xref: /openbmc/linux/kernel/auditsc.c (revision a1e58bbd)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/selinux.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/inotify.h>
69 
70 #include "audit.h"
71 
72 extern struct list_head audit_filter_list[];
73 extern int audit_ever_enabled;
74 
75 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
76  * for saving names from getname(). */
77 #define AUDIT_NAMES    20
78 
79 /* Indicates that audit should log the full pathname. */
80 #define AUDIT_NAME_FULL -1
81 
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
84 
85 /* number of audit rules */
86 int audit_n_rules;
87 
88 /* determines whether we collect data for signals sent */
89 int audit_signals;
90 
91 /* When fs/namei.c:getname() is called, we store the pointer in name and
92  * we don't let putname() free it (instead we free all of the saved
93  * pointers at syscall exit time).
94  *
95  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
96 struct audit_names {
97 	const char	*name;
98 	int		name_len;	/* number of name's characters to log */
99 	unsigned	name_put;	/* call __putname() for this name */
100 	unsigned long	ino;
101 	dev_t		dev;
102 	umode_t		mode;
103 	uid_t		uid;
104 	gid_t		gid;
105 	dev_t		rdev;
106 	u32		osid;
107 };
108 
109 struct audit_aux_data {
110 	struct audit_aux_data	*next;
111 	int			type;
112 };
113 
114 #define AUDIT_AUX_IPCPERM	0
115 
116 /* Number of target pids per aux struct. */
117 #define AUDIT_AUX_PIDS	16
118 
119 struct audit_aux_data_mq_open {
120 	struct audit_aux_data	d;
121 	int			oflag;
122 	mode_t			mode;
123 	struct mq_attr		attr;
124 };
125 
126 struct audit_aux_data_mq_sendrecv {
127 	struct audit_aux_data	d;
128 	mqd_t			mqdes;
129 	size_t			msg_len;
130 	unsigned int		msg_prio;
131 	struct timespec		abs_timeout;
132 };
133 
134 struct audit_aux_data_mq_notify {
135 	struct audit_aux_data	d;
136 	mqd_t			mqdes;
137 	struct sigevent 	notification;
138 };
139 
140 struct audit_aux_data_mq_getsetattr {
141 	struct audit_aux_data	d;
142 	mqd_t			mqdes;
143 	struct mq_attr 		mqstat;
144 };
145 
146 struct audit_aux_data_ipcctl {
147 	struct audit_aux_data	d;
148 	struct ipc_perm		p;
149 	unsigned long		qbytes;
150 	uid_t			uid;
151 	gid_t			gid;
152 	mode_t			mode;
153 	u32			osid;
154 };
155 
156 struct audit_aux_data_execve {
157 	struct audit_aux_data	d;
158 	int argc;
159 	int envc;
160 	struct mm_struct *mm;
161 };
162 
163 struct audit_aux_data_socketcall {
164 	struct audit_aux_data	d;
165 	int			nargs;
166 	unsigned long		args[0];
167 };
168 
169 struct audit_aux_data_sockaddr {
170 	struct audit_aux_data	d;
171 	int			len;
172 	char			a[0];
173 };
174 
175 struct audit_aux_data_fd_pair {
176 	struct	audit_aux_data d;
177 	int	fd[2];
178 };
179 
180 struct audit_aux_data_pids {
181 	struct audit_aux_data	d;
182 	pid_t			target_pid[AUDIT_AUX_PIDS];
183 	uid_t			target_auid[AUDIT_AUX_PIDS];
184 	uid_t			target_uid[AUDIT_AUX_PIDS];
185 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
186 	u32			target_sid[AUDIT_AUX_PIDS];
187 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
188 	int			pid_count;
189 };
190 
191 struct audit_tree_refs {
192 	struct audit_tree_refs *next;
193 	struct audit_chunk *c[31];
194 };
195 
196 /* The per-task audit context. */
197 struct audit_context {
198 	int		    dummy;	/* must be the first element */
199 	int		    in_syscall;	/* 1 if task is in a syscall */
200 	enum audit_state    state;
201 	unsigned int	    serial;     /* serial number for record */
202 	struct timespec	    ctime;      /* time of syscall entry */
203 	int		    major;      /* syscall number */
204 	unsigned long	    argv[4];    /* syscall arguments */
205 	int		    return_valid; /* return code is valid */
206 	long		    return_code;/* syscall return code */
207 	int		    auditable;  /* 1 if record should be written */
208 	int		    name_count;
209 	struct audit_names  names[AUDIT_NAMES];
210 	char *		    filterkey;	/* key for rule that triggered record */
211 	struct path	    pwd;
212 	struct audit_context *previous; /* For nested syscalls */
213 	struct audit_aux_data *aux;
214 	struct audit_aux_data *aux_pids;
215 
216 				/* Save things to print about task_struct */
217 	pid_t		    pid, ppid;
218 	uid_t		    uid, euid, suid, fsuid;
219 	gid_t		    gid, egid, sgid, fsgid;
220 	unsigned long	    personality;
221 	int		    arch;
222 
223 	pid_t		    target_pid;
224 	uid_t		    target_auid;
225 	uid_t		    target_uid;
226 	unsigned int	    target_sessionid;
227 	u32		    target_sid;
228 	char		    target_comm[TASK_COMM_LEN];
229 
230 	struct audit_tree_refs *trees, *first_trees;
231 	int tree_count;
232 
233 #if AUDIT_DEBUG
234 	int		    put_count;
235 	int		    ino_count;
236 #endif
237 };
238 
239 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
240 static inline int open_arg(int flags, int mask)
241 {
242 	int n = ACC_MODE(flags);
243 	if (flags & (O_TRUNC | O_CREAT))
244 		n |= AUDIT_PERM_WRITE;
245 	return n & mask;
246 }
247 
248 static int audit_match_perm(struct audit_context *ctx, int mask)
249 {
250 	unsigned n = ctx->major;
251 	switch (audit_classify_syscall(ctx->arch, n)) {
252 	case 0:	/* native */
253 		if ((mask & AUDIT_PERM_WRITE) &&
254 		     audit_match_class(AUDIT_CLASS_WRITE, n))
255 			return 1;
256 		if ((mask & AUDIT_PERM_READ) &&
257 		     audit_match_class(AUDIT_CLASS_READ, n))
258 			return 1;
259 		if ((mask & AUDIT_PERM_ATTR) &&
260 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
261 			return 1;
262 		return 0;
263 	case 1: /* 32bit on biarch */
264 		if ((mask & AUDIT_PERM_WRITE) &&
265 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
266 			return 1;
267 		if ((mask & AUDIT_PERM_READ) &&
268 		     audit_match_class(AUDIT_CLASS_READ_32, n))
269 			return 1;
270 		if ((mask & AUDIT_PERM_ATTR) &&
271 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
272 			return 1;
273 		return 0;
274 	case 2: /* open */
275 		return mask & ACC_MODE(ctx->argv[1]);
276 	case 3: /* openat */
277 		return mask & ACC_MODE(ctx->argv[2]);
278 	case 4: /* socketcall */
279 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
280 	case 5: /* execve */
281 		return mask & AUDIT_PERM_EXEC;
282 	default:
283 		return 0;
284 	}
285 }
286 
287 /*
288  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
289  * ->first_trees points to its beginning, ->trees - to the current end of data.
290  * ->tree_count is the number of free entries in array pointed to by ->trees.
291  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
292  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
293  * it's going to remain 1-element for almost any setup) until we free context itself.
294  * References in it _are_ dropped - at the same time we free/drop aux stuff.
295  */
296 
297 #ifdef CONFIG_AUDIT_TREE
298 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
299 {
300 	struct audit_tree_refs *p = ctx->trees;
301 	int left = ctx->tree_count;
302 	if (likely(left)) {
303 		p->c[--left] = chunk;
304 		ctx->tree_count = left;
305 		return 1;
306 	}
307 	if (!p)
308 		return 0;
309 	p = p->next;
310 	if (p) {
311 		p->c[30] = chunk;
312 		ctx->trees = p;
313 		ctx->tree_count = 30;
314 		return 1;
315 	}
316 	return 0;
317 }
318 
319 static int grow_tree_refs(struct audit_context *ctx)
320 {
321 	struct audit_tree_refs *p = ctx->trees;
322 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
323 	if (!ctx->trees) {
324 		ctx->trees = p;
325 		return 0;
326 	}
327 	if (p)
328 		p->next = ctx->trees;
329 	else
330 		ctx->first_trees = ctx->trees;
331 	ctx->tree_count = 31;
332 	return 1;
333 }
334 #endif
335 
336 static void unroll_tree_refs(struct audit_context *ctx,
337 		      struct audit_tree_refs *p, int count)
338 {
339 #ifdef CONFIG_AUDIT_TREE
340 	struct audit_tree_refs *q;
341 	int n;
342 	if (!p) {
343 		/* we started with empty chain */
344 		p = ctx->first_trees;
345 		count = 31;
346 		/* if the very first allocation has failed, nothing to do */
347 		if (!p)
348 			return;
349 	}
350 	n = count;
351 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
352 		while (n--) {
353 			audit_put_chunk(q->c[n]);
354 			q->c[n] = NULL;
355 		}
356 	}
357 	while (n-- > ctx->tree_count) {
358 		audit_put_chunk(q->c[n]);
359 		q->c[n] = NULL;
360 	}
361 	ctx->trees = p;
362 	ctx->tree_count = count;
363 #endif
364 }
365 
366 static void free_tree_refs(struct audit_context *ctx)
367 {
368 	struct audit_tree_refs *p, *q;
369 	for (p = ctx->first_trees; p; p = q) {
370 		q = p->next;
371 		kfree(p);
372 	}
373 }
374 
375 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
376 {
377 #ifdef CONFIG_AUDIT_TREE
378 	struct audit_tree_refs *p;
379 	int n;
380 	if (!tree)
381 		return 0;
382 	/* full ones */
383 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
384 		for (n = 0; n < 31; n++)
385 			if (audit_tree_match(p->c[n], tree))
386 				return 1;
387 	}
388 	/* partial */
389 	if (p) {
390 		for (n = ctx->tree_count; n < 31; n++)
391 			if (audit_tree_match(p->c[n], tree))
392 				return 1;
393 	}
394 #endif
395 	return 0;
396 }
397 
398 /* Determine if any context name data matches a rule's watch data */
399 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
400  * otherwise. */
401 static int audit_filter_rules(struct task_struct *tsk,
402 			      struct audit_krule *rule,
403 			      struct audit_context *ctx,
404 			      struct audit_names *name,
405 			      enum audit_state *state)
406 {
407 	int i, j, need_sid = 1;
408 	u32 sid;
409 
410 	for (i = 0; i < rule->field_count; i++) {
411 		struct audit_field *f = &rule->fields[i];
412 		int result = 0;
413 
414 		switch (f->type) {
415 		case AUDIT_PID:
416 			result = audit_comparator(tsk->pid, f->op, f->val);
417 			break;
418 		case AUDIT_PPID:
419 			if (ctx) {
420 				if (!ctx->ppid)
421 					ctx->ppid = sys_getppid();
422 				result = audit_comparator(ctx->ppid, f->op, f->val);
423 			}
424 			break;
425 		case AUDIT_UID:
426 			result = audit_comparator(tsk->uid, f->op, f->val);
427 			break;
428 		case AUDIT_EUID:
429 			result = audit_comparator(tsk->euid, f->op, f->val);
430 			break;
431 		case AUDIT_SUID:
432 			result = audit_comparator(tsk->suid, f->op, f->val);
433 			break;
434 		case AUDIT_FSUID:
435 			result = audit_comparator(tsk->fsuid, f->op, f->val);
436 			break;
437 		case AUDIT_GID:
438 			result = audit_comparator(tsk->gid, f->op, f->val);
439 			break;
440 		case AUDIT_EGID:
441 			result = audit_comparator(tsk->egid, f->op, f->val);
442 			break;
443 		case AUDIT_SGID:
444 			result = audit_comparator(tsk->sgid, f->op, f->val);
445 			break;
446 		case AUDIT_FSGID:
447 			result = audit_comparator(tsk->fsgid, f->op, f->val);
448 			break;
449 		case AUDIT_PERS:
450 			result = audit_comparator(tsk->personality, f->op, f->val);
451 			break;
452 		case AUDIT_ARCH:
453 			if (ctx)
454 				result = audit_comparator(ctx->arch, f->op, f->val);
455 			break;
456 
457 		case AUDIT_EXIT:
458 			if (ctx && ctx->return_valid)
459 				result = audit_comparator(ctx->return_code, f->op, f->val);
460 			break;
461 		case AUDIT_SUCCESS:
462 			if (ctx && ctx->return_valid) {
463 				if (f->val)
464 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
465 				else
466 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
467 			}
468 			break;
469 		case AUDIT_DEVMAJOR:
470 			if (name)
471 				result = audit_comparator(MAJOR(name->dev),
472 							  f->op, f->val);
473 			else if (ctx) {
474 				for (j = 0; j < ctx->name_count; j++) {
475 					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
476 						++result;
477 						break;
478 					}
479 				}
480 			}
481 			break;
482 		case AUDIT_DEVMINOR:
483 			if (name)
484 				result = audit_comparator(MINOR(name->dev),
485 							  f->op, f->val);
486 			else if (ctx) {
487 				for (j = 0; j < ctx->name_count; j++) {
488 					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
489 						++result;
490 						break;
491 					}
492 				}
493 			}
494 			break;
495 		case AUDIT_INODE:
496 			if (name)
497 				result = (name->ino == f->val);
498 			else if (ctx) {
499 				for (j = 0; j < ctx->name_count; j++) {
500 					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
501 						++result;
502 						break;
503 					}
504 				}
505 			}
506 			break;
507 		case AUDIT_WATCH:
508 			if (name && rule->watch->ino != (unsigned long)-1)
509 				result = (name->dev == rule->watch->dev &&
510 					  name->ino == rule->watch->ino);
511 			break;
512 		case AUDIT_DIR:
513 			if (ctx)
514 				result = match_tree_refs(ctx, rule->tree);
515 			break;
516 		case AUDIT_LOGINUID:
517 			result = 0;
518 			if (ctx)
519 				result = audit_comparator(tsk->loginuid, f->op, f->val);
520 			break;
521 		case AUDIT_SUBJ_USER:
522 		case AUDIT_SUBJ_ROLE:
523 		case AUDIT_SUBJ_TYPE:
524 		case AUDIT_SUBJ_SEN:
525 		case AUDIT_SUBJ_CLR:
526 			/* NOTE: this may return negative values indicating
527 			   a temporary error.  We simply treat this as a
528 			   match for now to avoid losing information that
529 			   may be wanted.   An error message will also be
530 			   logged upon error */
531 			if (f->se_rule) {
532 				if (need_sid) {
533 					selinux_get_task_sid(tsk, &sid);
534 					need_sid = 0;
535 				}
536 				result = selinux_audit_rule_match(sid, f->type,
537 				                                  f->op,
538 				                                  f->se_rule,
539 				                                  ctx);
540 			}
541 			break;
542 		case AUDIT_OBJ_USER:
543 		case AUDIT_OBJ_ROLE:
544 		case AUDIT_OBJ_TYPE:
545 		case AUDIT_OBJ_LEV_LOW:
546 		case AUDIT_OBJ_LEV_HIGH:
547 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
548 			   also applies here */
549 			if (f->se_rule) {
550 				/* Find files that match */
551 				if (name) {
552 					result = selinux_audit_rule_match(
553 					           name->osid, f->type, f->op,
554 					           f->se_rule, ctx);
555 				} else if (ctx) {
556 					for (j = 0; j < ctx->name_count; j++) {
557 						if (selinux_audit_rule_match(
558 						      ctx->names[j].osid,
559 						      f->type, f->op,
560 						      f->se_rule, ctx)) {
561 							++result;
562 							break;
563 						}
564 					}
565 				}
566 				/* Find ipc objects that match */
567 				if (ctx) {
568 					struct audit_aux_data *aux;
569 					for (aux = ctx->aux; aux;
570 					     aux = aux->next) {
571 						if (aux->type == AUDIT_IPC) {
572 							struct audit_aux_data_ipcctl *axi = (void *)aux;
573 							if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
574 								++result;
575 								break;
576 							}
577 						}
578 					}
579 				}
580 			}
581 			break;
582 		case AUDIT_ARG0:
583 		case AUDIT_ARG1:
584 		case AUDIT_ARG2:
585 		case AUDIT_ARG3:
586 			if (ctx)
587 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
588 			break;
589 		case AUDIT_FILTERKEY:
590 			/* ignore this field for filtering */
591 			result = 1;
592 			break;
593 		case AUDIT_PERM:
594 			result = audit_match_perm(ctx, f->val);
595 			break;
596 		}
597 
598 		if (!result)
599 			return 0;
600 	}
601 	if (rule->filterkey)
602 		ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
603 	switch (rule->action) {
604 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
605 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
606 	}
607 	return 1;
608 }
609 
610 /* At process creation time, we can determine if system-call auditing is
611  * completely disabled for this task.  Since we only have the task
612  * structure at this point, we can only check uid and gid.
613  */
614 static enum audit_state audit_filter_task(struct task_struct *tsk)
615 {
616 	struct audit_entry *e;
617 	enum audit_state   state;
618 
619 	rcu_read_lock();
620 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
621 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
622 			rcu_read_unlock();
623 			return state;
624 		}
625 	}
626 	rcu_read_unlock();
627 	return AUDIT_BUILD_CONTEXT;
628 }
629 
630 /* At syscall entry and exit time, this filter is called if the
631  * audit_state is not low enough that auditing cannot take place, but is
632  * also not high enough that we already know we have to write an audit
633  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
634  */
635 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
636 					     struct audit_context *ctx,
637 					     struct list_head *list)
638 {
639 	struct audit_entry *e;
640 	enum audit_state state;
641 
642 	if (audit_pid && tsk->tgid == audit_pid)
643 		return AUDIT_DISABLED;
644 
645 	rcu_read_lock();
646 	if (!list_empty(list)) {
647 		int word = AUDIT_WORD(ctx->major);
648 		int bit  = AUDIT_BIT(ctx->major);
649 
650 		list_for_each_entry_rcu(e, list, list) {
651 			if ((e->rule.mask[word] & bit) == bit &&
652 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
653 					       &state)) {
654 				rcu_read_unlock();
655 				return state;
656 			}
657 		}
658 	}
659 	rcu_read_unlock();
660 	return AUDIT_BUILD_CONTEXT;
661 }
662 
663 /* At syscall exit time, this filter is called if any audit_names[] have been
664  * collected during syscall processing.  We only check rules in sublists at hash
665  * buckets applicable to the inode numbers in audit_names[].
666  * Regarding audit_state, same rules apply as for audit_filter_syscall().
667  */
668 enum audit_state audit_filter_inodes(struct task_struct *tsk,
669 				     struct audit_context *ctx)
670 {
671 	int i;
672 	struct audit_entry *e;
673 	enum audit_state state;
674 
675 	if (audit_pid && tsk->tgid == audit_pid)
676 		return AUDIT_DISABLED;
677 
678 	rcu_read_lock();
679 	for (i = 0; i < ctx->name_count; i++) {
680 		int word = AUDIT_WORD(ctx->major);
681 		int bit  = AUDIT_BIT(ctx->major);
682 		struct audit_names *n = &ctx->names[i];
683 		int h = audit_hash_ino((u32)n->ino);
684 		struct list_head *list = &audit_inode_hash[h];
685 
686 		if (list_empty(list))
687 			continue;
688 
689 		list_for_each_entry_rcu(e, list, list) {
690 			if ((e->rule.mask[word] & bit) == bit &&
691 			    audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
692 				rcu_read_unlock();
693 				return state;
694 			}
695 		}
696 	}
697 	rcu_read_unlock();
698 	return AUDIT_BUILD_CONTEXT;
699 }
700 
701 void audit_set_auditable(struct audit_context *ctx)
702 {
703 	ctx->auditable = 1;
704 }
705 
706 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
707 						      int return_valid,
708 						      int return_code)
709 {
710 	struct audit_context *context = tsk->audit_context;
711 
712 	if (likely(!context))
713 		return NULL;
714 	context->return_valid = return_valid;
715 
716 	/*
717 	 * we need to fix up the return code in the audit logs if the actual
718 	 * return codes are later going to be fixed up by the arch specific
719 	 * signal handlers
720 	 *
721 	 * This is actually a test for:
722 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
723 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
724 	 *
725 	 * but is faster than a bunch of ||
726 	 */
727 	if (unlikely(return_code <= -ERESTARTSYS) &&
728 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
729 	    (return_code != -ENOIOCTLCMD))
730 		context->return_code = -EINTR;
731 	else
732 		context->return_code  = return_code;
733 
734 	if (context->in_syscall && !context->dummy && !context->auditable) {
735 		enum audit_state state;
736 
737 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
738 		if (state == AUDIT_RECORD_CONTEXT) {
739 			context->auditable = 1;
740 			goto get_context;
741 		}
742 
743 		state = audit_filter_inodes(tsk, context);
744 		if (state == AUDIT_RECORD_CONTEXT)
745 			context->auditable = 1;
746 
747 	}
748 
749 get_context:
750 
751 	tsk->audit_context = NULL;
752 	return context;
753 }
754 
755 static inline void audit_free_names(struct audit_context *context)
756 {
757 	int i;
758 
759 #if AUDIT_DEBUG == 2
760 	if (context->auditable
761 	    ||context->put_count + context->ino_count != context->name_count) {
762 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
763 		       " name_count=%d put_count=%d"
764 		       " ino_count=%d [NOT freeing]\n",
765 		       __FILE__, __LINE__,
766 		       context->serial, context->major, context->in_syscall,
767 		       context->name_count, context->put_count,
768 		       context->ino_count);
769 		for (i = 0; i < context->name_count; i++) {
770 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
771 			       context->names[i].name,
772 			       context->names[i].name ?: "(null)");
773 		}
774 		dump_stack();
775 		return;
776 	}
777 #endif
778 #if AUDIT_DEBUG
779 	context->put_count  = 0;
780 	context->ino_count  = 0;
781 #endif
782 
783 	for (i = 0; i < context->name_count; i++) {
784 		if (context->names[i].name && context->names[i].name_put)
785 			__putname(context->names[i].name);
786 	}
787 	context->name_count = 0;
788 	path_put(&context->pwd);
789 	context->pwd.dentry = NULL;
790 	context->pwd.mnt = NULL;
791 }
792 
793 static inline void audit_free_aux(struct audit_context *context)
794 {
795 	struct audit_aux_data *aux;
796 
797 	while ((aux = context->aux)) {
798 		context->aux = aux->next;
799 		kfree(aux);
800 	}
801 	while ((aux = context->aux_pids)) {
802 		context->aux_pids = aux->next;
803 		kfree(aux);
804 	}
805 }
806 
807 static inline void audit_zero_context(struct audit_context *context,
808 				      enum audit_state state)
809 {
810 	memset(context, 0, sizeof(*context));
811 	context->state      = state;
812 }
813 
814 static inline struct audit_context *audit_alloc_context(enum audit_state state)
815 {
816 	struct audit_context *context;
817 
818 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
819 		return NULL;
820 	audit_zero_context(context, state);
821 	return context;
822 }
823 
824 /**
825  * audit_alloc - allocate an audit context block for a task
826  * @tsk: task
827  *
828  * Filter on the task information and allocate a per-task audit context
829  * if necessary.  Doing so turns on system call auditing for the
830  * specified task.  This is called from copy_process, so no lock is
831  * needed.
832  */
833 int audit_alloc(struct task_struct *tsk)
834 {
835 	struct audit_context *context;
836 	enum audit_state     state;
837 
838 	if (likely(!audit_ever_enabled))
839 		return 0; /* Return if not auditing. */
840 
841 	state = audit_filter_task(tsk);
842 	if (likely(state == AUDIT_DISABLED))
843 		return 0;
844 
845 	if (!(context = audit_alloc_context(state))) {
846 		audit_log_lost("out of memory in audit_alloc");
847 		return -ENOMEM;
848 	}
849 
850 	tsk->audit_context  = context;
851 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
852 	return 0;
853 }
854 
855 static inline void audit_free_context(struct audit_context *context)
856 {
857 	struct audit_context *previous;
858 	int		     count = 0;
859 
860 	do {
861 		previous = context->previous;
862 		if (previous || (count &&  count < 10)) {
863 			++count;
864 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
865 			       " freeing multiple contexts (%d)\n",
866 			       context->serial, context->major,
867 			       context->name_count, count);
868 		}
869 		audit_free_names(context);
870 		unroll_tree_refs(context, NULL, 0);
871 		free_tree_refs(context);
872 		audit_free_aux(context);
873 		kfree(context->filterkey);
874 		kfree(context);
875 		context  = previous;
876 	} while (context);
877 	if (count >= 10)
878 		printk(KERN_ERR "audit: freed %d contexts\n", count);
879 }
880 
881 void audit_log_task_context(struct audit_buffer *ab)
882 {
883 	char *ctx = NULL;
884 	unsigned len;
885 	int error;
886 	u32 sid;
887 
888 	selinux_get_task_sid(current, &sid);
889 	if (!sid)
890 		return;
891 
892 	error = selinux_sid_to_string(sid, &ctx, &len);
893 	if (error) {
894 		if (error != -EINVAL)
895 			goto error_path;
896 		return;
897 	}
898 
899 	audit_log_format(ab, " subj=%s", ctx);
900 	kfree(ctx);
901 	return;
902 
903 error_path:
904 	audit_panic("error in audit_log_task_context");
905 	return;
906 }
907 
908 EXPORT_SYMBOL(audit_log_task_context);
909 
910 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
911 {
912 	char name[sizeof(tsk->comm)];
913 	struct mm_struct *mm = tsk->mm;
914 	struct vm_area_struct *vma;
915 
916 	/* tsk == current */
917 
918 	get_task_comm(name, tsk);
919 	audit_log_format(ab, " comm=");
920 	audit_log_untrustedstring(ab, name);
921 
922 	if (mm) {
923 		down_read(&mm->mmap_sem);
924 		vma = mm->mmap;
925 		while (vma) {
926 			if ((vma->vm_flags & VM_EXECUTABLE) &&
927 			    vma->vm_file) {
928 				audit_log_d_path(ab, "exe=",
929 						 &vma->vm_file->f_path);
930 				break;
931 			}
932 			vma = vma->vm_next;
933 		}
934 		up_read(&mm->mmap_sem);
935 	}
936 	audit_log_task_context(ab);
937 }
938 
939 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
940 				 uid_t auid, uid_t uid, unsigned int sessionid,
941 				 u32 sid, char *comm)
942 {
943 	struct audit_buffer *ab;
944 	char *s = NULL;
945 	u32 len;
946 	int rc = 0;
947 
948 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
949 	if (!ab)
950 		return rc;
951 
952 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
953 			 uid, sessionid);
954 	if (selinux_sid_to_string(sid, &s, &len)) {
955 		audit_log_format(ab, " obj=(none)");
956 		rc = 1;
957 	} else
958 		audit_log_format(ab, " obj=%s", s);
959 	audit_log_format(ab, " ocomm=");
960 	audit_log_untrustedstring(ab, comm);
961 	audit_log_end(ab);
962 	kfree(s);
963 
964 	return rc;
965 }
966 
967 /*
968  * to_send and len_sent accounting are very loose estimates.  We aren't
969  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
970  * within about 500 bytes (next page boundry)
971  *
972  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
973  * logging that a[%d]= was going to be 16 characters long we would be wasting
974  * space in every audit message.  In one 7500 byte message we can log up to
975  * about 1000 min size arguments.  That comes down to about 50% waste of space
976  * if we didn't do the snprintf to find out how long arg_num_len was.
977  */
978 static int audit_log_single_execve_arg(struct audit_context *context,
979 					struct audit_buffer **ab,
980 					int arg_num,
981 					size_t *len_sent,
982 					const char __user *p,
983 					char *buf)
984 {
985 	char arg_num_len_buf[12];
986 	const char __user *tmp_p = p;
987 	/* how many digits are in arg_num? 3 is the length of a=\n */
988 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
989 	size_t len, len_left, to_send;
990 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
991 	unsigned int i, has_cntl = 0, too_long = 0;
992 	int ret;
993 
994 	/* strnlen_user includes the null we don't want to send */
995 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
996 
997 	/*
998 	 * We just created this mm, if we can't find the strings
999 	 * we just copied into it something is _very_ wrong. Similar
1000 	 * for strings that are too long, we should not have created
1001 	 * any.
1002 	 */
1003 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1004 		WARN_ON(1);
1005 		send_sig(SIGKILL, current, 0);
1006 		return -1;
1007 	}
1008 
1009 	/* walk the whole argument looking for non-ascii chars */
1010 	do {
1011 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1012 			to_send = MAX_EXECVE_AUDIT_LEN;
1013 		else
1014 			to_send = len_left;
1015 		ret = copy_from_user(buf, tmp_p, to_send);
1016 		/*
1017 		 * There is no reason for this copy to be short. We just
1018 		 * copied them here, and the mm hasn't been exposed to user-
1019 		 * space yet.
1020 		 */
1021 		if (ret) {
1022 			WARN_ON(1);
1023 			send_sig(SIGKILL, current, 0);
1024 			return -1;
1025 		}
1026 		buf[to_send] = '\0';
1027 		has_cntl = audit_string_contains_control(buf, to_send);
1028 		if (has_cntl) {
1029 			/*
1030 			 * hex messages get logged as 2 bytes, so we can only
1031 			 * send half as much in each message
1032 			 */
1033 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1034 			break;
1035 		}
1036 		len_left -= to_send;
1037 		tmp_p += to_send;
1038 	} while (len_left > 0);
1039 
1040 	len_left = len;
1041 
1042 	if (len > max_execve_audit_len)
1043 		too_long = 1;
1044 
1045 	/* rewalk the argument actually logging the message */
1046 	for (i = 0; len_left > 0; i++) {
1047 		int room_left;
1048 
1049 		if (len_left > max_execve_audit_len)
1050 			to_send = max_execve_audit_len;
1051 		else
1052 			to_send = len_left;
1053 
1054 		/* do we have space left to send this argument in this ab? */
1055 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1056 		if (has_cntl)
1057 			room_left -= (to_send * 2);
1058 		else
1059 			room_left -= to_send;
1060 		if (room_left < 0) {
1061 			*len_sent = 0;
1062 			audit_log_end(*ab);
1063 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1064 			if (!*ab)
1065 				return 0;
1066 		}
1067 
1068 		/*
1069 		 * first record needs to say how long the original string was
1070 		 * so we can be sure nothing was lost.
1071 		 */
1072 		if ((i == 0) && (too_long))
1073 			audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1074 					 has_cntl ? 2*len : len);
1075 
1076 		/*
1077 		 * normally arguments are small enough to fit and we already
1078 		 * filled buf above when we checked for control characters
1079 		 * so don't bother with another copy_from_user
1080 		 */
1081 		if (len >= max_execve_audit_len)
1082 			ret = copy_from_user(buf, p, to_send);
1083 		else
1084 			ret = 0;
1085 		if (ret) {
1086 			WARN_ON(1);
1087 			send_sig(SIGKILL, current, 0);
1088 			return -1;
1089 		}
1090 		buf[to_send] = '\0';
1091 
1092 		/* actually log it */
1093 		audit_log_format(*ab, "a%d", arg_num);
1094 		if (too_long)
1095 			audit_log_format(*ab, "[%d]", i);
1096 		audit_log_format(*ab, "=");
1097 		if (has_cntl)
1098 			audit_log_hex(*ab, buf, to_send);
1099 		else
1100 			audit_log_format(*ab, "\"%s\"", buf);
1101 		audit_log_format(*ab, "\n");
1102 
1103 		p += to_send;
1104 		len_left -= to_send;
1105 		*len_sent += arg_num_len;
1106 		if (has_cntl)
1107 			*len_sent += to_send * 2;
1108 		else
1109 			*len_sent += to_send;
1110 	}
1111 	/* include the null we didn't log */
1112 	return len + 1;
1113 }
1114 
1115 static void audit_log_execve_info(struct audit_context *context,
1116 				  struct audit_buffer **ab,
1117 				  struct audit_aux_data_execve *axi)
1118 {
1119 	int i;
1120 	size_t len, len_sent = 0;
1121 	const char __user *p;
1122 	char *buf;
1123 
1124 	if (axi->mm != current->mm)
1125 		return; /* execve failed, no additional info */
1126 
1127 	p = (const char __user *)axi->mm->arg_start;
1128 
1129 	audit_log_format(*ab, "argc=%d ", axi->argc);
1130 
1131 	/*
1132 	 * we need some kernel buffer to hold the userspace args.  Just
1133 	 * allocate one big one rather than allocating one of the right size
1134 	 * for every single argument inside audit_log_single_execve_arg()
1135 	 * should be <8k allocation so should be pretty safe.
1136 	 */
1137 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1138 	if (!buf) {
1139 		audit_panic("out of memory for argv string\n");
1140 		return;
1141 	}
1142 
1143 	for (i = 0; i < axi->argc; i++) {
1144 		len = audit_log_single_execve_arg(context, ab, i,
1145 						  &len_sent, p, buf);
1146 		if (len <= 0)
1147 			break;
1148 		p += len;
1149 	}
1150 	kfree(buf);
1151 }
1152 
1153 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1154 {
1155 	int i, call_panic = 0;
1156 	struct audit_buffer *ab;
1157 	struct audit_aux_data *aux;
1158 	const char *tty;
1159 
1160 	/* tsk == current */
1161 	context->pid = tsk->pid;
1162 	if (!context->ppid)
1163 		context->ppid = sys_getppid();
1164 	context->uid = tsk->uid;
1165 	context->gid = tsk->gid;
1166 	context->euid = tsk->euid;
1167 	context->suid = tsk->suid;
1168 	context->fsuid = tsk->fsuid;
1169 	context->egid = tsk->egid;
1170 	context->sgid = tsk->sgid;
1171 	context->fsgid = tsk->fsgid;
1172 	context->personality = tsk->personality;
1173 
1174 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1175 	if (!ab)
1176 		return;		/* audit_panic has been called */
1177 	audit_log_format(ab, "arch=%x syscall=%d",
1178 			 context->arch, context->major);
1179 	if (context->personality != PER_LINUX)
1180 		audit_log_format(ab, " per=%lx", context->personality);
1181 	if (context->return_valid)
1182 		audit_log_format(ab, " success=%s exit=%ld",
1183 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1184 				 context->return_code);
1185 
1186 	mutex_lock(&tty_mutex);
1187 	read_lock(&tasklist_lock);
1188 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1189 		tty = tsk->signal->tty->name;
1190 	else
1191 		tty = "(none)";
1192 	read_unlock(&tasklist_lock);
1193 	audit_log_format(ab,
1194 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1195 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1196 		  " euid=%u suid=%u fsuid=%u"
1197 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1198 		  context->argv[0],
1199 		  context->argv[1],
1200 		  context->argv[2],
1201 		  context->argv[3],
1202 		  context->name_count,
1203 		  context->ppid,
1204 		  context->pid,
1205 		  tsk->loginuid,
1206 		  context->uid,
1207 		  context->gid,
1208 		  context->euid, context->suid, context->fsuid,
1209 		  context->egid, context->sgid, context->fsgid, tty,
1210 		  tsk->sessionid);
1211 
1212 	mutex_unlock(&tty_mutex);
1213 
1214 	audit_log_task_info(ab, tsk);
1215 	if (context->filterkey) {
1216 		audit_log_format(ab, " key=");
1217 		audit_log_untrustedstring(ab, context->filterkey);
1218 	} else
1219 		audit_log_format(ab, " key=(null)");
1220 	audit_log_end(ab);
1221 
1222 	for (aux = context->aux; aux; aux = aux->next) {
1223 
1224 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1225 		if (!ab)
1226 			continue; /* audit_panic has been called */
1227 
1228 		switch (aux->type) {
1229 		case AUDIT_MQ_OPEN: {
1230 			struct audit_aux_data_mq_open *axi = (void *)aux;
1231 			audit_log_format(ab,
1232 				"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1233 				"mq_msgsize=%ld mq_curmsgs=%ld",
1234 				axi->oflag, axi->mode, axi->attr.mq_flags,
1235 				axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1236 				axi->attr.mq_curmsgs);
1237 			break; }
1238 
1239 		case AUDIT_MQ_SENDRECV: {
1240 			struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1241 			audit_log_format(ab,
1242 				"mqdes=%d msg_len=%zd msg_prio=%u "
1243 				"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1244 				axi->mqdes, axi->msg_len, axi->msg_prio,
1245 				axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1246 			break; }
1247 
1248 		case AUDIT_MQ_NOTIFY: {
1249 			struct audit_aux_data_mq_notify *axi = (void *)aux;
1250 			audit_log_format(ab,
1251 				"mqdes=%d sigev_signo=%d",
1252 				axi->mqdes,
1253 				axi->notification.sigev_signo);
1254 			break; }
1255 
1256 		case AUDIT_MQ_GETSETATTR: {
1257 			struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1258 			audit_log_format(ab,
1259 				"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1260 				"mq_curmsgs=%ld ",
1261 				axi->mqdes,
1262 				axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1263 				axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1264 			break; }
1265 
1266 		case AUDIT_IPC: {
1267 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1268 			audit_log_format(ab,
1269 				 "ouid=%u ogid=%u mode=%#o",
1270 				 axi->uid, axi->gid, axi->mode);
1271 			if (axi->osid != 0) {
1272 				char *ctx = NULL;
1273 				u32 len;
1274 				if (selinux_sid_to_string(
1275 						axi->osid, &ctx, &len)) {
1276 					audit_log_format(ab, " osid=%u",
1277 							axi->osid);
1278 					call_panic = 1;
1279 				} else
1280 					audit_log_format(ab, " obj=%s", ctx);
1281 				kfree(ctx);
1282 			}
1283 			break; }
1284 
1285 		case AUDIT_IPC_SET_PERM: {
1286 			struct audit_aux_data_ipcctl *axi = (void *)aux;
1287 			audit_log_format(ab,
1288 				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1289 				axi->qbytes, axi->uid, axi->gid, axi->mode);
1290 			break; }
1291 
1292 		case AUDIT_EXECVE: {
1293 			struct audit_aux_data_execve *axi = (void *)aux;
1294 			audit_log_execve_info(context, &ab, axi);
1295 			break; }
1296 
1297 		case AUDIT_SOCKETCALL: {
1298 			int i;
1299 			struct audit_aux_data_socketcall *axs = (void *)aux;
1300 			audit_log_format(ab, "nargs=%d", axs->nargs);
1301 			for (i=0; i<axs->nargs; i++)
1302 				audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1303 			break; }
1304 
1305 		case AUDIT_SOCKADDR: {
1306 			struct audit_aux_data_sockaddr *axs = (void *)aux;
1307 
1308 			audit_log_format(ab, "saddr=");
1309 			audit_log_hex(ab, axs->a, axs->len);
1310 			break; }
1311 
1312 		case AUDIT_FD_PAIR: {
1313 			struct audit_aux_data_fd_pair *axs = (void *)aux;
1314 			audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1315 			break; }
1316 
1317 		}
1318 		audit_log_end(ab);
1319 	}
1320 
1321 	for (aux = context->aux_pids; aux; aux = aux->next) {
1322 		struct audit_aux_data_pids *axs = (void *)aux;
1323 		int i;
1324 
1325 		for (i = 0; i < axs->pid_count; i++)
1326 			if (audit_log_pid_context(context, axs->target_pid[i],
1327 						  axs->target_auid[i],
1328 						  axs->target_uid[i],
1329 						  axs->target_sessionid[i],
1330 						  axs->target_sid[i],
1331 						  axs->target_comm[i]))
1332 				call_panic = 1;
1333 	}
1334 
1335 	if (context->target_pid &&
1336 	    audit_log_pid_context(context, context->target_pid,
1337 				  context->target_auid, context->target_uid,
1338 				  context->target_sessionid,
1339 				  context->target_sid, context->target_comm))
1340 			call_panic = 1;
1341 
1342 	if (context->pwd.dentry && context->pwd.mnt) {
1343 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1344 		if (ab) {
1345 			audit_log_d_path(ab, "cwd=", &context->pwd);
1346 			audit_log_end(ab);
1347 		}
1348 	}
1349 	for (i = 0; i < context->name_count; i++) {
1350 		struct audit_names *n = &context->names[i];
1351 
1352 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1353 		if (!ab)
1354 			continue; /* audit_panic has been called */
1355 
1356 		audit_log_format(ab, "item=%d", i);
1357 
1358 		if (n->name) {
1359 			switch(n->name_len) {
1360 			case AUDIT_NAME_FULL:
1361 				/* log the full path */
1362 				audit_log_format(ab, " name=");
1363 				audit_log_untrustedstring(ab, n->name);
1364 				break;
1365 			case 0:
1366 				/* name was specified as a relative path and the
1367 				 * directory component is the cwd */
1368 				audit_log_d_path(ab, " name=", &context->pwd);
1369 				break;
1370 			default:
1371 				/* log the name's directory component */
1372 				audit_log_format(ab, " name=");
1373 				audit_log_n_untrustedstring(ab, n->name_len,
1374 							    n->name);
1375 			}
1376 		} else
1377 			audit_log_format(ab, " name=(null)");
1378 
1379 		if (n->ino != (unsigned long)-1) {
1380 			audit_log_format(ab, " inode=%lu"
1381 					 " dev=%02x:%02x mode=%#o"
1382 					 " ouid=%u ogid=%u rdev=%02x:%02x",
1383 					 n->ino,
1384 					 MAJOR(n->dev),
1385 					 MINOR(n->dev),
1386 					 n->mode,
1387 					 n->uid,
1388 					 n->gid,
1389 					 MAJOR(n->rdev),
1390 					 MINOR(n->rdev));
1391 		}
1392 		if (n->osid != 0) {
1393 			char *ctx = NULL;
1394 			u32 len;
1395 			if (selinux_sid_to_string(
1396 				n->osid, &ctx, &len)) {
1397 				audit_log_format(ab, " osid=%u", n->osid);
1398 				call_panic = 2;
1399 			} else
1400 				audit_log_format(ab, " obj=%s", ctx);
1401 			kfree(ctx);
1402 		}
1403 
1404 		audit_log_end(ab);
1405 	}
1406 
1407 	/* Send end of event record to help user space know we are finished */
1408 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1409 	if (ab)
1410 		audit_log_end(ab);
1411 	if (call_panic)
1412 		audit_panic("error converting sid to string");
1413 }
1414 
1415 /**
1416  * audit_free - free a per-task audit context
1417  * @tsk: task whose audit context block to free
1418  *
1419  * Called from copy_process and do_exit
1420  */
1421 void audit_free(struct task_struct *tsk)
1422 {
1423 	struct audit_context *context;
1424 
1425 	context = audit_get_context(tsk, 0, 0);
1426 	if (likely(!context))
1427 		return;
1428 
1429 	/* Check for system calls that do not go through the exit
1430 	 * function (e.g., exit_group), then free context block.
1431 	 * We use GFP_ATOMIC here because we might be doing this
1432 	 * in the context of the idle thread */
1433 	/* that can happen only if we are called from do_exit() */
1434 	if (context->in_syscall && context->auditable)
1435 		audit_log_exit(context, tsk);
1436 
1437 	audit_free_context(context);
1438 }
1439 
1440 /**
1441  * audit_syscall_entry - fill in an audit record at syscall entry
1442  * @tsk: task being audited
1443  * @arch: architecture type
1444  * @major: major syscall type (function)
1445  * @a1: additional syscall register 1
1446  * @a2: additional syscall register 2
1447  * @a3: additional syscall register 3
1448  * @a4: additional syscall register 4
1449  *
1450  * Fill in audit context at syscall entry.  This only happens if the
1451  * audit context was created when the task was created and the state or
1452  * filters demand the audit context be built.  If the state from the
1453  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1454  * then the record will be written at syscall exit time (otherwise, it
1455  * will only be written if another part of the kernel requests that it
1456  * be written).
1457  */
1458 void audit_syscall_entry(int arch, int major,
1459 			 unsigned long a1, unsigned long a2,
1460 			 unsigned long a3, unsigned long a4)
1461 {
1462 	struct task_struct *tsk = current;
1463 	struct audit_context *context = tsk->audit_context;
1464 	enum audit_state     state;
1465 
1466 	BUG_ON(!context);
1467 
1468 	/*
1469 	 * This happens only on certain architectures that make system
1470 	 * calls in kernel_thread via the entry.S interface, instead of
1471 	 * with direct calls.  (If you are porting to a new
1472 	 * architecture, hitting this condition can indicate that you
1473 	 * got the _exit/_leave calls backward in entry.S.)
1474 	 *
1475 	 * i386     no
1476 	 * x86_64   no
1477 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1478 	 *
1479 	 * This also happens with vm86 emulation in a non-nested manner
1480 	 * (entries without exits), so this case must be caught.
1481 	 */
1482 	if (context->in_syscall) {
1483 		struct audit_context *newctx;
1484 
1485 #if AUDIT_DEBUG
1486 		printk(KERN_ERR
1487 		       "audit(:%d) pid=%d in syscall=%d;"
1488 		       " entering syscall=%d\n",
1489 		       context->serial, tsk->pid, context->major, major);
1490 #endif
1491 		newctx = audit_alloc_context(context->state);
1492 		if (newctx) {
1493 			newctx->previous   = context;
1494 			context		   = newctx;
1495 			tsk->audit_context = newctx;
1496 		} else	{
1497 			/* If we can't alloc a new context, the best we
1498 			 * can do is to leak memory (any pending putname
1499 			 * will be lost).  The only other alternative is
1500 			 * to abandon auditing. */
1501 			audit_zero_context(context, context->state);
1502 		}
1503 	}
1504 	BUG_ON(context->in_syscall || context->name_count);
1505 
1506 	if (!audit_enabled)
1507 		return;
1508 
1509 	context->arch	    = arch;
1510 	context->major      = major;
1511 	context->argv[0]    = a1;
1512 	context->argv[1]    = a2;
1513 	context->argv[2]    = a3;
1514 	context->argv[3]    = a4;
1515 
1516 	state = context->state;
1517 	context->dummy = !audit_n_rules;
1518 	if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1519 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1520 	if (likely(state == AUDIT_DISABLED))
1521 		return;
1522 
1523 	context->serial     = 0;
1524 	context->ctime      = CURRENT_TIME;
1525 	context->in_syscall = 1;
1526 	context->auditable  = !!(state == AUDIT_RECORD_CONTEXT);
1527 	context->ppid       = 0;
1528 }
1529 
1530 /**
1531  * audit_syscall_exit - deallocate audit context after a system call
1532  * @tsk: task being audited
1533  * @valid: success/failure flag
1534  * @return_code: syscall return value
1535  *
1536  * Tear down after system call.  If the audit context has been marked as
1537  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1538  * filtering, or because some other part of the kernel write an audit
1539  * message), then write out the syscall information.  In call cases,
1540  * free the names stored from getname().
1541  */
1542 void audit_syscall_exit(int valid, long return_code)
1543 {
1544 	struct task_struct *tsk = current;
1545 	struct audit_context *context;
1546 
1547 	context = audit_get_context(tsk, valid, return_code);
1548 
1549 	if (likely(!context))
1550 		return;
1551 
1552 	if (context->in_syscall && context->auditable)
1553 		audit_log_exit(context, tsk);
1554 
1555 	context->in_syscall = 0;
1556 	context->auditable  = 0;
1557 
1558 	if (context->previous) {
1559 		struct audit_context *new_context = context->previous;
1560 		context->previous  = NULL;
1561 		audit_free_context(context);
1562 		tsk->audit_context = new_context;
1563 	} else {
1564 		audit_free_names(context);
1565 		unroll_tree_refs(context, NULL, 0);
1566 		audit_free_aux(context);
1567 		context->aux = NULL;
1568 		context->aux_pids = NULL;
1569 		context->target_pid = 0;
1570 		context->target_sid = 0;
1571 		kfree(context->filterkey);
1572 		context->filterkey = NULL;
1573 		tsk->audit_context = context;
1574 	}
1575 }
1576 
1577 static inline void handle_one(const struct inode *inode)
1578 {
1579 #ifdef CONFIG_AUDIT_TREE
1580 	struct audit_context *context;
1581 	struct audit_tree_refs *p;
1582 	struct audit_chunk *chunk;
1583 	int count;
1584 	if (likely(list_empty(&inode->inotify_watches)))
1585 		return;
1586 	context = current->audit_context;
1587 	p = context->trees;
1588 	count = context->tree_count;
1589 	rcu_read_lock();
1590 	chunk = audit_tree_lookup(inode);
1591 	rcu_read_unlock();
1592 	if (!chunk)
1593 		return;
1594 	if (likely(put_tree_ref(context, chunk)))
1595 		return;
1596 	if (unlikely(!grow_tree_refs(context))) {
1597 		printk(KERN_WARNING "out of memory, audit has lost a tree reference");
1598 		audit_set_auditable(context);
1599 		audit_put_chunk(chunk);
1600 		unroll_tree_refs(context, p, count);
1601 		return;
1602 	}
1603 	put_tree_ref(context, chunk);
1604 #endif
1605 }
1606 
1607 static void handle_path(const struct dentry *dentry)
1608 {
1609 #ifdef CONFIG_AUDIT_TREE
1610 	struct audit_context *context;
1611 	struct audit_tree_refs *p;
1612 	const struct dentry *d, *parent;
1613 	struct audit_chunk *drop;
1614 	unsigned long seq;
1615 	int count;
1616 
1617 	context = current->audit_context;
1618 	p = context->trees;
1619 	count = context->tree_count;
1620 retry:
1621 	drop = NULL;
1622 	d = dentry;
1623 	rcu_read_lock();
1624 	seq = read_seqbegin(&rename_lock);
1625 	for(;;) {
1626 		struct inode *inode = d->d_inode;
1627 		if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1628 			struct audit_chunk *chunk;
1629 			chunk = audit_tree_lookup(inode);
1630 			if (chunk) {
1631 				if (unlikely(!put_tree_ref(context, chunk))) {
1632 					drop = chunk;
1633 					break;
1634 				}
1635 			}
1636 		}
1637 		parent = d->d_parent;
1638 		if (parent == d)
1639 			break;
1640 		d = parent;
1641 	}
1642 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1643 		rcu_read_unlock();
1644 		if (!drop) {
1645 			/* just a race with rename */
1646 			unroll_tree_refs(context, p, count);
1647 			goto retry;
1648 		}
1649 		audit_put_chunk(drop);
1650 		if (grow_tree_refs(context)) {
1651 			/* OK, got more space */
1652 			unroll_tree_refs(context, p, count);
1653 			goto retry;
1654 		}
1655 		/* too bad */
1656 		printk(KERN_WARNING
1657 			"out of memory, audit has lost a tree reference");
1658 		unroll_tree_refs(context, p, count);
1659 		audit_set_auditable(context);
1660 		return;
1661 	}
1662 	rcu_read_unlock();
1663 #endif
1664 }
1665 
1666 /**
1667  * audit_getname - add a name to the list
1668  * @name: name to add
1669  *
1670  * Add a name to the list of audit names for this context.
1671  * Called from fs/namei.c:getname().
1672  */
1673 void __audit_getname(const char *name)
1674 {
1675 	struct audit_context *context = current->audit_context;
1676 
1677 	if (IS_ERR(name) || !name)
1678 		return;
1679 
1680 	if (!context->in_syscall) {
1681 #if AUDIT_DEBUG == 2
1682 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1683 		       __FILE__, __LINE__, context->serial, name);
1684 		dump_stack();
1685 #endif
1686 		return;
1687 	}
1688 	BUG_ON(context->name_count >= AUDIT_NAMES);
1689 	context->names[context->name_count].name = name;
1690 	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1691 	context->names[context->name_count].name_put = 1;
1692 	context->names[context->name_count].ino  = (unsigned long)-1;
1693 	context->names[context->name_count].osid = 0;
1694 	++context->name_count;
1695 	if (!context->pwd.dentry) {
1696 		read_lock(&current->fs->lock);
1697 		context->pwd = current->fs->pwd;
1698 		path_get(&current->fs->pwd);
1699 		read_unlock(&current->fs->lock);
1700 	}
1701 
1702 }
1703 
1704 /* audit_putname - intercept a putname request
1705  * @name: name to intercept and delay for putname
1706  *
1707  * If we have stored the name from getname in the audit context,
1708  * then we delay the putname until syscall exit.
1709  * Called from include/linux/fs.h:putname().
1710  */
1711 void audit_putname(const char *name)
1712 {
1713 	struct audit_context *context = current->audit_context;
1714 
1715 	BUG_ON(!context);
1716 	if (!context->in_syscall) {
1717 #if AUDIT_DEBUG == 2
1718 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1719 		       __FILE__, __LINE__, context->serial, name);
1720 		if (context->name_count) {
1721 			int i;
1722 			for (i = 0; i < context->name_count; i++)
1723 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1724 				       context->names[i].name,
1725 				       context->names[i].name ?: "(null)");
1726 		}
1727 #endif
1728 		__putname(name);
1729 	}
1730 #if AUDIT_DEBUG
1731 	else {
1732 		++context->put_count;
1733 		if (context->put_count > context->name_count) {
1734 			printk(KERN_ERR "%s:%d(:%d): major=%d"
1735 			       " in_syscall=%d putname(%p) name_count=%d"
1736 			       " put_count=%d\n",
1737 			       __FILE__, __LINE__,
1738 			       context->serial, context->major,
1739 			       context->in_syscall, name, context->name_count,
1740 			       context->put_count);
1741 			dump_stack();
1742 		}
1743 	}
1744 #endif
1745 }
1746 
1747 static int audit_inc_name_count(struct audit_context *context,
1748 				const struct inode *inode)
1749 {
1750 	if (context->name_count >= AUDIT_NAMES) {
1751 		if (inode)
1752 			printk(KERN_DEBUG "name_count maxed, losing inode data: "
1753 			       "dev=%02x:%02x, inode=%lu",
1754 			       MAJOR(inode->i_sb->s_dev),
1755 			       MINOR(inode->i_sb->s_dev),
1756 			       inode->i_ino);
1757 
1758 		else
1759 			printk(KERN_DEBUG "name_count maxed, losing inode data");
1760 		return 1;
1761 	}
1762 	context->name_count++;
1763 #if AUDIT_DEBUG
1764 	context->ino_count++;
1765 #endif
1766 	return 0;
1767 }
1768 
1769 /* Copy inode data into an audit_names. */
1770 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1771 {
1772 	name->ino   = inode->i_ino;
1773 	name->dev   = inode->i_sb->s_dev;
1774 	name->mode  = inode->i_mode;
1775 	name->uid   = inode->i_uid;
1776 	name->gid   = inode->i_gid;
1777 	name->rdev  = inode->i_rdev;
1778 	selinux_get_inode_sid(inode, &name->osid);
1779 }
1780 
1781 /**
1782  * audit_inode - store the inode and device from a lookup
1783  * @name: name being audited
1784  * @dentry: dentry being audited
1785  *
1786  * Called from fs/namei.c:path_lookup().
1787  */
1788 void __audit_inode(const char *name, const struct dentry *dentry)
1789 {
1790 	int idx;
1791 	struct audit_context *context = current->audit_context;
1792 	const struct inode *inode = dentry->d_inode;
1793 
1794 	if (!context->in_syscall)
1795 		return;
1796 	if (context->name_count
1797 	    && context->names[context->name_count-1].name
1798 	    && context->names[context->name_count-1].name == name)
1799 		idx = context->name_count - 1;
1800 	else if (context->name_count > 1
1801 		 && context->names[context->name_count-2].name
1802 		 && context->names[context->name_count-2].name == name)
1803 		idx = context->name_count - 2;
1804 	else {
1805 		/* FIXME: how much do we care about inodes that have no
1806 		 * associated name? */
1807 		if (audit_inc_name_count(context, inode))
1808 			return;
1809 		idx = context->name_count - 1;
1810 		context->names[idx].name = NULL;
1811 	}
1812 	handle_path(dentry);
1813 	audit_copy_inode(&context->names[idx], inode);
1814 }
1815 
1816 /**
1817  * audit_inode_child - collect inode info for created/removed objects
1818  * @dname: inode's dentry name
1819  * @dentry: dentry being audited
1820  * @parent: inode of dentry parent
1821  *
1822  * For syscalls that create or remove filesystem objects, audit_inode
1823  * can only collect information for the filesystem object's parent.
1824  * This call updates the audit context with the child's information.
1825  * Syscalls that create a new filesystem object must be hooked after
1826  * the object is created.  Syscalls that remove a filesystem object
1827  * must be hooked prior, in order to capture the target inode during
1828  * unsuccessful attempts.
1829  */
1830 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1831 			 const struct inode *parent)
1832 {
1833 	int idx;
1834 	struct audit_context *context = current->audit_context;
1835 	const char *found_parent = NULL, *found_child = NULL;
1836 	const struct inode *inode = dentry->d_inode;
1837 	int dirlen = 0;
1838 
1839 	if (!context->in_syscall)
1840 		return;
1841 
1842 	if (inode)
1843 		handle_one(inode);
1844 	/* determine matching parent */
1845 	if (!dname)
1846 		goto add_names;
1847 
1848 	/* parent is more likely, look for it first */
1849 	for (idx = 0; idx < context->name_count; idx++) {
1850 		struct audit_names *n = &context->names[idx];
1851 
1852 		if (!n->name)
1853 			continue;
1854 
1855 		if (n->ino == parent->i_ino &&
1856 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
1857 			n->name_len = dirlen; /* update parent data in place */
1858 			found_parent = n->name;
1859 			goto add_names;
1860 		}
1861 	}
1862 
1863 	/* no matching parent, look for matching child */
1864 	for (idx = 0; idx < context->name_count; idx++) {
1865 		struct audit_names *n = &context->names[idx];
1866 
1867 		if (!n->name)
1868 			continue;
1869 
1870 		/* strcmp() is the more likely scenario */
1871 		if (!strcmp(dname, n->name) ||
1872 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
1873 			if (inode)
1874 				audit_copy_inode(n, inode);
1875 			else
1876 				n->ino = (unsigned long)-1;
1877 			found_child = n->name;
1878 			goto add_names;
1879 		}
1880 	}
1881 
1882 add_names:
1883 	if (!found_parent) {
1884 		if (audit_inc_name_count(context, parent))
1885 			return;
1886 		idx = context->name_count - 1;
1887 		context->names[idx].name = NULL;
1888 		audit_copy_inode(&context->names[idx], parent);
1889 	}
1890 
1891 	if (!found_child) {
1892 		if (audit_inc_name_count(context, inode))
1893 			return;
1894 		idx = context->name_count - 1;
1895 
1896 		/* Re-use the name belonging to the slot for a matching parent
1897 		 * directory. All names for this context are relinquished in
1898 		 * audit_free_names() */
1899 		if (found_parent) {
1900 			context->names[idx].name = found_parent;
1901 			context->names[idx].name_len = AUDIT_NAME_FULL;
1902 			/* don't call __putname() */
1903 			context->names[idx].name_put = 0;
1904 		} else {
1905 			context->names[idx].name = NULL;
1906 		}
1907 
1908 		if (inode)
1909 			audit_copy_inode(&context->names[idx], inode);
1910 		else
1911 			context->names[idx].ino = (unsigned long)-1;
1912 	}
1913 }
1914 EXPORT_SYMBOL_GPL(__audit_inode_child);
1915 
1916 /**
1917  * auditsc_get_stamp - get local copies of audit_context values
1918  * @ctx: audit_context for the task
1919  * @t: timespec to store time recorded in the audit_context
1920  * @serial: serial value that is recorded in the audit_context
1921  *
1922  * Also sets the context as auditable.
1923  */
1924 void auditsc_get_stamp(struct audit_context *ctx,
1925 		       struct timespec *t, unsigned int *serial)
1926 {
1927 	if (!ctx->serial)
1928 		ctx->serial = audit_serial();
1929 	t->tv_sec  = ctx->ctime.tv_sec;
1930 	t->tv_nsec = ctx->ctime.tv_nsec;
1931 	*serial    = ctx->serial;
1932 	ctx->auditable = 1;
1933 }
1934 
1935 /* global counter which is incremented every time something logs in */
1936 static atomic_t session_id = ATOMIC_INIT(0);
1937 
1938 /**
1939  * audit_set_loginuid - set a task's audit_context loginuid
1940  * @task: task whose audit context is being modified
1941  * @loginuid: loginuid value
1942  *
1943  * Returns 0.
1944  *
1945  * Called (set) from fs/proc/base.c::proc_loginuid_write().
1946  */
1947 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1948 {
1949 	unsigned int sessionid = atomic_inc_return(&session_id);
1950 	struct audit_context *context = task->audit_context;
1951 
1952 	if (context && context->in_syscall) {
1953 		struct audit_buffer *ab;
1954 
1955 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1956 		if (ab) {
1957 			audit_log_format(ab, "login pid=%d uid=%u "
1958 				"old auid=%u new auid=%u"
1959 				" old ses=%u new ses=%u",
1960 				task->pid, task->uid,
1961 				task->loginuid, loginuid,
1962 				task->sessionid, sessionid);
1963 			audit_log_end(ab);
1964 		}
1965 	}
1966 	task->sessionid = sessionid;
1967 	task->loginuid = loginuid;
1968 	return 0;
1969 }
1970 
1971 /**
1972  * __audit_mq_open - record audit data for a POSIX MQ open
1973  * @oflag: open flag
1974  * @mode: mode bits
1975  * @u_attr: queue attributes
1976  *
1977  * Returns 0 for success or NULL context or < 0 on error.
1978  */
1979 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1980 {
1981 	struct audit_aux_data_mq_open *ax;
1982 	struct audit_context *context = current->audit_context;
1983 
1984 	if (!audit_enabled)
1985 		return 0;
1986 
1987 	if (likely(!context))
1988 		return 0;
1989 
1990 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1991 	if (!ax)
1992 		return -ENOMEM;
1993 
1994 	if (u_attr != NULL) {
1995 		if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1996 			kfree(ax);
1997 			return -EFAULT;
1998 		}
1999 	} else
2000 		memset(&ax->attr, 0, sizeof(ax->attr));
2001 
2002 	ax->oflag = oflag;
2003 	ax->mode = mode;
2004 
2005 	ax->d.type = AUDIT_MQ_OPEN;
2006 	ax->d.next = context->aux;
2007 	context->aux = (void *)ax;
2008 	return 0;
2009 }
2010 
2011 /**
2012  * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2013  * @mqdes: MQ descriptor
2014  * @msg_len: Message length
2015  * @msg_prio: Message priority
2016  * @u_abs_timeout: Message timeout in absolute time
2017  *
2018  * Returns 0 for success or NULL context or < 0 on error.
2019  */
2020 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2021 			const struct timespec __user *u_abs_timeout)
2022 {
2023 	struct audit_aux_data_mq_sendrecv *ax;
2024 	struct audit_context *context = current->audit_context;
2025 
2026 	if (!audit_enabled)
2027 		return 0;
2028 
2029 	if (likely(!context))
2030 		return 0;
2031 
2032 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2033 	if (!ax)
2034 		return -ENOMEM;
2035 
2036 	if (u_abs_timeout != NULL) {
2037 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2038 			kfree(ax);
2039 			return -EFAULT;
2040 		}
2041 	} else
2042 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2043 
2044 	ax->mqdes = mqdes;
2045 	ax->msg_len = msg_len;
2046 	ax->msg_prio = msg_prio;
2047 
2048 	ax->d.type = AUDIT_MQ_SENDRECV;
2049 	ax->d.next = context->aux;
2050 	context->aux = (void *)ax;
2051 	return 0;
2052 }
2053 
2054 /**
2055  * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2056  * @mqdes: MQ descriptor
2057  * @msg_len: Message length
2058  * @u_msg_prio: Message priority
2059  * @u_abs_timeout: Message timeout in absolute time
2060  *
2061  * Returns 0 for success or NULL context or < 0 on error.
2062  */
2063 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2064 				unsigned int __user *u_msg_prio,
2065 				const struct timespec __user *u_abs_timeout)
2066 {
2067 	struct audit_aux_data_mq_sendrecv *ax;
2068 	struct audit_context *context = current->audit_context;
2069 
2070 	if (!audit_enabled)
2071 		return 0;
2072 
2073 	if (likely(!context))
2074 		return 0;
2075 
2076 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2077 	if (!ax)
2078 		return -ENOMEM;
2079 
2080 	if (u_msg_prio != NULL) {
2081 		if (get_user(ax->msg_prio, u_msg_prio)) {
2082 			kfree(ax);
2083 			return -EFAULT;
2084 		}
2085 	} else
2086 		ax->msg_prio = 0;
2087 
2088 	if (u_abs_timeout != NULL) {
2089 		if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2090 			kfree(ax);
2091 			return -EFAULT;
2092 		}
2093 	} else
2094 		memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2095 
2096 	ax->mqdes = mqdes;
2097 	ax->msg_len = msg_len;
2098 
2099 	ax->d.type = AUDIT_MQ_SENDRECV;
2100 	ax->d.next = context->aux;
2101 	context->aux = (void *)ax;
2102 	return 0;
2103 }
2104 
2105 /**
2106  * __audit_mq_notify - record audit data for a POSIX MQ notify
2107  * @mqdes: MQ descriptor
2108  * @u_notification: Notification event
2109  *
2110  * Returns 0 for success or NULL context or < 0 on error.
2111  */
2112 
2113 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2114 {
2115 	struct audit_aux_data_mq_notify *ax;
2116 	struct audit_context *context = current->audit_context;
2117 
2118 	if (!audit_enabled)
2119 		return 0;
2120 
2121 	if (likely(!context))
2122 		return 0;
2123 
2124 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2125 	if (!ax)
2126 		return -ENOMEM;
2127 
2128 	if (u_notification != NULL) {
2129 		if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2130 			kfree(ax);
2131 			return -EFAULT;
2132 		}
2133 	} else
2134 		memset(&ax->notification, 0, sizeof(ax->notification));
2135 
2136 	ax->mqdes = mqdes;
2137 
2138 	ax->d.type = AUDIT_MQ_NOTIFY;
2139 	ax->d.next = context->aux;
2140 	context->aux = (void *)ax;
2141 	return 0;
2142 }
2143 
2144 /**
2145  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2146  * @mqdes: MQ descriptor
2147  * @mqstat: MQ flags
2148  *
2149  * Returns 0 for success or NULL context or < 0 on error.
2150  */
2151 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2152 {
2153 	struct audit_aux_data_mq_getsetattr *ax;
2154 	struct audit_context *context = current->audit_context;
2155 
2156 	if (!audit_enabled)
2157 		return 0;
2158 
2159 	if (likely(!context))
2160 		return 0;
2161 
2162 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2163 	if (!ax)
2164 		return -ENOMEM;
2165 
2166 	ax->mqdes = mqdes;
2167 	ax->mqstat = *mqstat;
2168 
2169 	ax->d.type = AUDIT_MQ_GETSETATTR;
2170 	ax->d.next = context->aux;
2171 	context->aux = (void *)ax;
2172 	return 0;
2173 }
2174 
2175 /**
2176  * audit_ipc_obj - record audit data for ipc object
2177  * @ipcp: ipc permissions
2178  *
2179  * Returns 0 for success or NULL context or < 0 on error.
2180  */
2181 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2182 {
2183 	struct audit_aux_data_ipcctl *ax;
2184 	struct audit_context *context = current->audit_context;
2185 
2186 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2187 	if (!ax)
2188 		return -ENOMEM;
2189 
2190 	ax->uid = ipcp->uid;
2191 	ax->gid = ipcp->gid;
2192 	ax->mode = ipcp->mode;
2193 	selinux_get_ipc_sid(ipcp, &ax->osid);
2194 
2195 	ax->d.type = AUDIT_IPC;
2196 	ax->d.next = context->aux;
2197 	context->aux = (void *)ax;
2198 	return 0;
2199 }
2200 
2201 /**
2202  * audit_ipc_set_perm - record audit data for new ipc permissions
2203  * @qbytes: msgq bytes
2204  * @uid: msgq user id
2205  * @gid: msgq group id
2206  * @mode: msgq mode (permissions)
2207  *
2208  * Returns 0 for success or NULL context or < 0 on error.
2209  */
2210 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2211 {
2212 	struct audit_aux_data_ipcctl *ax;
2213 	struct audit_context *context = current->audit_context;
2214 
2215 	ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2216 	if (!ax)
2217 		return -ENOMEM;
2218 
2219 	ax->qbytes = qbytes;
2220 	ax->uid = uid;
2221 	ax->gid = gid;
2222 	ax->mode = mode;
2223 
2224 	ax->d.type = AUDIT_IPC_SET_PERM;
2225 	ax->d.next = context->aux;
2226 	context->aux = (void *)ax;
2227 	return 0;
2228 }
2229 
2230 int audit_bprm(struct linux_binprm *bprm)
2231 {
2232 	struct audit_aux_data_execve *ax;
2233 	struct audit_context *context = current->audit_context;
2234 
2235 	if (likely(!audit_enabled || !context || context->dummy))
2236 		return 0;
2237 
2238 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2239 	if (!ax)
2240 		return -ENOMEM;
2241 
2242 	ax->argc = bprm->argc;
2243 	ax->envc = bprm->envc;
2244 	ax->mm = bprm->mm;
2245 	ax->d.type = AUDIT_EXECVE;
2246 	ax->d.next = context->aux;
2247 	context->aux = (void *)ax;
2248 	return 0;
2249 }
2250 
2251 
2252 /**
2253  * audit_socketcall - record audit data for sys_socketcall
2254  * @nargs: number of args
2255  * @args: args array
2256  *
2257  * Returns 0 for success or NULL context or < 0 on error.
2258  */
2259 int audit_socketcall(int nargs, unsigned long *args)
2260 {
2261 	struct audit_aux_data_socketcall *ax;
2262 	struct audit_context *context = current->audit_context;
2263 
2264 	if (likely(!context || context->dummy))
2265 		return 0;
2266 
2267 	ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2268 	if (!ax)
2269 		return -ENOMEM;
2270 
2271 	ax->nargs = nargs;
2272 	memcpy(ax->args, args, nargs * sizeof(unsigned long));
2273 
2274 	ax->d.type = AUDIT_SOCKETCALL;
2275 	ax->d.next = context->aux;
2276 	context->aux = (void *)ax;
2277 	return 0;
2278 }
2279 
2280 /**
2281  * __audit_fd_pair - record audit data for pipe and socketpair
2282  * @fd1: the first file descriptor
2283  * @fd2: the second file descriptor
2284  *
2285  * Returns 0 for success or NULL context or < 0 on error.
2286  */
2287 int __audit_fd_pair(int fd1, int fd2)
2288 {
2289 	struct audit_context *context = current->audit_context;
2290 	struct audit_aux_data_fd_pair *ax;
2291 
2292 	if (likely(!context)) {
2293 		return 0;
2294 	}
2295 
2296 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2297 	if (!ax) {
2298 		return -ENOMEM;
2299 	}
2300 
2301 	ax->fd[0] = fd1;
2302 	ax->fd[1] = fd2;
2303 
2304 	ax->d.type = AUDIT_FD_PAIR;
2305 	ax->d.next = context->aux;
2306 	context->aux = (void *)ax;
2307 	return 0;
2308 }
2309 
2310 /**
2311  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2312  * @len: data length in user space
2313  * @a: data address in kernel space
2314  *
2315  * Returns 0 for success or NULL context or < 0 on error.
2316  */
2317 int audit_sockaddr(int len, void *a)
2318 {
2319 	struct audit_aux_data_sockaddr *ax;
2320 	struct audit_context *context = current->audit_context;
2321 
2322 	if (likely(!context || context->dummy))
2323 		return 0;
2324 
2325 	ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2326 	if (!ax)
2327 		return -ENOMEM;
2328 
2329 	ax->len = len;
2330 	memcpy(ax->a, a, len);
2331 
2332 	ax->d.type = AUDIT_SOCKADDR;
2333 	ax->d.next = context->aux;
2334 	context->aux = (void *)ax;
2335 	return 0;
2336 }
2337 
2338 void __audit_ptrace(struct task_struct *t)
2339 {
2340 	struct audit_context *context = current->audit_context;
2341 
2342 	context->target_pid = t->pid;
2343 	context->target_auid = audit_get_loginuid(t);
2344 	context->target_uid = t->uid;
2345 	context->target_sessionid = audit_get_sessionid(t);
2346 	selinux_get_task_sid(t, &context->target_sid);
2347 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2348 }
2349 
2350 /**
2351  * audit_signal_info - record signal info for shutting down audit subsystem
2352  * @sig: signal value
2353  * @t: task being signaled
2354  *
2355  * If the audit subsystem is being terminated, record the task (pid)
2356  * and uid that is doing that.
2357  */
2358 int __audit_signal_info(int sig, struct task_struct *t)
2359 {
2360 	struct audit_aux_data_pids *axp;
2361 	struct task_struct *tsk = current;
2362 	struct audit_context *ctx = tsk->audit_context;
2363 	extern pid_t audit_sig_pid;
2364 	extern uid_t audit_sig_uid;
2365 	extern u32 audit_sig_sid;
2366 
2367 	if (audit_pid && t->tgid == audit_pid) {
2368 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1) {
2369 			audit_sig_pid = tsk->pid;
2370 			if (tsk->loginuid != -1)
2371 				audit_sig_uid = tsk->loginuid;
2372 			else
2373 				audit_sig_uid = tsk->uid;
2374 			selinux_get_task_sid(tsk, &audit_sig_sid);
2375 		}
2376 		if (!audit_signals || audit_dummy_context())
2377 			return 0;
2378 	}
2379 
2380 	/* optimize the common case by putting first signal recipient directly
2381 	 * in audit_context */
2382 	if (!ctx->target_pid) {
2383 		ctx->target_pid = t->tgid;
2384 		ctx->target_auid = audit_get_loginuid(t);
2385 		ctx->target_uid = t->uid;
2386 		ctx->target_sessionid = audit_get_sessionid(t);
2387 		selinux_get_task_sid(t, &ctx->target_sid);
2388 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2389 		return 0;
2390 	}
2391 
2392 	axp = (void *)ctx->aux_pids;
2393 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2394 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2395 		if (!axp)
2396 			return -ENOMEM;
2397 
2398 		axp->d.type = AUDIT_OBJ_PID;
2399 		axp->d.next = ctx->aux_pids;
2400 		ctx->aux_pids = (void *)axp;
2401 	}
2402 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2403 
2404 	axp->target_pid[axp->pid_count] = t->tgid;
2405 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2406 	axp->target_uid[axp->pid_count] = t->uid;
2407 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2408 	selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2409 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2410 	axp->pid_count++;
2411 
2412 	return 0;
2413 }
2414 
2415 /**
2416  * audit_core_dumps - record information about processes that end abnormally
2417  * @signr: signal value
2418  *
2419  * If a process ends with a core dump, something fishy is going on and we
2420  * should record the event for investigation.
2421  */
2422 void audit_core_dumps(long signr)
2423 {
2424 	struct audit_buffer *ab;
2425 	u32 sid;
2426 	uid_t auid = audit_get_loginuid(current);
2427 	unsigned int sessionid = audit_get_sessionid(current);
2428 
2429 	if (!audit_enabled)
2430 		return;
2431 
2432 	if (signr == SIGQUIT)	/* don't care for those */
2433 		return;
2434 
2435 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2436 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2437 			auid, current->uid, current->gid, sessionid);
2438 	selinux_get_task_sid(current, &sid);
2439 	if (sid) {
2440 		char *ctx = NULL;
2441 		u32 len;
2442 
2443 		if (selinux_sid_to_string(sid, &ctx, &len))
2444 			audit_log_format(ab, " ssid=%u", sid);
2445 		else
2446 			audit_log_format(ab, " subj=%s", ctx);
2447 		kfree(ctx);
2448 	}
2449 	audit_log_format(ab, " pid=%d comm=", current->pid);
2450 	audit_log_untrustedstring(ab, current->comm);
2451 	audit_log_format(ab, " sig=%ld", signr);
2452 	audit_log_end(ab);
2453 }
2454