1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <uapi/linux/limits.h> 77 78 #include "audit.h" 79 80 /* flags stating the success for a syscall */ 81 #define AUDITSC_INVALID 0 82 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_FAILURE 2 84 85 /* no execve audit message should be longer than this (userspace limits), 86 * see the note near the top of audit_log_execve_info() about this value */ 87 #define MAX_EXECVE_AUDIT_LEN 7500 88 89 /* max length to print of cmdline/proctitle value during audit */ 90 #define MAX_PROCTITLE_AUDIT_LEN 128 91 92 /* number of audit rules */ 93 int audit_n_rules; 94 95 /* determines whether we collect data for signals sent */ 96 int audit_signals; 97 98 struct audit_aux_data { 99 struct audit_aux_data *next; 100 int type; 101 }; 102 103 #define AUDIT_AUX_IPCPERM 0 104 105 /* Number of target pids per aux struct. */ 106 #define AUDIT_AUX_PIDS 16 107 108 struct audit_aux_data_pids { 109 struct audit_aux_data d; 110 pid_t target_pid[AUDIT_AUX_PIDS]; 111 kuid_t target_auid[AUDIT_AUX_PIDS]; 112 kuid_t target_uid[AUDIT_AUX_PIDS]; 113 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 114 u32 target_sid[AUDIT_AUX_PIDS]; 115 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 116 int pid_count; 117 }; 118 119 struct audit_aux_data_bprm_fcaps { 120 struct audit_aux_data d; 121 struct audit_cap_data fcap; 122 unsigned int fcap_ver; 123 struct audit_cap_data old_pcap; 124 struct audit_cap_data new_pcap; 125 }; 126 127 struct audit_tree_refs { 128 struct audit_tree_refs *next; 129 struct audit_chunk *c[31]; 130 }; 131 132 static int audit_match_perm(struct audit_context *ctx, int mask) 133 { 134 unsigned n; 135 if (unlikely(!ctx)) 136 return 0; 137 n = ctx->major; 138 139 switch (audit_classify_syscall(ctx->arch, n)) { 140 case 0: /* native */ 141 if ((mask & AUDIT_PERM_WRITE) && 142 audit_match_class(AUDIT_CLASS_WRITE, n)) 143 return 1; 144 if ((mask & AUDIT_PERM_READ) && 145 audit_match_class(AUDIT_CLASS_READ, n)) 146 return 1; 147 if ((mask & AUDIT_PERM_ATTR) && 148 audit_match_class(AUDIT_CLASS_CHATTR, n)) 149 return 1; 150 return 0; 151 case 1: /* 32bit on biarch */ 152 if ((mask & AUDIT_PERM_WRITE) && 153 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 154 return 1; 155 if ((mask & AUDIT_PERM_READ) && 156 audit_match_class(AUDIT_CLASS_READ_32, n)) 157 return 1; 158 if ((mask & AUDIT_PERM_ATTR) && 159 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 160 return 1; 161 return 0; 162 case 2: /* open */ 163 return mask & ACC_MODE(ctx->argv[1]); 164 case 3: /* openat */ 165 return mask & ACC_MODE(ctx->argv[2]); 166 case 4: /* socketcall */ 167 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 168 case 5: /* execve */ 169 return mask & AUDIT_PERM_EXEC; 170 default: 171 return 0; 172 } 173 } 174 175 static int audit_match_filetype(struct audit_context *ctx, int val) 176 { 177 struct audit_names *n; 178 umode_t mode = (umode_t)val; 179 180 if (unlikely(!ctx)) 181 return 0; 182 183 list_for_each_entry(n, &ctx->names_list, list) { 184 if ((n->ino != AUDIT_INO_UNSET) && 185 ((n->mode & S_IFMT) == mode)) 186 return 1; 187 } 188 189 return 0; 190 } 191 192 /* 193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 194 * ->first_trees points to its beginning, ->trees - to the current end of data. 195 * ->tree_count is the number of free entries in array pointed to by ->trees. 196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 197 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 198 * it's going to remain 1-element for almost any setup) until we free context itself. 199 * References in it _are_ dropped - at the same time we free/drop aux stuff. 200 */ 201 202 #ifdef CONFIG_AUDIT_TREE 203 static void audit_set_auditable(struct audit_context *ctx) 204 { 205 if (!ctx->prio) { 206 ctx->prio = 1; 207 ctx->current_state = AUDIT_RECORD_CONTEXT; 208 } 209 } 210 211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 212 { 213 struct audit_tree_refs *p = ctx->trees; 214 int left = ctx->tree_count; 215 if (likely(left)) { 216 p->c[--left] = chunk; 217 ctx->tree_count = left; 218 return 1; 219 } 220 if (!p) 221 return 0; 222 p = p->next; 223 if (p) { 224 p->c[30] = chunk; 225 ctx->trees = p; 226 ctx->tree_count = 30; 227 return 1; 228 } 229 return 0; 230 } 231 232 static int grow_tree_refs(struct audit_context *ctx) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 236 if (!ctx->trees) { 237 ctx->trees = p; 238 return 0; 239 } 240 if (p) 241 p->next = ctx->trees; 242 else 243 ctx->first_trees = ctx->trees; 244 ctx->tree_count = 31; 245 return 1; 246 } 247 #endif 248 249 static void unroll_tree_refs(struct audit_context *ctx, 250 struct audit_tree_refs *p, int count) 251 { 252 #ifdef CONFIG_AUDIT_TREE 253 struct audit_tree_refs *q; 254 int n; 255 if (!p) { 256 /* we started with empty chain */ 257 p = ctx->first_trees; 258 count = 31; 259 /* if the very first allocation has failed, nothing to do */ 260 if (!p) 261 return; 262 } 263 n = count; 264 for (q = p; q != ctx->trees; q = q->next, n = 31) { 265 while (n--) { 266 audit_put_chunk(q->c[n]); 267 q->c[n] = NULL; 268 } 269 } 270 while (n-- > ctx->tree_count) { 271 audit_put_chunk(q->c[n]); 272 q->c[n] = NULL; 273 } 274 ctx->trees = p; 275 ctx->tree_count = count; 276 #endif 277 } 278 279 static void free_tree_refs(struct audit_context *ctx) 280 { 281 struct audit_tree_refs *p, *q; 282 for (p = ctx->first_trees; p; p = q) { 283 q = p->next; 284 kfree(p); 285 } 286 } 287 288 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 289 { 290 #ifdef CONFIG_AUDIT_TREE 291 struct audit_tree_refs *p; 292 int n; 293 if (!tree) 294 return 0; 295 /* full ones */ 296 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 297 for (n = 0; n < 31; n++) 298 if (audit_tree_match(p->c[n], tree)) 299 return 1; 300 } 301 /* partial */ 302 if (p) { 303 for (n = ctx->tree_count; n < 31; n++) 304 if (audit_tree_match(p->c[n], tree)) 305 return 1; 306 } 307 #endif 308 return 0; 309 } 310 311 static int audit_compare_uid(kuid_t uid, 312 struct audit_names *name, 313 struct audit_field *f, 314 struct audit_context *ctx) 315 { 316 struct audit_names *n; 317 int rc; 318 319 if (name) { 320 rc = audit_uid_comparator(uid, f->op, name->uid); 321 if (rc) 322 return rc; 323 } 324 325 if (ctx) { 326 list_for_each_entry(n, &ctx->names_list, list) { 327 rc = audit_uid_comparator(uid, f->op, n->uid); 328 if (rc) 329 return rc; 330 } 331 } 332 return 0; 333 } 334 335 static int audit_compare_gid(kgid_t gid, 336 struct audit_names *name, 337 struct audit_field *f, 338 struct audit_context *ctx) 339 { 340 struct audit_names *n; 341 int rc; 342 343 if (name) { 344 rc = audit_gid_comparator(gid, f->op, name->gid); 345 if (rc) 346 return rc; 347 } 348 349 if (ctx) { 350 list_for_each_entry(n, &ctx->names_list, list) { 351 rc = audit_gid_comparator(gid, f->op, n->gid); 352 if (rc) 353 return rc; 354 } 355 } 356 return 0; 357 } 358 359 static int audit_field_compare(struct task_struct *tsk, 360 const struct cred *cred, 361 struct audit_field *f, 362 struct audit_context *ctx, 363 struct audit_names *name) 364 { 365 switch (f->val) { 366 /* process to file object comparisons */ 367 case AUDIT_COMPARE_UID_TO_OBJ_UID: 368 return audit_compare_uid(cred->uid, name, f, ctx); 369 case AUDIT_COMPARE_GID_TO_OBJ_GID: 370 return audit_compare_gid(cred->gid, name, f, ctx); 371 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 372 return audit_compare_uid(cred->euid, name, f, ctx); 373 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 374 return audit_compare_gid(cred->egid, name, f, ctx); 375 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 376 return audit_compare_uid(tsk->loginuid, name, f, ctx); 377 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 378 return audit_compare_uid(cred->suid, name, f, ctx); 379 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 380 return audit_compare_gid(cred->sgid, name, f, ctx); 381 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 382 return audit_compare_uid(cred->fsuid, name, f, ctx); 383 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 384 return audit_compare_gid(cred->fsgid, name, f, ctx); 385 /* uid comparisons */ 386 case AUDIT_COMPARE_UID_TO_AUID: 387 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 388 case AUDIT_COMPARE_UID_TO_EUID: 389 return audit_uid_comparator(cred->uid, f->op, cred->euid); 390 case AUDIT_COMPARE_UID_TO_SUID: 391 return audit_uid_comparator(cred->uid, f->op, cred->suid); 392 case AUDIT_COMPARE_UID_TO_FSUID: 393 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 394 /* auid comparisons */ 395 case AUDIT_COMPARE_AUID_TO_EUID: 396 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 397 case AUDIT_COMPARE_AUID_TO_SUID: 398 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 399 case AUDIT_COMPARE_AUID_TO_FSUID: 400 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 401 /* euid comparisons */ 402 case AUDIT_COMPARE_EUID_TO_SUID: 403 return audit_uid_comparator(cred->euid, f->op, cred->suid); 404 case AUDIT_COMPARE_EUID_TO_FSUID: 405 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 406 /* suid comparisons */ 407 case AUDIT_COMPARE_SUID_TO_FSUID: 408 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 409 /* gid comparisons */ 410 case AUDIT_COMPARE_GID_TO_EGID: 411 return audit_gid_comparator(cred->gid, f->op, cred->egid); 412 case AUDIT_COMPARE_GID_TO_SGID: 413 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 414 case AUDIT_COMPARE_GID_TO_FSGID: 415 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 416 /* egid comparisons */ 417 case AUDIT_COMPARE_EGID_TO_SGID: 418 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 419 case AUDIT_COMPARE_EGID_TO_FSGID: 420 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 421 /* sgid comparison */ 422 case AUDIT_COMPARE_SGID_TO_FSGID: 423 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 424 default: 425 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 426 return 0; 427 } 428 return 0; 429 } 430 431 /* Determine if any context name data matches a rule's watch data */ 432 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 433 * otherwise. 434 * 435 * If task_creation is true, this is an explicit indication that we are 436 * filtering a task rule at task creation time. This and tsk == current are 437 * the only situations where tsk->cred may be accessed without an rcu read lock. 438 */ 439 static int audit_filter_rules(struct task_struct *tsk, 440 struct audit_krule *rule, 441 struct audit_context *ctx, 442 struct audit_names *name, 443 enum audit_state *state, 444 bool task_creation) 445 { 446 const struct cred *cred; 447 int i, need_sid = 1; 448 u32 sid; 449 450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 451 452 for (i = 0; i < rule->field_count; i++) { 453 struct audit_field *f = &rule->fields[i]; 454 struct audit_names *n; 455 int result = 0; 456 pid_t pid; 457 458 switch (f->type) { 459 case AUDIT_PID: 460 pid = task_tgid_nr(tsk); 461 result = audit_comparator(pid, f->op, f->val); 462 break; 463 case AUDIT_PPID: 464 if (ctx) { 465 if (!ctx->ppid) 466 ctx->ppid = task_ppid_nr(tsk); 467 result = audit_comparator(ctx->ppid, f->op, f->val); 468 } 469 break; 470 case AUDIT_EXE: 471 result = audit_exe_compare(tsk, rule->exe); 472 break; 473 case AUDIT_UID: 474 result = audit_uid_comparator(cred->uid, f->op, f->uid); 475 break; 476 case AUDIT_EUID: 477 result = audit_uid_comparator(cred->euid, f->op, f->uid); 478 break; 479 case AUDIT_SUID: 480 result = audit_uid_comparator(cred->suid, f->op, f->uid); 481 break; 482 case AUDIT_FSUID: 483 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 484 break; 485 case AUDIT_GID: 486 result = audit_gid_comparator(cred->gid, f->op, f->gid); 487 if (f->op == Audit_equal) { 488 if (!result) 489 result = in_group_p(f->gid); 490 } else if (f->op == Audit_not_equal) { 491 if (result) 492 result = !in_group_p(f->gid); 493 } 494 break; 495 case AUDIT_EGID: 496 result = audit_gid_comparator(cred->egid, f->op, f->gid); 497 if (f->op == Audit_equal) { 498 if (!result) 499 result = in_egroup_p(f->gid); 500 } else if (f->op == Audit_not_equal) { 501 if (result) 502 result = !in_egroup_p(f->gid); 503 } 504 break; 505 case AUDIT_SGID: 506 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 507 break; 508 case AUDIT_FSGID: 509 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 510 break; 511 case AUDIT_PERS: 512 result = audit_comparator(tsk->personality, f->op, f->val); 513 break; 514 case AUDIT_ARCH: 515 if (ctx) 516 result = audit_comparator(ctx->arch, f->op, f->val); 517 break; 518 519 case AUDIT_EXIT: 520 if (ctx && ctx->return_valid) 521 result = audit_comparator(ctx->return_code, f->op, f->val); 522 break; 523 case AUDIT_SUCCESS: 524 if (ctx && ctx->return_valid) { 525 if (f->val) 526 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 527 else 528 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 529 } 530 break; 531 case AUDIT_DEVMAJOR: 532 if (name) { 533 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 534 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 535 ++result; 536 } else if (ctx) { 537 list_for_each_entry(n, &ctx->names_list, list) { 538 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 539 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 540 ++result; 541 break; 542 } 543 } 544 } 545 break; 546 case AUDIT_DEVMINOR: 547 if (name) { 548 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 549 audit_comparator(MINOR(name->rdev), f->op, f->val)) 550 ++result; 551 } else if (ctx) { 552 list_for_each_entry(n, &ctx->names_list, list) { 553 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 554 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 555 ++result; 556 break; 557 } 558 } 559 } 560 break; 561 case AUDIT_INODE: 562 if (name) 563 result = audit_comparator(name->ino, f->op, f->val); 564 else if (ctx) { 565 list_for_each_entry(n, &ctx->names_list, list) { 566 if (audit_comparator(n->ino, f->op, f->val)) { 567 ++result; 568 break; 569 } 570 } 571 } 572 break; 573 case AUDIT_OBJ_UID: 574 if (name) { 575 result = audit_uid_comparator(name->uid, f->op, f->uid); 576 } else if (ctx) { 577 list_for_each_entry(n, &ctx->names_list, list) { 578 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 579 ++result; 580 break; 581 } 582 } 583 } 584 break; 585 case AUDIT_OBJ_GID: 586 if (name) { 587 result = audit_gid_comparator(name->gid, f->op, f->gid); 588 } else if (ctx) { 589 list_for_each_entry(n, &ctx->names_list, list) { 590 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 591 ++result; 592 break; 593 } 594 } 595 } 596 break; 597 case AUDIT_WATCH: 598 if (name) 599 result = audit_watch_compare(rule->watch, name->ino, name->dev); 600 break; 601 case AUDIT_DIR: 602 if (ctx) 603 result = match_tree_refs(ctx, rule->tree); 604 break; 605 case AUDIT_LOGINUID: 606 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 607 break; 608 case AUDIT_LOGINUID_SET: 609 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 610 break; 611 case AUDIT_SUBJ_USER: 612 case AUDIT_SUBJ_ROLE: 613 case AUDIT_SUBJ_TYPE: 614 case AUDIT_SUBJ_SEN: 615 case AUDIT_SUBJ_CLR: 616 /* NOTE: this may return negative values indicating 617 a temporary error. We simply treat this as a 618 match for now to avoid losing information that 619 may be wanted. An error message will also be 620 logged upon error */ 621 if (f->lsm_rule) { 622 if (need_sid) { 623 security_task_getsecid(tsk, &sid); 624 need_sid = 0; 625 } 626 result = security_audit_rule_match(sid, f->type, 627 f->op, 628 f->lsm_rule, 629 ctx); 630 } 631 break; 632 case AUDIT_OBJ_USER: 633 case AUDIT_OBJ_ROLE: 634 case AUDIT_OBJ_TYPE: 635 case AUDIT_OBJ_LEV_LOW: 636 case AUDIT_OBJ_LEV_HIGH: 637 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 638 also applies here */ 639 if (f->lsm_rule) { 640 /* Find files that match */ 641 if (name) { 642 result = security_audit_rule_match( 643 name->osid, f->type, f->op, 644 f->lsm_rule, ctx); 645 } else if (ctx) { 646 list_for_each_entry(n, &ctx->names_list, list) { 647 if (security_audit_rule_match(n->osid, f->type, 648 f->op, f->lsm_rule, 649 ctx)) { 650 ++result; 651 break; 652 } 653 } 654 } 655 /* Find ipc objects that match */ 656 if (!ctx || ctx->type != AUDIT_IPC) 657 break; 658 if (security_audit_rule_match(ctx->ipc.osid, 659 f->type, f->op, 660 f->lsm_rule, ctx)) 661 ++result; 662 } 663 break; 664 case AUDIT_ARG0: 665 case AUDIT_ARG1: 666 case AUDIT_ARG2: 667 case AUDIT_ARG3: 668 if (ctx) 669 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 670 break; 671 case AUDIT_FILTERKEY: 672 /* ignore this field for filtering */ 673 result = 1; 674 break; 675 case AUDIT_PERM: 676 result = audit_match_perm(ctx, f->val); 677 break; 678 case AUDIT_FILETYPE: 679 result = audit_match_filetype(ctx, f->val); 680 break; 681 case AUDIT_FIELD_COMPARE: 682 result = audit_field_compare(tsk, cred, f, ctx, name); 683 break; 684 } 685 if (!result) 686 return 0; 687 } 688 689 if (ctx) { 690 if (rule->prio <= ctx->prio) 691 return 0; 692 if (rule->filterkey) { 693 kfree(ctx->filterkey); 694 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 695 } 696 ctx->prio = rule->prio; 697 } 698 switch (rule->action) { 699 case AUDIT_NEVER: 700 *state = AUDIT_DISABLED; 701 break; 702 case AUDIT_ALWAYS: 703 *state = AUDIT_RECORD_CONTEXT; 704 break; 705 } 706 return 1; 707 } 708 709 /* At process creation time, we can determine if system-call auditing is 710 * completely disabled for this task. Since we only have the task 711 * structure at this point, we can only check uid and gid. 712 */ 713 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 714 { 715 struct audit_entry *e; 716 enum audit_state state; 717 718 rcu_read_lock(); 719 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 720 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 721 &state, true)) { 722 if (state == AUDIT_RECORD_CONTEXT) 723 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 724 rcu_read_unlock(); 725 return state; 726 } 727 } 728 rcu_read_unlock(); 729 return AUDIT_BUILD_CONTEXT; 730 } 731 732 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 733 { 734 int word, bit; 735 736 if (val > 0xffffffff) 737 return false; 738 739 word = AUDIT_WORD(val); 740 if (word >= AUDIT_BITMASK_SIZE) 741 return false; 742 743 bit = AUDIT_BIT(val); 744 745 return rule->mask[word] & bit; 746 } 747 748 /* At syscall entry and exit time, this filter is called if the 749 * audit_state is not low enough that auditing cannot take place, but is 750 * also not high enough that we already know we have to write an audit 751 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 752 */ 753 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 754 struct audit_context *ctx, 755 struct list_head *list) 756 { 757 struct audit_entry *e; 758 enum audit_state state; 759 760 if (audit_pid && tsk->tgid == audit_pid) 761 return AUDIT_DISABLED; 762 763 rcu_read_lock(); 764 if (!list_empty(list)) { 765 list_for_each_entry_rcu(e, list, list) { 766 if (audit_in_mask(&e->rule, ctx->major) && 767 audit_filter_rules(tsk, &e->rule, ctx, NULL, 768 &state, false)) { 769 rcu_read_unlock(); 770 ctx->current_state = state; 771 return state; 772 } 773 } 774 } 775 rcu_read_unlock(); 776 return AUDIT_BUILD_CONTEXT; 777 } 778 779 /* 780 * Given an audit_name check the inode hash table to see if they match. 781 * Called holding the rcu read lock to protect the use of audit_inode_hash 782 */ 783 static int audit_filter_inode_name(struct task_struct *tsk, 784 struct audit_names *n, 785 struct audit_context *ctx) { 786 int h = audit_hash_ino((u32)n->ino); 787 struct list_head *list = &audit_inode_hash[h]; 788 struct audit_entry *e; 789 enum audit_state state; 790 791 if (list_empty(list)) 792 return 0; 793 794 list_for_each_entry_rcu(e, list, list) { 795 if (audit_in_mask(&e->rule, ctx->major) && 796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 797 ctx->current_state = state; 798 return 1; 799 } 800 } 801 802 return 0; 803 } 804 805 /* At syscall exit time, this filter is called if any audit_names have been 806 * collected during syscall processing. We only check rules in sublists at hash 807 * buckets applicable to the inode numbers in audit_names. 808 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 809 */ 810 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 811 { 812 struct audit_names *n; 813 814 if (audit_pid && tsk->tgid == audit_pid) 815 return; 816 817 rcu_read_lock(); 818 819 list_for_each_entry(n, &ctx->names_list, list) { 820 if (audit_filter_inode_name(tsk, n, ctx)) 821 break; 822 } 823 rcu_read_unlock(); 824 } 825 826 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ 827 static inline struct audit_context *audit_take_context(struct task_struct *tsk, 828 int return_valid, 829 long return_code) 830 { 831 struct audit_context *context = tsk->audit_context; 832 833 if (!context) 834 return NULL; 835 context->return_valid = return_valid; 836 837 /* 838 * we need to fix up the return code in the audit logs if the actual 839 * return codes are later going to be fixed up by the arch specific 840 * signal handlers 841 * 842 * This is actually a test for: 843 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 844 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 845 * 846 * but is faster than a bunch of || 847 */ 848 if (unlikely(return_code <= -ERESTARTSYS) && 849 (return_code >= -ERESTART_RESTARTBLOCK) && 850 (return_code != -ENOIOCTLCMD)) 851 context->return_code = -EINTR; 852 else 853 context->return_code = return_code; 854 855 if (context->in_syscall && !context->dummy) { 856 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); 857 audit_filter_inodes(tsk, context); 858 } 859 860 tsk->audit_context = NULL; 861 return context; 862 } 863 864 static inline void audit_proctitle_free(struct audit_context *context) 865 { 866 kfree(context->proctitle.value); 867 context->proctitle.value = NULL; 868 context->proctitle.len = 0; 869 } 870 871 static inline void audit_free_names(struct audit_context *context) 872 { 873 struct audit_names *n, *next; 874 875 list_for_each_entry_safe(n, next, &context->names_list, list) { 876 list_del(&n->list); 877 if (n->name) 878 putname(n->name); 879 if (n->should_free) 880 kfree(n); 881 } 882 context->name_count = 0; 883 path_put(&context->pwd); 884 context->pwd.dentry = NULL; 885 context->pwd.mnt = NULL; 886 } 887 888 static inline void audit_free_aux(struct audit_context *context) 889 { 890 struct audit_aux_data *aux; 891 892 while ((aux = context->aux)) { 893 context->aux = aux->next; 894 kfree(aux); 895 } 896 while ((aux = context->aux_pids)) { 897 context->aux_pids = aux->next; 898 kfree(aux); 899 } 900 } 901 902 static inline struct audit_context *audit_alloc_context(enum audit_state state) 903 { 904 struct audit_context *context; 905 906 context = kzalloc(sizeof(*context), GFP_KERNEL); 907 if (!context) 908 return NULL; 909 context->state = state; 910 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 911 INIT_LIST_HEAD(&context->killed_trees); 912 INIT_LIST_HEAD(&context->names_list); 913 return context; 914 } 915 916 /** 917 * audit_alloc - allocate an audit context block for a task 918 * @tsk: task 919 * 920 * Filter on the task information and allocate a per-task audit context 921 * if necessary. Doing so turns on system call auditing for the 922 * specified task. This is called from copy_process, so no lock is 923 * needed. 924 */ 925 int audit_alloc(struct task_struct *tsk) 926 { 927 struct audit_context *context; 928 enum audit_state state; 929 char *key = NULL; 930 931 if (likely(!audit_ever_enabled)) 932 return 0; /* Return if not auditing. */ 933 934 state = audit_filter_task(tsk, &key); 935 if (state == AUDIT_DISABLED) { 936 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 937 return 0; 938 } 939 940 if (!(context = audit_alloc_context(state))) { 941 kfree(key); 942 audit_log_lost("out of memory in audit_alloc"); 943 return -ENOMEM; 944 } 945 context->filterkey = key; 946 947 tsk->audit_context = context; 948 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 949 return 0; 950 } 951 952 static inline void audit_free_context(struct audit_context *context) 953 { 954 audit_free_names(context); 955 unroll_tree_refs(context, NULL, 0); 956 free_tree_refs(context); 957 audit_free_aux(context); 958 kfree(context->filterkey); 959 kfree(context->sockaddr); 960 audit_proctitle_free(context); 961 kfree(context); 962 } 963 964 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 965 kuid_t auid, kuid_t uid, unsigned int sessionid, 966 u32 sid, char *comm) 967 { 968 struct audit_buffer *ab; 969 char *ctx = NULL; 970 u32 len; 971 int rc = 0; 972 973 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 974 if (!ab) 975 return rc; 976 977 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 978 from_kuid(&init_user_ns, auid), 979 from_kuid(&init_user_ns, uid), sessionid); 980 if (sid) { 981 if (security_secid_to_secctx(sid, &ctx, &len)) { 982 audit_log_format(ab, " obj=(none)"); 983 rc = 1; 984 } else { 985 audit_log_format(ab, " obj=%s", ctx); 986 security_release_secctx(ctx, len); 987 } 988 } 989 audit_log_format(ab, " ocomm="); 990 audit_log_untrustedstring(ab, comm); 991 audit_log_end(ab); 992 993 return rc; 994 } 995 996 static void audit_log_execve_info(struct audit_context *context, 997 struct audit_buffer **ab) 998 { 999 long len_max; 1000 long len_rem; 1001 long len_full; 1002 long len_buf; 1003 long len_abuf; 1004 long len_tmp; 1005 bool require_data; 1006 bool encode; 1007 unsigned int iter; 1008 unsigned int arg; 1009 char *buf_head; 1010 char *buf; 1011 const char __user *p = (const char __user *)current->mm->arg_start; 1012 1013 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1014 * data we put in the audit record for this argument (see the 1015 * code below) ... at this point in time 96 is plenty */ 1016 char abuf[96]; 1017 1018 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1019 * current value of 7500 is not as important as the fact that it 1020 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1021 * room if we go over a little bit in the logging below */ 1022 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1023 len_max = MAX_EXECVE_AUDIT_LEN; 1024 1025 /* scratch buffer to hold the userspace args */ 1026 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1027 if (!buf_head) { 1028 audit_panic("out of memory for argv string"); 1029 return; 1030 } 1031 buf = buf_head; 1032 1033 audit_log_format(*ab, "argc=%d", context->execve.argc); 1034 1035 len_rem = len_max; 1036 len_buf = 0; 1037 len_full = 0; 1038 require_data = true; 1039 encode = false; 1040 iter = 0; 1041 arg = 0; 1042 do { 1043 /* NOTE: we don't ever want to trust this value for anything 1044 * serious, but the audit record format insists we 1045 * provide an argument length for really long arguments, 1046 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1047 * to use strncpy_from_user() to obtain this value for 1048 * recording in the log, although we don't use it 1049 * anywhere here to avoid a double-fetch problem */ 1050 if (len_full == 0) 1051 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1052 1053 /* read more data from userspace */ 1054 if (require_data) { 1055 /* can we make more room in the buffer? */ 1056 if (buf != buf_head) { 1057 memmove(buf_head, buf, len_buf); 1058 buf = buf_head; 1059 } 1060 1061 /* fetch as much as we can of the argument */ 1062 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1063 len_max - len_buf); 1064 if (len_tmp == -EFAULT) { 1065 /* unable to copy from userspace */ 1066 send_sig(SIGKILL, current, 0); 1067 goto out; 1068 } else if (len_tmp == (len_max - len_buf)) { 1069 /* buffer is not large enough */ 1070 require_data = true; 1071 /* NOTE: if we are going to span multiple 1072 * buffers force the encoding so we stand 1073 * a chance at a sane len_full value and 1074 * consistent record encoding */ 1075 encode = true; 1076 len_full = len_full * 2; 1077 p += len_tmp; 1078 } else { 1079 require_data = false; 1080 if (!encode) 1081 encode = audit_string_contains_control( 1082 buf, len_tmp); 1083 /* try to use a trusted value for len_full */ 1084 if (len_full < len_max) 1085 len_full = (encode ? 1086 len_tmp * 2 : len_tmp); 1087 p += len_tmp + 1; 1088 } 1089 len_buf += len_tmp; 1090 buf_head[len_buf] = '\0'; 1091 1092 /* length of the buffer in the audit record? */ 1093 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1094 } 1095 1096 /* write as much as we can to the audit log */ 1097 if (len_buf > 0) { 1098 /* NOTE: some magic numbers here - basically if we 1099 * can't fit a reasonable amount of data into the 1100 * existing audit buffer, flush it and start with 1101 * a new buffer */ 1102 if ((sizeof(abuf) + 8) > len_rem) { 1103 len_rem = len_max; 1104 audit_log_end(*ab); 1105 *ab = audit_log_start(context, 1106 GFP_KERNEL, AUDIT_EXECVE); 1107 if (!*ab) 1108 goto out; 1109 } 1110 1111 /* create the non-arg portion of the arg record */ 1112 len_tmp = 0; 1113 if (require_data || (iter > 0) || 1114 ((len_abuf + sizeof(abuf)) > len_rem)) { 1115 if (iter == 0) { 1116 len_tmp += snprintf(&abuf[len_tmp], 1117 sizeof(abuf) - len_tmp, 1118 " a%d_len=%lu", 1119 arg, len_full); 1120 } 1121 len_tmp += snprintf(&abuf[len_tmp], 1122 sizeof(abuf) - len_tmp, 1123 " a%d[%d]=", arg, iter++); 1124 } else 1125 len_tmp += snprintf(&abuf[len_tmp], 1126 sizeof(abuf) - len_tmp, 1127 " a%d=", arg); 1128 WARN_ON(len_tmp >= sizeof(abuf)); 1129 abuf[sizeof(abuf) - 1] = '\0'; 1130 1131 /* log the arg in the audit record */ 1132 audit_log_format(*ab, "%s", abuf); 1133 len_rem -= len_tmp; 1134 len_tmp = len_buf; 1135 if (encode) { 1136 if (len_abuf > len_rem) 1137 len_tmp = len_rem / 2; /* encoding */ 1138 audit_log_n_hex(*ab, buf, len_tmp); 1139 len_rem -= len_tmp * 2; 1140 len_abuf -= len_tmp * 2; 1141 } else { 1142 if (len_abuf > len_rem) 1143 len_tmp = len_rem - 2; /* quotes */ 1144 audit_log_n_string(*ab, buf, len_tmp); 1145 len_rem -= len_tmp + 2; 1146 /* don't subtract the "2" because we still need 1147 * to add quotes to the remaining string */ 1148 len_abuf -= len_tmp; 1149 } 1150 len_buf -= len_tmp; 1151 buf += len_tmp; 1152 } 1153 1154 /* ready to move to the next argument? */ 1155 if ((len_buf == 0) && !require_data) { 1156 arg++; 1157 iter = 0; 1158 len_full = 0; 1159 require_data = true; 1160 encode = false; 1161 } 1162 } while (arg < context->execve.argc); 1163 1164 /* NOTE: the caller handles the final audit_log_end() call */ 1165 1166 out: 1167 kfree(buf_head); 1168 } 1169 1170 static void show_special(struct audit_context *context, int *call_panic) 1171 { 1172 struct audit_buffer *ab; 1173 int i; 1174 1175 ab = audit_log_start(context, GFP_KERNEL, context->type); 1176 if (!ab) 1177 return; 1178 1179 switch (context->type) { 1180 case AUDIT_SOCKETCALL: { 1181 int nargs = context->socketcall.nargs; 1182 audit_log_format(ab, "nargs=%d", nargs); 1183 for (i = 0; i < nargs; i++) 1184 audit_log_format(ab, " a%d=%lx", i, 1185 context->socketcall.args[i]); 1186 break; } 1187 case AUDIT_IPC: { 1188 u32 osid = context->ipc.osid; 1189 1190 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1191 from_kuid(&init_user_ns, context->ipc.uid), 1192 from_kgid(&init_user_ns, context->ipc.gid), 1193 context->ipc.mode); 1194 if (osid) { 1195 char *ctx = NULL; 1196 u32 len; 1197 if (security_secid_to_secctx(osid, &ctx, &len)) { 1198 audit_log_format(ab, " osid=%u", osid); 1199 *call_panic = 1; 1200 } else { 1201 audit_log_format(ab, " obj=%s", ctx); 1202 security_release_secctx(ctx, len); 1203 } 1204 } 1205 if (context->ipc.has_perm) { 1206 audit_log_end(ab); 1207 ab = audit_log_start(context, GFP_KERNEL, 1208 AUDIT_IPC_SET_PERM); 1209 if (unlikely(!ab)) 1210 return; 1211 audit_log_format(ab, 1212 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1213 context->ipc.qbytes, 1214 context->ipc.perm_uid, 1215 context->ipc.perm_gid, 1216 context->ipc.perm_mode); 1217 } 1218 break; } 1219 case AUDIT_MQ_OPEN: { 1220 audit_log_format(ab, 1221 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1222 "mq_msgsize=%ld mq_curmsgs=%ld", 1223 context->mq_open.oflag, context->mq_open.mode, 1224 context->mq_open.attr.mq_flags, 1225 context->mq_open.attr.mq_maxmsg, 1226 context->mq_open.attr.mq_msgsize, 1227 context->mq_open.attr.mq_curmsgs); 1228 break; } 1229 case AUDIT_MQ_SENDRECV: { 1230 audit_log_format(ab, 1231 "mqdes=%d msg_len=%zd msg_prio=%u " 1232 "abs_timeout_sec=%ld abs_timeout_nsec=%ld", 1233 context->mq_sendrecv.mqdes, 1234 context->mq_sendrecv.msg_len, 1235 context->mq_sendrecv.msg_prio, 1236 context->mq_sendrecv.abs_timeout.tv_sec, 1237 context->mq_sendrecv.abs_timeout.tv_nsec); 1238 break; } 1239 case AUDIT_MQ_NOTIFY: { 1240 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1241 context->mq_notify.mqdes, 1242 context->mq_notify.sigev_signo); 1243 break; } 1244 case AUDIT_MQ_GETSETATTR: { 1245 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1246 audit_log_format(ab, 1247 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1248 "mq_curmsgs=%ld ", 1249 context->mq_getsetattr.mqdes, 1250 attr->mq_flags, attr->mq_maxmsg, 1251 attr->mq_msgsize, attr->mq_curmsgs); 1252 break; } 1253 case AUDIT_CAPSET: { 1254 audit_log_format(ab, "pid=%d", context->capset.pid); 1255 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1256 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1257 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1258 break; } 1259 case AUDIT_MMAP: { 1260 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1261 context->mmap.flags); 1262 break; } 1263 case AUDIT_EXECVE: { 1264 audit_log_execve_info(context, &ab); 1265 break; } 1266 } 1267 audit_log_end(ab); 1268 } 1269 1270 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1271 { 1272 char *end = proctitle + len - 1; 1273 while (end > proctitle && !isprint(*end)) 1274 end--; 1275 1276 /* catch the case where proctitle is only 1 non-print character */ 1277 len = end - proctitle + 1; 1278 len -= isprint(proctitle[len-1]) == 0; 1279 return len; 1280 } 1281 1282 static void audit_log_proctitle(struct task_struct *tsk, 1283 struct audit_context *context) 1284 { 1285 int res; 1286 char *buf; 1287 char *msg = "(null)"; 1288 int len = strlen(msg); 1289 struct audit_buffer *ab; 1290 1291 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1292 if (!ab) 1293 return; /* audit_panic or being filtered */ 1294 1295 audit_log_format(ab, "proctitle="); 1296 1297 /* Not cached */ 1298 if (!context->proctitle.value) { 1299 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1300 if (!buf) 1301 goto out; 1302 /* Historically called this from procfs naming */ 1303 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1304 if (res == 0) { 1305 kfree(buf); 1306 goto out; 1307 } 1308 res = audit_proctitle_rtrim(buf, res); 1309 if (res == 0) { 1310 kfree(buf); 1311 goto out; 1312 } 1313 context->proctitle.value = buf; 1314 context->proctitle.len = res; 1315 } 1316 msg = context->proctitle.value; 1317 len = context->proctitle.len; 1318 out: 1319 audit_log_n_untrustedstring(ab, msg, len); 1320 audit_log_end(ab); 1321 } 1322 1323 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1324 { 1325 int i, call_panic = 0; 1326 struct audit_buffer *ab; 1327 struct audit_aux_data *aux; 1328 struct audit_names *n; 1329 1330 /* tsk == current */ 1331 context->personality = tsk->personality; 1332 1333 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1334 if (!ab) 1335 return; /* audit_panic has been called */ 1336 audit_log_format(ab, "arch=%x syscall=%d", 1337 context->arch, context->major); 1338 if (context->personality != PER_LINUX) 1339 audit_log_format(ab, " per=%lx", context->personality); 1340 if (context->return_valid) 1341 audit_log_format(ab, " success=%s exit=%ld", 1342 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1343 context->return_code); 1344 1345 audit_log_format(ab, 1346 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1347 context->argv[0], 1348 context->argv[1], 1349 context->argv[2], 1350 context->argv[3], 1351 context->name_count); 1352 1353 audit_log_task_info(ab, tsk); 1354 audit_log_key(ab, context->filterkey); 1355 audit_log_end(ab); 1356 1357 for (aux = context->aux; aux; aux = aux->next) { 1358 1359 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1360 if (!ab) 1361 continue; /* audit_panic has been called */ 1362 1363 switch (aux->type) { 1364 1365 case AUDIT_BPRM_FCAPS: { 1366 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1367 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1368 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1369 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1370 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1371 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1372 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1373 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1374 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted); 1375 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable); 1376 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective); 1377 break; } 1378 1379 } 1380 audit_log_end(ab); 1381 } 1382 1383 if (context->type) 1384 show_special(context, &call_panic); 1385 1386 if (context->fds[0] >= 0) { 1387 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1388 if (ab) { 1389 audit_log_format(ab, "fd0=%d fd1=%d", 1390 context->fds[0], context->fds[1]); 1391 audit_log_end(ab); 1392 } 1393 } 1394 1395 if (context->sockaddr_len) { 1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1397 if (ab) { 1398 audit_log_format(ab, "saddr="); 1399 audit_log_n_hex(ab, (void *)context->sockaddr, 1400 context->sockaddr_len); 1401 audit_log_end(ab); 1402 } 1403 } 1404 1405 for (aux = context->aux_pids; aux; aux = aux->next) { 1406 struct audit_aux_data_pids *axs = (void *)aux; 1407 1408 for (i = 0; i < axs->pid_count; i++) 1409 if (audit_log_pid_context(context, axs->target_pid[i], 1410 axs->target_auid[i], 1411 axs->target_uid[i], 1412 axs->target_sessionid[i], 1413 axs->target_sid[i], 1414 axs->target_comm[i])) 1415 call_panic = 1; 1416 } 1417 1418 if (context->target_pid && 1419 audit_log_pid_context(context, context->target_pid, 1420 context->target_auid, context->target_uid, 1421 context->target_sessionid, 1422 context->target_sid, context->target_comm)) 1423 call_panic = 1; 1424 1425 if (context->pwd.dentry && context->pwd.mnt) { 1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1427 if (ab) { 1428 audit_log_d_path(ab, "cwd=", &context->pwd); 1429 audit_log_end(ab); 1430 } 1431 } 1432 1433 i = 0; 1434 list_for_each_entry(n, &context->names_list, list) { 1435 if (n->hidden) 1436 continue; 1437 audit_log_name(context, n, NULL, i++, &call_panic); 1438 } 1439 1440 audit_log_proctitle(tsk, context); 1441 1442 /* Send end of event record to help user space know we are finished */ 1443 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1444 if (ab) 1445 audit_log_end(ab); 1446 if (call_panic) 1447 audit_panic("error converting sid to string"); 1448 } 1449 1450 /** 1451 * audit_free - free a per-task audit context 1452 * @tsk: task whose audit context block to free 1453 * 1454 * Called from copy_process and do_exit 1455 */ 1456 void __audit_free(struct task_struct *tsk) 1457 { 1458 struct audit_context *context; 1459 1460 context = audit_take_context(tsk, 0, 0); 1461 if (!context) 1462 return; 1463 1464 /* Check for system calls that do not go through the exit 1465 * function (e.g., exit_group), then free context block. 1466 * We use GFP_ATOMIC here because we might be doing this 1467 * in the context of the idle thread */ 1468 /* that can happen only if we are called from do_exit() */ 1469 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1470 audit_log_exit(context, tsk); 1471 if (!list_empty(&context->killed_trees)) 1472 audit_kill_trees(&context->killed_trees); 1473 1474 audit_free_context(context); 1475 } 1476 1477 /** 1478 * audit_syscall_entry - fill in an audit record at syscall entry 1479 * @major: major syscall type (function) 1480 * @a1: additional syscall register 1 1481 * @a2: additional syscall register 2 1482 * @a3: additional syscall register 3 1483 * @a4: additional syscall register 4 1484 * 1485 * Fill in audit context at syscall entry. This only happens if the 1486 * audit context was created when the task was created and the state or 1487 * filters demand the audit context be built. If the state from the 1488 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1489 * then the record will be written at syscall exit time (otherwise, it 1490 * will only be written if another part of the kernel requests that it 1491 * be written). 1492 */ 1493 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1494 unsigned long a3, unsigned long a4) 1495 { 1496 struct task_struct *tsk = current; 1497 struct audit_context *context = tsk->audit_context; 1498 enum audit_state state; 1499 1500 if (!context) 1501 return; 1502 1503 BUG_ON(context->in_syscall || context->name_count); 1504 1505 if (!audit_enabled) 1506 return; 1507 1508 context->arch = syscall_get_arch(); 1509 context->major = major; 1510 context->argv[0] = a1; 1511 context->argv[1] = a2; 1512 context->argv[2] = a3; 1513 context->argv[3] = a4; 1514 1515 state = context->state; 1516 context->dummy = !audit_n_rules; 1517 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1518 context->prio = 0; 1519 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]); 1520 } 1521 if (state == AUDIT_DISABLED) 1522 return; 1523 1524 context->serial = 0; 1525 context->ctime = CURRENT_TIME; 1526 context->in_syscall = 1; 1527 context->current_state = state; 1528 context->ppid = 0; 1529 } 1530 1531 /** 1532 * audit_syscall_exit - deallocate audit context after a system call 1533 * @success: success value of the syscall 1534 * @return_code: return value of the syscall 1535 * 1536 * Tear down after system call. If the audit context has been marked as 1537 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1538 * filtering, or because some other part of the kernel wrote an audit 1539 * message), then write out the syscall information. In call cases, 1540 * free the names stored from getname(). 1541 */ 1542 void __audit_syscall_exit(int success, long return_code) 1543 { 1544 struct task_struct *tsk = current; 1545 struct audit_context *context; 1546 1547 if (success) 1548 success = AUDITSC_SUCCESS; 1549 else 1550 success = AUDITSC_FAILURE; 1551 1552 context = audit_take_context(tsk, success, return_code); 1553 if (!context) 1554 return; 1555 1556 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 1557 audit_log_exit(context, tsk); 1558 1559 context->in_syscall = 0; 1560 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1561 1562 if (!list_empty(&context->killed_trees)) 1563 audit_kill_trees(&context->killed_trees); 1564 1565 audit_free_names(context); 1566 unroll_tree_refs(context, NULL, 0); 1567 audit_free_aux(context); 1568 context->aux = NULL; 1569 context->aux_pids = NULL; 1570 context->target_pid = 0; 1571 context->target_sid = 0; 1572 context->sockaddr_len = 0; 1573 context->type = 0; 1574 context->fds[0] = -1; 1575 if (context->state != AUDIT_RECORD_CONTEXT) { 1576 kfree(context->filterkey); 1577 context->filterkey = NULL; 1578 } 1579 tsk->audit_context = context; 1580 } 1581 1582 static inline void handle_one(const struct inode *inode) 1583 { 1584 #ifdef CONFIG_AUDIT_TREE 1585 struct audit_context *context; 1586 struct audit_tree_refs *p; 1587 struct audit_chunk *chunk; 1588 int count; 1589 if (likely(hlist_empty(&inode->i_fsnotify_marks))) 1590 return; 1591 context = current->audit_context; 1592 p = context->trees; 1593 count = context->tree_count; 1594 rcu_read_lock(); 1595 chunk = audit_tree_lookup(inode); 1596 rcu_read_unlock(); 1597 if (!chunk) 1598 return; 1599 if (likely(put_tree_ref(context, chunk))) 1600 return; 1601 if (unlikely(!grow_tree_refs(context))) { 1602 pr_warn("out of memory, audit has lost a tree reference\n"); 1603 audit_set_auditable(context); 1604 audit_put_chunk(chunk); 1605 unroll_tree_refs(context, p, count); 1606 return; 1607 } 1608 put_tree_ref(context, chunk); 1609 #endif 1610 } 1611 1612 static void handle_path(const struct dentry *dentry) 1613 { 1614 #ifdef CONFIG_AUDIT_TREE 1615 struct audit_context *context; 1616 struct audit_tree_refs *p; 1617 const struct dentry *d, *parent; 1618 struct audit_chunk *drop; 1619 unsigned long seq; 1620 int count; 1621 1622 context = current->audit_context; 1623 p = context->trees; 1624 count = context->tree_count; 1625 retry: 1626 drop = NULL; 1627 d = dentry; 1628 rcu_read_lock(); 1629 seq = read_seqbegin(&rename_lock); 1630 for(;;) { 1631 struct inode *inode = d_backing_inode(d); 1632 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) { 1633 struct audit_chunk *chunk; 1634 chunk = audit_tree_lookup(inode); 1635 if (chunk) { 1636 if (unlikely(!put_tree_ref(context, chunk))) { 1637 drop = chunk; 1638 break; 1639 } 1640 } 1641 } 1642 parent = d->d_parent; 1643 if (parent == d) 1644 break; 1645 d = parent; 1646 } 1647 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1648 rcu_read_unlock(); 1649 if (!drop) { 1650 /* just a race with rename */ 1651 unroll_tree_refs(context, p, count); 1652 goto retry; 1653 } 1654 audit_put_chunk(drop); 1655 if (grow_tree_refs(context)) { 1656 /* OK, got more space */ 1657 unroll_tree_refs(context, p, count); 1658 goto retry; 1659 } 1660 /* too bad */ 1661 pr_warn("out of memory, audit has lost a tree reference\n"); 1662 unroll_tree_refs(context, p, count); 1663 audit_set_auditable(context); 1664 return; 1665 } 1666 rcu_read_unlock(); 1667 #endif 1668 } 1669 1670 static struct audit_names *audit_alloc_name(struct audit_context *context, 1671 unsigned char type) 1672 { 1673 struct audit_names *aname; 1674 1675 if (context->name_count < AUDIT_NAMES) { 1676 aname = &context->preallocated_names[context->name_count]; 1677 memset(aname, 0, sizeof(*aname)); 1678 } else { 1679 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1680 if (!aname) 1681 return NULL; 1682 aname->should_free = true; 1683 } 1684 1685 aname->ino = AUDIT_INO_UNSET; 1686 aname->type = type; 1687 list_add_tail(&aname->list, &context->names_list); 1688 1689 context->name_count++; 1690 return aname; 1691 } 1692 1693 /** 1694 * audit_reusename - fill out filename with info from existing entry 1695 * @uptr: userland ptr to pathname 1696 * 1697 * Search the audit_names list for the current audit context. If there is an 1698 * existing entry with a matching "uptr" then return the filename 1699 * associated with that audit_name. If not, return NULL. 1700 */ 1701 struct filename * 1702 __audit_reusename(const __user char *uptr) 1703 { 1704 struct audit_context *context = current->audit_context; 1705 struct audit_names *n; 1706 1707 list_for_each_entry(n, &context->names_list, list) { 1708 if (!n->name) 1709 continue; 1710 if (n->name->uptr == uptr) { 1711 n->name->refcnt++; 1712 return n->name; 1713 } 1714 } 1715 return NULL; 1716 } 1717 1718 /** 1719 * audit_getname - add a name to the list 1720 * @name: name to add 1721 * 1722 * Add a name to the list of audit names for this context. 1723 * Called from fs/namei.c:getname(). 1724 */ 1725 void __audit_getname(struct filename *name) 1726 { 1727 struct audit_context *context = current->audit_context; 1728 struct audit_names *n; 1729 1730 if (!context->in_syscall) 1731 return; 1732 1733 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1734 if (!n) 1735 return; 1736 1737 n->name = name; 1738 n->name_len = AUDIT_NAME_FULL; 1739 name->aname = n; 1740 name->refcnt++; 1741 1742 if (!context->pwd.dentry) 1743 get_fs_pwd(current->fs, &context->pwd); 1744 } 1745 1746 /** 1747 * __audit_inode - store the inode and device from a lookup 1748 * @name: name being audited 1749 * @dentry: dentry being audited 1750 * @flags: attributes for this particular entry 1751 */ 1752 void __audit_inode(struct filename *name, const struct dentry *dentry, 1753 unsigned int flags) 1754 { 1755 struct audit_context *context = current->audit_context; 1756 struct inode *inode = d_backing_inode(dentry); 1757 struct audit_names *n; 1758 bool parent = flags & AUDIT_INODE_PARENT; 1759 1760 if (!context->in_syscall) 1761 return; 1762 1763 if (!name) 1764 goto out_alloc; 1765 1766 /* 1767 * If we have a pointer to an audit_names entry already, then we can 1768 * just use it directly if the type is correct. 1769 */ 1770 n = name->aname; 1771 if (n) { 1772 if (parent) { 1773 if (n->type == AUDIT_TYPE_PARENT || 1774 n->type == AUDIT_TYPE_UNKNOWN) 1775 goto out; 1776 } else { 1777 if (n->type != AUDIT_TYPE_PARENT) 1778 goto out; 1779 } 1780 } 1781 1782 list_for_each_entry_reverse(n, &context->names_list, list) { 1783 if (n->ino) { 1784 /* valid inode number, use that for the comparison */ 1785 if (n->ino != inode->i_ino || 1786 n->dev != inode->i_sb->s_dev) 1787 continue; 1788 } else if (n->name) { 1789 /* inode number has not been set, check the name */ 1790 if (strcmp(n->name->name, name->name)) 1791 continue; 1792 } else 1793 /* no inode and no name (?!) ... this is odd ... */ 1794 continue; 1795 1796 /* match the correct record type */ 1797 if (parent) { 1798 if (n->type == AUDIT_TYPE_PARENT || 1799 n->type == AUDIT_TYPE_UNKNOWN) 1800 goto out; 1801 } else { 1802 if (n->type != AUDIT_TYPE_PARENT) 1803 goto out; 1804 } 1805 } 1806 1807 out_alloc: 1808 /* unable to find an entry with both a matching name and type */ 1809 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1810 if (!n) 1811 return; 1812 if (name) { 1813 n->name = name; 1814 name->refcnt++; 1815 } 1816 1817 out: 1818 if (parent) { 1819 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 1820 n->type = AUDIT_TYPE_PARENT; 1821 if (flags & AUDIT_INODE_HIDDEN) 1822 n->hidden = true; 1823 } else { 1824 n->name_len = AUDIT_NAME_FULL; 1825 n->type = AUDIT_TYPE_NORMAL; 1826 } 1827 handle_path(dentry); 1828 audit_copy_inode(n, dentry, inode); 1829 } 1830 1831 void __audit_file(const struct file *file) 1832 { 1833 __audit_inode(NULL, file->f_path.dentry, 0); 1834 } 1835 1836 /** 1837 * __audit_inode_child - collect inode info for created/removed objects 1838 * @parent: inode of dentry parent 1839 * @dentry: dentry being audited 1840 * @type: AUDIT_TYPE_* value that we're looking for 1841 * 1842 * For syscalls that create or remove filesystem objects, audit_inode 1843 * can only collect information for the filesystem object's parent. 1844 * This call updates the audit context with the child's information. 1845 * Syscalls that create a new filesystem object must be hooked after 1846 * the object is created. Syscalls that remove a filesystem object 1847 * must be hooked prior, in order to capture the target inode during 1848 * unsuccessful attempts. 1849 */ 1850 void __audit_inode_child(struct inode *parent, 1851 const struct dentry *dentry, 1852 const unsigned char type) 1853 { 1854 struct audit_context *context = current->audit_context; 1855 struct inode *inode = d_backing_inode(dentry); 1856 const char *dname = dentry->d_name.name; 1857 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 1858 1859 if (!context->in_syscall) 1860 return; 1861 1862 if (inode) 1863 handle_one(inode); 1864 1865 /* look for a parent entry first */ 1866 list_for_each_entry(n, &context->names_list, list) { 1867 if (!n->name || 1868 (n->type != AUDIT_TYPE_PARENT && 1869 n->type != AUDIT_TYPE_UNKNOWN)) 1870 continue; 1871 1872 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 1873 !audit_compare_dname_path(dname, 1874 n->name->name, n->name_len)) { 1875 if (n->type == AUDIT_TYPE_UNKNOWN) 1876 n->type = AUDIT_TYPE_PARENT; 1877 found_parent = n; 1878 break; 1879 } 1880 } 1881 1882 /* is there a matching child entry? */ 1883 list_for_each_entry(n, &context->names_list, list) { 1884 /* can only match entries that have a name */ 1885 if (!n->name || 1886 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 1887 continue; 1888 1889 if (!strcmp(dname, n->name->name) || 1890 !audit_compare_dname_path(dname, n->name->name, 1891 found_parent ? 1892 found_parent->name_len : 1893 AUDIT_NAME_FULL)) { 1894 if (n->type == AUDIT_TYPE_UNKNOWN) 1895 n->type = type; 1896 found_child = n; 1897 break; 1898 } 1899 } 1900 1901 if (!found_parent) { 1902 /* create a new, "anonymous" parent record */ 1903 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 1904 if (!n) 1905 return; 1906 audit_copy_inode(n, NULL, parent); 1907 } 1908 1909 if (!found_child) { 1910 found_child = audit_alloc_name(context, type); 1911 if (!found_child) 1912 return; 1913 1914 /* Re-use the name belonging to the slot for a matching parent 1915 * directory. All names for this context are relinquished in 1916 * audit_free_names() */ 1917 if (found_parent) { 1918 found_child->name = found_parent->name; 1919 found_child->name_len = AUDIT_NAME_FULL; 1920 found_child->name->refcnt++; 1921 } 1922 } 1923 1924 if (inode) 1925 audit_copy_inode(found_child, dentry, inode); 1926 else 1927 found_child->ino = AUDIT_INO_UNSET; 1928 } 1929 EXPORT_SYMBOL_GPL(__audit_inode_child); 1930 1931 /** 1932 * auditsc_get_stamp - get local copies of audit_context values 1933 * @ctx: audit_context for the task 1934 * @t: timespec to store time recorded in the audit_context 1935 * @serial: serial value that is recorded in the audit_context 1936 * 1937 * Also sets the context as auditable. 1938 */ 1939 int auditsc_get_stamp(struct audit_context *ctx, 1940 struct timespec *t, unsigned int *serial) 1941 { 1942 if (!ctx->in_syscall) 1943 return 0; 1944 if (!ctx->serial) 1945 ctx->serial = audit_serial(); 1946 t->tv_sec = ctx->ctime.tv_sec; 1947 t->tv_nsec = ctx->ctime.tv_nsec; 1948 *serial = ctx->serial; 1949 if (!ctx->prio) { 1950 ctx->prio = 1; 1951 ctx->current_state = AUDIT_RECORD_CONTEXT; 1952 } 1953 return 1; 1954 } 1955 1956 /* global counter which is incremented every time something logs in */ 1957 static atomic_t session_id = ATOMIC_INIT(0); 1958 1959 static int audit_set_loginuid_perm(kuid_t loginuid) 1960 { 1961 /* if we are unset, we don't need privs */ 1962 if (!audit_loginuid_set(current)) 1963 return 0; 1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 1966 return -EPERM; 1967 /* it is set, you need permission */ 1968 if (!capable(CAP_AUDIT_CONTROL)) 1969 return -EPERM; 1970 /* reject if this is not an unset and we don't allow that */ 1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) 1972 return -EPERM; 1973 return 0; 1974 } 1975 1976 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 1977 unsigned int oldsessionid, unsigned int sessionid, 1978 int rc) 1979 { 1980 struct audit_buffer *ab; 1981 uid_t uid, oldloginuid, loginuid; 1982 struct tty_struct *tty; 1983 1984 if (!audit_enabled) 1985 return; 1986 1987 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); 1988 if (!ab) 1989 return; 1990 1991 uid = from_kuid(&init_user_ns, task_uid(current)); 1992 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 1993 loginuid = from_kuid(&init_user_ns, kloginuid), 1994 tty = audit_get_tty(current); 1995 1996 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 1997 audit_log_task_context(ab); 1998 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 1999 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2000 oldsessionid, sessionid, !rc); 2001 audit_put_tty(tty); 2002 audit_log_end(ab); 2003 } 2004 2005 /** 2006 * audit_set_loginuid - set current task's audit_context loginuid 2007 * @loginuid: loginuid value 2008 * 2009 * Returns 0. 2010 * 2011 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2012 */ 2013 int audit_set_loginuid(kuid_t loginuid) 2014 { 2015 struct task_struct *task = current; 2016 unsigned int oldsessionid, sessionid = (unsigned int)-1; 2017 kuid_t oldloginuid; 2018 int rc; 2019 2020 oldloginuid = audit_get_loginuid(current); 2021 oldsessionid = audit_get_sessionid(current); 2022 2023 rc = audit_set_loginuid_perm(loginuid); 2024 if (rc) 2025 goto out; 2026 2027 /* are we setting or clearing? */ 2028 if (uid_valid(loginuid)) 2029 sessionid = (unsigned int)atomic_inc_return(&session_id); 2030 2031 task->sessionid = sessionid; 2032 task->loginuid = loginuid; 2033 out: 2034 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2035 return rc; 2036 } 2037 2038 /** 2039 * __audit_mq_open - record audit data for a POSIX MQ open 2040 * @oflag: open flag 2041 * @mode: mode bits 2042 * @attr: queue attributes 2043 * 2044 */ 2045 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2046 { 2047 struct audit_context *context = current->audit_context; 2048 2049 if (attr) 2050 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2051 else 2052 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2053 2054 context->mq_open.oflag = oflag; 2055 context->mq_open.mode = mode; 2056 2057 context->type = AUDIT_MQ_OPEN; 2058 } 2059 2060 /** 2061 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2062 * @mqdes: MQ descriptor 2063 * @msg_len: Message length 2064 * @msg_prio: Message priority 2065 * @abs_timeout: Message timeout in absolute time 2066 * 2067 */ 2068 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2069 const struct timespec *abs_timeout) 2070 { 2071 struct audit_context *context = current->audit_context; 2072 struct timespec *p = &context->mq_sendrecv.abs_timeout; 2073 2074 if (abs_timeout) 2075 memcpy(p, abs_timeout, sizeof(struct timespec)); 2076 else 2077 memset(p, 0, sizeof(struct timespec)); 2078 2079 context->mq_sendrecv.mqdes = mqdes; 2080 context->mq_sendrecv.msg_len = msg_len; 2081 context->mq_sendrecv.msg_prio = msg_prio; 2082 2083 context->type = AUDIT_MQ_SENDRECV; 2084 } 2085 2086 /** 2087 * __audit_mq_notify - record audit data for a POSIX MQ notify 2088 * @mqdes: MQ descriptor 2089 * @notification: Notification event 2090 * 2091 */ 2092 2093 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2094 { 2095 struct audit_context *context = current->audit_context; 2096 2097 if (notification) 2098 context->mq_notify.sigev_signo = notification->sigev_signo; 2099 else 2100 context->mq_notify.sigev_signo = 0; 2101 2102 context->mq_notify.mqdes = mqdes; 2103 context->type = AUDIT_MQ_NOTIFY; 2104 } 2105 2106 /** 2107 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2108 * @mqdes: MQ descriptor 2109 * @mqstat: MQ flags 2110 * 2111 */ 2112 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2113 { 2114 struct audit_context *context = current->audit_context; 2115 context->mq_getsetattr.mqdes = mqdes; 2116 context->mq_getsetattr.mqstat = *mqstat; 2117 context->type = AUDIT_MQ_GETSETATTR; 2118 } 2119 2120 /** 2121 * audit_ipc_obj - record audit data for ipc object 2122 * @ipcp: ipc permissions 2123 * 2124 */ 2125 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2126 { 2127 struct audit_context *context = current->audit_context; 2128 context->ipc.uid = ipcp->uid; 2129 context->ipc.gid = ipcp->gid; 2130 context->ipc.mode = ipcp->mode; 2131 context->ipc.has_perm = 0; 2132 security_ipc_getsecid(ipcp, &context->ipc.osid); 2133 context->type = AUDIT_IPC; 2134 } 2135 2136 /** 2137 * audit_ipc_set_perm - record audit data for new ipc permissions 2138 * @qbytes: msgq bytes 2139 * @uid: msgq user id 2140 * @gid: msgq group id 2141 * @mode: msgq mode (permissions) 2142 * 2143 * Called only after audit_ipc_obj(). 2144 */ 2145 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2146 { 2147 struct audit_context *context = current->audit_context; 2148 2149 context->ipc.qbytes = qbytes; 2150 context->ipc.perm_uid = uid; 2151 context->ipc.perm_gid = gid; 2152 context->ipc.perm_mode = mode; 2153 context->ipc.has_perm = 1; 2154 } 2155 2156 void __audit_bprm(struct linux_binprm *bprm) 2157 { 2158 struct audit_context *context = current->audit_context; 2159 2160 context->type = AUDIT_EXECVE; 2161 context->execve.argc = bprm->argc; 2162 } 2163 2164 2165 /** 2166 * audit_socketcall - record audit data for sys_socketcall 2167 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2168 * @args: args array 2169 * 2170 */ 2171 int __audit_socketcall(int nargs, unsigned long *args) 2172 { 2173 struct audit_context *context = current->audit_context; 2174 2175 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2176 return -EINVAL; 2177 context->type = AUDIT_SOCKETCALL; 2178 context->socketcall.nargs = nargs; 2179 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2180 return 0; 2181 } 2182 2183 /** 2184 * __audit_fd_pair - record audit data for pipe and socketpair 2185 * @fd1: the first file descriptor 2186 * @fd2: the second file descriptor 2187 * 2188 */ 2189 void __audit_fd_pair(int fd1, int fd2) 2190 { 2191 struct audit_context *context = current->audit_context; 2192 context->fds[0] = fd1; 2193 context->fds[1] = fd2; 2194 } 2195 2196 /** 2197 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2198 * @len: data length in user space 2199 * @a: data address in kernel space 2200 * 2201 * Returns 0 for success or NULL context or < 0 on error. 2202 */ 2203 int __audit_sockaddr(int len, void *a) 2204 { 2205 struct audit_context *context = current->audit_context; 2206 2207 if (!context->sockaddr) { 2208 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2209 if (!p) 2210 return -ENOMEM; 2211 context->sockaddr = p; 2212 } 2213 2214 context->sockaddr_len = len; 2215 memcpy(context->sockaddr, a, len); 2216 return 0; 2217 } 2218 2219 void __audit_ptrace(struct task_struct *t) 2220 { 2221 struct audit_context *context = current->audit_context; 2222 2223 context->target_pid = task_tgid_nr(t); 2224 context->target_auid = audit_get_loginuid(t); 2225 context->target_uid = task_uid(t); 2226 context->target_sessionid = audit_get_sessionid(t); 2227 security_task_getsecid(t, &context->target_sid); 2228 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2229 } 2230 2231 /** 2232 * audit_signal_info - record signal info for shutting down audit subsystem 2233 * @sig: signal value 2234 * @t: task being signaled 2235 * 2236 * If the audit subsystem is being terminated, record the task (pid) 2237 * and uid that is doing that. 2238 */ 2239 int __audit_signal_info(int sig, struct task_struct *t) 2240 { 2241 struct audit_aux_data_pids *axp; 2242 struct task_struct *tsk = current; 2243 struct audit_context *ctx = tsk->audit_context; 2244 kuid_t uid = current_uid(), t_uid = task_uid(t); 2245 2246 if (audit_pid && t->tgid == audit_pid) { 2247 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) { 2248 audit_sig_pid = task_tgid_nr(tsk); 2249 if (uid_valid(tsk->loginuid)) 2250 audit_sig_uid = tsk->loginuid; 2251 else 2252 audit_sig_uid = uid; 2253 security_task_getsecid(tsk, &audit_sig_sid); 2254 } 2255 if (!audit_signals || audit_dummy_context()) 2256 return 0; 2257 } 2258 2259 /* optimize the common case by putting first signal recipient directly 2260 * in audit_context */ 2261 if (!ctx->target_pid) { 2262 ctx->target_pid = task_tgid_nr(t); 2263 ctx->target_auid = audit_get_loginuid(t); 2264 ctx->target_uid = t_uid; 2265 ctx->target_sessionid = audit_get_sessionid(t); 2266 security_task_getsecid(t, &ctx->target_sid); 2267 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2268 return 0; 2269 } 2270 2271 axp = (void *)ctx->aux_pids; 2272 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2273 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2274 if (!axp) 2275 return -ENOMEM; 2276 2277 axp->d.type = AUDIT_OBJ_PID; 2278 axp->d.next = ctx->aux_pids; 2279 ctx->aux_pids = (void *)axp; 2280 } 2281 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2282 2283 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2284 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2285 axp->target_uid[axp->pid_count] = t_uid; 2286 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2287 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2288 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2289 axp->pid_count++; 2290 2291 return 0; 2292 } 2293 2294 /** 2295 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2296 * @bprm: pointer to the bprm being processed 2297 * @new: the proposed new credentials 2298 * @old: the old credentials 2299 * 2300 * Simply check if the proc already has the caps given by the file and if not 2301 * store the priv escalation info for later auditing at the end of the syscall 2302 * 2303 * -Eric 2304 */ 2305 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2306 const struct cred *new, const struct cred *old) 2307 { 2308 struct audit_aux_data_bprm_fcaps *ax; 2309 struct audit_context *context = current->audit_context; 2310 struct cpu_vfs_cap_data vcaps; 2311 2312 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2313 if (!ax) 2314 return -ENOMEM; 2315 2316 ax->d.type = AUDIT_BPRM_FCAPS; 2317 ax->d.next = context->aux; 2318 context->aux = (void *)ax; 2319 2320 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2321 2322 ax->fcap.permitted = vcaps.permitted; 2323 ax->fcap.inheritable = vcaps.inheritable; 2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2326 2327 ax->old_pcap.permitted = old->cap_permitted; 2328 ax->old_pcap.inheritable = old->cap_inheritable; 2329 ax->old_pcap.effective = old->cap_effective; 2330 2331 ax->new_pcap.permitted = new->cap_permitted; 2332 ax->new_pcap.inheritable = new->cap_inheritable; 2333 ax->new_pcap.effective = new->cap_effective; 2334 return 0; 2335 } 2336 2337 /** 2338 * __audit_log_capset - store information about the arguments to the capset syscall 2339 * @new: the new credentials 2340 * @old: the old (current) credentials 2341 * 2342 * Record the arguments userspace sent to sys_capset for later printing by the 2343 * audit system if applicable 2344 */ 2345 void __audit_log_capset(const struct cred *new, const struct cred *old) 2346 { 2347 struct audit_context *context = current->audit_context; 2348 context->capset.pid = task_tgid_nr(current); 2349 context->capset.cap.effective = new->cap_effective; 2350 context->capset.cap.inheritable = new->cap_effective; 2351 context->capset.cap.permitted = new->cap_permitted; 2352 context->type = AUDIT_CAPSET; 2353 } 2354 2355 void __audit_mmap_fd(int fd, int flags) 2356 { 2357 struct audit_context *context = current->audit_context; 2358 context->mmap.fd = fd; 2359 context->mmap.flags = flags; 2360 context->type = AUDIT_MMAP; 2361 } 2362 2363 static void audit_log_task(struct audit_buffer *ab) 2364 { 2365 kuid_t auid, uid; 2366 kgid_t gid; 2367 unsigned int sessionid; 2368 char comm[sizeof(current->comm)]; 2369 2370 auid = audit_get_loginuid(current); 2371 sessionid = audit_get_sessionid(current); 2372 current_uid_gid(&uid, &gid); 2373 2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2375 from_kuid(&init_user_ns, auid), 2376 from_kuid(&init_user_ns, uid), 2377 from_kgid(&init_user_ns, gid), 2378 sessionid); 2379 audit_log_task_context(ab); 2380 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2381 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2382 audit_log_d_path_exe(ab, current->mm); 2383 } 2384 2385 /** 2386 * audit_core_dumps - record information about processes that end abnormally 2387 * @signr: signal value 2388 * 2389 * If a process ends with a core dump, something fishy is going on and we 2390 * should record the event for investigation. 2391 */ 2392 void audit_core_dumps(long signr) 2393 { 2394 struct audit_buffer *ab; 2395 2396 if (!audit_enabled) 2397 return; 2398 2399 if (signr == SIGQUIT) /* don't care for those */ 2400 return; 2401 2402 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2403 if (unlikely(!ab)) 2404 return; 2405 audit_log_task(ab); 2406 audit_log_format(ab, " sig=%ld", signr); 2407 audit_log_end(ab); 2408 } 2409 2410 void __audit_seccomp(unsigned long syscall, long signr, int code) 2411 { 2412 struct audit_buffer *ab; 2413 2414 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 2415 if (unlikely(!ab)) 2416 return; 2417 audit_log_task(ab); 2418 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2419 signr, syscall_get_arch(), syscall, 2420 in_compat_syscall(), KSTK_EIP(current), code); 2421 audit_log_end(ab); 2422 } 2423 2424 struct list_head *audit_killed_trees(void) 2425 { 2426 struct audit_context *ctx = current->audit_context; 2427 if (likely(!ctx || !ctx->in_syscall)) 2428 return NULL; 2429 return &ctx->killed_trees; 2430 } 2431