1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <linux/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/export.h> 52 #include <linux/slab.h> 53 #include <linux/mount.h> 54 #include <linux/socket.h> 55 #include <linux/mqueue.h> 56 #include <linux/audit.h> 57 #include <linux/personality.h> 58 #include <linux/time.h> 59 #include <linux/netlink.h> 60 #include <linux/compiler.h> 61 #include <asm/unistd.h> 62 #include <linux/security.h> 63 #include <linux/list.h> 64 #include <linux/tty.h> 65 #include <linux/binfmts.h> 66 #include <linux/highmem.h> 67 #include <linux/syscalls.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 #include <linux/compat.h> 71 72 #include "audit.h" 73 74 /* flags stating the success for a syscall */ 75 #define AUDITSC_INVALID 0 76 #define AUDITSC_SUCCESS 1 77 #define AUDITSC_FAILURE 2 78 79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 80 * for saving names from getname(). If we get more names we will allocate 81 * a name dynamically and also add those to the list anchored by names_list. */ 82 #define AUDIT_NAMES 5 83 84 /* Indicates that audit should log the full pathname. */ 85 #define AUDIT_NAME_FULL -1 86 87 /* no execve audit message should be longer than this (userspace limits) */ 88 #define MAX_EXECVE_AUDIT_LEN 7500 89 90 /* number of audit rules */ 91 int audit_n_rules; 92 93 /* determines whether we collect data for signals sent */ 94 int audit_signals; 95 96 struct audit_cap_data { 97 kernel_cap_t permitted; 98 kernel_cap_t inheritable; 99 union { 100 unsigned int fE; /* effective bit of a file capability */ 101 kernel_cap_t effective; /* effective set of a process */ 102 }; 103 }; 104 105 /* When fs/namei.c:getname() is called, we store the pointer in name and 106 * we don't let putname() free it (instead we free all of the saved 107 * pointers at syscall exit time). 108 * 109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 110 struct audit_names { 111 struct list_head list; /* audit_context->names_list */ 112 const char *name; 113 unsigned long ino; 114 dev_t dev; 115 umode_t mode; 116 uid_t uid; 117 gid_t gid; 118 dev_t rdev; 119 u32 osid; 120 struct audit_cap_data fcap; 121 unsigned int fcap_ver; 122 int name_len; /* number of name's characters to log */ 123 bool name_put; /* call __putname() for this name */ 124 /* 125 * This was an allocated audit_names and not from the array of 126 * names allocated in the task audit context. Thus this name 127 * should be freed on syscall exit 128 */ 129 bool should_free; 130 }; 131 132 struct audit_aux_data { 133 struct audit_aux_data *next; 134 int type; 135 }; 136 137 #define AUDIT_AUX_IPCPERM 0 138 139 /* Number of target pids per aux struct. */ 140 #define AUDIT_AUX_PIDS 16 141 142 struct audit_aux_data_execve { 143 struct audit_aux_data d; 144 int argc; 145 int envc; 146 struct mm_struct *mm; 147 }; 148 149 struct audit_aux_data_pids { 150 struct audit_aux_data d; 151 pid_t target_pid[AUDIT_AUX_PIDS]; 152 uid_t target_auid[AUDIT_AUX_PIDS]; 153 uid_t target_uid[AUDIT_AUX_PIDS]; 154 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 155 u32 target_sid[AUDIT_AUX_PIDS]; 156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 157 int pid_count; 158 }; 159 160 struct audit_aux_data_bprm_fcaps { 161 struct audit_aux_data d; 162 struct audit_cap_data fcap; 163 unsigned int fcap_ver; 164 struct audit_cap_data old_pcap; 165 struct audit_cap_data new_pcap; 166 }; 167 168 struct audit_aux_data_capset { 169 struct audit_aux_data d; 170 pid_t pid; 171 struct audit_cap_data cap; 172 }; 173 174 struct audit_tree_refs { 175 struct audit_tree_refs *next; 176 struct audit_chunk *c[31]; 177 }; 178 179 /* The per-task audit context. */ 180 struct audit_context { 181 int dummy; /* must be the first element */ 182 int in_syscall; /* 1 if task is in a syscall */ 183 enum audit_state state, current_state; 184 unsigned int serial; /* serial number for record */ 185 int major; /* syscall number */ 186 struct timespec ctime; /* time of syscall entry */ 187 unsigned long argv[4]; /* syscall arguments */ 188 long return_code;/* syscall return code */ 189 u64 prio; 190 int return_valid; /* return code is valid */ 191 /* 192 * The names_list is the list of all audit_names collected during this 193 * syscall. The first AUDIT_NAMES entries in the names_list will 194 * actually be from the preallocated_names array for performance 195 * reasons. Except during allocation they should never be referenced 196 * through the preallocated_names array and should only be found/used 197 * by running the names_list. 198 */ 199 struct audit_names preallocated_names[AUDIT_NAMES]; 200 int name_count; /* total records in names_list */ 201 struct list_head names_list; /* anchor for struct audit_names->list */ 202 char * filterkey; /* key for rule that triggered record */ 203 struct path pwd; 204 struct audit_context *previous; /* For nested syscalls */ 205 struct audit_aux_data *aux; 206 struct audit_aux_data *aux_pids; 207 struct sockaddr_storage *sockaddr; 208 size_t sockaddr_len; 209 /* Save things to print about task_struct */ 210 pid_t pid, ppid; 211 uid_t uid, euid, suid, fsuid; 212 gid_t gid, egid, sgid, fsgid; 213 unsigned long personality; 214 int arch; 215 216 pid_t target_pid; 217 uid_t target_auid; 218 uid_t target_uid; 219 unsigned int target_sessionid; 220 u32 target_sid; 221 char target_comm[TASK_COMM_LEN]; 222 223 struct audit_tree_refs *trees, *first_trees; 224 struct list_head killed_trees; 225 int tree_count; 226 227 int type; 228 union { 229 struct { 230 int nargs; 231 long args[6]; 232 } socketcall; 233 struct { 234 uid_t uid; 235 gid_t gid; 236 umode_t mode; 237 u32 osid; 238 int has_perm; 239 uid_t perm_uid; 240 gid_t perm_gid; 241 umode_t perm_mode; 242 unsigned long qbytes; 243 } ipc; 244 struct { 245 mqd_t mqdes; 246 struct mq_attr mqstat; 247 } mq_getsetattr; 248 struct { 249 mqd_t mqdes; 250 int sigev_signo; 251 } mq_notify; 252 struct { 253 mqd_t mqdes; 254 size_t msg_len; 255 unsigned int msg_prio; 256 struct timespec abs_timeout; 257 } mq_sendrecv; 258 struct { 259 int oflag; 260 umode_t mode; 261 struct mq_attr attr; 262 } mq_open; 263 struct { 264 pid_t pid; 265 struct audit_cap_data cap; 266 } capset; 267 struct { 268 int fd; 269 int flags; 270 } mmap; 271 }; 272 int fds[2]; 273 274 #if AUDIT_DEBUG 275 int put_count; 276 int ino_count; 277 #endif 278 }; 279 280 static inline int open_arg(int flags, int mask) 281 { 282 int n = ACC_MODE(flags); 283 if (flags & (O_TRUNC | O_CREAT)) 284 n |= AUDIT_PERM_WRITE; 285 return n & mask; 286 } 287 288 static int audit_match_perm(struct audit_context *ctx, int mask) 289 { 290 unsigned n; 291 if (unlikely(!ctx)) 292 return 0; 293 n = ctx->major; 294 295 switch (audit_classify_syscall(ctx->arch, n)) { 296 case 0: /* native */ 297 if ((mask & AUDIT_PERM_WRITE) && 298 audit_match_class(AUDIT_CLASS_WRITE, n)) 299 return 1; 300 if ((mask & AUDIT_PERM_READ) && 301 audit_match_class(AUDIT_CLASS_READ, n)) 302 return 1; 303 if ((mask & AUDIT_PERM_ATTR) && 304 audit_match_class(AUDIT_CLASS_CHATTR, n)) 305 return 1; 306 return 0; 307 case 1: /* 32bit on biarch */ 308 if ((mask & AUDIT_PERM_WRITE) && 309 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 310 return 1; 311 if ((mask & AUDIT_PERM_READ) && 312 audit_match_class(AUDIT_CLASS_READ_32, n)) 313 return 1; 314 if ((mask & AUDIT_PERM_ATTR) && 315 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 316 return 1; 317 return 0; 318 case 2: /* open */ 319 return mask & ACC_MODE(ctx->argv[1]); 320 case 3: /* openat */ 321 return mask & ACC_MODE(ctx->argv[2]); 322 case 4: /* socketcall */ 323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 324 case 5: /* execve */ 325 return mask & AUDIT_PERM_EXEC; 326 default: 327 return 0; 328 } 329 } 330 331 static int audit_match_filetype(struct audit_context *ctx, int val) 332 { 333 struct audit_names *n; 334 umode_t mode = (umode_t)val; 335 336 if (unlikely(!ctx)) 337 return 0; 338 339 list_for_each_entry(n, &ctx->names_list, list) { 340 if ((n->ino != -1) && 341 ((n->mode & S_IFMT) == mode)) 342 return 1; 343 } 344 345 return 0; 346 } 347 348 /* 349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 350 * ->first_trees points to its beginning, ->trees - to the current end of data. 351 * ->tree_count is the number of free entries in array pointed to by ->trees. 352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 354 * it's going to remain 1-element for almost any setup) until we free context itself. 355 * References in it _are_ dropped - at the same time we free/drop aux stuff. 356 */ 357 358 #ifdef CONFIG_AUDIT_TREE 359 static void audit_set_auditable(struct audit_context *ctx) 360 { 361 if (!ctx->prio) { 362 ctx->prio = 1; 363 ctx->current_state = AUDIT_RECORD_CONTEXT; 364 } 365 } 366 367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 368 { 369 struct audit_tree_refs *p = ctx->trees; 370 int left = ctx->tree_count; 371 if (likely(left)) { 372 p->c[--left] = chunk; 373 ctx->tree_count = left; 374 return 1; 375 } 376 if (!p) 377 return 0; 378 p = p->next; 379 if (p) { 380 p->c[30] = chunk; 381 ctx->trees = p; 382 ctx->tree_count = 30; 383 return 1; 384 } 385 return 0; 386 } 387 388 static int grow_tree_refs(struct audit_context *ctx) 389 { 390 struct audit_tree_refs *p = ctx->trees; 391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 392 if (!ctx->trees) { 393 ctx->trees = p; 394 return 0; 395 } 396 if (p) 397 p->next = ctx->trees; 398 else 399 ctx->first_trees = ctx->trees; 400 ctx->tree_count = 31; 401 return 1; 402 } 403 #endif 404 405 static void unroll_tree_refs(struct audit_context *ctx, 406 struct audit_tree_refs *p, int count) 407 { 408 #ifdef CONFIG_AUDIT_TREE 409 struct audit_tree_refs *q; 410 int n; 411 if (!p) { 412 /* we started with empty chain */ 413 p = ctx->first_trees; 414 count = 31; 415 /* if the very first allocation has failed, nothing to do */ 416 if (!p) 417 return; 418 } 419 n = count; 420 for (q = p; q != ctx->trees; q = q->next, n = 31) { 421 while (n--) { 422 audit_put_chunk(q->c[n]); 423 q->c[n] = NULL; 424 } 425 } 426 while (n-- > ctx->tree_count) { 427 audit_put_chunk(q->c[n]); 428 q->c[n] = NULL; 429 } 430 ctx->trees = p; 431 ctx->tree_count = count; 432 #endif 433 } 434 435 static void free_tree_refs(struct audit_context *ctx) 436 { 437 struct audit_tree_refs *p, *q; 438 for (p = ctx->first_trees; p; p = q) { 439 q = p->next; 440 kfree(p); 441 } 442 } 443 444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 445 { 446 #ifdef CONFIG_AUDIT_TREE 447 struct audit_tree_refs *p; 448 int n; 449 if (!tree) 450 return 0; 451 /* full ones */ 452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 453 for (n = 0; n < 31; n++) 454 if (audit_tree_match(p->c[n], tree)) 455 return 1; 456 } 457 /* partial */ 458 if (p) { 459 for (n = ctx->tree_count; n < 31; n++) 460 if (audit_tree_match(p->c[n], tree)) 461 return 1; 462 } 463 #endif 464 return 0; 465 } 466 467 static int audit_compare_id(uid_t uid1, 468 struct audit_names *name, 469 unsigned long name_offset, 470 struct audit_field *f, 471 struct audit_context *ctx) 472 { 473 struct audit_names *n; 474 unsigned long addr; 475 uid_t uid2; 476 int rc; 477 478 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t)); 479 480 if (name) { 481 addr = (unsigned long)name; 482 addr += name_offset; 483 484 uid2 = *(uid_t *)addr; 485 rc = audit_comparator(uid1, f->op, uid2); 486 if (rc) 487 return rc; 488 } 489 490 if (ctx) { 491 list_for_each_entry(n, &ctx->names_list, list) { 492 addr = (unsigned long)n; 493 addr += name_offset; 494 495 uid2 = *(uid_t *)addr; 496 497 rc = audit_comparator(uid1, f->op, uid2); 498 if (rc) 499 return rc; 500 } 501 } 502 return 0; 503 } 504 505 static int audit_field_compare(struct task_struct *tsk, 506 const struct cred *cred, 507 struct audit_field *f, 508 struct audit_context *ctx, 509 struct audit_names *name) 510 { 511 switch (f->val) { 512 /* process to file object comparisons */ 513 case AUDIT_COMPARE_UID_TO_OBJ_UID: 514 return audit_compare_id(cred->uid, 515 name, offsetof(struct audit_names, uid), 516 f, ctx); 517 case AUDIT_COMPARE_GID_TO_OBJ_GID: 518 return audit_compare_id(cred->gid, 519 name, offsetof(struct audit_names, gid), 520 f, ctx); 521 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 522 return audit_compare_id(cred->euid, 523 name, offsetof(struct audit_names, uid), 524 f, ctx); 525 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 526 return audit_compare_id(cred->egid, 527 name, offsetof(struct audit_names, gid), 528 f, ctx); 529 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 530 return audit_compare_id(tsk->loginuid, 531 name, offsetof(struct audit_names, uid), 532 f, ctx); 533 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 534 return audit_compare_id(cred->suid, 535 name, offsetof(struct audit_names, uid), 536 f, ctx); 537 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 538 return audit_compare_id(cred->sgid, 539 name, offsetof(struct audit_names, gid), 540 f, ctx); 541 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 542 return audit_compare_id(cred->fsuid, 543 name, offsetof(struct audit_names, uid), 544 f, ctx); 545 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 546 return audit_compare_id(cred->fsgid, 547 name, offsetof(struct audit_names, gid), 548 f, ctx); 549 /* uid comparisons */ 550 case AUDIT_COMPARE_UID_TO_AUID: 551 return audit_comparator(cred->uid, f->op, tsk->loginuid); 552 case AUDIT_COMPARE_UID_TO_EUID: 553 return audit_comparator(cred->uid, f->op, cred->euid); 554 case AUDIT_COMPARE_UID_TO_SUID: 555 return audit_comparator(cred->uid, f->op, cred->suid); 556 case AUDIT_COMPARE_UID_TO_FSUID: 557 return audit_comparator(cred->uid, f->op, cred->fsuid); 558 /* auid comparisons */ 559 case AUDIT_COMPARE_AUID_TO_EUID: 560 return audit_comparator(tsk->loginuid, f->op, cred->euid); 561 case AUDIT_COMPARE_AUID_TO_SUID: 562 return audit_comparator(tsk->loginuid, f->op, cred->suid); 563 case AUDIT_COMPARE_AUID_TO_FSUID: 564 return audit_comparator(tsk->loginuid, f->op, cred->fsuid); 565 /* euid comparisons */ 566 case AUDIT_COMPARE_EUID_TO_SUID: 567 return audit_comparator(cred->euid, f->op, cred->suid); 568 case AUDIT_COMPARE_EUID_TO_FSUID: 569 return audit_comparator(cred->euid, f->op, cred->fsuid); 570 /* suid comparisons */ 571 case AUDIT_COMPARE_SUID_TO_FSUID: 572 return audit_comparator(cred->suid, f->op, cred->fsuid); 573 /* gid comparisons */ 574 case AUDIT_COMPARE_GID_TO_EGID: 575 return audit_comparator(cred->gid, f->op, cred->egid); 576 case AUDIT_COMPARE_GID_TO_SGID: 577 return audit_comparator(cred->gid, f->op, cred->sgid); 578 case AUDIT_COMPARE_GID_TO_FSGID: 579 return audit_comparator(cred->gid, f->op, cred->fsgid); 580 /* egid comparisons */ 581 case AUDIT_COMPARE_EGID_TO_SGID: 582 return audit_comparator(cred->egid, f->op, cred->sgid); 583 case AUDIT_COMPARE_EGID_TO_FSGID: 584 return audit_comparator(cred->egid, f->op, cred->fsgid); 585 /* sgid comparison */ 586 case AUDIT_COMPARE_SGID_TO_FSGID: 587 return audit_comparator(cred->sgid, f->op, cred->fsgid); 588 default: 589 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 590 return 0; 591 } 592 return 0; 593 } 594 595 /* Determine if any context name data matches a rule's watch data */ 596 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 597 * otherwise. 598 * 599 * If task_creation is true, this is an explicit indication that we are 600 * filtering a task rule at task creation time. This and tsk == current are 601 * the only situations where tsk->cred may be accessed without an rcu read lock. 602 */ 603 static int audit_filter_rules(struct task_struct *tsk, 604 struct audit_krule *rule, 605 struct audit_context *ctx, 606 struct audit_names *name, 607 enum audit_state *state, 608 bool task_creation) 609 { 610 const struct cred *cred; 611 int i, need_sid = 1; 612 u32 sid; 613 614 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 615 616 for (i = 0; i < rule->field_count; i++) { 617 struct audit_field *f = &rule->fields[i]; 618 struct audit_names *n; 619 int result = 0; 620 621 switch (f->type) { 622 case AUDIT_PID: 623 result = audit_comparator(tsk->pid, f->op, f->val); 624 break; 625 case AUDIT_PPID: 626 if (ctx) { 627 if (!ctx->ppid) 628 ctx->ppid = sys_getppid(); 629 result = audit_comparator(ctx->ppid, f->op, f->val); 630 } 631 break; 632 case AUDIT_UID: 633 result = audit_comparator(cred->uid, f->op, f->val); 634 break; 635 case AUDIT_EUID: 636 result = audit_comparator(cred->euid, f->op, f->val); 637 break; 638 case AUDIT_SUID: 639 result = audit_comparator(cred->suid, f->op, f->val); 640 break; 641 case AUDIT_FSUID: 642 result = audit_comparator(cred->fsuid, f->op, f->val); 643 break; 644 case AUDIT_GID: 645 result = audit_comparator(cred->gid, f->op, f->val); 646 break; 647 case AUDIT_EGID: 648 result = audit_comparator(cred->egid, f->op, f->val); 649 break; 650 case AUDIT_SGID: 651 result = audit_comparator(cred->sgid, f->op, f->val); 652 break; 653 case AUDIT_FSGID: 654 result = audit_comparator(cred->fsgid, f->op, f->val); 655 break; 656 case AUDIT_PERS: 657 result = audit_comparator(tsk->personality, f->op, f->val); 658 break; 659 case AUDIT_ARCH: 660 if (ctx) 661 result = audit_comparator(ctx->arch, f->op, f->val); 662 break; 663 664 case AUDIT_EXIT: 665 if (ctx && ctx->return_valid) 666 result = audit_comparator(ctx->return_code, f->op, f->val); 667 break; 668 case AUDIT_SUCCESS: 669 if (ctx && ctx->return_valid) { 670 if (f->val) 671 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 672 else 673 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 674 } 675 break; 676 case AUDIT_DEVMAJOR: 677 if (name) { 678 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 679 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 680 ++result; 681 } else if (ctx) { 682 list_for_each_entry(n, &ctx->names_list, list) { 683 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 684 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 685 ++result; 686 break; 687 } 688 } 689 } 690 break; 691 case AUDIT_DEVMINOR: 692 if (name) { 693 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 694 audit_comparator(MINOR(name->rdev), f->op, f->val)) 695 ++result; 696 } else if (ctx) { 697 list_for_each_entry(n, &ctx->names_list, list) { 698 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 699 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 700 ++result; 701 break; 702 } 703 } 704 } 705 break; 706 case AUDIT_INODE: 707 if (name) 708 result = (name->ino == f->val); 709 else if (ctx) { 710 list_for_each_entry(n, &ctx->names_list, list) { 711 if (audit_comparator(n->ino, f->op, f->val)) { 712 ++result; 713 break; 714 } 715 } 716 } 717 break; 718 case AUDIT_OBJ_UID: 719 if (name) { 720 result = audit_comparator(name->uid, f->op, f->val); 721 } else if (ctx) { 722 list_for_each_entry(n, &ctx->names_list, list) { 723 if (audit_comparator(n->uid, f->op, f->val)) { 724 ++result; 725 break; 726 } 727 } 728 } 729 break; 730 case AUDIT_OBJ_GID: 731 if (name) { 732 result = audit_comparator(name->gid, f->op, f->val); 733 } else if (ctx) { 734 list_for_each_entry(n, &ctx->names_list, list) { 735 if (audit_comparator(n->gid, f->op, f->val)) { 736 ++result; 737 break; 738 } 739 } 740 } 741 break; 742 case AUDIT_WATCH: 743 if (name) 744 result = audit_watch_compare(rule->watch, name->ino, name->dev); 745 break; 746 case AUDIT_DIR: 747 if (ctx) 748 result = match_tree_refs(ctx, rule->tree); 749 break; 750 case AUDIT_LOGINUID: 751 result = 0; 752 if (ctx) 753 result = audit_comparator(tsk->loginuid, f->op, f->val); 754 break; 755 case AUDIT_SUBJ_USER: 756 case AUDIT_SUBJ_ROLE: 757 case AUDIT_SUBJ_TYPE: 758 case AUDIT_SUBJ_SEN: 759 case AUDIT_SUBJ_CLR: 760 /* NOTE: this may return negative values indicating 761 a temporary error. We simply treat this as a 762 match for now to avoid losing information that 763 may be wanted. An error message will also be 764 logged upon error */ 765 if (f->lsm_rule) { 766 if (need_sid) { 767 security_task_getsecid(tsk, &sid); 768 need_sid = 0; 769 } 770 result = security_audit_rule_match(sid, f->type, 771 f->op, 772 f->lsm_rule, 773 ctx); 774 } 775 break; 776 case AUDIT_OBJ_USER: 777 case AUDIT_OBJ_ROLE: 778 case AUDIT_OBJ_TYPE: 779 case AUDIT_OBJ_LEV_LOW: 780 case AUDIT_OBJ_LEV_HIGH: 781 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 782 also applies here */ 783 if (f->lsm_rule) { 784 /* Find files that match */ 785 if (name) { 786 result = security_audit_rule_match( 787 name->osid, f->type, f->op, 788 f->lsm_rule, ctx); 789 } else if (ctx) { 790 list_for_each_entry(n, &ctx->names_list, list) { 791 if (security_audit_rule_match(n->osid, f->type, 792 f->op, f->lsm_rule, 793 ctx)) { 794 ++result; 795 break; 796 } 797 } 798 } 799 /* Find ipc objects that match */ 800 if (!ctx || ctx->type != AUDIT_IPC) 801 break; 802 if (security_audit_rule_match(ctx->ipc.osid, 803 f->type, f->op, 804 f->lsm_rule, ctx)) 805 ++result; 806 } 807 break; 808 case AUDIT_ARG0: 809 case AUDIT_ARG1: 810 case AUDIT_ARG2: 811 case AUDIT_ARG3: 812 if (ctx) 813 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 814 break; 815 case AUDIT_FILTERKEY: 816 /* ignore this field for filtering */ 817 result = 1; 818 break; 819 case AUDIT_PERM: 820 result = audit_match_perm(ctx, f->val); 821 break; 822 case AUDIT_FILETYPE: 823 result = audit_match_filetype(ctx, f->val); 824 break; 825 case AUDIT_FIELD_COMPARE: 826 result = audit_field_compare(tsk, cred, f, ctx, name); 827 break; 828 } 829 if (!result) 830 return 0; 831 } 832 833 if (ctx) { 834 if (rule->prio <= ctx->prio) 835 return 0; 836 if (rule->filterkey) { 837 kfree(ctx->filterkey); 838 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 839 } 840 ctx->prio = rule->prio; 841 } 842 switch (rule->action) { 843 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 844 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 845 } 846 return 1; 847 } 848 849 /* At process creation time, we can determine if system-call auditing is 850 * completely disabled for this task. Since we only have the task 851 * structure at this point, we can only check uid and gid. 852 */ 853 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 854 { 855 struct audit_entry *e; 856 enum audit_state state; 857 858 rcu_read_lock(); 859 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 860 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 861 &state, true)) { 862 if (state == AUDIT_RECORD_CONTEXT) 863 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 864 rcu_read_unlock(); 865 return state; 866 } 867 } 868 rcu_read_unlock(); 869 return AUDIT_BUILD_CONTEXT; 870 } 871 872 /* At syscall entry and exit time, this filter is called if the 873 * audit_state is not low enough that auditing cannot take place, but is 874 * also not high enough that we already know we have to write an audit 875 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 876 */ 877 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 878 struct audit_context *ctx, 879 struct list_head *list) 880 { 881 struct audit_entry *e; 882 enum audit_state state; 883 884 if (audit_pid && tsk->tgid == audit_pid) 885 return AUDIT_DISABLED; 886 887 rcu_read_lock(); 888 if (!list_empty(list)) { 889 int word = AUDIT_WORD(ctx->major); 890 int bit = AUDIT_BIT(ctx->major); 891 892 list_for_each_entry_rcu(e, list, list) { 893 if ((e->rule.mask[word] & bit) == bit && 894 audit_filter_rules(tsk, &e->rule, ctx, NULL, 895 &state, false)) { 896 rcu_read_unlock(); 897 ctx->current_state = state; 898 return state; 899 } 900 } 901 } 902 rcu_read_unlock(); 903 return AUDIT_BUILD_CONTEXT; 904 } 905 906 /* 907 * Given an audit_name check the inode hash table to see if they match. 908 * Called holding the rcu read lock to protect the use of audit_inode_hash 909 */ 910 static int audit_filter_inode_name(struct task_struct *tsk, 911 struct audit_names *n, 912 struct audit_context *ctx) { 913 int word, bit; 914 int h = audit_hash_ino((u32)n->ino); 915 struct list_head *list = &audit_inode_hash[h]; 916 struct audit_entry *e; 917 enum audit_state state; 918 919 word = AUDIT_WORD(ctx->major); 920 bit = AUDIT_BIT(ctx->major); 921 922 if (list_empty(list)) 923 return 0; 924 925 list_for_each_entry_rcu(e, list, list) { 926 if ((e->rule.mask[word] & bit) == bit && 927 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 928 ctx->current_state = state; 929 return 1; 930 } 931 } 932 933 return 0; 934 } 935 936 /* At syscall exit time, this filter is called if any audit_names have been 937 * collected during syscall processing. We only check rules in sublists at hash 938 * buckets applicable to the inode numbers in audit_names. 939 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 940 */ 941 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 942 { 943 struct audit_names *n; 944 945 if (audit_pid && tsk->tgid == audit_pid) 946 return; 947 948 rcu_read_lock(); 949 950 list_for_each_entry(n, &ctx->names_list, list) { 951 if (audit_filter_inode_name(tsk, n, ctx)) 952 break; 953 } 954 rcu_read_unlock(); 955 } 956 957 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 958 int return_valid, 959 long return_code) 960 { 961 struct audit_context *context = tsk->audit_context; 962 963 if (!context) 964 return NULL; 965 context->return_valid = return_valid; 966 967 /* 968 * we need to fix up the return code in the audit logs if the actual 969 * return codes are later going to be fixed up by the arch specific 970 * signal handlers 971 * 972 * This is actually a test for: 973 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 974 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 975 * 976 * but is faster than a bunch of || 977 */ 978 if (unlikely(return_code <= -ERESTARTSYS) && 979 (return_code >= -ERESTART_RESTARTBLOCK) && 980 (return_code != -ENOIOCTLCMD)) 981 context->return_code = -EINTR; 982 else 983 context->return_code = return_code; 984 985 if (context->in_syscall && !context->dummy) { 986 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 987 audit_filter_inodes(tsk, context); 988 } 989 990 tsk->audit_context = NULL; 991 return context; 992 } 993 994 static inline void audit_free_names(struct audit_context *context) 995 { 996 struct audit_names *n, *next; 997 998 #if AUDIT_DEBUG == 2 999 if (context->put_count + context->ino_count != context->name_count) { 1000 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 1001 " name_count=%d put_count=%d" 1002 " ino_count=%d [NOT freeing]\n", 1003 __FILE__, __LINE__, 1004 context->serial, context->major, context->in_syscall, 1005 context->name_count, context->put_count, 1006 context->ino_count); 1007 list_for_each_entry(n, &context->names_list, list) { 1008 printk(KERN_ERR "names[%d] = %p = %s\n", i, 1009 n->name, n->name ?: "(null)"); 1010 } 1011 dump_stack(); 1012 return; 1013 } 1014 #endif 1015 #if AUDIT_DEBUG 1016 context->put_count = 0; 1017 context->ino_count = 0; 1018 #endif 1019 1020 list_for_each_entry_safe(n, next, &context->names_list, list) { 1021 list_del(&n->list); 1022 if (n->name && n->name_put) 1023 __putname(n->name); 1024 if (n->should_free) 1025 kfree(n); 1026 } 1027 context->name_count = 0; 1028 path_put(&context->pwd); 1029 context->pwd.dentry = NULL; 1030 context->pwd.mnt = NULL; 1031 } 1032 1033 static inline void audit_free_aux(struct audit_context *context) 1034 { 1035 struct audit_aux_data *aux; 1036 1037 while ((aux = context->aux)) { 1038 context->aux = aux->next; 1039 kfree(aux); 1040 } 1041 while ((aux = context->aux_pids)) { 1042 context->aux_pids = aux->next; 1043 kfree(aux); 1044 } 1045 } 1046 1047 static inline void audit_zero_context(struct audit_context *context, 1048 enum audit_state state) 1049 { 1050 memset(context, 0, sizeof(*context)); 1051 context->state = state; 1052 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1053 } 1054 1055 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1056 { 1057 struct audit_context *context; 1058 1059 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 1060 return NULL; 1061 audit_zero_context(context, state); 1062 INIT_LIST_HEAD(&context->killed_trees); 1063 INIT_LIST_HEAD(&context->names_list); 1064 return context; 1065 } 1066 1067 /** 1068 * audit_alloc - allocate an audit context block for a task 1069 * @tsk: task 1070 * 1071 * Filter on the task information and allocate a per-task audit context 1072 * if necessary. Doing so turns on system call auditing for the 1073 * specified task. This is called from copy_process, so no lock is 1074 * needed. 1075 */ 1076 int audit_alloc(struct task_struct *tsk) 1077 { 1078 struct audit_context *context; 1079 enum audit_state state; 1080 char *key = NULL; 1081 1082 if (likely(!audit_ever_enabled)) 1083 return 0; /* Return if not auditing. */ 1084 1085 state = audit_filter_task(tsk, &key); 1086 if (state == AUDIT_DISABLED) 1087 return 0; 1088 1089 if (!(context = audit_alloc_context(state))) { 1090 kfree(key); 1091 audit_log_lost("out of memory in audit_alloc"); 1092 return -ENOMEM; 1093 } 1094 context->filterkey = key; 1095 1096 tsk->audit_context = context; 1097 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 1098 return 0; 1099 } 1100 1101 static inline void audit_free_context(struct audit_context *context) 1102 { 1103 struct audit_context *previous; 1104 int count = 0; 1105 1106 do { 1107 previous = context->previous; 1108 if (previous || (count && count < 10)) { 1109 ++count; 1110 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 1111 " freeing multiple contexts (%d)\n", 1112 context->serial, context->major, 1113 context->name_count, count); 1114 } 1115 audit_free_names(context); 1116 unroll_tree_refs(context, NULL, 0); 1117 free_tree_refs(context); 1118 audit_free_aux(context); 1119 kfree(context->filterkey); 1120 kfree(context->sockaddr); 1121 kfree(context); 1122 context = previous; 1123 } while (context); 1124 if (count >= 10) 1125 printk(KERN_ERR "audit: freed %d contexts\n", count); 1126 } 1127 1128 void audit_log_task_context(struct audit_buffer *ab) 1129 { 1130 char *ctx = NULL; 1131 unsigned len; 1132 int error; 1133 u32 sid; 1134 1135 security_task_getsecid(current, &sid); 1136 if (!sid) 1137 return; 1138 1139 error = security_secid_to_secctx(sid, &ctx, &len); 1140 if (error) { 1141 if (error != -EINVAL) 1142 goto error_path; 1143 return; 1144 } 1145 1146 audit_log_format(ab, " subj=%s", ctx); 1147 security_release_secctx(ctx, len); 1148 return; 1149 1150 error_path: 1151 audit_panic("error in audit_log_task_context"); 1152 return; 1153 } 1154 1155 EXPORT_SYMBOL(audit_log_task_context); 1156 1157 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 1158 { 1159 char name[sizeof(tsk->comm)]; 1160 struct mm_struct *mm = tsk->mm; 1161 struct vm_area_struct *vma; 1162 1163 /* tsk == current */ 1164 1165 get_task_comm(name, tsk); 1166 audit_log_format(ab, " comm="); 1167 audit_log_untrustedstring(ab, name); 1168 1169 if (mm) { 1170 down_read(&mm->mmap_sem); 1171 vma = mm->mmap; 1172 while (vma) { 1173 if ((vma->vm_flags & VM_EXECUTABLE) && 1174 vma->vm_file) { 1175 audit_log_d_path(ab, " exe=", 1176 &vma->vm_file->f_path); 1177 break; 1178 } 1179 vma = vma->vm_next; 1180 } 1181 up_read(&mm->mmap_sem); 1182 } 1183 audit_log_task_context(ab); 1184 } 1185 1186 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1187 uid_t auid, uid_t uid, unsigned int sessionid, 1188 u32 sid, char *comm) 1189 { 1190 struct audit_buffer *ab; 1191 char *ctx = NULL; 1192 u32 len; 1193 int rc = 0; 1194 1195 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1196 if (!ab) 1197 return rc; 1198 1199 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 1200 uid, sessionid); 1201 if (security_secid_to_secctx(sid, &ctx, &len)) { 1202 audit_log_format(ab, " obj=(none)"); 1203 rc = 1; 1204 } else { 1205 audit_log_format(ab, " obj=%s", ctx); 1206 security_release_secctx(ctx, len); 1207 } 1208 audit_log_format(ab, " ocomm="); 1209 audit_log_untrustedstring(ab, comm); 1210 audit_log_end(ab); 1211 1212 return rc; 1213 } 1214 1215 /* 1216 * to_send and len_sent accounting are very loose estimates. We aren't 1217 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1218 * within about 500 bytes (next page boundary) 1219 * 1220 * why snprintf? an int is up to 12 digits long. if we just assumed when 1221 * logging that a[%d]= was going to be 16 characters long we would be wasting 1222 * space in every audit message. In one 7500 byte message we can log up to 1223 * about 1000 min size arguments. That comes down to about 50% waste of space 1224 * if we didn't do the snprintf to find out how long arg_num_len was. 1225 */ 1226 static int audit_log_single_execve_arg(struct audit_context *context, 1227 struct audit_buffer **ab, 1228 int arg_num, 1229 size_t *len_sent, 1230 const char __user *p, 1231 char *buf) 1232 { 1233 char arg_num_len_buf[12]; 1234 const char __user *tmp_p = p; 1235 /* how many digits are in arg_num? 5 is the length of ' a=""' */ 1236 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5; 1237 size_t len, len_left, to_send; 1238 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1239 unsigned int i, has_cntl = 0, too_long = 0; 1240 int ret; 1241 1242 /* strnlen_user includes the null we don't want to send */ 1243 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1244 1245 /* 1246 * We just created this mm, if we can't find the strings 1247 * we just copied into it something is _very_ wrong. Similar 1248 * for strings that are too long, we should not have created 1249 * any. 1250 */ 1251 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1252 WARN_ON(1); 1253 send_sig(SIGKILL, current, 0); 1254 return -1; 1255 } 1256 1257 /* walk the whole argument looking for non-ascii chars */ 1258 do { 1259 if (len_left > MAX_EXECVE_AUDIT_LEN) 1260 to_send = MAX_EXECVE_AUDIT_LEN; 1261 else 1262 to_send = len_left; 1263 ret = copy_from_user(buf, tmp_p, to_send); 1264 /* 1265 * There is no reason for this copy to be short. We just 1266 * copied them here, and the mm hasn't been exposed to user- 1267 * space yet. 1268 */ 1269 if (ret) { 1270 WARN_ON(1); 1271 send_sig(SIGKILL, current, 0); 1272 return -1; 1273 } 1274 buf[to_send] = '\0'; 1275 has_cntl = audit_string_contains_control(buf, to_send); 1276 if (has_cntl) { 1277 /* 1278 * hex messages get logged as 2 bytes, so we can only 1279 * send half as much in each message 1280 */ 1281 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1282 break; 1283 } 1284 len_left -= to_send; 1285 tmp_p += to_send; 1286 } while (len_left > 0); 1287 1288 len_left = len; 1289 1290 if (len > max_execve_audit_len) 1291 too_long = 1; 1292 1293 /* rewalk the argument actually logging the message */ 1294 for (i = 0; len_left > 0; i++) { 1295 int room_left; 1296 1297 if (len_left > max_execve_audit_len) 1298 to_send = max_execve_audit_len; 1299 else 1300 to_send = len_left; 1301 1302 /* do we have space left to send this argument in this ab? */ 1303 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1304 if (has_cntl) 1305 room_left -= (to_send * 2); 1306 else 1307 room_left -= to_send; 1308 if (room_left < 0) { 1309 *len_sent = 0; 1310 audit_log_end(*ab); 1311 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1312 if (!*ab) 1313 return 0; 1314 } 1315 1316 /* 1317 * first record needs to say how long the original string was 1318 * so we can be sure nothing was lost. 1319 */ 1320 if ((i == 0) && (too_long)) 1321 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1322 has_cntl ? 2*len : len); 1323 1324 /* 1325 * normally arguments are small enough to fit and we already 1326 * filled buf above when we checked for control characters 1327 * so don't bother with another copy_from_user 1328 */ 1329 if (len >= max_execve_audit_len) 1330 ret = copy_from_user(buf, p, to_send); 1331 else 1332 ret = 0; 1333 if (ret) { 1334 WARN_ON(1); 1335 send_sig(SIGKILL, current, 0); 1336 return -1; 1337 } 1338 buf[to_send] = '\0'; 1339 1340 /* actually log it */ 1341 audit_log_format(*ab, " a%d", arg_num); 1342 if (too_long) 1343 audit_log_format(*ab, "[%d]", i); 1344 audit_log_format(*ab, "="); 1345 if (has_cntl) 1346 audit_log_n_hex(*ab, buf, to_send); 1347 else 1348 audit_log_string(*ab, buf); 1349 1350 p += to_send; 1351 len_left -= to_send; 1352 *len_sent += arg_num_len; 1353 if (has_cntl) 1354 *len_sent += to_send * 2; 1355 else 1356 *len_sent += to_send; 1357 } 1358 /* include the null we didn't log */ 1359 return len + 1; 1360 } 1361 1362 static void audit_log_execve_info(struct audit_context *context, 1363 struct audit_buffer **ab, 1364 struct audit_aux_data_execve *axi) 1365 { 1366 int i, len; 1367 size_t len_sent = 0; 1368 const char __user *p; 1369 char *buf; 1370 1371 if (axi->mm != current->mm) 1372 return; /* execve failed, no additional info */ 1373 1374 p = (const char __user *)axi->mm->arg_start; 1375 1376 audit_log_format(*ab, "argc=%d", axi->argc); 1377 1378 /* 1379 * we need some kernel buffer to hold the userspace args. Just 1380 * allocate one big one rather than allocating one of the right size 1381 * for every single argument inside audit_log_single_execve_arg() 1382 * should be <8k allocation so should be pretty safe. 1383 */ 1384 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1385 if (!buf) { 1386 audit_panic("out of memory for argv string\n"); 1387 return; 1388 } 1389 1390 for (i = 0; i < axi->argc; i++) { 1391 len = audit_log_single_execve_arg(context, ab, i, 1392 &len_sent, p, buf); 1393 if (len <= 0) 1394 break; 1395 p += len; 1396 } 1397 kfree(buf); 1398 } 1399 1400 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1401 { 1402 int i; 1403 1404 audit_log_format(ab, " %s=", prefix); 1405 CAP_FOR_EACH_U32(i) { 1406 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1407 } 1408 } 1409 1410 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1411 { 1412 kernel_cap_t *perm = &name->fcap.permitted; 1413 kernel_cap_t *inh = &name->fcap.inheritable; 1414 int log = 0; 1415 1416 if (!cap_isclear(*perm)) { 1417 audit_log_cap(ab, "cap_fp", perm); 1418 log = 1; 1419 } 1420 if (!cap_isclear(*inh)) { 1421 audit_log_cap(ab, "cap_fi", inh); 1422 log = 1; 1423 } 1424 1425 if (log) 1426 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1427 } 1428 1429 static void show_special(struct audit_context *context, int *call_panic) 1430 { 1431 struct audit_buffer *ab; 1432 int i; 1433 1434 ab = audit_log_start(context, GFP_KERNEL, context->type); 1435 if (!ab) 1436 return; 1437 1438 switch (context->type) { 1439 case AUDIT_SOCKETCALL: { 1440 int nargs = context->socketcall.nargs; 1441 audit_log_format(ab, "nargs=%d", nargs); 1442 for (i = 0; i < nargs; i++) 1443 audit_log_format(ab, " a%d=%lx", i, 1444 context->socketcall.args[i]); 1445 break; } 1446 case AUDIT_IPC: { 1447 u32 osid = context->ipc.osid; 1448 1449 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1450 context->ipc.uid, context->ipc.gid, context->ipc.mode); 1451 if (osid) { 1452 char *ctx = NULL; 1453 u32 len; 1454 if (security_secid_to_secctx(osid, &ctx, &len)) { 1455 audit_log_format(ab, " osid=%u", osid); 1456 *call_panic = 1; 1457 } else { 1458 audit_log_format(ab, " obj=%s", ctx); 1459 security_release_secctx(ctx, len); 1460 } 1461 } 1462 if (context->ipc.has_perm) { 1463 audit_log_end(ab); 1464 ab = audit_log_start(context, GFP_KERNEL, 1465 AUDIT_IPC_SET_PERM); 1466 audit_log_format(ab, 1467 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1468 context->ipc.qbytes, 1469 context->ipc.perm_uid, 1470 context->ipc.perm_gid, 1471 context->ipc.perm_mode); 1472 if (!ab) 1473 return; 1474 } 1475 break; } 1476 case AUDIT_MQ_OPEN: { 1477 audit_log_format(ab, 1478 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1479 "mq_msgsize=%ld mq_curmsgs=%ld", 1480 context->mq_open.oflag, context->mq_open.mode, 1481 context->mq_open.attr.mq_flags, 1482 context->mq_open.attr.mq_maxmsg, 1483 context->mq_open.attr.mq_msgsize, 1484 context->mq_open.attr.mq_curmsgs); 1485 break; } 1486 case AUDIT_MQ_SENDRECV: { 1487 audit_log_format(ab, 1488 "mqdes=%d msg_len=%zd msg_prio=%u " 1489 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1490 context->mq_sendrecv.mqdes, 1491 context->mq_sendrecv.msg_len, 1492 context->mq_sendrecv.msg_prio, 1493 context->mq_sendrecv.abs_timeout.tv_sec, 1494 context->mq_sendrecv.abs_timeout.tv_nsec); 1495 break; } 1496 case AUDIT_MQ_NOTIFY: { 1497 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1498 context->mq_notify.mqdes, 1499 context->mq_notify.sigev_signo); 1500 break; } 1501 case AUDIT_MQ_GETSETATTR: { 1502 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1503 audit_log_format(ab, 1504 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1505 "mq_curmsgs=%ld ", 1506 context->mq_getsetattr.mqdes, 1507 attr->mq_flags, attr->mq_maxmsg, 1508 attr->mq_msgsize, attr->mq_curmsgs); 1509 break; } 1510 case AUDIT_CAPSET: { 1511 audit_log_format(ab, "pid=%d", context->capset.pid); 1512 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1513 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1514 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1515 break; } 1516 case AUDIT_MMAP: { 1517 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1518 context->mmap.flags); 1519 break; } 1520 } 1521 audit_log_end(ab); 1522 } 1523 1524 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1525 int record_num, int *call_panic) 1526 { 1527 struct audit_buffer *ab; 1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1529 if (!ab) 1530 return; /* audit_panic has been called */ 1531 1532 audit_log_format(ab, "item=%d", record_num); 1533 1534 if (n->name) { 1535 switch (n->name_len) { 1536 case AUDIT_NAME_FULL: 1537 /* log the full path */ 1538 audit_log_format(ab, " name="); 1539 audit_log_untrustedstring(ab, n->name); 1540 break; 1541 case 0: 1542 /* name was specified as a relative path and the 1543 * directory component is the cwd */ 1544 audit_log_d_path(ab, " name=", &context->pwd); 1545 break; 1546 default: 1547 /* log the name's directory component */ 1548 audit_log_format(ab, " name="); 1549 audit_log_n_untrustedstring(ab, n->name, 1550 n->name_len); 1551 } 1552 } else 1553 audit_log_format(ab, " name=(null)"); 1554 1555 if (n->ino != (unsigned long)-1) { 1556 audit_log_format(ab, " inode=%lu" 1557 " dev=%02x:%02x mode=%#ho" 1558 " ouid=%u ogid=%u rdev=%02x:%02x", 1559 n->ino, 1560 MAJOR(n->dev), 1561 MINOR(n->dev), 1562 n->mode, 1563 n->uid, 1564 n->gid, 1565 MAJOR(n->rdev), 1566 MINOR(n->rdev)); 1567 } 1568 if (n->osid != 0) { 1569 char *ctx = NULL; 1570 u32 len; 1571 if (security_secid_to_secctx( 1572 n->osid, &ctx, &len)) { 1573 audit_log_format(ab, " osid=%u", n->osid); 1574 *call_panic = 2; 1575 } else { 1576 audit_log_format(ab, " obj=%s", ctx); 1577 security_release_secctx(ctx, len); 1578 } 1579 } 1580 1581 audit_log_fcaps(ab, n); 1582 1583 audit_log_end(ab); 1584 } 1585 1586 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1587 { 1588 const struct cred *cred; 1589 int i, call_panic = 0; 1590 struct audit_buffer *ab; 1591 struct audit_aux_data *aux; 1592 const char *tty; 1593 struct audit_names *n; 1594 1595 /* tsk == current */ 1596 context->pid = tsk->pid; 1597 if (!context->ppid) 1598 context->ppid = sys_getppid(); 1599 cred = current_cred(); 1600 context->uid = cred->uid; 1601 context->gid = cred->gid; 1602 context->euid = cred->euid; 1603 context->suid = cred->suid; 1604 context->fsuid = cred->fsuid; 1605 context->egid = cred->egid; 1606 context->sgid = cred->sgid; 1607 context->fsgid = cred->fsgid; 1608 context->personality = tsk->personality; 1609 1610 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1611 if (!ab) 1612 return; /* audit_panic has been called */ 1613 audit_log_format(ab, "arch=%x syscall=%d", 1614 context->arch, context->major); 1615 if (context->personality != PER_LINUX) 1616 audit_log_format(ab, " per=%lx", context->personality); 1617 if (context->return_valid) 1618 audit_log_format(ab, " success=%s exit=%ld", 1619 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1620 context->return_code); 1621 1622 spin_lock_irq(&tsk->sighand->siglock); 1623 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1624 tty = tsk->signal->tty->name; 1625 else 1626 tty = "(none)"; 1627 spin_unlock_irq(&tsk->sighand->siglock); 1628 1629 audit_log_format(ab, 1630 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1631 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1632 " euid=%u suid=%u fsuid=%u" 1633 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1634 context->argv[0], 1635 context->argv[1], 1636 context->argv[2], 1637 context->argv[3], 1638 context->name_count, 1639 context->ppid, 1640 context->pid, 1641 tsk->loginuid, 1642 context->uid, 1643 context->gid, 1644 context->euid, context->suid, context->fsuid, 1645 context->egid, context->sgid, context->fsgid, tty, 1646 tsk->sessionid); 1647 1648 1649 audit_log_task_info(ab, tsk); 1650 audit_log_key(ab, context->filterkey); 1651 audit_log_end(ab); 1652 1653 for (aux = context->aux; aux; aux = aux->next) { 1654 1655 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1656 if (!ab) 1657 continue; /* audit_panic has been called */ 1658 1659 switch (aux->type) { 1660 1661 case AUDIT_EXECVE: { 1662 struct audit_aux_data_execve *axi = (void *)aux; 1663 audit_log_execve_info(context, &ab, axi); 1664 break; } 1665 1666 case AUDIT_BPRM_FCAPS: { 1667 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1668 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1669 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1670 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1671 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1672 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1673 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1674 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1675 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1676 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1677 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1678 break; } 1679 1680 } 1681 audit_log_end(ab); 1682 } 1683 1684 if (context->type) 1685 show_special(context, &call_panic); 1686 1687 if (context->fds[0] >= 0) { 1688 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1689 if (ab) { 1690 audit_log_format(ab, "fd0=%d fd1=%d", 1691 context->fds[0], context->fds[1]); 1692 audit_log_end(ab); 1693 } 1694 } 1695 1696 if (context->sockaddr_len) { 1697 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1698 if (ab) { 1699 audit_log_format(ab, "saddr="); 1700 audit_log_n_hex(ab, (void *)context->sockaddr, 1701 context->sockaddr_len); 1702 audit_log_end(ab); 1703 } 1704 } 1705 1706 for (aux = context->aux_pids; aux; aux = aux->next) { 1707 struct audit_aux_data_pids *axs = (void *)aux; 1708 1709 for (i = 0; i < axs->pid_count; i++) 1710 if (audit_log_pid_context(context, axs->target_pid[i], 1711 axs->target_auid[i], 1712 axs->target_uid[i], 1713 axs->target_sessionid[i], 1714 axs->target_sid[i], 1715 axs->target_comm[i])) 1716 call_panic = 1; 1717 } 1718 1719 if (context->target_pid && 1720 audit_log_pid_context(context, context->target_pid, 1721 context->target_auid, context->target_uid, 1722 context->target_sessionid, 1723 context->target_sid, context->target_comm)) 1724 call_panic = 1; 1725 1726 if (context->pwd.dentry && context->pwd.mnt) { 1727 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1728 if (ab) { 1729 audit_log_d_path(ab, " cwd=", &context->pwd); 1730 audit_log_end(ab); 1731 } 1732 } 1733 1734 i = 0; 1735 list_for_each_entry(n, &context->names_list, list) 1736 audit_log_name(context, n, i++, &call_panic); 1737 1738 /* Send end of event record to help user space know we are finished */ 1739 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1740 if (ab) 1741 audit_log_end(ab); 1742 if (call_panic) 1743 audit_panic("error converting sid to string"); 1744 } 1745 1746 /** 1747 * audit_free - free a per-task audit context 1748 * @tsk: task whose audit context block to free 1749 * 1750 * Called from copy_process and do_exit 1751 */ 1752 void __audit_free(struct task_struct *tsk) 1753 { 1754 struct audit_context *context; 1755 1756 context = audit_get_context(tsk, 0, 0); 1757 if (!context) 1758 return; 1759 1760 /* Check for system calls that do not go through the exit 1761 * function (e.g., exit_group), then free context block. 1762 * We use GFP_ATOMIC here because we might be doing this 1763 * in the context of the idle thread */ 1764 /* that can happen only if we are called from do_exit() */ 1765 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1766 audit_log_exit(context, tsk); 1767 if (!list_empty(&context->killed_trees)) 1768 audit_kill_trees(&context->killed_trees); 1769 1770 audit_free_context(context); 1771 } 1772 1773 /** 1774 * audit_syscall_entry - fill in an audit record at syscall entry 1775 * @arch: architecture type 1776 * @major: major syscall type (function) 1777 * @a1: additional syscall register 1 1778 * @a2: additional syscall register 2 1779 * @a3: additional syscall register 3 1780 * @a4: additional syscall register 4 1781 * 1782 * Fill in audit context at syscall entry. This only happens if the 1783 * audit context was created when the task was created and the state or 1784 * filters demand the audit context be built. If the state from the 1785 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1786 * then the record will be written at syscall exit time (otherwise, it 1787 * will only be written if another part of the kernel requests that it 1788 * be written). 1789 */ 1790 void __audit_syscall_entry(int arch, int major, 1791 unsigned long a1, unsigned long a2, 1792 unsigned long a3, unsigned long a4) 1793 { 1794 struct task_struct *tsk = current; 1795 struct audit_context *context = tsk->audit_context; 1796 enum audit_state state; 1797 1798 if (!context) 1799 return; 1800 1801 /* 1802 * This happens only on certain architectures that make system 1803 * calls in kernel_thread via the entry.S interface, instead of 1804 * with direct calls. (If you are porting to a new 1805 * architecture, hitting this condition can indicate that you 1806 * got the _exit/_leave calls backward in entry.S.) 1807 * 1808 * i386 no 1809 * x86_64 no 1810 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1811 * 1812 * This also happens with vm86 emulation in a non-nested manner 1813 * (entries without exits), so this case must be caught. 1814 */ 1815 if (context->in_syscall) { 1816 struct audit_context *newctx; 1817 1818 #if AUDIT_DEBUG 1819 printk(KERN_ERR 1820 "audit(:%d) pid=%d in syscall=%d;" 1821 " entering syscall=%d\n", 1822 context->serial, tsk->pid, context->major, major); 1823 #endif 1824 newctx = audit_alloc_context(context->state); 1825 if (newctx) { 1826 newctx->previous = context; 1827 context = newctx; 1828 tsk->audit_context = newctx; 1829 } else { 1830 /* If we can't alloc a new context, the best we 1831 * can do is to leak memory (any pending putname 1832 * will be lost). The only other alternative is 1833 * to abandon auditing. */ 1834 audit_zero_context(context, context->state); 1835 } 1836 } 1837 BUG_ON(context->in_syscall || context->name_count); 1838 1839 if (!audit_enabled) 1840 return; 1841 1842 context->arch = arch; 1843 context->major = major; 1844 context->argv[0] = a1; 1845 context->argv[1] = a2; 1846 context->argv[2] = a3; 1847 context->argv[3] = a4; 1848 1849 state = context->state; 1850 context->dummy = !audit_n_rules; 1851 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1852 context->prio = 0; 1853 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1854 } 1855 if (state == AUDIT_DISABLED) 1856 return; 1857 1858 context->serial = 0; 1859 context->ctime = CURRENT_TIME; 1860 context->in_syscall = 1; 1861 context->current_state = state; 1862 context->ppid = 0; 1863 } 1864 1865 /** 1866 * audit_syscall_exit - deallocate audit context after a system call 1867 * @success: success value of the syscall 1868 * @return_code: return value of the syscall 1869 * 1870 * Tear down after system call. If the audit context has been marked as 1871 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1872 * filtering, or because some other part of the kernel wrote an audit 1873 * message), then write out the syscall information. In call cases, 1874 * free the names stored from getname(). 1875 */ 1876 void __audit_syscall_exit(int success, long return_code) 1877 { 1878 struct task_struct *tsk = current; 1879 struct audit_context *context; 1880 1881 if (success) 1882 success = AUDITSC_SUCCESS; 1883 else 1884 success = AUDITSC_FAILURE; 1885 1886 context = audit_get_context(tsk, success, return_code); 1887 if (!context) 1888 return; 1889 1890 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1891 audit_log_exit(context, tsk); 1892 1893 context->in_syscall = 0; 1894 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1895 1896 if (!list_empty(&context->killed_trees)) 1897 audit_kill_trees(&context->killed_trees); 1898 1899 if (context->previous) { 1900 struct audit_context *new_context = context->previous; 1901 context->previous = NULL; 1902 audit_free_context(context); 1903 tsk->audit_context = new_context; 1904 } else { 1905 audit_free_names(context); 1906 unroll_tree_refs(context, NULL, 0); 1907 audit_free_aux(context); 1908 context->aux = NULL; 1909 context->aux_pids = NULL; 1910 context->target_pid = 0; 1911 context->target_sid = 0; 1912 context->sockaddr_len = 0; 1913 context->type = 0; 1914 context->fds[0] = -1; 1915 if (context->state != AUDIT_RECORD_CONTEXT) { 1916 kfree(context->filterkey); 1917 context->filterkey = NULL; 1918 } 1919 tsk->audit_context = context; 1920 } 1921 } 1922 1923 static inline void handle_one(const struct inode *inode) 1924 { 1925 #ifdef CONFIG_AUDIT_TREE 1926 struct audit_context *context; 1927 struct audit_tree_refs *p; 1928 struct audit_chunk *chunk; 1929 int count; 1930 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1931 return; 1932 context = current->audit_context; 1933 p = context->trees; 1934 count = context->tree_count; 1935 rcu_read_lock(); 1936 chunk = audit_tree_lookup(inode); 1937 rcu_read_unlock(); 1938 if (!chunk) 1939 return; 1940 if (likely(put_tree_ref(context, chunk))) 1941 return; 1942 if (unlikely(!grow_tree_refs(context))) { 1943 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1944 audit_set_auditable(context); 1945 audit_put_chunk(chunk); 1946 unroll_tree_refs(context, p, count); 1947 return; 1948 } 1949 put_tree_ref(context, chunk); 1950 #endif 1951 } 1952 1953 static void handle_path(const struct dentry *dentry) 1954 { 1955 #ifdef CONFIG_AUDIT_TREE 1956 struct audit_context *context; 1957 struct audit_tree_refs *p; 1958 const struct dentry *d, *parent; 1959 struct audit_chunk *drop; 1960 unsigned long seq; 1961 int count; 1962 1963 context = current->audit_context; 1964 p = context->trees; 1965 count = context->tree_count; 1966 retry: 1967 drop = NULL; 1968 d = dentry; 1969 rcu_read_lock(); 1970 seq = read_seqbegin(&rename_lock); 1971 for(;;) { 1972 struct inode *inode = d->d_inode; 1973 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1974 struct audit_chunk *chunk; 1975 chunk = audit_tree_lookup(inode); 1976 if (chunk) { 1977 if (unlikely(!put_tree_ref(context, chunk))) { 1978 drop = chunk; 1979 break; 1980 } 1981 } 1982 } 1983 parent = d->d_parent; 1984 if (parent == d) 1985 break; 1986 d = parent; 1987 } 1988 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1989 rcu_read_unlock(); 1990 if (!drop) { 1991 /* just a race with rename */ 1992 unroll_tree_refs(context, p, count); 1993 goto retry; 1994 } 1995 audit_put_chunk(drop); 1996 if (grow_tree_refs(context)) { 1997 /* OK, got more space */ 1998 unroll_tree_refs(context, p, count); 1999 goto retry; 2000 } 2001 /* too bad */ 2002 printk(KERN_WARNING 2003 "out of memory, audit has lost a tree reference\n"); 2004 unroll_tree_refs(context, p, count); 2005 audit_set_auditable(context); 2006 return; 2007 } 2008 rcu_read_unlock(); 2009 #endif 2010 } 2011 2012 static struct audit_names *audit_alloc_name(struct audit_context *context) 2013 { 2014 struct audit_names *aname; 2015 2016 if (context->name_count < AUDIT_NAMES) { 2017 aname = &context->preallocated_names[context->name_count]; 2018 memset(aname, 0, sizeof(*aname)); 2019 } else { 2020 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2021 if (!aname) 2022 return NULL; 2023 aname->should_free = true; 2024 } 2025 2026 aname->ino = (unsigned long)-1; 2027 list_add_tail(&aname->list, &context->names_list); 2028 2029 context->name_count++; 2030 #if AUDIT_DEBUG 2031 context->ino_count++; 2032 #endif 2033 return aname; 2034 } 2035 2036 /** 2037 * audit_getname - add a name to the list 2038 * @name: name to add 2039 * 2040 * Add a name to the list of audit names for this context. 2041 * Called from fs/namei.c:getname(). 2042 */ 2043 void __audit_getname(const char *name) 2044 { 2045 struct audit_context *context = current->audit_context; 2046 struct audit_names *n; 2047 2048 if (!context->in_syscall) { 2049 #if AUDIT_DEBUG == 2 2050 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 2051 __FILE__, __LINE__, context->serial, name); 2052 dump_stack(); 2053 #endif 2054 return; 2055 } 2056 2057 n = audit_alloc_name(context); 2058 if (!n) 2059 return; 2060 2061 n->name = name; 2062 n->name_len = AUDIT_NAME_FULL; 2063 n->name_put = true; 2064 2065 if (!context->pwd.dentry) 2066 get_fs_pwd(current->fs, &context->pwd); 2067 } 2068 2069 /* audit_putname - intercept a putname request 2070 * @name: name to intercept and delay for putname 2071 * 2072 * If we have stored the name from getname in the audit context, 2073 * then we delay the putname until syscall exit. 2074 * Called from include/linux/fs.h:putname(). 2075 */ 2076 void audit_putname(const char *name) 2077 { 2078 struct audit_context *context = current->audit_context; 2079 2080 BUG_ON(!context); 2081 if (!context->in_syscall) { 2082 #if AUDIT_DEBUG == 2 2083 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 2084 __FILE__, __LINE__, context->serial, name); 2085 if (context->name_count) { 2086 struct audit_names *n; 2087 int i; 2088 2089 list_for_each_entry(n, &context->names_list, list) 2090 printk(KERN_ERR "name[%d] = %p = %s\n", i, 2091 n->name, n->name ?: "(null)"); 2092 } 2093 #endif 2094 __putname(name); 2095 } 2096 #if AUDIT_DEBUG 2097 else { 2098 ++context->put_count; 2099 if (context->put_count > context->name_count) { 2100 printk(KERN_ERR "%s:%d(:%d): major=%d" 2101 " in_syscall=%d putname(%p) name_count=%d" 2102 " put_count=%d\n", 2103 __FILE__, __LINE__, 2104 context->serial, context->major, 2105 context->in_syscall, name, context->name_count, 2106 context->put_count); 2107 dump_stack(); 2108 } 2109 } 2110 #endif 2111 } 2112 2113 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 2114 { 2115 struct cpu_vfs_cap_data caps; 2116 int rc; 2117 2118 if (!dentry) 2119 return 0; 2120 2121 rc = get_vfs_caps_from_disk(dentry, &caps); 2122 if (rc) 2123 return rc; 2124 2125 name->fcap.permitted = caps.permitted; 2126 name->fcap.inheritable = caps.inheritable; 2127 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2128 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2129 2130 return 0; 2131 } 2132 2133 2134 /* Copy inode data into an audit_names. */ 2135 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 2136 const struct inode *inode) 2137 { 2138 name->ino = inode->i_ino; 2139 name->dev = inode->i_sb->s_dev; 2140 name->mode = inode->i_mode; 2141 name->uid = inode->i_uid; 2142 name->gid = inode->i_gid; 2143 name->rdev = inode->i_rdev; 2144 security_inode_getsecid(inode, &name->osid); 2145 audit_copy_fcaps(name, dentry); 2146 } 2147 2148 /** 2149 * audit_inode - store the inode and device from a lookup 2150 * @name: name being audited 2151 * @dentry: dentry being audited 2152 * 2153 * Called from fs/namei.c:path_lookup(). 2154 */ 2155 void __audit_inode(const char *name, const struct dentry *dentry) 2156 { 2157 struct audit_context *context = current->audit_context; 2158 const struct inode *inode = dentry->d_inode; 2159 struct audit_names *n; 2160 2161 if (!context->in_syscall) 2162 return; 2163 2164 list_for_each_entry_reverse(n, &context->names_list, list) { 2165 if (n->name && (n->name == name)) 2166 goto out; 2167 } 2168 2169 /* unable to find the name from a previous getname() */ 2170 n = audit_alloc_name(context); 2171 if (!n) 2172 return; 2173 out: 2174 handle_path(dentry); 2175 audit_copy_inode(n, dentry, inode); 2176 } 2177 2178 /** 2179 * audit_inode_child - collect inode info for created/removed objects 2180 * @dentry: dentry being audited 2181 * @parent: inode of dentry parent 2182 * 2183 * For syscalls that create or remove filesystem objects, audit_inode 2184 * can only collect information for the filesystem object's parent. 2185 * This call updates the audit context with the child's information. 2186 * Syscalls that create a new filesystem object must be hooked after 2187 * the object is created. Syscalls that remove a filesystem object 2188 * must be hooked prior, in order to capture the target inode during 2189 * unsuccessful attempts. 2190 */ 2191 void __audit_inode_child(const struct dentry *dentry, 2192 const struct inode *parent) 2193 { 2194 struct audit_context *context = current->audit_context; 2195 const char *found_parent = NULL, *found_child = NULL; 2196 const struct inode *inode = dentry->d_inode; 2197 const char *dname = dentry->d_name.name; 2198 struct audit_names *n; 2199 int dirlen = 0; 2200 2201 if (!context->in_syscall) 2202 return; 2203 2204 if (inode) 2205 handle_one(inode); 2206 2207 /* parent is more likely, look for it first */ 2208 list_for_each_entry(n, &context->names_list, list) { 2209 if (!n->name) 2210 continue; 2211 2212 if (n->ino == parent->i_ino && 2213 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2214 n->name_len = dirlen; /* update parent data in place */ 2215 found_parent = n->name; 2216 goto add_names; 2217 } 2218 } 2219 2220 /* no matching parent, look for matching child */ 2221 list_for_each_entry(n, &context->names_list, list) { 2222 if (!n->name) 2223 continue; 2224 2225 /* strcmp() is the more likely scenario */ 2226 if (!strcmp(dname, n->name) || 2227 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2228 if (inode) 2229 audit_copy_inode(n, NULL, inode); 2230 else 2231 n->ino = (unsigned long)-1; 2232 found_child = n->name; 2233 goto add_names; 2234 } 2235 } 2236 2237 add_names: 2238 if (!found_parent) { 2239 n = audit_alloc_name(context); 2240 if (!n) 2241 return; 2242 audit_copy_inode(n, NULL, parent); 2243 } 2244 2245 if (!found_child) { 2246 n = audit_alloc_name(context); 2247 if (!n) 2248 return; 2249 2250 /* Re-use the name belonging to the slot for a matching parent 2251 * directory. All names for this context are relinquished in 2252 * audit_free_names() */ 2253 if (found_parent) { 2254 n->name = found_parent; 2255 n->name_len = AUDIT_NAME_FULL; 2256 /* don't call __putname() */ 2257 n->name_put = false; 2258 } 2259 2260 if (inode) 2261 audit_copy_inode(n, NULL, inode); 2262 } 2263 } 2264 EXPORT_SYMBOL_GPL(__audit_inode_child); 2265 2266 /** 2267 * auditsc_get_stamp - get local copies of audit_context values 2268 * @ctx: audit_context for the task 2269 * @t: timespec to store time recorded in the audit_context 2270 * @serial: serial value that is recorded in the audit_context 2271 * 2272 * Also sets the context as auditable. 2273 */ 2274 int auditsc_get_stamp(struct audit_context *ctx, 2275 struct timespec *t, unsigned int *serial) 2276 { 2277 if (!ctx->in_syscall) 2278 return 0; 2279 if (!ctx->serial) 2280 ctx->serial = audit_serial(); 2281 t->tv_sec = ctx->ctime.tv_sec; 2282 t->tv_nsec = ctx->ctime.tv_nsec; 2283 *serial = ctx->serial; 2284 if (!ctx->prio) { 2285 ctx->prio = 1; 2286 ctx->current_state = AUDIT_RECORD_CONTEXT; 2287 } 2288 return 1; 2289 } 2290 2291 /* global counter which is incremented every time something logs in */ 2292 static atomic_t session_id = ATOMIC_INIT(0); 2293 2294 /** 2295 * audit_set_loginuid - set current task's audit_context loginuid 2296 * @loginuid: loginuid value 2297 * 2298 * Returns 0. 2299 * 2300 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2301 */ 2302 int audit_set_loginuid(uid_t loginuid) 2303 { 2304 struct task_struct *task = current; 2305 struct audit_context *context = task->audit_context; 2306 unsigned int sessionid; 2307 2308 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE 2309 if (task->loginuid != -1) 2310 return -EPERM; 2311 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */ 2312 if (!capable(CAP_AUDIT_CONTROL)) 2313 return -EPERM; 2314 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */ 2315 2316 sessionid = atomic_inc_return(&session_id); 2317 if (context && context->in_syscall) { 2318 struct audit_buffer *ab; 2319 2320 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2321 if (ab) { 2322 audit_log_format(ab, "login pid=%d uid=%u " 2323 "old auid=%u new auid=%u" 2324 " old ses=%u new ses=%u", 2325 task->pid, task_uid(task), 2326 task->loginuid, loginuid, 2327 task->sessionid, sessionid); 2328 audit_log_end(ab); 2329 } 2330 } 2331 task->sessionid = sessionid; 2332 task->loginuid = loginuid; 2333 return 0; 2334 } 2335 2336 /** 2337 * __audit_mq_open - record audit data for a POSIX MQ open 2338 * @oflag: open flag 2339 * @mode: mode bits 2340 * @attr: queue attributes 2341 * 2342 */ 2343 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2344 { 2345 struct audit_context *context = current->audit_context; 2346 2347 if (attr) 2348 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2349 else 2350 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2351 2352 context->mq_open.oflag = oflag; 2353 context->mq_open.mode = mode; 2354 2355 context->type = AUDIT_MQ_OPEN; 2356 } 2357 2358 /** 2359 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2360 * @mqdes: MQ descriptor 2361 * @msg_len: Message length 2362 * @msg_prio: Message priority 2363 * @abs_timeout: Message timeout in absolute time 2364 * 2365 */ 2366 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2367 const struct timespec *abs_timeout) 2368 { 2369 struct audit_context *context = current->audit_context; 2370 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2371 2372 if (abs_timeout) 2373 memcpy(p, abs_timeout, sizeof(struct timespec)); 2374 else 2375 memset(p, 0, sizeof(struct timespec)); 2376 2377 context->mq_sendrecv.mqdes = mqdes; 2378 context->mq_sendrecv.msg_len = msg_len; 2379 context->mq_sendrecv.msg_prio = msg_prio; 2380 2381 context->type = AUDIT_MQ_SENDRECV; 2382 } 2383 2384 /** 2385 * __audit_mq_notify - record audit data for a POSIX MQ notify 2386 * @mqdes: MQ descriptor 2387 * @notification: Notification event 2388 * 2389 */ 2390 2391 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2392 { 2393 struct audit_context *context = current->audit_context; 2394 2395 if (notification) 2396 context->mq_notify.sigev_signo = notification->sigev_signo; 2397 else 2398 context->mq_notify.sigev_signo = 0; 2399 2400 context->mq_notify.mqdes = mqdes; 2401 context->type = AUDIT_MQ_NOTIFY; 2402 } 2403 2404 /** 2405 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2406 * @mqdes: MQ descriptor 2407 * @mqstat: MQ flags 2408 * 2409 */ 2410 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2411 { 2412 struct audit_context *context = current->audit_context; 2413 context->mq_getsetattr.mqdes = mqdes; 2414 context->mq_getsetattr.mqstat = *mqstat; 2415 context->type = AUDIT_MQ_GETSETATTR; 2416 } 2417 2418 /** 2419 * audit_ipc_obj - record audit data for ipc object 2420 * @ipcp: ipc permissions 2421 * 2422 */ 2423 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2424 { 2425 struct audit_context *context = current->audit_context; 2426 context->ipc.uid = ipcp->uid; 2427 context->ipc.gid = ipcp->gid; 2428 context->ipc.mode = ipcp->mode; 2429 context->ipc.has_perm = 0; 2430 security_ipc_getsecid(ipcp, &context->ipc.osid); 2431 context->type = AUDIT_IPC; 2432 } 2433 2434 /** 2435 * audit_ipc_set_perm - record audit data for new ipc permissions 2436 * @qbytes: msgq bytes 2437 * @uid: msgq user id 2438 * @gid: msgq group id 2439 * @mode: msgq mode (permissions) 2440 * 2441 * Called only after audit_ipc_obj(). 2442 */ 2443 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2444 { 2445 struct audit_context *context = current->audit_context; 2446 2447 context->ipc.qbytes = qbytes; 2448 context->ipc.perm_uid = uid; 2449 context->ipc.perm_gid = gid; 2450 context->ipc.perm_mode = mode; 2451 context->ipc.has_perm = 1; 2452 } 2453 2454 int __audit_bprm(struct linux_binprm *bprm) 2455 { 2456 struct audit_aux_data_execve *ax; 2457 struct audit_context *context = current->audit_context; 2458 2459 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2460 if (!ax) 2461 return -ENOMEM; 2462 2463 ax->argc = bprm->argc; 2464 ax->envc = bprm->envc; 2465 ax->mm = bprm->mm; 2466 ax->d.type = AUDIT_EXECVE; 2467 ax->d.next = context->aux; 2468 context->aux = (void *)ax; 2469 return 0; 2470 } 2471 2472 2473 /** 2474 * audit_socketcall - record audit data for sys_socketcall 2475 * @nargs: number of args 2476 * @args: args array 2477 * 2478 */ 2479 void __audit_socketcall(int nargs, unsigned long *args) 2480 { 2481 struct audit_context *context = current->audit_context; 2482 2483 context->type = AUDIT_SOCKETCALL; 2484 context->socketcall.nargs = nargs; 2485 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2486 } 2487 2488 /** 2489 * __audit_fd_pair - record audit data for pipe and socketpair 2490 * @fd1: the first file descriptor 2491 * @fd2: the second file descriptor 2492 * 2493 */ 2494 void __audit_fd_pair(int fd1, int fd2) 2495 { 2496 struct audit_context *context = current->audit_context; 2497 context->fds[0] = fd1; 2498 context->fds[1] = fd2; 2499 } 2500 2501 /** 2502 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2503 * @len: data length in user space 2504 * @a: data address in kernel space 2505 * 2506 * Returns 0 for success or NULL context or < 0 on error. 2507 */ 2508 int __audit_sockaddr(int len, void *a) 2509 { 2510 struct audit_context *context = current->audit_context; 2511 2512 if (!context->sockaddr) { 2513 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2514 if (!p) 2515 return -ENOMEM; 2516 context->sockaddr = p; 2517 } 2518 2519 context->sockaddr_len = len; 2520 memcpy(context->sockaddr, a, len); 2521 return 0; 2522 } 2523 2524 void __audit_ptrace(struct task_struct *t) 2525 { 2526 struct audit_context *context = current->audit_context; 2527 2528 context->target_pid = t->pid; 2529 context->target_auid = audit_get_loginuid(t); 2530 context->target_uid = task_uid(t); 2531 context->target_sessionid = audit_get_sessionid(t); 2532 security_task_getsecid(t, &context->target_sid); 2533 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2534 } 2535 2536 /** 2537 * audit_signal_info - record signal info for shutting down audit subsystem 2538 * @sig: signal value 2539 * @t: task being signaled 2540 * 2541 * If the audit subsystem is being terminated, record the task (pid) 2542 * and uid that is doing that. 2543 */ 2544 int __audit_signal_info(int sig, struct task_struct *t) 2545 { 2546 struct audit_aux_data_pids *axp; 2547 struct task_struct *tsk = current; 2548 struct audit_context *ctx = tsk->audit_context; 2549 uid_t uid = current_uid(), t_uid = task_uid(t); 2550 2551 if (audit_pid && t->tgid == audit_pid) { 2552 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2553 audit_sig_pid = tsk->pid; 2554 if (tsk->loginuid != -1) 2555 audit_sig_uid = tsk->loginuid; 2556 else 2557 audit_sig_uid = uid; 2558 security_task_getsecid(tsk, &audit_sig_sid); 2559 } 2560 if (!audit_signals || audit_dummy_context()) 2561 return 0; 2562 } 2563 2564 /* optimize the common case by putting first signal recipient directly 2565 * in audit_context */ 2566 if (!ctx->target_pid) { 2567 ctx->target_pid = t->tgid; 2568 ctx->target_auid = audit_get_loginuid(t); 2569 ctx->target_uid = t_uid; 2570 ctx->target_sessionid = audit_get_sessionid(t); 2571 security_task_getsecid(t, &ctx->target_sid); 2572 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2573 return 0; 2574 } 2575 2576 axp = (void *)ctx->aux_pids; 2577 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2578 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2579 if (!axp) 2580 return -ENOMEM; 2581 2582 axp->d.type = AUDIT_OBJ_PID; 2583 axp->d.next = ctx->aux_pids; 2584 ctx->aux_pids = (void *)axp; 2585 } 2586 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2587 2588 axp->target_pid[axp->pid_count] = t->tgid; 2589 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2590 axp->target_uid[axp->pid_count] = t_uid; 2591 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2592 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2593 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2594 axp->pid_count++; 2595 2596 return 0; 2597 } 2598 2599 /** 2600 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2601 * @bprm: pointer to the bprm being processed 2602 * @new: the proposed new credentials 2603 * @old: the old credentials 2604 * 2605 * Simply check if the proc already has the caps given by the file and if not 2606 * store the priv escalation info for later auditing at the end of the syscall 2607 * 2608 * -Eric 2609 */ 2610 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2611 const struct cred *new, const struct cred *old) 2612 { 2613 struct audit_aux_data_bprm_fcaps *ax; 2614 struct audit_context *context = current->audit_context; 2615 struct cpu_vfs_cap_data vcaps; 2616 struct dentry *dentry; 2617 2618 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2619 if (!ax) 2620 return -ENOMEM; 2621 2622 ax->d.type = AUDIT_BPRM_FCAPS; 2623 ax->d.next = context->aux; 2624 context->aux = (void *)ax; 2625 2626 dentry = dget(bprm->file->f_dentry); 2627 get_vfs_caps_from_disk(dentry, &vcaps); 2628 dput(dentry); 2629 2630 ax->fcap.permitted = vcaps.permitted; 2631 ax->fcap.inheritable = vcaps.inheritable; 2632 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2633 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2634 2635 ax->old_pcap.permitted = old->cap_permitted; 2636 ax->old_pcap.inheritable = old->cap_inheritable; 2637 ax->old_pcap.effective = old->cap_effective; 2638 2639 ax->new_pcap.permitted = new->cap_permitted; 2640 ax->new_pcap.inheritable = new->cap_inheritable; 2641 ax->new_pcap.effective = new->cap_effective; 2642 return 0; 2643 } 2644 2645 /** 2646 * __audit_log_capset - store information about the arguments to the capset syscall 2647 * @pid: target pid of the capset call 2648 * @new: the new credentials 2649 * @old: the old (current) credentials 2650 * 2651 * Record the aguments userspace sent to sys_capset for later printing by the 2652 * audit system if applicable 2653 */ 2654 void __audit_log_capset(pid_t pid, 2655 const struct cred *new, const struct cred *old) 2656 { 2657 struct audit_context *context = current->audit_context; 2658 context->capset.pid = pid; 2659 context->capset.cap.effective = new->cap_effective; 2660 context->capset.cap.inheritable = new->cap_effective; 2661 context->capset.cap.permitted = new->cap_permitted; 2662 context->type = AUDIT_CAPSET; 2663 } 2664 2665 void __audit_mmap_fd(int fd, int flags) 2666 { 2667 struct audit_context *context = current->audit_context; 2668 context->mmap.fd = fd; 2669 context->mmap.flags = flags; 2670 context->type = AUDIT_MMAP; 2671 } 2672 2673 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr) 2674 { 2675 uid_t auid, uid; 2676 gid_t gid; 2677 unsigned int sessionid; 2678 2679 auid = audit_get_loginuid(current); 2680 sessionid = audit_get_sessionid(current); 2681 current_uid_gid(&uid, &gid); 2682 2683 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2684 auid, uid, gid, sessionid); 2685 audit_log_task_context(ab); 2686 audit_log_format(ab, " pid=%d comm=", current->pid); 2687 audit_log_untrustedstring(ab, current->comm); 2688 audit_log_format(ab, " reason="); 2689 audit_log_string(ab, reason); 2690 audit_log_format(ab, " sig=%ld", signr); 2691 } 2692 /** 2693 * audit_core_dumps - record information about processes that end abnormally 2694 * @signr: signal value 2695 * 2696 * If a process ends with a core dump, something fishy is going on and we 2697 * should record the event for investigation. 2698 */ 2699 void audit_core_dumps(long signr) 2700 { 2701 struct audit_buffer *ab; 2702 2703 if (!audit_enabled) 2704 return; 2705 2706 if (signr == SIGQUIT) /* don't care for those */ 2707 return; 2708 2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2710 audit_log_abend(ab, "memory violation", signr); 2711 audit_log_end(ab); 2712 } 2713 2714 void __audit_seccomp(unsigned long syscall, long signr, int code) 2715 { 2716 struct audit_buffer *ab; 2717 2718 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2719 audit_log_abend(ab, "seccomp", signr); 2720 audit_log_format(ab, " syscall=%ld", syscall); 2721 audit_log_format(ab, " compat=%d", is_compat_task()); 2722 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current)); 2723 audit_log_format(ab, " code=0x%x", code); 2724 audit_log_end(ab); 2725 } 2726 2727 struct list_head *audit_killed_trees(void) 2728 { 2729 struct audit_context *ctx = current->audit_context; 2730 if (likely(!ctx || !ctx->in_syscall)) 2731 return NULL; 2732 return &ctx->killed_trees; 2733 } 2734