xref: /openbmc/linux/kernel/auditsc.c (revision 7490ca1e)
1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 
71 #include "audit.h"
72 
73 /* flags stating the success for a syscall */
74 #define AUDITSC_INVALID 0
75 #define AUDITSC_SUCCESS 1
76 #define AUDITSC_FAILURE 2
77 
78 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
79  * for saving names from getname().  If we get more names we will allocate
80  * a name dynamically and also add those to the list anchored by names_list. */
81 #define AUDIT_NAMES	5
82 
83 /* Indicates that audit should log the full pathname. */
84 #define AUDIT_NAME_FULL -1
85 
86 /* no execve audit message should be longer than this (userspace limits) */
87 #define MAX_EXECVE_AUDIT_LEN 7500
88 
89 /* number of audit rules */
90 int audit_n_rules;
91 
92 /* determines whether we collect data for signals sent */
93 int audit_signals;
94 
95 struct audit_cap_data {
96 	kernel_cap_t		permitted;
97 	kernel_cap_t		inheritable;
98 	union {
99 		unsigned int	fE;		/* effective bit of a file capability */
100 		kernel_cap_t	effective;	/* effective set of a process */
101 	};
102 };
103 
104 /* When fs/namei.c:getname() is called, we store the pointer in name and
105  * we don't let putname() free it (instead we free all of the saved
106  * pointers at syscall exit time).
107  *
108  * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109 struct audit_names {
110 	struct list_head list;		/* audit_context->names_list */
111 	const char	*name;
112 	unsigned long	ino;
113 	dev_t		dev;
114 	umode_t		mode;
115 	uid_t		uid;
116 	gid_t		gid;
117 	dev_t		rdev;
118 	u32		osid;
119 	struct audit_cap_data fcap;
120 	unsigned int	fcap_ver;
121 	int		name_len;	/* number of name's characters to log */
122 	bool		name_put;	/* call __putname() for this name */
123 	/*
124 	 * This was an allocated audit_names and not from the array of
125 	 * names allocated in the task audit context.  Thus this name
126 	 * should be freed on syscall exit
127 	 */
128 	bool		should_free;
129 };
130 
131 struct audit_aux_data {
132 	struct audit_aux_data	*next;
133 	int			type;
134 };
135 
136 #define AUDIT_AUX_IPCPERM	0
137 
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS	16
140 
141 struct audit_aux_data_execve {
142 	struct audit_aux_data	d;
143 	int argc;
144 	int envc;
145 	struct mm_struct *mm;
146 };
147 
148 struct audit_aux_data_pids {
149 	struct audit_aux_data	d;
150 	pid_t			target_pid[AUDIT_AUX_PIDS];
151 	uid_t			target_auid[AUDIT_AUX_PIDS];
152 	uid_t			target_uid[AUDIT_AUX_PIDS];
153 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
154 	u32			target_sid[AUDIT_AUX_PIDS];
155 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 	int			pid_count;
157 };
158 
159 struct audit_aux_data_bprm_fcaps {
160 	struct audit_aux_data	d;
161 	struct audit_cap_data	fcap;
162 	unsigned int		fcap_ver;
163 	struct audit_cap_data	old_pcap;
164 	struct audit_cap_data	new_pcap;
165 };
166 
167 struct audit_aux_data_capset {
168 	struct audit_aux_data	d;
169 	pid_t			pid;
170 	struct audit_cap_data	cap;
171 };
172 
173 struct audit_tree_refs {
174 	struct audit_tree_refs *next;
175 	struct audit_chunk *c[31];
176 };
177 
178 /* The per-task audit context. */
179 struct audit_context {
180 	int		    dummy;	/* must be the first element */
181 	int		    in_syscall;	/* 1 if task is in a syscall */
182 	enum audit_state    state, current_state;
183 	unsigned int	    serial;     /* serial number for record */
184 	int		    major;      /* syscall number */
185 	struct timespec	    ctime;      /* time of syscall entry */
186 	unsigned long	    argv[4];    /* syscall arguments */
187 	long		    return_code;/* syscall return code */
188 	u64		    prio;
189 	int		    return_valid; /* return code is valid */
190 	/*
191 	 * The names_list is the list of all audit_names collected during this
192 	 * syscall.  The first AUDIT_NAMES entries in the names_list will
193 	 * actually be from the preallocated_names array for performance
194 	 * reasons.  Except during allocation they should never be referenced
195 	 * through the preallocated_names array and should only be found/used
196 	 * by running the names_list.
197 	 */
198 	struct audit_names  preallocated_names[AUDIT_NAMES];
199 	int		    name_count; /* total records in names_list */
200 	struct list_head    names_list;	/* anchor for struct audit_names->list */
201 	char *		    filterkey;	/* key for rule that triggered record */
202 	struct path	    pwd;
203 	struct audit_context *previous; /* For nested syscalls */
204 	struct audit_aux_data *aux;
205 	struct audit_aux_data *aux_pids;
206 	struct sockaddr_storage *sockaddr;
207 	size_t sockaddr_len;
208 				/* Save things to print about task_struct */
209 	pid_t		    pid, ppid;
210 	uid_t		    uid, euid, suid, fsuid;
211 	gid_t		    gid, egid, sgid, fsgid;
212 	unsigned long	    personality;
213 	int		    arch;
214 
215 	pid_t		    target_pid;
216 	uid_t		    target_auid;
217 	uid_t		    target_uid;
218 	unsigned int	    target_sessionid;
219 	u32		    target_sid;
220 	char		    target_comm[TASK_COMM_LEN];
221 
222 	struct audit_tree_refs *trees, *first_trees;
223 	struct list_head killed_trees;
224 	int tree_count;
225 
226 	int type;
227 	union {
228 		struct {
229 			int nargs;
230 			long args[6];
231 		} socketcall;
232 		struct {
233 			uid_t			uid;
234 			gid_t			gid;
235 			umode_t			mode;
236 			u32			osid;
237 			int			has_perm;
238 			uid_t			perm_uid;
239 			gid_t			perm_gid;
240 			umode_t			perm_mode;
241 			unsigned long		qbytes;
242 		} ipc;
243 		struct {
244 			mqd_t			mqdes;
245 			struct mq_attr 		mqstat;
246 		} mq_getsetattr;
247 		struct {
248 			mqd_t			mqdes;
249 			int			sigev_signo;
250 		} mq_notify;
251 		struct {
252 			mqd_t			mqdes;
253 			size_t			msg_len;
254 			unsigned int		msg_prio;
255 			struct timespec		abs_timeout;
256 		} mq_sendrecv;
257 		struct {
258 			int			oflag;
259 			umode_t			mode;
260 			struct mq_attr		attr;
261 		} mq_open;
262 		struct {
263 			pid_t			pid;
264 			struct audit_cap_data	cap;
265 		} capset;
266 		struct {
267 			int			fd;
268 			int			flags;
269 		} mmap;
270 	};
271 	int fds[2];
272 
273 #if AUDIT_DEBUG
274 	int		    put_count;
275 	int		    ino_count;
276 #endif
277 };
278 
279 static inline int open_arg(int flags, int mask)
280 {
281 	int n = ACC_MODE(flags);
282 	if (flags & (O_TRUNC | O_CREAT))
283 		n |= AUDIT_PERM_WRITE;
284 	return n & mask;
285 }
286 
287 static int audit_match_perm(struct audit_context *ctx, int mask)
288 {
289 	unsigned n;
290 	if (unlikely(!ctx))
291 		return 0;
292 	n = ctx->major;
293 
294 	switch (audit_classify_syscall(ctx->arch, n)) {
295 	case 0:	/* native */
296 		if ((mask & AUDIT_PERM_WRITE) &&
297 		     audit_match_class(AUDIT_CLASS_WRITE, n))
298 			return 1;
299 		if ((mask & AUDIT_PERM_READ) &&
300 		     audit_match_class(AUDIT_CLASS_READ, n))
301 			return 1;
302 		if ((mask & AUDIT_PERM_ATTR) &&
303 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
304 			return 1;
305 		return 0;
306 	case 1: /* 32bit on biarch */
307 		if ((mask & AUDIT_PERM_WRITE) &&
308 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 			return 1;
310 		if ((mask & AUDIT_PERM_READ) &&
311 		     audit_match_class(AUDIT_CLASS_READ_32, n))
312 			return 1;
313 		if ((mask & AUDIT_PERM_ATTR) &&
314 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 			return 1;
316 		return 0;
317 	case 2: /* open */
318 		return mask & ACC_MODE(ctx->argv[1]);
319 	case 3: /* openat */
320 		return mask & ACC_MODE(ctx->argv[2]);
321 	case 4: /* socketcall */
322 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 	case 5: /* execve */
324 		return mask & AUDIT_PERM_EXEC;
325 	default:
326 		return 0;
327 	}
328 }
329 
330 static int audit_match_filetype(struct audit_context *ctx, int val)
331 {
332 	struct audit_names *n;
333 	umode_t mode = (umode_t)val;
334 
335 	if (unlikely(!ctx))
336 		return 0;
337 
338 	list_for_each_entry(n, &ctx->names_list, list) {
339 		if ((n->ino != -1) &&
340 		    ((n->mode & S_IFMT) == mode))
341 			return 1;
342 	}
343 
344 	return 0;
345 }
346 
347 /*
348  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349  * ->first_trees points to its beginning, ->trees - to the current end of data.
350  * ->tree_count is the number of free entries in array pointed to by ->trees.
351  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
353  * it's going to remain 1-element for almost any setup) until we free context itself.
354  * References in it _are_ dropped - at the same time we free/drop aux stuff.
355  */
356 
357 #ifdef CONFIG_AUDIT_TREE
358 static void audit_set_auditable(struct audit_context *ctx)
359 {
360 	if (!ctx->prio) {
361 		ctx->prio = 1;
362 		ctx->current_state = AUDIT_RECORD_CONTEXT;
363 	}
364 }
365 
366 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367 {
368 	struct audit_tree_refs *p = ctx->trees;
369 	int left = ctx->tree_count;
370 	if (likely(left)) {
371 		p->c[--left] = chunk;
372 		ctx->tree_count = left;
373 		return 1;
374 	}
375 	if (!p)
376 		return 0;
377 	p = p->next;
378 	if (p) {
379 		p->c[30] = chunk;
380 		ctx->trees = p;
381 		ctx->tree_count = 30;
382 		return 1;
383 	}
384 	return 0;
385 }
386 
387 static int grow_tree_refs(struct audit_context *ctx)
388 {
389 	struct audit_tree_refs *p = ctx->trees;
390 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 	if (!ctx->trees) {
392 		ctx->trees = p;
393 		return 0;
394 	}
395 	if (p)
396 		p->next = ctx->trees;
397 	else
398 		ctx->first_trees = ctx->trees;
399 	ctx->tree_count = 31;
400 	return 1;
401 }
402 #endif
403 
404 static void unroll_tree_refs(struct audit_context *ctx,
405 		      struct audit_tree_refs *p, int count)
406 {
407 #ifdef CONFIG_AUDIT_TREE
408 	struct audit_tree_refs *q;
409 	int n;
410 	if (!p) {
411 		/* we started with empty chain */
412 		p = ctx->first_trees;
413 		count = 31;
414 		/* if the very first allocation has failed, nothing to do */
415 		if (!p)
416 			return;
417 	}
418 	n = count;
419 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 		while (n--) {
421 			audit_put_chunk(q->c[n]);
422 			q->c[n] = NULL;
423 		}
424 	}
425 	while (n-- > ctx->tree_count) {
426 		audit_put_chunk(q->c[n]);
427 		q->c[n] = NULL;
428 	}
429 	ctx->trees = p;
430 	ctx->tree_count = count;
431 #endif
432 }
433 
434 static void free_tree_refs(struct audit_context *ctx)
435 {
436 	struct audit_tree_refs *p, *q;
437 	for (p = ctx->first_trees; p; p = q) {
438 		q = p->next;
439 		kfree(p);
440 	}
441 }
442 
443 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444 {
445 #ifdef CONFIG_AUDIT_TREE
446 	struct audit_tree_refs *p;
447 	int n;
448 	if (!tree)
449 		return 0;
450 	/* full ones */
451 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 		for (n = 0; n < 31; n++)
453 			if (audit_tree_match(p->c[n], tree))
454 				return 1;
455 	}
456 	/* partial */
457 	if (p) {
458 		for (n = ctx->tree_count; n < 31; n++)
459 			if (audit_tree_match(p->c[n], tree))
460 				return 1;
461 	}
462 #endif
463 	return 0;
464 }
465 
466 static int audit_compare_id(uid_t uid1,
467 			    struct audit_names *name,
468 			    unsigned long name_offset,
469 			    struct audit_field *f,
470 			    struct audit_context *ctx)
471 {
472 	struct audit_names *n;
473 	unsigned long addr;
474 	uid_t uid2;
475 	int rc;
476 
477 	BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
478 
479 	if (name) {
480 		addr = (unsigned long)name;
481 		addr += name_offset;
482 
483 		uid2 = *(uid_t *)addr;
484 		rc = audit_comparator(uid1, f->op, uid2);
485 		if (rc)
486 			return rc;
487 	}
488 
489 	if (ctx) {
490 		list_for_each_entry(n, &ctx->names_list, list) {
491 			addr = (unsigned long)n;
492 			addr += name_offset;
493 
494 			uid2 = *(uid_t *)addr;
495 
496 			rc = audit_comparator(uid1, f->op, uid2);
497 			if (rc)
498 				return rc;
499 		}
500 	}
501 	return 0;
502 }
503 
504 static int audit_field_compare(struct task_struct *tsk,
505 			       const struct cred *cred,
506 			       struct audit_field *f,
507 			       struct audit_context *ctx,
508 			       struct audit_names *name)
509 {
510 	switch (f->val) {
511 	/* process to file object comparisons */
512 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
513 		return audit_compare_id(cred->uid,
514 					name, offsetof(struct audit_names, uid),
515 					f, ctx);
516 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
517 		return audit_compare_id(cred->gid,
518 					name, offsetof(struct audit_names, gid),
519 					f, ctx);
520 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
521 		return audit_compare_id(cred->euid,
522 					name, offsetof(struct audit_names, uid),
523 					f, ctx);
524 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
525 		return audit_compare_id(cred->egid,
526 					name, offsetof(struct audit_names, gid),
527 					f, ctx);
528 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
529 		return audit_compare_id(tsk->loginuid,
530 					name, offsetof(struct audit_names, uid),
531 					f, ctx);
532 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 		return audit_compare_id(cred->suid,
534 					name, offsetof(struct audit_names, uid),
535 					f, ctx);
536 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
537 		return audit_compare_id(cred->sgid,
538 					name, offsetof(struct audit_names, gid),
539 					f, ctx);
540 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
541 		return audit_compare_id(cred->fsuid,
542 					name, offsetof(struct audit_names, uid),
543 					f, ctx);
544 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
545 		return audit_compare_id(cred->fsgid,
546 					name, offsetof(struct audit_names, gid),
547 					f, ctx);
548 	/* uid comparisons */
549 	case AUDIT_COMPARE_UID_TO_AUID:
550 		return audit_comparator(cred->uid, f->op, tsk->loginuid);
551 	case AUDIT_COMPARE_UID_TO_EUID:
552 		return audit_comparator(cred->uid, f->op, cred->euid);
553 	case AUDIT_COMPARE_UID_TO_SUID:
554 		return audit_comparator(cred->uid, f->op, cred->suid);
555 	case AUDIT_COMPARE_UID_TO_FSUID:
556 		return audit_comparator(cred->uid, f->op, cred->fsuid);
557 	/* auid comparisons */
558 	case AUDIT_COMPARE_AUID_TO_EUID:
559 		return audit_comparator(tsk->loginuid, f->op, cred->euid);
560 	case AUDIT_COMPARE_AUID_TO_SUID:
561 		return audit_comparator(tsk->loginuid, f->op, cred->suid);
562 	case AUDIT_COMPARE_AUID_TO_FSUID:
563 		return audit_comparator(tsk->loginuid, f->op, cred->fsuid);
564 	/* euid comparisons */
565 	case AUDIT_COMPARE_EUID_TO_SUID:
566 		return audit_comparator(cred->euid, f->op, cred->suid);
567 	case AUDIT_COMPARE_EUID_TO_FSUID:
568 		return audit_comparator(cred->euid, f->op, cred->fsuid);
569 	/* suid comparisons */
570 	case AUDIT_COMPARE_SUID_TO_FSUID:
571 		return audit_comparator(cred->suid, f->op, cred->fsuid);
572 	/* gid comparisons */
573 	case AUDIT_COMPARE_GID_TO_EGID:
574 		return audit_comparator(cred->gid, f->op, cred->egid);
575 	case AUDIT_COMPARE_GID_TO_SGID:
576 		return audit_comparator(cred->gid, f->op, cred->sgid);
577 	case AUDIT_COMPARE_GID_TO_FSGID:
578 		return audit_comparator(cred->gid, f->op, cred->fsgid);
579 	/* egid comparisons */
580 	case AUDIT_COMPARE_EGID_TO_SGID:
581 		return audit_comparator(cred->egid, f->op, cred->sgid);
582 	case AUDIT_COMPARE_EGID_TO_FSGID:
583 		return audit_comparator(cred->egid, f->op, cred->fsgid);
584 	/* sgid comparison */
585 	case AUDIT_COMPARE_SGID_TO_FSGID:
586 		return audit_comparator(cred->sgid, f->op, cred->fsgid);
587 	default:
588 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
589 		return 0;
590 	}
591 	return 0;
592 }
593 
594 /* Determine if any context name data matches a rule's watch data */
595 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
596  * otherwise.
597  *
598  * If task_creation is true, this is an explicit indication that we are
599  * filtering a task rule at task creation time.  This and tsk == current are
600  * the only situations where tsk->cred may be accessed without an rcu read lock.
601  */
602 static int audit_filter_rules(struct task_struct *tsk,
603 			      struct audit_krule *rule,
604 			      struct audit_context *ctx,
605 			      struct audit_names *name,
606 			      enum audit_state *state,
607 			      bool task_creation)
608 {
609 	const struct cred *cred;
610 	int i, need_sid = 1;
611 	u32 sid;
612 
613 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
614 
615 	for (i = 0; i < rule->field_count; i++) {
616 		struct audit_field *f = &rule->fields[i];
617 		struct audit_names *n;
618 		int result = 0;
619 
620 		switch (f->type) {
621 		case AUDIT_PID:
622 			result = audit_comparator(tsk->pid, f->op, f->val);
623 			break;
624 		case AUDIT_PPID:
625 			if (ctx) {
626 				if (!ctx->ppid)
627 					ctx->ppid = sys_getppid();
628 				result = audit_comparator(ctx->ppid, f->op, f->val);
629 			}
630 			break;
631 		case AUDIT_UID:
632 			result = audit_comparator(cred->uid, f->op, f->val);
633 			break;
634 		case AUDIT_EUID:
635 			result = audit_comparator(cred->euid, f->op, f->val);
636 			break;
637 		case AUDIT_SUID:
638 			result = audit_comparator(cred->suid, f->op, f->val);
639 			break;
640 		case AUDIT_FSUID:
641 			result = audit_comparator(cred->fsuid, f->op, f->val);
642 			break;
643 		case AUDIT_GID:
644 			result = audit_comparator(cred->gid, f->op, f->val);
645 			break;
646 		case AUDIT_EGID:
647 			result = audit_comparator(cred->egid, f->op, f->val);
648 			break;
649 		case AUDIT_SGID:
650 			result = audit_comparator(cred->sgid, f->op, f->val);
651 			break;
652 		case AUDIT_FSGID:
653 			result = audit_comparator(cred->fsgid, f->op, f->val);
654 			break;
655 		case AUDIT_PERS:
656 			result = audit_comparator(tsk->personality, f->op, f->val);
657 			break;
658 		case AUDIT_ARCH:
659 			if (ctx)
660 				result = audit_comparator(ctx->arch, f->op, f->val);
661 			break;
662 
663 		case AUDIT_EXIT:
664 			if (ctx && ctx->return_valid)
665 				result = audit_comparator(ctx->return_code, f->op, f->val);
666 			break;
667 		case AUDIT_SUCCESS:
668 			if (ctx && ctx->return_valid) {
669 				if (f->val)
670 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
671 				else
672 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
673 			}
674 			break;
675 		case AUDIT_DEVMAJOR:
676 			if (name) {
677 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
678 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
679 					++result;
680 			} else if (ctx) {
681 				list_for_each_entry(n, &ctx->names_list, list) {
682 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
683 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
684 						++result;
685 						break;
686 					}
687 				}
688 			}
689 			break;
690 		case AUDIT_DEVMINOR:
691 			if (name) {
692 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
693 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
694 					++result;
695 			} else if (ctx) {
696 				list_for_each_entry(n, &ctx->names_list, list) {
697 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
698 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
699 						++result;
700 						break;
701 					}
702 				}
703 			}
704 			break;
705 		case AUDIT_INODE:
706 			if (name)
707 				result = (name->ino == f->val);
708 			else if (ctx) {
709 				list_for_each_entry(n, &ctx->names_list, list) {
710 					if (audit_comparator(n->ino, f->op, f->val)) {
711 						++result;
712 						break;
713 					}
714 				}
715 			}
716 			break;
717 		case AUDIT_OBJ_UID:
718 			if (name) {
719 				result = audit_comparator(name->uid, f->op, f->val);
720 			} else if (ctx) {
721 				list_for_each_entry(n, &ctx->names_list, list) {
722 					if (audit_comparator(n->uid, f->op, f->val)) {
723 						++result;
724 						break;
725 					}
726 				}
727 			}
728 			break;
729 		case AUDIT_OBJ_GID:
730 			if (name) {
731 				result = audit_comparator(name->gid, f->op, f->val);
732 			} else if (ctx) {
733 				list_for_each_entry(n, &ctx->names_list, list) {
734 					if (audit_comparator(n->gid, f->op, f->val)) {
735 						++result;
736 						break;
737 					}
738 				}
739 			}
740 			break;
741 		case AUDIT_WATCH:
742 			if (name)
743 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
744 			break;
745 		case AUDIT_DIR:
746 			if (ctx)
747 				result = match_tree_refs(ctx, rule->tree);
748 			break;
749 		case AUDIT_LOGINUID:
750 			result = 0;
751 			if (ctx)
752 				result = audit_comparator(tsk->loginuid, f->op, f->val);
753 			break;
754 		case AUDIT_SUBJ_USER:
755 		case AUDIT_SUBJ_ROLE:
756 		case AUDIT_SUBJ_TYPE:
757 		case AUDIT_SUBJ_SEN:
758 		case AUDIT_SUBJ_CLR:
759 			/* NOTE: this may return negative values indicating
760 			   a temporary error.  We simply treat this as a
761 			   match for now to avoid losing information that
762 			   may be wanted.   An error message will also be
763 			   logged upon error */
764 			if (f->lsm_rule) {
765 				if (need_sid) {
766 					security_task_getsecid(tsk, &sid);
767 					need_sid = 0;
768 				}
769 				result = security_audit_rule_match(sid, f->type,
770 				                                  f->op,
771 				                                  f->lsm_rule,
772 				                                  ctx);
773 			}
774 			break;
775 		case AUDIT_OBJ_USER:
776 		case AUDIT_OBJ_ROLE:
777 		case AUDIT_OBJ_TYPE:
778 		case AUDIT_OBJ_LEV_LOW:
779 		case AUDIT_OBJ_LEV_HIGH:
780 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
781 			   also applies here */
782 			if (f->lsm_rule) {
783 				/* Find files that match */
784 				if (name) {
785 					result = security_audit_rule_match(
786 					           name->osid, f->type, f->op,
787 					           f->lsm_rule, ctx);
788 				} else if (ctx) {
789 					list_for_each_entry(n, &ctx->names_list, list) {
790 						if (security_audit_rule_match(n->osid, f->type,
791 									      f->op, f->lsm_rule,
792 									      ctx)) {
793 							++result;
794 							break;
795 						}
796 					}
797 				}
798 				/* Find ipc objects that match */
799 				if (!ctx || ctx->type != AUDIT_IPC)
800 					break;
801 				if (security_audit_rule_match(ctx->ipc.osid,
802 							      f->type, f->op,
803 							      f->lsm_rule, ctx))
804 					++result;
805 			}
806 			break;
807 		case AUDIT_ARG0:
808 		case AUDIT_ARG1:
809 		case AUDIT_ARG2:
810 		case AUDIT_ARG3:
811 			if (ctx)
812 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
813 			break;
814 		case AUDIT_FILTERKEY:
815 			/* ignore this field for filtering */
816 			result = 1;
817 			break;
818 		case AUDIT_PERM:
819 			result = audit_match_perm(ctx, f->val);
820 			break;
821 		case AUDIT_FILETYPE:
822 			result = audit_match_filetype(ctx, f->val);
823 			break;
824 		case AUDIT_FIELD_COMPARE:
825 			result = audit_field_compare(tsk, cred, f, ctx, name);
826 			break;
827 		}
828 		if (!result)
829 			return 0;
830 	}
831 
832 	if (ctx) {
833 		if (rule->prio <= ctx->prio)
834 			return 0;
835 		if (rule->filterkey) {
836 			kfree(ctx->filterkey);
837 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
838 		}
839 		ctx->prio = rule->prio;
840 	}
841 	switch (rule->action) {
842 	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
843 	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
844 	}
845 	return 1;
846 }
847 
848 /* At process creation time, we can determine if system-call auditing is
849  * completely disabled for this task.  Since we only have the task
850  * structure at this point, we can only check uid and gid.
851  */
852 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
853 {
854 	struct audit_entry *e;
855 	enum audit_state   state;
856 
857 	rcu_read_lock();
858 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
859 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
860 				       &state, true)) {
861 			if (state == AUDIT_RECORD_CONTEXT)
862 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
863 			rcu_read_unlock();
864 			return state;
865 		}
866 	}
867 	rcu_read_unlock();
868 	return AUDIT_BUILD_CONTEXT;
869 }
870 
871 /* At syscall entry and exit time, this filter is called if the
872  * audit_state is not low enough that auditing cannot take place, but is
873  * also not high enough that we already know we have to write an audit
874  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
875  */
876 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
877 					     struct audit_context *ctx,
878 					     struct list_head *list)
879 {
880 	struct audit_entry *e;
881 	enum audit_state state;
882 
883 	if (audit_pid && tsk->tgid == audit_pid)
884 		return AUDIT_DISABLED;
885 
886 	rcu_read_lock();
887 	if (!list_empty(list)) {
888 		int word = AUDIT_WORD(ctx->major);
889 		int bit  = AUDIT_BIT(ctx->major);
890 
891 		list_for_each_entry_rcu(e, list, list) {
892 			if ((e->rule.mask[word] & bit) == bit &&
893 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
894 					       &state, false)) {
895 				rcu_read_unlock();
896 				ctx->current_state = state;
897 				return state;
898 			}
899 		}
900 	}
901 	rcu_read_unlock();
902 	return AUDIT_BUILD_CONTEXT;
903 }
904 
905 /*
906  * Given an audit_name check the inode hash table to see if they match.
907  * Called holding the rcu read lock to protect the use of audit_inode_hash
908  */
909 static int audit_filter_inode_name(struct task_struct *tsk,
910 				   struct audit_names *n,
911 				   struct audit_context *ctx) {
912 	int word, bit;
913 	int h = audit_hash_ino((u32)n->ino);
914 	struct list_head *list = &audit_inode_hash[h];
915 	struct audit_entry *e;
916 	enum audit_state state;
917 
918 	word = AUDIT_WORD(ctx->major);
919 	bit  = AUDIT_BIT(ctx->major);
920 
921 	if (list_empty(list))
922 		return 0;
923 
924 	list_for_each_entry_rcu(e, list, list) {
925 		if ((e->rule.mask[word] & bit) == bit &&
926 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
927 			ctx->current_state = state;
928 			return 1;
929 		}
930 	}
931 
932 	return 0;
933 }
934 
935 /* At syscall exit time, this filter is called if any audit_names have been
936  * collected during syscall processing.  We only check rules in sublists at hash
937  * buckets applicable to the inode numbers in audit_names.
938  * Regarding audit_state, same rules apply as for audit_filter_syscall().
939  */
940 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
941 {
942 	struct audit_names *n;
943 
944 	if (audit_pid && tsk->tgid == audit_pid)
945 		return;
946 
947 	rcu_read_lock();
948 
949 	list_for_each_entry(n, &ctx->names_list, list) {
950 		if (audit_filter_inode_name(tsk, n, ctx))
951 			break;
952 	}
953 	rcu_read_unlock();
954 }
955 
956 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
957 						      int return_valid,
958 						      long return_code)
959 {
960 	struct audit_context *context = tsk->audit_context;
961 
962 	if (!context)
963 		return NULL;
964 	context->return_valid = return_valid;
965 
966 	/*
967 	 * we need to fix up the return code in the audit logs if the actual
968 	 * return codes are later going to be fixed up by the arch specific
969 	 * signal handlers
970 	 *
971 	 * This is actually a test for:
972 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
973 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
974 	 *
975 	 * but is faster than a bunch of ||
976 	 */
977 	if (unlikely(return_code <= -ERESTARTSYS) &&
978 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
979 	    (return_code != -ENOIOCTLCMD))
980 		context->return_code = -EINTR;
981 	else
982 		context->return_code  = return_code;
983 
984 	if (context->in_syscall && !context->dummy) {
985 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
986 		audit_filter_inodes(tsk, context);
987 	}
988 
989 	tsk->audit_context = NULL;
990 	return context;
991 }
992 
993 static inline void audit_free_names(struct audit_context *context)
994 {
995 	struct audit_names *n, *next;
996 
997 #if AUDIT_DEBUG == 2
998 	if (context->put_count + context->ino_count != context->name_count) {
999 		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1000 		       " name_count=%d put_count=%d"
1001 		       " ino_count=%d [NOT freeing]\n",
1002 		       __FILE__, __LINE__,
1003 		       context->serial, context->major, context->in_syscall,
1004 		       context->name_count, context->put_count,
1005 		       context->ino_count);
1006 		list_for_each_entry(n, &context->names_list, list) {
1007 			printk(KERN_ERR "names[%d] = %p = %s\n", i,
1008 			       n->name, n->name ?: "(null)");
1009 		}
1010 		dump_stack();
1011 		return;
1012 	}
1013 #endif
1014 #if AUDIT_DEBUG
1015 	context->put_count  = 0;
1016 	context->ino_count  = 0;
1017 #endif
1018 
1019 	list_for_each_entry_safe(n, next, &context->names_list, list) {
1020 		list_del(&n->list);
1021 		if (n->name && n->name_put)
1022 			__putname(n->name);
1023 		if (n->should_free)
1024 			kfree(n);
1025 	}
1026 	context->name_count = 0;
1027 	path_put(&context->pwd);
1028 	context->pwd.dentry = NULL;
1029 	context->pwd.mnt = NULL;
1030 }
1031 
1032 static inline void audit_free_aux(struct audit_context *context)
1033 {
1034 	struct audit_aux_data *aux;
1035 
1036 	while ((aux = context->aux)) {
1037 		context->aux = aux->next;
1038 		kfree(aux);
1039 	}
1040 	while ((aux = context->aux_pids)) {
1041 		context->aux_pids = aux->next;
1042 		kfree(aux);
1043 	}
1044 }
1045 
1046 static inline void audit_zero_context(struct audit_context *context,
1047 				      enum audit_state state)
1048 {
1049 	memset(context, 0, sizeof(*context));
1050 	context->state      = state;
1051 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1052 }
1053 
1054 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1055 {
1056 	struct audit_context *context;
1057 
1058 	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1059 		return NULL;
1060 	audit_zero_context(context, state);
1061 	INIT_LIST_HEAD(&context->killed_trees);
1062 	INIT_LIST_HEAD(&context->names_list);
1063 	return context;
1064 }
1065 
1066 /**
1067  * audit_alloc - allocate an audit context block for a task
1068  * @tsk: task
1069  *
1070  * Filter on the task information and allocate a per-task audit context
1071  * if necessary.  Doing so turns on system call auditing for the
1072  * specified task.  This is called from copy_process, so no lock is
1073  * needed.
1074  */
1075 int audit_alloc(struct task_struct *tsk)
1076 {
1077 	struct audit_context *context;
1078 	enum audit_state     state;
1079 	char *key = NULL;
1080 
1081 	if (likely(!audit_ever_enabled))
1082 		return 0; /* Return if not auditing. */
1083 
1084 	state = audit_filter_task(tsk, &key);
1085 	if (state == AUDIT_DISABLED)
1086 		return 0;
1087 
1088 	if (!(context = audit_alloc_context(state))) {
1089 		kfree(key);
1090 		audit_log_lost("out of memory in audit_alloc");
1091 		return -ENOMEM;
1092 	}
1093 	context->filterkey = key;
1094 
1095 	tsk->audit_context  = context;
1096 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1097 	return 0;
1098 }
1099 
1100 static inline void audit_free_context(struct audit_context *context)
1101 {
1102 	struct audit_context *previous;
1103 	int		     count = 0;
1104 
1105 	do {
1106 		previous = context->previous;
1107 		if (previous || (count &&  count < 10)) {
1108 			++count;
1109 			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1110 			       " freeing multiple contexts (%d)\n",
1111 			       context->serial, context->major,
1112 			       context->name_count, count);
1113 		}
1114 		audit_free_names(context);
1115 		unroll_tree_refs(context, NULL, 0);
1116 		free_tree_refs(context);
1117 		audit_free_aux(context);
1118 		kfree(context->filterkey);
1119 		kfree(context->sockaddr);
1120 		kfree(context);
1121 		context  = previous;
1122 	} while (context);
1123 	if (count >= 10)
1124 		printk(KERN_ERR "audit: freed %d contexts\n", count);
1125 }
1126 
1127 void audit_log_task_context(struct audit_buffer *ab)
1128 {
1129 	char *ctx = NULL;
1130 	unsigned len;
1131 	int error;
1132 	u32 sid;
1133 
1134 	security_task_getsecid(current, &sid);
1135 	if (!sid)
1136 		return;
1137 
1138 	error = security_secid_to_secctx(sid, &ctx, &len);
1139 	if (error) {
1140 		if (error != -EINVAL)
1141 			goto error_path;
1142 		return;
1143 	}
1144 
1145 	audit_log_format(ab, " subj=%s", ctx);
1146 	security_release_secctx(ctx, len);
1147 	return;
1148 
1149 error_path:
1150 	audit_panic("error in audit_log_task_context");
1151 	return;
1152 }
1153 
1154 EXPORT_SYMBOL(audit_log_task_context);
1155 
1156 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1157 {
1158 	char name[sizeof(tsk->comm)];
1159 	struct mm_struct *mm = tsk->mm;
1160 	struct vm_area_struct *vma;
1161 
1162 	/* tsk == current */
1163 
1164 	get_task_comm(name, tsk);
1165 	audit_log_format(ab, " comm=");
1166 	audit_log_untrustedstring(ab, name);
1167 
1168 	if (mm) {
1169 		down_read(&mm->mmap_sem);
1170 		vma = mm->mmap;
1171 		while (vma) {
1172 			if ((vma->vm_flags & VM_EXECUTABLE) &&
1173 			    vma->vm_file) {
1174 				audit_log_d_path(ab, " exe=",
1175 						 &vma->vm_file->f_path);
1176 				break;
1177 			}
1178 			vma = vma->vm_next;
1179 		}
1180 		up_read(&mm->mmap_sem);
1181 	}
1182 	audit_log_task_context(ab);
1183 }
1184 
1185 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1186 				 uid_t auid, uid_t uid, unsigned int sessionid,
1187 				 u32 sid, char *comm)
1188 {
1189 	struct audit_buffer *ab;
1190 	char *ctx = NULL;
1191 	u32 len;
1192 	int rc = 0;
1193 
1194 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1195 	if (!ab)
1196 		return rc;
1197 
1198 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1199 			 uid, sessionid);
1200 	if (security_secid_to_secctx(sid, &ctx, &len)) {
1201 		audit_log_format(ab, " obj=(none)");
1202 		rc = 1;
1203 	} else {
1204 		audit_log_format(ab, " obj=%s", ctx);
1205 		security_release_secctx(ctx, len);
1206 	}
1207 	audit_log_format(ab, " ocomm=");
1208 	audit_log_untrustedstring(ab, comm);
1209 	audit_log_end(ab);
1210 
1211 	return rc;
1212 }
1213 
1214 /*
1215  * to_send and len_sent accounting are very loose estimates.  We aren't
1216  * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1217  * within about 500 bytes (next page boundary)
1218  *
1219  * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1220  * logging that a[%d]= was going to be 16 characters long we would be wasting
1221  * space in every audit message.  In one 7500 byte message we can log up to
1222  * about 1000 min size arguments.  That comes down to about 50% waste of space
1223  * if we didn't do the snprintf to find out how long arg_num_len was.
1224  */
1225 static int audit_log_single_execve_arg(struct audit_context *context,
1226 					struct audit_buffer **ab,
1227 					int arg_num,
1228 					size_t *len_sent,
1229 					const char __user *p,
1230 					char *buf)
1231 {
1232 	char arg_num_len_buf[12];
1233 	const char __user *tmp_p = p;
1234 	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1235 	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1236 	size_t len, len_left, to_send;
1237 	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1238 	unsigned int i, has_cntl = 0, too_long = 0;
1239 	int ret;
1240 
1241 	/* strnlen_user includes the null we don't want to send */
1242 	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1243 
1244 	/*
1245 	 * We just created this mm, if we can't find the strings
1246 	 * we just copied into it something is _very_ wrong. Similar
1247 	 * for strings that are too long, we should not have created
1248 	 * any.
1249 	 */
1250 	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1251 		WARN_ON(1);
1252 		send_sig(SIGKILL, current, 0);
1253 		return -1;
1254 	}
1255 
1256 	/* walk the whole argument looking for non-ascii chars */
1257 	do {
1258 		if (len_left > MAX_EXECVE_AUDIT_LEN)
1259 			to_send = MAX_EXECVE_AUDIT_LEN;
1260 		else
1261 			to_send = len_left;
1262 		ret = copy_from_user(buf, tmp_p, to_send);
1263 		/*
1264 		 * There is no reason for this copy to be short. We just
1265 		 * copied them here, and the mm hasn't been exposed to user-
1266 		 * space yet.
1267 		 */
1268 		if (ret) {
1269 			WARN_ON(1);
1270 			send_sig(SIGKILL, current, 0);
1271 			return -1;
1272 		}
1273 		buf[to_send] = '\0';
1274 		has_cntl = audit_string_contains_control(buf, to_send);
1275 		if (has_cntl) {
1276 			/*
1277 			 * hex messages get logged as 2 bytes, so we can only
1278 			 * send half as much in each message
1279 			 */
1280 			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1281 			break;
1282 		}
1283 		len_left -= to_send;
1284 		tmp_p += to_send;
1285 	} while (len_left > 0);
1286 
1287 	len_left = len;
1288 
1289 	if (len > max_execve_audit_len)
1290 		too_long = 1;
1291 
1292 	/* rewalk the argument actually logging the message */
1293 	for (i = 0; len_left > 0; i++) {
1294 		int room_left;
1295 
1296 		if (len_left > max_execve_audit_len)
1297 			to_send = max_execve_audit_len;
1298 		else
1299 			to_send = len_left;
1300 
1301 		/* do we have space left to send this argument in this ab? */
1302 		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1303 		if (has_cntl)
1304 			room_left -= (to_send * 2);
1305 		else
1306 			room_left -= to_send;
1307 		if (room_left < 0) {
1308 			*len_sent = 0;
1309 			audit_log_end(*ab);
1310 			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1311 			if (!*ab)
1312 				return 0;
1313 		}
1314 
1315 		/*
1316 		 * first record needs to say how long the original string was
1317 		 * so we can be sure nothing was lost.
1318 		 */
1319 		if ((i == 0) && (too_long))
1320 			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1321 					 has_cntl ? 2*len : len);
1322 
1323 		/*
1324 		 * normally arguments are small enough to fit and we already
1325 		 * filled buf above when we checked for control characters
1326 		 * so don't bother with another copy_from_user
1327 		 */
1328 		if (len >= max_execve_audit_len)
1329 			ret = copy_from_user(buf, p, to_send);
1330 		else
1331 			ret = 0;
1332 		if (ret) {
1333 			WARN_ON(1);
1334 			send_sig(SIGKILL, current, 0);
1335 			return -1;
1336 		}
1337 		buf[to_send] = '\0';
1338 
1339 		/* actually log it */
1340 		audit_log_format(*ab, " a%d", arg_num);
1341 		if (too_long)
1342 			audit_log_format(*ab, "[%d]", i);
1343 		audit_log_format(*ab, "=");
1344 		if (has_cntl)
1345 			audit_log_n_hex(*ab, buf, to_send);
1346 		else
1347 			audit_log_string(*ab, buf);
1348 
1349 		p += to_send;
1350 		len_left -= to_send;
1351 		*len_sent += arg_num_len;
1352 		if (has_cntl)
1353 			*len_sent += to_send * 2;
1354 		else
1355 			*len_sent += to_send;
1356 	}
1357 	/* include the null we didn't log */
1358 	return len + 1;
1359 }
1360 
1361 static void audit_log_execve_info(struct audit_context *context,
1362 				  struct audit_buffer **ab,
1363 				  struct audit_aux_data_execve *axi)
1364 {
1365 	int i, len;
1366 	size_t len_sent = 0;
1367 	const char __user *p;
1368 	char *buf;
1369 
1370 	if (axi->mm != current->mm)
1371 		return; /* execve failed, no additional info */
1372 
1373 	p = (const char __user *)axi->mm->arg_start;
1374 
1375 	audit_log_format(*ab, "argc=%d", axi->argc);
1376 
1377 	/*
1378 	 * we need some kernel buffer to hold the userspace args.  Just
1379 	 * allocate one big one rather than allocating one of the right size
1380 	 * for every single argument inside audit_log_single_execve_arg()
1381 	 * should be <8k allocation so should be pretty safe.
1382 	 */
1383 	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1384 	if (!buf) {
1385 		audit_panic("out of memory for argv string\n");
1386 		return;
1387 	}
1388 
1389 	for (i = 0; i < axi->argc; i++) {
1390 		len = audit_log_single_execve_arg(context, ab, i,
1391 						  &len_sent, p, buf);
1392 		if (len <= 0)
1393 			break;
1394 		p += len;
1395 	}
1396 	kfree(buf);
1397 }
1398 
1399 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1400 {
1401 	int i;
1402 
1403 	audit_log_format(ab, " %s=", prefix);
1404 	CAP_FOR_EACH_U32(i) {
1405 		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1406 	}
1407 }
1408 
1409 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1410 {
1411 	kernel_cap_t *perm = &name->fcap.permitted;
1412 	kernel_cap_t *inh = &name->fcap.inheritable;
1413 	int log = 0;
1414 
1415 	if (!cap_isclear(*perm)) {
1416 		audit_log_cap(ab, "cap_fp", perm);
1417 		log = 1;
1418 	}
1419 	if (!cap_isclear(*inh)) {
1420 		audit_log_cap(ab, "cap_fi", inh);
1421 		log = 1;
1422 	}
1423 
1424 	if (log)
1425 		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1426 }
1427 
1428 static void show_special(struct audit_context *context, int *call_panic)
1429 {
1430 	struct audit_buffer *ab;
1431 	int i;
1432 
1433 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1434 	if (!ab)
1435 		return;
1436 
1437 	switch (context->type) {
1438 	case AUDIT_SOCKETCALL: {
1439 		int nargs = context->socketcall.nargs;
1440 		audit_log_format(ab, "nargs=%d", nargs);
1441 		for (i = 0; i < nargs; i++)
1442 			audit_log_format(ab, " a%d=%lx", i,
1443 				context->socketcall.args[i]);
1444 		break; }
1445 	case AUDIT_IPC: {
1446 		u32 osid = context->ipc.osid;
1447 
1448 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1449 			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1450 		if (osid) {
1451 			char *ctx = NULL;
1452 			u32 len;
1453 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1454 				audit_log_format(ab, " osid=%u", osid);
1455 				*call_panic = 1;
1456 			} else {
1457 				audit_log_format(ab, " obj=%s", ctx);
1458 				security_release_secctx(ctx, len);
1459 			}
1460 		}
1461 		if (context->ipc.has_perm) {
1462 			audit_log_end(ab);
1463 			ab = audit_log_start(context, GFP_KERNEL,
1464 					     AUDIT_IPC_SET_PERM);
1465 			audit_log_format(ab,
1466 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1467 				context->ipc.qbytes,
1468 				context->ipc.perm_uid,
1469 				context->ipc.perm_gid,
1470 				context->ipc.perm_mode);
1471 			if (!ab)
1472 				return;
1473 		}
1474 		break; }
1475 	case AUDIT_MQ_OPEN: {
1476 		audit_log_format(ab,
1477 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1478 			"mq_msgsize=%ld mq_curmsgs=%ld",
1479 			context->mq_open.oflag, context->mq_open.mode,
1480 			context->mq_open.attr.mq_flags,
1481 			context->mq_open.attr.mq_maxmsg,
1482 			context->mq_open.attr.mq_msgsize,
1483 			context->mq_open.attr.mq_curmsgs);
1484 		break; }
1485 	case AUDIT_MQ_SENDRECV: {
1486 		audit_log_format(ab,
1487 			"mqdes=%d msg_len=%zd msg_prio=%u "
1488 			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1489 			context->mq_sendrecv.mqdes,
1490 			context->mq_sendrecv.msg_len,
1491 			context->mq_sendrecv.msg_prio,
1492 			context->mq_sendrecv.abs_timeout.tv_sec,
1493 			context->mq_sendrecv.abs_timeout.tv_nsec);
1494 		break; }
1495 	case AUDIT_MQ_NOTIFY: {
1496 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1497 				context->mq_notify.mqdes,
1498 				context->mq_notify.sigev_signo);
1499 		break; }
1500 	case AUDIT_MQ_GETSETATTR: {
1501 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1502 		audit_log_format(ab,
1503 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1504 			"mq_curmsgs=%ld ",
1505 			context->mq_getsetattr.mqdes,
1506 			attr->mq_flags, attr->mq_maxmsg,
1507 			attr->mq_msgsize, attr->mq_curmsgs);
1508 		break; }
1509 	case AUDIT_CAPSET: {
1510 		audit_log_format(ab, "pid=%d", context->capset.pid);
1511 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1512 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1513 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1514 		break; }
1515 	case AUDIT_MMAP: {
1516 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1517 				 context->mmap.flags);
1518 		break; }
1519 	}
1520 	audit_log_end(ab);
1521 }
1522 
1523 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1524 			   int record_num, int *call_panic)
1525 {
1526 	struct audit_buffer *ab;
1527 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1528 	if (!ab)
1529 		return; /* audit_panic has been called */
1530 
1531 	audit_log_format(ab, "item=%d", record_num);
1532 
1533 	if (n->name) {
1534 		switch (n->name_len) {
1535 		case AUDIT_NAME_FULL:
1536 			/* log the full path */
1537 			audit_log_format(ab, " name=");
1538 			audit_log_untrustedstring(ab, n->name);
1539 			break;
1540 		case 0:
1541 			/* name was specified as a relative path and the
1542 			 * directory component is the cwd */
1543 			audit_log_d_path(ab, " name=", &context->pwd);
1544 			break;
1545 		default:
1546 			/* log the name's directory component */
1547 			audit_log_format(ab, " name=");
1548 			audit_log_n_untrustedstring(ab, n->name,
1549 						    n->name_len);
1550 		}
1551 	} else
1552 		audit_log_format(ab, " name=(null)");
1553 
1554 	if (n->ino != (unsigned long)-1) {
1555 		audit_log_format(ab, " inode=%lu"
1556 				 " dev=%02x:%02x mode=%#ho"
1557 				 " ouid=%u ogid=%u rdev=%02x:%02x",
1558 				 n->ino,
1559 				 MAJOR(n->dev),
1560 				 MINOR(n->dev),
1561 				 n->mode,
1562 				 n->uid,
1563 				 n->gid,
1564 				 MAJOR(n->rdev),
1565 				 MINOR(n->rdev));
1566 	}
1567 	if (n->osid != 0) {
1568 		char *ctx = NULL;
1569 		u32 len;
1570 		if (security_secid_to_secctx(
1571 			n->osid, &ctx, &len)) {
1572 			audit_log_format(ab, " osid=%u", n->osid);
1573 			*call_panic = 2;
1574 		} else {
1575 			audit_log_format(ab, " obj=%s", ctx);
1576 			security_release_secctx(ctx, len);
1577 		}
1578 	}
1579 
1580 	audit_log_fcaps(ab, n);
1581 
1582 	audit_log_end(ab);
1583 }
1584 
1585 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1586 {
1587 	const struct cred *cred;
1588 	int i, call_panic = 0;
1589 	struct audit_buffer *ab;
1590 	struct audit_aux_data *aux;
1591 	const char *tty;
1592 	struct audit_names *n;
1593 
1594 	/* tsk == current */
1595 	context->pid = tsk->pid;
1596 	if (!context->ppid)
1597 		context->ppid = sys_getppid();
1598 	cred = current_cred();
1599 	context->uid   = cred->uid;
1600 	context->gid   = cred->gid;
1601 	context->euid  = cred->euid;
1602 	context->suid  = cred->suid;
1603 	context->fsuid = cred->fsuid;
1604 	context->egid  = cred->egid;
1605 	context->sgid  = cred->sgid;
1606 	context->fsgid = cred->fsgid;
1607 	context->personality = tsk->personality;
1608 
1609 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1610 	if (!ab)
1611 		return;		/* audit_panic has been called */
1612 	audit_log_format(ab, "arch=%x syscall=%d",
1613 			 context->arch, context->major);
1614 	if (context->personality != PER_LINUX)
1615 		audit_log_format(ab, " per=%lx", context->personality);
1616 	if (context->return_valid)
1617 		audit_log_format(ab, " success=%s exit=%ld",
1618 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1619 				 context->return_code);
1620 
1621 	spin_lock_irq(&tsk->sighand->siglock);
1622 	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1623 		tty = tsk->signal->tty->name;
1624 	else
1625 		tty = "(none)";
1626 	spin_unlock_irq(&tsk->sighand->siglock);
1627 
1628 	audit_log_format(ab,
1629 		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1630 		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1631 		  " euid=%u suid=%u fsuid=%u"
1632 		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1633 		  context->argv[0],
1634 		  context->argv[1],
1635 		  context->argv[2],
1636 		  context->argv[3],
1637 		  context->name_count,
1638 		  context->ppid,
1639 		  context->pid,
1640 		  tsk->loginuid,
1641 		  context->uid,
1642 		  context->gid,
1643 		  context->euid, context->suid, context->fsuid,
1644 		  context->egid, context->sgid, context->fsgid, tty,
1645 		  tsk->sessionid);
1646 
1647 
1648 	audit_log_task_info(ab, tsk);
1649 	audit_log_key(ab, context->filterkey);
1650 	audit_log_end(ab);
1651 
1652 	for (aux = context->aux; aux; aux = aux->next) {
1653 
1654 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1655 		if (!ab)
1656 			continue; /* audit_panic has been called */
1657 
1658 		switch (aux->type) {
1659 
1660 		case AUDIT_EXECVE: {
1661 			struct audit_aux_data_execve *axi = (void *)aux;
1662 			audit_log_execve_info(context, &ab, axi);
1663 			break; }
1664 
1665 		case AUDIT_BPRM_FCAPS: {
1666 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1667 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1668 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1669 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1670 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1671 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1672 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1673 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1674 			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1675 			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1676 			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1677 			break; }
1678 
1679 		}
1680 		audit_log_end(ab);
1681 	}
1682 
1683 	if (context->type)
1684 		show_special(context, &call_panic);
1685 
1686 	if (context->fds[0] >= 0) {
1687 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1688 		if (ab) {
1689 			audit_log_format(ab, "fd0=%d fd1=%d",
1690 					context->fds[0], context->fds[1]);
1691 			audit_log_end(ab);
1692 		}
1693 	}
1694 
1695 	if (context->sockaddr_len) {
1696 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1697 		if (ab) {
1698 			audit_log_format(ab, "saddr=");
1699 			audit_log_n_hex(ab, (void *)context->sockaddr,
1700 					context->sockaddr_len);
1701 			audit_log_end(ab);
1702 		}
1703 	}
1704 
1705 	for (aux = context->aux_pids; aux; aux = aux->next) {
1706 		struct audit_aux_data_pids *axs = (void *)aux;
1707 
1708 		for (i = 0; i < axs->pid_count; i++)
1709 			if (audit_log_pid_context(context, axs->target_pid[i],
1710 						  axs->target_auid[i],
1711 						  axs->target_uid[i],
1712 						  axs->target_sessionid[i],
1713 						  axs->target_sid[i],
1714 						  axs->target_comm[i]))
1715 				call_panic = 1;
1716 	}
1717 
1718 	if (context->target_pid &&
1719 	    audit_log_pid_context(context, context->target_pid,
1720 				  context->target_auid, context->target_uid,
1721 				  context->target_sessionid,
1722 				  context->target_sid, context->target_comm))
1723 			call_panic = 1;
1724 
1725 	if (context->pwd.dentry && context->pwd.mnt) {
1726 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1727 		if (ab) {
1728 			audit_log_d_path(ab, " cwd=", &context->pwd);
1729 			audit_log_end(ab);
1730 		}
1731 	}
1732 
1733 	i = 0;
1734 	list_for_each_entry(n, &context->names_list, list)
1735 		audit_log_name(context, n, i++, &call_panic);
1736 
1737 	/* Send end of event record to help user space know we are finished */
1738 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1739 	if (ab)
1740 		audit_log_end(ab);
1741 	if (call_panic)
1742 		audit_panic("error converting sid to string");
1743 }
1744 
1745 /**
1746  * audit_free - free a per-task audit context
1747  * @tsk: task whose audit context block to free
1748  *
1749  * Called from copy_process and do_exit
1750  */
1751 void __audit_free(struct task_struct *tsk)
1752 {
1753 	struct audit_context *context;
1754 
1755 	context = audit_get_context(tsk, 0, 0);
1756 	if (!context)
1757 		return;
1758 
1759 	/* Check for system calls that do not go through the exit
1760 	 * function (e.g., exit_group), then free context block.
1761 	 * We use GFP_ATOMIC here because we might be doing this
1762 	 * in the context of the idle thread */
1763 	/* that can happen only if we are called from do_exit() */
1764 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1765 		audit_log_exit(context, tsk);
1766 	if (!list_empty(&context->killed_trees))
1767 		audit_kill_trees(&context->killed_trees);
1768 
1769 	audit_free_context(context);
1770 }
1771 
1772 /**
1773  * audit_syscall_entry - fill in an audit record at syscall entry
1774  * @arch: architecture type
1775  * @major: major syscall type (function)
1776  * @a1: additional syscall register 1
1777  * @a2: additional syscall register 2
1778  * @a3: additional syscall register 3
1779  * @a4: additional syscall register 4
1780  *
1781  * Fill in audit context at syscall entry.  This only happens if the
1782  * audit context was created when the task was created and the state or
1783  * filters demand the audit context be built.  If the state from the
1784  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1785  * then the record will be written at syscall exit time (otherwise, it
1786  * will only be written if another part of the kernel requests that it
1787  * be written).
1788  */
1789 void __audit_syscall_entry(int arch, int major,
1790 			 unsigned long a1, unsigned long a2,
1791 			 unsigned long a3, unsigned long a4)
1792 {
1793 	struct task_struct *tsk = current;
1794 	struct audit_context *context = tsk->audit_context;
1795 	enum audit_state     state;
1796 
1797 	if (!context)
1798 		return;
1799 
1800 	/*
1801 	 * This happens only on certain architectures that make system
1802 	 * calls in kernel_thread via the entry.S interface, instead of
1803 	 * with direct calls.  (If you are porting to a new
1804 	 * architecture, hitting this condition can indicate that you
1805 	 * got the _exit/_leave calls backward in entry.S.)
1806 	 *
1807 	 * i386     no
1808 	 * x86_64   no
1809 	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1810 	 *
1811 	 * This also happens with vm86 emulation in a non-nested manner
1812 	 * (entries without exits), so this case must be caught.
1813 	 */
1814 	if (context->in_syscall) {
1815 		struct audit_context *newctx;
1816 
1817 #if AUDIT_DEBUG
1818 		printk(KERN_ERR
1819 		       "audit(:%d) pid=%d in syscall=%d;"
1820 		       " entering syscall=%d\n",
1821 		       context->serial, tsk->pid, context->major, major);
1822 #endif
1823 		newctx = audit_alloc_context(context->state);
1824 		if (newctx) {
1825 			newctx->previous   = context;
1826 			context		   = newctx;
1827 			tsk->audit_context = newctx;
1828 		} else	{
1829 			/* If we can't alloc a new context, the best we
1830 			 * can do is to leak memory (any pending putname
1831 			 * will be lost).  The only other alternative is
1832 			 * to abandon auditing. */
1833 			audit_zero_context(context, context->state);
1834 		}
1835 	}
1836 	BUG_ON(context->in_syscall || context->name_count);
1837 
1838 	if (!audit_enabled)
1839 		return;
1840 
1841 	context->arch	    = arch;
1842 	context->major      = major;
1843 	context->argv[0]    = a1;
1844 	context->argv[1]    = a2;
1845 	context->argv[2]    = a3;
1846 	context->argv[3]    = a4;
1847 
1848 	state = context->state;
1849 	context->dummy = !audit_n_rules;
1850 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1851 		context->prio = 0;
1852 		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1853 	}
1854 	if (state == AUDIT_DISABLED)
1855 		return;
1856 
1857 	context->serial     = 0;
1858 	context->ctime      = CURRENT_TIME;
1859 	context->in_syscall = 1;
1860 	context->current_state  = state;
1861 	context->ppid       = 0;
1862 }
1863 
1864 /**
1865  * audit_syscall_exit - deallocate audit context after a system call
1866  * @success: success value of the syscall
1867  * @return_code: return value of the syscall
1868  *
1869  * Tear down after system call.  If the audit context has been marked as
1870  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1871  * filtering, or because some other part of the kernel wrote an audit
1872  * message), then write out the syscall information.  In call cases,
1873  * free the names stored from getname().
1874  */
1875 void __audit_syscall_exit(int success, long return_code)
1876 {
1877 	struct task_struct *tsk = current;
1878 	struct audit_context *context;
1879 
1880 	if (success)
1881 		success = AUDITSC_SUCCESS;
1882 	else
1883 		success = AUDITSC_FAILURE;
1884 
1885 	context = audit_get_context(tsk, success, return_code);
1886 	if (!context)
1887 		return;
1888 
1889 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1890 		audit_log_exit(context, tsk);
1891 
1892 	context->in_syscall = 0;
1893 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1894 
1895 	if (!list_empty(&context->killed_trees))
1896 		audit_kill_trees(&context->killed_trees);
1897 
1898 	if (context->previous) {
1899 		struct audit_context *new_context = context->previous;
1900 		context->previous  = NULL;
1901 		audit_free_context(context);
1902 		tsk->audit_context = new_context;
1903 	} else {
1904 		audit_free_names(context);
1905 		unroll_tree_refs(context, NULL, 0);
1906 		audit_free_aux(context);
1907 		context->aux = NULL;
1908 		context->aux_pids = NULL;
1909 		context->target_pid = 0;
1910 		context->target_sid = 0;
1911 		context->sockaddr_len = 0;
1912 		context->type = 0;
1913 		context->fds[0] = -1;
1914 		if (context->state != AUDIT_RECORD_CONTEXT) {
1915 			kfree(context->filterkey);
1916 			context->filterkey = NULL;
1917 		}
1918 		tsk->audit_context = context;
1919 	}
1920 }
1921 
1922 static inline void handle_one(const struct inode *inode)
1923 {
1924 #ifdef CONFIG_AUDIT_TREE
1925 	struct audit_context *context;
1926 	struct audit_tree_refs *p;
1927 	struct audit_chunk *chunk;
1928 	int count;
1929 	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1930 		return;
1931 	context = current->audit_context;
1932 	p = context->trees;
1933 	count = context->tree_count;
1934 	rcu_read_lock();
1935 	chunk = audit_tree_lookup(inode);
1936 	rcu_read_unlock();
1937 	if (!chunk)
1938 		return;
1939 	if (likely(put_tree_ref(context, chunk)))
1940 		return;
1941 	if (unlikely(!grow_tree_refs(context))) {
1942 		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1943 		audit_set_auditable(context);
1944 		audit_put_chunk(chunk);
1945 		unroll_tree_refs(context, p, count);
1946 		return;
1947 	}
1948 	put_tree_ref(context, chunk);
1949 #endif
1950 }
1951 
1952 static void handle_path(const struct dentry *dentry)
1953 {
1954 #ifdef CONFIG_AUDIT_TREE
1955 	struct audit_context *context;
1956 	struct audit_tree_refs *p;
1957 	const struct dentry *d, *parent;
1958 	struct audit_chunk *drop;
1959 	unsigned long seq;
1960 	int count;
1961 
1962 	context = current->audit_context;
1963 	p = context->trees;
1964 	count = context->tree_count;
1965 retry:
1966 	drop = NULL;
1967 	d = dentry;
1968 	rcu_read_lock();
1969 	seq = read_seqbegin(&rename_lock);
1970 	for(;;) {
1971 		struct inode *inode = d->d_inode;
1972 		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1973 			struct audit_chunk *chunk;
1974 			chunk = audit_tree_lookup(inode);
1975 			if (chunk) {
1976 				if (unlikely(!put_tree_ref(context, chunk))) {
1977 					drop = chunk;
1978 					break;
1979 				}
1980 			}
1981 		}
1982 		parent = d->d_parent;
1983 		if (parent == d)
1984 			break;
1985 		d = parent;
1986 	}
1987 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1988 		rcu_read_unlock();
1989 		if (!drop) {
1990 			/* just a race with rename */
1991 			unroll_tree_refs(context, p, count);
1992 			goto retry;
1993 		}
1994 		audit_put_chunk(drop);
1995 		if (grow_tree_refs(context)) {
1996 			/* OK, got more space */
1997 			unroll_tree_refs(context, p, count);
1998 			goto retry;
1999 		}
2000 		/* too bad */
2001 		printk(KERN_WARNING
2002 			"out of memory, audit has lost a tree reference\n");
2003 		unroll_tree_refs(context, p, count);
2004 		audit_set_auditable(context);
2005 		return;
2006 	}
2007 	rcu_read_unlock();
2008 #endif
2009 }
2010 
2011 static struct audit_names *audit_alloc_name(struct audit_context *context)
2012 {
2013 	struct audit_names *aname;
2014 
2015 	if (context->name_count < AUDIT_NAMES) {
2016 		aname = &context->preallocated_names[context->name_count];
2017 		memset(aname, 0, sizeof(*aname));
2018 	} else {
2019 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2020 		if (!aname)
2021 			return NULL;
2022 		aname->should_free = true;
2023 	}
2024 
2025 	aname->ino = (unsigned long)-1;
2026 	list_add_tail(&aname->list, &context->names_list);
2027 
2028 	context->name_count++;
2029 #if AUDIT_DEBUG
2030 	context->ino_count++;
2031 #endif
2032 	return aname;
2033 }
2034 
2035 /**
2036  * audit_getname - add a name to the list
2037  * @name: name to add
2038  *
2039  * Add a name to the list of audit names for this context.
2040  * Called from fs/namei.c:getname().
2041  */
2042 void __audit_getname(const char *name)
2043 {
2044 	struct audit_context *context = current->audit_context;
2045 	struct audit_names *n;
2046 
2047 	if (!context->in_syscall) {
2048 #if AUDIT_DEBUG == 2
2049 		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2050 		       __FILE__, __LINE__, context->serial, name);
2051 		dump_stack();
2052 #endif
2053 		return;
2054 	}
2055 
2056 	n = audit_alloc_name(context);
2057 	if (!n)
2058 		return;
2059 
2060 	n->name = name;
2061 	n->name_len = AUDIT_NAME_FULL;
2062 	n->name_put = true;
2063 
2064 	if (!context->pwd.dentry)
2065 		get_fs_pwd(current->fs, &context->pwd);
2066 }
2067 
2068 /* audit_putname - intercept a putname request
2069  * @name: name to intercept and delay for putname
2070  *
2071  * If we have stored the name from getname in the audit context,
2072  * then we delay the putname until syscall exit.
2073  * Called from include/linux/fs.h:putname().
2074  */
2075 void audit_putname(const char *name)
2076 {
2077 	struct audit_context *context = current->audit_context;
2078 
2079 	BUG_ON(!context);
2080 	if (!context->in_syscall) {
2081 #if AUDIT_DEBUG == 2
2082 		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2083 		       __FILE__, __LINE__, context->serial, name);
2084 		if (context->name_count) {
2085 			struct audit_names *n;
2086 			int i;
2087 
2088 			list_for_each_entry(n, &context->names_list, list)
2089 				printk(KERN_ERR "name[%d] = %p = %s\n", i,
2090 				       n->name, n->name ?: "(null)");
2091 			}
2092 #endif
2093 		__putname(name);
2094 	}
2095 #if AUDIT_DEBUG
2096 	else {
2097 		++context->put_count;
2098 		if (context->put_count > context->name_count) {
2099 			printk(KERN_ERR "%s:%d(:%d): major=%d"
2100 			       " in_syscall=%d putname(%p) name_count=%d"
2101 			       " put_count=%d\n",
2102 			       __FILE__, __LINE__,
2103 			       context->serial, context->major,
2104 			       context->in_syscall, name, context->name_count,
2105 			       context->put_count);
2106 			dump_stack();
2107 		}
2108 	}
2109 #endif
2110 }
2111 
2112 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2113 {
2114 	struct cpu_vfs_cap_data caps;
2115 	int rc;
2116 
2117 	if (!dentry)
2118 		return 0;
2119 
2120 	rc = get_vfs_caps_from_disk(dentry, &caps);
2121 	if (rc)
2122 		return rc;
2123 
2124 	name->fcap.permitted = caps.permitted;
2125 	name->fcap.inheritable = caps.inheritable;
2126 	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2127 	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2128 
2129 	return 0;
2130 }
2131 
2132 
2133 /* Copy inode data into an audit_names. */
2134 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2135 			     const struct inode *inode)
2136 {
2137 	name->ino   = inode->i_ino;
2138 	name->dev   = inode->i_sb->s_dev;
2139 	name->mode  = inode->i_mode;
2140 	name->uid   = inode->i_uid;
2141 	name->gid   = inode->i_gid;
2142 	name->rdev  = inode->i_rdev;
2143 	security_inode_getsecid(inode, &name->osid);
2144 	audit_copy_fcaps(name, dentry);
2145 }
2146 
2147 /**
2148  * audit_inode - store the inode and device from a lookup
2149  * @name: name being audited
2150  * @dentry: dentry being audited
2151  *
2152  * Called from fs/namei.c:path_lookup().
2153  */
2154 void __audit_inode(const char *name, const struct dentry *dentry)
2155 {
2156 	struct audit_context *context = current->audit_context;
2157 	const struct inode *inode = dentry->d_inode;
2158 	struct audit_names *n;
2159 
2160 	if (!context->in_syscall)
2161 		return;
2162 
2163 	list_for_each_entry_reverse(n, &context->names_list, list) {
2164 		if (n->name && (n->name == name))
2165 			goto out;
2166 	}
2167 
2168 	/* unable to find the name from a previous getname() */
2169 	n = audit_alloc_name(context);
2170 	if (!n)
2171 		return;
2172 out:
2173 	handle_path(dentry);
2174 	audit_copy_inode(n, dentry, inode);
2175 }
2176 
2177 /**
2178  * audit_inode_child - collect inode info for created/removed objects
2179  * @dentry: dentry being audited
2180  * @parent: inode of dentry parent
2181  *
2182  * For syscalls that create or remove filesystem objects, audit_inode
2183  * can only collect information for the filesystem object's parent.
2184  * This call updates the audit context with the child's information.
2185  * Syscalls that create a new filesystem object must be hooked after
2186  * the object is created.  Syscalls that remove a filesystem object
2187  * must be hooked prior, in order to capture the target inode during
2188  * unsuccessful attempts.
2189  */
2190 void __audit_inode_child(const struct dentry *dentry,
2191 			 const struct inode *parent)
2192 {
2193 	struct audit_context *context = current->audit_context;
2194 	const char *found_parent = NULL, *found_child = NULL;
2195 	const struct inode *inode = dentry->d_inode;
2196 	const char *dname = dentry->d_name.name;
2197 	struct audit_names *n;
2198 	int dirlen = 0;
2199 
2200 	if (!context->in_syscall)
2201 		return;
2202 
2203 	if (inode)
2204 		handle_one(inode);
2205 
2206 	/* parent is more likely, look for it first */
2207 	list_for_each_entry(n, &context->names_list, list) {
2208 		if (!n->name)
2209 			continue;
2210 
2211 		if (n->ino == parent->i_ino &&
2212 		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2213 			n->name_len = dirlen; /* update parent data in place */
2214 			found_parent = n->name;
2215 			goto add_names;
2216 		}
2217 	}
2218 
2219 	/* no matching parent, look for matching child */
2220 	list_for_each_entry(n, &context->names_list, list) {
2221 		if (!n->name)
2222 			continue;
2223 
2224 		/* strcmp() is the more likely scenario */
2225 		if (!strcmp(dname, n->name) ||
2226 		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2227 			if (inode)
2228 				audit_copy_inode(n, NULL, inode);
2229 			else
2230 				n->ino = (unsigned long)-1;
2231 			found_child = n->name;
2232 			goto add_names;
2233 		}
2234 	}
2235 
2236 add_names:
2237 	if (!found_parent) {
2238 		n = audit_alloc_name(context);
2239 		if (!n)
2240 			return;
2241 		audit_copy_inode(n, NULL, parent);
2242 	}
2243 
2244 	if (!found_child) {
2245 		n = audit_alloc_name(context);
2246 		if (!n)
2247 			return;
2248 
2249 		/* Re-use the name belonging to the slot for a matching parent
2250 		 * directory. All names for this context are relinquished in
2251 		 * audit_free_names() */
2252 		if (found_parent) {
2253 			n->name = found_parent;
2254 			n->name_len = AUDIT_NAME_FULL;
2255 			/* don't call __putname() */
2256 			n->name_put = false;
2257 		}
2258 
2259 		if (inode)
2260 			audit_copy_inode(n, NULL, inode);
2261 	}
2262 }
2263 EXPORT_SYMBOL_GPL(__audit_inode_child);
2264 
2265 /**
2266  * auditsc_get_stamp - get local copies of audit_context values
2267  * @ctx: audit_context for the task
2268  * @t: timespec to store time recorded in the audit_context
2269  * @serial: serial value that is recorded in the audit_context
2270  *
2271  * Also sets the context as auditable.
2272  */
2273 int auditsc_get_stamp(struct audit_context *ctx,
2274 		       struct timespec *t, unsigned int *serial)
2275 {
2276 	if (!ctx->in_syscall)
2277 		return 0;
2278 	if (!ctx->serial)
2279 		ctx->serial = audit_serial();
2280 	t->tv_sec  = ctx->ctime.tv_sec;
2281 	t->tv_nsec = ctx->ctime.tv_nsec;
2282 	*serial    = ctx->serial;
2283 	if (!ctx->prio) {
2284 		ctx->prio = 1;
2285 		ctx->current_state = AUDIT_RECORD_CONTEXT;
2286 	}
2287 	return 1;
2288 }
2289 
2290 /* global counter which is incremented every time something logs in */
2291 static atomic_t session_id = ATOMIC_INIT(0);
2292 
2293 /**
2294  * audit_set_loginuid - set current task's audit_context loginuid
2295  * @loginuid: loginuid value
2296  *
2297  * Returns 0.
2298  *
2299  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2300  */
2301 int audit_set_loginuid(uid_t loginuid)
2302 {
2303 	struct task_struct *task = current;
2304 	struct audit_context *context = task->audit_context;
2305 	unsigned int sessionid;
2306 
2307 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2308 	if (task->loginuid != -1)
2309 		return -EPERM;
2310 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2311 	if (!capable(CAP_AUDIT_CONTROL))
2312 		return -EPERM;
2313 #endif  /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2314 
2315 	sessionid = atomic_inc_return(&session_id);
2316 	if (context && context->in_syscall) {
2317 		struct audit_buffer *ab;
2318 
2319 		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2320 		if (ab) {
2321 			audit_log_format(ab, "login pid=%d uid=%u "
2322 				"old auid=%u new auid=%u"
2323 				" old ses=%u new ses=%u",
2324 				task->pid, task_uid(task),
2325 				task->loginuid, loginuid,
2326 				task->sessionid, sessionid);
2327 			audit_log_end(ab);
2328 		}
2329 	}
2330 	task->sessionid = sessionid;
2331 	task->loginuid = loginuid;
2332 	return 0;
2333 }
2334 
2335 /**
2336  * __audit_mq_open - record audit data for a POSIX MQ open
2337  * @oflag: open flag
2338  * @mode: mode bits
2339  * @attr: queue attributes
2340  *
2341  */
2342 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2343 {
2344 	struct audit_context *context = current->audit_context;
2345 
2346 	if (attr)
2347 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2348 	else
2349 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2350 
2351 	context->mq_open.oflag = oflag;
2352 	context->mq_open.mode = mode;
2353 
2354 	context->type = AUDIT_MQ_OPEN;
2355 }
2356 
2357 /**
2358  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2359  * @mqdes: MQ descriptor
2360  * @msg_len: Message length
2361  * @msg_prio: Message priority
2362  * @abs_timeout: Message timeout in absolute time
2363  *
2364  */
2365 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2366 			const struct timespec *abs_timeout)
2367 {
2368 	struct audit_context *context = current->audit_context;
2369 	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2370 
2371 	if (abs_timeout)
2372 		memcpy(p, abs_timeout, sizeof(struct timespec));
2373 	else
2374 		memset(p, 0, sizeof(struct timespec));
2375 
2376 	context->mq_sendrecv.mqdes = mqdes;
2377 	context->mq_sendrecv.msg_len = msg_len;
2378 	context->mq_sendrecv.msg_prio = msg_prio;
2379 
2380 	context->type = AUDIT_MQ_SENDRECV;
2381 }
2382 
2383 /**
2384  * __audit_mq_notify - record audit data for a POSIX MQ notify
2385  * @mqdes: MQ descriptor
2386  * @notification: Notification event
2387  *
2388  */
2389 
2390 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2391 {
2392 	struct audit_context *context = current->audit_context;
2393 
2394 	if (notification)
2395 		context->mq_notify.sigev_signo = notification->sigev_signo;
2396 	else
2397 		context->mq_notify.sigev_signo = 0;
2398 
2399 	context->mq_notify.mqdes = mqdes;
2400 	context->type = AUDIT_MQ_NOTIFY;
2401 }
2402 
2403 /**
2404  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2405  * @mqdes: MQ descriptor
2406  * @mqstat: MQ flags
2407  *
2408  */
2409 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2410 {
2411 	struct audit_context *context = current->audit_context;
2412 	context->mq_getsetattr.mqdes = mqdes;
2413 	context->mq_getsetattr.mqstat = *mqstat;
2414 	context->type = AUDIT_MQ_GETSETATTR;
2415 }
2416 
2417 /**
2418  * audit_ipc_obj - record audit data for ipc object
2419  * @ipcp: ipc permissions
2420  *
2421  */
2422 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2423 {
2424 	struct audit_context *context = current->audit_context;
2425 	context->ipc.uid = ipcp->uid;
2426 	context->ipc.gid = ipcp->gid;
2427 	context->ipc.mode = ipcp->mode;
2428 	context->ipc.has_perm = 0;
2429 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2430 	context->type = AUDIT_IPC;
2431 }
2432 
2433 /**
2434  * audit_ipc_set_perm - record audit data for new ipc permissions
2435  * @qbytes: msgq bytes
2436  * @uid: msgq user id
2437  * @gid: msgq group id
2438  * @mode: msgq mode (permissions)
2439  *
2440  * Called only after audit_ipc_obj().
2441  */
2442 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2443 {
2444 	struct audit_context *context = current->audit_context;
2445 
2446 	context->ipc.qbytes = qbytes;
2447 	context->ipc.perm_uid = uid;
2448 	context->ipc.perm_gid = gid;
2449 	context->ipc.perm_mode = mode;
2450 	context->ipc.has_perm = 1;
2451 }
2452 
2453 int __audit_bprm(struct linux_binprm *bprm)
2454 {
2455 	struct audit_aux_data_execve *ax;
2456 	struct audit_context *context = current->audit_context;
2457 
2458 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2459 	if (!ax)
2460 		return -ENOMEM;
2461 
2462 	ax->argc = bprm->argc;
2463 	ax->envc = bprm->envc;
2464 	ax->mm = bprm->mm;
2465 	ax->d.type = AUDIT_EXECVE;
2466 	ax->d.next = context->aux;
2467 	context->aux = (void *)ax;
2468 	return 0;
2469 }
2470 
2471 
2472 /**
2473  * audit_socketcall - record audit data for sys_socketcall
2474  * @nargs: number of args
2475  * @args: args array
2476  *
2477  */
2478 void __audit_socketcall(int nargs, unsigned long *args)
2479 {
2480 	struct audit_context *context = current->audit_context;
2481 
2482 	context->type = AUDIT_SOCKETCALL;
2483 	context->socketcall.nargs = nargs;
2484 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2485 }
2486 
2487 /**
2488  * __audit_fd_pair - record audit data for pipe and socketpair
2489  * @fd1: the first file descriptor
2490  * @fd2: the second file descriptor
2491  *
2492  */
2493 void __audit_fd_pair(int fd1, int fd2)
2494 {
2495 	struct audit_context *context = current->audit_context;
2496 	context->fds[0] = fd1;
2497 	context->fds[1] = fd2;
2498 }
2499 
2500 /**
2501  * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2502  * @len: data length in user space
2503  * @a: data address in kernel space
2504  *
2505  * Returns 0 for success or NULL context or < 0 on error.
2506  */
2507 int __audit_sockaddr(int len, void *a)
2508 {
2509 	struct audit_context *context = current->audit_context;
2510 
2511 	if (!context->sockaddr) {
2512 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2513 		if (!p)
2514 			return -ENOMEM;
2515 		context->sockaddr = p;
2516 	}
2517 
2518 	context->sockaddr_len = len;
2519 	memcpy(context->sockaddr, a, len);
2520 	return 0;
2521 }
2522 
2523 void __audit_ptrace(struct task_struct *t)
2524 {
2525 	struct audit_context *context = current->audit_context;
2526 
2527 	context->target_pid = t->pid;
2528 	context->target_auid = audit_get_loginuid(t);
2529 	context->target_uid = task_uid(t);
2530 	context->target_sessionid = audit_get_sessionid(t);
2531 	security_task_getsecid(t, &context->target_sid);
2532 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2533 }
2534 
2535 /**
2536  * audit_signal_info - record signal info for shutting down audit subsystem
2537  * @sig: signal value
2538  * @t: task being signaled
2539  *
2540  * If the audit subsystem is being terminated, record the task (pid)
2541  * and uid that is doing that.
2542  */
2543 int __audit_signal_info(int sig, struct task_struct *t)
2544 {
2545 	struct audit_aux_data_pids *axp;
2546 	struct task_struct *tsk = current;
2547 	struct audit_context *ctx = tsk->audit_context;
2548 	uid_t uid = current_uid(), t_uid = task_uid(t);
2549 
2550 	if (audit_pid && t->tgid == audit_pid) {
2551 		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2552 			audit_sig_pid = tsk->pid;
2553 			if (tsk->loginuid != -1)
2554 				audit_sig_uid = tsk->loginuid;
2555 			else
2556 				audit_sig_uid = uid;
2557 			security_task_getsecid(tsk, &audit_sig_sid);
2558 		}
2559 		if (!audit_signals || audit_dummy_context())
2560 			return 0;
2561 	}
2562 
2563 	/* optimize the common case by putting first signal recipient directly
2564 	 * in audit_context */
2565 	if (!ctx->target_pid) {
2566 		ctx->target_pid = t->tgid;
2567 		ctx->target_auid = audit_get_loginuid(t);
2568 		ctx->target_uid = t_uid;
2569 		ctx->target_sessionid = audit_get_sessionid(t);
2570 		security_task_getsecid(t, &ctx->target_sid);
2571 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2572 		return 0;
2573 	}
2574 
2575 	axp = (void *)ctx->aux_pids;
2576 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2577 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2578 		if (!axp)
2579 			return -ENOMEM;
2580 
2581 		axp->d.type = AUDIT_OBJ_PID;
2582 		axp->d.next = ctx->aux_pids;
2583 		ctx->aux_pids = (void *)axp;
2584 	}
2585 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2586 
2587 	axp->target_pid[axp->pid_count] = t->tgid;
2588 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2589 	axp->target_uid[axp->pid_count] = t_uid;
2590 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2591 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2592 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2593 	axp->pid_count++;
2594 
2595 	return 0;
2596 }
2597 
2598 /**
2599  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2600  * @bprm: pointer to the bprm being processed
2601  * @new: the proposed new credentials
2602  * @old: the old credentials
2603  *
2604  * Simply check if the proc already has the caps given by the file and if not
2605  * store the priv escalation info for later auditing at the end of the syscall
2606  *
2607  * -Eric
2608  */
2609 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2610 			   const struct cred *new, const struct cred *old)
2611 {
2612 	struct audit_aux_data_bprm_fcaps *ax;
2613 	struct audit_context *context = current->audit_context;
2614 	struct cpu_vfs_cap_data vcaps;
2615 	struct dentry *dentry;
2616 
2617 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2618 	if (!ax)
2619 		return -ENOMEM;
2620 
2621 	ax->d.type = AUDIT_BPRM_FCAPS;
2622 	ax->d.next = context->aux;
2623 	context->aux = (void *)ax;
2624 
2625 	dentry = dget(bprm->file->f_dentry);
2626 	get_vfs_caps_from_disk(dentry, &vcaps);
2627 	dput(dentry);
2628 
2629 	ax->fcap.permitted = vcaps.permitted;
2630 	ax->fcap.inheritable = vcaps.inheritable;
2631 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2632 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2633 
2634 	ax->old_pcap.permitted   = old->cap_permitted;
2635 	ax->old_pcap.inheritable = old->cap_inheritable;
2636 	ax->old_pcap.effective   = old->cap_effective;
2637 
2638 	ax->new_pcap.permitted   = new->cap_permitted;
2639 	ax->new_pcap.inheritable = new->cap_inheritable;
2640 	ax->new_pcap.effective   = new->cap_effective;
2641 	return 0;
2642 }
2643 
2644 /**
2645  * __audit_log_capset - store information about the arguments to the capset syscall
2646  * @pid: target pid of the capset call
2647  * @new: the new credentials
2648  * @old: the old (current) credentials
2649  *
2650  * Record the aguments userspace sent to sys_capset for later printing by the
2651  * audit system if applicable
2652  */
2653 void __audit_log_capset(pid_t pid,
2654 		       const struct cred *new, const struct cred *old)
2655 {
2656 	struct audit_context *context = current->audit_context;
2657 	context->capset.pid = pid;
2658 	context->capset.cap.effective   = new->cap_effective;
2659 	context->capset.cap.inheritable = new->cap_effective;
2660 	context->capset.cap.permitted   = new->cap_permitted;
2661 	context->type = AUDIT_CAPSET;
2662 }
2663 
2664 void __audit_mmap_fd(int fd, int flags)
2665 {
2666 	struct audit_context *context = current->audit_context;
2667 	context->mmap.fd = fd;
2668 	context->mmap.flags = flags;
2669 	context->type = AUDIT_MMAP;
2670 }
2671 
2672 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2673 {
2674 	uid_t auid, uid;
2675 	gid_t gid;
2676 	unsigned int sessionid;
2677 
2678 	auid = audit_get_loginuid(current);
2679 	sessionid = audit_get_sessionid(current);
2680 	current_uid_gid(&uid, &gid);
2681 
2682 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2683 			 auid, uid, gid, sessionid);
2684 	audit_log_task_context(ab);
2685 	audit_log_format(ab, " pid=%d comm=", current->pid);
2686 	audit_log_untrustedstring(ab, current->comm);
2687 	audit_log_format(ab, " reason=");
2688 	audit_log_string(ab, reason);
2689 	audit_log_format(ab, " sig=%ld", signr);
2690 }
2691 /**
2692  * audit_core_dumps - record information about processes that end abnormally
2693  * @signr: signal value
2694  *
2695  * If a process ends with a core dump, something fishy is going on and we
2696  * should record the event for investigation.
2697  */
2698 void audit_core_dumps(long signr)
2699 {
2700 	struct audit_buffer *ab;
2701 
2702 	if (!audit_enabled)
2703 		return;
2704 
2705 	if (signr == SIGQUIT)	/* don't care for those */
2706 		return;
2707 
2708 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2709 	audit_log_abend(ab, "memory violation", signr);
2710 	audit_log_end(ab);
2711 }
2712 
2713 void __audit_seccomp(unsigned long syscall)
2714 {
2715 	struct audit_buffer *ab;
2716 
2717 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2718 	audit_log_abend(ab, "seccomp", SIGKILL);
2719 	audit_log_format(ab, " syscall=%ld", syscall);
2720 	audit_log_end(ab);
2721 }
2722 
2723 struct list_head *audit_killed_trees(void)
2724 {
2725 	struct audit_context *ctx = current->audit_context;
2726 	if (likely(!ctx || !ctx->in_syscall))
2727 		return NULL;
2728 	return &ctx->killed_trees;
2729 }
2730