data_fd_pair *ax; 2291 2292 if (likely(!context)) { 2293 return 0; 2294 } 2295 2296 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2297 if (!ax) { 2298 return -ENOMEM; 2299 } 2300 2301 ax->fd[0] = fd1; 2302 ax->fd[1] = fd2; 2303 2304 ax->d.type = AUDIT_FD_PAIR; 2305 ax->d.next = context->aux; 2306 context->aux = (void *)ax; 2307 return 0; 2308 } 2309 2310 /** 2311 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2312 * @len: data length in user space 2313 * @a: data address in kernel space 2314 * 2315 * Returns 0 for success or NULL context or < 0 on error. 2316 */ 2317 int audit_sockaddr(int len, void *a) 2318 { 2319 struct audit_aux_data_sockaddr *ax; 2320 struct audit_context *context = current->audit_context; 2321 2322 if (likely(!context || context->dummy)) 2323 return 0; 2324 2325 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL); 2326 if (!ax) 2327 return -ENOMEM; 2328 2329 ax->len = len; 2330 memcpy(ax->a, a, len); 2331 2332 ax->d.type = AUDIT_SOCKADDR; 2333 ax->d.next = context->aux; 2334 context->aux = (void *)ax; 2335 return 0; 2336 } 2337 2338 void __audit_ptrace(struct task_struct *t) 2339 { 2340 struct audit_context *context = current->audit_context; 2341 2342 context->target_pid = t->pid; 2343 context->target_auid = audit_get_loginuid(t); 2344 context->target_uid = t->uid; 2345 context->target_sessionid = audit_get_sessionid(t); 2346 selinux_get_task_sid(t, &context->target_sid); 2347 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2348 } 2349 2350 /** 2351 * audit_signal_info - record signal info for shutting down audit subsystem 2352 * @sig: signal value 2353 * @t: task being signaled 2354 * 2355 * If the audit subsystem is being terminated, record the task (pid) 2356 * and uid that is doing that. 2357 */ 2358 int __audit_signal_info(int sig, struct task_struct *t) 2359 { 2360 struct audit_aux_data_pids *axp; 2361 struct task_struct *tsk = current; 2362 struct audit_context *ctx = tsk->audit_context; 2363 extern pid_t audit_sig_pid; 2364 extern uid_t audit_sig_uid; 2365 extern u32 audit_sig_sid; 2366 2367 if (audit_pid && t->tgid == audit_pid) { 2368 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) { 2369 audit_sig_pid = tsk->pid; 2370 if (tsk->loginuid != -1) 2371 audit_sig_uid = tsk->loginuid; 2372 else 2373 audit_sig_uid = tsk->uid; 2374 selinux_get_task_sid(tsk, &audit_sig_sid); 2375 } 2376 if (!audit_signals || audit_dummy_context()) 2377 return 0; 2378 } 2379 2380 /* optimize the common case by putting first signal recipient directly 2381 * in audit_context */ 2382 if (!ctx->target_pid) { 2383 ctx->target_pid = t->tgid; 2384 ctx->target_auid = audit_get_loginuid(t); 2385 ctx->target_uid = t->uid; 2386 ctx->target_sessionid = audit_get_sessionid(t); 2387 selinux_get_task_sid(t, &ctx->target_sid); 2388 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2389 return 0; 2390 } 2391 2392 axp = (void *)ctx->aux_pids; 2393 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2394 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2395 if (!axp) 2396 return -ENOMEM; 2397 2398 axp->d.type = AUDIT_OBJ_PID; 2399 axp->d.next = ctx->aux_pids; 2400 ctx->aux_pids = (void *)axp; 2401 } 2402 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2403 2404 axp->target_pid[axp->pid_count] = t->tgid; 2405 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2406 axp->target_uid[axp->pid_count] = t->uid; 2407 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2408 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]); 2409 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2410 axp->pid_count++; 2411 2412 return 0; 2413 } 2414 2415 /** 2416 * audit_core_dumps - record information about processes that end abnormally 2417 * @signr: signal value 2418 * 2419 * If a process ends with a core dump, something fishy is going on and we 2420 * should record the event for investigation. 2421 */ 2422 void audit_core_dumps(long signr) 2423 { 2424 struct audit_buffer *ab; 2425 u32 sid; 2426 uid_t auid = audit_get_loginuid(current); 2427 unsigned int sessionid = audit_get_sessionid(current); 2428 2429 if (!audit_enabled) 2430 return; 2431 2432 if (signr == SIGQUIT) /* don't care for those */ 2433 return; 2434 2435 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2436 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2437 auid, current->uid, current->gid, sessionid); 2438 selinux_get_task_sid(current, &sid); 2439 if (sid) { 2440 char *ctx = NULL; 2441 u32 len; 2442 2443 if (selinux_sid_to_string(sid, &ctx, &len)) 2444 audit_log_format(ab, " ssid=%u", sid); 2445 else 2446 audit_log_format(ab, " subj=%s", ctx); 2447 kfree(ctx); 2448 } 2449 audit_log_format(ab, " pid=%d comm=", current->pid); 2450 audit_log_untrustedstring(ab, current->comm); 2451 audit_log_format(ab, " sig=%ld", signr); 2452 audit_log_end(ab); 2453 } 2454