1 /* auditsc.c -- System-call auditing support 2 * Handles all system-call specific auditing features. 3 * 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 6 * Copyright (C) 2005, 2006 IBM Corporation 7 * All Rights Reserved. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 24 * 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 26 * especially the idea of avoiding a copy by using getname. 27 * 28 * The method for actual interception of syscall entry and exit (not in 29 * this file -- see entry.S) is based on a GPL'd patch written by 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 31 * 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 33 * 2006. 34 * 35 * The support of additional filter rules compares (>, <, >=, <=) was 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 37 * 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 39 * filesystem information. 40 * 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 43 */ 44 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 46 47 #include <linux/init.h> 48 #include <asm/types.h> 49 #include <linux/atomic.h> 50 #include <linux/fs.h> 51 #include <linux/namei.h> 52 #include <linux/mm.h> 53 #include <linux/export.h> 54 #include <linux/slab.h> 55 #include <linux/mount.h> 56 #include <linux/socket.h> 57 #include <linux/mqueue.h> 58 #include <linux/audit.h> 59 #include <linux/personality.h> 60 #include <linux/time.h> 61 #include <linux/netlink.h> 62 #include <linux/compiler.h> 63 #include <asm/unistd.h> 64 #include <linux/security.h> 65 #include <linux/list.h> 66 #include <linux/binfmts.h> 67 #include <linux/highmem.h> 68 #include <linux/syscalls.h> 69 #include <asm/syscall.h> 70 #include <linux/capability.h> 71 #include <linux/fs_struct.h> 72 #include <linux/compat.h> 73 #include <linux/ctype.h> 74 #include <linux/string.h> 75 #include <linux/uaccess.h> 76 #include <linux/fsnotify_backend.h> 77 #include <uapi/linux/limits.h> 78 79 #include "audit.h" 80 81 /* flags stating the success for a syscall */ 82 #define AUDITSC_INVALID 0 83 #define AUDITSC_SUCCESS 1 84 #define AUDITSC_FAILURE 2 85 86 /* no execve audit message should be longer than this (userspace limits), 87 * see the note near the top of audit_log_execve_info() about this value */ 88 #define MAX_EXECVE_AUDIT_LEN 7500 89 90 /* max length to print of cmdline/proctitle value during audit */ 91 #define MAX_PROCTITLE_AUDIT_LEN 128 92 93 /* number of audit rules */ 94 int audit_n_rules; 95 96 /* determines whether we collect data for signals sent */ 97 int audit_signals; 98 99 struct audit_aux_data { 100 struct audit_aux_data *next; 101 int type; 102 }; 103 104 #define AUDIT_AUX_IPCPERM 0 105 106 /* Number of target pids per aux struct. */ 107 #define AUDIT_AUX_PIDS 16 108 109 struct audit_aux_data_pids { 110 struct audit_aux_data d; 111 pid_t target_pid[AUDIT_AUX_PIDS]; 112 kuid_t target_auid[AUDIT_AUX_PIDS]; 113 kuid_t target_uid[AUDIT_AUX_PIDS]; 114 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 115 u32 target_sid[AUDIT_AUX_PIDS]; 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 117 int pid_count; 118 }; 119 120 struct audit_aux_data_bprm_fcaps { 121 struct audit_aux_data d; 122 struct audit_cap_data fcap; 123 unsigned int fcap_ver; 124 struct audit_cap_data old_pcap; 125 struct audit_cap_data new_pcap; 126 }; 127 128 struct audit_tree_refs { 129 struct audit_tree_refs *next; 130 struct audit_chunk *c[31]; 131 }; 132 133 static int audit_match_perm(struct audit_context *ctx, int mask) 134 { 135 unsigned n; 136 if (unlikely(!ctx)) 137 return 0; 138 n = ctx->major; 139 140 switch (audit_classify_syscall(ctx->arch, n)) { 141 case 0: /* native */ 142 if ((mask & AUDIT_PERM_WRITE) && 143 audit_match_class(AUDIT_CLASS_WRITE, n)) 144 return 1; 145 if ((mask & AUDIT_PERM_READ) && 146 audit_match_class(AUDIT_CLASS_READ, n)) 147 return 1; 148 if ((mask & AUDIT_PERM_ATTR) && 149 audit_match_class(AUDIT_CLASS_CHATTR, n)) 150 return 1; 151 return 0; 152 case 1: /* 32bit on biarch */ 153 if ((mask & AUDIT_PERM_WRITE) && 154 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 155 return 1; 156 if ((mask & AUDIT_PERM_READ) && 157 audit_match_class(AUDIT_CLASS_READ_32, n)) 158 return 1; 159 if ((mask & AUDIT_PERM_ATTR) && 160 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 161 return 1; 162 return 0; 163 case 2: /* open */ 164 return mask & ACC_MODE(ctx->argv[1]); 165 case 3: /* openat */ 166 return mask & ACC_MODE(ctx->argv[2]); 167 case 4: /* socketcall */ 168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 169 case 5: /* execve */ 170 return mask & AUDIT_PERM_EXEC; 171 default: 172 return 0; 173 } 174 } 175 176 static int audit_match_filetype(struct audit_context *ctx, int val) 177 { 178 struct audit_names *n; 179 umode_t mode = (umode_t)val; 180 181 if (unlikely(!ctx)) 182 return 0; 183 184 list_for_each_entry(n, &ctx->names_list, list) { 185 if ((n->ino != AUDIT_INO_UNSET) && 186 ((n->mode & S_IFMT) == mode)) 187 return 1; 188 } 189 190 return 0; 191 } 192 193 /* 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 195 * ->first_trees points to its beginning, ->trees - to the current end of data. 196 * ->tree_count is the number of free entries in array pointed to by ->trees. 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 199 * it's going to remain 1-element for almost any setup) until we free context itself. 200 * References in it _are_ dropped - at the same time we free/drop aux stuff. 201 */ 202 203 static void audit_set_auditable(struct audit_context *ctx) 204 { 205 if (!ctx->prio) { 206 ctx->prio = 1; 207 ctx->current_state = AUDIT_RECORD_CONTEXT; 208 } 209 } 210 211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 212 { 213 struct audit_tree_refs *p = ctx->trees; 214 int left = ctx->tree_count; 215 if (likely(left)) { 216 p->c[--left] = chunk; 217 ctx->tree_count = left; 218 return 1; 219 } 220 if (!p) 221 return 0; 222 p = p->next; 223 if (p) { 224 p->c[30] = chunk; 225 ctx->trees = p; 226 ctx->tree_count = 30; 227 return 1; 228 } 229 return 0; 230 } 231 232 static int grow_tree_refs(struct audit_context *ctx) 233 { 234 struct audit_tree_refs *p = ctx->trees; 235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 236 if (!ctx->trees) { 237 ctx->trees = p; 238 return 0; 239 } 240 if (p) 241 p->next = ctx->trees; 242 else 243 ctx->first_trees = ctx->trees; 244 ctx->tree_count = 31; 245 return 1; 246 } 247 248 static void unroll_tree_refs(struct audit_context *ctx, 249 struct audit_tree_refs *p, int count) 250 { 251 struct audit_tree_refs *q; 252 int n; 253 if (!p) { 254 /* we started with empty chain */ 255 p = ctx->first_trees; 256 count = 31; 257 /* if the very first allocation has failed, nothing to do */ 258 if (!p) 259 return; 260 } 261 n = count; 262 for (q = p; q != ctx->trees; q = q->next, n = 31) { 263 while (n--) { 264 audit_put_chunk(q->c[n]); 265 q->c[n] = NULL; 266 } 267 } 268 while (n-- > ctx->tree_count) { 269 audit_put_chunk(q->c[n]); 270 q->c[n] = NULL; 271 } 272 ctx->trees = p; 273 ctx->tree_count = count; 274 } 275 276 static void free_tree_refs(struct audit_context *ctx) 277 { 278 struct audit_tree_refs *p, *q; 279 for (p = ctx->first_trees; p; p = q) { 280 q = p->next; 281 kfree(p); 282 } 283 } 284 285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 286 { 287 struct audit_tree_refs *p; 288 int n; 289 if (!tree) 290 return 0; 291 /* full ones */ 292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 293 for (n = 0; n < 31; n++) 294 if (audit_tree_match(p->c[n], tree)) 295 return 1; 296 } 297 /* partial */ 298 if (p) { 299 for (n = ctx->tree_count; n < 31; n++) 300 if (audit_tree_match(p->c[n], tree)) 301 return 1; 302 } 303 return 0; 304 } 305 306 static int audit_compare_uid(kuid_t uid, 307 struct audit_names *name, 308 struct audit_field *f, 309 struct audit_context *ctx) 310 { 311 struct audit_names *n; 312 int rc; 313 314 if (name) { 315 rc = audit_uid_comparator(uid, f->op, name->uid); 316 if (rc) 317 return rc; 318 } 319 320 if (ctx) { 321 list_for_each_entry(n, &ctx->names_list, list) { 322 rc = audit_uid_comparator(uid, f->op, n->uid); 323 if (rc) 324 return rc; 325 } 326 } 327 return 0; 328 } 329 330 static int audit_compare_gid(kgid_t gid, 331 struct audit_names *name, 332 struct audit_field *f, 333 struct audit_context *ctx) 334 { 335 struct audit_names *n; 336 int rc; 337 338 if (name) { 339 rc = audit_gid_comparator(gid, f->op, name->gid); 340 if (rc) 341 return rc; 342 } 343 344 if (ctx) { 345 list_for_each_entry(n, &ctx->names_list, list) { 346 rc = audit_gid_comparator(gid, f->op, n->gid); 347 if (rc) 348 return rc; 349 } 350 } 351 return 0; 352 } 353 354 static int audit_field_compare(struct task_struct *tsk, 355 const struct cred *cred, 356 struct audit_field *f, 357 struct audit_context *ctx, 358 struct audit_names *name) 359 { 360 switch (f->val) { 361 /* process to file object comparisons */ 362 case AUDIT_COMPARE_UID_TO_OBJ_UID: 363 return audit_compare_uid(cred->uid, name, f, ctx); 364 case AUDIT_COMPARE_GID_TO_OBJ_GID: 365 return audit_compare_gid(cred->gid, name, f, ctx); 366 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 367 return audit_compare_uid(cred->euid, name, f, ctx); 368 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 369 return audit_compare_gid(cred->egid, name, f, ctx); 370 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 372 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 373 return audit_compare_uid(cred->suid, name, f, ctx); 374 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 375 return audit_compare_gid(cred->sgid, name, f, ctx); 376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 377 return audit_compare_uid(cred->fsuid, name, f, ctx); 378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 379 return audit_compare_gid(cred->fsgid, name, f, ctx); 380 /* uid comparisons */ 381 case AUDIT_COMPARE_UID_TO_AUID: 382 return audit_uid_comparator(cred->uid, f->op, 383 audit_get_loginuid(tsk)); 384 case AUDIT_COMPARE_UID_TO_EUID: 385 return audit_uid_comparator(cred->uid, f->op, cred->euid); 386 case AUDIT_COMPARE_UID_TO_SUID: 387 return audit_uid_comparator(cred->uid, f->op, cred->suid); 388 case AUDIT_COMPARE_UID_TO_FSUID: 389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 390 /* auid comparisons */ 391 case AUDIT_COMPARE_AUID_TO_EUID: 392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 393 cred->euid); 394 case AUDIT_COMPARE_AUID_TO_SUID: 395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 396 cred->suid); 397 case AUDIT_COMPARE_AUID_TO_FSUID: 398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 399 cred->fsuid); 400 /* euid comparisons */ 401 case AUDIT_COMPARE_EUID_TO_SUID: 402 return audit_uid_comparator(cred->euid, f->op, cred->suid); 403 case AUDIT_COMPARE_EUID_TO_FSUID: 404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 405 /* suid comparisons */ 406 case AUDIT_COMPARE_SUID_TO_FSUID: 407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 408 /* gid comparisons */ 409 case AUDIT_COMPARE_GID_TO_EGID: 410 return audit_gid_comparator(cred->gid, f->op, cred->egid); 411 case AUDIT_COMPARE_GID_TO_SGID: 412 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 413 case AUDIT_COMPARE_GID_TO_FSGID: 414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 415 /* egid comparisons */ 416 case AUDIT_COMPARE_EGID_TO_SGID: 417 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 418 case AUDIT_COMPARE_EGID_TO_FSGID: 419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 420 /* sgid comparison */ 421 case AUDIT_COMPARE_SGID_TO_FSGID: 422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 423 default: 424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 425 return 0; 426 } 427 return 0; 428 } 429 430 /* Determine if any context name data matches a rule's watch data */ 431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 432 * otherwise. 433 * 434 * If task_creation is true, this is an explicit indication that we are 435 * filtering a task rule at task creation time. This and tsk == current are 436 * the only situations where tsk->cred may be accessed without an rcu read lock. 437 */ 438 static int audit_filter_rules(struct task_struct *tsk, 439 struct audit_krule *rule, 440 struct audit_context *ctx, 441 struct audit_names *name, 442 enum audit_state *state, 443 bool task_creation) 444 { 445 const struct cred *cred; 446 int i, need_sid = 1; 447 u32 sid; 448 unsigned int sessionid; 449 450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 451 452 for (i = 0; i < rule->field_count; i++) { 453 struct audit_field *f = &rule->fields[i]; 454 struct audit_names *n; 455 int result = 0; 456 pid_t pid; 457 458 switch (f->type) { 459 case AUDIT_PID: 460 pid = task_tgid_nr(tsk); 461 result = audit_comparator(pid, f->op, f->val); 462 break; 463 case AUDIT_PPID: 464 if (ctx) { 465 if (!ctx->ppid) 466 ctx->ppid = task_ppid_nr(tsk); 467 result = audit_comparator(ctx->ppid, f->op, f->val); 468 } 469 break; 470 case AUDIT_EXE: 471 result = audit_exe_compare(tsk, rule->exe); 472 if (f->op == Audit_not_equal) 473 result = !result; 474 break; 475 case AUDIT_UID: 476 result = audit_uid_comparator(cred->uid, f->op, f->uid); 477 break; 478 case AUDIT_EUID: 479 result = audit_uid_comparator(cred->euid, f->op, f->uid); 480 break; 481 case AUDIT_SUID: 482 result = audit_uid_comparator(cred->suid, f->op, f->uid); 483 break; 484 case AUDIT_FSUID: 485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 486 break; 487 case AUDIT_GID: 488 result = audit_gid_comparator(cred->gid, f->op, f->gid); 489 if (f->op == Audit_equal) { 490 if (!result) 491 result = groups_search(cred->group_info, f->gid); 492 } else if (f->op == Audit_not_equal) { 493 if (result) 494 result = !groups_search(cred->group_info, f->gid); 495 } 496 break; 497 case AUDIT_EGID: 498 result = audit_gid_comparator(cred->egid, f->op, f->gid); 499 if (f->op == Audit_equal) { 500 if (!result) 501 result = groups_search(cred->group_info, f->gid); 502 } else if (f->op == Audit_not_equal) { 503 if (result) 504 result = !groups_search(cred->group_info, f->gid); 505 } 506 break; 507 case AUDIT_SGID: 508 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 509 break; 510 case AUDIT_FSGID: 511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 512 break; 513 case AUDIT_SESSIONID: 514 sessionid = audit_get_sessionid(tsk); 515 result = audit_comparator(sessionid, f->op, f->val); 516 break; 517 case AUDIT_PERS: 518 result = audit_comparator(tsk->personality, f->op, f->val); 519 break; 520 case AUDIT_ARCH: 521 if (ctx) 522 result = audit_comparator(ctx->arch, f->op, f->val); 523 break; 524 525 case AUDIT_EXIT: 526 if (ctx && ctx->return_valid) 527 result = audit_comparator(ctx->return_code, f->op, f->val); 528 break; 529 case AUDIT_SUCCESS: 530 if (ctx && ctx->return_valid) { 531 if (f->val) 532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 533 else 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 535 } 536 break; 537 case AUDIT_DEVMAJOR: 538 if (name) { 539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 540 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 541 ++result; 542 } else if (ctx) { 543 list_for_each_entry(n, &ctx->names_list, list) { 544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 546 ++result; 547 break; 548 } 549 } 550 } 551 break; 552 case AUDIT_DEVMINOR: 553 if (name) { 554 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 555 audit_comparator(MINOR(name->rdev), f->op, f->val)) 556 ++result; 557 } else if (ctx) { 558 list_for_each_entry(n, &ctx->names_list, list) { 559 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 560 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 561 ++result; 562 break; 563 } 564 } 565 } 566 break; 567 case AUDIT_INODE: 568 if (name) 569 result = audit_comparator(name->ino, f->op, f->val); 570 else if (ctx) { 571 list_for_each_entry(n, &ctx->names_list, list) { 572 if (audit_comparator(n->ino, f->op, f->val)) { 573 ++result; 574 break; 575 } 576 } 577 } 578 break; 579 case AUDIT_OBJ_UID: 580 if (name) { 581 result = audit_uid_comparator(name->uid, f->op, f->uid); 582 } else if (ctx) { 583 list_for_each_entry(n, &ctx->names_list, list) { 584 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 585 ++result; 586 break; 587 } 588 } 589 } 590 break; 591 case AUDIT_OBJ_GID: 592 if (name) { 593 result = audit_gid_comparator(name->gid, f->op, f->gid); 594 } else if (ctx) { 595 list_for_each_entry(n, &ctx->names_list, list) { 596 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 597 ++result; 598 break; 599 } 600 } 601 } 602 break; 603 case AUDIT_WATCH: 604 if (name) 605 result = audit_watch_compare(rule->watch, name->ino, name->dev); 606 break; 607 case AUDIT_DIR: 608 if (ctx) 609 result = match_tree_refs(ctx, rule->tree); 610 break; 611 case AUDIT_LOGINUID: 612 result = audit_uid_comparator(audit_get_loginuid(tsk), 613 f->op, f->uid); 614 break; 615 case AUDIT_LOGINUID_SET: 616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 617 break; 618 case AUDIT_SUBJ_USER: 619 case AUDIT_SUBJ_ROLE: 620 case AUDIT_SUBJ_TYPE: 621 case AUDIT_SUBJ_SEN: 622 case AUDIT_SUBJ_CLR: 623 /* NOTE: this may return negative values indicating 624 a temporary error. We simply treat this as a 625 match for now to avoid losing information that 626 may be wanted. An error message will also be 627 logged upon error */ 628 if (f->lsm_rule) { 629 if (need_sid) { 630 security_task_getsecid(tsk, &sid); 631 need_sid = 0; 632 } 633 result = security_audit_rule_match(sid, f->type, 634 f->op, 635 f->lsm_rule); 636 } 637 break; 638 case AUDIT_OBJ_USER: 639 case AUDIT_OBJ_ROLE: 640 case AUDIT_OBJ_TYPE: 641 case AUDIT_OBJ_LEV_LOW: 642 case AUDIT_OBJ_LEV_HIGH: 643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 644 also applies here */ 645 if (f->lsm_rule) { 646 /* Find files that match */ 647 if (name) { 648 result = security_audit_rule_match( 649 name->osid, 650 f->type, 651 f->op, 652 f->lsm_rule); 653 } else if (ctx) { 654 list_for_each_entry(n, &ctx->names_list, list) { 655 if (security_audit_rule_match( 656 n->osid, 657 f->type, 658 f->op, 659 f->lsm_rule)) { 660 ++result; 661 break; 662 } 663 } 664 } 665 /* Find ipc objects that match */ 666 if (!ctx || ctx->type != AUDIT_IPC) 667 break; 668 if (security_audit_rule_match(ctx->ipc.osid, 669 f->type, f->op, 670 f->lsm_rule)) 671 ++result; 672 } 673 break; 674 case AUDIT_ARG0: 675 case AUDIT_ARG1: 676 case AUDIT_ARG2: 677 case AUDIT_ARG3: 678 if (ctx) 679 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 680 break; 681 case AUDIT_FILTERKEY: 682 /* ignore this field for filtering */ 683 result = 1; 684 break; 685 case AUDIT_PERM: 686 result = audit_match_perm(ctx, f->val); 687 break; 688 case AUDIT_FILETYPE: 689 result = audit_match_filetype(ctx, f->val); 690 break; 691 case AUDIT_FIELD_COMPARE: 692 result = audit_field_compare(tsk, cred, f, ctx, name); 693 break; 694 } 695 if (!result) 696 return 0; 697 } 698 699 if (ctx) { 700 if (rule->prio <= ctx->prio) 701 return 0; 702 if (rule->filterkey) { 703 kfree(ctx->filterkey); 704 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 705 } 706 ctx->prio = rule->prio; 707 } 708 switch (rule->action) { 709 case AUDIT_NEVER: 710 *state = AUDIT_DISABLED; 711 break; 712 case AUDIT_ALWAYS: 713 *state = AUDIT_RECORD_CONTEXT; 714 break; 715 } 716 return 1; 717 } 718 719 /* At process creation time, we can determine if system-call auditing is 720 * completely disabled for this task. Since we only have the task 721 * structure at this point, we can only check uid and gid. 722 */ 723 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 724 { 725 struct audit_entry *e; 726 enum audit_state state; 727 728 rcu_read_lock(); 729 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 730 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 731 &state, true)) { 732 if (state == AUDIT_RECORD_CONTEXT) 733 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 734 rcu_read_unlock(); 735 return state; 736 } 737 } 738 rcu_read_unlock(); 739 return AUDIT_BUILD_CONTEXT; 740 } 741 742 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 743 { 744 int word, bit; 745 746 if (val > 0xffffffff) 747 return false; 748 749 word = AUDIT_WORD(val); 750 if (word >= AUDIT_BITMASK_SIZE) 751 return false; 752 753 bit = AUDIT_BIT(val); 754 755 return rule->mask[word] & bit; 756 } 757 758 /* At syscall entry and exit time, this filter is called if the 759 * audit_state is not low enough that auditing cannot take place, but is 760 * also not high enough that we already know we have to write an audit 761 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 762 */ 763 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 764 struct audit_context *ctx, 765 struct list_head *list) 766 { 767 struct audit_entry *e; 768 enum audit_state state; 769 770 if (auditd_test_task(tsk)) 771 return AUDIT_DISABLED; 772 773 rcu_read_lock(); 774 if (!list_empty(list)) { 775 list_for_each_entry_rcu(e, list, list) { 776 if (audit_in_mask(&e->rule, ctx->major) && 777 audit_filter_rules(tsk, &e->rule, ctx, NULL, 778 &state, false)) { 779 rcu_read_unlock(); 780 ctx->current_state = state; 781 return state; 782 } 783 } 784 } 785 rcu_read_unlock(); 786 return AUDIT_BUILD_CONTEXT; 787 } 788 789 /* 790 * Given an audit_name check the inode hash table to see if they match. 791 * Called holding the rcu read lock to protect the use of audit_inode_hash 792 */ 793 static int audit_filter_inode_name(struct task_struct *tsk, 794 struct audit_names *n, 795 struct audit_context *ctx) { 796 int h = audit_hash_ino((u32)n->ino); 797 struct list_head *list = &audit_inode_hash[h]; 798 struct audit_entry *e; 799 enum audit_state state; 800 801 if (list_empty(list)) 802 return 0; 803 804 list_for_each_entry_rcu(e, list, list) { 805 if (audit_in_mask(&e->rule, ctx->major) && 806 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { 807 ctx->current_state = state; 808 return 1; 809 } 810 } 811 812 return 0; 813 } 814 815 /* At syscall exit time, this filter is called if any audit_names have been 816 * collected during syscall processing. We only check rules in sublists at hash 817 * buckets applicable to the inode numbers in audit_names. 818 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 819 */ 820 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 821 { 822 struct audit_names *n; 823 824 if (auditd_test_task(tsk)) 825 return; 826 827 rcu_read_lock(); 828 829 list_for_each_entry(n, &ctx->names_list, list) { 830 if (audit_filter_inode_name(tsk, n, ctx)) 831 break; 832 } 833 rcu_read_unlock(); 834 } 835 836 static inline void audit_proctitle_free(struct audit_context *context) 837 { 838 kfree(context->proctitle.value); 839 context->proctitle.value = NULL; 840 context->proctitle.len = 0; 841 } 842 843 static inline void audit_free_names(struct audit_context *context) 844 { 845 struct audit_names *n, *next; 846 847 list_for_each_entry_safe(n, next, &context->names_list, list) { 848 list_del(&n->list); 849 if (n->name) 850 putname(n->name); 851 if (n->should_free) 852 kfree(n); 853 } 854 context->name_count = 0; 855 path_put(&context->pwd); 856 context->pwd.dentry = NULL; 857 context->pwd.mnt = NULL; 858 } 859 860 static inline void audit_free_aux(struct audit_context *context) 861 { 862 struct audit_aux_data *aux; 863 864 while ((aux = context->aux)) { 865 context->aux = aux->next; 866 kfree(aux); 867 } 868 while ((aux = context->aux_pids)) { 869 context->aux_pids = aux->next; 870 kfree(aux); 871 } 872 } 873 874 static inline struct audit_context *audit_alloc_context(enum audit_state state) 875 { 876 struct audit_context *context; 877 878 context = kzalloc(sizeof(*context), GFP_KERNEL); 879 if (!context) 880 return NULL; 881 context->state = state; 882 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 883 INIT_LIST_HEAD(&context->killed_trees); 884 INIT_LIST_HEAD(&context->names_list); 885 return context; 886 } 887 888 /** 889 * audit_alloc - allocate an audit context block for a task 890 * @tsk: task 891 * 892 * Filter on the task information and allocate a per-task audit context 893 * if necessary. Doing so turns on system call auditing for the 894 * specified task. This is called from copy_process, so no lock is 895 * needed. 896 */ 897 int audit_alloc(struct task_struct *tsk) 898 { 899 struct audit_context *context; 900 enum audit_state state; 901 char *key = NULL; 902 903 if (likely(!audit_ever_enabled)) 904 return 0; /* Return if not auditing. */ 905 906 state = audit_filter_task(tsk, &key); 907 if (state == AUDIT_DISABLED) { 908 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 909 return 0; 910 } 911 912 if (!(context = audit_alloc_context(state))) { 913 kfree(key); 914 audit_log_lost("out of memory in audit_alloc"); 915 return -ENOMEM; 916 } 917 context->filterkey = key; 918 919 audit_set_context(tsk, context); 920 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 921 return 0; 922 } 923 924 static inline void audit_free_context(struct audit_context *context) 925 { 926 audit_free_names(context); 927 unroll_tree_refs(context, NULL, 0); 928 free_tree_refs(context); 929 audit_free_aux(context); 930 kfree(context->filterkey); 931 kfree(context->sockaddr); 932 audit_proctitle_free(context); 933 kfree(context); 934 } 935 936 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 937 kuid_t auid, kuid_t uid, unsigned int sessionid, 938 u32 sid, char *comm) 939 { 940 struct audit_buffer *ab; 941 char *ctx = NULL; 942 u32 len; 943 int rc = 0; 944 945 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 946 if (!ab) 947 return rc; 948 949 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 950 from_kuid(&init_user_ns, auid), 951 from_kuid(&init_user_ns, uid), sessionid); 952 if (sid) { 953 if (security_secid_to_secctx(sid, &ctx, &len)) { 954 audit_log_format(ab, " obj=(none)"); 955 rc = 1; 956 } else { 957 audit_log_format(ab, " obj=%s", ctx); 958 security_release_secctx(ctx, len); 959 } 960 } 961 audit_log_format(ab, " ocomm="); 962 audit_log_untrustedstring(ab, comm); 963 audit_log_end(ab); 964 965 return rc; 966 } 967 968 static void audit_log_execve_info(struct audit_context *context, 969 struct audit_buffer **ab) 970 { 971 long len_max; 972 long len_rem; 973 long len_full; 974 long len_buf; 975 long len_abuf = 0; 976 long len_tmp; 977 bool require_data; 978 bool encode; 979 unsigned int iter; 980 unsigned int arg; 981 char *buf_head; 982 char *buf; 983 const char __user *p = (const char __user *)current->mm->arg_start; 984 985 /* NOTE: this buffer needs to be large enough to hold all the non-arg 986 * data we put in the audit record for this argument (see the 987 * code below) ... at this point in time 96 is plenty */ 988 char abuf[96]; 989 990 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 991 * current value of 7500 is not as important as the fact that it 992 * is less than 8k, a setting of 7500 gives us plenty of wiggle 993 * room if we go over a little bit in the logging below */ 994 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 995 len_max = MAX_EXECVE_AUDIT_LEN; 996 997 /* scratch buffer to hold the userspace args */ 998 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 999 if (!buf_head) { 1000 audit_panic("out of memory for argv string"); 1001 return; 1002 } 1003 buf = buf_head; 1004 1005 audit_log_format(*ab, "argc=%d", context->execve.argc); 1006 1007 len_rem = len_max; 1008 len_buf = 0; 1009 len_full = 0; 1010 require_data = true; 1011 encode = false; 1012 iter = 0; 1013 arg = 0; 1014 do { 1015 /* NOTE: we don't ever want to trust this value for anything 1016 * serious, but the audit record format insists we 1017 * provide an argument length for really long arguments, 1018 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1019 * to use strncpy_from_user() to obtain this value for 1020 * recording in the log, although we don't use it 1021 * anywhere here to avoid a double-fetch problem */ 1022 if (len_full == 0) 1023 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1024 1025 /* read more data from userspace */ 1026 if (require_data) { 1027 /* can we make more room in the buffer? */ 1028 if (buf != buf_head) { 1029 memmove(buf_head, buf, len_buf); 1030 buf = buf_head; 1031 } 1032 1033 /* fetch as much as we can of the argument */ 1034 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1035 len_max - len_buf); 1036 if (len_tmp == -EFAULT) { 1037 /* unable to copy from userspace */ 1038 send_sig(SIGKILL, current, 0); 1039 goto out; 1040 } else if (len_tmp == (len_max - len_buf)) { 1041 /* buffer is not large enough */ 1042 require_data = true; 1043 /* NOTE: if we are going to span multiple 1044 * buffers force the encoding so we stand 1045 * a chance at a sane len_full value and 1046 * consistent record encoding */ 1047 encode = true; 1048 len_full = len_full * 2; 1049 p += len_tmp; 1050 } else { 1051 require_data = false; 1052 if (!encode) 1053 encode = audit_string_contains_control( 1054 buf, len_tmp); 1055 /* try to use a trusted value for len_full */ 1056 if (len_full < len_max) 1057 len_full = (encode ? 1058 len_tmp * 2 : len_tmp); 1059 p += len_tmp + 1; 1060 } 1061 len_buf += len_tmp; 1062 buf_head[len_buf] = '\0'; 1063 1064 /* length of the buffer in the audit record? */ 1065 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1066 } 1067 1068 /* write as much as we can to the audit log */ 1069 if (len_buf >= 0) { 1070 /* NOTE: some magic numbers here - basically if we 1071 * can't fit a reasonable amount of data into the 1072 * existing audit buffer, flush it and start with 1073 * a new buffer */ 1074 if ((sizeof(abuf) + 8) > len_rem) { 1075 len_rem = len_max; 1076 audit_log_end(*ab); 1077 *ab = audit_log_start(context, 1078 GFP_KERNEL, AUDIT_EXECVE); 1079 if (!*ab) 1080 goto out; 1081 } 1082 1083 /* create the non-arg portion of the arg record */ 1084 len_tmp = 0; 1085 if (require_data || (iter > 0) || 1086 ((len_abuf + sizeof(abuf)) > len_rem)) { 1087 if (iter == 0) { 1088 len_tmp += snprintf(&abuf[len_tmp], 1089 sizeof(abuf) - len_tmp, 1090 " a%d_len=%lu", 1091 arg, len_full); 1092 } 1093 len_tmp += snprintf(&abuf[len_tmp], 1094 sizeof(abuf) - len_tmp, 1095 " a%d[%d]=", arg, iter++); 1096 } else 1097 len_tmp += snprintf(&abuf[len_tmp], 1098 sizeof(abuf) - len_tmp, 1099 " a%d=", arg); 1100 WARN_ON(len_tmp >= sizeof(abuf)); 1101 abuf[sizeof(abuf) - 1] = '\0'; 1102 1103 /* log the arg in the audit record */ 1104 audit_log_format(*ab, "%s", abuf); 1105 len_rem -= len_tmp; 1106 len_tmp = len_buf; 1107 if (encode) { 1108 if (len_abuf > len_rem) 1109 len_tmp = len_rem / 2; /* encoding */ 1110 audit_log_n_hex(*ab, buf, len_tmp); 1111 len_rem -= len_tmp * 2; 1112 len_abuf -= len_tmp * 2; 1113 } else { 1114 if (len_abuf > len_rem) 1115 len_tmp = len_rem - 2; /* quotes */ 1116 audit_log_n_string(*ab, buf, len_tmp); 1117 len_rem -= len_tmp + 2; 1118 /* don't subtract the "2" because we still need 1119 * to add quotes to the remaining string */ 1120 len_abuf -= len_tmp; 1121 } 1122 len_buf -= len_tmp; 1123 buf += len_tmp; 1124 } 1125 1126 /* ready to move to the next argument? */ 1127 if ((len_buf == 0) && !require_data) { 1128 arg++; 1129 iter = 0; 1130 len_full = 0; 1131 require_data = true; 1132 encode = false; 1133 } 1134 } while (arg < context->execve.argc); 1135 1136 /* NOTE: the caller handles the final audit_log_end() call */ 1137 1138 out: 1139 kfree(buf_head); 1140 } 1141 1142 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap) 1143 { 1144 int i; 1145 1146 if (cap_isclear(*cap)) { 1147 audit_log_format(ab, " %s=0", prefix); 1148 return; 1149 } 1150 audit_log_format(ab, " %s=", prefix); 1151 CAP_FOR_EACH_U32(i) 1152 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]); 1153 } 1154 1155 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1156 { 1157 if (name->fcap_ver == -1) { 1158 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1159 return; 1160 } 1161 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1162 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1163 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1164 name->fcap.fE, name->fcap_ver, 1165 from_kuid(&init_user_ns, name->fcap.rootid)); 1166 } 1167 1168 static void show_special(struct audit_context *context, int *call_panic) 1169 { 1170 struct audit_buffer *ab; 1171 int i; 1172 1173 ab = audit_log_start(context, GFP_KERNEL, context->type); 1174 if (!ab) 1175 return; 1176 1177 switch (context->type) { 1178 case AUDIT_SOCKETCALL: { 1179 int nargs = context->socketcall.nargs; 1180 audit_log_format(ab, "nargs=%d", nargs); 1181 for (i = 0; i < nargs; i++) 1182 audit_log_format(ab, " a%d=%lx", i, 1183 context->socketcall.args[i]); 1184 break; } 1185 case AUDIT_IPC: { 1186 u32 osid = context->ipc.osid; 1187 1188 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1189 from_kuid(&init_user_ns, context->ipc.uid), 1190 from_kgid(&init_user_ns, context->ipc.gid), 1191 context->ipc.mode); 1192 if (osid) { 1193 char *ctx = NULL; 1194 u32 len; 1195 if (security_secid_to_secctx(osid, &ctx, &len)) { 1196 audit_log_format(ab, " osid=%u", osid); 1197 *call_panic = 1; 1198 } else { 1199 audit_log_format(ab, " obj=%s", ctx); 1200 security_release_secctx(ctx, len); 1201 } 1202 } 1203 if (context->ipc.has_perm) { 1204 audit_log_end(ab); 1205 ab = audit_log_start(context, GFP_KERNEL, 1206 AUDIT_IPC_SET_PERM); 1207 if (unlikely(!ab)) 1208 return; 1209 audit_log_format(ab, 1210 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1211 context->ipc.qbytes, 1212 context->ipc.perm_uid, 1213 context->ipc.perm_gid, 1214 context->ipc.perm_mode); 1215 } 1216 break; } 1217 case AUDIT_MQ_OPEN: 1218 audit_log_format(ab, 1219 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1220 "mq_msgsize=%ld mq_curmsgs=%ld", 1221 context->mq_open.oflag, context->mq_open.mode, 1222 context->mq_open.attr.mq_flags, 1223 context->mq_open.attr.mq_maxmsg, 1224 context->mq_open.attr.mq_msgsize, 1225 context->mq_open.attr.mq_curmsgs); 1226 break; 1227 case AUDIT_MQ_SENDRECV: 1228 audit_log_format(ab, 1229 "mqdes=%d msg_len=%zd msg_prio=%u " 1230 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1231 context->mq_sendrecv.mqdes, 1232 context->mq_sendrecv.msg_len, 1233 context->mq_sendrecv.msg_prio, 1234 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1235 context->mq_sendrecv.abs_timeout.tv_nsec); 1236 break; 1237 case AUDIT_MQ_NOTIFY: 1238 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1239 context->mq_notify.mqdes, 1240 context->mq_notify.sigev_signo); 1241 break; 1242 case AUDIT_MQ_GETSETATTR: { 1243 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1244 audit_log_format(ab, 1245 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1246 "mq_curmsgs=%ld ", 1247 context->mq_getsetattr.mqdes, 1248 attr->mq_flags, attr->mq_maxmsg, 1249 attr->mq_msgsize, attr->mq_curmsgs); 1250 break; } 1251 case AUDIT_CAPSET: 1252 audit_log_format(ab, "pid=%d", context->capset.pid); 1253 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1254 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1255 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1256 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1257 break; 1258 case AUDIT_MMAP: 1259 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1260 context->mmap.flags); 1261 break; 1262 case AUDIT_EXECVE: 1263 audit_log_execve_info(context, &ab); 1264 break; 1265 case AUDIT_KERN_MODULE: 1266 audit_log_format(ab, "name="); 1267 if (context->module.name) { 1268 audit_log_untrustedstring(ab, context->module.name); 1269 kfree(context->module.name); 1270 } else 1271 audit_log_format(ab, "(null)"); 1272 1273 break; 1274 } 1275 audit_log_end(ab); 1276 } 1277 1278 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1279 { 1280 char *end = proctitle + len - 1; 1281 while (end > proctitle && !isprint(*end)) 1282 end--; 1283 1284 /* catch the case where proctitle is only 1 non-print character */ 1285 len = end - proctitle + 1; 1286 len -= isprint(proctitle[len-1]) == 0; 1287 return len; 1288 } 1289 1290 /* 1291 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1292 * @context: audit_context for the task 1293 * @n: audit_names structure with reportable details 1294 * @path: optional path to report instead of audit_names->name 1295 * @record_num: record number to report when handling a list of names 1296 * @call_panic: optional pointer to int that will be updated if secid fails 1297 */ 1298 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1299 const struct path *path, int record_num, int *call_panic) 1300 { 1301 struct audit_buffer *ab; 1302 1303 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1304 if (!ab) 1305 return; 1306 1307 audit_log_format(ab, "item=%d", record_num); 1308 1309 if (path) 1310 audit_log_d_path(ab, " name=", path); 1311 else if (n->name) { 1312 switch (n->name_len) { 1313 case AUDIT_NAME_FULL: 1314 /* log the full path */ 1315 audit_log_format(ab, " name="); 1316 audit_log_untrustedstring(ab, n->name->name); 1317 break; 1318 case 0: 1319 /* name was specified as a relative path and the 1320 * directory component is the cwd 1321 */ 1322 audit_log_d_path(ab, " name=", &context->pwd); 1323 break; 1324 default: 1325 /* log the name's directory component */ 1326 audit_log_format(ab, " name="); 1327 audit_log_n_untrustedstring(ab, n->name->name, 1328 n->name_len); 1329 } 1330 } else 1331 audit_log_format(ab, " name=(null)"); 1332 1333 if (n->ino != AUDIT_INO_UNSET) 1334 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1335 n->ino, 1336 MAJOR(n->dev), 1337 MINOR(n->dev), 1338 n->mode, 1339 from_kuid(&init_user_ns, n->uid), 1340 from_kgid(&init_user_ns, n->gid), 1341 MAJOR(n->rdev), 1342 MINOR(n->rdev)); 1343 if (n->osid != 0) { 1344 char *ctx = NULL; 1345 u32 len; 1346 1347 if (security_secid_to_secctx( 1348 n->osid, &ctx, &len)) { 1349 audit_log_format(ab, " osid=%u", n->osid); 1350 if (call_panic) 1351 *call_panic = 2; 1352 } else { 1353 audit_log_format(ab, " obj=%s", ctx); 1354 security_release_secctx(ctx, len); 1355 } 1356 } 1357 1358 /* log the audit_names record type */ 1359 switch (n->type) { 1360 case AUDIT_TYPE_NORMAL: 1361 audit_log_format(ab, " nametype=NORMAL"); 1362 break; 1363 case AUDIT_TYPE_PARENT: 1364 audit_log_format(ab, " nametype=PARENT"); 1365 break; 1366 case AUDIT_TYPE_CHILD_DELETE: 1367 audit_log_format(ab, " nametype=DELETE"); 1368 break; 1369 case AUDIT_TYPE_CHILD_CREATE: 1370 audit_log_format(ab, " nametype=CREATE"); 1371 break; 1372 default: 1373 audit_log_format(ab, " nametype=UNKNOWN"); 1374 break; 1375 } 1376 1377 audit_log_fcaps(ab, n); 1378 audit_log_end(ab); 1379 } 1380 1381 static void audit_log_proctitle(void) 1382 { 1383 int res; 1384 char *buf; 1385 char *msg = "(null)"; 1386 int len = strlen(msg); 1387 struct audit_context *context = audit_context(); 1388 struct audit_buffer *ab; 1389 1390 if (!context || context->dummy) 1391 return; 1392 1393 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1394 if (!ab) 1395 return; /* audit_panic or being filtered */ 1396 1397 audit_log_format(ab, "proctitle="); 1398 1399 /* Not cached */ 1400 if (!context->proctitle.value) { 1401 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1402 if (!buf) 1403 goto out; 1404 /* Historically called this from procfs naming */ 1405 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1406 if (res == 0) { 1407 kfree(buf); 1408 goto out; 1409 } 1410 res = audit_proctitle_rtrim(buf, res); 1411 if (res == 0) { 1412 kfree(buf); 1413 goto out; 1414 } 1415 context->proctitle.value = buf; 1416 context->proctitle.len = res; 1417 } 1418 msg = context->proctitle.value; 1419 len = context->proctitle.len; 1420 out: 1421 audit_log_n_untrustedstring(ab, msg, len); 1422 audit_log_end(ab); 1423 } 1424 1425 static void audit_log_exit(void) 1426 { 1427 int i, call_panic = 0; 1428 struct audit_context *context = audit_context(); 1429 struct audit_buffer *ab; 1430 struct audit_aux_data *aux; 1431 struct audit_names *n; 1432 1433 context->personality = current->personality; 1434 1435 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1436 if (!ab) 1437 return; /* audit_panic has been called */ 1438 audit_log_format(ab, "arch=%x syscall=%d", 1439 context->arch, context->major); 1440 if (context->personality != PER_LINUX) 1441 audit_log_format(ab, " per=%lx", context->personality); 1442 if (context->return_valid) 1443 audit_log_format(ab, " success=%s exit=%ld", 1444 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1445 context->return_code); 1446 1447 audit_log_format(ab, 1448 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1449 context->argv[0], 1450 context->argv[1], 1451 context->argv[2], 1452 context->argv[3], 1453 context->name_count); 1454 1455 audit_log_task_info(ab); 1456 audit_log_key(ab, context->filterkey); 1457 audit_log_end(ab); 1458 1459 for (aux = context->aux; aux; aux = aux->next) { 1460 1461 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1462 if (!ab) 1463 continue; /* audit_panic has been called */ 1464 1465 switch (aux->type) { 1466 1467 case AUDIT_BPRM_FCAPS: { 1468 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1469 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1470 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1471 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1472 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1473 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1474 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1475 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1476 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1477 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1478 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1479 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1480 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1481 audit_log_format(ab, " frootid=%d", 1482 from_kuid(&init_user_ns, 1483 axs->fcap.rootid)); 1484 break; } 1485 1486 } 1487 audit_log_end(ab); 1488 } 1489 1490 if (context->type) 1491 show_special(context, &call_panic); 1492 1493 if (context->fds[0] >= 0) { 1494 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1495 if (ab) { 1496 audit_log_format(ab, "fd0=%d fd1=%d", 1497 context->fds[0], context->fds[1]); 1498 audit_log_end(ab); 1499 } 1500 } 1501 1502 if (context->sockaddr_len) { 1503 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1504 if (ab) { 1505 audit_log_format(ab, "saddr="); 1506 audit_log_n_hex(ab, (void *)context->sockaddr, 1507 context->sockaddr_len); 1508 audit_log_end(ab); 1509 } 1510 } 1511 1512 for (aux = context->aux_pids; aux; aux = aux->next) { 1513 struct audit_aux_data_pids *axs = (void *)aux; 1514 1515 for (i = 0; i < axs->pid_count; i++) 1516 if (audit_log_pid_context(context, axs->target_pid[i], 1517 axs->target_auid[i], 1518 axs->target_uid[i], 1519 axs->target_sessionid[i], 1520 axs->target_sid[i], 1521 axs->target_comm[i])) 1522 call_panic = 1; 1523 } 1524 1525 if (context->target_pid && 1526 audit_log_pid_context(context, context->target_pid, 1527 context->target_auid, context->target_uid, 1528 context->target_sessionid, 1529 context->target_sid, context->target_comm)) 1530 call_panic = 1; 1531 1532 if (context->pwd.dentry && context->pwd.mnt) { 1533 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1534 if (ab) { 1535 audit_log_d_path(ab, "cwd=", &context->pwd); 1536 audit_log_end(ab); 1537 } 1538 } 1539 1540 i = 0; 1541 list_for_each_entry(n, &context->names_list, list) { 1542 if (n->hidden) 1543 continue; 1544 audit_log_name(context, n, NULL, i++, &call_panic); 1545 } 1546 1547 audit_log_proctitle(); 1548 1549 /* Send end of event record to help user space know we are finished */ 1550 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1551 if (ab) 1552 audit_log_end(ab); 1553 if (call_panic) 1554 audit_panic("error converting sid to string"); 1555 } 1556 1557 /** 1558 * __audit_free - free a per-task audit context 1559 * @tsk: task whose audit context block to free 1560 * 1561 * Called from copy_process and do_exit 1562 */ 1563 void __audit_free(struct task_struct *tsk) 1564 { 1565 struct audit_context *context = tsk->audit_context; 1566 1567 if (!context) 1568 return; 1569 1570 if (!list_empty(&context->killed_trees)) 1571 audit_kill_trees(context); 1572 1573 /* We are called either by do_exit() or the fork() error handling code; 1574 * in the former case tsk == current and in the latter tsk is a 1575 * random task_struct that doesn't doesn't have any meaningful data we 1576 * need to log via audit_log_exit(). 1577 */ 1578 if (tsk == current && !context->dummy && context->in_syscall) { 1579 context->return_valid = 0; 1580 context->return_code = 0; 1581 1582 audit_filter_syscall(tsk, context, 1583 &audit_filter_list[AUDIT_FILTER_EXIT]); 1584 audit_filter_inodes(tsk, context); 1585 if (context->current_state == AUDIT_RECORD_CONTEXT) 1586 audit_log_exit(); 1587 } 1588 1589 audit_set_context(tsk, NULL); 1590 audit_free_context(context); 1591 } 1592 1593 /** 1594 * __audit_syscall_entry - fill in an audit record at syscall entry 1595 * @major: major syscall type (function) 1596 * @a1: additional syscall register 1 1597 * @a2: additional syscall register 2 1598 * @a3: additional syscall register 3 1599 * @a4: additional syscall register 4 1600 * 1601 * Fill in audit context at syscall entry. This only happens if the 1602 * audit context was created when the task was created and the state or 1603 * filters demand the audit context be built. If the state from the 1604 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 1605 * then the record will be written at syscall exit time (otherwise, it 1606 * will only be written if another part of the kernel requests that it 1607 * be written). 1608 */ 1609 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 1610 unsigned long a3, unsigned long a4) 1611 { 1612 struct audit_context *context = audit_context(); 1613 enum audit_state state; 1614 1615 if (!audit_enabled || !context) 1616 return; 1617 1618 BUG_ON(context->in_syscall || context->name_count); 1619 1620 state = context->state; 1621 if (state == AUDIT_DISABLED) 1622 return; 1623 1624 context->dummy = !audit_n_rules; 1625 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 1626 context->prio = 0; 1627 if (auditd_test_task(current)) 1628 return; 1629 } 1630 1631 context->arch = syscall_get_arch(); 1632 context->major = major; 1633 context->argv[0] = a1; 1634 context->argv[1] = a2; 1635 context->argv[2] = a3; 1636 context->argv[3] = a4; 1637 context->serial = 0; 1638 context->in_syscall = 1; 1639 context->current_state = state; 1640 context->ppid = 0; 1641 ktime_get_coarse_real_ts64(&context->ctime); 1642 } 1643 1644 /** 1645 * __audit_syscall_exit - deallocate audit context after a system call 1646 * @success: success value of the syscall 1647 * @return_code: return value of the syscall 1648 * 1649 * Tear down after system call. If the audit context has been marked as 1650 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 1651 * filtering, or because some other part of the kernel wrote an audit 1652 * message), then write out the syscall information. In call cases, 1653 * free the names stored from getname(). 1654 */ 1655 void __audit_syscall_exit(int success, long return_code) 1656 { 1657 struct audit_context *context; 1658 1659 context = audit_context(); 1660 if (!context) 1661 return; 1662 1663 if (!list_empty(&context->killed_trees)) 1664 audit_kill_trees(context); 1665 1666 if (!context->dummy && context->in_syscall) { 1667 if (success) 1668 context->return_valid = AUDITSC_SUCCESS; 1669 else 1670 context->return_valid = AUDITSC_FAILURE; 1671 1672 /* 1673 * we need to fix up the return code in the audit logs if the 1674 * actual return codes are later going to be fixed up by the 1675 * arch specific signal handlers 1676 * 1677 * This is actually a test for: 1678 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1679 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1680 * 1681 * but is faster than a bunch of || 1682 */ 1683 if (unlikely(return_code <= -ERESTARTSYS) && 1684 (return_code >= -ERESTART_RESTARTBLOCK) && 1685 (return_code != -ENOIOCTLCMD)) 1686 context->return_code = -EINTR; 1687 else 1688 context->return_code = return_code; 1689 1690 audit_filter_syscall(current, context, 1691 &audit_filter_list[AUDIT_FILTER_EXIT]); 1692 audit_filter_inodes(current, context); 1693 if (context->current_state == AUDIT_RECORD_CONTEXT) 1694 audit_log_exit(); 1695 } 1696 1697 context->in_syscall = 0; 1698 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1699 1700 audit_free_names(context); 1701 unroll_tree_refs(context, NULL, 0); 1702 audit_free_aux(context); 1703 context->aux = NULL; 1704 context->aux_pids = NULL; 1705 context->target_pid = 0; 1706 context->target_sid = 0; 1707 context->sockaddr_len = 0; 1708 context->type = 0; 1709 context->fds[0] = -1; 1710 if (context->state != AUDIT_RECORD_CONTEXT) { 1711 kfree(context->filterkey); 1712 context->filterkey = NULL; 1713 } 1714 } 1715 1716 static inline void handle_one(const struct inode *inode) 1717 { 1718 struct audit_context *context; 1719 struct audit_tree_refs *p; 1720 struct audit_chunk *chunk; 1721 int count; 1722 if (likely(!inode->i_fsnotify_marks)) 1723 return; 1724 context = audit_context(); 1725 p = context->trees; 1726 count = context->tree_count; 1727 rcu_read_lock(); 1728 chunk = audit_tree_lookup(inode); 1729 rcu_read_unlock(); 1730 if (!chunk) 1731 return; 1732 if (likely(put_tree_ref(context, chunk))) 1733 return; 1734 if (unlikely(!grow_tree_refs(context))) { 1735 pr_warn("out of memory, audit has lost a tree reference\n"); 1736 audit_set_auditable(context); 1737 audit_put_chunk(chunk); 1738 unroll_tree_refs(context, p, count); 1739 return; 1740 } 1741 put_tree_ref(context, chunk); 1742 } 1743 1744 static void handle_path(const struct dentry *dentry) 1745 { 1746 struct audit_context *context; 1747 struct audit_tree_refs *p; 1748 const struct dentry *d, *parent; 1749 struct audit_chunk *drop; 1750 unsigned long seq; 1751 int count; 1752 1753 context = audit_context(); 1754 p = context->trees; 1755 count = context->tree_count; 1756 retry: 1757 drop = NULL; 1758 d = dentry; 1759 rcu_read_lock(); 1760 seq = read_seqbegin(&rename_lock); 1761 for(;;) { 1762 struct inode *inode = d_backing_inode(d); 1763 if (inode && unlikely(inode->i_fsnotify_marks)) { 1764 struct audit_chunk *chunk; 1765 chunk = audit_tree_lookup(inode); 1766 if (chunk) { 1767 if (unlikely(!put_tree_ref(context, chunk))) { 1768 drop = chunk; 1769 break; 1770 } 1771 } 1772 } 1773 parent = d->d_parent; 1774 if (parent == d) 1775 break; 1776 d = parent; 1777 } 1778 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 1779 rcu_read_unlock(); 1780 if (!drop) { 1781 /* just a race with rename */ 1782 unroll_tree_refs(context, p, count); 1783 goto retry; 1784 } 1785 audit_put_chunk(drop); 1786 if (grow_tree_refs(context)) { 1787 /* OK, got more space */ 1788 unroll_tree_refs(context, p, count); 1789 goto retry; 1790 } 1791 /* too bad */ 1792 pr_warn("out of memory, audit has lost a tree reference\n"); 1793 unroll_tree_refs(context, p, count); 1794 audit_set_auditable(context); 1795 return; 1796 } 1797 rcu_read_unlock(); 1798 } 1799 1800 static struct audit_names *audit_alloc_name(struct audit_context *context, 1801 unsigned char type) 1802 { 1803 struct audit_names *aname; 1804 1805 if (context->name_count < AUDIT_NAMES) { 1806 aname = &context->preallocated_names[context->name_count]; 1807 memset(aname, 0, sizeof(*aname)); 1808 } else { 1809 aname = kzalloc(sizeof(*aname), GFP_NOFS); 1810 if (!aname) 1811 return NULL; 1812 aname->should_free = true; 1813 } 1814 1815 aname->ino = AUDIT_INO_UNSET; 1816 aname->type = type; 1817 list_add_tail(&aname->list, &context->names_list); 1818 1819 context->name_count++; 1820 return aname; 1821 } 1822 1823 /** 1824 * __audit_reusename - fill out filename with info from existing entry 1825 * @uptr: userland ptr to pathname 1826 * 1827 * Search the audit_names list for the current audit context. If there is an 1828 * existing entry with a matching "uptr" then return the filename 1829 * associated with that audit_name. If not, return NULL. 1830 */ 1831 struct filename * 1832 __audit_reusename(const __user char *uptr) 1833 { 1834 struct audit_context *context = audit_context(); 1835 struct audit_names *n; 1836 1837 list_for_each_entry(n, &context->names_list, list) { 1838 if (!n->name) 1839 continue; 1840 if (n->name->uptr == uptr) { 1841 n->name->refcnt++; 1842 return n->name; 1843 } 1844 } 1845 return NULL; 1846 } 1847 1848 /** 1849 * __audit_getname - add a name to the list 1850 * @name: name to add 1851 * 1852 * Add a name to the list of audit names for this context. 1853 * Called from fs/namei.c:getname(). 1854 */ 1855 void __audit_getname(struct filename *name) 1856 { 1857 struct audit_context *context = audit_context(); 1858 struct audit_names *n; 1859 1860 if (!context->in_syscall) 1861 return; 1862 1863 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 1864 if (!n) 1865 return; 1866 1867 n->name = name; 1868 n->name_len = AUDIT_NAME_FULL; 1869 name->aname = n; 1870 name->refcnt++; 1871 1872 if (!context->pwd.dentry) 1873 get_fs_pwd(current->fs, &context->pwd); 1874 } 1875 1876 static inline int audit_copy_fcaps(struct audit_names *name, 1877 const struct dentry *dentry) 1878 { 1879 struct cpu_vfs_cap_data caps; 1880 int rc; 1881 1882 if (!dentry) 1883 return 0; 1884 1885 rc = get_vfs_caps_from_disk(dentry, &caps); 1886 if (rc) 1887 return rc; 1888 1889 name->fcap.permitted = caps.permitted; 1890 name->fcap.inheritable = caps.inheritable; 1891 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 1892 name->fcap.rootid = caps.rootid; 1893 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 1894 VFS_CAP_REVISION_SHIFT; 1895 1896 return 0; 1897 } 1898 1899 /* Copy inode data into an audit_names. */ 1900 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry, 1901 struct inode *inode, unsigned int flags) 1902 { 1903 name->ino = inode->i_ino; 1904 name->dev = inode->i_sb->s_dev; 1905 name->mode = inode->i_mode; 1906 name->uid = inode->i_uid; 1907 name->gid = inode->i_gid; 1908 name->rdev = inode->i_rdev; 1909 security_inode_getsecid(inode, &name->osid); 1910 if (flags & AUDIT_INODE_NOEVAL) { 1911 name->fcap_ver = -1; 1912 return; 1913 } 1914 audit_copy_fcaps(name, dentry); 1915 } 1916 1917 /** 1918 * __audit_inode - store the inode and device from a lookup 1919 * @name: name being audited 1920 * @dentry: dentry being audited 1921 * @flags: attributes for this particular entry 1922 */ 1923 void __audit_inode(struct filename *name, const struct dentry *dentry, 1924 unsigned int flags) 1925 { 1926 struct audit_context *context = audit_context(); 1927 struct inode *inode = d_backing_inode(dentry); 1928 struct audit_names *n; 1929 bool parent = flags & AUDIT_INODE_PARENT; 1930 struct audit_entry *e; 1931 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 1932 int i; 1933 1934 if (!context->in_syscall) 1935 return; 1936 1937 rcu_read_lock(); 1938 if (!list_empty(list)) { 1939 list_for_each_entry_rcu(e, list, list) { 1940 for (i = 0; i < e->rule.field_count; i++) { 1941 struct audit_field *f = &e->rule.fields[i]; 1942 1943 if (f->type == AUDIT_FSTYPE 1944 && audit_comparator(inode->i_sb->s_magic, 1945 f->op, f->val) 1946 && e->rule.action == AUDIT_NEVER) { 1947 rcu_read_unlock(); 1948 return; 1949 } 1950 } 1951 } 1952 } 1953 rcu_read_unlock(); 1954 1955 if (!name) 1956 goto out_alloc; 1957 1958 /* 1959 * If we have a pointer to an audit_names entry already, then we can 1960 * just use it directly if the type is correct. 1961 */ 1962 n = name->aname; 1963 if (n) { 1964 if (parent) { 1965 if (n->type == AUDIT_TYPE_PARENT || 1966 n->type == AUDIT_TYPE_UNKNOWN) 1967 goto out; 1968 } else { 1969 if (n->type != AUDIT_TYPE_PARENT) 1970 goto out; 1971 } 1972 } 1973 1974 list_for_each_entry_reverse(n, &context->names_list, list) { 1975 if (n->ino) { 1976 /* valid inode number, use that for the comparison */ 1977 if (n->ino != inode->i_ino || 1978 n->dev != inode->i_sb->s_dev) 1979 continue; 1980 } else if (n->name) { 1981 /* inode number has not been set, check the name */ 1982 if (strcmp(n->name->name, name->name)) 1983 continue; 1984 } else 1985 /* no inode and no name (?!) ... this is odd ... */ 1986 continue; 1987 1988 /* match the correct record type */ 1989 if (parent) { 1990 if (n->type == AUDIT_TYPE_PARENT || 1991 n->type == AUDIT_TYPE_UNKNOWN) 1992 goto out; 1993 } else { 1994 if (n->type != AUDIT_TYPE_PARENT) 1995 goto out; 1996 } 1997 } 1998 1999 out_alloc: 2000 /* unable to find an entry with both a matching name and type */ 2001 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2002 if (!n) 2003 return; 2004 if (name) { 2005 n->name = name; 2006 name->refcnt++; 2007 } 2008 2009 out: 2010 if (parent) { 2011 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2012 n->type = AUDIT_TYPE_PARENT; 2013 if (flags & AUDIT_INODE_HIDDEN) 2014 n->hidden = true; 2015 } else { 2016 n->name_len = AUDIT_NAME_FULL; 2017 n->type = AUDIT_TYPE_NORMAL; 2018 } 2019 handle_path(dentry); 2020 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2021 } 2022 2023 void __audit_file(const struct file *file) 2024 { 2025 __audit_inode(NULL, file->f_path.dentry, 0); 2026 } 2027 2028 /** 2029 * __audit_inode_child - collect inode info for created/removed objects 2030 * @parent: inode of dentry parent 2031 * @dentry: dentry being audited 2032 * @type: AUDIT_TYPE_* value that we're looking for 2033 * 2034 * For syscalls that create or remove filesystem objects, audit_inode 2035 * can only collect information for the filesystem object's parent. 2036 * This call updates the audit context with the child's information. 2037 * Syscalls that create a new filesystem object must be hooked after 2038 * the object is created. Syscalls that remove a filesystem object 2039 * must be hooked prior, in order to capture the target inode during 2040 * unsuccessful attempts. 2041 */ 2042 void __audit_inode_child(struct inode *parent, 2043 const struct dentry *dentry, 2044 const unsigned char type) 2045 { 2046 struct audit_context *context = audit_context(); 2047 struct inode *inode = d_backing_inode(dentry); 2048 const char *dname = dentry->d_name.name; 2049 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2050 struct audit_entry *e; 2051 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2052 int i; 2053 2054 if (!context->in_syscall) 2055 return; 2056 2057 rcu_read_lock(); 2058 if (!list_empty(list)) { 2059 list_for_each_entry_rcu(e, list, list) { 2060 for (i = 0; i < e->rule.field_count; i++) { 2061 struct audit_field *f = &e->rule.fields[i]; 2062 2063 if (f->type == AUDIT_FSTYPE 2064 && audit_comparator(parent->i_sb->s_magic, 2065 f->op, f->val) 2066 && e->rule.action == AUDIT_NEVER) { 2067 rcu_read_unlock(); 2068 return; 2069 } 2070 } 2071 } 2072 } 2073 rcu_read_unlock(); 2074 2075 if (inode) 2076 handle_one(inode); 2077 2078 /* look for a parent entry first */ 2079 list_for_each_entry(n, &context->names_list, list) { 2080 if (!n->name || 2081 (n->type != AUDIT_TYPE_PARENT && 2082 n->type != AUDIT_TYPE_UNKNOWN)) 2083 continue; 2084 2085 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2086 !audit_compare_dname_path(dname, 2087 n->name->name, n->name_len)) { 2088 if (n->type == AUDIT_TYPE_UNKNOWN) 2089 n->type = AUDIT_TYPE_PARENT; 2090 found_parent = n; 2091 break; 2092 } 2093 } 2094 2095 /* is there a matching child entry? */ 2096 list_for_each_entry(n, &context->names_list, list) { 2097 /* can only match entries that have a name */ 2098 if (!n->name || 2099 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2100 continue; 2101 2102 if (!strcmp(dname, n->name->name) || 2103 !audit_compare_dname_path(dname, n->name->name, 2104 found_parent ? 2105 found_parent->name_len : 2106 AUDIT_NAME_FULL)) { 2107 if (n->type == AUDIT_TYPE_UNKNOWN) 2108 n->type = type; 2109 found_child = n; 2110 break; 2111 } 2112 } 2113 2114 if (!found_parent) { 2115 /* create a new, "anonymous" parent record */ 2116 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2117 if (!n) 2118 return; 2119 audit_copy_inode(n, NULL, parent, 0); 2120 } 2121 2122 if (!found_child) { 2123 found_child = audit_alloc_name(context, type); 2124 if (!found_child) 2125 return; 2126 2127 /* Re-use the name belonging to the slot for a matching parent 2128 * directory. All names for this context are relinquished in 2129 * audit_free_names() */ 2130 if (found_parent) { 2131 found_child->name = found_parent->name; 2132 found_child->name_len = AUDIT_NAME_FULL; 2133 found_child->name->refcnt++; 2134 } 2135 } 2136 2137 if (inode) 2138 audit_copy_inode(found_child, dentry, inode, 0); 2139 else 2140 found_child->ino = AUDIT_INO_UNSET; 2141 } 2142 EXPORT_SYMBOL_GPL(__audit_inode_child); 2143 2144 /** 2145 * auditsc_get_stamp - get local copies of audit_context values 2146 * @ctx: audit_context for the task 2147 * @t: timespec64 to store time recorded in the audit_context 2148 * @serial: serial value that is recorded in the audit_context 2149 * 2150 * Also sets the context as auditable. 2151 */ 2152 int auditsc_get_stamp(struct audit_context *ctx, 2153 struct timespec64 *t, unsigned int *serial) 2154 { 2155 if (!ctx->in_syscall) 2156 return 0; 2157 if (!ctx->serial) 2158 ctx->serial = audit_serial(); 2159 t->tv_sec = ctx->ctime.tv_sec; 2160 t->tv_nsec = ctx->ctime.tv_nsec; 2161 *serial = ctx->serial; 2162 if (!ctx->prio) { 2163 ctx->prio = 1; 2164 ctx->current_state = AUDIT_RECORD_CONTEXT; 2165 } 2166 return 1; 2167 } 2168 2169 /** 2170 * __audit_mq_open - record audit data for a POSIX MQ open 2171 * @oflag: open flag 2172 * @mode: mode bits 2173 * @attr: queue attributes 2174 * 2175 */ 2176 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2177 { 2178 struct audit_context *context = audit_context(); 2179 2180 if (attr) 2181 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2182 else 2183 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2184 2185 context->mq_open.oflag = oflag; 2186 context->mq_open.mode = mode; 2187 2188 context->type = AUDIT_MQ_OPEN; 2189 } 2190 2191 /** 2192 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2193 * @mqdes: MQ descriptor 2194 * @msg_len: Message length 2195 * @msg_prio: Message priority 2196 * @abs_timeout: Message timeout in absolute time 2197 * 2198 */ 2199 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2200 const struct timespec64 *abs_timeout) 2201 { 2202 struct audit_context *context = audit_context(); 2203 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2204 2205 if (abs_timeout) 2206 memcpy(p, abs_timeout, sizeof(*p)); 2207 else 2208 memset(p, 0, sizeof(*p)); 2209 2210 context->mq_sendrecv.mqdes = mqdes; 2211 context->mq_sendrecv.msg_len = msg_len; 2212 context->mq_sendrecv.msg_prio = msg_prio; 2213 2214 context->type = AUDIT_MQ_SENDRECV; 2215 } 2216 2217 /** 2218 * __audit_mq_notify - record audit data for a POSIX MQ notify 2219 * @mqdes: MQ descriptor 2220 * @notification: Notification event 2221 * 2222 */ 2223 2224 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2225 { 2226 struct audit_context *context = audit_context(); 2227 2228 if (notification) 2229 context->mq_notify.sigev_signo = notification->sigev_signo; 2230 else 2231 context->mq_notify.sigev_signo = 0; 2232 2233 context->mq_notify.mqdes = mqdes; 2234 context->type = AUDIT_MQ_NOTIFY; 2235 } 2236 2237 /** 2238 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2239 * @mqdes: MQ descriptor 2240 * @mqstat: MQ flags 2241 * 2242 */ 2243 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2244 { 2245 struct audit_context *context = audit_context(); 2246 context->mq_getsetattr.mqdes = mqdes; 2247 context->mq_getsetattr.mqstat = *mqstat; 2248 context->type = AUDIT_MQ_GETSETATTR; 2249 } 2250 2251 /** 2252 * __audit_ipc_obj - record audit data for ipc object 2253 * @ipcp: ipc permissions 2254 * 2255 */ 2256 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2257 { 2258 struct audit_context *context = audit_context(); 2259 context->ipc.uid = ipcp->uid; 2260 context->ipc.gid = ipcp->gid; 2261 context->ipc.mode = ipcp->mode; 2262 context->ipc.has_perm = 0; 2263 security_ipc_getsecid(ipcp, &context->ipc.osid); 2264 context->type = AUDIT_IPC; 2265 } 2266 2267 /** 2268 * __audit_ipc_set_perm - record audit data for new ipc permissions 2269 * @qbytes: msgq bytes 2270 * @uid: msgq user id 2271 * @gid: msgq group id 2272 * @mode: msgq mode (permissions) 2273 * 2274 * Called only after audit_ipc_obj(). 2275 */ 2276 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2277 { 2278 struct audit_context *context = audit_context(); 2279 2280 context->ipc.qbytes = qbytes; 2281 context->ipc.perm_uid = uid; 2282 context->ipc.perm_gid = gid; 2283 context->ipc.perm_mode = mode; 2284 context->ipc.has_perm = 1; 2285 } 2286 2287 void __audit_bprm(struct linux_binprm *bprm) 2288 { 2289 struct audit_context *context = audit_context(); 2290 2291 context->type = AUDIT_EXECVE; 2292 context->execve.argc = bprm->argc; 2293 } 2294 2295 2296 /** 2297 * __audit_socketcall - record audit data for sys_socketcall 2298 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2299 * @args: args array 2300 * 2301 */ 2302 int __audit_socketcall(int nargs, unsigned long *args) 2303 { 2304 struct audit_context *context = audit_context(); 2305 2306 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2307 return -EINVAL; 2308 context->type = AUDIT_SOCKETCALL; 2309 context->socketcall.nargs = nargs; 2310 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2311 return 0; 2312 } 2313 2314 /** 2315 * __audit_fd_pair - record audit data for pipe and socketpair 2316 * @fd1: the first file descriptor 2317 * @fd2: the second file descriptor 2318 * 2319 */ 2320 void __audit_fd_pair(int fd1, int fd2) 2321 { 2322 struct audit_context *context = audit_context(); 2323 context->fds[0] = fd1; 2324 context->fds[1] = fd2; 2325 } 2326 2327 /** 2328 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2329 * @len: data length in user space 2330 * @a: data address in kernel space 2331 * 2332 * Returns 0 for success or NULL context or < 0 on error. 2333 */ 2334 int __audit_sockaddr(int len, void *a) 2335 { 2336 struct audit_context *context = audit_context(); 2337 2338 if (!context->sockaddr) { 2339 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2340 if (!p) 2341 return -ENOMEM; 2342 context->sockaddr = p; 2343 } 2344 2345 context->sockaddr_len = len; 2346 memcpy(context->sockaddr, a, len); 2347 return 0; 2348 } 2349 2350 void __audit_ptrace(struct task_struct *t) 2351 { 2352 struct audit_context *context = audit_context(); 2353 2354 context->target_pid = task_tgid_nr(t); 2355 context->target_auid = audit_get_loginuid(t); 2356 context->target_uid = task_uid(t); 2357 context->target_sessionid = audit_get_sessionid(t); 2358 security_task_getsecid(t, &context->target_sid); 2359 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2360 } 2361 2362 /** 2363 * audit_signal_info - record signal info for shutting down audit subsystem 2364 * @sig: signal value 2365 * @t: task being signaled 2366 * 2367 * If the audit subsystem is being terminated, record the task (pid) 2368 * and uid that is doing that. 2369 */ 2370 int audit_signal_info(int sig, struct task_struct *t) 2371 { 2372 struct audit_aux_data_pids *axp; 2373 struct audit_context *ctx = audit_context(); 2374 kuid_t uid = current_uid(), auid, t_uid = task_uid(t); 2375 2376 if (auditd_test_task(t) && 2377 (sig == SIGTERM || sig == SIGHUP || 2378 sig == SIGUSR1 || sig == SIGUSR2)) { 2379 audit_sig_pid = task_tgid_nr(current); 2380 auid = audit_get_loginuid(current); 2381 if (uid_valid(auid)) 2382 audit_sig_uid = auid; 2383 else 2384 audit_sig_uid = uid; 2385 security_task_getsecid(current, &audit_sig_sid); 2386 } 2387 2388 if (!audit_signals || audit_dummy_context()) 2389 return 0; 2390 2391 /* optimize the common case by putting first signal recipient directly 2392 * in audit_context */ 2393 if (!ctx->target_pid) { 2394 ctx->target_pid = task_tgid_nr(t); 2395 ctx->target_auid = audit_get_loginuid(t); 2396 ctx->target_uid = t_uid; 2397 ctx->target_sessionid = audit_get_sessionid(t); 2398 security_task_getsecid(t, &ctx->target_sid); 2399 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2400 return 0; 2401 } 2402 2403 axp = (void *)ctx->aux_pids; 2404 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2405 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2406 if (!axp) 2407 return -ENOMEM; 2408 2409 axp->d.type = AUDIT_OBJ_PID; 2410 axp->d.next = ctx->aux_pids; 2411 ctx->aux_pids = (void *)axp; 2412 } 2413 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2414 2415 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2416 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2417 axp->target_uid[axp->pid_count] = t_uid; 2418 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2419 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2420 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2421 axp->pid_count++; 2422 2423 return 0; 2424 } 2425 2426 /** 2427 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2428 * @bprm: pointer to the bprm being processed 2429 * @new: the proposed new credentials 2430 * @old: the old credentials 2431 * 2432 * Simply check if the proc already has the caps given by the file and if not 2433 * store the priv escalation info for later auditing at the end of the syscall 2434 * 2435 * -Eric 2436 */ 2437 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2438 const struct cred *new, const struct cred *old) 2439 { 2440 struct audit_aux_data_bprm_fcaps *ax; 2441 struct audit_context *context = audit_context(); 2442 struct cpu_vfs_cap_data vcaps; 2443 2444 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2445 if (!ax) 2446 return -ENOMEM; 2447 2448 ax->d.type = AUDIT_BPRM_FCAPS; 2449 ax->d.next = context->aux; 2450 context->aux = (void *)ax; 2451 2452 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2453 2454 ax->fcap.permitted = vcaps.permitted; 2455 ax->fcap.inheritable = vcaps.inheritable; 2456 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2457 ax->fcap.rootid = vcaps.rootid; 2458 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2459 2460 ax->old_pcap.permitted = old->cap_permitted; 2461 ax->old_pcap.inheritable = old->cap_inheritable; 2462 ax->old_pcap.effective = old->cap_effective; 2463 ax->old_pcap.ambient = old->cap_ambient; 2464 2465 ax->new_pcap.permitted = new->cap_permitted; 2466 ax->new_pcap.inheritable = new->cap_inheritable; 2467 ax->new_pcap.effective = new->cap_effective; 2468 ax->new_pcap.ambient = new->cap_ambient; 2469 return 0; 2470 } 2471 2472 /** 2473 * __audit_log_capset - store information about the arguments to the capset syscall 2474 * @new: the new credentials 2475 * @old: the old (current) credentials 2476 * 2477 * Record the arguments userspace sent to sys_capset for later printing by the 2478 * audit system if applicable 2479 */ 2480 void __audit_log_capset(const struct cred *new, const struct cred *old) 2481 { 2482 struct audit_context *context = audit_context(); 2483 context->capset.pid = task_tgid_nr(current); 2484 context->capset.cap.effective = new->cap_effective; 2485 context->capset.cap.inheritable = new->cap_effective; 2486 context->capset.cap.permitted = new->cap_permitted; 2487 context->capset.cap.ambient = new->cap_ambient; 2488 context->type = AUDIT_CAPSET; 2489 } 2490 2491 void __audit_mmap_fd(int fd, int flags) 2492 { 2493 struct audit_context *context = audit_context(); 2494 context->mmap.fd = fd; 2495 context->mmap.flags = flags; 2496 context->type = AUDIT_MMAP; 2497 } 2498 2499 void __audit_log_kern_module(char *name) 2500 { 2501 struct audit_context *context = audit_context(); 2502 2503 context->module.name = kstrdup(name, GFP_KERNEL); 2504 if (!context->module.name) 2505 audit_log_lost("out of memory in __audit_log_kern_module"); 2506 context->type = AUDIT_KERN_MODULE; 2507 } 2508 2509 void __audit_fanotify(unsigned int response) 2510 { 2511 audit_log(audit_context(), GFP_KERNEL, 2512 AUDIT_FANOTIFY, "resp=%u", response); 2513 } 2514 2515 static void audit_log_task(struct audit_buffer *ab) 2516 { 2517 kuid_t auid, uid; 2518 kgid_t gid; 2519 unsigned int sessionid; 2520 char comm[sizeof(current->comm)]; 2521 2522 auid = audit_get_loginuid(current); 2523 sessionid = audit_get_sessionid(current); 2524 current_uid_gid(&uid, &gid); 2525 2526 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2527 from_kuid(&init_user_ns, auid), 2528 from_kuid(&init_user_ns, uid), 2529 from_kgid(&init_user_ns, gid), 2530 sessionid); 2531 audit_log_task_context(ab); 2532 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2533 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2534 audit_log_d_path_exe(ab, current->mm); 2535 } 2536 2537 /** 2538 * audit_core_dumps - record information about processes that end abnormally 2539 * @signr: signal value 2540 * 2541 * If a process ends with a core dump, something fishy is going on and we 2542 * should record the event for investigation. 2543 */ 2544 void audit_core_dumps(long signr) 2545 { 2546 struct audit_buffer *ab; 2547 2548 if (!audit_enabled) 2549 return; 2550 2551 if (signr == SIGQUIT) /* don't care for those */ 2552 return; 2553 2554 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2555 if (unlikely(!ab)) 2556 return; 2557 audit_log_task(ab); 2558 audit_log_format(ab, " sig=%ld res=1", signr); 2559 audit_log_end(ab); 2560 } 2561 2562 /** 2563 * audit_seccomp - record information about a seccomp action 2564 * @syscall: syscall number 2565 * @signr: signal value 2566 * @code: the seccomp action 2567 * 2568 * Record the information associated with a seccomp action. Event filtering for 2569 * seccomp actions that are not to be logged is done in seccomp_log(). 2570 * Therefore, this function forces auditing independent of the audit_enabled 2571 * and dummy context state because seccomp actions should be logged even when 2572 * audit is not in use. 2573 */ 2574 void audit_seccomp(unsigned long syscall, long signr, int code) 2575 { 2576 struct audit_buffer *ab; 2577 2578 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 2579 if (unlikely(!ab)) 2580 return; 2581 audit_log_task(ab); 2582 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 2583 signr, syscall_get_arch(), syscall, 2584 in_compat_syscall(), KSTK_EIP(current), code); 2585 audit_log_end(ab); 2586 } 2587 2588 void audit_seccomp_actions_logged(const char *names, const char *old_names, 2589 int res) 2590 { 2591 struct audit_buffer *ab; 2592 2593 if (!audit_enabled) 2594 return; 2595 2596 ab = audit_log_start(audit_context(), GFP_KERNEL, 2597 AUDIT_CONFIG_CHANGE); 2598 if (unlikely(!ab)) 2599 return; 2600 2601 audit_log_format(ab, 2602 "op=seccomp-logging actions=%s old-actions=%s res=%d", 2603 names, old_names, res); 2604 audit_log_end(ab); 2605 } 2606 2607 struct list_head *audit_killed_trees(void) 2608 { 2609 struct audit_context *ctx = audit_context(); 2610 if (likely(!ctx || !ctx->in_syscall)) 2611 return NULL; 2612 return &ctx->killed_trees; 2613 } 2614