1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #include <linux/init.h> 46 #include <asm/types.h> 47 #include <asm/atomic.h> 48 #include <linux/fs.h> 49 #include <linux/namei.h> 50 #include <linux/mm.h> 51 #include <linux/module.h> 52 #include <linux/mount.h> 53 #include <linux/socket.h> 54 #include <linux/mqueue.h> 55 #include <linux/audit.h> 56 #include <linux/personality.h> 57 #include <linux/time.h> 58 #include <linux/netlink.h> 59 #include <linux/compiler.h> 60 #include <asm/unistd.h> 61 #include <linux/security.h> 62 #include <linux/list.h> 63 #include <linux/tty.h> 64 #include <linux/binfmts.h> 65 #include <linux/highmem.h> 66 #include <linux/syscalls.h> 67 #include <linux/inotify.h> 68 #include <linux/capability.h> 69 #include <linux/fs_struct.h> 70 71 #include "audit.h" 72 73 /* AUDIT_NAMES is the number of slots we reserve in the audit_context 74 * for saving names from getname(). */ 75 #define AUDIT_NAMES 20 76 77 /* Indicates that audit should log the full pathname. */ 78 #define AUDIT_NAME_FULL -1 79 80 /* no execve audit message should be longer than this (userspace limits) */ 81 #define MAX_EXECVE_AUDIT_LEN 7500 82 83 /* number of audit rules */ 84 int audit_n_rules; 85 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 88 89 struct audit_cap_data { 90 kernel_cap_t permitted; 91 kernel_cap_t inheritable; 92 union { 93 unsigned int fE; /* effective bit of a file capability */ 94 kernel_cap_t effective; /* effective set of a process */ 95 }; 96 }; 97 98 /* When fs/namei.c:getname() is called, we store the pointer in name and 99 * we don't let putname() free it (instead we free all of the saved 100 * pointers at syscall exit time). 101 * 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */ 103 struct audit_names { 104 const char *name; 105 int name_len; /* number of name's characters to log */ 106 unsigned name_put; /* call __putname() for this name */ 107 unsigned long ino; 108 dev_t dev; 109 umode_t mode; 110 uid_t uid; 111 gid_t gid; 112 dev_t rdev; 113 u32 osid; 114 struct audit_cap_data fcap; 115 unsigned int fcap_ver; 116 }; 117 118 struct audit_aux_data { 119 struct audit_aux_data *next; 120 int type; 121 }; 122 123 #define AUDIT_AUX_IPCPERM 0 124 125 /* Number of target pids per aux struct. */ 126 #define AUDIT_AUX_PIDS 16 127 128 struct audit_aux_data_execve { 129 struct audit_aux_data d; 130 int argc; 131 int envc; 132 struct mm_struct *mm; 133 }; 134 135 struct audit_aux_data_pids { 136 struct audit_aux_data d; 137 pid_t target_pid[AUDIT_AUX_PIDS]; 138 uid_t target_auid[AUDIT_AUX_PIDS]; 139 uid_t target_uid[AUDIT_AUX_PIDS]; 140 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 141 u32 target_sid[AUDIT_AUX_PIDS]; 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 143 int pid_count; 144 }; 145 146 struct audit_aux_data_bprm_fcaps { 147 struct audit_aux_data d; 148 struct audit_cap_data fcap; 149 unsigned int fcap_ver; 150 struct audit_cap_data old_pcap; 151 struct audit_cap_data new_pcap; 152 }; 153 154 struct audit_aux_data_capset { 155 struct audit_aux_data d; 156 pid_t pid; 157 struct audit_cap_data cap; 158 }; 159 160 struct audit_tree_refs { 161 struct audit_tree_refs *next; 162 struct audit_chunk *c[31]; 163 }; 164 165 /* The per-task audit context. */ 166 struct audit_context { 167 int dummy; /* must be the first element */ 168 int in_syscall; /* 1 if task is in a syscall */ 169 enum audit_state state, current_state; 170 unsigned int serial; /* serial number for record */ 171 struct timespec ctime; /* time of syscall entry */ 172 int major; /* syscall number */ 173 unsigned long argv[4]; /* syscall arguments */ 174 int return_valid; /* return code is valid */ 175 long return_code;/* syscall return code */ 176 u64 prio; 177 int name_count; 178 struct audit_names names[AUDIT_NAMES]; 179 char * filterkey; /* key for rule that triggered record */ 180 struct path pwd; 181 struct audit_context *previous; /* For nested syscalls */ 182 struct audit_aux_data *aux; 183 struct audit_aux_data *aux_pids; 184 struct sockaddr_storage *sockaddr; 185 size_t sockaddr_len; 186 /* Save things to print about task_struct */ 187 pid_t pid, ppid; 188 uid_t uid, euid, suid, fsuid; 189 gid_t gid, egid, sgid, fsgid; 190 unsigned long personality; 191 int arch; 192 193 pid_t target_pid; 194 uid_t target_auid; 195 uid_t target_uid; 196 unsigned int target_sessionid; 197 u32 target_sid; 198 char target_comm[TASK_COMM_LEN]; 199 200 struct audit_tree_refs *trees, *first_trees; 201 int tree_count; 202 203 int type; 204 union { 205 struct { 206 int nargs; 207 long args[6]; 208 } socketcall; 209 struct { 210 uid_t uid; 211 gid_t gid; 212 mode_t mode; 213 u32 osid; 214 int has_perm; 215 uid_t perm_uid; 216 gid_t perm_gid; 217 mode_t perm_mode; 218 unsigned long qbytes; 219 } ipc; 220 struct { 221 mqd_t mqdes; 222 struct mq_attr mqstat; 223 } mq_getsetattr; 224 struct { 225 mqd_t mqdes; 226 int sigev_signo; 227 } mq_notify; 228 struct { 229 mqd_t mqdes; 230 size_t msg_len; 231 unsigned int msg_prio; 232 struct timespec abs_timeout; 233 } mq_sendrecv; 234 struct { 235 int oflag; 236 mode_t mode; 237 struct mq_attr attr; 238 } mq_open; 239 struct { 240 pid_t pid; 241 struct audit_cap_data cap; 242 } capset; 243 }; 244 int fds[2]; 245 246 #if AUDIT_DEBUG 247 int put_count; 248 int ino_count; 249 #endif 250 }; 251 252 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) 253 static inline int open_arg(int flags, int mask) 254 { 255 int n = ACC_MODE(flags); 256 if (flags & (O_TRUNC | O_CREAT)) 257 n |= AUDIT_PERM_WRITE; 258 return n & mask; 259 } 260 261 static int audit_match_perm(struct audit_context *ctx, int mask) 262 { 263 unsigned n; 264 if (unlikely(!ctx)) 265 return 0; 266 n = ctx->major; 267 268 switch (audit_classify_syscall(ctx->arch, n)) { 269 case 0: /* native */ 270 if ((mask & AUDIT_PERM_WRITE) && 271 audit_match_class(AUDIT_CLASS_WRITE, n)) 272 return 1; 273 if ((mask & AUDIT_PERM_READ) && 274 audit_match_class(AUDIT_CLASS_READ, n)) 275 return 1; 276 if ((mask & AUDIT_PERM_ATTR) && 277 audit_match_class(AUDIT_CLASS_CHATTR, n)) 278 return 1; 279 return 0; 280 case 1: /* 32bit on biarch */ 281 if ((mask & AUDIT_PERM_WRITE) && 282 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 283 return 1; 284 if ((mask & AUDIT_PERM_READ) && 285 audit_match_class(AUDIT_CLASS_READ_32, n)) 286 return 1; 287 if ((mask & AUDIT_PERM_ATTR) && 288 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 289 return 1; 290 return 0; 291 case 2: /* open */ 292 return mask & ACC_MODE(ctx->argv[1]); 293 case 3: /* openat */ 294 return mask & ACC_MODE(ctx->argv[2]); 295 case 4: /* socketcall */ 296 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 297 case 5: /* execve */ 298 return mask & AUDIT_PERM_EXEC; 299 default: 300 return 0; 301 } 302 } 303 304 static int audit_match_filetype(struct audit_context *ctx, int which) 305 { 306 unsigned index = which & ~S_IFMT; 307 mode_t mode = which & S_IFMT; 308 309 if (unlikely(!ctx)) 310 return 0; 311 312 if (index >= ctx->name_count) 313 return 0; 314 if (ctx->names[index].ino == -1) 315 return 0; 316 if ((ctx->names[index].mode ^ mode) & S_IFMT) 317 return 0; 318 return 1; 319 } 320 321 /* 322 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 323 * ->first_trees points to its beginning, ->trees - to the current end of data. 324 * ->tree_count is the number of free entries in array pointed to by ->trees. 325 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 326 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 327 * it's going to remain 1-element for almost any setup) until we free context itself. 328 * References in it _are_ dropped - at the same time we free/drop aux stuff. 329 */ 330 331 #ifdef CONFIG_AUDIT_TREE 332 static void audit_set_auditable(struct audit_context *ctx) 333 { 334 if (!ctx->prio) { 335 ctx->prio = 1; 336 ctx->current_state = AUDIT_RECORD_CONTEXT; 337 } 338 } 339 340 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 341 { 342 struct audit_tree_refs *p = ctx->trees; 343 int left = ctx->tree_count; 344 if (likely(left)) { 345 p->c[--left] = chunk; 346 ctx->tree_count = left; 347 return 1; 348 } 349 if (!p) 350 return 0; 351 p = p->next; 352 if (p) { 353 p->c[30] = chunk; 354 ctx->trees = p; 355 ctx->tree_count = 30; 356 return 1; 357 } 358 return 0; 359 } 360 361 static int grow_tree_refs(struct audit_context *ctx) 362 { 363 struct audit_tree_refs *p = ctx->trees; 364 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 365 if (!ctx->trees) { 366 ctx->trees = p; 367 return 0; 368 } 369 if (p) 370 p->next = ctx->trees; 371 else 372 ctx->first_trees = ctx->trees; 373 ctx->tree_count = 31; 374 return 1; 375 } 376 #endif 377 378 static void unroll_tree_refs(struct audit_context *ctx, 379 struct audit_tree_refs *p, int count) 380 { 381 #ifdef CONFIG_AUDIT_TREE 382 struct audit_tree_refs *q; 383 int n; 384 if (!p) { 385 /* we started with empty chain */ 386 p = ctx->first_trees; 387 count = 31; 388 /* if the very first allocation has failed, nothing to do */ 389 if (!p) 390 return; 391 } 392 n = count; 393 for (q = p; q != ctx->trees; q = q->next, n = 31) { 394 while (n--) { 395 audit_put_chunk(q->c[n]); 396 q->c[n] = NULL; 397 } 398 } 399 while (n-- > ctx->tree_count) { 400 audit_put_chunk(q->c[n]); 401 q->c[n] = NULL; 402 } 403 ctx->trees = p; 404 ctx->tree_count = count; 405 #endif 406 } 407 408 static void free_tree_refs(struct audit_context *ctx) 409 { 410 struct audit_tree_refs *p, *q; 411 for (p = ctx->first_trees; p; p = q) { 412 q = p->next; 413 kfree(p); 414 } 415 } 416 417 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 418 { 419 #ifdef CONFIG_AUDIT_TREE 420 struct audit_tree_refs *p; 421 int n; 422 if (!tree) 423 return 0; 424 /* full ones */ 425 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 426 for (n = 0; n < 31; n++) 427 if (audit_tree_match(p->c[n], tree)) 428 return 1; 429 } 430 /* partial */ 431 if (p) { 432 for (n = ctx->tree_count; n < 31; n++) 433 if (audit_tree_match(p->c[n], tree)) 434 return 1; 435 } 436 #endif 437 return 0; 438 } 439 440 /* Determine if any context name data matches a rule's watch data */ 441 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 442 * otherwise. */ 443 static int audit_filter_rules(struct task_struct *tsk, 444 struct audit_krule *rule, 445 struct audit_context *ctx, 446 struct audit_names *name, 447 enum audit_state *state) 448 { 449 const struct cred *cred = get_task_cred(tsk); 450 int i, j, need_sid = 1; 451 u32 sid; 452 453 for (i = 0; i < rule->field_count; i++) { 454 struct audit_field *f = &rule->fields[i]; 455 int result = 0; 456 457 switch (f->type) { 458 case AUDIT_PID: 459 result = audit_comparator(tsk->pid, f->op, f->val); 460 break; 461 case AUDIT_PPID: 462 if (ctx) { 463 if (!ctx->ppid) 464 ctx->ppid = sys_getppid(); 465 result = audit_comparator(ctx->ppid, f->op, f->val); 466 } 467 break; 468 case AUDIT_UID: 469 result = audit_comparator(cred->uid, f->op, f->val); 470 break; 471 case AUDIT_EUID: 472 result = audit_comparator(cred->euid, f->op, f->val); 473 break; 474 case AUDIT_SUID: 475 result = audit_comparator(cred->suid, f->op, f->val); 476 break; 477 case AUDIT_FSUID: 478 result = audit_comparator(cred->fsuid, f->op, f->val); 479 break; 480 case AUDIT_GID: 481 result = audit_comparator(cred->gid, f->op, f->val); 482 break; 483 case AUDIT_EGID: 484 result = audit_comparator(cred->egid, f->op, f->val); 485 break; 486 case AUDIT_SGID: 487 result = audit_comparator(cred->sgid, f->op, f->val); 488 break; 489 case AUDIT_FSGID: 490 result = audit_comparator(cred->fsgid, f->op, f->val); 491 break; 492 case AUDIT_PERS: 493 result = audit_comparator(tsk->personality, f->op, f->val); 494 break; 495 case AUDIT_ARCH: 496 if (ctx) 497 result = audit_comparator(ctx->arch, f->op, f->val); 498 break; 499 500 case AUDIT_EXIT: 501 if (ctx && ctx->return_valid) 502 result = audit_comparator(ctx->return_code, f->op, f->val); 503 break; 504 case AUDIT_SUCCESS: 505 if (ctx && ctx->return_valid) { 506 if (f->val) 507 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 508 else 509 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 510 } 511 break; 512 case AUDIT_DEVMAJOR: 513 if (name) 514 result = audit_comparator(MAJOR(name->dev), 515 f->op, f->val); 516 else if (ctx) { 517 for (j = 0; j < ctx->name_count; j++) { 518 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) { 519 ++result; 520 break; 521 } 522 } 523 } 524 break; 525 case AUDIT_DEVMINOR: 526 if (name) 527 result = audit_comparator(MINOR(name->dev), 528 f->op, f->val); 529 else if (ctx) { 530 for (j = 0; j < ctx->name_count; j++) { 531 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) { 532 ++result; 533 break; 534 } 535 } 536 } 537 break; 538 case AUDIT_INODE: 539 if (name) 540 result = (name->ino == f->val); 541 else if (ctx) { 542 for (j = 0; j < ctx->name_count; j++) { 543 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) { 544 ++result; 545 break; 546 } 547 } 548 } 549 break; 550 case AUDIT_WATCH: 551 if (name && rule->watch->ino != (unsigned long)-1) 552 result = (name->dev == rule->watch->dev && 553 name->ino == rule->watch->ino); 554 break; 555 case AUDIT_DIR: 556 if (ctx) 557 result = match_tree_refs(ctx, rule->tree); 558 break; 559 case AUDIT_LOGINUID: 560 result = 0; 561 if (ctx) 562 result = audit_comparator(tsk->loginuid, f->op, f->val); 563 break; 564 case AUDIT_SUBJ_USER: 565 case AUDIT_SUBJ_ROLE: 566 case AUDIT_SUBJ_TYPE: 567 case AUDIT_SUBJ_SEN: 568 case AUDIT_SUBJ_CLR: 569 /* NOTE: this may return negative values indicating 570 a temporary error. We simply treat this as a 571 match for now to avoid losing information that 572 may be wanted. An error message will also be 573 logged upon error */ 574 if (f->lsm_rule) { 575 if (need_sid) { 576 security_task_getsecid(tsk, &sid); 577 need_sid = 0; 578 } 579 result = security_audit_rule_match(sid, f->type, 580 f->op, 581 f->lsm_rule, 582 ctx); 583 } 584 break; 585 case AUDIT_OBJ_USER: 586 case AUDIT_OBJ_ROLE: 587 case AUDIT_OBJ_TYPE: 588 case AUDIT_OBJ_LEV_LOW: 589 case AUDIT_OBJ_LEV_HIGH: 590 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 591 also applies here */ 592 if (f->lsm_rule) { 593 /* Find files that match */ 594 if (name) { 595 result = security_audit_rule_match( 596 name->osid, f->type, f->op, 597 f->lsm_rule, ctx); 598 } else if (ctx) { 599 for (j = 0; j < ctx->name_count; j++) { 600 if (security_audit_rule_match( 601 ctx->names[j].osid, 602 f->type, f->op, 603 f->lsm_rule, ctx)) { 604 ++result; 605 break; 606 } 607 } 608 } 609 /* Find ipc objects that match */ 610 if (!ctx || ctx->type != AUDIT_IPC) 611 break; 612 if (security_audit_rule_match(ctx->ipc.osid, 613 f->type, f->op, 614 f->lsm_rule, ctx)) 615 ++result; 616 } 617 break; 618 case AUDIT_ARG0: 619 case AUDIT_ARG1: 620 case AUDIT_ARG2: 621 case AUDIT_ARG3: 622 if (ctx) 623 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 624 break; 625 case AUDIT_FILTERKEY: 626 /* ignore this field for filtering */ 627 result = 1; 628 break; 629 case AUDIT_PERM: 630 result = audit_match_perm(ctx, f->val); 631 break; 632 case AUDIT_FILETYPE: 633 result = audit_match_filetype(ctx, f->val); 634 break; 635 } 636 637 if (!result) { 638 put_cred(cred); 639 return 0; 640 } 641 } 642 643 if (ctx) { 644 if (rule->prio <= ctx->prio) 645 return 0; 646 if (rule->filterkey) { 647 kfree(ctx->filterkey); 648 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 649 } 650 ctx->prio = rule->prio; 651 } 652 switch (rule->action) { 653 case AUDIT_NEVER: *state = AUDIT_DISABLED; break; 654 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; 655 } 656 put_cred(cred); 657 return 1; 658 } 659 660 /* At process creation time, we can determine if system-call auditing is 661 * completely disabled for this task. Since we only have the task 662 * structure at this point, we can only check uid and gid. 663 */ 664 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 665 { 666 struct audit_entry *e; 667 enum audit_state state; 668 669 rcu_read_lock(); 670 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 671 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) { 672 if (state == AUDIT_RECORD_CONTEXT) 673 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 674 rcu_read_unlock(); 675 return state; 676 } 677 } 678 rcu_read_unlock(); 679 return AUDIT_BUILD_CONTEXT; 680 } 681 682 /* At syscall entry and exit time, this filter is called if the 683 * audit_state is not low enough that auditing cannot take place, but is 684 * also not high enough that we already know we have to write an audit 685 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 686 */ 687 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 688 struct audit_context *ctx, 689 struct list_head *list) 690 { 691 struct audit_entry *e; 692 enum audit_state state; 693 694 if (audit_pid && tsk->tgid == audit_pid) 695 return AUDIT_DISABLED; 696 697 rcu_read_lock(); 698 if (!list_empty(list)) { 699 int word = AUDIT_WORD(ctx->major); 700 int bit = AUDIT_BIT(ctx->major); 701 702 list_for_each_entry_rcu(e, list, list) { 703 if ((e->rule.mask[word] & bit) == bit && 704 audit_filter_rules(tsk, &e->rule, ctx, NULL, 705 &state)) { 706 rcu_read_unlock(); 707 ctx->current_state = state; 708 return state; 709 } 710 } 711 } 712 rcu_read_unlock(); 713 return AUDIT_BUILD_CONTEXT; 714 } 715 716 /* At syscall exit time, this filter is called if any audit_names[] have been 717 * collected during syscall processing. We only check rules in sublists at hash 718 * buckets applicable to the inode numbers in audit_names[]. 719 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 720 */ 721 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 722 { 723 int i; 724 struct audit_entry *e; 725 enum audit_state state; 726 727 if (audit_pid && tsk->tgid == audit_pid) 728 return; 729 730 rcu_read_lock(); 731 for (i = 0; i < ctx->name_count; i++) { 732 int word = AUDIT_WORD(ctx->major); 733 int bit = AUDIT_BIT(ctx->major); 734 struct audit_names *n = &ctx->names[i]; 735 int h = audit_hash_ino((u32)n->ino); 736 struct list_head *list = &audit_inode_hash[h]; 737 738 if (list_empty(list)) 739 continue; 740 741 list_for_each_entry_rcu(e, list, list) { 742 if ((e->rule.mask[word] & bit) == bit && 743 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) { 744 rcu_read_unlock(); 745 ctx->current_state = state; 746 return; 747 } 748 } 749 } 750 rcu_read_unlock(); 751 } 752 753 static inline struct audit_context *audit_get_context(struct task_struct *tsk, 754 int return_valid, 755 long return_code) 756 { 757 struct audit_context *context = tsk->audit_context; 758 759 if (likely(!context)) 760 return NULL; 761 context->return_valid = return_valid; 762 763 /* 764 * we need to fix up the return code in the audit logs if the actual 765 * return codes are later going to be fixed up by the arch specific 766 * signal handlers 767 * 768 * This is actually a test for: 769 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 770 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 771 * 772 * but is faster than a bunch of || 773 */ 774 if (unlikely(return_code <= -ERESTARTSYS) && 775 (return_code >= -ERESTART_RESTARTBLOCK) && 776 (return_code != -ENOIOCTLCMD)) 777 context->return_code = -EINTR; 778 else 779 context->return_code = return_code; 780 781 if (context->in_syscall && !context->dummy) { 782 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 783 audit_filter_inodes(tsk, context); 784 } 785 786 tsk->audit_context = NULL; 787 return context; 788 } 789 790 static inline void audit_free_names(struct audit_context *context) 791 { 792 int i; 793 794 #if AUDIT_DEBUG == 2 795 if (context->put_count + context->ino_count != context->name_count) { 796 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d" 797 " name_count=%d put_count=%d" 798 " ino_count=%d [NOT freeing]\n", 799 __FILE__, __LINE__, 800 context->serial, context->major, context->in_syscall, 801 context->name_count, context->put_count, 802 context->ino_count); 803 for (i = 0; i < context->name_count; i++) { 804 printk(KERN_ERR "names[%d] = %p = %s\n", i, 805 context->names[i].name, 806 context->names[i].name ?: "(null)"); 807 } 808 dump_stack(); 809 return; 810 } 811 #endif 812 #if AUDIT_DEBUG 813 context->put_count = 0; 814 context->ino_count = 0; 815 #endif 816 817 for (i = 0; i < context->name_count; i++) { 818 if (context->names[i].name && context->names[i].name_put) 819 __putname(context->names[i].name); 820 } 821 context->name_count = 0; 822 path_put(&context->pwd); 823 context->pwd.dentry = NULL; 824 context->pwd.mnt = NULL; 825 } 826 827 static inline void audit_free_aux(struct audit_context *context) 828 { 829 struct audit_aux_data *aux; 830 831 while ((aux = context->aux)) { 832 context->aux = aux->next; 833 kfree(aux); 834 } 835 while ((aux = context->aux_pids)) { 836 context->aux_pids = aux->next; 837 kfree(aux); 838 } 839 } 840 841 static inline void audit_zero_context(struct audit_context *context, 842 enum audit_state state) 843 { 844 memset(context, 0, sizeof(*context)); 845 context->state = state; 846 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 847 } 848 849 static inline struct audit_context *audit_alloc_context(enum audit_state state) 850 { 851 struct audit_context *context; 852 853 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL))) 854 return NULL; 855 audit_zero_context(context, state); 856 return context; 857 } 858 859 /** 860 * audit_alloc - allocate an audit context block for a task 861 * @tsk: task 862 * 863 * Filter on the task information and allocate a per-task audit context 864 * if necessary. Doing so turns on system call auditing for the 865 * specified task. This is called from copy_process, so no lock is 866 * needed. 867 */ 868 int audit_alloc(struct task_struct *tsk) 869 { 870 struct audit_context *context; 871 enum audit_state state; 872 char *key = NULL; 873 874 if (likely(!audit_ever_enabled)) 875 return 0; /* Return if not auditing. */ 876 877 state = audit_filter_task(tsk, &key); 878 if (likely(state == AUDIT_DISABLED)) 879 return 0; 880 881 if (!(context = audit_alloc_context(state))) { 882 kfree(key); 883 audit_log_lost("out of memory in audit_alloc"); 884 return -ENOMEM; 885 } 886 context->filterkey = key; 887 888 tsk->audit_context = context; 889 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 890 return 0; 891 } 892 893 static inline void audit_free_context(struct audit_context *context) 894 { 895 struct audit_context *previous; 896 int count = 0; 897 898 do { 899 previous = context->previous; 900 if (previous || (count && count < 10)) { 901 ++count; 902 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:" 903 " freeing multiple contexts (%d)\n", 904 context->serial, context->major, 905 context->name_count, count); 906 } 907 audit_free_names(context); 908 unroll_tree_refs(context, NULL, 0); 909 free_tree_refs(context); 910 audit_free_aux(context); 911 kfree(context->filterkey); 912 kfree(context->sockaddr); 913 kfree(context); 914 context = previous; 915 } while (context); 916 if (count >= 10) 917 printk(KERN_ERR "audit: freed %d contexts\n", count); 918 } 919 920 void audit_log_task_context(struct audit_buffer *ab) 921 { 922 char *ctx = NULL; 923 unsigned len; 924 int error; 925 u32 sid; 926 927 security_task_getsecid(current, &sid); 928 if (!sid) 929 return; 930 931 error = security_secid_to_secctx(sid, &ctx, &len); 932 if (error) { 933 if (error != -EINVAL) 934 goto error_path; 935 return; 936 } 937 938 audit_log_format(ab, " subj=%s", ctx); 939 security_release_secctx(ctx, len); 940 return; 941 942 error_path: 943 audit_panic("error in audit_log_task_context"); 944 return; 945 } 946 947 EXPORT_SYMBOL(audit_log_task_context); 948 949 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk) 950 { 951 char name[sizeof(tsk->comm)]; 952 struct mm_struct *mm = tsk->mm; 953 struct vm_area_struct *vma; 954 955 /* tsk == current */ 956 957 get_task_comm(name, tsk); 958 audit_log_format(ab, " comm="); 959 audit_log_untrustedstring(ab, name); 960 961 if (mm) { 962 down_read(&mm->mmap_sem); 963 vma = mm->mmap; 964 while (vma) { 965 if ((vma->vm_flags & VM_EXECUTABLE) && 966 vma->vm_file) { 967 audit_log_d_path(ab, "exe=", 968 &vma->vm_file->f_path); 969 break; 970 } 971 vma = vma->vm_next; 972 } 973 up_read(&mm->mmap_sem); 974 } 975 audit_log_task_context(ab); 976 } 977 978 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 979 uid_t auid, uid_t uid, unsigned int sessionid, 980 u32 sid, char *comm) 981 { 982 struct audit_buffer *ab; 983 char *ctx = NULL; 984 u32 len; 985 int rc = 0; 986 987 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 988 if (!ab) 989 return rc; 990 991 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid, 992 uid, sessionid); 993 if (security_secid_to_secctx(sid, &ctx, &len)) { 994 audit_log_format(ab, " obj=(none)"); 995 rc = 1; 996 } else { 997 audit_log_format(ab, " obj=%s", ctx); 998 security_release_secctx(ctx, len); 999 } 1000 audit_log_format(ab, " ocomm="); 1001 audit_log_untrustedstring(ab, comm); 1002 audit_log_end(ab); 1003 1004 return rc; 1005 } 1006 1007 /* 1008 * to_send and len_sent accounting are very loose estimates. We aren't 1009 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being 1010 * within about 500 bytes (next page boundry) 1011 * 1012 * why snprintf? an int is up to 12 digits long. if we just assumed when 1013 * logging that a[%d]= was going to be 16 characters long we would be wasting 1014 * space in every audit message. In one 7500 byte message we can log up to 1015 * about 1000 min size arguments. That comes down to about 50% waste of space 1016 * if we didn't do the snprintf to find out how long arg_num_len was. 1017 */ 1018 static int audit_log_single_execve_arg(struct audit_context *context, 1019 struct audit_buffer **ab, 1020 int arg_num, 1021 size_t *len_sent, 1022 const char __user *p, 1023 char *buf) 1024 { 1025 char arg_num_len_buf[12]; 1026 const char __user *tmp_p = p; 1027 /* how many digits are in arg_num? 3 is the length of " a=" */ 1028 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3; 1029 size_t len, len_left, to_send; 1030 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN; 1031 unsigned int i, has_cntl = 0, too_long = 0; 1032 int ret; 1033 1034 /* strnlen_user includes the null we don't want to send */ 1035 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1036 1037 /* 1038 * We just created this mm, if we can't find the strings 1039 * we just copied into it something is _very_ wrong. Similar 1040 * for strings that are too long, we should not have created 1041 * any. 1042 */ 1043 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) { 1044 WARN_ON(1); 1045 send_sig(SIGKILL, current, 0); 1046 return -1; 1047 } 1048 1049 /* walk the whole argument looking for non-ascii chars */ 1050 do { 1051 if (len_left > MAX_EXECVE_AUDIT_LEN) 1052 to_send = MAX_EXECVE_AUDIT_LEN; 1053 else 1054 to_send = len_left; 1055 ret = copy_from_user(buf, tmp_p, to_send); 1056 /* 1057 * There is no reason for this copy to be short. We just 1058 * copied them here, and the mm hasn't been exposed to user- 1059 * space yet. 1060 */ 1061 if (ret) { 1062 WARN_ON(1); 1063 send_sig(SIGKILL, current, 0); 1064 return -1; 1065 } 1066 buf[to_send] = '\0'; 1067 has_cntl = audit_string_contains_control(buf, to_send); 1068 if (has_cntl) { 1069 /* 1070 * hex messages get logged as 2 bytes, so we can only 1071 * send half as much in each message 1072 */ 1073 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2; 1074 break; 1075 } 1076 len_left -= to_send; 1077 tmp_p += to_send; 1078 } while (len_left > 0); 1079 1080 len_left = len; 1081 1082 if (len > max_execve_audit_len) 1083 too_long = 1; 1084 1085 /* rewalk the argument actually logging the message */ 1086 for (i = 0; len_left > 0; i++) { 1087 int room_left; 1088 1089 if (len_left > max_execve_audit_len) 1090 to_send = max_execve_audit_len; 1091 else 1092 to_send = len_left; 1093 1094 /* do we have space left to send this argument in this ab? */ 1095 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent; 1096 if (has_cntl) 1097 room_left -= (to_send * 2); 1098 else 1099 room_left -= to_send; 1100 if (room_left < 0) { 1101 *len_sent = 0; 1102 audit_log_end(*ab); 1103 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE); 1104 if (!*ab) 1105 return 0; 1106 } 1107 1108 /* 1109 * first record needs to say how long the original string was 1110 * so we can be sure nothing was lost. 1111 */ 1112 if ((i == 0) && (too_long)) 1113 audit_log_format(*ab, " a%d_len=%zu", arg_num, 1114 has_cntl ? 2*len : len); 1115 1116 /* 1117 * normally arguments are small enough to fit and we already 1118 * filled buf above when we checked for control characters 1119 * so don't bother with another copy_from_user 1120 */ 1121 if (len >= max_execve_audit_len) 1122 ret = copy_from_user(buf, p, to_send); 1123 else 1124 ret = 0; 1125 if (ret) { 1126 WARN_ON(1); 1127 send_sig(SIGKILL, current, 0); 1128 return -1; 1129 } 1130 buf[to_send] = '\0'; 1131 1132 /* actually log it */ 1133 audit_log_format(*ab, " a%d", arg_num); 1134 if (too_long) 1135 audit_log_format(*ab, "[%d]", i); 1136 audit_log_format(*ab, "="); 1137 if (has_cntl) 1138 audit_log_n_hex(*ab, buf, to_send); 1139 else 1140 audit_log_format(*ab, "\"%s\"", buf); 1141 1142 p += to_send; 1143 len_left -= to_send; 1144 *len_sent += arg_num_len; 1145 if (has_cntl) 1146 *len_sent += to_send * 2; 1147 else 1148 *len_sent += to_send; 1149 } 1150 /* include the null we didn't log */ 1151 return len + 1; 1152 } 1153 1154 static void audit_log_execve_info(struct audit_context *context, 1155 struct audit_buffer **ab, 1156 struct audit_aux_data_execve *axi) 1157 { 1158 int i; 1159 size_t len, len_sent = 0; 1160 const char __user *p; 1161 char *buf; 1162 1163 if (axi->mm != current->mm) 1164 return; /* execve failed, no additional info */ 1165 1166 p = (const char __user *)axi->mm->arg_start; 1167 1168 audit_log_format(*ab, "argc=%d", axi->argc); 1169 1170 /* 1171 * we need some kernel buffer to hold the userspace args. Just 1172 * allocate one big one rather than allocating one of the right size 1173 * for every single argument inside audit_log_single_execve_arg() 1174 * should be <8k allocation so should be pretty safe. 1175 */ 1176 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1177 if (!buf) { 1178 audit_panic("out of memory for argv string\n"); 1179 return; 1180 } 1181 1182 for (i = 0; i < axi->argc; i++) { 1183 len = audit_log_single_execve_arg(context, ab, i, 1184 &len_sent, p, buf); 1185 if (len <= 0) 1186 break; 1187 p += len; 1188 } 1189 kfree(buf); 1190 } 1191 1192 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1193 { 1194 int i; 1195 1196 audit_log_format(ab, " %s=", prefix); 1197 CAP_FOR_EACH_U32(i) { 1198 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]); 1199 } 1200 } 1201 1202 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1203 { 1204 kernel_cap_t *perm = &name->fcap.permitted; 1205 kernel_cap_t *inh = &name->fcap.inheritable; 1206 int log = 0; 1207 1208 if (!cap_isclear(*perm)) { 1209 audit_log_cap(ab, "cap_fp", perm); 1210 log = 1; 1211 } 1212 if (!cap_isclear(*inh)) { 1213 audit_log_cap(ab, "cap_fi", inh); 1214 log = 1; 1215 } 1216 1217 if (log) 1218 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver); 1219 } 1220 1221 static void show_special(struct audit_context *context, int *call_panic) 1222 { 1223 struct audit_buffer *ab; 1224 int i; 1225 1226 ab = audit_log_start(context, GFP_KERNEL, context->type); 1227 if (!ab) 1228 return; 1229 1230 switch (context->type) { 1231 case AUDIT_SOCKETCALL: { 1232 int nargs = context->socketcall.nargs; 1233 audit_log_format(ab, "nargs=%d", nargs); 1234 for (i = 0; i < nargs; i++) 1235 audit_log_format(ab, " a%d=%lx", i, 1236 context->socketcall.args[i]); 1237 break; } 1238 case AUDIT_IPC: { 1239 u32 osid = context->ipc.osid; 1240 1241 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o", 1242 context->ipc.uid, context->ipc.gid, context->ipc.mode); 1243 if (osid) { 1244 char *ctx = NULL; 1245 u32 len; 1246 if (security_secid_to_secctx(osid, &ctx, &len)) { 1247 audit_log_format(ab, " osid=%u", osid); 1248 *call_panic = 1; 1249 } else { 1250 audit_log_format(ab, " obj=%s", ctx); 1251 security_release_secctx(ctx, len); 1252 } 1253 } 1254 if (context->ipc.has_perm) { 1255 audit_log_end(ab); 1256 ab = audit_log_start(context, GFP_KERNEL, 1257 AUDIT_IPC_SET_PERM); 1258 audit_log_format(ab, 1259 "qbytes=%lx ouid=%u ogid=%u mode=%#o", 1260 context->ipc.qbytes, 1261 context->ipc.perm_uid, 1262 context->ipc.perm_gid, 1263 context->ipc.perm_mode); 1264 if (!ab) 1265 return; 1266 } 1267 break; } 1268 case AUDIT_MQ_OPEN: { 1269 audit_log_format(ab, 1270 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld " 1271 "mq_msgsize=%ld mq_curmsgs=%ld", 1272 context->mq_open.oflag, context->mq_open.mode, 1273 context->mq_open.attr.mq_flags, 1274 context->mq_open.attr.mq_maxmsg, 1275 context->mq_open.attr.mq_msgsize, 1276 context->mq_open.attr.mq_curmsgs); 1277 break; } 1278 case AUDIT_MQ_SENDRECV: { 1279 audit_log_format(ab, 1280 "mqdes=%d msg_len=%zd msg_prio=%u " 1281 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1282 context->mq_sendrecv.mqdes, 1283 context->mq_sendrecv.msg_len, 1284 context->mq_sendrecv.msg_prio, 1285 context->mq_sendrecv.abs_timeout.tv_sec, 1286 context->mq_sendrecv.abs_timeout.tv_nsec); 1287 break; } 1288 case AUDIT_MQ_NOTIFY: { 1289 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1290 context->mq_notify.mqdes, 1291 context->mq_notify.sigev_signo); 1292 break; } 1293 case AUDIT_MQ_GETSETATTR: { 1294 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1295 audit_log_format(ab, 1296 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1297 "mq_curmsgs=%ld ", 1298 context->mq_getsetattr.mqdes, 1299 attr->mq_flags, attr->mq_maxmsg, 1300 attr->mq_msgsize, attr->mq_curmsgs); 1301 break; } 1302 case AUDIT_CAPSET: { 1303 audit_log_format(ab, "pid=%d", context->capset.pid); 1304 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1305 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1306 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1307 break; } 1308 } 1309 audit_log_end(ab); 1310 } 1311 1312 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1313 { 1314 const struct cred *cred; 1315 int i, call_panic = 0; 1316 struct audit_buffer *ab; 1317 struct audit_aux_data *aux; 1318 const char *tty; 1319 1320 /* tsk == current */ 1321 context->pid = tsk->pid; 1322 if (!context->ppid) 1323 context->ppid = sys_getppid(); 1324 cred = current_cred(); 1325 context->uid = cred->uid; 1326 context->gid = cred->gid; 1327 context->euid = cred->euid; 1328 context->suid = cred->suid; 1329 context->fsuid = cred->fsuid; 1330 context->egid = cred->egid; 1331 context->sgid = cred->sgid; 1332 context->fsgid = cred->fsgid; 1333 context->personality = tsk->personality; 1334 1335 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1336 if (!ab) 1337 return; /* audit_panic has been called */ 1338 audit_log_format(ab, "arch=%x syscall=%d", 1339 context->arch, context->major); 1340 if (context->personality != PER_LINUX) 1341 audit_log_format(ab, " per=%lx", context->personality); 1342 if (context->return_valid) 1343 audit_log_format(ab, " success=%s exit=%ld", 1344 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1345 context->return_code); 1346 1347 spin_lock_irq(&tsk->sighand->siglock); 1348 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name) 1349 tty = tsk->signal->tty->name; 1350 else 1351 tty = "(none)"; 1352 spin_unlock_irq(&tsk->sighand->siglock); 1353 1354 audit_log_format(ab, 1355 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d" 1356 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 1357 " euid=%u suid=%u fsuid=%u" 1358 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 1359 context->argv[0], 1360 context->argv[1], 1361 context->argv[2], 1362 context->argv[3], 1363 context->name_count, 1364 context->ppid, 1365 context->pid, 1366 tsk->loginuid, 1367 context->uid, 1368 context->gid, 1369 context->euid, context->suid, context->fsuid, 1370 context->egid, context->sgid, context->fsgid, tty, 1371 tsk->sessionid); 1372 1373 1374 audit_log_task_info(ab, tsk); 1375 if (context->filterkey) { 1376 audit_log_format(ab, " key="); 1377 audit_log_untrustedstring(ab, context->filterkey); 1378 } else 1379 audit_log_format(ab, " key=(null)"); 1380 audit_log_end(ab); 1381 1382 for (aux = context->aux; aux; aux = aux->next) { 1383 1384 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1385 if (!ab) 1386 continue; /* audit_panic has been called */ 1387 1388 switch (aux->type) { 1389 1390 case AUDIT_EXECVE: { 1391 struct audit_aux_data_execve *axi = (void *)aux; 1392 audit_log_execve_info(context, &ab, axi); 1393 break; } 1394 1395 case AUDIT_BPRM_FCAPS: { 1396 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1397 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1398 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1399 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1400 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1401 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1402 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1403 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1404 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1405 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1406 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1407 break; } 1408 1409 } 1410 audit_log_end(ab); 1411 } 1412 1413 if (context->type) 1414 show_special(context, &call_panic); 1415 1416 if (context->fds[0] >= 0) { 1417 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1418 if (ab) { 1419 audit_log_format(ab, "fd0=%d fd1=%d", 1420 context->fds[0], context->fds[1]); 1421 audit_log_end(ab); 1422 } 1423 } 1424 1425 if (context->sockaddr_len) { 1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1427 if (ab) { 1428 audit_log_format(ab, "saddr="); 1429 audit_log_n_hex(ab, (void *)context->sockaddr, 1430 context->sockaddr_len); 1431 audit_log_end(ab); 1432 } 1433 } 1434 1435 for (aux = context->aux_pids; aux; aux = aux->next) { 1436 struct audit_aux_data_pids *axs = (void *)aux; 1437 1438 for (i = 0; i < axs->pid_count; i++) 1439 if (audit_log_pid_context(context, axs->target_pid[i], 1440 axs->target_auid[i], 1441 axs->target_uid[i], 1442 axs->target_sessionid[i], 1443 axs->target_sid[i], 1444 axs->target_comm[i])) 1445 call_panic = 1; 1446 } 1447 1448 if (context->target_pid && 1449 audit_log_pid_context(context, context->target_pid, 1450 context->target_auid, context->target_uid, 1451 context->target_sessionid, 1452 context->target_sid, context->target_comm)) 1453 call_panic = 1; 1454 1455 if (context->pwd.dentry && context->pwd.mnt) { 1456 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1457 if (ab) { 1458 audit_log_d_path(ab, "cwd=", &context->pwd); 1459 audit_log_end(ab); 1460 } 1461 } 1462 for (i = 0; i < context->name_count; i++) { 1463 struct audit_names *n = &context->names[i]; 1464 1465 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1466 if (!ab) 1467 continue; /* audit_panic has been called */ 1468 1469 audit_log_format(ab, "item=%d", i); 1470 1471 if (n->name) { 1472 switch(n->name_len) { 1473 case AUDIT_NAME_FULL: 1474 /* log the full path */ 1475 audit_log_format(ab, " name="); 1476 audit_log_untrustedstring(ab, n->name); 1477 break; 1478 case 0: 1479 /* name was specified as a relative path and the 1480 * directory component is the cwd */ 1481 audit_log_d_path(ab, "name=", &context->pwd); 1482 break; 1483 default: 1484 /* log the name's directory component */ 1485 audit_log_format(ab, " name="); 1486 audit_log_n_untrustedstring(ab, n->name, 1487 n->name_len); 1488 } 1489 } else 1490 audit_log_format(ab, " name=(null)"); 1491 1492 if (n->ino != (unsigned long)-1) { 1493 audit_log_format(ab, " inode=%lu" 1494 " dev=%02x:%02x mode=%#o" 1495 " ouid=%u ogid=%u rdev=%02x:%02x", 1496 n->ino, 1497 MAJOR(n->dev), 1498 MINOR(n->dev), 1499 n->mode, 1500 n->uid, 1501 n->gid, 1502 MAJOR(n->rdev), 1503 MINOR(n->rdev)); 1504 } 1505 if (n->osid != 0) { 1506 char *ctx = NULL; 1507 u32 len; 1508 if (security_secid_to_secctx( 1509 n->osid, &ctx, &len)) { 1510 audit_log_format(ab, " osid=%u", n->osid); 1511 call_panic = 2; 1512 } else { 1513 audit_log_format(ab, " obj=%s", ctx); 1514 security_release_secctx(ctx, len); 1515 } 1516 } 1517 1518 audit_log_fcaps(ab, n); 1519 1520 audit_log_end(ab); 1521 } 1522 1523 /* Send end of event record to help user space know we are finished */ 1524 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1525 if (ab) 1526 audit_log_end(ab); 1527 if (call_panic) 1528 audit_panic("error converting sid to string"); 1529 } 1530 1531 /** 1532 * audit_free - free a per-task audit context 1533 * @tsk: task whose audit context block to free 1534 * 1535 * Called from copy_process and do_exit 1536 */ 1537 void audit_free(struct task_struct *tsk) 1538 { 1539 struct audit_context *context; 1540 1541 context = audit_get_context(tsk, 0, 0); 1542 if (likely(!context)) 1543 return; 1544 1545 /* Check for system calls that do not go through the exit 1546 * function (e.g., exit_group), then free context block. 1547 * We use GFP_ATOMIC here because we might be doing this 1548 * in the context of the idle thread */ 1549 /* that can happen only if we are called from do_exit() */ 1550 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1551 audit_log_exit(context, tsk); 1552 1553 audit_free_context(context); 1554 } 1555 1556 /** 1557 * audit_syscall_entry - fill in an audit record at syscall entry 1558 * @arch: architecture type 1559 * @major: major syscall type (function) 1560 * @a1: additional syscall register 1 1561 * @a2: additional syscall register 2 1562 * @a3: additional syscall register 3 1563 * @a4: additional syscall register 4 1564 * 1565 * Fill in audit context at syscall entry. This only happens if the 1566 * audit context was created when the task was created and the state or 1567 * filters demand the audit context be built. If the state from the 1568 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1569 * then the record will be written at syscall exit time (otherwise, it 1570 * will only be written if another part of the kernel requests that it 1571 * be written). 1572 */ 1573 void audit_syscall_entry(int arch, int major, 1574 unsigned long a1, unsigned long a2, 1575 unsigned long a3, unsigned long a4) 1576 { 1577 struct task_struct *tsk = current; 1578 struct audit_context *context = tsk->audit_context; 1579 enum audit_state state; 1580 1581 if (unlikely(!context)) 1582 return; 1583 1584 /* 1585 * This happens only on certain architectures that make system 1586 * calls in kernel_thread via the entry.S interface, instead of 1587 * with direct calls. (If you are porting to a new 1588 * architecture, hitting this condition can indicate that you 1589 * got the _exit/_leave calls backward in entry.S.) 1590 * 1591 * i386 no 1592 * x86_64 no 1593 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S) 1594 * 1595 * This also happens with vm86 emulation in a non-nested manner 1596 * (entries without exits), so this case must be caught. 1597 */ 1598 if (context->in_syscall) { 1599 struct audit_context *newctx; 1600 1601 #if AUDIT_DEBUG 1602 printk(KERN_ERR 1603 "audit(:%d) pid=%d in syscall=%d;" 1604 " entering syscall=%d\n", 1605 context->serial, tsk->pid, context->major, major); 1606 #endif 1607 newctx = audit_alloc_context(context->state); 1608 if (newctx) { 1609 newctx->previous = context; 1610 context = newctx; 1611 tsk->audit_context = newctx; 1612 } else { 1613 /* If we can't alloc a new context, the best we 1614 * can do is to leak memory (any pending putname 1615 * will be lost). The only other alternative is 1616 * to abandon auditing. */ 1617 audit_zero_context(context, context->state); 1618 } 1619 } 1620 BUG_ON(context->in_syscall || context->name_count); 1621 1622 if (!audit_enabled) 1623 return; 1624 1625 context->arch = arch; 1626 context->major = major; 1627 context->argv[0] = a1; 1628 context->argv[1] = a2; 1629 context->argv[2] = a3; 1630 context->argv[3] = a4; 1631 1632 state = context->state; 1633 context->dummy = !audit_n_rules; 1634 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1635 context->prio = 0; 1636 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1637 } 1638 if (likely(state == AUDIT_DISABLED)) 1639 return; 1640 1641 context->serial = 0; 1642 context->ctime = CURRENT_TIME; 1643 context->in_syscall = 1; 1644 context->current_state = state; 1645 context->ppid = 0; 1646 } 1647 1648 void audit_finish_fork(struct task_struct *child) 1649 { 1650 struct audit_context *ctx = current->audit_context; 1651 struct audit_context *p = child->audit_context; 1652 if (!p || !ctx) 1653 return; 1654 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT) 1655 return; 1656 p->arch = ctx->arch; 1657 p->major = ctx->major; 1658 memcpy(p->argv, ctx->argv, sizeof(ctx->argv)); 1659 p->ctime = ctx->ctime; 1660 p->dummy = ctx->dummy; 1661 p->in_syscall = ctx->in_syscall; 1662 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL); 1663 p->ppid = current->pid; 1664 p->prio = ctx->prio; 1665 p->current_state = ctx->current_state; 1666 } 1667 1668 /** 1669 * audit_syscall_exit - deallocate audit context after a system call 1670 * @valid: success/failure flag 1671 * @return_code: syscall return value 1672 * 1673 * Tear down after system call. If the audit context has been marked as 1674 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1675 * filtering, or because some other part of the kernel write an audit 1676 * message), then write out the syscall information. In call cases, 1677 * free the names stored from getname(). 1678 */ 1679 void audit_syscall_exit(int valid, long return_code) 1680 { 1681 struct task_struct *tsk = current; 1682 struct audit_context *context; 1683 1684 context = audit_get_context(tsk, valid, return_code); 1685 1686 if (likely(!context)) 1687 return; 1688 1689 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1690 audit_log_exit(context, tsk); 1691 1692 context->in_syscall = 0; 1693 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1694 1695 if (context->previous) { 1696 struct audit_context *new_context = context->previous; 1697 context->previous = NULL; 1698 audit_free_context(context); 1699 tsk->audit_context = new_context; 1700 } else { 1701 audit_free_names(context); 1702 unroll_tree_refs(context, NULL, 0); 1703 audit_free_aux(context); 1704 context->aux = NULL; 1705 context->aux_pids = NULL; 1706 context->target_pid = 0; 1707 context->target_sid = 0; 1708 context->sockaddr_len = 0; 1709 context->type = 0; 1710 context->fds[0] = -1; 1711 if (context->state != AUDIT_RECORD_CONTEXT) { 1712 kfree(context->filterkey); 1713 context->filterkey = NULL; 1714 } 1715 tsk->audit_context = context; 1716 } 1717 } 1718 1719 static inline void handle_one(const struct inode *inode) 1720 { 1721 #ifdef CONFIG_AUDIT_TREE 1722 struct audit_context *context; 1723 struct audit_tree_refs *p; 1724 struct audit_chunk *chunk; 1725 int count; 1726 if (likely(list_empty(&inode->inotify_watches))) 1727 return; 1728 context = current->audit_context; 1729 p = context->trees; 1730 count = context->tree_count; 1731 rcu_read_lock(); 1732 chunk = audit_tree_lookup(inode); 1733 rcu_read_unlock(); 1734 if (!chunk) 1735 return; 1736 if (likely(put_tree_ref(context, chunk))) 1737 return; 1738 if (unlikely(!grow_tree_refs(context))) { 1739 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n"); 1740 audit_set_auditable(context); 1741 audit_put_chunk(chunk); 1742 unroll_tree_refs(context, p, count); 1743 return; 1744 } 1745 put_tree_ref(context, chunk); 1746 #endif 1747 } 1748 1749 static void handle_path(const struct dentry *dentry) 1750 { 1751 #ifdef CONFIG_AUDIT_TREE 1752 struct audit_context *context; 1753 struct audit_tree_refs *p; 1754 const struct dentry *d, *parent; 1755 struct audit_chunk *drop; 1756 unsigned long seq; 1757 int count; 1758 1759 context = current->audit_context; 1760 p = context->trees; 1761 count = context->tree_count; 1762 retry: 1763 drop = NULL; 1764 d = dentry; 1765 rcu_read_lock(); 1766 seq = read_seqbegin(&rename_lock); 1767 for(;;) { 1768 struct inode *inode = d->d_inode; 1769 if (inode && unlikely(!list_empty(&inode->inotify_watches))) { 1770 struct audit_chunk *chunk; 1771 chunk = audit_tree_lookup(inode); 1772 if (chunk) { 1773 if (unlikely(!put_tree_ref(context, chunk))) { 1774 drop = chunk; 1775 break; 1776 } 1777 } 1778 } 1779 parent = d->d_parent; 1780 if (parent == d) 1781 break; 1782 d = parent; 1783 } 1784 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1785 rcu_read_unlock(); 1786 if (!drop) { 1787 /* just a race with rename */ 1788 unroll_tree_refs(context, p, count); 1789 goto retry; 1790 } 1791 audit_put_chunk(drop); 1792 if (grow_tree_refs(context)) { 1793 /* OK, got more space */ 1794 unroll_tree_refs(context, p, count); 1795 goto retry; 1796 } 1797 /* too bad */ 1798 printk(KERN_WARNING 1799 "out of memory, audit has lost a tree reference\n"); 1800 unroll_tree_refs(context, p, count); 1801 audit_set_auditable(context); 1802 return; 1803 } 1804 rcu_read_unlock(); 1805 #endif 1806 } 1807 1808 /** 1809 * audit_getname - add a name to the list 1810 * @name: name to add 1811 * 1812 * Add a name to the list of audit names for this context. 1813 * Called from fs/namei.c:getname(). 1814 */ 1815 void __audit_getname(const char *name) 1816 { 1817 struct audit_context *context = current->audit_context; 1818 1819 if (IS_ERR(name) || !name) 1820 return; 1821 1822 if (!context->in_syscall) { 1823 #if AUDIT_DEBUG == 2 1824 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n", 1825 __FILE__, __LINE__, context->serial, name); 1826 dump_stack(); 1827 #endif 1828 return; 1829 } 1830 BUG_ON(context->name_count >= AUDIT_NAMES); 1831 context->names[context->name_count].name = name; 1832 context->names[context->name_count].name_len = AUDIT_NAME_FULL; 1833 context->names[context->name_count].name_put = 1; 1834 context->names[context->name_count].ino = (unsigned long)-1; 1835 context->names[context->name_count].osid = 0; 1836 ++context->name_count; 1837 if (!context->pwd.dentry) { 1838 read_lock(¤t->fs->lock); 1839 context->pwd = current->fs->pwd; 1840 path_get(¤t->fs->pwd); 1841 read_unlock(¤t->fs->lock); 1842 } 1843 1844 } 1845 1846 /* audit_putname - intercept a putname request 1847 * @name: name to intercept and delay for putname 1848 * 1849 * If we have stored the name from getname in the audit context, 1850 * then we delay the putname until syscall exit. 1851 * Called from include/linux/fs.h:putname(). 1852 */ 1853 void audit_putname(const char *name) 1854 { 1855 struct audit_context *context = current->audit_context; 1856 1857 BUG_ON(!context); 1858 if (!context->in_syscall) { 1859 #if AUDIT_DEBUG == 2 1860 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n", 1861 __FILE__, __LINE__, context->serial, name); 1862 if (context->name_count) { 1863 int i; 1864 for (i = 0; i < context->name_count; i++) 1865 printk(KERN_ERR "name[%d] = %p = %s\n", i, 1866 context->names[i].name, 1867 context->names[i].name ?: "(null)"); 1868 } 1869 #endif 1870 __putname(name); 1871 } 1872 #if AUDIT_DEBUG 1873 else { 1874 ++context->put_count; 1875 if (context->put_count > context->name_count) { 1876 printk(KERN_ERR "%s:%d(:%d): major=%d" 1877 " in_syscall=%d putname(%p) name_count=%d" 1878 " put_count=%d\n", 1879 __FILE__, __LINE__, 1880 context->serial, context->major, 1881 context->in_syscall, name, context->name_count, 1882 context->put_count); 1883 dump_stack(); 1884 } 1885 } 1886 #endif 1887 } 1888 1889 static int audit_inc_name_count(struct audit_context *context, 1890 const struct inode *inode) 1891 { 1892 if (context->name_count >= AUDIT_NAMES) { 1893 if (inode) 1894 printk(KERN_DEBUG "name_count maxed, losing inode data: " 1895 "dev=%02x:%02x, inode=%lu\n", 1896 MAJOR(inode->i_sb->s_dev), 1897 MINOR(inode->i_sb->s_dev), 1898 inode->i_ino); 1899 1900 else 1901 printk(KERN_DEBUG "name_count maxed, losing inode data\n"); 1902 return 1; 1903 } 1904 context->name_count++; 1905 #if AUDIT_DEBUG 1906 context->ino_count++; 1907 #endif 1908 return 0; 1909 } 1910 1911 1912 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry) 1913 { 1914 struct cpu_vfs_cap_data caps; 1915 int rc; 1916 1917 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t)); 1918 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t)); 1919 name->fcap.fE = 0; 1920 name->fcap_ver = 0; 1921 1922 if (!dentry) 1923 return 0; 1924 1925 rc = get_vfs_caps_from_disk(dentry, &caps); 1926 if (rc) 1927 return rc; 1928 1929 name->fcap.permitted = caps.permitted; 1930 name->fcap.inheritable = caps.inheritable; 1931 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1932 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 1933 1934 return 0; 1935 } 1936 1937 1938 /* Copy inode data into an audit_names. */ 1939 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1940 const struct inode *inode) 1941 { 1942 name->ino = inode->i_ino; 1943 name->dev = inode->i_sb->s_dev; 1944 name->mode = inode->i_mode; 1945 name->uid = inode->i_uid; 1946 name->gid = inode->i_gid; 1947 name->rdev = inode->i_rdev; 1948 security_inode_getsecid(inode, &name->osid); 1949 audit_copy_fcaps(name, dentry); 1950 } 1951 1952 /** 1953 * audit_inode - store the inode and device from a lookup 1954 * @name: name being audited 1955 * @dentry: dentry being audited 1956 * 1957 * Called from fs/namei.c:path_lookup(). 1958 */ 1959 void __audit_inode(const char *name, const struct dentry *dentry) 1960 { 1961 int idx; 1962 struct audit_context *context = current->audit_context; 1963 const struct inode *inode = dentry->d_inode; 1964 1965 if (!context->in_syscall) 1966 return; 1967 if (context->name_count 1968 && context->names[context->name_count-1].name 1969 && context->names[context->name_count-1].name == name) 1970 idx = context->name_count - 1; 1971 else if (context->name_count > 1 1972 && context->names[context->name_count-2].name 1973 && context->names[context->name_count-2].name == name) 1974 idx = context->name_count - 2; 1975 else { 1976 /* FIXME: how much do we care about inodes that have no 1977 * associated name? */ 1978 if (audit_inc_name_count(context, inode)) 1979 return; 1980 idx = context->name_count - 1; 1981 context->names[idx].name = NULL; 1982 } 1983 handle_path(dentry); 1984 audit_copy_inode(&context->names[idx], dentry, inode); 1985 } 1986 1987 /** 1988 * audit_inode_child - collect inode info for created/removed objects 1989 * @dname: inode's dentry name 1990 * @dentry: dentry being audited 1991 * @parent: inode of dentry parent 1992 * 1993 * For syscalls that create or remove filesystem objects, audit_inode 1994 * can only collect information for the filesystem object's parent. 1995 * This call updates the audit context with the child's information. 1996 * Syscalls that create a new filesystem object must be hooked after 1997 * the object is created. Syscalls that remove a filesystem object 1998 * must be hooked prior, in order to capture the target inode during 1999 * unsuccessful attempts. 2000 */ 2001 void __audit_inode_child(const char *dname, const struct dentry *dentry, 2002 const struct inode *parent) 2003 { 2004 int idx; 2005 struct audit_context *context = current->audit_context; 2006 const char *found_parent = NULL, *found_child = NULL; 2007 const struct inode *inode = dentry->d_inode; 2008 int dirlen = 0; 2009 2010 if (!context->in_syscall) 2011 return; 2012 2013 if (inode) 2014 handle_one(inode); 2015 /* determine matching parent */ 2016 if (!dname) 2017 goto add_names; 2018 2019 /* parent is more likely, look for it first */ 2020 for (idx = 0; idx < context->name_count; idx++) { 2021 struct audit_names *n = &context->names[idx]; 2022 2023 if (!n->name) 2024 continue; 2025 2026 if (n->ino == parent->i_ino && 2027 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2028 n->name_len = dirlen; /* update parent data in place */ 2029 found_parent = n->name; 2030 goto add_names; 2031 } 2032 } 2033 2034 /* no matching parent, look for matching child */ 2035 for (idx = 0; idx < context->name_count; idx++) { 2036 struct audit_names *n = &context->names[idx]; 2037 2038 if (!n->name) 2039 continue; 2040 2041 /* strcmp() is the more likely scenario */ 2042 if (!strcmp(dname, n->name) || 2043 !audit_compare_dname_path(dname, n->name, &dirlen)) { 2044 if (inode) 2045 audit_copy_inode(n, NULL, inode); 2046 else 2047 n->ino = (unsigned long)-1; 2048 found_child = n->name; 2049 goto add_names; 2050 } 2051 } 2052 2053 add_names: 2054 if (!found_parent) { 2055 if (audit_inc_name_count(context, parent)) 2056 return; 2057 idx = context->name_count - 1; 2058 context->names[idx].name = NULL; 2059 audit_copy_inode(&context->names[idx], NULL, parent); 2060 } 2061 2062 if (!found_child) { 2063 if (audit_inc_name_count(context, inode)) 2064 return; 2065 idx = context->name_count - 1; 2066 2067 /* Re-use the name belonging to the slot for a matching parent 2068 * directory. All names for this context are relinquished in 2069 * audit_free_names() */ 2070 if (found_parent) { 2071 context->names[idx].name = found_parent; 2072 context->names[idx].name_len = AUDIT_NAME_FULL; 2073 /* don't call __putname() */ 2074 context->names[idx].name_put = 0; 2075 } else { 2076 context->names[idx].name = NULL; 2077 } 2078 2079 if (inode) 2080 audit_copy_inode(&context->names[idx], NULL, inode); 2081 else 2082 context->names[idx].ino = (unsigned long)-1; 2083 } 2084 } 2085 EXPORT_SYMBOL_GPL(__audit_inode_child); 2086 2087 /** 2088 * auditsc_get_stamp - get local copies of audit_context values 2089 * @ctx: audit_context for the task 2090 * @t: timespec to store time recorded in the audit_context 2091 * @serial: serial value that is recorded in the audit_context 2092 * 2093 * Also sets the context as auditable. 2094 */ 2095 int auditsc_get_stamp(struct audit_context *ctx, 2096 struct timespec *t, unsigned int *serial) 2097 { 2098 if (!ctx->in_syscall) 2099 return 0; 2100 if (!ctx->serial) 2101 ctx->serial = audit_serial(); 2102 t->tv_sec = ctx->ctime.tv_sec; 2103 t->tv_nsec = ctx->ctime.tv_nsec; 2104 *serial = ctx->serial; 2105 if (!ctx->prio) { 2106 ctx->prio = 1; 2107 ctx->current_state = AUDIT_RECORD_CONTEXT; 2108 } 2109 return 1; 2110 } 2111 2112 /* global counter which is incremented every time something logs in */ 2113 static atomic_t session_id = ATOMIC_INIT(0); 2114 2115 /** 2116 * audit_set_loginuid - set a task's audit_context loginuid 2117 * @task: task whose audit context is being modified 2118 * @loginuid: loginuid value 2119 * 2120 * Returns 0. 2121 * 2122 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2123 */ 2124 int audit_set_loginuid(struct task_struct *task, uid_t loginuid) 2125 { 2126 unsigned int sessionid = atomic_inc_return(&session_id); 2127 struct audit_context *context = task->audit_context; 2128 2129 if (context && context->in_syscall) { 2130 struct audit_buffer *ab; 2131 2132 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 2133 if (ab) { 2134 audit_log_format(ab, "login pid=%d uid=%u " 2135 "old auid=%u new auid=%u" 2136 " old ses=%u new ses=%u", 2137 task->pid, task_uid(task), 2138 task->loginuid, loginuid, 2139 task->sessionid, sessionid); 2140 audit_log_end(ab); 2141 } 2142 } 2143 task->sessionid = sessionid; 2144 task->loginuid = loginuid; 2145 return 0; 2146 } 2147 2148 /** 2149 * __audit_mq_open - record audit data for a POSIX MQ open 2150 * @oflag: open flag 2151 * @mode: mode bits 2152 * @attr: queue attributes 2153 * 2154 */ 2155 void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr) 2156 { 2157 struct audit_context *context = current->audit_context; 2158 2159 if (attr) 2160 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2161 else 2162 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2163 2164 context->mq_open.oflag = oflag; 2165 context->mq_open.mode = mode; 2166 2167 context->type = AUDIT_MQ_OPEN; 2168 } 2169 2170 /** 2171 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2172 * @mqdes: MQ descriptor 2173 * @msg_len: Message length 2174 * @msg_prio: Message priority 2175 * @abs_timeout: Message timeout in absolute time 2176 * 2177 */ 2178 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2179 const struct timespec *abs_timeout) 2180 { 2181 struct audit_context *context = current->audit_context; 2182 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2183 2184 if (abs_timeout) 2185 memcpy(p, abs_timeout, sizeof(struct timespec)); 2186 else 2187 memset(p, 0, sizeof(struct timespec)); 2188 2189 context->mq_sendrecv.mqdes = mqdes; 2190 context->mq_sendrecv.msg_len = msg_len; 2191 context->mq_sendrecv.msg_prio = msg_prio; 2192 2193 context->type = AUDIT_MQ_SENDRECV; 2194 } 2195 2196 /** 2197 * __audit_mq_notify - record audit data for a POSIX MQ notify 2198 * @mqdes: MQ descriptor 2199 * @notification: Notification event 2200 * 2201 */ 2202 2203 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2204 { 2205 struct audit_context *context = current->audit_context; 2206 2207 if (notification) 2208 context->mq_notify.sigev_signo = notification->sigev_signo; 2209 else 2210 context->mq_notify.sigev_signo = 0; 2211 2212 context->mq_notify.mqdes = mqdes; 2213 context->type = AUDIT_MQ_NOTIFY; 2214 } 2215 2216 /** 2217 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2218 * @mqdes: MQ descriptor 2219 * @mqstat: MQ flags 2220 * 2221 */ 2222 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2223 { 2224 struct audit_context *context = current->audit_context; 2225 context->mq_getsetattr.mqdes = mqdes; 2226 context->mq_getsetattr.mqstat = *mqstat; 2227 context->type = AUDIT_MQ_GETSETATTR; 2228 } 2229 2230 /** 2231 * audit_ipc_obj - record audit data for ipc object 2232 * @ipcp: ipc permissions 2233 * 2234 */ 2235 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2236 { 2237 struct audit_context *context = current->audit_context; 2238 context->ipc.uid = ipcp->uid; 2239 context->ipc.gid = ipcp->gid; 2240 context->ipc.mode = ipcp->mode; 2241 context->ipc.has_perm = 0; 2242 security_ipc_getsecid(ipcp, &context->ipc.osid); 2243 context->type = AUDIT_IPC; 2244 } 2245 2246 /** 2247 * audit_ipc_set_perm - record audit data for new ipc permissions 2248 * @qbytes: msgq bytes 2249 * @uid: msgq user id 2250 * @gid: msgq group id 2251 * @mode: msgq mode (permissions) 2252 * 2253 * Called only after audit_ipc_obj(). 2254 */ 2255 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode) 2256 { 2257 struct audit_context *context = current->audit_context; 2258 2259 context->ipc.qbytes = qbytes; 2260 context->ipc.perm_uid = uid; 2261 context->ipc.perm_gid = gid; 2262 context->ipc.perm_mode = mode; 2263 context->ipc.has_perm = 1; 2264 } 2265 2266 int audit_bprm(struct linux_binprm *bprm) 2267 { 2268 struct audit_aux_data_execve *ax; 2269 struct audit_context *context = current->audit_context; 2270 2271 if (likely(!audit_enabled || !context || context->dummy)) 2272 return 0; 2273 2274 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2275 if (!ax) 2276 return -ENOMEM; 2277 2278 ax->argc = bprm->argc; 2279 ax->envc = bprm->envc; 2280 ax->mm = bprm->mm; 2281 ax->d.type = AUDIT_EXECVE; 2282 ax->d.next = context->aux; 2283 context->aux = (void *)ax; 2284 return 0; 2285 } 2286 2287 2288 /** 2289 * audit_socketcall - record audit data for sys_socketcall 2290 * @nargs: number of args 2291 * @args: args array 2292 * 2293 */ 2294 void audit_socketcall(int nargs, unsigned long *args) 2295 { 2296 struct audit_context *context = current->audit_context; 2297 2298 if (likely(!context || context->dummy)) 2299 return; 2300 2301 context->type = AUDIT_SOCKETCALL; 2302 context->socketcall.nargs = nargs; 2303 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2304 } 2305 2306 /** 2307 * __audit_fd_pair - record audit data for pipe and socketpair 2308 * @fd1: the first file descriptor 2309 * @fd2: the second file descriptor 2310 * 2311 */ 2312 void __audit_fd_pair(int fd1, int fd2) 2313 { 2314 struct audit_context *context = current->audit_context; 2315 context->fds[0] = fd1; 2316 context->fds[1] = fd2; 2317 } 2318 2319 /** 2320 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2321 * @len: data length in user space 2322 * @a: data address in kernel space 2323 * 2324 * Returns 0 for success or NULL context or < 0 on error. 2325 */ 2326 int audit_sockaddr(int len, void *a) 2327 { 2328 struct audit_context *context = current->audit_context; 2329 2330 if (likely(!context || context->dummy)) 2331 return 0; 2332 2333 if (!context->sockaddr) { 2334 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2335 if (!p) 2336 return -ENOMEM; 2337 context->sockaddr = p; 2338 } 2339 2340 context->sockaddr_len = len; 2341 memcpy(context->sockaddr, a, len); 2342 return 0; 2343 } 2344 2345 void __audit_ptrace(struct task_struct *t) 2346 { 2347 struct audit_context *context = current->audit_context; 2348 2349 context->target_pid = t->pid; 2350 context->target_auid = audit_get_loginuid(t); 2351 context->target_uid = task_uid(t); 2352 context->target_sessionid = audit_get_sessionid(t); 2353 security_task_getsecid(t, &context->target_sid); 2354 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2355 } 2356 2357 /** 2358 * audit_signal_info - record signal info for shutting down audit subsystem 2359 * @sig: signal value 2360 * @t: task being signaled 2361 * 2362 * If the audit subsystem is being terminated, record the task (pid) 2363 * and uid that is doing that. 2364 */ 2365 int __audit_signal_info(int sig, struct task_struct *t) 2366 { 2367 struct audit_aux_data_pids *axp; 2368 struct task_struct *tsk = current; 2369 struct audit_context *ctx = tsk->audit_context; 2370 uid_t uid = current_uid(), t_uid = task_uid(t); 2371 2372 if (audit_pid && t->tgid == audit_pid) { 2373 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2374 audit_sig_pid = tsk->pid; 2375 if (tsk->loginuid != -1) 2376 audit_sig_uid = tsk->loginuid; 2377 else 2378 audit_sig_uid = uid; 2379 security_task_getsecid(tsk, &audit_sig_sid); 2380 } 2381 if (!audit_signals || audit_dummy_context()) 2382 return 0; 2383 } 2384 2385 /* optimize the common case by putting first signal recipient directly 2386 * in audit_context */ 2387 if (!ctx->target_pid) { 2388 ctx->target_pid = t->tgid; 2389 ctx->target_auid = audit_get_loginuid(t); 2390 ctx->target_uid = t_uid; 2391 ctx->target_sessionid = audit_get_sessionid(t); 2392 security_task_getsecid(t, &ctx->target_sid); 2393 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2394 return 0; 2395 } 2396 2397 axp = (void *)ctx->aux_pids; 2398 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2399 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2400 if (!axp) 2401 return -ENOMEM; 2402 2403 axp->d.type = AUDIT_OBJ_PID; 2404 axp->d.next = ctx->aux_pids; 2405 ctx->aux_pids = (void *)axp; 2406 } 2407 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2408 2409 axp->target_pid[axp->pid_count] = t->tgid; 2410 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2411 axp->target_uid[axp->pid_count] = t_uid; 2412 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2413 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2414 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2415 axp->pid_count++; 2416 2417 return 0; 2418 } 2419 2420 /** 2421 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2422 * @bprm: pointer to the bprm being processed 2423 * @new: the proposed new credentials 2424 * @old: the old credentials 2425 * 2426 * Simply check if the proc already has the caps given by the file and if not 2427 * store the priv escalation info for later auditing at the end of the syscall 2428 * 2429 * -Eric 2430 */ 2431 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2432 const struct cred *new, const struct cred *old) 2433 { 2434 struct audit_aux_data_bprm_fcaps *ax; 2435 struct audit_context *context = current->audit_context; 2436 struct cpu_vfs_cap_data vcaps; 2437 struct dentry *dentry; 2438 2439 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2440 if (!ax) 2441 return -ENOMEM; 2442 2443 ax->d.type = AUDIT_BPRM_FCAPS; 2444 ax->d.next = context->aux; 2445 context->aux = (void *)ax; 2446 2447 dentry = dget(bprm->file->f_dentry); 2448 get_vfs_caps_from_disk(dentry, &vcaps); 2449 dput(dentry); 2450 2451 ax->fcap.permitted = vcaps.permitted; 2452 ax->fcap.inheritable = vcaps.inheritable; 2453 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2454 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2455 2456 ax->old_pcap.permitted = old->cap_permitted; 2457 ax->old_pcap.inheritable = old->cap_inheritable; 2458 ax->old_pcap.effective = old->cap_effective; 2459 2460 ax->new_pcap.permitted = new->cap_permitted; 2461 ax->new_pcap.inheritable = new->cap_inheritable; 2462 ax->new_pcap.effective = new->cap_effective; 2463 return 0; 2464 } 2465 2466 /** 2467 * __audit_log_capset - store information about the arguments to the capset syscall 2468 * @pid: target pid of the capset call 2469 * @new: the new credentials 2470 * @old: the old (current) credentials 2471 * 2472 * Record the aguments userspace sent to sys_capset for later printing by the 2473 * audit system if applicable 2474 */ 2475 void __audit_log_capset(pid_t pid, 2476 const struct cred *new, const struct cred *old) 2477 { 2478 struct audit_context *context = current->audit_context; 2479 context->capset.pid = pid; 2480 context->capset.cap.effective = new->cap_effective; 2481 context->capset.cap.inheritable = new->cap_effective; 2482 context->capset.cap.permitted = new->cap_permitted; 2483 context->type = AUDIT_CAPSET; 2484 } 2485 2486 /** 2487 * audit_core_dumps - record information about processes that end abnormally 2488 * @signr: signal value 2489 * 2490 * If a process ends with a core dump, something fishy is going on and we 2491 * should record the event for investigation. 2492 */ 2493 void audit_core_dumps(long signr) 2494 { 2495 struct audit_buffer *ab; 2496 u32 sid; 2497 uid_t auid = audit_get_loginuid(current), uid; 2498 gid_t gid; 2499 unsigned int sessionid = audit_get_sessionid(current); 2500 2501 if (!audit_enabled) 2502 return; 2503 2504 if (signr == SIGQUIT) /* don't care for those */ 2505 return; 2506 2507 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2508 current_uid_gid(&uid, &gid); 2509 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2510 auid, uid, gid, sessionid); 2511 security_task_getsecid(current, &sid); 2512 if (sid) { 2513 char *ctx = NULL; 2514 u32 len; 2515 2516 if (security_secid_to_secctx(sid, &ctx, &len)) 2517 audit_log_format(ab, " ssid=%u", sid); 2518 else { 2519 audit_log_format(ab, " subj=%s", ctx); 2520 security_release_secctx(ctx, len); 2521 } 2522 } 2523 audit_log_format(ab, " pid=%d comm=", current->pid); 2524 audit_log_untrustedstring(ab, current->comm); 2525 audit_log_format(ab, " sig=%ld", signr); 2526 audit_log_end(ab); 2527 } 2528