xref: /openbmc/linux/kernel/auditsc.c (revision 95e9fd10)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71 
72 #include "audit.h"
73 
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78 
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80  * for saving names from getname().  If we get more names we will allocate
81  * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES	5
83 
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
86 
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* number of audit rules */
91 int audit_n_rules;
92 
93 /* determines whether we collect data for signals sent */
94 int audit_signals;
95 
96 struct audit_cap_data {
97 	kernel_cap_t		permitted;
98 	kernel_cap_t		inheritable;
99 	union {
100 		unsigned int	fE;		/* effective bit of a file capability */
101 		kernel_cap_t	effective;	/* effective set of a process */
102 	};
103 };
104 
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106  * we don't let putname() free it (instead we free all of the saved
107  * pointers at syscall exit time).
108  *
109  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110 struct audit_names {
111 	struct list_head list;		/* audit_context->names_list */
112 	const char	*name;
113 	unsigned long	ino;
114 	dev_t		dev;
115 	umode_t		mode;
116 	uid_t		uid;
117 	gid_t		gid;
118 	dev_t		rdev;
119 	u32		osid;
120 	struct audit_cap_data fcap;
121 	unsigned int	fcap_ver;
122 	int		name_len;	/* number of name's characters to log */
123 	bool		name_put;	/* call __putname() for this name */
124 	/*
125 	 * This was an allocated audit_names and not from the array of
126 	 * names allocated in the task audit context.  Thus this name
127 	 * should be freed on syscall exit
128 	 */
129 	bool		should_free;
130 };
131 
132 struct audit_aux_data {
133 	struct audit_aux_data	*next;
134 	int			type;
135 };
136 
137 #define AUDIT_AUX_IPCPERM	0
138 
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS	16
141 
142 struct audit_aux_data_execve {
143 	struct audit_aux_data	d;
144 	int argc;
145 	int envc;
146 	struct mm_struct *mm;
147 };
148 
149 struct audit_aux_data_pids {
150 	struct audit_aux_data	d;
151 	pid_t			target_pid[AUDIT_AUX_PIDS];
152 	uid_t			target_auid[AUDIT_AUX_PIDS];
153 	uid_t			target_uid[AUDIT_AUX_PIDS];
154 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
155 	u32			target_sid[AUDIT_AUX_PIDS];
156 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 	int			pid_count;
158 };
159 
160 struct audit_aux_data_bprm_fcaps {
161 	struct audit_aux_data	d;
162 	struct audit_cap_data	fcap;
163 	unsigned int		fcap_ver;
164 	struct audit_cap_data	old_pcap;
165 	struct audit_cap_data	new_pcap;
166 };
167 
168 struct audit_aux_data_capset {
169 	struct audit_aux_data	d;
170 	pid_t			pid;
171 	struct audit_cap_data	cap;
172 };
173 
174 struct audit_tree_refs {
175 	struct audit_tree_refs *next;
176 	struct audit_chunk *c[31];
177 };
178 
179 /* The per-task audit context. */
180 struct audit_context {
181 	int		    dummy;	/* must be the first element */
182 	int		    in_syscall;	/* 1 if task is in a syscall */
183 	enum audit_state    state, current_state;
184 	unsigned int	    serial;     /* serial number for record */
185 	int		    major;      /* syscall number */
186 	struct timespec	    ctime;      /* time of syscall entry */
187 	unsigned long	    argv[4];    /* syscall arguments */
188 	long		    return_code;/* syscall return code */
189 	u64		    prio;
190 	int		    return_valid; /* return code is valid */
191 	/*
192 	 * The names_list is the list of all audit_names collected during this
193 	 * syscall.  The first AUDIT_NAMES entries in the names_list will
194 	 * actually be from the preallocated_names array for performance
195 	 * reasons.  Except during allocation they should never be referenced
196 	 * through the preallocated_names array and should only be found/used
197 	 * by running the names_list.
198 	 */
199 	struct audit_names  preallocated_names[AUDIT_NAMES];
200 	int		    name_count; /* total records in names_list */
201 	struct list_head    names_list;	/* anchor for struct audit_names->list */
202 	char *		    filterkey;	/* key for rule that triggered record */
203 	struct path	    pwd;
204 	struct audit_context *previous; /* For nested syscalls */
205 	struct audit_aux_data *aux;
206 	struct audit_aux_data *aux_pids;
207 	struct sockaddr_storage *sockaddr;
208 	size_t sockaddr_len;
209 				/* Save things to print about task_struct */
210 	pid_t		    pid, ppid;
211 	uid_t		    uid, euid, suid, fsuid;
212 	gid_t		    gid, egid, sgid, fsgid;
213 	unsigned long	    personality;
214 	int		    arch;
215 
216 	pid_t		    target_pid;
217 	uid_t		    target_auid;
218 	uid_t		    target_uid;
219 	unsigned int	    target_sessionid;
220 	u32		    target_sid;
221 	char		    target_comm[TASK_COMM_LEN];
222 
223 	struct audit_tree_refs *trees, *first_trees;
224 	struct list_head killed_trees;
225 	int tree_count;
226 
227 	int type;
228 	union {
229 		struct {
230 			int nargs;
231 			long args[6];
232 		} socketcall;
233 		struct {
234 			uid_t			uid;
235 			gid_t			gid;
236 			umode_t			mode;
237 			u32			osid;
238 			int			has_perm;
239 			uid_t			perm_uid;
240 			gid_t			perm_gid;
241 			umode_t			perm_mode;
242 			unsigned long		qbytes;
243 		} ipc;
244 		struct {
245 			mqd_t			mqdes;
246 			struct mq_attr 		mqstat;
247 		} mq_getsetattr;
248 		struct {
249 			mqd_t			mqdes;
250 			int			sigev_signo;
251 		} mq_notify;
252 		struct {
253 			mqd_t			mqdes;
254 			size_t			msg_len;
255 			unsigned int		msg_prio;
256 			struct timespec		abs_timeout;
257 		} mq_sendrecv;
258 		struct {
259 			int			oflag;
260 			umode_t			mode;
261 			struct mq_attr		attr;
262 		} mq_open;
263 		struct {
264 			pid_t			pid;
265 			struct audit_cap_data	cap;
266 		} capset;
267 		struct {
268 			int			fd;
269 			int			flags;
270 		} mmap;
271 	};
272 	int fds[2];
273 
274 #if AUDIT_DEBUG
275 	int		    put_count;
276 	int		    ino_count;
277 #endif
278 };
279 
280 static inline int open_arg(int flags, int mask)
281 {
282 	int n = ACC_MODE(flags);
283 	if (flags & (O_TRUNC | O_CREAT))
284 		n |= AUDIT_PERM_WRITE;
285 	return n & mask;
286 }
287 
288 static int audit_match_perm(struct audit_context *ctx, int mask)
289 {
290 	unsigned n;
291 	if (unlikely(!ctx))
292 		return 0;
293 	n = ctx->major;
294 
295 	switch (audit_classify_syscall(ctx->arch, n)) {
296 	case 0:	/* native */
297 		if ((mask & AUDIT_PERM_WRITE) &&
298 		     audit_match_class(AUDIT_CLASS_WRITE, n))
299 			return 1;
300 		if ((mask & AUDIT_PERM_READ) &&
301 		     audit_match_class(AUDIT_CLASS_READ, n))
302 			return 1;
303 		if ((mask & AUDIT_PERM_ATTR) &&
304 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
305 			return 1;
306 		return 0;
307 	case 1: /* 32bit on biarch */
308 		if ((mask & AUDIT_PERM_WRITE) &&
309 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 			return 1;
311 		if ((mask & AUDIT_PERM_READ) &&
312 		     audit_match_class(AUDIT_CLASS_READ_32, n))
313 			return 1;
314 		if ((mask & AUDIT_PERM_ATTR) &&
315 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 			return 1;
317 		return 0;
318 	case 2: /* open */
319 		return mask & ACC_MODE(ctx->argv[1]);
320 	case 3: /* openat */
321 		return mask & ACC_MODE(ctx->argv[2]);
322 	case 4: /* socketcall */
323 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 	case 5: /* execve */
325 		return mask & AUDIT_PERM_EXEC;
326 	default:
327 		return 0;
328 	}
329 }
330 
331 static int audit_match_filetype(struct audit_context *ctx, int val)
332 {
333 	struct audit_names *n;
334 	umode_t mode = (umode_t)val;
335 
336 	if (unlikely(!ctx))
337 		return 0;
338 
339 	list_for_each_entry(n, &ctx->names_list, list) {
340 		if ((n->ino != -1) &&
341 		    ((n->mode & S_IFMT) == mode))
342 			return 1;
343 	}
344 
345 	return 0;
346 }
347 
348 /*
349  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350  * ->first_trees points to its beginning, ->trees - to the current end of data.
351  * ->tree_count is the number of free entries in array pointed to by ->trees.
352  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
354  * it's going to remain 1-element for almost any setup) until we free context itself.
355  * References in it _are_ dropped - at the same time we free/drop aux stuff.
356  */
357 
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context *ctx)
360 {
361 	if (!ctx->prio) {
362 		ctx->prio = 1;
363 		ctx->current_state = AUDIT_RECORD_CONTEXT;
364 	}
365 }
366 
367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 {
369 	struct audit_tree_refs *p = ctx->trees;
370 	int left = ctx->tree_count;
371 	if (likely(left)) {
372 		p->c[--left] = chunk;
373 		ctx->tree_count = left;
374 		return 1;
375 	}
376 	if (!p)
377 		return 0;
378 	p = p->next;
379 	if (p) {
380 		p->c[30] = chunk;
381 		ctx->trees = p;
382 		ctx->tree_count = 30;
383 		return 1;
384 	}
385 	return 0;
386 }
387 
388 static int grow_tree_refs(struct audit_context *ctx)
389 {
390 	struct audit_tree_refs *p = ctx->trees;
391 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 	if (!ctx->trees) {
393 		ctx->trees = p;
394 		return 0;
395 	}
396 	if (p)
397 		p->next = ctx->trees;
398 	else
399 		ctx->first_trees = ctx->trees;
400 	ctx->tree_count = 31;
401 	return 1;
402 }
403 #endif
404 
405 static void unroll_tree_refs(struct audit_context *ctx,
406 		      struct audit_tree_refs *p, int count)
407 {
408 #ifdef CONFIG_AUDIT_TREE
409 	struct audit_tree_refs *q;
410 	int n;
411 	if (!p) {
412 		/* we started with empty chain */
413 		p = ctx->first_trees;
414 		count = 31;
415 		/* if the very first allocation has failed, nothing to do */
416 		if (!p)
417 			return;
418 	}
419 	n = count;
420 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 		while (n--) {
422 			audit_put_chunk(q->c[n]);
423 			q->c[n] = NULL;
424 		}
425 	}
426 	while (n-- > ctx->tree_count) {
427 		audit_put_chunk(q->c[n]);
428 		q->c[n] = NULL;
429 	}
430 	ctx->trees = p;
431 	ctx->tree_count = count;
432 #endif
433 }
434 
435 static void free_tree_refs(struct audit_context *ctx)
436 {
437 	struct audit_tree_refs *p, *q;
438 	for (p = ctx->first_trees; p; p = q) {
439 		q = p->next;
440 		kfree(p);
441 	}
442 }
443 
444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 {
446 #ifdef CONFIG_AUDIT_TREE
447 	struct audit_tree_refs *p;
448 	int n;
449 	if (!tree)
450 		return 0;
451 	/* full ones */
452 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 		for (n = 0; n < 31; n++)
454 			if (audit_tree_match(p->c[n], tree))
455 				return 1;
456 	}
457 	/* partial */
458 	if (p) {
459 		for (n = ctx->tree_count; n < 31; n++)
460 			if (audit_tree_match(p->c[n], tree))
461 				return 1;
462 	}
463 #endif
464 	return 0;
465 }
466 
467 static int audit_compare_id(uid_t uid1,
468 			    struct audit_names *name,
469 			    unsigned long name_offset,
470 			    struct audit_field *f,
471 			    struct audit_context *ctx)
472 {
473 	struct audit_names *n;
474 	unsigned long addr;
475 	uid_t uid2;
476 	int rc;
477 
478 	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
479 
480 	if (name) {
481 		addr = (unsigned long)name;
482 		addr += name_offset;
483 
484 		uid2 = *(uid_t *)addr;
485 		rc = audit_comparator(uid1, f->op, uid2);
486 		if (rc)
487 			return rc;
488 	}
489 
490 	if (ctx) {
491 		list_for_each_entry(n, &ctx->names_list, list) {
492 			addr = (unsigned long)n;
493 			addr += name_offset;
494 
495 			uid2 = *(uid_t *)addr;
496 
497 			rc = audit_comparator(uid1, f->op, uid2);
498 			if (rc)
499 				return rc;
500 		}
501 	}
502 	return 0;
503 }
504 
505 static int audit_field_compare(struct task_struct *tsk,
506 			       const struct cred *cred,
507 			       struct audit_field *f,
508 			       struct audit_context *ctx,
509 			       struct audit_names *name)
510 {
511 	switch (f->val) {
512 	/* process to file object comparisons */
513 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
514 		return audit_compare_id(cred->uid,
515 					name, offsetof(struct audit_names, uid),
516 					f, ctx);
517 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
518 		return audit_compare_id(cred->gid,
519 					name, offsetof(struct audit_names, gid),
520 					f, ctx);
521 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
522 		return audit_compare_id(cred->euid,
523 					name, offsetof(struct audit_names, uid),
524 					f, ctx);
525 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
526 		return audit_compare_id(cred->egid,
527 					name, offsetof(struct audit_names, gid),
528 					f, ctx);
529 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 		return audit_compare_id(tsk->loginuid,
531 					name, offsetof(struct audit_names, uid),
532 					f, ctx);
533 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 		return audit_compare_id(cred->suid,
535 					name, offsetof(struct audit_names, uid),
536 					f, ctx);
537 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
538 		return audit_compare_id(cred->sgid,
539 					name, offsetof(struct audit_names, gid),
540 					f, ctx);
541 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
542 		return audit_compare_id(cred->fsuid,
543 					name, offsetof(struct audit_names, uid),
544 					f, ctx);
545 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
546 		return audit_compare_id(cred->fsgid,
547 					name, offsetof(struct audit_names, gid),
548 					f, ctx);
549 	/* uid comparisons */
550 	case AUDIT_COMPARE_UID_TO_AUID:
551 		return audit_comparator(cred->uid, f->op, tsk->loginuid);
552 	case AUDIT_COMPARE_UID_TO_EUID:
553 		return audit_comparator(cred->uid, f->op, cred->euid);
554 	case AUDIT_COMPARE_UID_TO_SUID:
555 		return audit_comparator(cred->uid, f->op, cred->suid);
556 	case AUDIT_COMPARE_UID_TO_FSUID:
557 		return audit_comparator(cred->uid, f->op, cred->fsuid);
558 	/* auid comparisons */
559 	case AUDIT_COMPARE_AUID_TO_EUID:
560 		return audit_comparator(tsk->loginuid, f->op, cred->euid);
561 	case AUDIT_COMPARE_AUID_TO_SUID:
562 		return audit_comparator(tsk->loginuid, f->op, cred->suid);
563 	case AUDIT_COMPARE_AUID_TO_FSUID:
564 		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
565 	/* euid comparisons */
566 	case AUDIT_COMPARE_EUID_TO_SUID:
567 		return audit_comparator(cred->euid, f->op, cred->suid);
568 	case AUDIT_COMPARE_EUID_TO_FSUID:
569 		return audit_comparator(cred->euid, f->op, cred->fsuid);
570 	/* suid comparisons */
571 	case AUDIT_COMPARE_SUID_TO_FSUID:
572 		return audit_comparator(cred->suid, f->op, cred->fsuid);
573 	/* gid comparisons */
574 	case AUDIT_COMPARE_GID_TO_EGID:
575 		return audit_comparator(cred->gid, f->op, cred->egid);
576 	case AUDIT_COMPARE_GID_TO_SGID:
577 		return audit_comparator(cred->gid, f->op, cred->sgid);
578 	case AUDIT_COMPARE_GID_TO_FSGID:
579 		return audit_comparator(cred->gid, f->op, cred->fsgid);
580 	/* egid comparisons */
581 	case AUDIT_COMPARE_EGID_TO_SGID:
582 		return audit_comparator(cred->egid, f->op, cred->sgid);
583 	case AUDIT_COMPARE_EGID_TO_FSGID:
584 		return audit_comparator(cred->egid, f->op, cred->fsgid);
585 	/* sgid comparison */
586 	case AUDIT_COMPARE_SGID_TO_FSGID:
587 		return audit_comparator(cred->sgid, f->op, cred->fsgid);
588 	default:
589 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
590 		return 0;
591 	}
592 	return 0;
593 }
594 
595 /* Determine if any context name data matches a rule's watch data */
596 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
597  * otherwise.
598  *
599  * If task_creation is true, this is an explicit indication that we are
600  * filtering a task rule at task creation time.  This and tsk == current are
601  * the only situations where tsk->cred may be accessed without an rcu read lock.
602  */
603 static int audit_filter_rules(struct task_struct *tsk,
604 			      struct audit_krule *rule,
605 			      struct audit_context *ctx,
606 			      struct audit_names *name,
607 			      enum audit_state *state,
608 			      bool task_creation)
609 {
610 	const struct cred *cred;
611 	int i, need_sid = 1;
612 	u32 sid;
613 
614 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
615 
616 	for (i = 0; i < rule->field_count; i++) {
617 		struct audit_field *f = &rule->fields[i];
618 		struct audit_names *n;
619 		int result = 0;
620 
621 		switch (f->type) {
622 		case AUDIT_PID:
623 			result = audit_comparator(tsk->pid, f->op, f->val);
624 			break;
625 		case AUDIT_PPID:
626 			if (ctx) {
627 				if (!ctx->ppid)
628 					ctx->ppid = sys_getppid();
629 				result = audit_comparator(ctx->ppid, f->op, f->val);
630 			}
631 			break;
632 		case AUDIT_UID:
633 			result = audit_comparator(cred->uid, f->op, f->val);
634 			break;
635 		case AUDIT_EUID:
636 			result = audit_comparator(cred->euid, f->op, f->val);
637 			break;
638 		case AUDIT_SUID:
639 			result = audit_comparator(cred->suid, f->op, f->val);
640 			break;
641 		case AUDIT_FSUID:
642 			result = audit_comparator(cred->fsuid, f->op, f->val);
643 			break;
644 		case AUDIT_GID:
645 			result = audit_comparator(cred->gid, f->op, f->val);
646 			break;
647 		case AUDIT_EGID:
648 			result = audit_comparator(cred->egid, f->op, f->val);
649 			break;
650 		case AUDIT_SGID:
651 			result = audit_comparator(cred->sgid, f->op, f->val);
652 			break;
653 		case AUDIT_FSGID:
654 			result = audit_comparator(cred->fsgid, f->op, f->val);
655 			break;
656 		case AUDIT_PERS:
657 			result = audit_comparator(tsk->personality, f->op, f->val);
658 			break;
659 		case AUDIT_ARCH:
660 			if (ctx)
661 				result = audit_comparator(ctx->arch, f->op, f->val);
662 			break;
663 
664 		case AUDIT_EXIT:
665 			if (ctx && ctx->return_valid)
666 				result = audit_comparator(ctx->return_code, f->op, f->val);
667 			break;
668 		case AUDIT_SUCCESS:
669 			if (ctx && ctx->return_valid) {
670 				if (f->val)
671 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
672 				else
673 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
674 			}
675 			break;
676 		case AUDIT_DEVMAJOR:
677 			if (name) {
678 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
679 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
680 					++result;
681 			} else if (ctx) {
682 				list_for_each_entry(n, &ctx->names_list, list) {
683 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
684 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
685 						++result;
686 						break;
687 					}
688 				}
689 			}
690 			break;
691 		case AUDIT_DEVMINOR:
692 			if (name) {
693 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
694 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
695 					++result;
696 			} else if (ctx) {
697 				list_for_each_entry(n, &ctx->names_list, list) {
698 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
699 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
700 						++result;
701 						break;
702 					}
703 				}
704 			}
705 			break;
706 		case AUDIT_INODE:
707 			if (name)
708 				result = (name->ino == f->val);
709 			else if (ctx) {
710 				list_for_each_entry(n, &ctx->names_list, list) {
711 					if (audit_comparator(n->ino, f->op, f->val)) {
712 						++result;
713 						break;
714 					}
715 				}
716 			}
717 			break;
718 		case AUDIT_OBJ_UID:
719 			if (name) {
720 				result = audit_comparator(name->uid, f->op, f->val);
721 			} else if (ctx) {
722 				list_for_each_entry(n, &ctx->names_list, list) {
723 					if (audit_comparator(n->uid, f->op, f->val)) {
724 						++result;
725 						break;
726 					}
727 				}
728 			}
729 			break;
730 		case AUDIT_OBJ_GID:
731 			if (name) {
732 				result = audit_comparator(name->gid, f->op, f->val);
733 			} else if (ctx) {
734 				list_for_each_entry(n, &ctx->names_list, list) {
735 					if (audit_comparator(n->gid, f->op, f->val)) {
736 						++result;
737 						break;
738 					}
739 				}
740 			}
741 			break;
742 		case AUDIT_WATCH:
743 			if (name)
744 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
745 			break;
746 		case AUDIT_DIR:
747 			if (ctx)
748 				result = match_tree_refs(ctx, rule->tree);
749 			break;
750 		case AUDIT_LOGINUID:
751 			result = 0;
752 			if (ctx)
753 				result = audit_comparator(tsk->loginuid, f->op, f->val);
754 			break;
755 		case AUDIT_SUBJ_USER:
756 		case AUDIT_SUBJ_ROLE:
757 		case AUDIT_SUBJ_TYPE:
758 		case AUDIT_SUBJ_SEN:
759 		case AUDIT_SUBJ_CLR:
760 			/* NOTE: this may return negative values indicating
761 			   a temporary error.  We simply treat this as a
762 			   match for now to avoid losing information that
763 			   may be wanted.   An error message will also be
764 			   logged upon error */
765 			if (f->lsm_rule) {
766 				if (need_sid) {
767 					security_task_getsecid(tsk, &sid);
768 					need_sid = 0;
769 				}
770 				result = security_audit_rule_match(sid, f->type,
771 				                                  f->op,
772 				                                  f->lsm_rule,
773 				                                  ctx);
774 			}
775 			break;
776 		case AUDIT_OBJ_USER:
777 		case AUDIT_OBJ_ROLE:
778 		case AUDIT_OBJ_TYPE:
779 		case AUDIT_OBJ_LEV_LOW:
780 		case AUDIT_OBJ_LEV_HIGH:
781 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
782 			   also applies here */
783 			if (f->lsm_rule) {
784 				/* Find files that match */
785 				if (name) {
786 					result = security_audit_rule_match(
787 					           name->osid, f->type, f->op,
788 					           f->lsm_rule, ctx);
789 				} else if (ctx) {
790 					list_for_each_entry(n, &ctx->names_list, list) {
791 						if (security_audit_rule_match(n->osid, f->type,
792 									      f->op, f->lsm_rule,
793 									      ctx)) {
794 							++result;
795 							break;
796 						}
797 					}
798 				}
799 				/* Find ipc objects that match */
800 				if (!ctx || ctx->type != AUDIT_IPC)
801 					break;
802 				if (security_audit_rule_match(ctx->ipc.osid,
803 							      f->type, f->op,
804 							      f->lsm_rule, ctx))
805 					++result;
806 			}
807 			break;
808 		case AUDIT_ARG0:
809 		case AUDIT_ARG1:
810 		case AUDIT_ARG2:
811 		case AUDIT_ARG3:
812 			if (ctx)
813 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
814 			break;
815 		case AUDIT_FILTERKEY:
816 			/* ignore this field for filtering */
817 			result = 1;
818 			break;
819 		case AUDIT_PERM:
820 			result = audit_match_perm(ctx, f->val);
821 			break;
822 		case AUDIT_FILETYPE:
823 			result = audit_match_filetype(ctx, f->val);
824 			break;
825 		case AUDIT_FIELD_COMPARE:
826 			result = audit_field_compare(tsk, cred, f, ctx, name);
827 			break;
828 		}
829 		if (!result)
830 			return 0;
831 	}
832 
833 	if (ctx) {
834 		if (rule->prio <= ctx->prio)
835 			return 0;
836 		if (rule->filterkey) {
837 			kfree(ctx->filterkey);
838 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
839 		}
840 		ctx->prio = rule->prio;
841 	}
842 	switch (rule->action) {
843 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
844 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
845 	}
846 	return 1;
847 }
848 
849 /* At process creation time, we can determine if system-call auditing is
850  * completely disabled for this task.  Since we only have the task
851  * structure at this point, we can only check uid and gid.
852  */
853 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
854 {
855 	struct audit_entry *e;
856 	enum audit_state   state;
857 
858 	rcu_read_lock();
859 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
860 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
861 				       &state, true)) {
862 			if (state == AUDIT_RECORD_CONTEXT)
863 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
864 			rcu_read_unlock();
865 			return state;
866 		}
867 	}
868 	rcu_read_unlock();
869 	return AUDIT_BUILD_CONTEXT;
870 }
871 
872 /* At syscall entry and exit time, this filter is called if the
873  * audit_state is not low enough that auditing cannot take place, but is
874  * also not high enough that we already know we have to write an audit
875  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
876  */
877 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
878 					     struct audit_context *ctx,
879 					     struct list_head *list)
880 {
881 	struct audit_entry *e;
882 	enum audit_state state;
883 
884 	if (audit_pid && tsk->tgid == audit_pid)
885 		return AUDIT_DISABLED;
886 
887 	rcu_read_lock();
888 	if (!list_empty(list)) {
889 		int word = AUDIT_WORD(ctx->major);
890 		int bit  = AUDIT_BIT(ctx->major);
891 
892 		list_for_each_entry_rcu(e, list, list) {
893 			if ((e->rule.mask[word] & bit) == bit &&
894 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
895 					       &state, false)) {
896 				rcu_read_unlock();
897 				ctx->current_state = state;
898 				return state;
899 			}
900 		}
901 	}
902 	rcu_read_unlock();
903 	return AUDIT_BUILD_CONTEXT;
904 }
905 
906 /*
907  * Given an audit_name check the inode hash table to see if they match.
908  * Called holding the rcu read lock to protect the use of audit_inode_hash
909  */
910 static int audit_filter_inode_name(struct task_struct *tsk,
911 				   struct audit_names *n,
912 				   struct audit_context *ctx) {
913 	int word, bit;
914 	int h = audit_hash_ino((u32)n->ino);
915 	struct list_head *list = &audit_inode_hash[h];
916 	struct audit_entry *e;
917 	enum audit_state state;
918 
919 	word = AUDIT_WORD(ctx->major);
920 	bit  = AUDIT_BIT(ctx->major);
921 
922 	if (list_empty(list))
923 		return 0;
924 
925 	list_for_each_entry_rcu(e, list, list) {
926 		if ((e->rule.mask[word] & bit) == bit &&
927 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
928 			ctx->current_state = state;
929 			return 1;
930 		}
931 	}
932 
933 	return 0;
934 }
935 
936 /* At syscall exit time, this filter is called if any audit_names have been
937  * collected during syscall processing.  We only check rules in sublists at hash
938  * buckets applicable to the inode numbers in audit_names.
939  * Regarding audit_state, same rules apply as for audit_filter_syscall().
940  */
941 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
942 {
943 	struct audit_names *n;
944 
945 	if (audit_pid && tsk->tgid == audit_pid)
946 		return;
947 
948 	rcu_read_lock();
949 
950 	list_for_each_entry(n, &ctx->names_list, list) {
951 		if (audit_filter_inode_name(tsk, n, ctx))
952 			break;
953 	}
954 	rcu_read_unlock();
955 }
956 
957 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
958 						      int return_valid,
959 						      long return_code)
960 {
961 	struct audit_context *context = tsk->audit_context;
962 
963 	if (!context)
964 		return NULL;
965 	context->return_valid = return_valid;
966 
967 	/*
968 	 * we need to fix up the return code in the audit logs if the actual
969 	 * return codes are later going to be fixed up by the arch specific
970 	 * signal handlers
971 	 *
972 	 * This is actually a test for:
973 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
974 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
975 	 *
976 	 * but is faster than a bunch of ||
977 	 */
978 	if (unlikely(return_code <= -ERESTARTSYS) &&
979 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
980 	    (return_code != -ENOIOCTLCMD))
981 		context->return_code = -EINTR;
982 	else
983 		context->return_code  = return_code;
984 
985 	if (context->in_syscall && !context->dummy) {
986 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
987 		audit_filter_inodes(tsk, context);
988 	}
989 
990 	tsk->audit_context = NULL;
991 	return context;
992 }
993 
994 static inline void audit_free_names(struct audit_context *context)
995 {
996 	struct audit_names *n, *next;
997 
998 #if AUDIT_DEBUG == 2
999 	if (context->put_count + context->ino_count != context->name_count) {
1000 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1001 		       " name_count=%d put_count=%d"
1002 		       " ino_count=%d [NOT freeing]\n",
1003 		       __FILE__, __LINE__,
1004 		       context->serial, context->major, context->in_syscall,
1005 		       context->name_count, context->put_count,
1006 		       context->ino_count);
1007 		list_for_each_entry(n, &context->names_list, list) {
1008 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1009 			       n->name, n->name ?: "(null)");
1010 		}
1011 		dump_stack();
1012 		return;
1013 	}
1014 #endif
1015 #if AUDIT_DEBUG
1016 	context->put_count  = 0;
1017 	context->ino_count  = 0;
1018 #endif
1019 
1020 	list_for_each_entry_safe(n, next, &context->names_list, list) {
1021 		list_del(&n->list);
1022 		if (n->name && n->name_put)
1023 			__putname(n->name);
1024 		if (n->should_free)
1025 			kfree(n);
1026 	}
1027 	context->name_count = 0;
1028 	path_put(&context->pwd);
1029 	context->pwd.dentry = NULL;
1030 	context->pwd.mnt = NULL;
1031 }
1032 
1033 static inline void audit_free_aux(struct audit_context *context)
1034 {
1035 	struct audit_aux_data *aux;
1036 
1037 	while ((aux = context->aux)) {
1038 		context->aux = aux->next;
1039 		kfree(aux);
1040 	}
1041 	while ((aux = context->aux_pids)) {
1042 		context->aux_pids = aux->next;
1043 		kfree(aux);
1044 	}
1045 }
1046 
1047 static inline void audit_zero_context(struct audit_context *context,
1048 				      enum audit_state state)
1049 {
1050 	memset(context, 0, sizeof(*context));
1051 	context->state      = state;
1052 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1053 }
1054 
1055 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1056 {
1057 	struct audit_context *context;
1058 
1059 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1060 		return NULL;
1061 	audit_zero_context(context, state);
1062 	INIT_LIST_HEAD(&context->killed_trees);
1063 	INIT_LIST_HEAD(&context->names_list);
1064 	return context;
1065 }
1066 
1067 /**
1068  * audit_alloc - allocate an audit context block for a task
1069  * @tsk: task
1070  *
1071  * Filter on the task information and allocate a per-task audit context
1072  * if necessary.  Doing so turns on system call auditing for the
1073  * specified task.  This is called from copy_process, so no lock is
1074  * needed.
1075  */
1076 int audit_alloc(struct task_struct *tsk)
1077 {
1078 	struct audit_context *context;
1079 	enum audit_state     state;
1080 	char *key = NULL;
1081 
1082 	if (likely(!audit_ever_enabled))
1083 		return 0; /* Return if not auditing. */
1084 
1085 	state = audit_filter_task(tsk, &key);
1086 	if (state == AUDIT_DISABLED)
1087 		return 0;
1088 
1089 	if (!(context = audit_alloc_context(state))) {
1090 		kfree(key);
1091 		audit_log_lost("out of memory in audit_alloc");
1092 		return -ENOMEM;
1093 	}
1094 	context->filterkey = key;
1095 
1096 	tsk->audit_context  = context;
1097 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1098 	return 0;
1099 }
1100 
1101 static inline void audit_free_context(struct audit_context *context)
1102 {
1103 	struct audit_context *previous;
1104 	int		     count = 0;
1105 
1106 	do {
1107 		previous = context->previous;
1108 		if (previous || (count &&  count < 10)) {
1109 			++count;
1110 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1111 			       " freeing multiple contexts (%d)\n",
1112 			       context->serial, context->major,
1113 			       context->name_count, count);
1114 		}
1115 		audit_free_names(context);
1116 		unroll_tree_refs(context, NULL, 0);
1117 		free_tree_refs(context);
1118 		audit_free_aux(context);
1119 		kfree(context->filterkey);
1120 		kfree(context->sockaddr);
1121 		kfree(context);
1122 		context  = previous;
1123 	} while (context);
1124 	if (count >= 10)
1125 		printk(KERN_ERR "audit: freed %d contexts\n", count);
1126 }
1127 
1128 void audit_log_task_context(struct audit_buffer *ab)
1129 {
1130 	char *ctx = NULL;
1131 	unsigned len;
1132 	int error;
1133 	u32 sid;
1134 
1135 	security_task_getsecid(current, &sid);
1136 	if (!sid)
1137 		return;
1138 
1139 	error = security_secid_to_secctx(sid, &ctx, &len);
1140 	if (error) {
1141 		if (error != -EINVAL)
1142 			goto error_path;
1143 		return;
1144 	}
1145 
1146 	audit_log_format(ab, " subj=%s", ctx);
1147 	security_release_secctx(ctx, len);
1148 	return;
1149 
1150 error_path:
1151 	audit_panic("error in audit_log_task_context");
1152 	return;
1153 }
1154 
1155 EXPORT_SYMBOL(audit_log_task_context);
1156 
1157 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1158 {
1159 	char name[sizeof(tsk->comm)];
1160 	struct mm_struct *mm = tsk->mm;
1161 	struct vm_area_struct *vma;
1162 
1163 	/* tsk == current */
1164 
1165 	get_task_comm(name, tsk);
1166 	audit_log_format(ab, " comm=");
1167 	audit_log_untrustedstring(ab, name);
1168 
1169 	if (mm) {
1170 		down_read(&mm->mmap_sem);
1171 		vma = mm->mmap;
1172 		while (vma) {
1173 			if ((vma->vm_flags & VM_EXECUTABLE) &&
1174 			    vma->vm_file) {
1175 				audit_log_d_path(ab, " exe=",
1176 						 &vma->vm_file->f_path);
1177 				break;
1178 			}
1179 			vma = vma->vm_next;
1180 		}
1181 		up_read(&mm->mmap_sem);
1182 	}
1183 	audit_log_task_context(ab);
1184 }
1185 
1186 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1187 				 uid_t auid, uid_t uid, unsigned int sessionid,
1188 				 u32 sid, char *comm)
1189 {
1190 	struct audit_buffer *ab;
1191 	char *ctx = NULL;
1192 	u32 len;
1193 	int rc = 0;
1194 
1195 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1196 	if (!ab)
1197 		return rc;
1198 
1199 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1200 			 uid, sessionid);
1201 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1202 		audit_log_format(ab, " obj=(none)");
1203 		rc = 1;
1204 	} else {
1205 		audit_log_format(ab, " obj=%s", ctx);
1206 		security_release_secctx(ctx, len);
1207 	}
1208 	audit_log_format(ab, " ocomm=");
1209 	audit_log_untrustedstring(ab, comm);
1210 	audit_log_end(ab);
1211 
1212 	return rc;
1213 }
1214 
1215 /*
1216  * to_send and len_sent accounting are very loose estimates.  We aren't
1217  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1218  * within about 500 bytes (next page boundary)
1219  *
1220  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1221  * logging that a[%d]= was going to be 16 characters long we would be wasting
1222  * space in every audit message.  In one 7500 byte message we can log up to
1223  * about 1000 min size arguments.  That comes down to about 50% waste of space
1224  * if we didn't do the snprintf to find out how long arg_num_len was.
1225  */
1226 static int audit_log_single_execve_arg(struct audit_context *context,
1227 					struct audit_buffer **ab,
1228 					int arg_num,
1229 					size_t *len_sent,
1230 					const char __user *p,
1231 					char *buf)
1232 {
1233 	char arg_num_len_buf[12];
1234 	const char __user *tmp_p = p;
1235 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1236 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1237 	size_t len, len_left, to_send;
1238 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1239 	unsigned int i, has_cntl = 0, too_long = 0;
1240 	int ret;
1241 
1242 	/* strnlen_user includes the null we don't want to send */
1243 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1244 
1245 	/*
1246 	 * We just created this mm, if we can't find the strings
1247 	 * we just copied into it something is _very_ wrong. Similar
1248 	 * for strings that are too long, we should not have created
1249 	 * any.
1250 	 */
1251 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1252 		WARN_ON(1);
1253 		send_sig(SIGKILL, current, 0);
1254 		return -1;
1255 	}
1256 
1257 	/* walk the whole argument looking for non-ascii chars */
1258 	do {
1259 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1260 			to_send = MAX_EXECVE_AUDIT_LEN;
1261 		else
1262 			to_send = len_left;
1263 		ret = copy_from_user(buf, tmp_p, to_send);
1264 		/*
1265 		 * There is no reason for this copy to be short. We just
1266 		 * copied them here, and the mm hasn't been exposed to user-
1267 		 * space yet.
1268 		 */
1269 		if (ret) {
1270 			WARN_ON(1);
1271 			send_sig(SIGKILL, current, 0);
1272 			return -1;
1273 		}
1274 		buf[to_send] = '\0';
1275 		has_cntl = audit_string_contains_control(buf, to_send);
1276 		if (has_cntl) {
1277 			/*
1278 			 * hex messages get logged as 2 bytes, so we can only
1279 			 * send half as much in each message
1280 			 */
1281 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1282 			break;
1283 		}
1284 		len_left -= to_send;
1285 		tmp_p += to_send;
1286 	} while (len_left > 0);
1287 
1288 	len_left = len;
1289 
1290 	if (len > max_execve_audit_len)
1291 		too_long = 1;
1292 
1293 	/* rewalk the argument actually logging the message */
1294 	for (i = 0; len_left > 0; i++) {
1295 		int room_left;
1296 
1297 		if (len_left > max_execve_audit_len)
1298 			to_send = max_execve_audit_len;
1299 		else
1300 			to_send = len_left;
1301 
1302 		/* do we have space left to send this argument in this ab? */
1303 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1304 		if (has_cntl)
1305 			room_left -= (to_send * 2);
1306 		else
1307 			room_left -= to_send;
1308 		if (room_left < 0) {
1309 			*len_sent = 0;
1310 			audit_log_end(*ab);
1311 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1312 			if (!*ab)
1313 				return 0;
1314 		}
1315 
1316 		/*
1317 		 * first record needs to say how long the original string was
1318 		 * so we can be sure nothing was lost.
1319 		 */
1320 		if ((i == 0) && (too_long))
1321 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1322 					 has_cntl ? 2*len : len);
1323 
1324 		/*
1325 		 * normally arguments are small enough to fit and we already
1326 		 * filled buf above when we checked for control characters
1327 		 * so don't bother with another copy_from_user
1328 		 */
1329 		if (len >= max_execve_audit_len)
1330 			ret = copy_from_user(buf, p, to_send);
1331 		else
1332 			ret = 0;
1333 		if (ret) {
1334 			WARN_ON(1);
1335 			send_sig(SIGKILL, current, 0);
1336 			return -1;
1337 		}
1338 		buf[to_send] = '\0';
1339 
1340 		/* actually log it */
1341 		audit_log_format(*ab, " a%d", arg_num);
1342 		if (too_long)
1343 			audit_log_format(*ab, "[%d]", i);
1344 		audit_log_format(*ab, "=");
1345 		if (has_cntl)
1346 			audit_log_n_hex(*ab, buf, to_send);
1347 		else
1348 			audit_log_string(*ab, buf);
1349 
1350 		p += to_send;
1351 		len_left -= to_send;
1352 		*len_sent += arg_num_len;
1353 		if (has_cntl)
1354 			*len_sent += to_send * 2;
1355 		else
1356 			*len_sent += to_send;
1357 	}
1358 	/* include the null we didn't log */
1359 	return len + 1;
1360 }
1361 
1362 static void audit_log_execve_info(struct audit_context *context,
1363 				  struct audit_buffer **ab,
1364 				  struct audit_aux_data_execve *axi)
1365 {
1366 	int i, len;
1367 	size_t len_sent = 0;
1368 	const char __user *p;
1369 	char *buf;
1370 
1371 	if (axi->mm != current->mm)
1372 		return; /* execve failed, no additional info */
1373 
1374 	p = (const char __user *)axi->mm->arg_start;
1375 
1376 	audit_log_format(*ab, "argc=%d", axi->argc);
1377 
1378 	/*
1379 	 * we need some kernel buffer to hold the userspace args.  Just
1380 	 * allocate one big one rather than allocating one of the right size
1381 	 * for every single argument inside audit_log_single_execve_arg()
1382 	 * should be <8k allocation so should be pretty safe.
1383 	 */
1384 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1385 	if (!buf) {
1386 		audit_panic("out of memory for argv string\n");
1387 		return;
1388 	}
1389 
1390 	for (i = 0; i < axi->argc; i++) {
1391 		len = audit_log_single_execve_arg(context, ab, i,
1392 						  &len_sent, p, buf);
1393 		if (len <= 0)
1394 			break;
1395 		p += len;
1396 	}
1397 	kfree(buf);
1398 }
1399 
1400 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1401 {
1402 	int i;
1403 
1404 	audit_log_format(ab, " %s=", prefix);
1405 	CAP_FOR_EACH_U32(i) {
1406 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1407 	}
1408 }
1409 
1410 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1411 {
1412 	kernel_cap_t *perm = &name->fcap.permitted;
1413 	kernel_cap_t *inh = &name->fcap.inheritable;
1414 	int log = 0;
1415 
1416 	if (!cap_isclear(*perm)) {
1417 		audit_log_cap(ab, "cap_fp", perm);
1418 		log = 1;
1419 	}
1420 	if (!cap_isclear(*inh)) {
1421 		audit_log_cap(ab, "cap_fi", inh);
1422 		log = 1;
1423 	}
1424 
1425 	if (log)
1426 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1427 }
1428 
1429 static void show_special(struct audit_context *context, int *call_panic)
1430 {
1431 	struct audit_buffer *ab;
1432 	int i;
1433 
1434 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1435 	if (!ab)
1436 		return;
1437 
1438 	switch (context->type) {
1439 	case AUDIT_SOCKETCALL: {
1440 		int nargs = context->socketcall.nargs;
1441 		audit_log_format(ab, "nargs=%d", nargs);
1442 		for (i = 0; i < nargs; i++)
1443 			audit_log_format(ab, " a%d=%lx", i,
1444 				context->socketcall.args[i]);
1445 		break; }
1446 	case AUDIT_IPC: {
1447 		u32 osid = context->ipc.osid;
1448 
1449 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1450 			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1451 		if (osid) {
1452 			char *ctx = NULL;
1453 			u32 len;
1454 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1455 				audit_log_format(ab, " osid=%u", osid);
1456 				*call_panic = 1;
1457 			} else {
1458 				audit_log_format(ab, " obj=%s", ctx);
1459 				security_release_secctx(ctx, len);
1460 			}
1461 		}
1462 		if (context->ipc.has_perm) {
1463 			audit_log_end(ab);
1464 			ab = audit_log_start(context, GFP_KERNEL,
1465 					     AUDIT_IPC_SET_PERM);
1466 			audit_log_format(ab,
1467 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1468 				context->ipc.qbytes,
1469 				context->ipc.perm_uid,
1470 				context->ipc.perm_gid,
1471 				context->ipc.perm_mode);
1472 			if (!ab)
1473 				return;
1474 		}
1475 		break; }
1476 	case AUDIT_MQ_OPEN: {
1477 		audit_log_format(ab,
1478 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1479 			"mq_msgsize=%ld mq_curmsgs=%ld",
1480 			context->mq_open.oflag, context->mq_open.mode,
1481 			context->mq_open.attr.mq_flags,
1482 			context->mq_open.attr.mq_maxmsg,
1483 			context->mq_open.attr.mq_msgsize,
1484 			context->mq_open.attr.mq_curmsgs);
1485 		break; }
1486 	case AUDIT_MQ_SENDRECV: {
1487 		audit_log_format(ab,
1488 			"mqdes=%d msg_len=%zd msg_prio=%u "
1489 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1490 			context->mq_sendrecv.mqdes,
1491 			context->mq_sendrecv.msg_len,
1492 			context->mq_sendrecv.msg_prio,
1493 			context->mq_sendrecv.abs_timeout.tv_sec,
1494 			context->mq_sendrecv.abs_timeout.tv_nsec);
1495 		break; }
1496 	case AUDIT_MQ_NOTIFY: {
1497 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1498 				context->mq_notify.mqdes,
1499 				context->mq_notify.sigev_signo);
1500 		break; }
1501 	case AUDIT_MQ_GETSETATTR: {
1502 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1503 		audit_log_format(ab,
1504 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1505 			"mq_curmsgs=%ld ",
1506 			context->mq_getsetattr.mqdes,
1507 			attr->mq_flags, attr->mq_maxmsg,
1508 			attr->mq_msgsize, attr->mq_curmsgs);
1509 		break; }
1510 	case AUDIT_CAPSET: {
1511 		audit_log_format(ab, "pid=%d", context->capset.pid);
1512 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1513 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1514 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1515 		break; }
1516 	case AUDIT_MMAP: {
1517 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1518 				 context->mmap.flags);
1519 		break; }
1520 	}
1521 	audit_log_end(ab);
1522 }
1523 
1524 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1525 			   int record_num, int *call_panic)
1526 {
1527 	struct audit_buffer *ab;
1528 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1529 	if (!ab)
1530 		return; /* audit_panic has been called */
1531 
1532 	audit_log_format(ab, "item=%d", record_num);
1533 
1534 	if (n->name) {
1535 		switch (n->name_len) {
1536 		case AUDIT_NAME_FULL:
1537 			/* log the full path */
1538 			audit_log_format(ab, " name=");
1539 			audit_log_untrustedstring(ab, n->name);
1540 			break;
1541 		case 0:
1542 			/* name was specified as a relative path and the
1543 			 * directory component is the cwd */
1544 			audit_log_d_path(ab, " name=", &context->pwd);
1545 			break;
1546 		default:
1547 			/* log the name's directory component */
1548 			audit_log_format(ab, " name=");
1549 			audit_log_n_untrustedstring(ab, n->name,
1550 						    n->name_len);
1551 		}
1552 	} else
1553 		audit_log_format(ab, " name=(null)");
1554 
1555 	if (n->ino != (unsigned long)-1) {
1556 		audit_log_format(ab, " inode=%lu"
1557 				 " dev=%02x:%02x mode=%#ho"
1558 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1559 				 n->ino,
1560 				 MAJOR(n->dev),
1561 				 MINOR(n->dev),
1562 				 n->mode,
1563 				 n->uid,
1564 				 n->gid,
1565 				 MAJOR(n->rdev),
1566 				 MINOR(n->rdev));
1567 	}
1568 	if (n->osid != 0) {
1569 		char *ctx = NULL;
1570 		u32 len;
1571 		if (security_secid_to_secctx(
1572 			n->osid, &ctx, &len)) {
1573 			audit_log_format(ab, " osid=%u", n->osid);
1574 			*call_panic = 2;
1575 		} else {
1576 			audit_log_format(ab, " obj=%s", ctx);
1577 			security_release_secctx(ctx, len);
1578 		}
1579 	}
1580 
1581 	audit_log_fcaps(ab, n);
1582 
1583 	audit_log_end(ab);
1584 }
1585 
1586 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1587 {
1588 	const struct cred *cred;
1589 	int i, call_panic = 0;
1590 	struct audit_buffer *ab;
1591 	struct audit_aux_data *aux;
1592 	const char *tty;
1593 	struct audit_names *n;
1594 
1595 	/* tsk == current */
1596 	context->pid = tsk->pid;
1597 	if (!context->ppid)
1598 		context->ppid = sys_getppid();
1599 	cred = current_cred();
1600 	context->uid   = cred->uid;
1601 	context->gid   = cred->gid;
1602 	context->euid  = cred->euid;
1603 	context->suid  = cred->suid;
1604 	context->fsuid = cred->fsuid;
1605 	context->egid  = cred->egid;
1606 	context->sgid  = cred->sgid;
1607 	context->fsgid = cred->fsgid;
1608 	context->personality = tsk->personality;
1609 
1610 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1611 	if (!ab)
1612 		return;		/* audit_panic has been called */
1613 	audit_log_format(ab, "arch=%x syscall=%d",
1614 			 context->arch, context->major);
1615 	if (context->personality != PER_LINUX)
1616 		audit_log_format(ab, " per=%lx", context->personality);
1617 	if (context->return_valid)
1618 		audit_log_format(ab, " success=%s exit=%ld",
1619 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1620 				 context->return_code);
1621 
1622 	spin_lock_irq(&tsk->sighand->siglock);
1623 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1624 		tty = tsk->signal->tty->name;
1625 	else
1626 		tty = "(none)";
1627 	spin_unlock_irq(&tsk->sighand->siglock);
1628 
1629 	audit_log_format(ab,
1630 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1631 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1632 		  " euid=%u suid=%u fsuid=%u"
1633 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1634 		  context->argv[0],
1635 		  context->argv[1],
1636 		  context->argv[2],
1637 		  context->argv[3],
1638 		  context->name_count,
1639 		  context->ppid,
1640 		  context->pid,
1641 		  tsk->loginuid,
1642 		  context->uid,
1643 		  context->gid,
1644 		  context->euid, context->suid, context->fsuid,
1645 		  context->egid, context->sgid, context->fsgid, tty,
1646 		  tsk->sessionid);
1647 
1648 
1649 	audit_log_task_info(ab, tsk);
1650 	audit_log_key(ab, context->filterkey);
1651 	audit_log_end(ab);
1652 
1653 	for (aux = context->aux; aux; aux = aux->next) {
1654 
1655 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1656 		if (!ab)
1657 			continue; /* audit_panic has been called */
1658 
1659 		switch (aux->type) {
1660 
1661 		case AUDIT_EXECVE: {
1662 			struct audit_aux_data_execve *axi = (void *)aux;
1663 			audit_log_execve_info(context, &ab, axi);
1664 			break; }
1665 
1666 		case AUDIT_BPRM_FCAPS: {
1667 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1668 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1669 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1670 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1671 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1672 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1673 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1674 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1675 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1676 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1677 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1678 			break; }
1679 
1680 		}
1681 		audit_log_end(ab);
1682 	}
1683 
1684 	if (context->type)
1685 		show_special(context, &call_panic);
1686 
1687 	if (context->fds[0] >= 0) {
1688 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1689 		if (ab) {
1690 			audit_log_format(ab, "fd0=%d fd1=%d",
1691 					context->fds[0], context->fds[1]);
1692 			audit_log_end(ab);
1693 		}
1694 	}
1695 
1696 	if (context->sockaddr_len) {
1697 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1698 		if (ab) {
1699 			audit_log_format(ab, "saddr=");
1700 			audit_log_n_hex(ab, (void *)context->sockaddr,
1701 					context->sockaddr_len);
1702 			audit_log_end(ab);
1703 		}
1704 	}
1705 
1706 	for (aux = context->aux_pids; aux; aux = aux->next) {
1707 		struct audit_aux_data_pids *axs = (void *)aux;
1708 
1709 		for (i = 0; i < axs->pid_count; i++)
1710 			if (audit_log_pid_context(context, axs->target_pid[i],
1711 						  axs->target_auid[i],
1712 						  axs->target_uid[i],
1713 						  axs->target_sessionid[i],
1714 						  axs->target_sid[i],
1715 						  axs->target_comm[i]))
1716 				call_panic = 1;
1717 	}
1718 
1719 	if (context->target_pid &&
1720 	    audit_log_pid_context(context, context->target_pid,
1721 				  context->target_auid, context->target_uid,
1722 				  context->target_sessionid,
1723 				  context->target_sid, context->target_comm))
1724 			call_panic = 1;
1725 
1726 	if (context->pwd.dentry && context->pwd.mnt) {
1727 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1728 		if (ab) {
1729 			audit_log_d_path(ab, " cwd=", &context->pwd);
1730 			audit_log_end(ab);
1731 		}
1732 	}
1733 
1734 	i = 0;
1735 	list_for_each_entry(n, &context->names_list, list)
1736 		audit_log_name(context, n, i++, &call_panic);
1737 
1738 	/* Send end of event record to help user space know we are finished */
1739 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1740 	if (ab)
1741 		audit_log_end(ab);
1742 	if (call_panic)
1743 		audit_panic("error converting sid to string");
1744 }
1745 
1746 /**
1747  * audit_free - free a per-task audit context
1748  * @tsk: task whose audit context block to free
1749  *
1750  * Called from copy_process and do_exit
1751  */
1752 void __audit_free(struct task_struct *tsk)
1753 {
1754 	struct audit_context *context;
1755 
1756 	context = audit_get_context(tsk, 0, 0);
1757 	if (!context)
1758 		return;
1759 
1760 	/* Check for system calls that do not go through the exit
1761 	 * function (e.g., exit_group), then free context block.
1762 	 * We use GFP_ATOMIC here because we might be doing this
1763 	 * in the context of the idle thread */
1764 	/* that can happen only if we are called from do_exit() */
1765 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1766 		audit_log_exit(context, tsk);
1767 	if (!list_empty(&context->killed_trees))
1768 		audit_kill_trees(&context->killed_trees);
1769 
1770 	audit_free_context(context);
1771 }
1772 
1773 /**
1774  * audit_syscall_entry - fill in an audit record at syscall entry
1775  * @arch: architecture type
1776  * @major: major syscall type (function)
1777  * @a1: additional syscall register 1
1778  * @a2: additional syscall register 2
1779  * @a3: additional syscall register 3
1780  * @a4: additional syscall register 4
1781  *
1782  * Fill in audit context at syscall entry.  This only happens if the
1783  * audit context was created when the task was created and the state or
1784  * filters demand the audit context be built.  If the state from the
1785  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1786  * then the record will be written at syscall exit time (otherwise, it
1787  * will only be written if another part of the kernel requests that it
1788  * be written).
1789  */
1790 void __audit_syscall_entry(int arch, int major,
1791 			 unsigned long a1, unsigned long a2,
1792 			 unsigned long a3, unsigned long a4)
1793 {
1794 	struct task_struct *tsk = current;
1795 	struct audit_context *context = tsk->audit_context;
1796 	enum audit_state     state;
1797 
1798 	if (!context)
1799 		return;
1800 
1801 	/*
1802 	 * This happens only on certain architectures that make system
1803 	 * calls in kernel_thread via the entry.S interface, instead of
1804 	 * with direct calls.  (If you are porting to a new
1805 	 * architecture, hitting this condition can indicate that you
1806 	 * got the _exit/_leave calls backward in entry.S.)
1807 	 *
1808 	 * i386     no
1809 	 * x86_64   no
1810 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1811 	 *
1812 	 * This also happens with vm86 emulation in a non-nested manner
1813 	 * (entries without exits), so this case must be caught.
1814 	 */
1815 	if (context->in_syscall) {
1816 		struct audit_context *newctx;
1817 
1818 #if AUDIT_DEBUG
1819 		printk(KERN_ERR
1820 		       "audit(:%d) pid=%d in syscall=%d;"
1821 		       " entering syscall=%d\n",
1822 		       context->serial, tsk->pid, context->major, major);
1823 #endif
1824 		newctx = audit_alloc_context(context->state);
1825 		if (newctx) {
1826 			newctx->previous   = context;
1827 			context		   = newctx;
1828 			tsk->audit_context = newctx;
1829 		} else	{
1830 			/* If we can't alloc a new context, the best we
1831 			 * can do is to leak memory (any pending putname
1832 			 * will be lost).  The only other alternative is
1833 			 * to abandon auditing. */
1834 			audit_zero_context(context, context->state);
1835 		}
1836 	}
1837 	BUG_ON(context->in_syscall || context->name_count);
1838 
1839 	if (!audit_enabled)
1840 		return;
1841 
1842 	context->arch	    = arch;
1843 	context->major      = major;
1844 	context->argv[0]    = a1;
1845 	context->argv[1]    = a2;
1846 	context->argv[2]    = a3;
1847 	context->argv[3]    = a4;
1848 
1849 	state = context->state;
1850 	context->dummy = !audit_n_rules;
1851 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1852 		context->prio = 0;
1853 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1854 	}
1855 	if (state == AUDIT_DISABLED)
1856 		return;
1857 
1858 	context->serial     = 0;
1859 	context->ctime      = CURRENT_TIME;
1860 	context->in_syscall = 1;
1861 	context->current_state  = state;
1862 	context->ppid       = 0;
1863 }
1864 
1865 /**
1866  * audit_syscall_exit - deallocate audit context after a system call
1867  * @success: success value of the syscall
1868  * @return_code: return value of the syscall
1869  *
1870  * Tear down after system call.  If the audit context has been marked as
1871  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1872  * filtering, or because some other part of the kernel wrote an audit
1873  * message), then write out the syscall information.  In call cases,
1874  * free the names stored from getname().
1875  */
1876 void __audit_syscall_exit(int success, long return_code)
1877 {
1878 	struct task_struct *tsk = current;
1879 	struct audit_context *context;
1880 
1881 	if (success)
1882 		success = AUDITSC_SUCCESS;
1883 	else
1884 		success = AUDITSC_FAILURE;
1885 
1886 	context = audit_get_context(tsk, success, return_code);
1887 	if (!context)
1888 		return;
1889 
1890 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1891 		audit_log_exit(context, tsk);
1892 
1893 	context->in_syscall = 0;
1894 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1895 
1896 	if (!list_empty(&context->killed_trees))
1897 		audit_kill_trees(&context->killed_trees);
1898 
1899 	if (context->previous) {
1900 		struct audit_context *new_context = context->previous;
1901 		context->previous  = NULL;
1902 		audit_free_context(context);
1903 		tsk->audit_context = new_context;
1904 	} else {
1905 		audit_free_names(context);
1906 		unroll_tree_refs(context, NULL, 0);
1907 		audit_free_aux(context);
1908 		context->aux = NULL;
1909 		context->aux_pids = NULL;
1910 		context->target_pid = 0;
1911 		context->target_sid = 0;
1912 		context->sockaddr_len = 0;
1913 		context->type = 0;
1914 		context->fds[0] = -1;
1915 		if (context->state != AUDIT_RECORD_CONTEXT) {
1916 			kfree(context->filterkey);
1917 			context->filterkey = NULL;
1918 		}
1919 		tsk->audit_context = context;
1920 	}
1921 }
1922 
1923 static inline void handle_one(const struct inode *inode)
1924 {
1925 #ifdef CONFIG_AUDIT_TREE
1926 	struct audit_context *context;
1927 	struct audit_tree_refs *p;
1928 	struct audit_chunk *chunk;
1929 	int count;
1930 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1931 		return;
1932 	context = current->audit_context;
1933 	p = context->trees;
1934 	count = context->tree_count;
1935 	rcu_read_lock();
1936 	chunk = audit_tree_lookup(inode);
1937 	rcu_read_unlock();
1938 	if (!chunk)
1939 		return;
1940 	if (likely(put_tree_ref(context, chunk)))
1941 		return;
1942 	if (unlikely(!grow_tree_refs(context))) {
1943 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1944 		audit_set_auditable(context);
1945 		audit_put_chunk(chunk);
1946 		unroll_tree_refs(context, p, count);
1947 		return;
1948 	}
1949 	put_tree_ref(context, chunk);
1950 #endif
1951 }
1952 
1953 static void handle_path(const struct dentry *dentry)
1954 {
1955 #ifdef CONFIG_AUDIT_TREE
1956 	struct audit_context *context;
1957 	struct audit_tree_refs *p;
1958 	const struct dentry *d, *parent;
1959 	struct audit_chunk *drop;
1960 	unsigned long seq;
1961 	int count;
1962 
1963 	context = current->audit_context;
1964 	p = context->trees;
1965 	count = context->tree_count;
1966 retry:
1967 	drop = NULL;
1968 	d = dentry;
1969 	rcu_read_lock();
1970 	seq = read_seqbegin(&rename_lock);
1971 	for(;;) {
1972 		struct inode *inode = d->d_inode;
1973 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1974 			struct audit_chunk *chunk;
1975 			chunk = audit_tree_lookup(inode);
1976 			if (chunk) {
1977 				if (unlikely(!put_tree_ref(context, chunk))) {
1978 					drop = chunk;
1979 					break;
1980 				}
1981 			}
1982 		}
1983 		parent = d->d_parent;
1984 		if (parent == d)
1985 			break;
1986 		d = parent;
1987 	}
1988 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1989 		rcu_read_unlock();
1990 		if (!drop) {
1991 			/* just a race with rename */
1992 			unroll_tree_refs(context, p, count);
1993 			goto retry;
1994 		}
1995 		audit_put_chunk(drop);
1996 		if (grow_tree_refs(context)) {
1997 			/* OK, got more space */
1998 			unroll_tree_refs(context, p, count);
1999 			goto retry;
2000 		}
2001 		/* too bad */
2002 		printk(KERN_WARNING
2003 			"out of memory, audit has lost a tree reference\n");
2004 		unroll_tree_refs(context, p, count);
2005 		audit_set_auditable(context);
2006 		return;
2007 	}
2008 	rcu_read_unlock();
2009 #endif
2010 }
2011 
2012 static struct audit_names *audit_alloc_name(struct audit_context *context)
2013 {
2014 	struct audit_names *aname;
2015 
2016 	if (context->name_count < AUDIT_NAMES) {
2017 		aname = &context->preallocated_names[context->name_count];
2018 		memset(aname, 0, sizeof(*aname));
2019 	} else {
2020 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2021 		if (!aname)
2022 			return NULL;
2023 		aname->should_free = true;
2024 	}
2025 
2026 	aname->ino = (unsigned long)-1;
2027 	list_add_tail(&aname->list, &context->names_list);
2028 
2029 	context->name_count++;
2030 #if AUDIT_DEBUG
2031 	context->ino_count++;
2032 #endif
2033 	return aname;
2034 }
2035 
2036 /**
2037  * audit_getname - add a name to the list
2038  * @name: name to add
2039  *
2040  * Add a name to the list of audit names for this context.
2041  * Called from fs/namei.c:getname().
2042  */
2043 void __audit_getname(const char *name)
2044 {
2045 	struct audit_context *context = current->audit_context;
2046 	struct audit_names *n;
2047 
2048 	if (!context->in_syscall) {
2049 #if AUDIT_DEBUG == 2
2050 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2051 		       __FILE__, __LINE__, context->serial, name);
2052 		dump_stack();
2053 #endif
2054 		return;
2055 	}
2056 
2057 	n = audit_alloc_name(context);
2058 	if (!n)
2059 		return;
2060 
2061 	n->name = name;
2062 	n->name_len = AUDIT_NAME_FULL;
2063 	n->name_put = true;
2064 
2065 	if (!context->pwd.dentry)
2066 		get_fs_pwd(current->fs, &context->pwd);
2067 }
2068 
2069 /* audit_putname - intercept a putname request
2070  * @name: name to intercept and delay for putname
2071  *
2072  * If we have stored the name from getname in the audit context,
2073  * then we delay the putname until syscall exit.
2074  * Called from include/linux/fs.h:putname().
2075  */
2076 void audit_putname(const char *name)
2077 {
2078 	struct audit_context *context = current->audit_context;
2079 
2080 	BUG_ON(!context);
2081 	if (!context->in_syscall) {
2082 #if AUDIT_DEBUG == 2
2083 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2084 		       __FILE__, __LINE__, context->serial, name);
2085 		if (context->name_count) {
2086 			struct audit_names *n;
2087 			int i;
2088 
2089 			list_for_each_entry(n, &context->names_list, list)
2090 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2091 				       n->name, n->name ?: "(null)");
2092 			}
2093 #endif
2094 		__putname(name);
2095 	}
2096 #if AUDIT_DEBUG
2097 	else {
2098 		++context->put_count;
2099 		if (context->put_count > context->name_count) {
2100 			printk(KERN_ERR "%s:%d(:%d): major=%d"
2101 			       " in_syscall=%d putname(%p) name_count=%d"
2102 			       " put_count=%d\n",
2103 			       __FILE__, __LINE__,
2104 			       context->serial, context->major,
2105 			       context->in_syscall, name, context->name_count,
2106 			       context->put_count);
2107 			dump_stack();
2108 		}
2109 	}
2110 #endif
2111 }
2112 
2113 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2114 {
2115 	struct cpu_vfs_cap_data caps;
2116 	int rc;
2117 
2118 	if (!dentry)
2119 		return 0;
2120 
2121 	rc = get_vfs_caps_from_disk(dentry, &caps);
2122 	if (rc)
2123 		return rc;
2124 
2125 	name->fcap.permitted = caps.permitted;
2126 	name->fcap.inheritable = caps.inheritable;
2127 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2128 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2129 
2130 	return 0;
2131 }
2132 
2133 
2134 /* Copy inode data into an audit_names. */
2135 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2136 			     const struct inode *inode)
2137 {
2138 	name->ino   = inode->i_ino;
2139 	name->dev   = inode->i_sb->s_dev;
2140 	name->mode  = inode->i_mode;
2141 	name->uid   = inode->i_uid;
2142 	name->gid   = inode->i_gid;
2143 	name->rdev  = inode->i_rdev;
2144 	security_inode_getsecid(inode, &name->osid);
2145 	audit_copy_fcaps(name, dentry);
2146 }
2147 
2148 /**
2149  * audit_inode - store the inode and device from a lookup
2150  * @name: name being audited
2151  * @dentry: dentry being audited
2152  *
2153  * Called from fs/namei.c:path_lookup().
2154  */
2155 void __audit_inode(const char *name, const struct dentry *dentry)
2156 {
2157 	struct audit_context *context = current->audit_context;
2158 	const struct inode *inode = dentry->d_inode;
2159 	struct audit_names *n;
2160 
2161 	if (!context->in_syscall)
2162 		return;
2163 
2164 	list_for_each_entry_reverse(n, &context->names_list, list) {
2165 		if (n->name && (n->name == name))
2166 			goto out;
2167 	}
2168 
2169 	/* unable to find the name from a previous getname() */
2170 	n = audit_alloc_name(context);
2171 	if (!n)
2172 		return;
2173 out:
2174 	handle_path(dentry);
2175 	audit_copy_inode(n, dentry, inode);
2176 }
2177 
2178 /**
2179  * audit_inode_child - collect inode info for created/removed objects
2180  * @dentry: dentry being audited
2181  * @parent: inode of dentry parent
2182  *
2183  * For syscalls that create or remove filesystem objects, audit_inode
2184  * can only collect information for the filesystem object's parent.
2185  * This call updates the audit context with the child's information.
2186  * Syscalls that create a new filesystem object must be hooked after
2187  * the object is created.  Syscalls that remove a filesystem object
2188  * must be hooked prior, in order to capture the target inode during
2189  * unsuccessful attempts.
2190  */
2191 void __audit_inode_child(const struct dentry *dentry,
2192 			 const struct inode *parent)
2193 {
2194 	struct audit_context *context = current->audit_context;
2195 	const char *found_parent = NULL, *found_child = NULL;
2196 	const struct inode *inode = dentry->d_inode;
2197 	const char *dname = dentry->d_name.name;
2198 	struct audit_names *n;
2199 	int dirlen = 0;
2200 
2201 	if (!context->in_syscall)
2202 		return;
2203 
2204 	if (inode)
2205 		handle_one(inode);
2206 
2207 	/* parent is more likely, look for it first */
2208 	list_for_each_entry(n, &context->names_list, list) {
2209 		if (!n->name)
2210 			continue;
2211 
2212 		if (n->ino == parent->i_ino &&
2213 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2214 			n->name_len = dirlen; /* update parent data in place */
2215 			found_parent = n->name;
2216 			goto add_names;
2217 		}
2218 	}
2219 
2220 	/* no matching parent, look for matching child */
2221 	list_for_each_entry(n, &context->names_list, list) {
2222 		if (!n->name)
2223 			continue;
2224 
2225 		/* strcmp() is the more likely scenario */
2226 		if (!strcmp(dname, n->name) ||
2227 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2228 			if (inode)
2229 				audit_copy_inode(n, NULL, inode);
2230 			else
2231 				n->ino = (unsigned long)-1;
2232 			found_child = n->name;
2233 			goto add_names;
2234 		}
2235 	}
2236 
2237 add_names:
2238 	if (!found_parent) {
2239 		n = audit_alloc_name(context);
2240 		if (!n)
2241 			return;
2242 		audit_copy_inode(n, NULL, parent);
2243 	}
2244 
2245 	if (!found_child) {
2246 		n = audit_alloc_name(context);
2247 		if (!n)
2248 			return;
2249 
2250 		/* Re-use the name belonging to the slot for a matching parent
2251 		 * directory. All names for this context are relinquished in
2252 		 * audit_free_names() */
2253 		if (found_parent) {
2254 			n->name = found_parent;
2255 			n->name_len = AUDIT_NAME_FULL;
2256 			/* don't call __putname() */
2257 			n->name_put = false;
2258 		}
2259 
2260 		if (inode)
2261 			audit_copy_inode(n, NULL, inode);
2262 	}
2263 }
2264 EXPORT_SYMBOL_GPL(__audit_inode_child);
2265 
2266 /**
2267  * auditsc_get_stamp - get local copies of audit_context values
2268  * @ctx: audit_context for the task
2269  * @t: timespec to store time recorded in the audit_context
2270  * @serial: serial value that is recorded in the audit_context
2271  *
2272  * Also sets the context as auditable.
2273  */
2274 int auditsc_get_stamp(struct audit_context *ctx,
2275 		       struct timespec *t, unsigned int *serial)
2276 {
2277 	if (!ctx->in_syscall)
2278 		return 0;
2279 	if (!ctx->serial)
2280 		ctx->serial = audit_serial();
2281 	t->tv_sec  = ctx->ctime.tv_sec;
2282 	t->tv_nsec = ctx->ctime.tv_nsec;
2283 	*serial    = ctx->serial;
2284 	if (!ctx->prio) {
2285 		ctx->prio = 1;
2286 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2287 	}
2288 	return 1;
2289 }
2290 
2291 /* global counter which is incremented every time something logs in */
2292 static atomic_t session_id = ATOMIC_INIT(0);
2293 
2294 /**
2295  * audit_set_loginuid - set current task's audit_context loginuid
2296  * @loginuid: loginuid value
2297  *
2298  * Returns 0.
2299  *
2300  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2301  */
2302 int audit_set_loginuid(uid_t loginuid)
2303 {
2304 	struct task_struct *task = current;
2305 	struct audit_context *context = task->audit_context;
2306 	unsigned int sessionid;
2307 
2308 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2309 	if (task->loginuid != -1)
2310 		return -EPERM;
2311 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312 	if (!capable(CAP_AUDIT_CONTROL))
2313 		return -EPERM;
2314 #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315 
2316 	sessionid = atomic_inc_return(&session_id);
2317 	if (context && context->in_syscall) {
2318 		struct audit_buffer *ab;
2319 
2320 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2321 		if (ab) {
2322 			audit_log_format(ab, "login pid=%d uid=%u "
2323 				"old auid=%u new auid=%u"
2324 				" old ses=%u new ses=%u",
2325 				task->pid, task_uid(task),
2326 				task->loginuid, loginuid,
2327 				task->sessionid, sessionid);
2328 			audit_log_end(ab);
2329 		}
2330 	}
2331 	task->sessionid = sessionid;
2332 	task->loginuid = loginuid;
2333 	return 0;
2334 }
2335 
2336 /**
2337  * __audit_mq_open - record audit data for a POSIX MQ open
2338  * @oflag: open flag
2339  * @mode: mode bits
2340  * @attr: queue attributes
2341  *
2342  */
2343 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2344 {
2345 	struct audit_context *context = current->audit_context;
2346 
2347 	if (attr)
2348 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2349 	else
2350 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2351 
2352 	context->mq_open.oflag = oflag;
2353 	context->mq_open.mode = mode;
2354 
2355 	context->type = AUDIT_MQ_OPEN;
2356 }
2357 
2358 /**
2359  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2360  * @mqdes: MQ descriptor
2361  * @msg_len: Message length
2362  * @msg_prio: Message priority
2363  * @abs_timeout: Message timeout in absolute time
2364  *
2365  */
2366 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2367 			const struct timespec *abs_timeout)
2368 {
2369 	struct audit_context *context = current->audit_context;
2370 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2371 
2372 	if (abs_timeout)
2373 		memcpy(p, abs_timeout, sizeof(struct timespec));
2374 	else
2375 		memset(p, 0, sizeof(struct timespec));
2376 
2377 	context->mq_sendrecv.mqdes = mqdes;
2378 	context->mq_sendrecv.msg_len = msg_len;
2379 	context->mq_sendrecv.msg_prio = msg_prio;
2380 
2381 	context->type = AUDIT_MQ_SENDRECV;
2382 }
2383 
2384 /**
2385  * __audit_mq_notify - record audit data for a POSIX MQ notify
2386  * @mqdes: MQ descriptor
2387  * @notification: Notification event
2388  *
2389  */
2390 
2391 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2392 {
2393 	struct audit_context *context = current->audit_context;
2394 
2395 	if (notification)
2396 		context->mq_notify.sigev_signo = notification->sigev_signo;
2397 	else
2398 		context->mq_notify.sigev_signo = 0;
2399 
2400 	context->mq_notify.mqdes = mqdes;
2401 	context->type = AUDIT_MQ_NOTIFY;
2402 }
2403 
2404 /**
2405  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2406  * @mqdes: MQ descriptor
2407  * @mqstat: MQ flags
2408  *
2409  */
2410 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2411 {
2412 	struct audit_context *context = current->audit_context;
2413 	context->mq_getsetattr.mqdes = mqdes;
2414 	context->mq_getsetattr.mqstat = *mqstat;
2415 	context->type = AUDIT_MQ_GETSETATTR;
2416 }
2417 
2418 /**
2419  * audit_ipc_obj - record audit data for ipc object
2420  * @ipcp: ipc permissions
2421  *
2422  */
2423 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2424 {
2425 	struct audit_context *context = current->audit_context;
2426 	context->ipc.uid = ipcp->uid;
2427 	context->ipc.gid = ipcp->gid;
2428 	context->ipc.mode = ipcp->mode;
2429 	context->ipc.has_perm = 0;
2430 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2431 	context->type = AUDIT_IPC;
2432 }
2433 
2434 /**
2435  * audit_ipc_set_perm - record audit data for new ipc permissions
2436  * @qbytes: msgq bytes
2437  * @uid: msgq user id
2438  * @gid: msgq group id
2439  * @mode: msgq mode (permissions)
2440  *
2441  * Called only after audit_ipc_obj().
2442  */
2443 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2444 {
2445 	struct audit_context *context = current->audit_context;
2446 
2447 	context->ipc.qbytes = qbytes;
2448 	context->ipc.perm_uid = uid;
2449 	context->ipc.perm_gid = gid;
2450 	context->ipc.perm_mode = mode;
2451 	context->ipc.has_perm = 1;
2452 }
2453 
2454 int __audit_bprm(struct linux_binprm *bprm)
2455 {
2456 	struct audit_aux_data_execve *ax;
2457 	struct audit_context *context = current->audit_context;
2458 
2459 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2460 	if (!ax)
2461 		return -ENOMEM;
2462 
2463 	ax->argc = bprm->argc;
2464 	ax->envc = bprm->envc;
2465 	ax->mm = bprm->mm;
2466 	ax->d.type = AUDIT_EXECVE;
2467 	ax->d.next = context->aux;
2468 	context->aux = (void *)ax;
2469 	return 0;
2470 }
2471 
2472 
2473 /**
2474  * audit_socketcall - record audit data for sys_socketcall
2475  * @nargs: number of args
2476  * @args: args array
2477  *
2478  */
2479 void __audit_socketcall(int nargs, unsigned long *args)
2480 {
2481 	struct audit_context *context = current->audit_context;
2482 
2483 	context->type = AUDIT_SOCKETCALL;
2484 	context->socketcall.nargs = nargs;
2485 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2486 }
2487 
2488 /**
2489  * __audit_fd_pair - record audit data for pipe and socketpair
2490  * @fd1: the first file descriptor
2491  * @fd2: the second file descriptor
2492  *
2493  */
2494 void __audit_fd_pair(int fd1, int fd2)
2495 {
2496 	struct audit_context *context = current->audit_context;
2497 	context->fds[0] = fd1;
2498 	context->fds[1] = fd2;
2499 }
2500 
2501 /**
2502  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2503  * @len: data length in user space
2504  * @a: data address in kernel space
2505  *
2506  * Returns 0 for success or NULL context or < 0 on error.
2507  */
2508 int __audit_sockaddr(int len, void *a)
2509 {
2510 	struct audit_context *context = current->audit_context;
2511 
2512 	if (!context->sockaddr) {
2513 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2514 		if (!p)
2515 			return -ENOMEM;
2516 		context->sockaddr = p;
2517 	}
2518 
2519 	context->sockaddr_len = len;
2520 	memcpy(context->sockaddr, a, len);
2521 	return 0;
2522 }
2523 
2524 void __audit_ptrace(struct task_struct *t)
2525 {
2526 	struct audit_context *context = current->audit_context;
2527 
2528 	context->target_pid = t->pid;
2529 	context->target_auid = audit_get_loginuid(t);
2530 	context->target_uid = task_uid(t);
2531 	context->target_sessionid = audit_get_sessionid(t);
2532 	security_task_getsecid(t, &context->target_sid);
2533 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2534 }
2535 
2536 /**
2537  * audit_signal_info - record signal info for shutting down audit subsystem
2538  * @sig: signal value
2539  * @t: task being signaled
2540  *
2541  * If the audit subsystem is being terminated, record the task (pid)
2542  * and uid that is doing that.
2543  */
2544 int __audit_signal_info(int sig, struct task_struct *t)
2545 {
2546 	struct audit_aux_data_pids *axp;
2547 	struct task_struct *tsk = current;
2548 	struct audit_context *ctx = tsk->audit_context;
2549 	uid_t uid = current_uid(), t_uid = task_uid(t);
2550 
2551 	if (audit_pid && t->tgid == audit_pid) {
2552 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2553 			audit_sig_pid = tsk->pid;
2554 			if (tsk->loginuid != -1)
2555 				audit_sig_uid = tsk->loginuid;
2556 			else
2557 				audit_sig_uid = uid;
2558 			security_task_getsecid(tsk, &audit_sig_sid);
2559 		}
2560 		if (!audit_signals || audit_dummy_context())
2561 			return 0;
2562 	}
2563 
2564 	/* optimize the common case by putting first signal recipient directly
2565 	 * in audit_context */
2566 	if (!ctx->target_pid) {
2567 		ctx->target_pid = t->tgid;
2568 		ctx->target_auid = audit_get_loginuid(t);
2569 		ctx->target_uid = t_uid;
2570 		ctx->target_sessionid = audit_get_sessionid(t);
2571 		security_task_getsecid(t, &ctx->target_sid);
2572 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2573 		return 0;
2574 	}
2575 
2576 	axp = (void *)ctx->aux_pids;
2577 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2578 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2579 		if (!axp)
2580 			return -ENOMEM;
2581 
2582 		axp->d.type = AUDIT_OBJ_PID;
2583 		axp->d.next = ctx->aux_pids;
2584 		ctx->aux_pids = (void *)axp;
2585 	}
2586 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2587 
2588 	axp->target_pid[axp->pid_count] = t->tgid;
2589 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2590 	axp->target_uid[axp->pid_count] = t_uid;
2591 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2592 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2593 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2594 	axp->pid_count++;
2595 
2596 	return 0;
2597 }
2598 
2599 /**
2600  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2601  * @bprm: pointer to the bprm being processed
2602  * @new: the proposed new credentials
2603  * @old: the old credentials
2604  *
2605  * Simply check if the proc already has the caps given by the file and if not
2606  * store the priv escalation info for later auditing at the end of the syscall
2607  *
2608  * -Eric
2609  */
2610 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2611 			   const struct cred *new, const struct cred *old)
2612 {
2613 	struct audit_aux_data_bprm_fcaps *ax;
2614 	struct audit_context *context = current->audit_context;
2615 	struct cpu_vfs_cap_data vcaps;
2616 	struct dentry *dentry;
2617 
2618 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2619 	if (!ax)
2620 		return -ENOMEM;
2621 
2622 	ax->d.type = AUDIT_BPRM_FCAPS;
2623 	ax->d.next = context->aux;
2624 	context->aux = (void *)ax;
2625 
2626 	dentry = dget(bprm->file->f_dentry);
2627 	get_vfs_caps_from_disk(dentry, &vcaps);
2628 	dput(dentry);
2629 
2630 	ax->fcap.permitted = vcaps.permitted;
2631 	ax->fcap.inheritable = vcaps.inheritable;
2632 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2633 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2634 
2635 	ax->old_pcap.permitted   = old->cap_permitted;
2636 	ax->old_pcap.inheritable = old->cap_inheritable;
2637 	ax->old_pcap.effective   = old->cap_effective;
2638 
2639 	ax->new_pcap.permitted   = new->cap_permitted;
2640 	ax->new_pcap.inheritable = new->cap_inheritable;
2641 	ax->new_pcap.effective   = new->cap_effective;
2642 	return 0;
2643 }
2644 
2645 /**
2646  * __audit_log_capset - store information about the arguments to the capset syscall
2647  * @pid: target pid of the capset call
2648  * @new: the new credentials
2649  * @old: the old (current) credentials
2650  *
2651  * Record the aguments userspace sent to sys_capset for later printing by the
2652  * audit system if applicable
2653  */
2654 void __audit_log_capset(pid_t pid,
2655 		       const struct cred *new, const struct cred *old)
2656 {
2657 	struct audit_context *context = current->audit_context;
2658 	context->capset.pid = pid;
2659 	context->capset.cap.effective   = new->cap_effective;
2660 	context->capset.cap.inheritable = new->cap_effective;
2661 	context->capset.cap.permitted   = new->cap_permitted;
2662 	context->type = AUDIT_CAPSET;
2663 }
2664 
2665 void __audit_mmap_fd(int fd, int flags)
2666 {
2667 	struct audit_context *context = current->audit_context;
2668 	context->mmap.fd = fd;
2669 	context->mmap.flags = flags;
2670 	context->type = AUDIT_MMAP;
2671 }
2672 
2673 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2674 {
2675 	uid_t auid, uid;
2676 	gid_t gid;
2677 	unsigned int sessionid;
2678 
2679 	auid = audit_get_loginuid(current);
2680 	sessionid = audit_get_sessionid(current);
2681 	current_uid_gid(&uid, &gid);
2682 
2683 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2684 			 auid, uid, gid, sessionid);
2685 	audit_log_task_context(ab);
2686 	audit_log_format(ab, " pid=%d comm=", current->pid);
2687 	audit_log_untrustedstring(ab, current->comm);
2688 	audit_log_format(ab, " reason=");
2689 	audit_log_string(ab, reason);
2690 	audit_log_format(ab, " sig=%ld", signr);
2691 }
2692 /**
2693  * audit_core_dumps - record information about processes that end abnormally
2694  * @signr: signal value
2695  *
2696  * If a process ends with a core dump, something fishy is going on and we
2697  * should record the event for investigation.
2698  */
2699 void audit_core_dumps(long signr)
2700 {
2701 	struct audit_buffer *ab;
2702 
2703 	if (!audit_enabled)
2704 		return;
2705 
2706 	if (signr == SIGQUIT)	/* don't care for those */
2707 		return;
2708 
2709 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 	audit_log_abend(ab, "memory violation", signr);
2711 	audit_log_end(ab);
2712 }
2713 
2714 void __audit_seccomp(unsigned long syscall, long signr, int code)
2715 {
2716 	struct audit_buffer *ab;
2717 
2718 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 	audit_log_abend(ab, "seccomp", signr);
2720 	audit_log_format(ab, " syscall=%ld", syscall);
2721 	audit_log_format(ab, " compat=%d", is_compat_task());
2722 	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 	audit_log_format(ab, " code=0x%x", code);
2724 	audit_log_end(ab);
2725 }
2726 
2727 struct list_head *audit_killed_trees(void)
2728 {
2729 	struct audit_context *ctx = current->audit_context;
2730 	if (likely(!ctx || !ctx->in_syscall))
2731 		return NULL;
2732 	return &ctx->killed_trees;
2733 }
2734