xref: /openbmc/linux/kernel/auditsc.c (revision 8fdff1dc)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71 
72 #include "audit.h"
73 
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78 
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80  * for saving names from getname().  If we get more names we will allocate
81  * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES	5
83 
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86 
87 /* number of audit rules */
88 int audit_n_rules;
89 
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
92 
93 struct audit_cap_data {
94 	kernel_cap_t		permitted;
95 	kernel_cap_t		inheritable;
96 	union {
97 		unsigned int	fE;		/* effective bit of a file capability */
98 		kernel_cap_t	effective;	/* effective set of a process */
99 	};
100 };
101 
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103  * we don't let putname() free it (instead we free all of the saved
104  * pointers at syscall exit time).
105  *
106  * Further, in fs/namei.c:path_lookup() we store the inode and device.
107  */
108 struct audit_names {
109 	struct list_head	list;		/* audit_context->names_list */
110 	struct filename	*name;
111 	unsigned long		ino;
112 	dev_t			dev;
113 	umode_t			mode;
114 	kuid_t			uid;
115 	kgid_t			gid;
116 	dev_t			rdev;
117 	u32			osid;
118 	struct audit_cap_data	 fcap;
119 	unsigned int		fcap_ver;
120 	int			name_len;	/* number of name's characters to log */
121 	unsigned char		type;		/* record type */
122 	bool			name_put;	/* call __putname() for this name */
123 	/*
124 	 * This was an allocated audit_names and not from the array of
125 	 * names allocated in the task audit context.  Thus this name
126 	 * should be freed on syscall exit
127 	 */
128 	bool			should_free;
129 };
130 
131 struct audit_aux_data {
132 	struct audit_aux_data	*next;
133 	int			type;
134 };
135 
136 #define AUDIT_AUX_IPCPERM	0
137 
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS	16
140 
141 struct audit_aux_data_execve {
142 	struct audit_aux_data	d;
143 	int argc;
144 	int envc;
145 	struct mm_struct *mm;
146 };
147 
148 struct audit_aux_data_pids {
149 	struct audit_aux_data	d;
150 	pid_t			target_pid[AUDIT_AUX_PIDS];
151 	kuid_t			target_auid[AUDIT_AUX_PIDS];
152 	kuid_t			target_uid[AUDIT_AUX_PIDS];
153 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
154 	u32			target_sid[AUDIT_AUX_PIDS];
155 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 	int			pid_count;
157 };
158 
159 struct audit_aux_data_bprm_fcaps {
160 	struct audit_aux_data	d;
161 	struct audit_cap_data	fcap;
162 	unsigned int		fcap_ver;
163 	struct audit_cap_data	old_pcap;
164 	struct audit_cap_data	new_pcap;
165 };
166 
167 struct audit_aux_data_capset {
168 	struct audit_aux_data	d;
169 	pid_t			pid;
170 	struct audit_cap_data	cap;
171 };
172 
173 struct audit_tree_refs {
174 	struct audit_tree_refs *next;
175 	struct audit_chunk *c[31];
176 };
177 
178 /* The per-task audit context. */
179 struct audit_context {
180 	int		    dummy;	/* must be the first element */
181 	int		    in_syscall;	/* 1 if task is in a syscall */
182 	enum audit_state    state, current_state;
183 	unsigned int	    serial;     /* serial number for record */
184 	int		    major;      /* syscall number */
185 	struct timespec	    ctime;      /* time of syscall entry */
186 	unsigned long	    argv[4];    /* syscall arguments */
187 	long		    return_code;/* syscall return code */
188 	u64		    prio;
189 	int		    return_valid; /* return code is valid */
190 	/*
191 	 * The names_list is the list of all audit_names collected during this
192 	 * syscall.  The first AUDIT_NAMES entries in the names_list will
193 	 * actually be from the preallocated_names array for performance
194 	 * reasons.  Except during allocation they should never be referenced
195 	 * through the preallocated_names array and should only be found/used
196 	 * by running the names_list.
197 	 */
198 	struct audit_names  preallocated_names[AUDIT_NAMES];
199 	int		    name_count; /* total records in names_list */
200 	struct list_head    names_list;	/* anchor for struct audit_names->list */
201 	char *		    filterkey;	/* key for rule that triggered record */
202 	struct path	    pwd;
203 	struct audit_aux_data *aux;
204 	struct audit_aux_data *aux_pids;
205 	struct sockaddr_storage *sockaddr;
206 	size_t sockaddr_len;
207 				/* Save things to print about task_struct */
208 	pid_t		    pid, ppid;
209 	kuid_t		    uid, euid, suid, fsuid;
210 	kgid_t		    gid, egid, sgid, fsgid;
211 	unsigned long	    personality;
212 	int		    arch;
213 
214 	pid_t		    target_pid;
215 	kuid_t		    target_auid;
216 	kuid_t		    target_uid;
217 	unsigned int	    target_sessionid;
218 	u32		    target_sid;
219 	char		    target_comm[TASK_COMM_LEN];
220 
221 	struct audit_tree_refs *trees, *first_trees;
222 	struct list_head killed_trees;
223 	int tree_count;
224 
225 	int type;
226 	union {
227 		struct {
228 			int nargs;
229 			long args[6];
230 		} socketcall;
231 		struct {
232 			kuid_t			uid;
233 			kgid_t			gid;
234 			umode_t			mode;
235 			u32			osid;
236 			int			has_perm;
237 			uid_t			perm_uid;
238 			gid_t			perm_gid;
239 			umode_t			perm_mode;
240 			unsigned long		qbytes;
241 		} ipc;
242 		struct {
243 			mqd_t			mqdes;
244 			struct mq_attr 		mqstat;
245 		} mq_getsetattr;
246 		struct {
247 			mqd_t			mqdes;
248 			int			sigev_signo;
249 		} mq_notify;
250 		struct {
251 			mqd_t			mqdes;
252 			size_t			msg_len;
253 			unsigned int		msg_prio;
254 			struct timespec		abs_timeout;
255 		} mq_sendrecv;
256 		struct {
257 			int			oflag;
258 			umode_t			mode;
259 			struct mq_attr		attr;
260 		} mq_open;
261 		struct {
262 			pid_t			pid;
263 			struct audit_cap_data	cap;
264 		} capset;
265 		struct {
266 			int			fd;
267 			int			flags;
268 		} mmap;
269 	};
270 	int fds[2];
271 
272 #if AUDIT_DEBUG
273 	int		    put_count;
274 	int		    ino_count;
275 #endif
276 };
277 
278 static inline int open_arg(int flags, int mask)
279 {
280 	int n = ACC_MODE(flags);
281 	if (flags & (O_TRUNC | O_CREAT))
282 		n |= AUDIT_PERM_WRITE;
283 	return n & mask;
284 }
285 
286 static int audit_match_perm(struct audit_context *ctx, int mask)
287 {
288 	unsigned n;
289 	if (unlikely(!ctx))
290 		return 0;
291 	n = ctx->major;
292 
293 	switch (audit_classify_syscall(ctx->arch, n)) {
294 	case 0:	/* native */
295 		if ((mask & AUDIT_PERM_WRITE) &&
296 		     audit_match_class(AUDIT_CLASS_WRITE, n))
297 			return 1;
298 		if ((mask & AUDIT_PERM_READ) &&
299 		     audit_match_class(AUDIT_CLASS_READ, n))
300 			return 1;
301 		if ((mask & AUDIT_PERM_ATTR) &&
302 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
303 			return 1;
304 		return 0;
305 	case 1: /* 32bit on biarch */
306 		if ((mask & AUDIT_PERM_WRITE) &&
307 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
308 			return 1;
309 		if ((mask & AUDIT_PERM_READ) &&
310 		     audit_match_class(AUDIT_CLASS_READ_32, n))
311 			return 1;
312 		if ((mask & AUDIT_PERM_ATTR) &&
313 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
314 			return 1;
315 		return 0;
316 	case 2: /* open */
317 		return mask & ACC_MODE(ctx->argv[1]);
318 	case 3: /* openat */
319 		return mask & ACC_MODE(ctx->argv[2]);
320 	case 4: /* socketcall */
321 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
322 	case 5: /* execve */
323 		return mask & AUDIT_PERM_EXEC;
324 	default:
325 		return 0;
326 	}
327 }
328 
329 static int audit_match_filetype(struct audit_context *ctx, int val)
330 {
331 	struct audit_names *n;
332 	umode_t mode = (umode_t)val;
333 
334 	if (unlikely(!ctx))
335 		return 0;
336 
337 	list_for_each_entry(n, &ctx->names_list, list) {
338 		if ((n->ino != -1) &&
339 		    ((n->mode & S_IFMT) == mode))
340 			return 1;
341 	}
342 
343 	return 0;
344 }
345 
346 /*
347  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348  * ->first_trees points to its beginning, ->trees - to the current end of data.
349  * ->tree_count is the number of free entries in array pointed to by ->trees.
350  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
352  * it's going to remain 1-element for almost any setup) until we free context itself.
353  * References in it _are_ dropped - at the same time we free/drop aux stuff.
354  */
355 
356 #ifdef CONFIG_AUDIT_TREE
357 static void audit_set_auditable(struct audit_context *ctx)
358 {
359 	if (!ctx->prio) {
360 		ctx->prio = 1;
361 		ctx->current_state = AUDIT_RECORD_CONTEXT;
362 	}
363 }
364 
365 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
366 {
367 	struct audit_tree_refs *p = ctx->trees;
368 	int left = ctx->tree_count;
369 	if (likely(left)) {
370 		p->c[--left] = chunk;
371 		ctx->tree_count = left;
372 		return 1;
373 	}
374 	if (!p)
375 		return 0;
376 	p = p->next;
377 	if (p) {
378 		p->c[30] = chunk;
379 		ctx->trees = p;
380 		ctx->tree_count = 30;
381 		return 1;
382 	}
383 	return 0;
384 }
385 
386 static int grow_tree_refs(struct audit_context *ctx)
387 {
388 	struct audit_tree_refs *p = ctx->trees;
389 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
390 	if (!ctx->trees) {
391 		ctx->trees = p;
392 		return 0;
393 	}
394 	if (p)
395 		p->next = ctx->trees;
396 	else
397 		ctx->first_trees = ctx->trees;
398 	ctx->tree_count = 31;
399 	return 1;
400 }
401 #endif
402 
403 static void unroll_tree_refs(struct audit_context *ctx,
404 		      struct audit_tree_refs *p, int count)
405 {
406 #ifdef CONFIG_AUDIT_TREE
407 	struct audit_tree_refs *q;
408 	int n;
409 	if (!p) {
410 		/* we started with empty chain */
411 		p = ctx->first_trees;
412 		count = 31;
413 		/* if the very first allocation has failed, nothing to do */
414 		if (!p)
415 			return;
416 	}
417 	n = count;
418 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
419 		while (n--) {
420 			audit_put_chunk(q->c[n]);
421 			q->c[n] = NULL;
422 		}
423 	}
424 	while (n-- > ctx->tree_count) {
425 		audit_put_chunk(q->c[n]);
426 		q->c[n] = NULL;
427 	}
428 	ctx->trees = p;
429 	ctx->tree_count = count;
430 #endif
431 }
432 
433 static void free_tree_refs(struct audit_context *ctx)
434 {
435 	struct audit_tree_refs *p, *q;
436 	for (p = ctx->first_trees; p; p = q) {
437 		q = p->next;
438 		kfree(p);
439 	}
440 }
441 
442 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
443 {
444 #ifdef CONFIG_AUDIT_TREE
445 	struct audit_tree_refs *p;
446 	int n;
447 	if (!tree)
448 		return 0;
449 	/* full ones */
450 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
451 		for (n = 0; n < 31; n++)
452 			if (audit_tree_match(p->c[n], tree))
453 				return 1;
454 	}
455 	/* partial */
456 	if (p) {
457 		for (n = ctx->tree_count; n < 31; n++)
458 			if (audit_tree_match(p->c[n], tree))
459 				return 1;
460 	}
461 #endif
462 	return 0;
463 }
464 
465 static int audit_compare_uid(kuid_t uid,
466 			     struct audit_names *name,
467 			     struct audit_field *f,
468 			     struct audit_context *ctx)
469 {
470 	struct audit_names *n;
471 	int rc;
472 
473 	if (name) {
474 		rc = audit_uid_comparator(uid, f->op, name->uid);
475 		if (rc)
476 			return rc;
477 	}
478 
479 	if (ctx) {
480 		list_for_each_entry(n, &ctx->names_list, list) {
481 			rc = audit_uid_comparator(uid, f->op, n->uid);
482 			if (rc)
483 				return rc;
484 		}
485 	}
486 	return 0;
487 }
488 
489 static int audit_compare_gid(kgid_t gid,
490 			     struct audit_names *name,
491 			     struct audit_field *f,
492 			     struct audit_context *ctx)
493 {
494 	struct audit_names *n;
495 	int rc;
496 
497 	if (name) {
498 		rc = audit_gid_comparator(gid, f->op, name->gid);
499 		if (rc)
500 			return rc;
501 	}
502 
503 	if (ctx) {
504 		list_for_each_entry(n, &ctx->names_list, list) {
505 			rc = audit_gid_comparator(gid, f->op, n->gid);
506 			if (rc)
507 				return rc;
508 		}
509 	}
510 	return 0;
511 }
512 
513 static int audit_field_compare(struct task_struct *tsk,
514 			       const struct cred *cred,
515 			       struct audit_field *f,
516 			       struct audit_context *ctx,
517 			       struct audit_names *name)
518 {
519 	switch (f->val) {
520 	/* process to file object comparisons */
521 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
522 		return audit_compare_uid(cred->uid, name, f, ctx);
523 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
524 		return audit_compare_gid(cred->gid, name, f, ctx);
525 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
526 		return audit_compare_uid(cred->euid, name, f, ctx);
527 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
528 		return audit_compare_gid(cred->egid, name, f, ctx);
529 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 		return audit_compare_uid(tsk->loginuid, name, f, ctx);
531 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
532 		return audit_compare_uid(cred->suid, name, f, ctx);
533 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
534 		return audit_compare_gid(cred->sgid, name, f, ctx);
535 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
536 		return audit_compare_uid(cred->fsuid, name, f, ctx);
537 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
538 		return audit_compare_gid(cred->fsgid, name, f, ctx);
539 	/* uid comparisons */
540 	case AUDIT_COMPARE_UID_TO_AUID:
541 		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
542 	case AUDIT_COMPARE_UID_TO_EUID:
543 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
544 	case AUDIT_COMPARE_UID_TO_SUID:
545 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
546 	case AUDIT_COMPARE_UID_TO_FSUID:
547 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
548 	/* auid comparisons */
549 	case AUDIT_COMPARE_AUID_TO_EUID:
550 		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
551 	case AUDIT_COMPARE_AUID_TO_SUID:
552 		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
553 	case AUDIT_COMPARE_AUID_TO_FSUID:
554 		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
555 	/* euid comparisons */
556 	case AUDIT_COMPARE_EUID_TO_SUID:
557 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
558 	case AUDIT_COMPARE_EUID_TO_FSUID:
559 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
560 	/* suid comparisons */
561 	case AUDIT_COMPARE_SUID_TO_FSUID:
562 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
563 	/* gid comparisons */
564 	case AUDIT_COMPARE_GID_TO_EGID:
565 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
566 	case AUDIT_COMPARE_GID_TO_SGID:
567 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
568 	case AUDIT_COMPARE_GID_TO_FSGID:
569 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
570 	/* egid comparisons */
571 	case AUDIT_COMPARE_EGID_TO_SGID:
572 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
573 	case AUDIT_COMPARE_EGID_TO_FSGID:
574 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
575 	/* sgid comparison */
576 	case AUDIT_COMPARE_SGID_TO_FSGID:
577 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
578 	default:
579 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
580 		return 0;
581 	}
582 	return 0;
583 }
584 
585 /* Determine if any context name data matches a rule's watch data */
586 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
587  * otherwise.
588  *
589  * If task_creation is true, this is an explicit indication that we are
590  * filtering a task rule at task creation time.  This and tsk == current are
591  * the only situations where tsk->cred may be accessed without an rcu read lock.
592  */
593 static int audit_filter_rules(struct task_struct *tsk,
594 			      struct audit_krule *rule,
595 			      struct audit_context *ctx,
596 			      struct audit_names *name,
597 			      enum audit_state *state,
598 			      bool task_creation)
599 {
600 	const struct cred *cred;
601 	int i, need_sid = 1;
602 	u32 sid;
603 
604 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
605 
606 	for (i = 0; i < rule->field_count; i++) {
607 		struct audit_field *f = &rule->fields[i];
608 		struct audit_names *n;
609 		int result = 0;
610 
611 		switch (f->type) {
612 		case AUDIT_PID:
613 			result = audit_comparator(tsk->pid, f->op, f->val);
614 			break;
615 		case AUDIT_PPID:
616 			if (ctx) {
617 				if (!ctx->ppid)
618 					ctx->ppid = sys_getppid();
619 				result = audit_comparator(ctx->ppid, f->op, f->val);
620 			}
621 			break;
622 		case AUDIT_UID:
623 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
624 			break;
625 		case AUDIT_EUID:
626 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
627 			break;
628 		case AUDIT_SUID:
629 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
630 			break;
631 		case AUDIT_FSUID:
632 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
633 			break;
634 		case AUDIT_GID:
635 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
636 			break;
637 		case AUDIT_EGID:
638 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
639 			break;
640 		case AUDIT_SGID:
641 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
642 			break;
643 		case AUDIT_FSGID:
644 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
645 			break;
646 		case AUDIT_PERS:
647 			result = audit_comparator(tsk->personality, f->op, f->val);
648 			break;
649 		case AUDIT_ARCH:
650 			if (ctx)
651 				result = audit_comparator(ctx->arch, f->op, f->val);
652 			break;
653 
654 		case AUDIT_EXIT:
655 			if (ctx && ctx->return_valid)
656 				result = audit_comparator(ctx->return_code, f->op, f->val);
657 			break;
658 		case AUDIT_SUCCESS:
659 			if (ctx && ctx->return_valid) {
660 				if (f->val)
661 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
662 				else
663 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
664 			}
665 			break;
666 		case AUDIT_DEVMAJOR:
667 			if (name) {
668 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
669 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
670 					++result;
671 			} else if (ctx) {
672 				list_for_each_entry(n, &ctx->names_list, list) {
673 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
674 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
675 						++result;
676 						break;
677 					}
678 				}
679 			}
680 			break;
681 		case AUDIT_DEVMINOR:
682 			if (name) {
683 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
684 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
685 					++result;
686 			} else if (ctx) {
687 				list_for_each_entry(n, &ctx->names_list, list) {
688 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
689 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
690 						++result;
691 						break;
692 					}
693 				}
694 			}
695 			break;
696 		case AUDIT_INODE:
697 			if (name)
698 				result = (name->ino == f->val);
699 			else if (ctx) {
700 				list_for_each_entry(n, &ctx->names_list, list) {
701 					if (audit_comparator(n->ino, f->op, f->val)) {
702 						++result;
703 						break;
704 					}
705 				}
706 			}
707 			break;
708 		case AUDIT_OBJ_UID:
709 			if (name) {
710 				result = audit_uid_comparator(name->uid, f->op, f->uid);
711 			} else if (ctx) {
712 				list_for_each_entry(n, &ctx->names_list, list) {
713 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
714 						++result;
715 						break;
716 					}
717 				}
718 			}
719 			break;
720 		case AUDIT_OBJ_GID:
721 			if (name) {
722 				result = audit_gid_comparator(name->gid, f->op, f->gid);
723 			} else if (ctx) {
724 				list_for_each_entry(n, &ctx->names_list, list) {
725 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
726 						++result;
727 						break;
728 					}
729 				}
730 			}
731 			break;
732 		case AUDIT_WATCH:
733 			if (name)
734 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
735 			break;
736 		case AUDIT_DIR:
737 			if (ctx)
738 				result = match_tree_refs(ctx, rule->tree);
739 			break;
740 		case AUDIT_LOGINUID:
741 			result = 0;
742 			if (ctx)
743 				result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
744 			break;
745 		case AUDIT_SUBJ_USER:
746 		case AUDIT_SUBJ_ROLE:
747 		case AUDIT_SUBJ_TYPE:
748 		case AUDIT_SUBJ_SEN:
749 		case AUDIT_SUBJ_CLR:
750 			/* NOTE: this may return negative values indicating
751 			   a temporary error.  We simply treat this as a
752 			   match for now to avoid losing information that
753 			   may be wanted.   An error message will also be
754 			   logged upon error */
755 			if (f->lsm_rule) {
756 				if (need_sid) {
757 					security_task_getsecid(tsk, &sid);
758 					need_sid = 0;
759 				}
760 				result = security_audit_rule_match(sid, f->type,
761 				                                  f->op,
762 				                                  f->lsm_rule,
763 				                                  ctx);
764 			}
765 			break;
766 		case AUDIT_OBJ_USER:
767 		case AUDIT_OBJ_ROLE:
768 		case AUDIT_OBJ_TYPE:
769 		case AUDIT_OBJ_LEV_LOW:
770 		case AUDIT_OBJ_LEV_HIGH:
771 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
772 			   also applies here */
773 			if (f->lsm_rule) {
774 				/* Find files that match */
775 				if (name) {
776 					result = security_audit_rule_match(
777 					           name->osid, f->type, f->op,
778 					           f->lsm_rule, ctx);
779 				} else if (ctx) {
780 					list_for_each_entry(n, &ctx->names_list, list) {
781 						if (security_audit_rule_match(n->osid, f->type,
782 									      f->op, f->lsm_rule,
783 									      ctx)) {
784 							++result;
785 							break;
786 						}
787 					}
788 				}
789 				/* Find ipc objects that match */
790 				if (!ctx || ctx->type != AUDIT_IPC)
791 					break;
792 				if (security_audit_rule_match(ctx->ipc.osid,
793 							      f->type, f->op,
794 							      f->lsm_rule, ctx))
795 					++result;
796 			}
797 			break;
798 		case AUDIT_ARG0:
799 		case AUDIT_ARG1:
800 		case AUDIT_ARG2:
801 		case AUDIT_ARG3:
802 			if (ctx)
803 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
804 			break;
805 		case AUDIT_FILTERKEY:
806 			/* ignore this field for filtering */
807 			result = 1;
808 			break;
809 		case AUDIT_PERM:
810 			result = audit_match_perm(ctx, f->val);
811 			break;
812 		case AUDIT_FILETYPE:
813 			result = audit_match_filetype(ctx, f->val);
814 			break;
815 		case AUDIT_FIELD_COMPARE:
816 			result = audit_field_compare(tsk, cred, f, ctx, name);
817 			break;
818 		}
819 		if (!result)
820 			return 0;
821 	}
822 
823 	if (ctx) {
824 		if (rule->prio <= ctx->prio)
825 			return 0;
826 		if (rule->filterkey) {
827 			kfree(ctx->filterkey);
828 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
829 		}
830 		ctx->prio = rule->prio;
831 	}
832 	switch (rule->action) {
833 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
834 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
835 	}
836 	return 1;
837 }
838 
839 /* At process creation time, we can determine if system-call auditing is
840  * completely disabled for this task.  Since we only have the task
841  * structure at this point, we can only check uid and gid.
842  */
843 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
844 {
845 	struct audit_entry *e;
846 	enum audit_state   state;
847 
848 	rcu_read_lock();
849 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
850 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
851 				       &state, true)) {
852 			if (state == AUDIT_RECORD_CONTEXT)
853 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
854 			rcu_read_unlock();
855 			return state;
856 		}
857 	}
858 	rcu_read_unlock();
859 	return AUDIT_BUILD_CONTEXT;
860 }
861 
862 /* At syscall entry and exit time, this filter is called if the
863  * audit_state is not low enough that auditing cannot take place, but is
864  * also not high enough that we already know we have to write an audit
865  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
866  */
867 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
868 					     struct audit_context *ctx,
869 					     struct list_head *list)
870 {
871 	struct audit_entry *e;
872 	enum audit_state state;
873 
874 	if (audit_pid && tsk->tgid == audit_pid)
875 		return AUDIT_DISABLED;
876 
877 	rcu_read_lock();
878 	if (!list_empty(list)) {
879 		int word = AUDIT_WORD(ctx->major);
880 		int bit  = AUDIT_BIT(ctx->major);
881 
882 		list_for_each_entry_rcu(e, list, list) {
883 			if ((e->rule.mask[word] & bit) == bit &&
884 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
885 					       &state, false)) {
886 				rcu_read_unlock();
887 				ctx->current_state = state;
888 				return state;
889 			}
890 		}
891 	}
892 	rcu_read_unlock();
893 	return AUDIT_BUILD_CONTEXT;
894 }
895 
896 /*
897  * Given an audit_name check the inode hash table to see if they match.
898  * Called holding the rcu read lock to protect the use of audit_inode_hash
899  */
900 static int audit_filter_inode_name(struct task_struct *tsk,
901 				   struct audit_names *n,
902 				   struct audit_context *ctx) {
903 	int word, bit;
904 	int h = audit_hash_ino((u32)n->ino);
905 	struct list_head *list = &audit_inode_hash[h];
906 	struct audit_entry *e;
907 	enum audit_state state;
908 
909 	word = AUDIT_WORD(ctx->major);
910 	bit  = AUDIT_BIT(ctx->major);
911 
912 	if (list_empty(list))
913 		return 0;
914 
915 	list_for_each_entry_rcu(e, list, list) {
916 		if ((e->rule.mask[word] & bit) == bit &&
917 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
918 			ctx->current_state = state;
919 			return 1;
920 		}
921 	}
922 
923 	return 0;
924 }
925 
926 /* At syscall exit time, this filter is called if any audit_names have been
927  * collected during syscall processing.  We only check rules in sublists at hash
928  * buckets applicable to the inode numbers in audit_names.
929  * Regarding audit_state, same rules apply as for audit_filter_syscall().
930  */
931 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
932 {
933 	struct audit_names *n;
934 
935 	if (audit_pid && tsk->tgid == audit_pid)
936 		return;
937 
938 	rcu_read_lock();
939 
940 	list_for_each_entry(n, &ctx->names_list, list) {
941 		if (audit_filter_inode_name(tsk, n, ctx))
942 			break;
943 	}
944 	rcu_read_unlock();
945 }
946 
947 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
948 						      int return_valid,
949 						      long return_code)
950 {
951 	struct audit_context *context = tsk->audit_context;
952 
953 	if (!context)
954 		return NULL;
955 	context->return_valid = return_valid;
956 
957 	/*
958 	 * we need to fix up the return code in the audit logs if the actual
959 	 * return codes are later going to be fixed up by the arch specific
960 	 * signal handlers
961 	 *
962 	 * This is actually a test for:
963 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
964 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
965 	 *
966 	 * but is faster than a bunch of ||
967 	 */
968 	if (unlikely(return_code <= -ERESTARTSYS) &&
969 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
970 	    (return_code != -ENOIOCTLCMD))
971 		context->return_code = -EINTR;
972 	else
973 		context->return_code  = return_code;
974 
975 	if (context->in_syscall && !context->dummy) {
976 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
977 		audit_filter_inodes(tsk, context);
978 	}
979 
980 	tsk->audit_context = NULL;
981 	return context;
982 }
983 
984 static inline void audit_free_names(struct audit_context *context)
985 {
986 	struct audit_names *n, *next;
987 
988 #if AUDIT_DEBUG == 2
989 	if (context->put_count + context->ino_count != context->name_count) {
990 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
991 		       " name_count=%d put_count=%d"
992 		       " ino_count=%d [NOT freeing]\n",
993 		       __FILE__, __LINE__,
994 		       context->serial, context->major, context->in_syscall,
995 		       context->name_count, context->put_count,
996 		       context->ino_count);
997 		list_for_each_entry(n, &context->names_list, list) {
998 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
999 			       n->name, n->name->name ?: "(null)");
1000 		}
1001 		dump_stack();
1002 		return;
1003 	}
1004 #endif
1005 #if AUDIT_DEBUG
1006 	context->put_count  = 0;
1007 	context->ino_count  = 0;
1008 #endif
1009 
1010 	list_for_each_entry_safe(n, next, &context->names_list, list) {
1011 		list_del(&n->list);
1012 		if (n->name && n->name_put)
1013 			__putname(n->name);
1014 		if (n->should_free)
1015 			kfree(n);
1016 	}
1017 	context->name_count = 0;
1018 	path_put(&context->pwd);
1019 	context->pwd.dentry = NULL;
1020 	context->pwd.mnt = NULL;
1021 }
1022 
1023 static inline void audit_free_aux(struct audit_context *context)
1024 {
1025 	struct audit_aux_data *aux;
1026 
1027 	while ((aux = context->aux)) {
1028 		context->aux = aux->next;
1029 		kfree(aux);
1030 	}
1031 	while ((aux = context->aux_pids)) {
1032 		context->aux_pids = aux->next;
1033 		kfree(aux);
1034 	}
1035 }
1036 
1037 static inline void audit_zero_context(struct audit_context *context,
1038 				      enum audit_state state)
1039 {
1040 	memset(context, 0, sizeof(*context));
1041 	context->state      = state;
1042 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1043 }
1044 
1045 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1046 {
1047 	struct audit_context *context;
1048 
1049 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1050 		return NULL;
1051 	audit_zero_context(context, state);
1052 	INIT_LIST_HEAD(&context->killed_trees);
1053 	INIT_LIST_HEAD(&context->names_list);
1054 	return context;
1055 }
1056 
1057 /**
1058  * audit_alloc - allocate an audit context block for a task
1059  * @tsk: task
1060  *
1061  * Filter on the task information and allocate a per-task audit context
1062  * if necessary.  Doing so turns on system call auditing for the
1063  * specified task.  This is called from copy_process, so no lock is
1064  * needed.
1065  */
1066 int audit_alloc(struct task_struct *tsk)
1067 {
1068 	struct audit_context *context;
1069 	enum audit_state     state;
1070 	char *key = NULL;
1071 
1072 	if (likely(!audit_ever_enabled))
1073 		return 0; /* Return if not auditing. */
1074 
1075 	state = audit_filter_task(tsk, &key);
1076 	if (state == AUDIT_DISABLED)
1077 		return 0;
1078 
1079 	if (!(context = audit_alloc_context(state))) {
1080 		kfree(key);
1081 		audit_log_lost("out of memory in audit_alloc");
1082 		return -ENOMEM;
1083 	}
1084 	context->filterkey = key;
1085 
1086 	tsk->audit_context  = context;
1087 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1088 	return 0;
1089 }
1090 
1091 static inline void audit_free_context(struct audit_context *context)
1092 {
1093 	audit_free_names(context);
1094 	unroll_tree_refs(context, NULL, 0);
1095 	free_tree_refs(context);
1096 	audit_free_aux(context);
1097 	kfree(context->filterkey);
1098 	kfree(context->sockaddr);
1099 	kfree(context);
1100 }
1101 
1102 void audit_log_task_context(struct audit_buffer *ab)
1103 {
1104 	char *ctx = NULL;
1105 	unsigned len;
1106 	int error;
1107 	u32 sid;
1108 
1109 	security_task_getsecid(current, &sid);
1110 	if (!sid)
1111 		return;
1112 
1113 	error = security_secid_to_secctx(sid, &ctx, &len);
1114 	if (error) {
1115 		if (error != -EINVAL)
1116 			goto error_path;
1117 		return;
1118 	}
1119 
1120 	audit_log_format(ab, " subj=%s", ctx);
1121 	security_release_secctx(ctx, len);
1122 	return;
1123 
1124 error_path:
1125 	audit_panic("error in audit_log_task_context");
1126 	return;
1127 }
1128 
1129 EXPORT_SYMBOL(audit_log_task_context);
1130 
1131 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1132 {
1133 	const struct cred *cred;
1134 	char name[sizeof(tsk->comm)];
1135 	struct mm_struct *mm = tsk->mm;
1136 	char *tty;
1137 
1138 	if (!ab)
1139 		return;
1140 
1141 	/* tsk == current */
1142 	cred = current_cred();
1143 
1144 	spin_lock_irq(&tsk->sighand->siglock);
1145 	if (tsk->signal && tsk->signal->tty)
1146 		tty = tsk->signal->tty->name;
1147 	else
1148 		tty = "(none)";
1149 	spin_unlock_irq(&tsk->sighand->siglock);
1150 
1151 
1152 	audit_log_format(ab,
1153 			 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1154 			 " euid=%u suid=%u fsuid=%u"
1155 			 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1156 			 sys_getppid(),
1157 			 tsk->pid,
1158 			 from_kuid(&init_user_ns, tsk->loginuid),
1159 			 from_kuid(&init_user_ns, cred->uid),
1160 			 from_kgid(&init_user_ns, cred->gid),
1161 			 from_kuid(&init_user_ns, cred->euid),
1162 			 from_kuid(&init_user_ns, cred->suid),
1163 			 from_kuid(&init_user_ns, cred->fsuid),
1164 			 from_kgid(&init_user_ns, cred->egid),
1165 			 from_kgid(&init_user_ns, cred->sgid),
1166 			 from_kgid(&init_user_ns, cred->fsgid),
1167 			 tsk->sessionid, tty);
1168 
1169 	get_task_comm(name, tsk);
1170 	audit_log_format(ab, " comm=");
1171 	audit_log_untrustedstring(ab, name);
1172 
1173 	if (mm) {
1174 		down_read(&mm->mmap_sem);
1175 		if (mm->exe_file)
1176 			audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1177 		up_read(&mm->mmap_sem);
1178 	}
1179 	audit_log_task_context(ab);
1180 }
1181 
1182 EXPORT_SYMBOL(audit_log_task_info);
1183 
1184 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1185 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
1186 				 u32 sid, char *comm)
1187 {
1188 	struct audit_buffer *ab;
1189 	char *ctx = NULL;
1190 	u32 len;
1191 	int rc = 0;
1192 
1193 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1194 	if (!ab)
1195 		return rc;
1196 
1197 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1198 			 from_kuid(&init_user_ns, auid),
1199 			 from_kuid(&init_user_ns, uid), sessionid);
1200 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1201 		audit_log_format(ab, " obj=(none)");
1202 		rc = 1;
1203 	} else {
1204 		audit_log_format(ab, " obj=%s", ctx);
1205 		security_release_secctx(ctx, len);
1206 	}
1207 	audit_log_format(ab, " ocomm=");
1208 	audit_log_untrustedstring(ab, comm);
1209 	audit_log_end(ab);
1210 
1211 	return rc;
1212 }
1213 
1214 /*
1215  * to_send and len_sent accounting are very loose estimates.  We aren't
1216  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217  * within about 500 bytes (next page boundary)
1218  *
1219  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1220  * logging that a[%d]= was going to be 16 characters long we would be wasting
1221  * space in every audit message.  In one 7500 byte message we can log up to
1222  * about 1000 min size arguments.  That comes down to about 50% waste of space
1223  * if we didn't do the snprintf to find out how long arg_num_len was.
1224  */
1225 static int audit_log_single_execve_arg(struct audit_context *context,
1226 					struct audit_buffer **ab,
1227 					int arg_num,
1228 					size_t *len_sent,
1229 					const char __user *p,
1230 					char *buf)
1231 {
1232 	char arg_num_len_buf[12];
1233 	const char __user *tmp_p = p;
1234 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1235 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1236 	size_t len, len_left, to_send;
1237 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1238 	unsigned int i, has_cntl = 0, too_long = 0;
1239 	int ret;
1240 
1241 	/* strnlen_user includes the null we don't want to send */
1242 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1243 
1244 	/*
1245 	 * We just created this mm, if we can't find the strings
1246 	 * we just copied into it something is _very_ wrong. Similar
1247 	 * for strings that are too long, we should not have created
1248 	 * any.
1249 	 */
1250 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1251 		WARN_ON(1);
1252 		send_sig(SIGKILL, current, 0);
1253 		return -1;
1254 	}
1255 
1256 	/* walk the whole argument looking for non-ascii chars */
1257 	do {
1258 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1259 			to_send = MAX_EXECVE_AUDIT_LEN;
1260 		else
1261 			to_send = len_left;
1262 		ret = copy_from_user(buf, tmp_p, to_send);
1263 		/*
1264 		 * There is no reason for this copy to be short. We just
1265 		 * copied them here, and the mm hasn't been exposed to user-
1266 		 * space yet.
1267 		 */
1268 		if (ret) {
1269 			WARN_ON(1);
1270 			send_sig(SIGKILL, current, 0);
1271 			return -1;
1272 		}
1273 		buf[to_send] = '\0';
1274 		has_cntl = audit_string_contains_control(buf, to_send);
1275 		if (has_cntl) {
1276 			/*
1277 			 * hex messages get logged as 2 bytes, so we can only
1278 			 * send half as much in each message
1279 			 */
1280 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1281 			break;
1282 		}
1283 		len_left -= to_send;
1284 		tmp_p += to_send;
1285 	} while (len_left > 0);
1286 
1287 	len_left = len;
1288 
1289 	if (len > max_execve_audit_len)
1290 		too_long = 1;
1291 
1292 	/* rewalk the argument actually logging the message */
1293 	for (i = 0; len_left > 0; i++) {
1294 		int room_left;
1295 
1296 		if (len_left > max_execve_audit_len)
1297 			to_send = max_execve_audit_len;
1298 		else
1299 			to_send = len_left;
1300 
1301 		/* do we have space left to send this argument in this ab? */
1302 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1303 		if (has_cntl)
1304 			room_left -= (to_send * 2);
1305 		else
1306 			room_left -= to_send;
1307 		if (room_left < 0) {
1308 			*len_sent = 0;
1309 			audit_log_end(*ab);
1310 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1311 			if (!*ab)
1312 				return 0;
1313 		}
1314 
1315 		/*
1316 		 * first record needs to say how long the original string was
1317 		 * so we can be sure nothing was lost.
1318 		 */
1319 		if ((i == 0) && (too_long))
1320 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1321 					 has_cntl ? 2*len : len);
1322 
1323 		/*
1324 		 * normally arguments are small enough to fit and we already
1325 		 * filled buf above when we checked for control characters
1326 		 * so don't bother with another copy_from_user
1327 		 */
1328 		if (len >= max_execve_audit_len)
1329 			ret = copy_from_user(buf, p, to_send);
1330 		else
1331 			ret = 0;
1332 		if (ret) {
1333 			WARN_ON(1);
1334 			send_sig(SIGKILL, current, 0);
1335 			return -1;
1336 		}
1337 		buf[to_send] = '\0';
1338 
1339 		/* actually log it */
1340 		audit_log_format(*ab, " a%d", arg_num);
1341 		if (too_long)
1342 			audit_log_format(*ab, "[%d]", i);
1343 		audit_log_format(*ab, "=");
1344 		if (has_cntl)
1345 			audit_log_n_hex(*ab, buf, to_send);
1346 		else
1347 			audit_log_string(*ab, buf);
1348 
1349 		p += to_send;
1350 		len_left -= to_send;
1351 		*len_sent += arg_num_len;
1352 		if (has_cntl)
1353 			*len_sent += to_send * 2;
1354 		else
1355 			*len_sent += to_send;
1356 	}
1357 	/* include the null we didn't log */
1358 	return len + 1;
1359 }
1360 
1361 static void audit_log_execve_info(struct audit_context *context,
1362 				  struct audit_buffer **ab,
1363 				  struct audit_aux_data_execve *axi)
1364 {
1365 	int i, len;
1366 	size_t len_sent = 0;
1367 	const char __user *p;
1368 	char *buf;
1369 
1370 	if (axi->mm != current->mm)
1371 		return; /* execve failed, no additional info */
1372 
1373 	p = (const char __user *)axi->mm->arg_start;
1374 
1375 	audit_log_format(*ab, "argc=%d", axi->argc);
1376 
1377 	/*
1378 	 * we need some kernel buffer to hold the userspace args.  Just
1379 	 * allocate one big one rather than allocating one of the right size
1380 	 * for every single argument inside audit_log_single_execve_arg()
1381 	 * should be <8k allocation so should be pretty safe.
1382 	 */
1383 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1384 	if (!buf) {
1385 		audit_panic("out of memory for argv string\n");
1386 		return;
1387 	}
1388 
1389 	for (i = 0; i < axi->argc; i++) {
1390 		len = audit_log_single_execve_arg(context, ab, i,
1391 						  &len_sent, p, buf);
1392 		if (len <= 0)
1393 			break;
1394 		p += len;
1395 	}
1396 	kfree(buf);
1397 }
1398 
1399 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1400 {
1401 	int i;
1402 
1403 	audit_log_format(ab, " %s=", prefix);
1404 	CAP_FOR_EACH_U32(i) {
1405 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1406 	}
1407 }
1408 
1409 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1410 {
1411 	kernel_cap_t *perm = &name->fcap.permitted;
1412 	kernel_cap_t *inh = &name->fcap.inheritable;
1413 	int log = 0;
1414 
1415 	if (!cap_isclear(*perm)) {
1416 		audit_log_cap(ab, "cap_fp", perm);
1417 		log = 1;
1418 	}
1419 	if (!cap_isclear(*inh)) {
1420 		audit_log_cap(ab, "cap_fi", inh);
1421 		log = 1;
1422 	}
1423 
1424 	if (log)
1425 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1426 }
1427 
1428 static void show_special(struct audit_context *context, int *call_panic)
1429 {
1430 	struct audit_buffer *ab;
1431 	int i;
1432 
1433 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1434 	if (!ab)
1435 		return;
1436 
1437 	switch (context->type) {
1438 	case AUDIT_SOCKETCALL: {
1439 		int nargs = context->socketcall.nargs;
1440 		audit_log_format(ab, "nargs=%d", nargs);
1441 		for (i = 0; i < nargs; i++)
1442 			audit_log_format(ab, " a%d=%lx", i,
1443 				context->socketcall.args[i]);
1444 		break; }
1445 	case AUDIT_IPC: {
1446 		u32 osid = context->ipc.osid;
1447 
1448 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1449 				 from_kuid(&init_user_ns, context->ipc.uid),
1450 				 from_kgid(&init_user_ns, context->ipc.gid),
1451 				 context->ipc.mode);
1452 		if (osid) {
1453 			char *ctx = NULL;
1454 			u32 len;
1455 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1456 				audit_log_format(ab, " osid=%u", osid);
1457 				*call_panic = 1;
1458 			} else {
1459 				audit_log_format(ab, " obj=%s", ctx);
1460 				security_release_secctx(ctx, len);
1461 			}
1462 		}
1463 		if (context->ipc.has_perm) {
1464 			audit_log_end(ab);
1465 			ab = audit_log_start(context, GFP_KERNEL,
1466 					     AUDIT_IPC_SET_PERM);
1467 			audit_log_format(ab,
1468 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1469 				context->ipc.qbytes,
1470 				context->ipc.perm_uid,
1471 				context->ipc.perm_gid,
1472 				context->ipc.perm_mode);
1473 			if (!ab)
1474 				return;
1475 		}
1476 		break; }
1477 	case AUDIT_MQ_OPEN: {
1478 		audit_log_format(ab,
1479 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1480 			"mq_msgsize=%ld mq_curmsgs=%ld",
1481 			context->mq_open.oflag, context->mq_open.mode,
1482 			context->mq_open.attr.mq_flags,
1483 			context->mq_open.attr.mq_maxmsg,
1484 			context->mq_open.attr.mq_msgsize,
1485 			context->mq_open.attr.mq_curmsgs);
1486 		break; }
1487 	case AUDIT_MQ_SENDRECV: {
1488 		audit_log_format(ab,
1489 			"mqdes=%d msg_len=%zd msg_prio=%u "
1490 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1491 			context->mq_sendrecv.mqdes,
1492 			context->mq_sendrecv.msg_len,
1493 			context->mq_sendrecv.msg_prio,
1494 			context->mq_sendrecv.abs_timeout.tv_sec,
1495 			context->mq_sendrecv.abs_timeout.tv_nsec);
1496 		break; }
1497 	case AUDIT_MQ_NOTIFY: {
1498 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1499 				context->mq_notify.mqdes,
1500 				context->mq_notify.sigev_signo);
1501 		break; }
1502 	case AUDIT_MQ_GETSETATTR: {
1503 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1504 		audit_log_format(ab,
1505 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1506 			"mq_curmsgs=%ld ",
1507 			context->mq_getsetattr.mqdes,
1508 			attr->mq_flags, attr->mq_maxmsg,
1509 			attr->mq_msgsize, attr->mq_curmsgs);
1510 		break; }
1511 	case AUDIT_CAPSET: {
1512 		audit_log_format(ab, "pid=%d", context->capset.pid);
1513 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1514 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1515 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1516 		break; }
1517 	case AUDIT_MMAP: {
1518 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1519 				 context->mmap.flags);
1520 		break; }
1521 	}
1522 	audit_log_end(ab);
1523 }
1524 
1525 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1526 			   int record_num, int *call_panic)
1527 {
1528 	struct audit_buffer *ab;
1529 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1530 	if (!ab)
1531 		return; /* audit_panic has been called */
1532 
1533 	audit_log_format(ab, "item=%d", record_num);
1534 
1535 	if (n->name) {
1536 		switch (n->name_len) {
1537 		case AUDIT_NAME_FULL:
1538 			/* log the full path */
1539 			audit_log_format(ab, " name=");
1540 			audit_log_untrustedstring(ab, n->name->name);
1541 			break;
1542 		case 0:
1543 			/* name was specified as a relative path and the
1544 			 * directory component is the cwd */
1545 			audit_log_d_path(ab, " name=", &context->pwd);
1546 			break;
1547 		default:
1548 			/* log the name's directory component */
1549 			audit_log_format(ab, " name=");
1550 			audit_log_n_untrustedstring(ab, n->name->name,
1551 						    n->name_len);
1552 		}
1553 	} else
1554 		audit_log_format(ab, " name=(null)");
1555 
1556 	if (n->ino != (unsigned long)-1) {
1557 		audit_log_format(ab, " inode=%lu"
1558 				 " dev=%02x:%02x mode=%#ho"
1559 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1560 				 n->ino,
1561 				 MAJOR(n->dev),
1562 				 MINOR(n->dev),
1563 				 n->mode,
1564 				 from_kuid(&init_user_ns, n->uid),
1565 				 from_kgid(&init_user_ns, n->gid),
1566 				 MAJOR(n->rdev),
1567 				 MINOR(n->rdev));
1568 	}
1569 	if (n->osid != 0) {
1570 		char *ctx = NULL;
1571 		u32 len;
1572 		if (security_secid_to_secctx(
1573 			n->osid, &ctx, &len)) {
1574 			audit_log_format(ab, " osid=%u", n->osid);
1575 			*call_panic = 2;
1576 		} else {
1577 			audit_log_format(ab, " obj=%s", ctx);
1578 			security_release_secctx(ctx, len);
1579 		}
1580 	}
1581 
1582 	audit_log_fcaps(ab, n);
1583 
1584 	audit_log_end(ab);
1585 }
1586 
1587 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1588 {
1589 	int i, call_panic = 0;
1590 	struct audit_buffer *ab;
1591 	struct audit_aux_data *aux;
1592 	struct audit_names *n;
1593 
1594 	/* tsk == current */
1595 	context->personality = tsk->personality;
1596 
1597 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1598 	if (!ab)
1599 		return;		/* audit_panic has been called */
1600 	audit_log_format(ab, "arch=%x syscall=%d",
1601 			 context->arch, context->major);
1602 	if (context->personality != PER_LINUX)
1603 		audit_log_format(ab, " per=%lx", context->personality);
1604 	if (context->return_valid)
1605 		audit_log_format(ab, " success=%s exit=%ld",
1606 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1607 				 context->return_code);
1608 
1609 	audit_log_format(ab,
1610 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1611 			 context->argv[0],
1612 			 context->argv[1],
1613 			 context->argv[2],
1614 			 context->argv[3],
1615 			 context->name_count);
1616 
1617 	audit_log_task_info(ab, tsk);
1618 	audit_log_key(ab, context->filterkey);
1619 	audit_log_end(ab);
1620 
1621 	for (aux = context->aux; aux; aux = aux->next) {
1622 
1623 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1624 		if (!ab)
1625 			continue; /* audit_panic has been called */
1626 
1627 		switch (aux->type) {
1628 
1629 		case AUDIT_EXECVE: {
1630 			struct audit_aux_data_execve *axi = (void *)aux;
1631 			audit_log_execve_info(context, &ab, axi);
1632 			break; }
1633 
1634 		case AUDIT_BPRM_FCAPS: {
1635 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1636 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1637 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1638 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1639 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1640 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1641 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1642 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1643 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1644 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1645 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1646 			break; }
1647 
1648 		}
1649 		audit_log_end(ab);
1650 	}
1651 
1652 	if (context->type)
1653 		show_special(context, &call_panic);
1654 
1655 	if (context->fds[0] >= 0) {
1656 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1657 		if (ab) {
1658 			audit_log_format(ab, "fd0=%d fd1=%d",
1659 					context->fds[0], context->fds[1]);
1660 			audit_log_end(ab);
1661 		}
1662 	}
1663 
1664 	if (context->sockaddr_len) {
1665 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1666 		if (ab) {
1667 			audit_log_format(ab, "saddr=");
1668 			audit_log_n_hex(ab, (void *)context->sockaddr,
1669 					context->sockaddr_len);
1670 			audit_log_end(ab);
1671 		}
1672 	}
1673 
1674 	for (aux = context->aux_pids; aux; aux = aux->next) {
1675 		struct audit_aux_data_pids *axs = (void *)aux;
1676 
1677 		for (i = 0; i < axs->pid_count; i++)
1678 			if (audit_log_pid_context(context, axs->target_pid[i],
1679 						  axs->target_auid[i],
1680 						  axs->target_uid[i],
1681 						  axs->target_sessionid[i],
1682 						  axs->target_sid[i],
1683 						  axs->target_comm[i]))
1684 				call_panic = 1;
1685 	}
1686 
1687 	if (context->target_pid &&
1688 	    audit_log_pid_context(context, context->target_pid,
1689 				  context->target_auid, context->target_uid,
1690 				  context->target_sessionid,
1691 				  context->target_sid, context->target_comm))
1692 			call_panic = 1;
1693 
1694 	if (context->pwd.dentry && context->pwd.mnt) {
1695 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1696 		if (ab) {
1697 			audit_log_d_path(ab, " cwd=", &context->pwd);
1698 			audit_log_end(ab);
1699 		}
1700 	}
1701 
1702 	i = 0;
1703 	list_for_each_entry(n, &context->names_list, list)
1704 		audit_log_name(context, n, i++, &call_panic);
1705 
1706 	/* Send end of event record to help user space know we are finished */
1707 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1708 	if (ab)
1709 		audit_log_end(ab);
1710 	if (call_panic)
1711 		audit_panic("error converting sid to string");
1712 }
1713 
1714 /**
1715  * audit_free - free a per-task audit context
1716  * @tsk: task whose audit context block to free
1717  *
1718  * Called from copy_process and do_exit
1719  */
1720 void __audit_free(struct task_struct *tsk)
1721 {
1722 	struct audit_context *context;
1723 
1724 	context = audit_get_context(tsk, 0, 0);
1725 	if (!context)
1726 		return;
1727 
1728 	/* Check for system calls that do not go through the exit
1729 	 * function (e.g., exit_group), then free context block.
1730 	 * We use GFP_ATOMIC here because we might be doing this
1731 	 * in the context of the idle thread */
1732 	/* that can happen only if we are called from do_exit() */
1733 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1734 		audit_log_exit(context, tsk);
1735 	if (!list_empty(&context->killed_trees))
1736 		audit_kill_trees(&context->killed_trees);
1737 
1738 	audit_free_context(context);
1739 }
1740 
1741 /**
1742  * audit_syscall_entry - fill in an audit record at syscall entry
1743  * @arch: architecture type
1744  * @major: major syscall type (function)
1745  * @a1: additional syscall register 1
1746  * @a2: additional syscall register 2
1747  * @a3: additional syscall register 3
1748  * @a4: additional syscall register 4
1749  *
1750  * Fill in audit context at syscall entry.  This only happens if the
1751  * audit context was created when the task was created and the state or
1752  * filters demand the audit context be built.  If the state from the
1753  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1754  * then the record will be written at syscall exit time (otherwise, it
1755  * will only be written if another part of the kernel requests that it
1756  * be written).
1757  */
1758 void __audit_syscall_entry(int arch, int major,
1759 			 unsigned long a1, unsigned long a2,
1760 			 unsigned long a3, unsigned long a4)
1761 {
1762 	struct task_struct *tsk = current;
1763 	struct audit_context *context = tsk->audit_context;
1764 	enum audit_state     state;
1765 
1766 	if (!context)
1767 		return;
1768 
1769 	BUG_ON(context->in_syscall || context->name_count);
1770 
1771 	if (!audit_enabled)
1772 		return;
1773 
1774 	context->arch	    = arch;
1775 	context->major      = major;
1776 	context->argv[0]    = a1;
1777 	context->argv[1]    = a2;
1778 	context->argv[2]    = a3;
1779 	context->argv[3]    = a4;
1780 
1781 	state = context->state;
1782 	context->dummy = !audit_n_rules;
1783 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1784 		context->prio = 0;
1785 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1786 	}
1787 	if (state == AUDIT_DISABLED)
1788 		return;
1789 
1790 	context->serial     = 0;
1791 	context->ctime      = CURRENT_TIME;
1792 	context->in_syscall = 1;
1793 	context->current_state  = state;
1794 	context->ppid       = 0;
1795 }
1796 
1797 /**
1798  * audit_syscall_exit - deallocate audit context after a system call
1799  * @success: success value of the syscall
1800  * @return_code: return value of the syscall
1801  *
1802  * Tear down after system call.  If the audit context has been marked as
1803  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1804  * filtering, or because some other part of the kernel wrote an audit
1805  * message), then write out the syscall information.  In call cases,
1806  * free the names stored from getname().
1807  */
1808 void __audit_syscall_exit(int success, long return_code)
1809 {
1810 	struct task_struct *tsk = current;
1811 	struct audit_context *context;
1812 
1813 	if (success)
1814 		success = AUDITSC_SUCCESS;
1815 	else
1816 		success = AUDITSC_FAILURE;
1817 
1818 	context = audit_get_context(tsk, success, return_code);
1819 	if (!context)
1820 		return;
1821 
1822 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1823 		audit_log_exit(context, tsk);
1824 
1825 	context->in_syscall = 0;
1826 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1827 
1828 	if (!list_empty(&context->killed_trees))
1829 		audit_kill_trees(&context->killed_trees);
1830 
1831 	audit_free_names(context);
1832 	unroll_tree_refs(context, NULL, 0);
1833 	audit_free_aux(context);
1834 	context->aux = NULL;
1835 	context->aux_pids = NULL;
1836 	context->target_pid = 0;
1837 	context->target_sid = 0;
1838 	context->sockaddr_len = 0;
1839 	context->type = 0;
1840 	context->fds[0] = -1;
1841 	if (context->state != AUDIT_RECORD_CONTEXT) {
1842 		kfree(context->filterkey);
1843 		context->filterkey = NULL;
1844 	}
1845 	tsk->audit_context = context;
1846 }
1847 
1848 static inline void handle_one(const struct inode *inode)
1849 {
1850 #ifdef CONFIG_AUDIT_TREE
1851 	struct audit_context *context;
1852 	struct audit_tree_refs *p;
1853 	struct audit_chunk *chunk;
1854 	int count;
1855 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1856 		return;
1857 	context = current->audit_context;
1858 	p = context->trees;
1859 	count = context->tree_count;
1860 	rcu_read_lock();
1861 	chunk = audit_tree_lookup(inode);
1862 	rcu_read_unlock();
1863 	if (!chunk)
1864 		return;
1865 	if (likely(put_tree_ref(context, chunk)))
1866 		return;
1867 	if (unlikely(!grow_tree_refs(context))) {
1868 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1869 		audit_set_auditable(context);
1870 		audit_put_chunk(chunk);
1871 		unroll_tree_refs(context, p, count);
1872 		return;
1873 	}
1874 	put_tree_ref(context, chunk);
1875 #endif
1876 }
1877 
1878 static void handle_path(const struct dentry *dentry)
1879 {
1880 #ifdef CONFIG_AUDIT_TREE
1881 	struct audit_context *context;
1882 	struct audit_tree_refs *p;
1883 	const struct dentry *d, *parent;
1884 	struct audit_chunk *drop;
1885 	unsigned long seq;
1886 	int count;
1887 
1888 	context = current->audit_context;
1889 	p = context->trees;
1890 	count = context->tree_count;
1891 retry:
1892 	drop = NULL;
1893 	d = dentry;
1894 	rcu_read_lock();
1895 	seq = read_seqbegin(&rename_lock);
1896 	for(;;) {
1897 		struct inode *inode = d->d_inode;
1898 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1899 			struct audit_chunk *chunk;
1900 			chunk = audit_tree_lookup(inode);
1901 			if (chunk) {
1902 				if (unlikely(!put_tree_ref(context, chunk))) {
1903 					drop = chunk;
1904 					break;
1905 				}
1906 			}
1907 		}
1908 		parent = d->d_parent;
1909 		if (parent == d)
1910 			break;
1911 		d = parent;
1912 	}
1913 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1914 		rcu_read_unlock();
1915 		if (!drop) {
1916 			/* just a race with rename */
1917 			unroll_tree_refs(context, p, count);
1918 			goto retry;
1919 		}
1920 		audit_put_chunk(drop);
1921 		if (grow_tree_refs(context)) {
1922 			/* OK, got more space */
1923 			unroll_tree_refs(context, p, count);
1924 			goto retry;
1925 		}
1926 		/* too bad */
1927 		printk(KERN_WARNING
1928 			"out of memory, audit has lost a tree reference\n");
1929 		unroll_tree_refs(context, p, count);
1930 		audit_set_auditable(context);
1931 		return;
1932 	}
1933 	rcu_read_unlock();
1934 #endif
1935 }
1936 
1937 static struct audit_names *audit_alloc_name(struct audit_context *context,
1938 						unsigned char type)
1939 {
1940 	struct audit_names *aname;
1941 
1942 	if (context->name_count < AUDIT_NAMES) {
1943 		aname = &context->preallocated_names[context->name_count];
1944 		memset(aname, 0, sizeof(*aname));
1945 	} else {
1946 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1947 		if (!aname)
1948 			return NULL;
1949 		aname->should_free = true;
1950 	}
1951 
1952 	aname->ino = (unsigned long)-1;
1953 	aname->type = type;
1954 	list_add_tail(&aname->list, &context->names_list);
1955 
1956 	context->name_count++;
1957 #if AUDIT_DEBUG
1958 	context->ino_count++;
1959 #endif
1960 	return aname;
1961 }
1962 
1963 /**
1964  * audit_reusename - fill out filename with info from existing entry
1965  * @uptr: userland ptr to pathname
1966  *
1967  * Search the audit_names list for the current audit context. If there is an
1968  * existing entry with a matching "uptr" then return the filename
1969  * associated with that audit_name. If not, return NULL.
1970  */
1971 struct filename *
1972 __audit_reusename(const __user char *uptr)
1973 {
1974 	struct audit_context *context = current->audit_context;
1975 	struct audit_names *n;
1976 
1977 	list_for_each_entry(n, &context->names_list, list) {
1978 		if (!n->name)
1979 			continue;
1980 		if (n->name->uptr == uptr)
1981 			return n->name;
1982 	}
1983 	return NULL;
1984 }
1985 
1986 /**
1987  * audit_getname - add a name to the list
1988  * @name: name to add
1989  *
1990  * Add a name to the list of audit names for this context.
1991  * Called from fs/namei.c:getname().
1992  */
1993 void __audit_getname(struct filename *name)
1994 {
1995 	struct audit_context *context = current->audit_context;
1996 	struct audit_names *n;
1997 
1998 	if (!context->in_syscall) {
1999 #if AUDIT_DEBUG == 2
2000 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2001 		       __FILE__, __LINE__, context->serial, name);
2002 		dump_stack();
2003 #endif
2004 		return;
2005 	}
2006 
2007 #if AUDIT_DEBUG
2008 	/* The filename _must_ have a populated ->name */
2009 	BUG_ON(!name->name);
2010 #endif
2011 
2012 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2013 	if (!n)
2014 		return;
2015 
2016 	n->name = name;
2017 	n->name_len = AUDIT_NAME_FULL;
2018 	n->name_put = true;
2019 	name->aname = n;
2020 
2021 	if (!context->pwd.dentry)
2022 		get_fs_pwd(current->fs, &context->pwd);
2023 }
2024 
2025 /* audit_putname - intercept a putname request
2026  * @name: name to intercept and delay for putname
2027  *
2028  * If we have stored the name from getname in the audit context,
2029  * then we delay the putname until syscall exit.
2030  * Called from include/linux/fs.h:putname().
2031  */
2032 void audit_putname(struct filename *name)
2033 {
2034 	struct audit_context *context = current->audit_context;
2035 
2036 	BUG_ON(!context);
2037 	if (!context->in_syscall) {
2038 #if AUDIT_DEBUG == 2
2039 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2040 		       __FILE__, __LINE__, context->serial, name);
2041 		if (context->name_count) {
2042 			struct audit_names *n;
2043 			int i;
2044 
2045 			list_for_each_entry(n, &context->names_list, list)
2046 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2047 				       n->name, n->name->name ?: "(null)");
2048 			}
2049 #endif
2050 		__putname(name);
2051 	}
2052 #if AUDIT_DEBUG
2053 	else {
2054 		++context->put_count;
2055 		if (context->put_count > context->name_count) {
2056 			printk(KERN_ERR "%s:%d(:%d): major=%d"
2057 			       " in_syscall=%d putname(%p) name_count=%d"
2058 			       " put_count=%d\n",
2059 			       __FILE__, __LINE__,
2060 			       context->serial, context->major,
2061 			       context->in_syscall, name->name,
2062 			       context->name_count, context->put_count);
2063 			dump_stack();
2064 		}
2065 	}
2066 #endif
2067 }
2068 
2069 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2070 {
2071 	struct cpu_vfs_cap_data caps;
2072 	int rc;
2073 
2074 	if (!dentry)
2075 		return 0;
2076 
2077 	rc = get_vfs_caps_from_disk(dentry, &caps);
2078 	if (rc)
2079 		return rc;
2080 
2081 	name->fcap.permitted = caps.permitted;
2082 	name->fcap.inheritable = caps.inheritable;
2083 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2084 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2085 
2086 	return 0;
2087 }
2088 
2089 
2090 /* Copy inode data into an audit_names. */
2091 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2092 			     const struct inode *inode)
2093 {
2094 	name->ino   = inode->i_ino;
2095 	name->dev   = inode->i_sb->s_dev;
2096 	name->mode  = inode->i_mode;
2097 	name->uid   = inode->i_uid;
2098 	name->gid   = inode->i_gid;
2099 	name->rdev  = inode->i_rdev;
2100 	security_inode_getsecid(inode, &name->osid);
2101 	audit_copy_fcaps(name, dentry);
2102 }
2103 
2104 /**
2105  * __audit_inode - store the inode and device from a lookup
2106  * @name: name being audited
2107  * @dentry: dentry being audited
2108  * @parent: does this dentry represent the parent?
2109  */
2110 void __audit_inode(struct filename *name, const struct dentry *dentry,
2111 		   unsigned int parent)
2112 {
2113 	struct audit_context *context = current->audit_context;
2114 	const struct inode *inode = dentry->d_inode;
2115 	struct audit_names *n;
2116 
2117 	if (!context->in_syscall)
2118 		return;
2119 
2120 	if (!name)
2121 		goto out_alloc;
2122 
2123 #if AUDIT_DEBUG
2124 	/* The struct filename _must_ have a populated ->name */
2125 	BUG_ON(!name->name);
2126 #endif
2127 	/*
2128 	 * If we have a pointer to an audit_names entry already, then we can
2129 	 * just use it directly if the type is correct.
2130 	 */
2131 	n = name->aname;
2132 	if (n) {
2133 		if (parent) {
2134 			if (n->type == AUDIT_TYPE_PARENT ||
2135 			    n->type == AUDIT_TYPE_UNKNOWN)
2136 				goto out;
2137 		} else {
2138 			if (n->type != AUDIT_TYPE_PARENT)
2139 				goto out;
2140 		}
2141 	}
2142 
2143 	list_for_each_entry_reverse(n, &context->names_list, list) {
2144 		/* does the name pointer match? */
2145 		if (!n->name || n->name->name != name->name)
2146 			continue;
2147 
2148 		/* match the correct record type */
2149 		if (parent) {
2150 			if (n->type == AUDIT_TYPE_PARENT ||
2151 			    n->type == AUDIT_TYPE_UNKNOWN)
2152 				goto out;
2153 		} else {
2154 			if (n->type != AUDIT_TYPE_PARENT)
2155 				goto out;
2156 		}
2157 	}
2158 
2159 out_alloc:
2160 	/* unable to find the name from a previous getname(). Allocate a new
2161 	 * anonymous entry.
2162 	 */
2163 	n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2164 	if (!n)
2165 		return;
2166 out:
2167 	if (parent) {
2168 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2169 		n->type = AUDIT_TYPE_PARENT;
2170 	} else {
2171 		n->name_len = AUDIT_NAME_FULL;
2172 		n->type = AUDIT_TYPE_NORMAL;
2173 	}
2174 	handle_path(dentry);
2175 	audit_copy_inode(n, dentry, inode);
2176 }
2177 
2178 /**
2179  * __audit_inode_child - collect inode info for created/removed objects
2180  * @parent: inode of dentry parent
2181  * @dentry: dentry being audited
2182  * @type:   AUDIT_TYPE_* value that we're looking for
2183  *
2184  * For syscalls that create or remove filesystem objects, audit_inode
2185  * can only collect information for the filesystem object's parent.
2186  * This call updates the audit context with the child's information.
2187  * Syscalls that create a new filesystem object must be hooked after
2188  * the object is created.  Syscalls that remove a filesystem object
2189  * must be hooked prior, in order to capture the target inode during
2190  * unsuccessful attempts.
2191  */
2192 void __audit_inode_child(const struct inode *parent,
2193 			 const struct dentry *dentry,
2194 			 const unsigned char type)
2195 {
2196 	struct audit_context *context = current->audit_context;
2197 	const struct inode *inode = dentry->d_inode;
2198 	const char *dname = dentry->d_name.name;
2199 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2200 
2201 	if (!context->in_syscall)
2202 		return;
2203 
2204 	if (inode)
2205 		handle_one(inode);
2206 
2207 	/* look for a parent entry first */
2208 	list_for_each_entry(n, &context->names_list, list) {
2209 		if (!n->name || n->type != AUDIT_TYPE_PARENT)
2210 			continue;
2211 
2212 		if (n->ino == parent->i_ino &&
2213 		    !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2214 			found_parent = n;
2215 			break;
2216 		}
2217 	}
2218 
2219 	/* is there a matching child entry? */
2220 	list_for_each_entry(n, &context->names_list, list) {
2221 		/* can only match entries that have a name */
2222 		if (!n->name || n->type != type)
2223 			continue;
2224 
2225 		/* if we found a parent, make sure this one is a child of it */
2226 		if (found_parent && (n->name != found_parent->name))
2227 			continue;
2228 
2229 		if (!strcmp(dname, n->name->name) ||
2230 		    !audit_compare_dname_path(dname, n->name->name,
2231 						found_parent ?
2232 						found_parent->name_len :
2233 						AUDIT_NAME_FULL)) {
2234 			found_child = n;
2235 			break;
2236 		}
2237 	}
2238 
2239 	if (!found_parent) {
2240 		/* create a new, "anonymous" parent record */
2241 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2242 		if (!n)
2243 			return;
2244 		audit_copy_inode(n, NULL, parent);
2245 	}
2246 
2247 	if (!found_child) {
2248 		found_child = audit_alloc_name(context, type);
2249 		if (!found_child)
2250 			return;
2251 
2252 		/* Re-use the name belonging to the slot for a matching parent
2253 		 * directory. All names for this context are relinquished in
2254 		 * audit_free_names() */
2255 		if (found_parent) {
2256 			found_child->name = found_parent->name;
2257 			found_child->name_len = AUDIT_NAME_FULL;
2258 			/* don't call __putname() */
2259 			found_child->name_put = false;
2260 		}
2261 	}
2262 	if (inode)
2263 		audit_copy_inode(found_child, dentry, inode);
2264 	else
2265 		found_child->ino = (unsigned long)-1;
2266 }
2267 EXPORT_SYMBOL_GPL(__audit_inode_child);
2268 
2269 /**
2270  * auditsc_get_stamp - get local copies of audit_context values
2271  * @ctx: audit_context for the task
2272  * @t: timespec to store time recorded in the audit_context
2273  * @serial: serial value that is recorded in the audit_context
2274  *
2275  * Also sets the context as auditable.
2276  */
2277 int auditsc_get_stamp(struct audit_context *ctx,
2278 		       struct timespec *t, unsigned int *serial)
2279 {
2280 	if (!ctx->in_syscall)
2281 		return 0;
2282 	if (!ctx->serial)
2283 		ctx->serial = audit_serial();
2284 	t->tv_sec  = ctx->ctime.tv_sec;
2285 	t->tv_nsec = ctx->ctime.tv_nsec;
2286 	*serial    = ctx->serial;
2287 	if (!ctx->prio) {
2288 		ctx->prio = 1;
2289 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2290 	}
2291 	return 1;
2292 }
2293 
2294 /* global counter which is incremented every time something logs in */
2295 static atomic_t session_id = ATOMIC_INIT(0);
2296 
2297 /**
2298  * audit_set_loginuid - set current task's audit_context loginuid
2299  * @loginuid: loginuid value
2300  *
2301  * Returns 0.
2302  *
2303  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2304  */
2305 int audit_set_loginuid(kuid_t loginuid)
2306 {
2307 	struct task_struct *task = current;
2308 	struct audit_context *context = task->audit_context;
2309 	unsigned int sessionid;
2310 
2311 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2312 	if (uid_valid(task->loginuid))
2313 		return -EPERM;
2314 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2315 	if (!capable(CAP_AUDIT_CONTROL))
2316 		return -EPERM;
2317 #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2318 
2319 	sessionid = atomic_inc_return(&session_id);
2320 	if (context && context->in_syscall) {
2321 		struct audit_buffer *ab;
2322 
2323 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2324 		if (ab) {
2325 			audit_log_format(ab, "login pid=%d uid=%u "
2326 				"old auid=%u new auid=%u"
2327 				" old ses=%u new ses=%u",
2328 				task->pid,
2329 				from_kuid(&init_user_ns, task_uid(task)),
2330 				from_kuid(&init_user_ns, task->loginuid),
2331 				from_kuid(&init_user_ns, loginuid),
2332 				task->sessionid, sessionid);
2333 			audit_log_end(ab);
2334 		}
2335 	}
2336 	task->sessionid = sessionid;
2337 	task->loginuid = loginuid;
2338 	return 0;
2339 }
2340 
2341 /**
2342  * __audit_mq_open - record audit data for a POSIX MQ open
2343  * @oflag: open flag
2344  * @mode: mode bits
2345  * @attr: queue attributes
2346  *
2347  */
2348 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2349 {
2350 	struct audit_context *context = current->audit_context;
2351 
2352 	if (attr)
2353 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2354 	else
2355 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2356 
2357 	context->mq_open.oflag = oflag;
2358 	context->mq_open.mode = mode;
2359 
2360 	context->type = AUDIT_MQ_OPEN;
2361 }
2362 
2363 /**
2364  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2365  * @mqdes: MQ descriptor
2366  * @msg_len: Message length
2367  * @msg_prio: Message priority
2368  * @abs_timeout: Message timeout in absolute time
2369  *
2370  */
2371 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2372 			const struct timespec *abs_timeout)
2373 {
2374 	struct audit_context *context = current->audit_context;
2375 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2376 
2377 	if (abs_timeout)
2378 		memcpy(p, abs_timeout, sizeof(struct timespec));
2379 	else
2380 		memset(p, 0, sizeof(struct timespec));
2381 
2382 	context->mq_sendrecv.mqdes = mqdes;
2383 	context->mq_sendrecv.msg_len = msg_len;
2384 	context->mq_sendrecv.msg_prio = msg_prio;
2385 
2386 	context->type = AUDIT_MQ_SENDRECV;
2387 }
2388 
2389 /**
2390  * __audit_mq_notify - record audit data for a POSIX MQ notify
2391  * @mqdes: MQ descriptor
2392  * @notification: Notification event
2393  *
2394  */
2395 
2396 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2397 {
2398 	struct audit_context *context = current->audit_context;
2399 
2400 	if (notification)
2401 		context->mq_notify.sigev_signo = notification->sigev_signo;
2402 	else
2403 		context->mq_notify.sigev_signo = 0;
2404 
2405 	context->mq_notify.mqdes = mqdes;
2406 	context->type = AUDIT_MQ_NOTIFY;
2407 }
2408 
2409 /**
2410  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2411  * @mqdes: MQ descriptor
2412  * @mqstat: MQ flags
2413  *
2414  */
2415 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2416 {
2417 	struct audit_context *context = current->audit_context;
2418 	context->mq_getsetattr.mqdes = mqdes;
2419 	context->mq_getsetattr.mqstat = *mqstat;
2420 	context->type = AUDIT_MQ_GETSETATTR;
2421 }
2422 
2423 /**
2424  * audit_ipc_obj - record audit data for ipc object
2425  * @ipcp: ipc permissions
2426  *
2427  */
2428 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2429 {
2430 	struct audit_context *context = current->audit_context;
2431 	context->ipc.uid = ipcp->uid;
2432 	context->ipc.gid = ipcp->gid;
2433 	context->ipc.mode = ipcp->mode;
2434 	context->ipc.has_perm = 0;
2435 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2436 	context->type = AUDIT_IPC;
2437 }
2438 
2439 /**
2440  * audit_ipc_set_perm - record audit data for new ipc permissions
2441  * @qbytes: msgq bytes
2442  * @uid: msgq user id
2443  * @gid: msgq group id
2444  * @mode: msgq mode (permissions)
2445  *
2446  * Called only after audit_ipc_obj().
2447  */
2448 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2449 {
2450 	struct audit_context *context = current->audit_context;
2451 
2452 	context->ipc.qbytes = qbytes;
2453 	context->ipc.perm_uid = uid;
2454 	context->ipc.perm_gid = gid;
2455 	context->ipc.perm_mode = mode;
2456 	context->ipc.has_perm = 1;
2457 }
2458 
2459 int __audit_bprm(struct linux_binprm *bprm)
2460 {
2461 	struct audit_aux_data_execve *ax;
2462 	struct audit_context *context = current->audit_context;
2463 
2464 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2465 	if (!ax)
2466 		return -ENOMEM;
2467 
2468 	ax->argc = bprm->argc;
2469 	ax->envc = bprm->envc;
2470 	ax->mm = bprm->mm;
2471 	ax->d.type = AUDIT_EXECVE;
2472 	ax->d.next = context->aux;
2473 	context->aux = (void *)ax;
2474 	return 0;
2475 }
2476 
2477 
2478 /**
2479  * audit_socketcall - record audit data for sys_socketcall
2480  * @nargs: number of args
2481  * @args: args array
2482  *
2483  */
2484 void __audit_socketcall(int nargs, unsigned long *args)
2485 {
2486 	struct audit_context *context = current->audit_context;
2487 
2488 	context->type = AUDIT_SOCKETCALL;
2489 	context->socketcall.nargs = nargs;
2490 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2491 }
2492 
2493 /**
2494  * __audit_fd_pair - record audit data for pipe and socketpair
2495  * @fd1: the first file descriptor
2496  * @fd2: the second file descriptor
2497  *
2498  */
2499 void __audit_fd_pair(int fd1, int fd2)
2500 {
2501 	struct audit_context *context = current->audit_context;
2502 	context->fds[0] = fd1;
2503 	context->fds[1] = fd2;
2504 }
2505 
2506 /**
2507  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2508  * @len: data length in user space
2509  * @a: data address in kernel space
2510  *
2511  * Returns 0 for success or NULL context or < 0 on error.
2512  */
2513 int __audit_sockaddr(int len, void *a)
2514 {
2515 	struct audit_context *context = current->audit_context;
2516 
2517 	if (!context->sockaddr) {
2518 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2519 		if (!p)
2520 			return -ENOMEM;
2521 		context->sockaddr = p;
2522 	}
2523 
2524 	context->sockaddr_len = len;
2525 	memcpy(context->sockaddr, a, len);
2526 	return 0;
2527 }
2528 
2529 void __audit_ptrace(struct task_struct *t)
2530 {
2531 	struct audit_context *context = current->audit_context;
2532 
2533 	context->target_pid = t->pid;
2534 	context->target_auid = audit_get_loginuid(t);
2535 	context->target_uid = task_uid(t);
2536 	context->target_sessionid = audit_get_sessionid(t);
2537 	security_task_getsecid(t, &context->target_sid);
2538 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2539 }
2540 
2541 /**
2542  * audit_signal_info - record signal info for shutting down audit subsystem
2543  * @sig: signal value
2544  * @t: task being signaled
2545  *
2546  * If the audit subsystem is being terminated, record the task (pid)
2547  * and uid that is doing that.
2548  */
2549 int __audit_signal_info(int sig, struct task_struct *t)
2550 {
2551 	struct audit_aux_data_pids *axp;
2552 	struct task_struct *tsk = current;
2553 	struct audit_context *ctx = tsk->audit_context;
2554 	kuid_t uid = current_uid(), t_uid = task_uid(t);
2555 
2556 	if (audit_pid && t->tgid == audit_pid) {
2557 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2558 			audit_sig_pid = tsk->pid;
2559 			if (uid_valid(tsk->loginuid))
2560 				audit_sig_uid = tsk->loginuid;
2561 			else
2562 				audit_sig_uid = uid;
2563 			security_task_getsecid(tsk, &audit_sig_sid);
2564 		}
2565 		if (!audit_signals || audit_dummy_context())
2566 			return 0;
2567 	}
2568 
2569 	/* optimize the common case by putting first signal recipient directly
2570 	 * in audit_context */
2571 	if (!ctx->target_pid) {
2572 		ctx->target_pid = t->tgid;
2573 		ctx->target_auid = audit_get_loginuid(t);
2574 		ctx->target_uid = t_uid;
2575 		ctx->target_sessionid = audit_get_sessionid(t);
2576 		security_task_getsecid(t, &ctx->target_sid);
2577 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2578 		return 0;
2579 	}
2580 
2581 	axp = (void *)ctx->aux_pids;
2582 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2583 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2584 		if (!axp)
2585 			return -ENOMEM;
2586 
2587 		axp->d.type = AUDIT_OBJ_PID;
2588 		axp->d.next = ctx->aux_pids;
2589 		ctx->aux_pids = (void *)axp;
2590 	}
2591 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2592 
2593 	axp->target_pid[axp->pid_count] = t->tgid;
2594 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2595 	axp->target_uid[axp->pid_count] = t_uid;
2596 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2597 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2598 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2599 	axp->pid_count++;
2600 
2601 	return 0;
2602 }
2603 
2604 /**
2605  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2606  * @bprm: pointer to the bprm being processed
2607  * @new: the proposed new credentials
2608  * @old: the old credentials
2609  *
2610  * Simply check if the proc already has the caps given by the file and if not
2611  * store the priv escalation info for later auditing at the end of the syscall
2612  *
2613  * -Eric
2614  */
2615 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2616 			   const struct cred *new, const struct cred *old)
2617 {
2618 	struct audit_aux_data_bprm_fcaps *ax;
2619 	struct audit_context *context = current->audit_context;
2620 	struct cpu_vfs_cap_data vcaps;
2621 	struct dentry *dentry;
2622 
2623 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2624 	if (!ax)
2625 		return -ENOMEM;
2626 
2627 	ax->d.type = AUDIT_BPRM_FCAPS;
2628 	ax->d.next = context->aux;
2629 	context->aux = (void *)ax;
2630 
2631 	dentry = dget(bprm->file->f_dentry);
2632 	get_vfs_caps_from_disk(dentry, &vcaps);
2633 	dput(dentry);
2634 
2635 	ax->fcap.permitted = vcaps.permitted;
2636 	ax->fcap.inheritable = vcaps.inheritable;
2637 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2638 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2639 
2640 	ax->old_pcap.permitted   = old->cap_permitted;
2641 	ax->old_pcap.inheritable = old->cap_inheritable;
2642 	ax->old_pcap.effective   = old->cap_effective;
2643 
2644 	ax->new_pcap.permitted   = new->cap_permitted;
2645 	ax->new_pcap.inheritable = new->cap_inheritable;
2646 	ax->new_pcap.effective   = new->cap_effective;
2647 	return 0;
2648 }
2649 
2650 /**
2651  * __audit_log_capset - store information about the arguments to the capset syscall
2652  * @pid: target pid of the capset call
2653  * @new: the new credentials
2654  * @old: the old (current) credentials
2655  *
2656  * Record the aguments userspace sent to sys_capset for later printing by the
2657  * audit system if applicable
2658  */
2659 void __audit_log_capset(pid_t pid,
2660 		       const struct cred *new, const struct cred *old)
2661 {
2662 	struct audit_context *context = current->audit_context;
2663 	context->capset.pid = pid;
2664 	context->capset.cap.effective   = new->cap_effective;
2665 	context->capset.cap.inheritable = new->cap_effective;
2666 	context->capset.cap.permitted   = new->cap_permitted;
2667 	context->type = AUDIT_CAPSET;
2668 }
2669 
2670 void __audit_mmap_fd(int fd, int flags)
2671 {
2672 	struct audit_context *context = current->audit_context;
2673 	context->mmap.fd = fd;
2674 	context->mmap.flags = flags;
2675 	context->type = AUDIT_MMAP;
2676 }
2677 
2678 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2679 {
2680 	kuid_t auid, uid;
2681 	kgid_t gid;
2682 	unsigned int sessionid;
2683 
2684 	auid = audit_get_loginuid(current);
2685 	sessionid = audit_get_sessionid(current);
2686 	current_uid_gid(&uid, &gid);
2687 
2688 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2689 			 from_kuid(&init_user_ns, auid),
2690 			 from_kuid(&init_user_ns, uid),
2691 			 from_kgid(&init_user_ns, gid),
2692 			 sessionid);
2693 	audit_log_task_context(ab);
2694 	audit_log_format(ab, " pid=%d comm=", current->pid);
2695 	audit_log_untrustedstring(ab, current->comm);
2696 	audit_log_format(ab, " reason=");
2697 	audit_log_string(ab, reason);
2698 	audit_log_format(ab, " sig=%ld", signr);
2699 }
2700 /**
2701  * audit_core_dumps - record information about processes that end abnormally
2702  * @signr: signal value
2703  *
2704  * If a process ends with a core dump, something fishy is going on and we
2705  * should record the event for investigation.
2706  */
2707 void audit_core_dumps(long signr)
2708 {
2709 	struct audit_buffer *ab;
2710 
2711 	if (!audit_enabled)
2712 		return;
2713 
2714 	if (signr == SIGQUIT)	/* don't care for those */
2715 		return;
2716 
2717 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2718 	audit_log_abend(ab, "memory violation", signr);
2719 	audit_log_end(ab);
2720 }
2721 
2722 void __audit_seccomp(unsigned long syscall, long signr, int code)
2723 {
2724 	struct audit_buffer *ab;
2725 
2726 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2727 	audit_log_abend(ab, "seccomp", signr);
2728 	audit_log_format(ab, " syscall=%ld", syscall);
2729 	audit_log_format(ab, " compat=%d", is_compat_task());
2730 	audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2731 	audit_log_format(ab, " code=0x%x", code);
2732 	audit_log_end(ab);
2733 }
2734 
2735 struct list_head *audit_killed_trees(void)
2736 {
2737 	struct audit_context *ctx = current->audit_context;
2738 	if (likely(!ctx || !ctx->in_syscall))
2739 		return NULL;
2740 	return &ctx->killed_trees;
2741 }
2742