1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing features. 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 9 * 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by using getname. 14 * 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 21 * 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 27 * 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open_how 67 68 #include "audit.h" 69 70 /* flags stating the success for a syscall */ 71 #define AUDITSC_INVALID 0 72 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_FAILURE 2 74 75 /* no execve audit message should be longer than this (userspace limits), 76 * see the note near the top of audit_log_execve_info() about this value */ 77 #define MAX_EXECVE_AUDIT_LEN 7500 78 79 /* max length to print of cmdline/proctitle value during audit */ 80 #define MAX_PROCTITLE_AUDIT_LEN 128 81 82 /* number of audit rules */ 83 int audit_n_rules; 84 85 /* determines whether we collect data for signals sent */ 86 int audit_signals; 87 88 struct audit_aux_data { 89 struct audit_aux_data *next; 90 int type; 91 }; 92 93 /* Number of target pids per aux struct. */ 94 #define AUDIT_AUX_PIDS 16 95 96 struct audit_aux_data_pids { 97 struct audit_aux_data d; 98 pid_t target_pid[AUDIT_AUX_PIDS]; 99 kuid_t target_auid[AUDIT_AUX_PIDS]; 100 kuid_t target_uid[AUDIT_AUX_PIDS]; 101 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 102 u32 target_sid[AUDIT_AUX_PIDS]; 103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 104 int pid_count; 105 }; 106 107 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data d; 109 struct audit_cap_data fcap; 110 unsigned int fcap_ver; 111 struct audit_cap_data old_pcap; 112 struct audit_cap_data new_pcap; 113 }; 114 115 struct audit_tree_refs { 116 struct audit_tree_refs *next; 117 struct audit_chunk *c[31]; 118 }; 119 120 struct audit_nfcfgop_tab { 121 enum audit_nfcfgop op; 122 const char *s; 123 }; 124 125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 126 { AUDIT_XT_OP_REGISTER, "xt_register" }, 127 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 145 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 146 }; 147 148 static int audit_match_perm(struct audit_context *ctx, int mask) 149 { 150 unsigned n; 151 152 if (unlikely(!ctx)) 153 return 0; 154 n = ctx->major; 155 156 switch (audit_classify_syscall(ctx->arch, n)) { 157 case AUDITSC_NATIVE: 158 if ((mask & AUDIT_PERM_WRITE) && 159 audit_match_class(AUDIT_CLASS_WRITE, n)) 160 return 1; 161 if ((mask & AUDIT_PERM_READ) && 162 audit_match_class(AUDIT_CLASS_READ, n)) 163 return 1; 164 if ((mask & AUDIT_PERM_ATTR) && 165 audit_match_class(AUDIT_CLASS_CHATTR, n)) 166 return 1; 167 return 0; 168 case AUDITSC_COMPAT: /* 32bit on biarch */ 169 if ((mask & AUDIT_PERM_WRITE) && 170 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 171 return 1; 172 if ((mask & AUDIT_PERM_READ) && 173 audit_match_class(AUDIT_CLASS_READ_32, n)) 174 return 1; 175 if ((mask & AUDIT_PERM_ATTR) && 176 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 177 return 1; 178 return 0; 179 case AUDITSC_OPEN: 180 return mask & ACC_MODE(ctx->argv[1]); 181 case AUDITSC_OPENAT: 182 return mask & ACC_MODE(ctx->argv[2]); 183 case AUDITSC_SOCKETCALL: 184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 185 case AUDITSC_EXECVE: 186 return mask & AUDIT_PERM_EXEC; 187 case AUDITSC_OPENAT2: 188 return mask & ACC_MODE((u32)((struct open_how *)ctx->argv[2])->flags); 189 default: 190 return 0; 191 } 192 } 193 194 static int audit_match_filetype(struct audit_context *ctx, int val) 195 { 196 struct audit_names *n; 197 umode_t mode = (umode_t)val; 198 199 if (unlikely(!ctx)) 200 return 0; 201 202 list_for_each_entry(n, &ctx->names_list, list) { 203 if ((n->ino != AUDIT_INO_UNSET) && 204 ((n->mode & S_IFMT) == mode)) 205 return 1; 206 } 207 208 return 0; 209 } 210 211 /* 212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 213 * ->first_trees points to its beginning, ->trees - to the current end of data. 214 * ->tree_count is the number of free entries in array pointed to by ->trees. 215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 217 * it's going to remain 1-element for almost any setup) until we free context itself. 218 * References in it _are_ dropped - at the same time we free/drop aux stuff. 219 */ 220 221 static void audit_set_auditable(struct audit_context *ctx) 222 { 223 if (!ctx->prio) { 224 ctx->prio = 1; 225 ctx->current_state = AUDIT_STATE_RECORD; 226 } 227 } 228 229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 230 { 231 struct audit_tree_refs *p = ctx->trees; 232 int left = ctx->tree_count; 233 234 if (likely(left)) { 235 p->c[--left] = chunk; 236 ctx->tree_count = left; 237 return 1; 238 } 239 if (!p) 240 return 0; 241 p = p->next; 242 if (p) { 243 p->c[30] = chunk; 244 ctx->trees = p; 245 ctx->tree_count = 30; 246 return 1; 247 } 248 return 0; 249 } 250 251 static int grow_tree_refs(struct audit_context *ctx) 252 { 253 struct audit_tree_refs *p = ctx->trees; 254 255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 256 if (!ctx->trees) { 257 ctx->trees = p; 258 return 0; 259 } 260 if (p) 261 p->next = ctx->trees; 262 else 263 ctx->first_trees = ctx->trees; 264 ctx->tree_count = 31; 265 return 1; 266 } 267 268 static void unroll_tree_refs(struct audit_context *ctx, 269 struct audit_tree_refs *p, int count) 270 { 271 struct audit_tree_refs *q; 272 int n; 273 274 if (!p) { 275 /* we started with empty chain */ 276 p = ctx->first_trees; 277 count = 31; 278 /* if the very first allocation has failed, nothing to do */ 279 if (!p) 280 return; 281 } 282 n = count; 283 for (q = p; q != ctx->trees; q = q->next, n = 31) { 284 while (n--) { 285 audit_put_chunk(q->c[n]); 286 q->c[n] = NULL; 287 } 288 } 289 while (n-- > ctx->tree_count) { 290 audit_put_chunk(q->c[n]); 291 q->c[n] = NULL; 292 } 293 ctx->trees = p; 294 ctx->tree_count = count; 295 } 296 297 static void free_tree_refs(struct audit_context *ctx) 298 { 299 struct audit_tree_refs *p, *q; 300 301 for (p = ctx->first_trees; p; p = q) { 302 q = p->next; 303 kfree(p); 304 } 305 } 306 307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 308 { 309 struct audit_tree_refs *p; 310 int n; 311 312 if (!tree) 313 return 0; 314 /* full ones */ 315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 316 for (n = 0; n < 31; n++) 317 if (audit_tree_match(p->c[n], tree)) 318 return 1; 319 } 320 /* partial */ 321 if (p) { 322 for (n = ctx->tree_count; n < 31; n++) 323 if (audit_tree_match(p->c[n], tree)) 324 return 1; 325 } 326 return 0; 327 } 328 329 static int audit_compare_uid(kuid_t uid, 330 struct audit_names *name, 331 struct audit_field *f, 332 struct audit_context *ctx) 333 { 334 struct audit_names *n; 335 int rc; 336 337 if (name) { 338 rc = audit_uid_comparator(uid, f->op, name->uid); 339 if (rc) 340 return rc; 341 } 342 343 if (ctx) { 344 list_for_each_entry(n, &ctx->names_list, list) { 345 rc = audit_uid_comparator(uid, f->op, n->uid); 346 if (rc) 347 return rc; 348 } 349 } 350 return 0; 351 } 352 353 static int audit_compare_gid(kgid_t gid, 354 struct audit_names *name, 355 struct audit_field *f, 356 struct audit_context *ctx) 357 { 358 struct audit_names *n; 359 int rc; 360 361 if (name) { 362 rc = audit_gid_comparator(gid, f->op, name->gid); 363 if (rc) 364 return rc; 365 } 366 367 if (ctx) { 368 list_for_each_entry(n, &ctx->names_list, list) { 369 rc = audit_gid_comparator(gid, f->op, n->gid); 370 if (rc) 371 return rc; 372 } 373 } 374 return 0; 375 } 376 377 static int audit_field_compare(struct task_struct *tsk, 378 const struct cred *cred, 379 struct audit_field *f, 380 struct audit_context *ctx, 381 struct audit_names *name) 382 { 383 switch (f->val) { 384 /* process to file object comparisons */ 385 case AUDIT_COMPARE_UID_TO_OBJ_UID: 386 return audit_compare_uid(cred->uid, name, f, ctx); 387 case AUDIT_COMPARE_GID_TO_OBJ_GID: 388 return audit_compare_gid(cred->gid, name, f, ctx); 389 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 390 return audit_compare_uid(cred->euid, name, f, ctx); 391 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 392 return audit_compare_gid(cred->egid, name, f, ctx); 393 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 395 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 396 return audit_compare_uid(cred->suid, name, f, ctx); 397 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 398 return audit_compare_gid(cred->sgid, name, f, ctx); 399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 400 return audit_compare_uid(cred->fsuid, name, f, ctx); 401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 402 return audit_compare_gid(cred->fsgid, name, f, ctx); 403 /* uid comparisons */ 404 case AUDIT_COMPARE_UID_TO_AUID: 405 return audit_uid_comparator(cred->uid, f->op, 406 audit_get_loginuid(tsk)); 407 case AUDIT_COMPARE_UID_TO_EUID: 408 return audit_uid_comparator(cred->uid, f->op, cred->euid); 409 case AUDIT_COMPARE_UID_TO_SUID: 410 return audit_uid_comparator(cred->uid, f->op, cred->suid); 411 case AUDIT_COMPARE_UID_TO_FSUID: 412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 413 /* auid comparisons */ 414 case AUDIT_COMPARE_AUID_TO_EUID: 415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 416 cred->euid); 417 case AUDIT_COMPARE_AUID_TO_SUID: 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cred->suid); 420 case AUDIT_COMPARE_AUID_TO_FSUID: 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cred->fsuid); 423 /* euid comparisons */ 424 case AUDIT_COMPARE_EUID_TO_SUID: 425 return audit_uid_comparator(cred->euid, f->op, cred->suid); 426 case AUDIT_COMPARE_EUID_TO_FSUID: 427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 428 /* suid comparisons */ 429 case AUDIT_COMPARE_SUID_TO_FSUID: 430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 431 /* gid comparisons */ 432 case AUDIT_COMPARE_GID_TO_EGID: 433 return audit_gid_comparator(cred->gid, f->op, cred->egid); 434 case AUDIT_COMPARE_GID_TO_SGID: 435 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 436 case AUDIT_COMPARE_GID_TO_FSGID: 437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 438 /* egid comparisons */ 439 case AUDIT_COMPARE_EGID_TO_SGID: 440 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 441 case AUDIT_COMPARE_EGID_TO_FSGID: 442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 443 /* sgid comparison */ 444 case AUDIT_COMPARE_SGID_TO_FSGID: 445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 446 default: 447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 448 return 0; 449 } 450 return 0; 451 } 452 453 /* Determine if any context name data matches a rule's watch data */ 454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 455 * otherwise. 456 * 457 * If task_creation is true, this is an explicit indication that we are 458 * filtering a task rule at task creation time. This and tsk == current are 459 * the only situations where tsk->cred may be accessed without an rcu read lock. 460 */ 461 static int audit_filter_rules(struct task_struct *tsk, 462 struct audit_krule *rule, 463 struct audit_context *ctx, 464 struct audit_names *name, 465 enum audit_state *state, 466 bool task_creation) 467 { 468 const struct cred *cred; 469 int i, need_sid = 1; 470 u32 sid; 471 unsigned int sessionid; 472 473 if (ctx && rule->prio <= ctx->prio) 474 return 0; 475 476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 477 478 for (i = 0; i < rule->field_count; i++) { 479 struct audit_field *f = &rule->fields[i]; 480 struct audit_names *n; 481 int result = 0; 482 pid_t pid; 483 484 switch (f->type) { 485 case AUDIT_PID: 486 pid = task_tgid_nr(tsk); 487 result = audit_comparator(pid, f->op, f->val); 488 break; 489 case AUDIT_PPID: 490 if (ctx) { 491 if (!ctx->ppid) 492 ctx->ppid = task_ppid_nr(tsk); 493 result = audit_comparator(ctx->ppid, f->op, f->val); 494 } 495 break; 496 case AUDIT_EXE: 497 result = audit_exe_compare(tsk, rule->exe); 498 if (f->op == Audit_not_equal) 499 result = !result; 500 break; 501 case AUDIT_UID: 502 result = audit_uid_comparator(cred->uid, f->op, f->uid); 503 break; 504 case AUDIT_EUID: 505 result = audit_uid_comparator(cred->euid, f->op, f->uid); 506 break; 507 case AUDIT_SUID: 508 result = audit_uid_comparator(cred->suid, f->op, f->uid); 509 break; 510 case AUDIT_FSUID: 511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 512 break; 513 case AUDIT_GID: 514 result = audit_gid_comparator(cred->gid, f->op, f->gid); 515 if (f->op == Audit_equal) { 516 if (!result) 517 result = groups_search(cred->group_info, f->gid); 518 } else if (f->op == Audit_not_equal) { 519 if (result) 520 result = !groups_search(cred->group_info, f->gid); 521 } 522 break; 523 case AUDIT_EGID: 524 result = audit_gid_comparator(cred->egid, f->op, f->gid); 525 if (f->op == Audit_equal) { 526 if (!result) 527 result = groups_search(cred->group_info, f->gid); 528 } else if (f->op == Audit_not_equal) { 529 if (result) 530 result = !groups_search(cred->group_info, f->gid); 531 } 532 break; 533 case AUDIT_SGID: 534 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 535 break; 536 case AUDIT_FSGID: 537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 538 break; 539 case AUDIT_SESSIONID: 540 sessionid = audit_get_sessionid(tsk); 541 result = audit_comparator(sessionid, f->op, f->val); 542 break; 543 case AUDIT_PERS: 544 result = audit_comparator(tsk->personality, f->op, f->val); 545 break; 546 case AUDIT_ARCH: 547 if (ctx) 548 result = audit_comparator(ctx->arch, f->op, f->val); 549 break; 550 551 case AUDIT_EXIT: 552 if (ctx && ctx->return_valid != AUDITSC_INVALID) 553 result = audit_comparator(ctx->return_code, f->op, f->val); 554 break; 555 case AUDIT_SUCCESS: 556 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 557 if (f->val) 558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 559 else 560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 561 } 562 break; 563 case AUDIT_DEVMAJOR: 564 if (name) { 565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 566 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 567 ++result; 568 } else if (ctx) { 569 list_for_each_entry(n, &ctx->names_list, list) { 570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 572 ++result; 573 break; 574 } 575 } 576 } 577 break; 578 case AUDIT_DEVMINOR: 579 if (name) { 580 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 581 audit_comparator(MINOR(name->rdev), f->op, f->val)) 582 ++result; 583 } else if (ctx) { 584 list_for_each_entry(n, &ctx->names_list, list) { 585 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 586 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 587 ++result; 588 break; 589 } 590 } 591 } 592 break; 593 case AUDIT_INODE: 594 if (name) 595 result = audit_comparator(name->ino, f->op, f->val); 596 else if (ctx) { 597 list_for_each_entry(n, &ctx->names_list, list) { 598 if (audit_comparator(n->ino, f->op, f->val)) { 599 ++result; 600 break; 601 } 602 } 603 } 604 break; 605 case AUDIT_OBJ_UID: 606 if (name) { 607 result = audit_uid_comparator(name->uid, f->op, f->uid); 608 } else if (ctx) { 609 list_for_each_entry(n, &ctx->names_list, list) { 610 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 611 ++result; 612 break; 613 } 614 } 615 } 616 break; 617 case AUDIT_OBJ_GID: 618 if (name) { 619 result = audit_gid_comparator(name->gid, f->op, f->gid); 620 } else if (ctx) { 621 list_for_each_entry(n, &ctx->names_list, list) { 622 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 623 ++result; 624 break; 625 } 626 } 627 } 628 break; 629 case AUDIT_WATCH: 630 if (name) { 631 result = audit_watch_compare(rule->watch, 632 name->ino, 633 name->dev); 634 if (f->op == Audit_not_equal) 635 result = !result; 636 } 637 break; 638 case AUDIT_DIR: 639 if (ctx) { 640 result = match_tree_refs(ctx, rule->tree); 641 if (f->op == Audit_not_equal) 642 result = !result; 643 } 644 break; 645 case AUDIT_LOGINUID: 646 result = audit_uid_comparator(audit_get_loginuid(tsk), 647 f->op, f->uid); 648 break; 649 case AUDIT_LOGINUID_SET: 650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 651 break; 652 case AUDIT_SADDR_FAM: 653 if (ctx && ctx->sockaddr) 654 result = audit_comparator(ctx->sockaddr->ss_family, 655 f->op, f->val); 656 break; 657 case AUDIT_SUBJ_USER: 658 case AUDIT_SUBJ_ROLE: 659 case AUDIT_SUBJ_TYPE: 660 case AUDIT_SUBJ_SEN: 661 case AUDIT_SUBJ_CLR: 662 /* NOTE: this may return negative values indicating 663 a temporary error. We simply treat this as a 664 match for now to avoid losing information that 665 may be wanted. An error message will also be 666 logged upon error */ 667 if (f->lsm_rule) { 668 if (need_sid) { 669 security_task_getsecid_subj(tsk, &sid); 670 need_sid = 0; 671 } 672 result = security_audit_rule_match(sid, f->type, 673 f->op, 674 f->lsm_rule); 675 } 676 break; 677 case AUDIT_OBJ_USER: 678 case AUDIT_OBJ_ROLE: 679 case AUDIT_OBJ_TYPE: 680 case AUDIT_OBJ_LEV_LOW: 681 case AUDIT_OBJ_LEV_HIGH: 682 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 683 also applies here */ 684 if (f->lsm_rule) { 685 /* Find files that match */ 686 if (name) { 687 result = security_audit_rule_match( 688 name->osid, 689 f->type, 690 f->op, 691 f->lsm_rule); 692 } else if (ctx) { 693 list_for_each_entry(n, &ctx->names_list, list) { 694 if (security_audit_rule_match( 695 n->osid, 696 f->type, 697 f->op, 698 f->lsm_rule)) { 699 ++result; 700 break; 701 } 702 } 703 } 704 /* Find ipc objects that match */ 705 if (!ctx || ctx->type != AUDIT_IPC) 706 break; 707 if (security_audit_rule_match(ctx->ipc.osid, 708 f->type, f->op, 709 f->lsm_rule)) 710 ++result; 711 } 712 break; 713 case AUDIT_ARG0: 714 case AUDIT_ARG1: 715 case AUDIT_ARG2: 716 case AUDIT_ARG3: 717 if (ctx) 718 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 719 break; 720 case AUDIT_FILTERKEY: 721 /* ignore this field for filtering */ 722 result = 1; 723 break; 724 case AUDIT_PERM: 725 result = audit_match_perm(ctx, f->val); 726 if (f->op == Audit_not_equal) 727 result = !result; 728 break; 729 case AUDIT_FILETYPE: 730 result = audit_match_filetype(ctx, f->val); 731 if (f->op == Audit_not_equal) 732 result = !result; 733 break; 734 case AUDIT_FIELD_COMPARE: 735 result = audit_field_compare(tsk, cred, f, ctx, name); 736 break; 737 } 738 if (!result) 739 return 0; 740 } 741 742 if (ctx) { 743 if (rule->filterkey) { 744 kfree(ctx->filterkey); 745 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 746 } 747 ctx->prio = rule->prio; 748 } 749 switch (rule->action) { 750 case AUDIT_NEVER: 751 *state = AUDIT_STATE_DISABLED; 752 break; 753 case AUDIT_ALWAYS: 754 *state = AUDIT_STATE_RECORD; 755 break; 756 } 757 return 1; 758 } 759 760 /* At process creation time, we can determine if system-call auditing is 761 * completely disabled for this task. Since we only have the task 762 * structure at this point, we can only check uid and gid. 763 */ 764 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 765 { 766 struct audit_entry *e; 767 enum audit_state state; 768 769 rcu_read_lock(); 770 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 771 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 772 &state, true)) { 773 if (state == AUDIT_STATE_RECORD) 774 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 775 rcu_read_unlock(); 776 return state; 777 } 778 } 779 rcu_read_unlock(); 780 return AUDIT_STATE_BUILD; 781 } 782 783 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 784 { 785 int word, bit; 786 787 if (val > 0xffffffff) 788 return false; 789 790 word = AUDIT_WORD(val); 791 if (word >= AUDIT_BITMASK_SIZE) 792 return false; 793 794 bit = AUDIT_BIT(val); 795 796 return rule->mask[word] & bit; 797 } 798 799 /** 800 * audit_filter_uring - apply filters to an io_uring operation 801 * @tsk: associated task 802 * @ctx: audit context 803 */ 804 static void audit_filter_uring(struct task_struct *tsk, 805 struct audit_context *ctx) 806 { 807 struct audit_entry *e; 808 enum audit_state state; 809 810 if (auditd_test_task(tsk)) 811 return; 812 813 rcu_read_lock(); 814 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 815 list) { 816 if (audit_in_mask(&e->rule, ctx->uring_op) && 817 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state, 818 false)) { 819 rcu_read_unlock(); 820 ctx->current_state = state; 821 return; 822 } 823 } 824 rcu_read_unlock(); 825 } 826 827 /* At syscall exit time, this filter is called if the audit_state is 828 * not low enough that auditing cannot take place, but is also not 829 * high enough that we already know we have to write an audit record 830 * (i.e., the state is AUDIT_STATE_BUILD). 831 */ 832 static void audit_filter_syscall(struct task_struct *tsk, 833 struct audit_context *ctx) 834 { 835 struct audit_entry *e; 836 enum audit_state state; 837 838 if (auditd_test_task(tsk)) 839 return; 840 841 rcu_read_lock(); 842 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) { 843 if (audit_in_mask(&e->rule, ctx->major) && 844 audit_filter_rules(tsk, &e->rule, ctx, NULL, 845 &state, false)) { 846 rcu_read_unlock(); 847 ctx->current_state = state; 848 return; 849 } 850 } 851 rcu_read_unlock(); 852 return; 853 } 854 855 /* 856 * Given an audit_name check the inode hash table to see if they match. 857 * Called holding the rcu read lock to protect the use of audit_inode_hash 858 */ 859 static int audit_filter_inode_name(struct task_struct *tsk, 860 struct audit_names *n, 861 struct audit_context *ctx) { 862 int h = audit_hash_ino((u32)n->ino); 863 struct list_head *list = &audit_inode_hash[h]; 864 struct audit_entry *e; 865 enum audit_state state; 866 867 list_for_each_entry_rcu(e, list, list) { 868 if (audit_in_mask(&e->rule, ctx->major) && 869 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 870 ctx->current_state = state; 871 return 1; 872 } 873 } 874 return 0; 875 } 876 877 /* At syscall exit time, this filter is called if any audit_names have been 878 * collected during syscall processing. We only check rules in sublists at hash 879 * buckets applicable to the inode numbers in audit_names. 880 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 881 */ 882 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 883 { 884 struct audit_names *n; 885 886 if (auditd_test_task(tsk)) 887 return; 888 889 rcu_read_lock(); 890 891 list_for_each_entry(n, &ctx->names_list, list) { 892 if (audit_filter_inode_name(tsk, n, ctx)) 893 break; 894 } 895 rcu_read_unlock(); 896 } 897 898 static inline void audit_proctitle_free(struct audit_context *context) 899 { 900 kfree(context->proctitle.value); 901 context->proctitle.value = NULL; 902 context->proctitle.len = 0; 903 } 904 905 static inline void audit_free_module(struct audit_context *context) 906 { 907 if (context->type == AUDIT_KERN_MODULE) { 908 kfree(context->module.name); 909 context->module.name = NULL; 910 } 911 } 912 static inline void audit_free_names(struct audit_context *context) 913 { 914 struct audit_names *n, *next; 915 916 list_for_each_entry_safe(n, next, &context->names_list, list) { 917 list_del(&n->list); 918 if (n->name) 919 putname(n->name); 920 if (n->should_free) 921 kfree(n); 922 } 923 context->name_count = 0; 924 path_put(&context->pwd); 925 context->pwd.dentry = NULL; 926 context->pwd.mnt = NULL; 927 } 928 929 static inline void audit_free_aux(struct audit_context *context) 930 { 931 struct audit_aux_data *aux; 932 933 while ((aux = context->aux)) { 934 context->aux = aux->next; 935 kfree(aux); 936 } 937 context->aux = NULL; 938 while ((aux = context->aux_pids)) { 939 context->aux_pids = aux->next; 940 kfree(aux); 941 } 942 context->aux_pids = NULL; 943 } 944 945 /** 946 * audit_reset_context - reset a audit_context structure 947 * @ctx: the audit_context to reset 948 * 949 * All fields in the audit_context will be reset to an initial state, all 950 * references held by fields will be dropped, and private memory will be 951 * released. When this function returns the audit_context will be suitable 952 * for reuse, so long as the passed context is not NULL or a dummy context. 953 */ 954 static void audit_reset_context(struct audit_context *ctx) 955 { 956 if (!ctx) 957 return; 958 959 /* if ctx is non-null, reset the "ctx->state" regardless */ 960 ctx->context = AUDIT_CTX_UNUSED; 961 if (ctx->dummy) 962 return; 963 964 /* 965 * NOTE: It shouldn't matter in what order we release the fields, so 966 * release them in the order in which they appear in the struct; 967 * this gives us some hope of quickly making sure we are 968 * resetting the audit_context properly. 969 * 970 * Other things worth mentioning: 971 * - we don't reset "dummy" 972 * - we don't reset "state", we do reset "current_state" 973 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 974 * - much of this is likely overkill, but play it safe for now 975 * - we really need to work on improving the audit_context struct 976 */ 977 978 ctx->current_state = ctx->state; 979 ctx->serial = 0; 980 ctx->major = 0; 981 ctx->uring_op = 0; 982 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 983 memset(ctx->argv, 0, sizeof(ctx->argv)); 984 ctx->return_code = 0; 985 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 986 ctx->return_valid = AUDITSC_INVALID; 987 audit_free_names(ctx); 988 if (ctx->state != AUDIT_STATE_RECORD) { 989 kfree(ctx->filterkey); 990 ctx->filterkey = NULL; 991 } 992 audit_free_aux(ctx); 993 kfree(ctx->sockaddr); 994 ctx->sockaddr = NULL; 995 ctx->sockaddr_len = 0; 996 ctx->pid = ctx->ppid = 0; 997 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 998 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 999 ctx->personality = 0; 1000 ctx->arch = 0; 1001 ctx->target_pid = 0; 1002 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1003 ctx->target_sessionid = 0; 1004 ctx->target_sid = 0; 1005 ctx->target_comm[0] = '\0'; 1006 unroll_tree_refs(ctx, NULL, 0); 1007 WARN_ON(!list_empty(&ctx->killed_trees)); 1008 ctx->type = 0; 1009 audit_free_module(ctx); 1010 ctx->fds[0] = -1; 1011 audit_proctitle_free(ctx); 1012 } 1013 1014 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1015 { 1016 struct audit_context *context; 1017 1018 context = kzalloc(sizeof(*context), GFP_KERNEL); 1019 if (!context) 1020 return NULL; 1021 context->context = AUDIT_CTX_UNUSED; 1022 context->state = state; 1023 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1024 INIT_LIST_HEAD(&context->killed_trees); 1025 INIT_LIST_HEAD(&context->names_list); 1026 context->fds[0] = -1; 1027 context->return_valid = AUDITSC_INVALID; 1028 return context; 1029 } 1030 1031 /** 1032 * audit_alloc - allocate an audit context block for a task 1033 * @tsk: task 1034 * 1035 * Filter on the task information and allocate a per-task audit context 1036 * if necessary. Doing so turns on system call auditing for the 1037 * specified task. This is called from copy_process, so no lock is 1038 * needed. 1039 */ 1040 int audit_alloc(struct task_struct *tsk) 1041 { 1042 struct audit_context *context; 1043 enum audit_state state; 1044 char *key = NULL; 1045 1046 if (likely(!audit_ever_enabled)) 1047 return 0; 1048 1049 state = audit_filter_task(tsk, &key); 1050 if (state == AUDIT_STATE_DISABLED) { 1051 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1052 return 0; 1053 } 1054 1055 if (!(context = audit_alloc_context(state))) { 1056 kfree(key); 1057 audit_log_lost("out of memory in audit_alloc"); 1058 return -ENOMEM; 1059 } 1060 context->filterkey = key; 1061 1062 audit_set_context(tsk, context); 1063 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1064 return 0; 1065 } 1066 1067 /** 1068 * audit_alloc_kernel - allocate an audit_context for a kernel task 1069 * @tsk: the kernel task 1070 * 1071 * Similar to the audit_alloc() function, but intended for kernel private 1072 * threads. Returns zero on success, negative values on failure. 1073 */ 1074 int audit_alloc_kernel(struct task_struct *tsk) 1075 { 1076 /* 1077 * At the moment we are just going to call into audit_alloc() to 1078 * simplify the code, but there two things to keep in mind with this 1079 * approach: 1080 * 1081 * 1. Filtering internal kernel tasks is a bit laughable in almost all 1082 * cases, but there is at least one case where there is a benefit: 1083 * the '-a task,never' case allows the admin to effectively disable 1084 * task auditing at runtime. 1085 * 1086 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect 1087 * on these internal kernel tasks, but they probably don't hurt either. 1088 */ 1089 return audit_alloc(tsk); 1090 } 1091 1092 static inline void audit_free_context(struct audit_context *context) 1093 { 1094 /* resetting is extra work, but it is likely just noise */ 1095 audit_reset_context(context); 1096 free_tree_refs(context); 1097 kfree(context->filterkey); 1098 kfree(context); 1099 } 1100 1101 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1102 kuid_t auid, kuid_t uid, unsigned int sessionid, 1103 u32 sid, char *comm) 1104 { 1105 struct audit_buffer *ab; 1106 char *ctx = NULL; 1107 u32 len; 1108 int rc = 0; 1109 1110 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1111 if (!ab) 1112 return rc; 1113 1114 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1115 from_kuid(&init_user_ns, auid), 1116 from_kuid(&init_user_ns, uid), sessionid); 1117 if (sid) { 1118 if (security_secid_to_secctx(sid, &ctx, &len)) { 1119 audit_log_format(ab, " obj=(none)"); 1120 rc = 1; 1121 } else { 1122 audit_log_format(ab, " obj=%s", ctx); 1123 security_release_secctx(ctx, len); 1124 } 1125 } 1126 audit_log_format(ab, " ocomm="); 1127 audit_log_untrustedstring(ab, comm); 1128 audit_log_end(ab); 1129 1130 return rc; 1131 } 1132 1133 static void audit_log_execve_info(struct audit_context *context, 1134 struct audit_buffer **ab) 1135 { 1136 long len_max; 1137 long len_rem; 1138 long len_full; 1139 long len_buf; 1140 long len_abuf = 0; 1141 long len_tmp; 1142 bool require_data; 1143 bool encode; 1144 unsigned int iter; 1145 unsigned int arg; 1146 char *buf_head; 1147 char *buf; 1148 const char __user *p = (const char __user *)current->mm->arg_start; 1149 1150 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1151 * data we put in the audit record for this argument (see the 1152 * code below) ... at this point in time 96 is plenty */ 1153 char abuf[96]; 1154 1155 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1156 * current value of 7500 is not as important as the fact that it 1157 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1158 * room if we go over a little bit in the logging below */ 1159 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1160 len_max = MAX_EXECVE_AUDIT_LEN; 1161 1162 /* scratch buffer to hold the userspace args */ 1163 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1164 if (!buf_head) { 1165 audit_panic("out of memory for argv string"); 1166 return; 1167 } 1168 buf = buf_head; 1169 1170 audit_log_format(*ab, "argc=%d", context->execve.argc); 1171 1172 len_rem = len_max; 1173 len_buf = 0; 1174 len_full = 0; 1175 require_data = true; 1176 encode = false; 1177 iter = 0; 1178 arg = 0; 1179 do { 1180 /* NOTE: we don't ever want to trust this value for anything 1181 * serious, but the audit record format insists we 1182 * provide an argument length for really long arguments, 1183 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1184 * to use strncpy_from_user() to obtain this value for 1185 * recording in the log, although we don't use it 1186 * anywhere here to avoid a double-fetch problem */ 1187 if (len_full == 0) 1188 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1189 1190 /* read more data from userspace */ 1191 if (require_data) { 1192 /* can we make more room in the buffer? */ 1193 if (buf != buf_head) { 1194 memmove(buf_head, buf, len_buf); 1195 buf = buf_head; 1196 } 1197 1198 /* fetch as much as we can of the argument */ 1199 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1200 len_max - len_buf); 1201 if (len_tmp == -EFAULT) { 1202 /* unable to copy from userspace */ 1203 send_sig(SIGKILL, current, 0); 1204 goto out; 1205 } else if (len_tmp == (len_max - len_buf)) { 1206 /* buffer is not large enough */ 1207 require_data = true; 1208 /* NOTE: if we are going to span multiple 1209 * buffers force the encoding so we stand 1210 * a chance at a sane len_full value and 1211 * consistent record encoding */ 1212 encode = true; 1213 len_full = len_full * 2; 1214 p += len_tmp; 1215 } else { 1216 require_data = false; 1217 if (!encode) 1218 encode = audit_string_contains_control( 1219 buf, len_tmp); 1220 /* try to use a trusted value for len_full */ 1221 if (len_full < len_max) 1222 len_full = (encode ? 1223 len_tmp * 2 : len_tmp); 1224 p += len_tmp + 1; 1225 } 1226 len_buf += len_tmp; 1227 buf_head[len_buf] = '\0'; 1228 1229 /* length of the buffer in the audit record? */ 1230 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1231 } 1232 1233 /* write as much as we can to the audit log */ 1234 if (len_buf >= 0) { 1235 /* NOTE: some magic numbers here - basically if we 1236 * can't fit a reasonable amount of data into the 1237 * existing audit buffer, flush it and start with 1238 * a new buffer */ 1239 if ((sizeof(abuf) + 8) > len_rem) { 1240 len_rem = len_max; 1241 audit_log_end(*ab); 1242 *ab = audit_log_start(context, 1243 GFP_KERNEL, AUDIT_EXECVE); 1244 if (!*ab) 1245 goto out; 1246 } 1247 1248 /* create the non-arg portion of the arg record */ 1249 len_tmp = 0; 1250 if (require_data || (iter > 0) || 1251 ((len_abuf + sizeof(abuf)) > len_rem)) { 1252 if (iter == 0) { 1253 len_tmp += snprintf(&abuf[len_tmp], 1254 sizeof(abuf) - len_tmp, 1255 " a%d_len=%lu", 1256 arg, len_full); 1257 } 1258 len_tmp += snprintf(&abuf[len_tmp], 1259 sizeof(abuf) - len_tmp, 1260 " a%d[%d]=", arg, iter++); 1261 } else 1262 len_tmp += snprintf(&abuf[len_tmp], 1263 sizeof(abuf) - len_tmp, 1264 " a%d=", arg); 1265 WARN_ON(len_tmp >= sizeof(abuf)); 1266 abuf[sizeof(abuf) - 1] = '\0'; 1267 1268 /* log the arg in the audit record */ 1269 audit_log_format(*ab, "%s", abuf); 1270 len_rem -= len_tmp; 1271 len_tmp = len_buf; 1272 if (encode) { 1273 if (len_abuf > len_rem) 1274 len_tmp = len_rem / 2; /* encoding */ 1275 audit_log_n_hex(*ab, buf, len_tmp); 1276 len_rem -= len_tmp * 2; 1277 len_abuf -= len_tmp * 2; 1278 } else { 1279 if (len_abuf > len_rem) 1280 len_tmp = len_rem - 2; /* quotes */ 1281 audit_log_n_string(*ab, buf, len_tmp); 1282 len_rem -= len_tmp + 2; 1283 /* don't subtract the "2" because we still need 1284 * to add quotes to the remaining string */ 1285 len_abuf -= len_tmp; 1286 } 1287 len_buf -= len_tmp; 1288 buf += len_tmp; 1289 } 1290 1291 /* ready to move to the next argument? */ 1292 if ((len_buf == 0) && !require_data) { 1293 arg++; 1294 iter = 0; 1295 len_full = 0; 1296 require_data = true; 1297 encode = false; 1298 } 1299 } while (arg < context->execve.argc); 1300 1301 /* NOTE: the caller handles the final audit_log_end() call */ 1302 1303 out: 1304 kfree(buf_head); 1305 } 1306 1307 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1308 kernel_cap_t *cap) 1309 { 1310 int i; 1311 1312 if (cap_isclear(*cap)) { 1313 audit_log_format(ab, " %s=0", prefix); 1314 return; 1315 } 1316 audit_log_format(ab, " %s=", prefix); 1317 CAP_FOR_EACH_U32(i) 1318 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1319 } 1320 1321 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1322 { 1323 if (name->fcap_ver == -1) { 1324 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1325 return; 1326 } 1327 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1328 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1329 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1330 name->fcap.fE, name->fcap_ver, 1331 from_kuid(&init_user_ns, name->fcap.rootid)); 1332 } 1333 1334 static void show_special(struct audit_context *context, int *call_panic) 1335 { 1336 struct audit_buffer *ab; 1337 int i; 1338 1339 ab = audit_log_start(context, GFP_KERNEL, context->type); 1340 if (!ab) 1341 return; 1342 1343 switch (context->type) { 1344 case AUDIT_SOCKETCALL: { 1345 int nargs = context->socketcall.nargs; 1346 1347 audit_log_format(ab, "nargs=%d", nargs); 1348 for (i = 0; i < nargs; i++) 1349 audit_log_format(ab, " a%d=%lx", i, 1350 context->socketcall.args[i]); 1351 break; } 1352 case AUDIT_IPC: { 1353 u32 osid = context->ipc.osid; 1354 1355 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1356 from_kuid(&init_user_ns, context->ipc.uid), 1357 from_kgid(&init_user_ns, context->ipc.gid), 1358 context->ipc.mode); 1359 if (osid) { 1360 char *ctx = NULL; 1361 u32 len; 1362 1363 if (security_secid_to_secctx(osid, &ctx, &len)) { 1364 audit_log_format(ab, " osid=%u", osid); 1365 *call_panic = 1; 1366 } else { 1367 audit_log_format(ab, " obj=%s", ctx); 1368 security_release_secctx(ctx, len); 1369 } 1370 } 1371 if (context->ipc.has_perm) { 1372 audit_log_end(ab); 1373 ab = audit_log_start(context, GFP_KERNEL, 1374 AUDIT_IPC_SET_PERM); 1375 if (unlikely(!ab)) 1376 return; 1377 audit_log_format(ab, 1378 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1379 context->ipc.qbytes, 1380 context->ipc.perm_uid, 1381 context->ipc.perm_gid, 1382 context->ipc.perm_mode); 1383 } 1384 break; } 1385 case AUDIT_MQ_OPEN: 1386 audit_log_format(ab, 1387 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1388 "mq_msgsize=%ld mq_curmsgs=%ld", 1389 context->mq_open.oflag, context->mq_open.mode, 1390 context->mq_open.attr.mq_flags, 1391 context->mq_open.attr.mq_maxmsg, 1392 context->mq_open.attr.mq_msgsize, 1393 context->mq_open.attr.mq_curmsgs); 1394 break; 1395 case AUDIT_MQ_SENDRECV: 1396 audit_log_format(ab, 1397 "mqdes=%d msg_len=%zd msg_prio=%u " 1398 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1399 context->mq_sendrecv.mqdes, 1400 context->mq_sendrecv.msg_len, 1401 context->mq_sendrecv.msg_prio, 1402 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1403 context->mq_sendrecv.abs_timeout.tv_nsec); 1404 break; 1405 case AUDIT_MQ_NOTIFY: 1406 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1407 context->mq_notify.mqdes, 1408 context->mq_notify.sigev_signo); 1409 break; 1410 case AUDIT_MQ_GETSETATTR: { 1411 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1412 1413 audit_log_format(ab, 1414 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1415 "mq_curmsgs=%ld ", 1416 context->mq_getsetattr.mqdes, 1417 attr->mq_flags, attr->mq_maxmsg, 1418 attr->mq_msgsize, attr->mq_curmsgs); 1419 break; } 1420 case AUDIT_CAPSET: 1421 audit_log_format(ab, "pid=%d", context->capset.pid); 1422 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1423 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1424 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1425 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1426 break; 1427 case AUDIT_MMAP: 1428 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1429 context->mmap.flags); 1430 break; 1431 case AUDIT_OPENAT2: 1432 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1433 context->openat2.flags, 1434 context->openat2.mode, 1435 context->openat2.resolve); 1436 break; 1437 case AUDIT_EXECVE: 1438 audit_log_execve_info(context, &ab); 1439 break; 1440 case AUDIT_KERN_MODULE: 1441 audit_log_format(ab, "name="); 1442 if (context->module.name) { 1443 audit_log_untrustedstring(ab, context->module.name); 1444 } else 1445 audit_log_format(ab, "(null)"); 1446 1447 break; 1448 } 1449 audit_log_end(ab); 1450 } 1451 1452 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1453 { 1454 char *end = proctitle + len - 1; 1455 1456 while (end > proctitle && !isprint(*end)) 1457 end--; 1458 1459 /* catch the case where proctitle is only 1 non-print character */ 1460 len = end - proctitle + 1; 1461 len -= isprint(proctitle[len-1]) == 0; 1462 return len; 1463 } 1464 1465 /* 1466 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1467 * @context: audit_context for the task 1468 * @n: audit_names structure with reportable details 1469 * @path: optional path to report instead of audit_names->name 1470 * @record_num: record number to report when handling a list of names 1471 * @call_panic: optional pointer to int that will be updated if secid fails 1472 */ 1473 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1474 const struct path *path, int record_num, int *call_panic) 1475 { 1476 struct audit_buffer *ab; 1477 1478 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1479 if (!ab) 1480 return; 1481 1482 audit_log_format(ab, "item=%d", record_num); 1483 1484 if (path) 1485 audit_log_d_path(ab, " name=", path); 1486 else if (n->name) { 1487 switch (n->name_len) { 1488 case AUDIT_NAME_FULL: 1489 /* log the full path */ 1490 audit_log_format(ab, " name="); 1491 audit_log_untrustedstring(ab, n->name->name); 1492 break; 1493 case 0: 1494 /* name was specified as a relative path and the 1495 * directory component is the cwd 1496 */ 1497 if (context->pwd.dentry && context->pwd.mnt) 1498 audit_log_d_path(ab, " name=", &context->pwd); 1499 else 1500 audit_log_format(ab, " name=(null)"); 1501 break; 1502 default: 1503 /* log the name's directory component */ 1504 audit_log_format(ab, " name="); 1505 audit_log_n_untrustedstring(ab, n->name->name, 1506 n->name_len); 1507 } 1508 } else 1509 audit_log_format(ab, " name=(null)"); 1510 1511 if (n->ino != AUDIT_INO_UNSET) 1512 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1513 n->ino, 1514 MAJOR(n->dev), 1515 MINOR(n->dev), 1516 n->mode, 1517 from_kuid(&init_user_ns, n->uid), 1518 from_kgid(&init_user_ns, n->gid), 1519 MAJOR(n->rdev), 1520 MINOR(n->rdev)); 1521 if (n->osid != 0) { 1522 char *ctx = NULL; 1523 u32 len; 1524 1525 if (security_secid_to_secctx( 1526 n->osid, &ctx, &len)) { 1527 audit_log_format(ab, " osid=%u", n->osid); 1528 if (call_panic) 1529 *call_panic = 2; 1530 } else { 1531 audit_log_format(ab, " obj=%s", ctx); 1532 security_release_secctx(ctx, len); 1533 } 1534 } 1535 1536 /* log the audit_names record type */ 1537 switch (n->type) { 1538 case AUDIT_TYPE_NORMAL: 1539 audit_log_format(ab, " nametype=NORMAL"); 1540 break; 1541 case AUDIT_TYPE_PARENT: 1542 audit_log_format(ab, " nametype=PARENT"); 1543 break; 1544 case AUDIT_TYPE_CHILD_DELETE: 1545 audit_log_format(ab, " nametype=DELETE"); 1546 break; 1547 case AUDIT_TYPE_CHILD_CREATE: 1548 audit_log_format(ab, " nametype=CREATE"); 1549 break; 1550 default: 1551 audit_log_format(ab, " nametype=UNKNOWN"); 1552 break; 1553 } 1554 1555 audit_log_fcaps(ab, n); 1556 audit_log_end(ab); 1557 } 1558 1559 static void audit_log_proctitle(void) 1560 { 1561 int res; 1562 char *buf; 1563 char *msg = "(null)"; 1564 int len = strlen(msg); 1565 struct audit_context *context = audit_context(); 1566 struct audit_buffer *ab; 1567 1568 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1569 if (!ab) 1570 return; /* audit_panic or being filtered */ 1571 1572 audit_log_format(ab, "proctitle="); 1573 1574 /* Not cached */ 1575 if (!context->proctitle.value) { 1576 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1577 if (!buf) 1578 goto out; 1579 /* Historically called this from procfs naming */ 1580 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1581 if (res == 0) { 1582 kfree(buf); 1583 goto out; 1584 } 1585 res = audit_proctitle_rtrim(buf, res); 1586 if (res == 0) { 1587 kfree(buf); 1588 goto out; 1589 } 1590 context->proctitle.value = buf; 1591 context->proctitle.len = res; 1592 } 1593 msg = context->proctitle.value; 1594 len = context->proctitle.len; 1595 out: 1596 audit_log_n_untrustedstring(ab, msg, len); 1597 audit_log_end(ab); 1598 } 1599 1600 /** 1601 * audit_log_uring - generate a AUDIT_URINGOP record 1602 * @ctx: the audit context 1603 */ 1604 static void audit_log_uring(struct audit_context *ctx) 1605 { 1606 struct audit_buffer *ab; 1607 const struct cred *cred; 1608 1609 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1610 if (!ab) 1611 return; 1612 cred = current_cred(); 1613 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1614 if (ctx->return_valid != AUDITSC_INVALID) 1615 audit_log_format(ab, " success=%s exit=%ld", 1616 (ctx->return_valid == AUDITSC_SUCCESS ? 1617 "yes" : "no"), 1618 ctx->return_code); 1619 audit_log_format(ab, 1620 " items=%d" 1621 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1622 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1623 ctx->name_count, 1624 task_ppid_nr(current), task_tgid_nr(current), 1625 from_kuid(&init_user_ns, cred->uid), 1626 from_kgid(&init_user_ns, cred->gid), 1627 from_kuid(&init_user_ns, cred->euid), 1628 from_kuid(&init_user_ns, cred->suid), 1629 from_kuid(&init_user_ns, cred->fsuid), 1630 from_kgid(&init_user_ns, cred->egid), 1631 from_kgid(&init_user_ns, cred->sgid), 1632 from_kgid(&init_user_ns, cred->fsgid)); 1633 audit_log_task_context(ab); 1634 audit_log_key(ab, ctx->filterkey); 1635 audit_log_end(ab); 1636 } 1637 1638 static void audit_log_exit(void) 1639 { 1640 int i, call_panic = 0; 1641 struct audit_context *context = audit_context(); 1642 struct audit_buffer *ab; 1643 struct audit_aux_data *aux; 1644 struct audit_names *n; 1645 1646 context->personality = current->personality; 1647 1648 switch (context->context) { 1649 case AUDIT_CTX_SYSCALL: 1650 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1651 if (!ab) 1652 return; 1653 audit_log_format(ab, "arch=%x syscall=%d", 1654 context->arch, context->major); 1655 if (context->personality != PER_LINUX) 1656 audit_log_format(ab, " per=%lx", context->personality); 1657 if (context->return_valid != AUDITSC_INVALID) 1658 audit_log_format(ab, " success=%s exit=%ld", 1659 (context->return_valid == AUDITSC_SUCCESS ? 1660 "yes" : "no"), 1661 context->return_code); 1662 audit_log_format(ab, 1663 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1664 context->argv[0], 1665 context->argv[1], 1666 context->argv[2], 1667 context->argv[3], 1668 context->name_count); 1669 audit_log_task_info(ab); 1670 audit_log_key(ab, context->filterkey); 1671 audit_log_end(ab); 1672 break; 1673 case AUDIT_CTX_URING: 1674 audit_log_uring(context); 1675 break; 1676 default: 1677 BUG(); 1678 break; 1679 } 1680 1681 for (aux = context->aux; aux; aux = aux->next) { 1682 1683 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1684 if (!ab) 1685 continue; /* audit_panic has been called */ 1686 1687 switch (aux->type) { 1688 1689 case AUDIT_BPRM_FCAPS: { 1690 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1691 1692 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1693 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1694 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1695 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1696 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1697 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1698 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1699 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1700 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1701 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1702 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1703 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1704 audit_log_format(ab, " frootid=%d", 1705 from_kuid(&init_user_ns, 1706 axs->fcap.rootid)); 1707 break; } 1708 1709 } 1710 audit_log_end(ab); 1711 } 1712 1713 if (context->type) 1714 show_special(context, &call_panic); 1715 1716 if (context->fds[0] >= 0) { 1717 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1718 if (ab) { 1719 audit_log_format(ab, "fd0=%d fd1=%d", 1720 context->fds[0], context->fds[1]); 1721 audit_log_end(ab); 1722 } 1723 } 1724 1725 if (context->sockaddr_len) { 1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1727 if (ab) { 1728 audit_log_format(ab, "saddr="); 1729 audit_log_n_hex(ab, (void *)context->sockaddr, 1730 context->sockaddr_len); 1731 audit_log_end(ab); 1732 } 1733 } 1734 1735 for (aux = context->aux_pids; aux; aux = aux->next) { 1736 struct audit_aux_data_pids *axs = (void *)aux; 1737 1738 for (i = 0; i < axs->pid_count; i++) 1739 if (audit_log_pid_context(context, axs->target_pid[i], 1740 axs->target_auid[i], 1741 axs->target_uid[i], 1742 axs->target_sessionid[i], 1743 axs->target_sid[i], 1744 axs->target_comm[i])) 1745 call_panic = 1; 1746 } 1747 1748 if (context->target_pid && 1749 audit_log_pid_context(context, context->target_pid, 1750 context->target_auid, context->target_uid, 1751 context->target_sessionid, 1752 context->target_sid, context->target_comm)) 1753 call_panic = 1; 1754 1755 if (context->pwd.dentry && context->pwd.mnt) { 1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1757 if (ab) { 1758 audit_log_d_path(ab, "cwd=", &context->pwd); 1759 audit_log_end(ab); 1760 } 1761 } 1762 1763 i = 0; 1764 list_for_each_entry(n, &context->names_list, list) { 1765 if (n->hidden) 1766 continue; 1767 audit_log_name(context, n, NULL, i++, &call_panic); 1768 } 1769 1770 if (context->context == AUDIT_CTX_SYSCALL) 1771 audit_log_proctitle(); 1772 1773 /* Send end of event record to help user space know we are finished */ 1774 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1775 if (ab) 1776 audit_log_end(ab); 1777 if (call_panic) 1778 audit_panic("error in audit_log_exit()"); 1779 } 1780 1781 /** 1782 * __audit_free - free a per-task audit context 1783 * @tsk: task whose audit context block to free 1784 * 1785 * Called from copy_process, do_exit, and the io_uring code 1786 */ 1787 void __audit_free(struct task_struct *tsk) 1788 { 1789 struct audit_context *context = tsk->audit_context; 1790 1791 if (!context) 1792 return; 1793 1794 /* this may generate CONFIG_CHANGE records */ 1795 if (!list_empty(&context->killed_trees)) 1796 audit_kill_trees(context); 1797 1798 /* We are called either by do_exit() or the fork() error handling code; 1799 * in the former case tsk == current and in the latter tsk is a 1800 * random task_struct that doesn't doesn't have any meaningful data we 1801 * need to log via audit_log_exit(). 1802 */ 1803 if (tsk == current && !context->dummy) { 1804 context->return_valid = AUDITSC_INVALID; 1805 context->return_code = 0; 1806 if (context->context == AUDIT_CTX_SYSCALL) { 1807 audit_filter_syscall(tsk, context); 1808 audit_filter_inodes(tsk, context); 1809 if (context->current_state == AUDIT_STATE_RECORD) 1810 audit_log_exit(); 1811 } else if (context->context == AUDIT_CTX_URING) { 1812 /* TODO: verify this case is real and valid */ 1813 audit_filter_uring(tsk, context); 1814 audit_filter_inodes(tsk, context); 1815 if (context->current_state == AUDIT_STATE_RECORD) 1816 audit_log_uring(context); 1817 } 1818 } 1819 1820 audit_set_context(tsk, NULL); 1821 audit_free_context(context); 1822 } 1823 1824 /** 1825 * audit_return_fixup - fixup the return codes in the audit_context 1826 * @ctx: the audit_context 1827 * @success: true/false value to indicate if the operation succeeded or not 1828 * @code: operation return code 1829 * 1830 * We need to fixup the return code in the audit logs if the actual return 1831 * codes are later going to be fixed by the arch specific signal handlers. 1832 */ 1833 static void audit_return_fixup(struct audit_context *ctx, 1834 int success, long code) 1835 { 1836 /* 1837 * This is actually a test for: 1838 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1839 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1840 * 1841 * but is faster than a bunch of || 1842 */ 1843 if (unlikely(code <= -ERESTARTSYS) && 1844 (code >= -ERESTART_RESTARTBLOCK) && 1845 (code != -ENOIOCTLCMD)) 1846 ctx->return_code = -EINTR; 1847 else 1848 ctx->return_code = code; 1849 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1850 } 1851 1852 /** 1853 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1854 * @op: the io_uring opcode 1855 * 1856 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1857 * operations. This function should only ever be called from 1858 * audit_uring_entry() as we rely on the audit context checking present in that 1859 * function. 1860 */ 1861 void __audit_uring_entry(u8 op) 1862 { 1863 struct audit_context *ctx = audit_context(); 1864 1865 if (ctx->state == AUDIT_STATE_DISABLED) 1866 return; 1867 1868 /* 1869 * NOTE: It's possible that we can be called from the process' context 1870 * before it returns to userspace, and before audit_syscall_exit() 1871 * is called. In this case there is not much to do, just record 1872 * the io_uring details and return. 1873 */ 1874 ctx->uring_op = op; 1875 if (ctx->context == AUDIT_CTX_SYSCALL) 1876 return; 1877 1878 ctx->dummy = !audit_n_rules; 1879 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1880 ctx->prio = 0; 1881 1882 ctx->context = AUDIT_CTX_URING; 1883 ctx->current_state = ctx->state; 1884 ktime_get_coarse_real_ts64(&ctx->ctime); 1885 } 1886 1887 /** 1888 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1889 * @success: true/false value to indicate if the operation succeeded or not 1890 * @code: operation return code 1891 * 1892 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1893 * operations. This function should only ever be called from 1894 * audit_uring_exit() as we rely on the audit context checking present in that 1895 * function. 1896 */ 1897 void __audit_uring_exit(int success, long code) 1898 { 1899 struct audit_context *ctx = audit_context(); 1900 1901 if (ctx->context == AUDIT_CTX_SYSCALL) { 1902 /* 1903 * NOTE: See the note in __audit_uring_entry() about the case 1904 * where we may be called from process context before we 1905 * return to userspace via audit_syscall_exit(). In this 1906 * case we simply emit a URINGOP record and bail, the 1907 * normal syscall exit handling will take care of 1908 * everything else. 1909 * It is also worth mentioning that when we are called, 1910 * the current process creds may differ from the creds 1911 * used during the normal syscall processing; keep that 1912 * in mind if/when we move the record generation code. 1913 */ 1914 1915 /* 1916 * We need to filter on the syscall info here to decide if we 1917 * should emit a URINGOP record. I know it seems odd but this 1918 * solves the problem where users have a filter to block *all* 1919 * syscall records in the "exit" filter; we want to preserve 1920 * the behavior here. 1921 */ 1922 audit_filter_syscall(current, ctx); 1923 if (ctx->current_state != AUDIT_STATE_RECORD) 1924 audit_filter_uring(current, ctx); 1925 audit_filter_inodes(current, ctx); 1926 if (ctx->current_state != AUDIT_STATE_RECORD) 1927 return; 1928 1929 audit_log_uring(ctx); 1930 return; 1931 } 1932 1933 /* this may generate CONFIG_CHANGE records */ 1934 if (!list_empty(&ctx->killed_trees)) 1935 audit_kill_trees(ctx); 1936 1937 /* run through both filters to ensure we set the filterkey properly */ 1938 audit_filter_uring(current, ctx); 1939 audit_filter_inodes(current, ctx); 1940 if (ctx->current_state != AUDIT_STATE_RECORD) 1941 goto out; 1942 audit_return_fixup(ctx, success, code); 1943 audit_log_exit(); 1944 1945 out: 1946 audit_reset_context(ctx); 1947 } 1948 1949 /** 1950 * __audit_syscall_entry - fill in an audit record at syscall entry 1951 * @major: major syscall type (function) 1952 * @a1: additional syscall register 1 1953 * @a2: additional syscall register 2 1954 * @a3: additional syscall register 3 1955 * @a4: additional syscall register 4 1956 * 1957 * Fill in audit context at syscall entry. This only happens if the 1958 * audit context was created when the task was created and the state or 1959 * filters demand the audit context be built. If the state from the 1960 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 1961 * then the record will be written at syscall exit time (otherwise, it 1962 * will only be written if another part of the kernel requests that it 1963 * be written). 1964 */ 1965 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1966 unsigned long a3, unsigned long a4) 1967 { 1968 struct audit_context *context = audit_context(); 1969 enum audit_state state; 1970 1971 if (!audit_enabled || !context) 1972 return; 1973 1974 WARN_ON(context->context != AUDIT_CTX_UNUSED); 1975 WARN_ON(context->name_count); 1976 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 1977 audit_panic("unrecoverable error in audit_syscall_entry()"); 1978 return; 1979 } 1980 1981 state = context->state; 1982 if (state == AUDIT_STATE_DISABLED) 1983 return; 1984 1985 context->dummy = !audit_n_rules; 1986 if (!context->dummy && state == AUDIT_STATE_BUILD) { 1987 context->prio = 0; 1988 if (auditd_test_task(current)) 1989 return; 1990 } 1991 1992 context->arch = syscall_get_arch(current); 1993 context->major = major; 1994 context->argv[0] = a1; 1995 context->argv[1] = a2; 1996 context->argv[2] = a3; 1997 context->argv[3] = a4; 1998 context->context = AUDIT_CTX_SYSCALL; 1999 context->current_state = state; 2000 ktime_get_coarse_real_ts64(&context->ctime); 2001 } 2002 2003 /** 2004 * __audit_syscall_exit - deallocate audit context after a system call 2005 * @success: success value of the syscall 2006 * @return_code: return value of the syscall 2007 * 2008 * Tear down after system call. If the audit context has been marked as 2009 * auditable (either because of the AUDIT_STATE_RECORD state from 2010 * filtering, or because some other part of the kernel wrote an audit 2011 * message), then write out the syscall information. In call cases, 2012 * free the names stored from getname(). 2013 */ 2014 void __audit_syscall_exit(int success, long return_code) 2015 { 2016 struct audit_context *context = audit_context(); 2017 2018 if (!context || context->dummy || 2019 context->context != AUDIT_CTX_SYSCALL) 2020 goto out; 2021 2022 /* this may generate CONFIG_CHANGE records */ 2023 if (!list_empty(&context->killed_trees)) 2024 audit_kill_trees(context); 2025 2026 /* run through both filters to ensure we set the filterkey properly */ 2027 audit_filter_syscall(current, context); 2028 audit_filter_inodes(current, context); 2029 if (context->current_state < AUDIT_STATE_RECORD) 2030 goto out; 2031 2032 audit_return_fixup(context, success, return_code); 2033 audit_log_exit(); 2034 2035 out: 2036 audit_reset_context(context); 2037 } 2038 2039 static inline void handle_one(const struct inode *inode) 2040 { 2041 struct audit_context *context; 2042 struct audit_tree_refs *p; 2043 struct audit_chunk *chunk; 2044 int count; 2045 2046 if (likely(!inode->i_fsnotify_marks)) 2047 return; 2048 context = audit_context(); 2049 p = context->trees; 2050 count = context->tree_count; 2051 rcu_read_lock(); 2052 chunk = audit_tree_lookup(inode); 2053 rcu_read_unlock(); 2054 if (!chunk) 2055 return; 2056 if (likely(put_tree_ref(context, chunk))) 2057 return; 2058 if (unlikely(!grow_tree_refs(context))) { 2059 pr_warn("out of memory, audit has lost a tree reference\n"); 2060 audit_set_auditable(context); 2061 audit_put_chunk(chunk); 2062 unroll_tree_refs(context, p, count); 2063 return; 2064 } 2065 put_tree_ref(context, chunk); 2066 } 2067 2068 static void handle_path(const struct dentry *dentry) 2069 { 2070 struct audit_context *context; 2071 struct audit_tree_refs *p; 2072 const struct dentry *d, *parent; 2073 struct audit_chunk *drop; 2074 unsigned long seq; 2075 int count; 2076 2077 context = audit_context(); 2078 p = context->trees; 2079 count = context->tree_count; 2080 retry: 2081 drop = NULL; 2082 d = dentry; 2083 rcu_read_lock(); 2084 seq = read_seqbegin(&rename_lock); 2085 for(;;) { 2086 struct inode *inode = d_backing_inode(d); 2087 2088 if (inode && unlikely(inode->i_fsnotify_marks)) { 2089 struct audit_chunk *chunk; 2090 2091 chunk = audit_tree_lookup(inode); 2092 if (chunk) { 2093 if (unlikely(!put_tree_ref(context, chunk))) { 2094 drop = chunk; 2095 break; 2096 } 2097 } 2098 } 2099 parent = d->d_parent; 2100 if (parent == d) 2101 break; 2102 d = parent; 2103 } 2104 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2105 rcu_read_unlock(); 2106 if (!drop) { 2107 /* just a race with rename */ 2108 unroll_tree_refs(context, p, count); 2109 goto retry; 2110 } 2111 audit_put_chunk(drop); 2112 if (grow_tree_refs(context)) { 2113 /* OK, got more space */ 2114 unroll_tree_refs(context, p, count); 2115 goto retry; 2116 } 2117 /* too bad */ 2118 pr_warn("out of memory, audit has lost a tree reference\n"); 2119 unroll_tree_refs(context, p, count); 2120 audit_set_auditable(context); 2121 return; 2122 } 2123 rcu_read_unlock(); 2124 } 2125 2126 static struct audit_names *audit_alloc_name(struct audit_context *context, 2127 unsigned char type) 2128 { 2129 struct audit_names *aname; 2130 2131 if (context->name_count < AUDIT_NAMES) { 2132 aname = &context->preallocated_names[context->name_count]; 2133 memset(aname, 0, sizeof(*aname)); 2134 } else { 2135 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2136 if (!aname) 2137 return NULL; 2138 aname->should_free = true; 2139 } 2140 2141 aname->ino = AUDIT_INO_UNSET; 2142 aname->type = type; 2143 list_add_tail(&aname->list, &context->names_list); 2144 2145 context->name_count++; 2146 if (!context->pwd.dentry) 2147 get_fs_pwd(current->fs, &context->pwd); 2148 return aname; 2149 } 2150 2151 /** 2152 * __audit_reusename - fill out filename with info from existing entry 2153 * @uptr: userland ptr to pathname 2154 * 2155 * Search the audit_names list for the current audit context. If there is an 2156 * existing entry with a matching "uptr" then return the filename 2157 * associated with that audit_name. If not, return NULL. 2158 */ 2159 struct filename * 2160 __audit_reusename(const __user char *uptr) 2161 { 2162 struct audit_context *context = audit_context(); 2163 struct audit_names *n; 2164 2165 list_for_each_entry(n, &context->names_list, list) { 2166 if (!n->name) 2167 continue; 2168 if (n->name->uptr == uptr) { 2169 n->name->refcnt++; 2170 return n->name; 2171 } 2172 } 2173 return NULL; 2174 } 2175 2176 /** 2177 * __audit_getname - add a name to the list 2178 * @name: name to add 2179 * 2180 * Add a name to the list of audit names for this context. 2181 * Called from fs/namei.c:getname(). 2182 */ 2183 void __audit_getname(struct filename *name) 2184 { 2185 struct audit_context *context = audit_context(); 2186 struct audit_names *n; 2187 2188 if (context->context == AUDIT_CTX_UNUSED) 2189 return; 2190 2191 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2192 if (!n) 2193 return; 2194 2195 n->name = name; 2196 n->name_len = AUDIT_NAME_FULL; 2197 name->aname = n; 2198 name->refcnt++; 2199 } 2200 2201 static inline int audit_copy_fcaps(struct audit_names *name, 2202 const struct dentry *dentry) 2203 { 2204 struct cpu_vfs_cap_data caps; 2205 int rc; 2206 2207 if (!dentry) 2208 return 0; 2209 2210 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps); 2211 if (rc) 2212 return rc; 2213 2214 name->fcap.permitted = caps.permitted; 2215 name->fcap.inheritable = caps.inheritable; 2216 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2217 name->fcap.rootid = caps.rootid; 2218 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2219 VFS_CAP_REVISION_SHIFT; 2220 2221 return 0; 2222 } 2223 2224 /* Copy inode data into an audit_names. */ 2225 static void audit_copy_inode(struct audit_names *name, 2226 const struct dentry *dentry, 2227 struct inode *inode, unsigned int flags) 2228 { 2229 name->ino = inode->i_ino; 2230 name->dev = inode->i_sb->s_dev; 2231 name->mode = inode->i_mode; 2232 name->uid = inode->i_uid; 2233 name->gid = inode->i_gid; 2234 name->rdev = inode->i_rdev; 2235 security_inode_getsecid(inode, &name->osid); 2236 if (flags & AUDIT_INODE_NOEVAL) { 2237 name->fcap_ver = -1; 2238 return; 2239 } 2240 audit_copy_fcaps(name, dentry); 2241 } 2242 2243 /** 2244 * __audit_inode - store the inode and device from a lookup 2245 * @name: name being audited 2246 * @dentry: dentry being audited 2247 * @flags: attributes for this particular entry 2248 */ 2249 void __audit_inode(struct filename *name, const struct dentry *dentry, 2250 unsigned int flags) 2251 { 2252 struct audit_context *context = audit_context(); 2253 struct inode *inode = d_backing_inode(dentry); 2254 struct audit_names *n; 2255 bool parent = flags & AUDIT_INODE_PARENT; 2256 struct audit_entry *e; 2257 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2258 int i; 2259 2260 if (context->context == AUDIT_CTX_UNUSED) 2261 return; 2262 2263 rcu_read_lock(); 2264 list_for_each_entry_rcu(e, list, list) { 2265 for (i = 0; i < e->rule.field_count; i++) { 2266 struct audit_field *f = &e->rule.fields[i]; 2267 2268 if (f->type == AUDIT_FSTYPE 2269 && audit_comparator(inode->i_sb->s_magic, 2270 f->op, f->val) 2271 && e->rule.action == AUDIT_NEVER) { 2272 rcu_read_unlock(); 2273 return; 2274 } 2275 } 2276 } 2277 rcu_read_unlock(); 2278 2279 if (!name) 2280 goto out_alloc; 2281 2282 /* 2283 * If we have a pointer to an audit_names entry already, then we can 2284 * just use it directly if the type is correct. 2285 */ 2286 n = name->aname; 2287 if (n) { 2288 if (parent) { 2289 if (n->type == AUDIT_TYPE_PARENT || 2290 n->type == AUDIT_TYPE_UNKNOWN) 2291 goto out; 2292 } else { 2293 if (n->type != AUDIT_TYPE_PARENT) 2294 goto out; 2295 } 2296 } 2297 2298 list_for_each_entry_reverse(n, &context->names_list, list) { 2299 if (n->ino) { 2300 /* valid inode number, use that for the comparison */ 2301 if (n->ino != inode->i_ino || 2302 n->dev != inode->i_sb->s_dev) 2303 continue; 2304 } else if (n->name) { 2305 /* inode number has not been set, check the name */ 2306 if (strcmp(n->name->name, name->name)) 2307 continue; 2308 } else 2309 /* no inode and no name (?!) ... this is odd ... */ 2310 continue; 2311 2312 /* match the correct record type */ 2313 if (parent) { 2314 if (n->type == AUDIT_TYPE_PARENT || 2315 n->type == AUDIT_TYPE_UNKNOWN) 2316 goto out; 2317 } else { 2318 if (n->type != AUDIT_TYPE_PARENT) 2319 goto out; 2320 } 2321 } 2322 2323 out_alloc: 2324 /* unable to find an entry with both a matching name and type */ 2325 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2326 if (!n) 2327 return; 2328 if (name) { 2329 n->name = name; 2330 name->refcnt++; 2331 } 2332 2333 out: 2334 if (parent) { 2335 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2336 n->type = AUDIT_TYPE_PARENT; 2337 if (flags & AUDIT_INODE_HIDDEN) 2338 n->hidden = true; 2339 } else { 2340 n->name_len = AUDIT_NAME_FULL; 2341 n->type = AUDIT_TYPE_NORMAL; 2342 } 2343 handle_path(dentry); 2344 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2345 } 2346 2347 void __audit_file(const struct file *file) 2348 { 2349 __audit_inode(NULL, file->f_path.dentry, 0); 2350 } 2351 2352 /** 2353 * __audit_inode_child - collect inode info for created/removed objects 2354 * @parent: inode of dentry parent 2355 * @dentry: dentry being audited 2356 * @type: AUDIT_TYPE_* value that we're looking for 2357 * 2358 * For syscalls that create or remove filesystem objects, audit_inode 2359 * can only collect information for the filesystem object's parent. 2360 * This call updates the audit context with the child's information. 2361 * Syscalls that create a new filesystem object must be hooked after 2362 * the object is created. Syscalls that remove a filesystem object 2363 * must be hooked prior, in order to capture the target inode during 2364 * unsuccessful attempts. 2365 */ 2366 void __audit_inode_child(struct inode *parent, 2367 const struct dentry *dentry, 2368 const unsigned char type) 2369 { 2370 struct audit_context *context = audit_context(); 2371 struct inode *inode = d_backing_inode(dentry); 2372 const struct qstr *dname = &dentry->d_name; 2373 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2374 struct audit_entry *e; 2375 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2376 int i; 2377 2378 if (context->context == AUDIT_CTX_UNUSED) 2379 return; 2380 2381 rcu_read_lock(); 2382 list_for_each_entry_rcu(e, list, list) { 2383 for (i = 0; i < e->rule.field_count; i++) { 2384 struct audit_field *f = &e->rule.fields[i]; 2385 2386 if (f->type == AUDIT_FSTYPE 2387 && audit_comparator(parent->i_sb->s_magic, 2388 f->op, f->val) 2389 && e->rule.action == AUDIT_NEVER) { 2390 rcu_read_unlock(); 2391 return; 2392 } 2393 } 2394 } 2395 rcu_read_unlock(); 2396 2397 if (inode) 2398 handle_one(inode); 2399 2400 /* look for a parent entry first */ 2401 list_for_each_entry(n, &context->names_list, list) { 2402 if (!n->name || 2403 (n->type != AUDIT_TYPE_PARENT && 2404 n->type != AUDIT_TYPE_UNKNOWN)) 2405 continue; 2406 2407 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2408 !audit_compare_dname_path(dname, 2409 n->name->name, n->name_len)) { 2410 if (n->type == AUDIT_TYPE_UNKNOWN) 2411 n->type = AUDIT_TYPE_PARENT; 2412 found_parent = n; 2413 break; 2414 } 2415 } 2416 2417 /* is there a matching child entry? */ 2418 list_for_each_entry(n, &context->names_list, list) { 2419 /* can only match entries that have a name */ 2420 if (!n->name || 2421 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2422 continue; 2423 2424 if (!strcmp(dname->name, n->name->name) || 2425 !audit_compare_dname_path(dname, n->name->name, 2426 found_parent ? 2427 found_parent->name_len : 2428 AUDIT_NAME_FULL)) { 2429 if (n->type == AUDIT_TYPE_UNKNOWN) 2430 n->type = type; 2431 found_child = n; 2432 break; 2433 } 2434 } 2435 2436 if (!found_parent) { 2437 /* create a new, "anonymous" parent record */ 2438 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2439 if (!n) 2440 return; 2441 audit_copy_inode(n, NULL, parent, 0); 2442 } 2443 2444 if (!found_child) { 2445 found_child = audit_alloc_name(context, type); 2446 if (!found_child) 2447 return; 2448 2449 /* Re-use the name belonging to the slot for a matching parent 2450 * directory. All names for this context are relinquished in 2451 * audit_free_names() */ 2452 if (found_parent) { 2453 found_child->name = found_parent->name; 2454 found_child->name_len = AUDIT_NAME_FULL; 2455 found_child->name->refcnt++; 2456 } 2457 } 2458 2459 if (inode) 2460 audit_copy_inode(found_child, dentry, inode, 0); 2461 else 2462 found_child->ino = AUDIT_INO_UNSET; 2463 } 2464 EXPORT_SYMBOL_GPL(__audit_inode_child); 2465 2466 /** 2467 * auditsc_get_stamp - get local copies of audit_context values 2468 * @ctx: audit_context for the task 2469 * @t: timespec64 to store time recorded in the audit_context 2470 * @serial: serial value that is recorded in the audit_context 2471 * 2472 * Also sets the context as auditable. 2473 */ 2474 int auditsc_get_stamp(struct audit_context *ctx, 2475 struct timespec64 *t, unsigned int *serial) 2476 { 2477 if (ctx->context == AUDIT_CTX_UNUSED) 2478 return 0; 2479 if (!ctx->serial) 2480 ctx->serial = audit_serial(); 2481 t->tv_sec = ctx->ctime.tv_sec; 2482 t->tv_nsec = ctx->ctime.tv_nsec; 2483 *serial = ctx->serial; 2484 if (!ctx->prio) { 2485 ctx->prio = 1; 2486 ctx->current_state = AUDIT_STATE_RECORD; 2487 } 2488 return 1; 2489 } 2490 2491 /** 2492 * __audit_mq_open - record audit data for a POSIX MQ open 2493 * @oflag: open flag 2494 * @mode: mode bits 2495 * @attr: queue attributes 2496 * 2497 */ 2498 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2499 { 2500 struct audit_context *context = audit_context(); 2501 2502 if (attr) 2503 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2504 else 2505 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2506 2507 context->mq_open.oflag = oflag; 2508 context->mq_open.mode = mode; 2509 2510 context->type = AUDIT_MQ_OPEN; 2511 } 2512 2513 /** 2514 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2515 * @mqdes: MQ descriptor 2516 * @msg_len: Message length 2517 * @msg_prio: Message priority 2518 * @abs_timeout: Message timeout in absolute time 2519 * 2520 */ 2521 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2522 const struct timespec64 *abs_timeout) 2523 { 2524 struct audit_context *context = audit_context(); 2525 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2526 2527 if (abs_timeout) 2528 memcpy(p, abs_timeout, sizeof(*p)); 2529 else 2530 memset(p, 0, sizeof(*p)); 2531 2532 context->mq_sendrecv.mqdes = mqdes; 2533 context->mq_sendrecv.msg_len = msg_len; 2534 context->mq_sendrecv.msg_prio = msg_prio; 2535 2536 context->type = AUDIT_MQ_SENDRECV; 2537 } 2538 2539 /** 2540 * __audit_mq_notify - record audit data for a POSIX MQ notify 2541 * @mqdes: MQ descriptor 2542 * @notification: Notification event 2543 * 2544 */ 2545 2546 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2547 { 2548 struct audit_context *context = audit_context(); 2549 2550 if (notification) 2551 context->mq_notify.sigev_signo = notification->sigev_signo; 2552 else 2553 context->mq_notify.sigev_signo = 0; 2554 2555 context->mq_notify.mqdes = mqdes; 2556 context->type = AUDIT_MQ_NOTIFY; 2557 } 2558 2559 /** 2560 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2561 * @mqdes: MQ descriptor 2562 * @mqstat: MQ flags 2563 * 2564 */ 2565 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2566 { 2567 struct audit_context *context = audit_context(); 2568 2569 context->mq_getsetattr.mqdes = mqdes; 2570 context->mq_getsetattr.mqstat = *mqstat; 2571 context->type = AUDIT_MQ_GETSETATTR; 2572 } 2573 2574 /** 2575 * __audit_ipc_obj - record audit data for ipc object 2576 * @ipcp: ipc permissions 2577 * 2578 */ 2579 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2580 { 2581 struct audit_context *context = audit_context(); 2582 2583 context->ipc.uid = ipcp->uid; 2584 context->ipc.gid = ipcp->gid; 2585 context->ipc.mode = ipcp->mode; 2586 context->ipc.has_perm = 0; 2587 security_ipc_getsecid(ipcp, &context->ipc.osid); 2588 context->type = AUDIT_IPC; 2589 } 2590 2591 /** 2592 * __audit_ipc_set_perm - record audit data for new ipc permissions 2593 * @qbytes: msgq bytes 2594 * @uid: msgq user id 2595 * @gid: msgq group id 2596 * @mode: msgq mode (permissions) 2597 * 2598 * Called only after audit_ipc_obj(). 2599 */ 2600 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2601 { 2602 struct audit_context *context = audit_context(); 2603 2604 context->ipc.qbytes = qbytes; 2605 context->ipc.perm_uid = uid; 2606 context->ipc.perm_gid = gid; 2607 context->ipc.perm_mode = mode; 2608 context->ipc.has_perm = 1; 2609 } 2610 2611 void __audit_bprm(struct linux_binprm *bprm) 2612 { 2613 struct audit_context *context = audit_context(); 2614 2615 context->type = AUDIT_EXECVE; 2616 context->execve.argc = bprm->argc; 2617 } 2618 2619 2620 /** 2621 * __audit_socketcall - record audit data for sys_socketcall 2622 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2623 * @args: args array 2624 * 2625 */ 2626 int __audit_socketcall(int nargs, unsigned long *args) 2627 { 2628 struct audit_context *context = audit_context(); 2629 2630 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2631 return -EINVAL; 2632 context->type = AUDIT_SOCKETCALL; 2633 context->socketcall.nargs = nargs; 2634 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2635 return 0; 2636 } 2637 2638 /** 2639 * __audit_fd_pair - record audit data for pipe and socketpair 2640 * @fd1: the first file descriptor 2641 * @fd2: the second file descriptor 2642 * 2643 */ 2644 void __audit_fd_pair(int fd1, int fd2) 2645 { 2646 struct audit_context *context = audit_context(); 2647 2648 context->fds[0] = fd1; 2649 context->fds[1] = fd2; 2650 } 2651 2652 /** 2653 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2654 * @len: data length in user space 2655 * @a: data address in kernel space 2656 * 2657 * Returns 0 for success or NULL context or < 0 on error. 2658 */ 2659 int __audit_sockaddr(int len, void *a) 2660 { 2661 struct audit_context *context = audit_context(); 2662 2663 if (!context->sockaddr) { 2664 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2665 2666 if (!p) 2667 return -ENOMEM; 2668 context->sockaddr = p; 2669 } 2670 2671 context->sockaddr_len = len; 2672 memcpy(context->sockaddr, a, len); 2673 return 0; 2674 } 2675 2676 void __audit_ptrace(struct task_struct *t) 2677 { 2678 struct audit_context *context = audit_context(); 2679 2680 context->target_pid = task_tgid_nr(t); 2681 context->target_auid = audit_get_loginuid(t); 2682 context->target_uid = task_uid(t); 2683 context->target_sessionid = audit_get_sessionid(t); 2684 security_task_getsecid_obj(t, &context->target_sid); 2685 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2686 } 2687 2688 /** 2689 * audit_signal_info_syscall - record signal info for syscalls 2690 * @t: task being signaled 2691 * 2692 * If the audit subsystem is being terminated, record the task (pid) 2693 * and uid that is doing that. 2694 */ 2695 int audit_signal_info_syscall(struct task_struct *t) 2696 { 2697 struct audit_aux_data_pids *axp; 2698 struct audit_context *ctx = audit_context(); 2699 kuid_t t_uid = task_uid(t); 2700 2701 if (!audit_signals || audit_dummy_context()) 2702 return 0; 2703 2704 /* optimize the common case by putting first signal recipient directly 2705 * in audit_context */ 2706 if (!ctx->target_pid) { 2707 ctx->target_pid = task_tgid_nr(t); 2708 ctx->target_auid = audit_get_loginuid(t); 2709 ctx->target_uid = t_uid; 2710 ctx->target_sessionid = audit_get_sessionid(t); 2711 security_task_getsecid_obj(t, &ctx->target_sid); 2712 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2713 return 0; 2714 } 2715 2716 axp = (void *)ctx->aux_pids; 2717 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2718 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2719 if (!axp) 2720 return -ENOMEM; 2721 2722 axp->d.type = AUDIT_OBJ_PID; 2723 axp->d.next = ctx->aux_pids; 2724 ctx->aux_pids = (void *)axp; 2725 } 2726 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2727 2728 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2729 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2730 axp->target_uid[axp->pid_count] = t_uid; 2731 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2732 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2733 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2734 axp->pid_count++; 2735 2736 return 0; 2737 } 2738 2739 /** 2740 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2741 * @bprm: pointer to the bprm being processed 2742 * @new: the proposed new credentials 2743 * @old: the old credentials 2744 * 2745 * Simply check if the proc already has the caps given by the file and if not 2746 * store the priv escalation info for later auditing at the end of the syscall 2747 * 2748 * -Eric 2749 */ 2750 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2751 const struct cred *new, const struct cred *old) 2752 { 2753 struct audit_aux_data_bprm_fcaps *ax; 2754 struct audit_context *context = audit_context(); 2755 struct cpu_vfs_cap_data vcaps; 2756 2757 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2758 if (!ax) 2759 return -ENOMEM; 2760 2761 ax->d.type = AUDIT_BPRM_FCAPS; 2762 ax->d.next = context->aux; 2763 context->aux = (void *)ax; 2764 2765 get_vfs_caps_from_disk(&init_user_ns, 2766 bprm->file->f_path.dentry, &vcaps); 2767 2768 ax->fcap.permitted = vcaps.permitted; 2769 ax->fcap.inheritable = vcaps.inheritable; 2770 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2771 ax->fcap.rootid = vcaps.rootid; 2772 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2773 2774 ax->old_pcap.permitted = old->cap_permitted; 2775 ax->old_pcap.inheritable = old->cap_inheritable; 2776 ax->old_pcap.effective = old->cap_effective; 2777 ax->old_pcap.ambient = old->cap_ambient; 2778 2779 ax->new_pcap.permitted = new->cap_permitted; 2780 ax->new_pcap.inheritable = new->cap_inheritable; 2781 ax->new_pcap.effective = new->cap_effective; 2782 ax->new_pcap.ambient = new->cap_ambient; 2783 return 0; 2784 } 2785 2786 /** 2787 * __audit_log_capset - store information about the arguments to the capset syscall 2788 * @new: the new credentials 2789 * @old: the old (current) credentials 2790 * 2791 * Record the arguments userspace sent to sys_capset for later printing by the 2792 * audit system if applicable 2793 */ 2794 void __audit_log_capset(const struct cred *new, const struct cred *old) 2795 { 2796 struct audit_context *context = audit_context(); 2797 2798 context->capset.pid = task_tgid_nr(current); 2799 context->capset.cap.effective = new->cap_effective; 2800 context->capset.cap.inheritable = new->cap_effective; 2801 context->capset.cap.permitted = new->cap_permitted; 2802 context->capset.cap.ambient = new->cap_ambient; 2803 context->type = AUDIT_CAPSET; 2804 } 2805 2806 void __audit_mmap_fd(int fd, int flags) 2807 { 2808 struct audit_context *context = audit_context(); 2809 2810 context->mmap.fd = fd; 2811 context->mmap.flags = flags; 2812 context->type = AUDIT_MMAP; 2813 } 2814 2815 void __audit_openat2_how(struct open_how *how) 2816 { 2817 struct audit_context *context = audit_context(); 2818 2819 context->openat2.flags = how->flags; 2820 context->openat2.mode = how->mode; 2821 context->openat2.resolve = how->resolve; 2822 context->type = AUDIT_OPENAT2; 2823 } 2824 2825 void __audit_log_kern_module(char *name) 2826 { 2827 struct audit_context *context = audit_context(); 2828 2829 context->module.name = kstrdup(name, GFP_KERNEL); 2830 if (!context->module.name) 2831 audit_log_lost("out of memory in __audit_log_kern_module"); 2832 context->type = AUDIT_KERN_MODULE; 2833 } 2834 2835 void __audit_fanotify(unsigned int response) 2836 { 2837 audit_log(audit_context(), GFP_KERNEL, 2838 AUDIT_FANOTIFY, "resp=%u", response); 2839 } 2840 2841 void __audit_tk_injoffset(struct timespec64 offset) 2842 { 2843 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET, 2844 "sec=%lli nsec=%li", 2845 (long long)offset.tv_sec, offset.tv_nsec); 2846 } 2847 2848 static void audit_log_ntp_val(const struct audit_ntp_data *ad, 2849 const char *op, enum audit_ntp_type type) 2850 { 2851 const struct audit_ntp_val *val = &ad->vals[type]; 2852 2853 if (val->newval == val->oldval) 2854 return; 2855 2856 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL, 2857 "op=%s old=%lli new=%lli", op, val->oldval, val->newval); 2858 } 2859 2860 void __audit_ntp_log(const struct audit_ntp_data *ad) 2861 { 2862 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET); 2863 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ); 2864 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS); 2865 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI); 2866 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK); 2867 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST); 2868 } 2869 2870 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2871 enum audit_nfcfgop op, gfp_t gfp) 2872 { 2873 struct audit_buffer *ab; 2874 char comm[sizeof(current->comm)]; 2875 2876 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2877 if (!ab) 2878 return; 2879 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2880 name, af, nentries, audit_nfcfgs[op].s); 2881 2882 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2883 audit_log_task_context(ab); /* subj= */ 2884 audit_log_format(ab, " comm="); 2885 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2886 audit_log_end(ab); 2887 } 2888 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2889 2890 static void audit_log_task(struct audit_buffer *ab) 2891 { 2892 kuid_t auid, uid; 2893 kgid_t gid; 2894 unsigned int sessionid; 2895 char comm[sizeof(current->comm)]; 2896 2897 auid = audit_get_loginuid(current); 2898 sessionid = audit_get_sessionid(current); 2899 current_uid_gid(&uid, &gid); 2900 2901 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2902 from_kuid(&init_user_ns, auid), 2903 from_kuid(&init_user_ns, uid), 2904 from_kgid(&init_user_ns, gid), 2905 sessionid); 2906 audit_log_task_context(ab); 2907 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2908 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2909 audit_log_d_path_exe(ab, current->mm); 2910 } 2911 2912 /** 2913 * audit_core_dumps - record information about processes that end abnormally 2914 * @signr: signal value 2915 * 2916 * If a process ends with a core dump, something fishy is going on and we 2917 * should record the event for investigation. 2918 */ 2919 void audit_core_dumps(long signr) 2920 { 2921 struct audit_buffer *ab; 2922 2923 if (!audit_enabled) 2924 return; 2925 2926 if (signr == SIGQUIT) /* don't care for those */ 2927 return; 2928 2929 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2930 if (unlikely(!ab)) 2931 return; 2932 audit_log_task(ab); 2933 audit_log_format(ab, " sig=%ld res=1", signr); 2934 audit_log_end(ab); 2935 } 2936 2937 /** 2938 * audit_seccomp - record information about a seccomp action 2939 * @syscall: syscall number 2940 * @signr: signal value 2941 * @code: the seccomp action 2942 * 2943 * Record the information associated with a seccomp action. Event filtering for 2944 * seccomp actions that are not to be logged is done in seccomp_log(). 2945 * Therefore, this function forces auditing independent of the audit_enabled 2946 * and dummy context state because seccomp actions should be logged even when 2947 * audit is not in use. 2948 */ 2949 void audit_seccomp(unsigned long syscall, long signr, int code) 2950 { 2951 struct audit_buffer *ab; 2952 2953 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2954 if (unlikely(!ab)) 2955 return; 2956 audit_log_task(ab); 2957 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2958 signr, syscall_get_arch(current), syscall, 2959 in_compat_syscall(), KSTK_EIP(current), code); 2960 audit_log_end(ab); 2961 } 2962 2963 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2964 int res) 2965 { 2966 struct audit_buffer *ab; 2967 2968 if (!audit_enabled) 2969 return; 2970 2971 ab = audit_log_start(audit_context(), GFP_KERNEL, 2972 AUDIT_CONFIG_CHANGE); 2973 if (unlikely(!ab)) 2974 return; 2975 2976 audit_log_format(ab, 2977 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2978 names, old_names, res); 2979 audit_log_end(ab); 2980 } 2981 2982 struct list_head *audit_killed_trees(void) 2983 { 2984 struct audit_context *ctx = audit_context(); 2985 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 2986 return NULL; 2987 return &ctx->killed_trees; 2988 } 2989